Laser Performance of a PLD-Grown Yb:LuAG Double-Clad Planar Waveguide

Sergey V. Kurilchik, Jake J. Prentice, Robert W. Eason, and Jacob I. Mackenzie

Optoelectronics Research Centre, University of Southampton, University Road, Southampton, SO17 1BJ, UK

A growing demand for compact high-power laser sources has recently stimulated significant interest in the development of planar waveguide laser geometries compatible with high-power laser diode bars and producing high beam quality laser output [1,2]. This can be achieved by use of cladding-pumping techniques such that the pump and the laser signals are guided by different, but spatially overlapping, waveguides. By engineering the doped region to be the central layer of a double-clad planar waveguide, fundamental-mode selection can be achieved [1]. Fabrication of these structures is possible using pulsed laser deposition (PLD), which combines relatively high growth rates (up to 25-µm per hour [3]), the ability to dynamically control local refractive index [4], and the capability to grow active hetero-epitaxial multi-layered structures [5].

In this work we present a 4 μ m-thick 7at.% Yb-doped LuAG core layer bounded by two 2- μ m-thick undoped LuAG cladding layers, which was grown on a YAG substrate by use of PLD. X-ray diffraction analysis confirmed a film with predominantly <100> crystal orientation. Absorption and stimulated emission cross sections were calculated using the measured excited state lifetime and fluorescence spectrum, which compares well with previously reported spectroscopy of Yb:LuAG-crystals grown by traditional methods. An upper limit for the propagation losses of the waveguide were estimated to be 1.2 dB·cm⁻¹ by measurement of the transmission of a 1064nm laser beam focussed into the end facet of the waveguide.

Laser experiments were carried out with a quasi-monolithic plane-plane cavity shown schematically in Fig.1(a). A conduction-cooled 40 W diode-laser bar emitting at 940 nm wavelength, with fast- and slow-axis collimation (FAC/SAC), was used as a pump source. Lasing was obtained for both simple Fresnel reflection and for output couplers with reflectance of 30% or 50% (M2), the measured performance is illustrated in Fig. 1(b).

Fig. 1 Yb:LuAG double-clad waveguide laser (a) experimental setup and (b) input-output power characteristics

The best laser performance was achieved with a high-reflectance mirror (M1) and Fresnel reflection at the output facet giving a maximum output power of 3.3 W at 1030.7 nm with a 20 % slope efficiency. This is the first demonstration to our knowledge of a Yb:LuAG crystalline planar waveguide laser, which has a slope efficiency of more than twice that reported previously for a ceramic Yb:LuAG waveguide laser [6]. The measured laser spectrum is displayed in Fig.1(b) as an insert. Thermally induced roll-over of the lasing output was noticeable at pump power levels above 20 W, which is expected to be mitigated with better heat-sinking. Using a modified Caird analysis for the case of large output coupler transmission and losses, the single pass parasitic loss in the cavity was calculated to be \sim 1.8 dB. Improved laser performance and the beam quality is expected with further growth optimisation, which will be enabling for the construction of efficient high-power lasers and amplifiers.

References

[1] T. Bhutta, J. I. Mackenzie, D. P. Shepherd, R. J. Beach, "Spatial Dopant Profiles For Transverse-Mode Selection in Multi-Mode Waveguides," J. Opt. Soc. Am. B 19, 1539-1543 (2002).

[2] J. I. Mackenzie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason and D. P. Shepherd, "Crystal Planar Waveguides, a Power Scaling Architecture for Low-Gain Transitions," IEEE J. Sel. Top. Quantum Electron. **21**(1), 380-389 (2015).

[3] J. Mackenzie, J. Prentice, J. Grant-Jacob, S. Kurilchik, D. Shepherd, and R. Eason, "Functional crystal films fabricated by pulsed laser deposition," presented at PHOTONICS International Congress, Yokohama, Japan 23-27 Apr. 2018.

[4] J. A. Grant-Jacob, S. J. Beecher, H. Riris, A. W. Yu, D. P. Shepherd, R. W. Eason, and J. I. Mackenzie, "Dynamic control of refractive index during pulsed-laser-deposited waveguide growth," Opt. Mater. Express 7, 4073-4081 (2017).

[5] S. J. Beecher, T. L. Parsonage, J. I. Mackenzie, K. A. Sloyan, J. A. Grant-Jacob, and R. W. Eason, "Diode-end-pumped 1.2 W Yb:Y₂O₃ planar waveguide laser," Opt. Express **22**, 22056-22061 (2014).

[6] C. Ma, J. Zhu, K. Liu, F. Tang, J. Long, Z. Wen, R. Ma, X. Yuan, W. Guo, J. Li, and Y. Cao, "Longitudinally diode-pumped planar waveguide YAG/Yb:LuAG/YAG ceramic laser at 1030.7 nm," Opt. Lett. 41, 3317-3319 (2016).