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ABSTRACT

Human language pervades in a complex and ever-changing social milieu, and although

the tendency and ability to learn languages are clearly innate, given the rate at which

lexical items change, it is clear that social-cultural factors and ontogenetic development

play a significant role in the way in which languages change over time. This has resulted

in research concerned with human language evolution being dominated by two, umbrella-

like, research questions. First, to what extent is the human language faculty the result

of genetic endowment, and to what extent might it result from non-evolutionary factors

such as constraints imposed by the fundamental nature of observational learning and

social interaction? Second, to what extent are the observed characteristics of human

language the result of evolutionary selection on language users, and to what extent

are they the result of individuals shaping languages during their usage? This thesis is

concerned with both questions, and focuses specifically on the role of social learning in

shaping language.

There is now a growing body of work which indicates that much of the contemporary

linguistic form seen in languages around the world is the result of said languages being

influenced by the population structure and social dynamics of their language communi-

ties. This, combined with emerging evidence that suggests a strong association between

the origins of human language and a coincidental, and dramatic, shift in social structure,

means that investigating the nature of the relationship between linguistic form and social

structure has the potential to offer powerful insights into the nature of human language

evolution.

This thesis explores this notion of a relationship between the structure of a language

community and the linguistic structures that their language exhibits by modelling lan-

guage changes as arising within the context of a social-coordination problem. In doing so,

it utilises a specific form of expression/induction simulations known as iterated learning

models. The key principle of these models is that the training data offered to a language

learner is, itself, the result of training and learning on the part of another language user.

Four different models are presented here. The first introduces the concept of iterated

learning, and explores how compositional languages emerge in a population of language
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users. The second adopts the principles of Roth-Erev reinforcement learning to look

at the evolution of term-based languages; again, in a population of language users.

The third, uses both the iterated learning framework and the principles of Roth-Erev

reinforcement learning in order to explore the nature of linguistic change in a situation

whereby agents create their own signals and syntactic rules while their population size is

in a state of flux. The final model is adapted from the third, and explores the emergence

of contact languages that tend to arise when independent language communities interact.

All four models demonstrate that the structure and make-up of a population influences

the dynamics of language change over generational time. Specifically, it is shown that,

by increasing the number of trainers from which an agent learns, the agent in question

tends to learn a more expressive and stable language at a much faster rate, and with

less training data. It is also shown that, so long as the number of mature agents is large

enough, this finding holds, even if a learner’s trainers include other agents that do not

yet possess full linguistic competence.

Importantly, the findings presented here demonstrate that it is not population size per

se that dictates how long, if at all, a fully expressive and stable linguistic system takes

to emerge. Rather, it is how proportionally interconnected a given agent is to other

agents in the social group that dictates the success of said population’s language.

In addition, the final model, which looks at the nature of pidgin and creole language

emergence, presents two key findings. First, and in contrast to the common claim

within the pidgin and creole literature, social power need not play a key role in pidgin

emergence. Here, the pidginisation process needed to be a bilateral process, with both

parties contributing to the subsequent pidgin in order for a successful contact language to

exist between the two different populations. Secondly, this model looked at the concept

of tertiary hybridisation; the belief that a pidgin will have to be used as the lingua

franca between two groups who do not possess a common language, and whose speakers

are not native speakers of the original target language. The data from these model

runs indicated that, when two groups without any common language come together,

tertiary hybridisation is necessary in order for a creole to emerge; otherwise, the resulting

language is an entirely new linguistic system.

In summary, the results of these models demonstrate that the evolution of language does

indeed have an intimate relationship with population structure and social dynamics. In

that linguistic variations and systems become more stable in situations where language

users have a higher level of interconnectivity with the rest of the population. The

reason for this is shown to be due to the way in which languages themselves evolve in

response to individual learner biases so as to become easier to learn. In other words, as

language users learn the linguistic system of their particular social group, the language

is essentially exposed to a refinement process as it is past on from one generation to

the next. Furthermore, although it has been argued that, in order for a language to be
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learnable, its structure has to adhere to certain constraints placed upon its structure,

and that any language that violates such a ‘linguistic blueprint’ would not exist because

it would be unlearnable, the findings presented here demonstrate that this refinement

process is highly efficient at producing similar results; even when input is highly variable

and inconsistent.
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Chapter 1

Introduction

Enki, the Lord of abundance, of trustworthy commands,

The Lord of wisdom, who understands the land,

The leader of the gods,

Endowed with wisdom, the Lord of Eridu

Changed the speech in their mouths, [brought] contention into it,

Into the speech of man that (until then) had been one.

Enmerkar in ‘Enmerkar and the Lord of Aratta’

The natural world is rife with organisms that communicate with each other, using a

range of mechanisms that vary wildly between species, including colourful visual dis-

plays, electric organ discharges, pheromones, signature whistles, alarm calls, and fully

syntactic human language. Although fascinating in their own right, nearly all of the

communication systems that we see in the natural world, including our own non-verbal

ones, such as smiling and crying, lack an important feature. Namely, the ability to

combine signals syntactically in order to communicate about remote matters that exist

in spatial, temporal, even fictitious, worlds beyond the here-and-now.

Indeed, it is this aspect of human language that enables us to communicate any thought

in our minds, from which berries are edible, through to explaining to an eccentric business

CEO why his dinosaur-filled theme park will ultimately lead to chaos. This arguably

makes language one of the most interesting evolutionary developments to emerge within

the last 5-10 million years; with many deeming it to be the most distinguishing feature

of our species, as well as the primary impetus behind our expansion from a minor species

in sub-Saharan Africa to the most dominant species on the planet (Fitch 2010).

A large part of the uniqueness of human language arguably stems from the way in which

it gains its expressive power by exploiting a few formal principles which operate over

various sub-systems and different levels of organisation (Tallerman & Gibson 2013a).

Firstly, language recombines elements at a series of successively more complex stages;

1
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starting with the phonemes of the sound system (MacNeilage 2013). These phonemes

then combine in language-specific ways to form syllables, which are combined to form

morphemes and words; which are then combined to form sentences. Secondly, languages

have grammars; rules governing which sound sequences are and are not permissible, as

well as how the meaning of a valid utterance arises from the meaning of its component

parts. Finally, human language is in a constant state of flux, in that each language tends

to exhibit a high level of variation and tends to change over time.

These characteristics of language, and whether they should be considered part of nature

or human culture, is a debate that can be dated back to the classical era. Examples

include the study of rhetoric that flourished with the formation of a system of grammat-

ical categories based on Greek and Latin, and how Panini developed a highly diverse

grammatical system in fourth century India. The study of language then boomed during

the Renaissance period, with the help of both the application of classic philosophical

thinking to various disciplines, and the discovery of new languages from around the

world (Gardner 1985).

However, the study of the evolution of language was arguably formalised by Charles

Darwin, and his interest in courtship signals. Darwin’s belief was that the diversity seen

in human language was a product of a process akin to speciation. Although Darwin was

primarily concerned with visual expressions of emotion, which he believed came about

in order to convey information about the signaller’s emotional and motivational state,

he also applied the same thinking to vocal expressions. Darwin was adamant that both

human gestural expressions and language were derived from a biological ancestor. In

addition, he noted his strong belief that natural selection resulted in significant changes

in the design features of the communication system:

“I cannot doubt that language owes its origin to the imitation and modifi-

cation, aided by signs and gestures, of various natural sounds, the voices of

other animals, and man’s own distinctive cries. When we treat of sexual

selection we shall see that primeval man, or rather some early progenitor of

man, probably used his voice largely, as does one of the gibbon-apes at the

present day, in producing true musical cadences, that in singing; we may

conclude from a widely-spread analogy that this power would have been es-

pecially exerted during the courtship of the sexes, serving to express various

emotions, as love, jealousy, triumph, and serving as a challenge to their ri-

vals. The imitation by articulate sounds of musical cries might have given

rise to words expressive of various complex emotions”.

- Darwin (1871:56)

Essentially, Darwin made two points regarding the evolution of human language; that

its structure and function is a product of natural selection, and that the strongest link
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between human and non-human communication systems lie in their ability to be able to

convey an emotional state.

Since the time of Darwin, much work has been conducted into the origin and subsequent

evolution of language1, and it is now largely accepted that human language consists of

a number of, what Hockett (1960) termed, design features. Smith (2003) collates the

numerous design features proposed within the literature, selecting the following seven

key design features of human language.

1. Discrete: An expression of a particular type can be a subset of a larger expression

of the same type.

2. Cultural transmission: A language user learns their language from other users, in

some sense and to a certain degree.

3. Arbitrariness: A signal is only arbitrarily related to its meaning.

4. Duality of patterning: A small number of meaningless elements, phonemes in

spoken language, are combined in order to produce meaningful elements; words in human

language.

5. Displacement: Languages can be used to communicate about things that may be

spatially or temporally removed from the actual communicative act, or may even be

fictional.

6. Stimulus freedom: Language users can produce any signal that they wish to at

any given time, and not only when the appropriate stimulus is present.

7. Open-endedness:The set number of sentences that can be produced or interpreted

by a language user is infinite.

This final point can be further broken down into compositionality and recursiveness.

The former refers to the way in which the meaning of an expression is a function of

the meaning of its parts, and the way in which they are combined. This makes the

interpretation of previously unencountered signals or utterances possible. The latter

concerns how an expression of a particular type can be a subset of a larger expression

of the same type. Thus allowing the creation of an infinite number of utterances from

a finite set. These are what endow human language with its aforementioned expressive

power.

Today, when one says that they are exploring the evolution of language, they tend to

mean one of two things. Either they are referring to the search for an ‘evolutionary

story’ of how and why humans came to acquire language, or they are interested in the

fundamental explanatory challenge for linguistics; namely, explaining how the universal

1The historical details of this body of work are too vast to go into in detail here, and the interested
reader is advised to consult Hauser (1996) or Fitch (2010) for a detailed overview.
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properties of language arise from the complex adaptive systems that underpin it (Kirby

2013).

It is quite easy to see how these two interests relate to one another. Exploring the

nature of language transmission, and the results thereof, in modern humans may pro-

vide a window into the nature of protolanguage in pre-linguistic hominins. Particularly

when looking at the emergence of contact languages that arise when two linguistic com-

munities, without any prior common language need to communicate with one another.

Indeed, recent years have seen an expansion in the body of work with that exact aim;

which many believe can be achieved by understanding how phenomena, such as contact

events between different linguistic groups, can impact the creation and transmission of

modern languages.

This is perhaps why the vast majority of human language research is concerned with one

of two questions (Tallerman & Gibson 2013b). First, how much of the human language

faculty can be ascribed to a genetic endowment for language learning, and to what extent

can it be accounted for by other mechanisms; such as the nature of observational learning

and social interactions? Second, how much of linguistic structure can be attributed to

natural selection, as in which linguistic features were adaptive to early hominins, and

to what extent does structure arise from self-organisational processes; such as language

itself adapting to be easier to learn?

In accordance with this observation, this thesis explores the role of social structure

and social dynamics in shaping language change over time by framing the subject as

a matter of social co-ordination. In doing so, it investigates as to how the make-up

and interconnectivity of social groups impact linguistic structure. This is achieved by

subscribing to the working assumption that human language evolution is the result of

interactions between three dynamical systems; biology, ontogeny, and social-cultural

factors. More specifically, there are emerging bodies of work which suggest that, not

only does an association exist between the size and interconnectivity of social groups

and linguistic structure (Johansson 1997, Wichmann & Holman 2009, Lupyan & Dale

2010, Milroy 2013, Atkinson et al. 2015), with a change in these sometimes claimed

as a driver for the evolutionary origin of human language, but also that the study of

contact languages could provide a ‘window’ through which to better understand language

evolution. This thesis builds upon these works in exploring such notions by way of

expression/induction (E/I) models.

Iterated Learning Models (ILM) are the specific type of E/I simulation that are the focal

point of this thesis, and they were selected for two main reasons. Firstly, the iterated

learning framework was specifically designed to explore the self-organisational properties

of languages themselves, and how these properties can be influenced by learner bias; with

linguistic structures themselves adapting in order to become easier to learn. Secondly,

the developers of ILMs, and the vast majority of E/I models, have traditionally not been
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concerned with matters of social structures and social dynamics and the impact that

these may have upon linguistic form. Instead they have opted for models that involve

very small populations of a constant size, often consisting of just one mature agent and

one immature agent per generation. This constitutes a research gap that this thesis aims

to address. In short, this thesis has four main research aims:

1. Does population size have an impact upon the dynamics of iterated learning over

generational time?

2. If so, in what manner does the make-up of a population of agents impact linguistic

structure within iterated learning models?

3. Does a fluctuating population size impact the rate of linguistic change within an

iterated learning model?

4. Can iterated learning models be adapted in order to explore the development of

contact languages. If so, what inferences can be made from the data yielded by such

simulations?

Given these aims, this thesis proceeds thusly. Chapter 2 provides a theoretical and

historical overview of human language evolution research, with the aim of providing the

reader with the background necessary in order to locate the research presented here

within the wider literature. The second half of this chapter will then provide the reader

with an understanding of the various research methodologies that have been adopted

by those working in the field of language evolution, with an in-depth look at a specific

methodology; the comparative method. By looking at the data available in regards to

the cognitive capacities, linguistic abilities, and social behaviours of other species, this

section highlights a number of points about these matters that justify the assumptions

made by those developing computational models. Models that tend to take the form of a

population of individual agents that initially have no language, but do have the abilities

necessary to learn one; and are predisposed to do so.

Chapter 3 then takes an in-depth look at the methodology that is the primary focus

of this thesis; the various computational methods that have been used to research hu-

man language and other naturally occurring communicative systems. This includes an

overview of game theoretical models and the various grammar representations that have

been developed and implemented in relevant computational models. There is then an

overview of some of the most significant agent-based models that feature in the litera-

ture, with a focus on expression/induction (E/I) models. Finally, this chapter concludes

with a brief discussion of how, given the evidence presented in the previous chapter and

the fact that the vast majority of E/I models have very restricted population dynam-

ics, that it would be beneficial to the research field to explore such models with more

complex social dynamics which would not only aid in exploring a number of areas of

theoretical interest in the field, but will also bridge a gap in the E/I literature.
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Chapter 4 then takes a notable iterated learning model (ILM), originally introduced

by Kirby & Hurford (2002), which explores how expressivity and stability change over

generational time in a population consisting of one mature and one immature language

user per generation. This model is then extended to include a population of agents

with multiple mature and immature agents per generation. It is shown that being

taught by multiple language trainers is beneficial to the learning process and enables a

compositional language to emerge more quickly.

Chapter 5 is motivated by the possibility that the results reported in chapter 4 may have

been idiosyncratic to the particular model employed. This chapter therefore presents a

completely different model, based around cognitively simplistic agents and the principles

of Roth-Erev reinforcement-learning. It is shown that this second model displays similar

behaviour to the first, in that an expressive and stable communication system emerges

much faster in a social milieu in which language users learn their language from multiple

tutors. Indeed, it is demonstrated that each individual language learner has a more

challenging learning task when exposed to multiple trainers who may not share exactly

the same languages, especially at the start of the simulation, but the learnability of the

language itself benefits across generations.

Chapter 6 presents a third E/I model; one that again involves a linguistic population

giving rise to a language through their interactions. The results of this ‘baseline’ model

demonstrates that, as with the first two models, a situation where immature language

users learn their language from a higher number of mature language tutors is beneficial

to the emergence of a stable linguistic system. Furthermore, this chapter explores what

impact a contracting or expanding population size has upon the emergence of a linguistic

system. In doing so, it is demonstrated that the communicative success rate, which acts

as a proxy for the stability of the linguistic system, is not related to the overall size of

the population per se, but to the degree of integration within the linguistic community.

Chapter 7 then begins with a brief overview of the contact language literature, including

a discussion of the theories regarding their origin and development. The ‘baseline’ model

from chapter 6 is then extended to allow different populations of language users, each

of which have their own perfectly stable language in place, to interact with one another

in order to give rise to a contact language. This pidgin and creole model is explored

in a number of ways. Firstly, the impact of the interconnectivity of the populations

upon linguistic development are explored, where similar results to those seen in the

baseline model are reported. Secondly, the role of social power, whereby one population

dominates more of the interactions than language users from the other population, is

then investigated. Here it is shown that a change in social power on its own does not

impact the development of a linguistic system in any meaningful way. Thirdly, there

is an analysis of the role of tertiary hybridisation, where a third population is involved

in the process of creole development. It is demonstrated that tertiary hybridisation is

essential to the ability of the linguistic populations within the model to give rise to an
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actual creole and not just a whole new language. Additionally, it is shown that the kind

of linguistic structures seen in creoles, which have traditionally been associated with

social power, may actually be the result of tertiary hybridisation.

Finally, chapter 8 is the conclusion of the thesis. It summarises the findings of the

research presented in the preceeding chapters, where it fits within the wider body of

work in the literature, and offers a brief discussion of future work.

1.1 Publication notes

The reader should be aware that sections of this work have been published prior to

the submission of the thesis, and that these specific sections are labelled to that effect.

Specifically, a large part of the work featured in chapter 4 can be found in Brace et al.

(2015); and both Seth Bullock and Jason Noble should be acknowledged for their time

and thoughtful contributions to this work. The work presented in chapter 5 has also

been published, and can be found in Brace & Bullock (2016). Again, a personal thanks

goes to Seth Bullock for his thoughtful input.





Chapter 2

The Evolution of Language and

Evidence Thereof

Human language, like all naturally occurring communication systems, is clearly the result

of evolution. However, there is still contention surrounding the issue as to whether or

not language itself is an adaptation, or merely the bi-product of the evolution of other

aspects of our cognition. Bickerton (2013) breaks down the various views on the matter

into four distinct arguments:

1. That language owes its origins to natural selection, and that every subsequent step

in its development was guided by natural selection (Pinker & Bloom 1990, Pinker 1994).

2. Language began through the process of natural selection, and was subsequently

adaptive as a whole, but particular steps in its development were not selected for per se

(Jackendoff 2002).

3. Some of the particular prerequisites for language were selected for non-linguistic

reasons, and language was then a resulting emergent property; but language itself, was

not directly selected for (Jenkins 2000).

4. A suite of cognitive characteristics was selected for, which were unrelated to language,

but which made the cultural invention of language possible (Donald 1991, Fauconnier &

Turner 2008).

Part of this difference of opinions is due to there being two prolific academic traditions in

human language research. According to the first, language was not promoted by natural

selection, but represented a new cognitive domain that resulted from a single biological

mutation. This, in turn, enabled the unlimited control of complex structures, which

was used primarily for private thought, and only derivatively for communication with

conspecifics. In contrast, the second argues that an accumulation of biological mutations,

which were promoted by natural selection, gradually allowed ever greater interaction

9
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between pre-existing cognitive domains; no new domain was created. This allowed

increasing control over complex structures, which were primarily used for communicative

actions, but also allowed for advanced private thought (Hurford 2014).

Those that support the latter are often referred to as adaptionists, and their account

tends to emphasise the role of natural selection, and how organisms evolve in accordance

with the selection pressures placed upon them by their environment. Specifically, the

adaptionist view point argues that the language faculty, whatever one deems that to

include, is not only the result of gradual evolutionary development, but that all aspects

of it also presented an evolutionary advantage in, and of, themselves. Thus, the adap-

tionists argue that, although human language is primarily a communication mechanism

that allows for social interactions, it does stem from specific mental activity.

In contrast, those that support the former are known as non-adaptionists or exadaption-

ists. This group tend to focus on concepts such as exaption when arguing that:

“Organisms must be analysed as integrated wholes, with baupläne so con-

strained by phylogenetic heritage, pathways of development, and general ar-

chitecture that constrain themselves and become more interesting and more

important in delimiting pathways of change than the selective force that may

mediate change when it occurs.”

- Gould & Lewontin (1979:281).

These architectural constraints can lead to sprandels, traits that serve functions that it

did not originally evolve to do, but were eventually co-opted for; such as feathers. The

non-adaptionist view is that natural selection played only a minor role in the evolution

of the language faculty. Instead, the belief is that the language faculty appeared very

suddenly, without any primitive precursors as a result of an evolutionary by-product, a

sprandel, by some, as of yet poorly understood, laws of form or as the result of macro-

evolutionary changes that were caused by a single point mutation (Tallerman & Gibson

2013a). This then enabled language, which in turn, enabled mental representations and

other aspects of human cognition; such as future planning and constructing relationships

between symbols.

2.0.1 Chomsky

The most notable non-adaptionist is probably Noam Chomsky, who argues that humans

are the only species to have an autonomous module in the brain, a language organ,

which evolved to carry out combinational calculations. This module is a by-product of

selection for other cognitive abilities and provides algorithms for specifying the details

of our communicative utterances.
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Chomsky’s (1957) argument was that all language users have an intuitive understanding

of certain language properties. He advanced this idea by exploring the rules that govern

three aspects of language use:

1. An individual’s ability to generate grammatically correct sentences.

2. The ability to know that these sentences are correct, and what they mean.

3. The ability to work out if sentences violate these norms.

By exploring the nature of these three skills, Chomsky came to the conclusion that

language users must possess a set of rules or procedures for understanding when different

parts of speech can occur within and among sentences; rules and procedures that adhere

to the intuitions of said language users.

Chomsky (1980) went on to study grammar in theoretical terms as the search for uni-

versal grammar (UG). UG is language-specific and genetically determined within the

mind of individuals, and is then specified, sharpened, and refined in accordance with the

personal experiences of individuals. This process then yields the particular grammars

found within groups of individuals. Chomsky (1986) discusses this process in regards to

the concepts of I-Language and E-language:

I-language: This is the pattern of neurons that implement an individual language

user’s grammar within their brain.

E-language: This is the set of utterances that make up the spoken language.

Chomsky (1986) goes on to assert how UG can be refined and decomposed into two

specific parts. The first being a system that is associated with certain variable param-

eters, which creates the hypothesis place for I-Language. The second being a Language

Acquisition Device (LAD), which determines how the external experiences of an indi-

vidual impacts the selection of a particular I-Language from the range of those possible.

Here, Chomsky (1980) asserts that language knowledge is a series of states within the

individual’s brain. States that can be described by a core grammar, consisting of certain

principles of UG.

This has been used to explain the problematic nature of language acquisition, known as

the poverty of the stimulus. This is the argument that, given how the linguistic training

data presented to language learners is indigent, the only explanation for how we came

to acquire our linguistic competence is that some knowledge of language must be pre-

specified. The UG then guides the learning process in such a way that children are able

to learn their native language, despite the impoverished nature of the input.
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2.0.2 Wilkins and Wakefield

Wilkins & Wakefield (1995) are non-adaptionists, who are heavily motivated by the way

in which linguistics has traditionally viewed the question of how language first emerged as

a somewhat unnatural one to ask. In looking at this question, they attempt to present

a plausible evolutionary scenario for the emergence of the neurological preconditions

within the hominin lineage that were necessary for the development of language. The

authors focus on how there was a paired expansion of the frontal and parietal neocortex

within Pleistocene primate lineages. This resulted in an incipient Broca’s area and a

unique junction of the parietal, occipital, and temporal lobes of the brain (POT); which

had a different configuration in these ancient hominins.

They argue that the evolution of an identifiable Broca’s area and POT was related to the

evolution of motor programs; behaviours such as manual manipulation and throwing.

Their evidence for this stems from the observation that the modifications to the motor

systems that were related to the use of the hands and thumbs of early hominins had

strong interactive relationships with forearm development, brain organisation, and later-

alisation; all of which have a strong association with language. Their belief is that it was

selection pressures acting on the improvement of motor skills, and the feedback between

the somatosensory cortex and the motor cortex that these new skills required, that led to

the creation of the connection between the sensory and motor cortex; including Broca’s

area.

The essential idea here is that auditory, visual, and somatosensory inputs were processed

in unimodal association areas of the cortex, to create unimodal representations. These

then come together to form multi-modal representations of the original sensory input,

which then converge at the POT, and in turn enables us to form amodal representations

is crucial to linguistic abilities.

In other words Wilkins & Wakefield (1995) argue that an abstract semantic representa-

tion is created in Broca’s area, by structuring the amodal representations of the external

world. A similar process then links visual and auditory sensory input to these amodal

concepts; thus allowing arbitrary symbolic reference to become possible.

2.0.3 Pinker

The seminal paper for the adaptionist side is Pinker & Bloom’s (1990) Natural Language

and Natural Selection, which revived interest in human language evolution research. This

paper, and Pinker’s (1994) subsequent book The Language Instinct, were an attempt to

fit theories of language structure and function within a Darwinian framework.
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Pinker & Bloom (1990) argue that the belief that language evolved as a by-product

of selection for other abilities, or that grammar shows no genetic variation and there-

fore offers no selective advantage, are built upon inaccurate assumptions. Contrary to

such beliefs, Pinker (1994) argues that natural selection is the only possible mechanism

that can account for a trait that possesses the kind of complex design features seen

in human language; meaning that it could only have evolved through gradual changes.

Furthermore, Pinker (1994) observes three aspects of human language, which he believes

demonstrates a degree of genetic variation that are sufficient for selection to act upon:

1. Variation between normal humans in grammatical competence.

2. In those families with preponderance of left-handers, right-handed individuals rely

more on lexical than syntactical analysis.

3. Potential evidence of inherited deficit in grammatical ability within a family.

Pinker (1994) uses these observations in arguing that all humans are born with a language

instinct. This is a form of universal grammar that constrains the range of potential

variation in language, allowing for both linguistic diversity and universals. He goes

on to argue that this language instinct is located within the brain, lateralised to the

left hemisphere; and although a modular view of the neural substrate for language is

favoured, evidence of a non-modular, multi-purpose system would not cause problems

for the Darwinian account since selection can favour a structure with more than one

function.

2.0.4 Bickerton

Bickerton is very much a non-adaptionist who becomes more adaptionist in later years.

His work is largely concerned with a central paradox that he believes to underpin the

evolution of language. Namely, that human language is very different to any other

natural communicative system:

“On the one hand, language could not have evolved out of animal systems of

communication. On the other hand, language must have evolved, since, for

all its complexity, it is simply one of the countless adaptive mechanisms that

have developed in species in the course of evolution”

Bickerton (1990:75)

Bickerton (1990) believes that one can overcome this paradox by accepting that language

is first and foremost a system of representation, and is therefore like other communication

system. In that it was a mechanism that, to a large extent, created its own output, and

did not merely replicate, or reproduce in a similar form, its input. Bickerton (1990)
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also accredits this fact for enabling language to greatly increase, not just the number

of things that individuals were able to communicate about, but also the kinds of things

that could be discussed. Thus, he concluded that one would not be able to investigate

the origins of language by looking at the methods by which other animals communicate

with one another. Moreover, one would have to look at how systems of representation

evolved, which refers to the way in which animals tend to use primary representations of

whole situations, such as ‘predator’ and ‘food’, whereas human language is a secondary

representational system; with verbs denoting actions, etc.

As such, the focal point of Bickerton’s (1990) work concerns, what he termed, protolan-

guage. He believes that this represents the main transition between no language and

fully syntactic language. This is a system that uses secondary representation, much

like full language, even though it lacks many formal properties that are characteristic of

full language; such as grammatical morphemes. He argues that this protolanguage first

evolved as a result of group foraging activities (Bickerton 2002), and that full language

then evolved as a result of a catastrophic processes. This came in the form of a single

macro-mutation, which was responsible for considerable functional changes, such as the

capacity for syntax and the modern human vocal tract.

In exploring the nature of protolanguage, Bickerton became particularly interested in

cases where cultures came together. Specifically how, when two communities without

a common language need to communicate, a form of protolanguage tends to emerge;

this is referred to as a pidgin. Although the structure of a pidgin is relatively simple,

we often see a refinement in its structure and usage as time progresses and subsequent

generations are born. This refined version is known as a creole. It has been argued that

the transition from pidgin to creole demonstrates that innate mechanisms guide the

original rules for language production, and subsequently constrain language structure

and usage (Hauser 1996).

In his later work, Bickerton (1998) retires the idea of language being the result of a

macro-mutation, perhaps due to increasing evidence suggesting that the chances of a

single mutation resulting in a system as complex and as ideally suited to a task such as

language is staggeringly high (Pinker & Bloom 1990, Wolpoff et al. 2004).

However, Bickerton (1998) does maintain his belief that language emerged suddenly,

within a single generation. The argument here is that protolanguage users already

possessed the anatomical and neural apparatus, such as motor control and a primitive

vocal tract; and that, through ontogenetic chance, these parts of the brain became

connected and enabled the emergence of deep conceptual structure, which in turn allowed

for the emergence of language as we know it today. This line of inquiry has, in more

recent years, led Bickerton (2003) to argue that human language, as commonly seen

today, involves the coming together of three things; modality, symbolism, and structure.
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The first refers to speech and language, where he believes language to have begun as a

mixture of both speech and signs. Information transfer was what selected for improved

vocal capabilities, which evolved from the original mixture of grunts and gestures due to

it better enabling individuals to communicate at night, over longer distances, or through

dense vegetation. Thus, Bickerton (2003) concludes that speech modality was not the

driving force behind language evolution. Moreover, it was contingent on the other two

components of symbolism and structure; “being able to speak more clearly does not, in

and of itself, give you more to say” (ibid:81).

For Bickerton (2003), the most important thing to bear in mind about the emergence

of symbolic representation is that it must have been primarily a cultural, rather than

a biological, evolutionary event. The widespread nature of potential for symbolic rep-

resentation within the animal kingdom is indicative of analogous, rather than homolo-

gous development, akin to the convergent evolutionary process that gave fins to sharks,

cetaceans and Ichthyosaurs; and could, therefore, exist within any animal with a brain

of sufficient complexity. Thus, the emergence of symbolism arose culturally because the

minimal biological equipment necessary was already in place, and it evolved because the

exploitation of said symbolism benefited both individuals and groups.

In relation to structure, Bickerton (2003) supports the recently popular notion that

holistic utterances, which were semantically equivalent to one-clause sentences in modern

language, formed the earliest linguistic utterances. He believes that once the number of

symbols began to increase, they started to be strung together in an ad-hoc fashion; and

that these one-clause sentences, with a fixed word order, constituted a proto-syntax. To

Bickerton (2003), this process does not merely constitute a step towards real syntax, but

that once one achieves such a level of structure, real syntax will automatically follow.

2.0.5 Jackendoff

Jackendoff (2002) is another adaptionist, who focuses on various evolutionary stages of

the human language faculty, while arguing that any increase in precision of communi-

cation or expressive power would offer a clear selective advantage. In presenting the

evolution of the human language faculty in terms of a number of sequential evolutionary

steps, Jackendoff (2002) lays out an evolutionary road map (figure 2.1).

For Jackendoff (2002) the most important preconditions for human language can be seen

in the conceptual abilities of non-human primates and their communicative/alarm call

system behaviours. He cites the many studies that have been done over the years (Kohler

1927, Cheney & Seyfarth 1990, de Waal 1996) in arguing that it is clear that primates

have a combinational system of conceptual structure in place. A system that is not

only able to deal with such matters as navigation and problem-solving in the physical
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Figure 2.1: Summary of Jackendoff’s (2002) incremental evolutionary steps of lan-
guage. Logically sequential steps are presented from top to bottom, while logically

dependent steps are presented side-by-side. Replicated from Jackendoff (2002).

environment, but which is also able to process other individuals as being intentional

agents.

These primate systems also demonstrate the use of symbolism, which was a major step-

ping stone on the evolutionary road to human language. For Jackendoff (2002), the most

important point to be made here is the observation that young human children, unlike

non-human primates, use symbols in a non-situation-specific fashion. He observes that

a child can use the word ‘dog’ to point out, summon, or enquire the whereabouts of the

house pet, while non-human primates will give predator-specific alarm calls when they

see a predator, but not to enquire as to when one was last seen.

According to Jackendoff (2002), the next evolutionary step required two things; an

unlimitedly large class of symbols and the ability to concatenate them into larger ut-

terances. He argues that these can be independent of one another, in that one could

have a communication system with just one or the other. Jackendoff (2002) goes on to

argue that the former stems from the capacity to imitate and, in agreement with others

(Povinelli et al. 2000, Hurford 2007), behaviours such as pointing.
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Jackendoff (2002) then goes on to discuss, what he terms, proto-phonology. The idea here

is that, as the number of symbols increases, remembering and discriminating between

utterances becomes a problem of increasing perceptual difficultly. Human language gets

around this by building its words up by combining a few dozen, smaller and meaning-

less speech sounds. Jackendoff (2002) then proposes that an intermediate stage in the

evolution of phoneme-based vocabulary was possibly based around the syllable as the

generative unit. This is an argument that largely draws upon Lieberman’s (1984) obser-

vations that the shape of the late Neanderthal’s vocal tract would not have allowed for

the multitude of perceptually different speech sounds evident in human language, but

an open vocabulary would have still been possible with a less differentiated phonological

system.

Jackendoff (2002) then goes on to argue that part of this proto-phonological development

was related to a very important linguistic evolutionary step. Namely, the concatenating

of two or more symbols into a single utterance, with a connection that was purely

contextual. It should be noted here that Jackendoff (2002) draws a distinction between

phonological combinations and this symbolic kind of combination. The former being

a way of analysing and producing meaningful symbols from a repertoire of smaller,

meaningless, units. While the latter is concerned with the putting together of meaningful

symbols to form larger utterances; the meaning of which is a function of the meanings

of the constituent symbols. This, for Jackendoff (2002), opens up the opportunity for

enhancing the expressivity and precision of the communicative system through the use

of linear ordering of concatenated symbols in order to express relations between said

symbols, combined with the introduction of new kinds of vocabulary items that convey

relations explicitly.

A Bickerton-esque notion of protolanguage then follows on from the previous evolu-

tionary steps. However, for Jackendoff (2002), such a protolanguage demonstrates the

earliest forms of syntax; in that semantic relationships and their positions come into

play prior to the emergence of protolanguage.

All of the above steps use word ordering to signal the semantic relations between

speech units. However, human language requires the use of headed phrases in gram-

mar, which “allows principles of word order to be elaborated into principles of phrase

order” (ibid:252). There are then, according to Jackendoff (2002), two more steps to be

taken before modern human language can come about; steps that are dependent upon

one another. The first of which is the ability to encode semantic relations among words

and phrases by way of inventing words with which to express them; something that only

becomes necessary once multiple-symbol utterances are possible. In human language,

these tend to be in the form of morphological affixes and realised variants of word order.

The second concerns grammatical categories, and can, itself, be broken down into two

dependent steps. Firstly, there is the arrival of the grammatical distinctions between
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nouns and verbs, along with the further differentiation of adjectives, prepositions, and

the like. For Jackendoff (2002), it is the development of phrasal morphology and morpho-

syntax that then finally allows for the emergence of modern human language, which he

argues can be seen as a series of independently evolved systems, each of which was built

upon the protolanguage system, and which refined communication systems through their

own expressive techniques.

2.1 Human Language Research Methodologies

From the brief overview presented thus far, it is clear that there are vast differences

in opinion concerning the evolution of human language. Differences that can be at-

tributed to a lack of evolutionary precursors, which in turn leads to a distinct lack of

direct evidence, and uncontroversial, indirect evidence for any aspect of human language

(Tallerman & Gibson 2013a). This has led to the issue of the origin and evolution of

human language being described as “the hardest problem in science” (Christiansen &

Kirby 2003). Although research conducted over the last couple of decades has given rise

to a plethora of data, any potential insights are somewhat blurred by the way in which

different disciplines vary in terms of what is considered acceptable evidence.

2.1.1 Archaeology

It has been argued that artefacts left behind by our hominin ancestors can offer insights

into their symbolic and communicative abilities. This is certainly true, but there are

two problems with this approach.

First, the archaeological record requires continual updating and re-evaluation. It was

traditionally thought, for example, that stone-flaking first appeared in the Upper Palae-

olithic, but it has since been shown that this skill actually appeared long before this

point (D’Errico & Vanhaeran 2013).

Second, much of the archaeological evidence is largely open to interpretation. This

led Balari et al. (2013) to conclude that the nature of the archaeological record made

it difficult to make inferences about the nature of symbolic or cultural fossils, which

are deemed to be more closely associated with language. Despite such evidence always

being subject to inference, as the archaeological record increases, our conjecture about

the phylogenetic history and the evolutionary pressures involved in shaping our species,

will hopefully become more guided.

This is particularly the case with archaeological evidence of symbolic thought and cul-

tural practices. Donald (1991) argues for a three-stage development of our capacity for

symbolic representation:
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1. Mimetic culture: This was the first step on the road to our current symbolic

capacity. It was characterised by a significant improvement in motor control, and enabled

our ancestors to voluntarily rehearse and refine their body movements. Donald (1991)

goes on to posit that Homo erectus then utilised these skills in order to produce certain

pre-linguistic symbolisms, such as tool making and cultural practices.

2. Mythic cultures: This second stage involved the development of speech and symbol

use.

3. Technological culture: Our cognitive capacities then became dominated by one-to-

one communication, which continually changes in form. This change first emerged in the

form of Upper Palaeolithic visual symbols, which acted as a form of external symbolic

storage; that allowed external memory to develop through the use of symbolism. Donald

(1991) goes on to argue how this external storage capacity is only likely to increase with

advancements in technology.

Indeed, there is much evidence concerning the use of symbolism within early hominins.

Following this three-stage process, Balari et al. (2013) cite the work of others in arguing

that this third stage should include objects that are made from antler, bone and ivory;

and which are engraved with marks that appear to be some form of abstract notational

system (Marshack 1991, Errico et al. 2003).

Furthermore, Errico et al. (2003) argued that pieces of ochre found in South Africa’s

Blombos cave with similar engravings are the earliest example of the kind of external

memory storage discussed by Donald (1991). The authors then go on to argue how it

appears as though true notational systems began to emerge at the start of the Upper

Palaeolithic, and become incredibly complex by the end of that period; which they also

argue demonstrates the use of an hierarchical organisation of information. As Balari

et al. (2013) observe, this argument fits well with the lack of evidence for the use of

symbolism in earlier hominins, particularly for the lack of notational systems prior to

the arrival of anatomically modern humans (AMH).

2.1.2 Paleoanthropology

Paleoanthropology primarily uses the fossil record and skull endocasts in order to ex-

amine anatomical evidence of brain structures in ancient hominin species. This body of

work largely involves finding homologies of the neuronal substrate of language, which in

turn, is largely concerned with attributing equivalences of Broca’s and Wernicke’s area

to other hominid species. For example, some researchers have posited that Australo-

pithecines had a homologues Broca’s area, and that the parieto-temporal area where

Wernicke’s area is localised underwent a reorganisation in Homo habilis (Balari et al.

2013).
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However, there are various issues with this approach, such as the homologues areas in

non-human primates having no linguistic specialisation, for example. Thus, Striedter

(2005) argues that a much more informative measure of the relevance of these homo-

logues areas would involve studying their level of interconnection, which is impossible

to ascertain due to the way in which these connections, which consist of superficial cor-

tical fibres, leave no fossil traces. Furthermore, much of the research on the homologous

structures of the neuronal substrate of language is based upon a very strict application

of the homology concept (Balari et al. 2013). In other words, it largely just looks at our

phyletic group, and our relatively close ancestors.

This body of work does, however, support many of the arguments presented in the social

brain hypothesis. The argument here being that the brains of primates are larger than

those seen in other species due to the way in which the cognitive demands of living

in large social groups creates a selection pressure for more cognitively powerful brains

(Dunbar 1993, 2003b, Reader & Laland 2002). Those that subscribe to this notion argue

that, while it is clear that language evolved in order to convey information, the focus of

research should be on what information it evolved to share in the first place.

The traditional answer to this question is that the information encoded by language

was primarily concerned with hunting and the use and manufacturing of tools. How-

ever, Dunbar (2003a) argues that such an explanation is unsatisfactory on two grounds.

Firstly, matters pertaining to technological innovations take up a relatively small pro-

portion of our time. Secondly, when we do partake in them, we rarely use language while

doing so; with hunting being best done in silence and tool manufacture being past on

more efficiently by demonstration rather than instruction. Thus, the argument here is

that the reason as to why language is unique to the hominin line is because it essentially

evolved for a completely social function. Namely, to allow the bonding of large social

groups (Dunbar 1993, 1996b, 2003b, Deacon 1997).

Dunbar (1996b) argues that, in primate societies, grooming acts as a kind of ‘social

glue’, and that, in larger groups there is not enough time to groom a good number of

individuals. As such, vocal communication evolved as a way to bond larger populations

of individuals. Thus we see that neocortex size co-varies with social network size (Dun-

bar 1996a). Indeed, Dunbar’s findings (Dunbar 1996a,b, Kudo & Dunbar 2001), coupled

with a notable correlation between both neocortex size and rate of tactical deception in

primates (Byrne & Corp 2004), and diet and social structure within anthropoid primates

and their relative neocortex size (Sawaguchi 1992) make it arguable that an increase in

brain size served this function in cases of increased social complexity (Hurford 2007).

Further support for an association between the complexity of vocalisations within pri-

mates and the size, organisation, and distribution of social groups comes from data on

group size and vocalisation size in forty-two primate species; which concluded that there

is a “clear and strong relationship between social group size, grooming time, and vocal
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repertoire size” (McComb & Semple 2005:3). Thusly, Aiello & Dunbar (1993), posited

that language could be seen as a multi-stage evolutionary process:

1. An initial form, much like conventional non-human primate contact calls, that served

to keep track of other group members and warn of near-by predators.

2. A more developed form of this, which uses chorusing, and is designed to overcome

the physical constraints on grooming that limit group sizes to around thirty to sixty

individuals.

3. A more fully fledged language that uses grammatical structures to convey social

information.

4. A fully developed, modern language, capable of abstract symbolic representation of

concepts. At this stage changes may be more at the ‘software’ level than the ‘hardware’

level.

Each of these stages came about during the course of hominin evolution, as ecological

changes brought around the need for change in social dynamics.

2.1.3 Morphological Data

The articulatory and perceptual systems of early hominins has also been studied in-

depth. However, inferences concerning a creature’s mental or behavioural nature made

from such data are always questionable due to such characteristics being opaque in

relation to the underlying structures involved. This is known as as the form-function

problem, and refers to the way in which two species can have the same morphological

structure, but use it for two different functions (Balari et al. 2013).

Many of the discussions concerning the evolution of our articulatory system stem from

the work of Philip Lieberman; who studies the hominin, particularly Neanderthal, lar-

ynx. Lieberman (1984) argues that the linguistic ability of humans is based upon general

neural mechanisms that structure our cognitive behaviour, as well as a limited set of

language-specific mechanisms that differentiate the manner in which we transfer infor-

mation. This leads Lieberman (1984) to argue that the neural mechanisms that struc-

ture other aspects of human cognition give rise to many aspects of human syntactic

structure and semantic representation; homologous mechanisms that structure the be-

haviour of other species. The language-specific mechanisms are deemed to be the neural

input-output mechanisms for the production of speech, combined with some of the neu-

ral mechanisms involved with the structure of rule-governed syntax. Thus, Lieberman

(1984) posits that human language, in its present form, is the product of how these

language-specific mechanisms work along with the more general neural substrates for

cognition.
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Human speech, as well as that of many nonhuman species, is largely considered to be

the result of a source of sound energy, such as the larynx, being modulated by a filter

function, which is determined by the shape of the supralaryngeal vocal tract. Thus de-

termining the phonetic quality of the sound produced. Lieberman (1968) found that the

vocal mechanisms of captive rhesus monkeys, chimpanzees and gorillas did not appear

to be able to produce human speech, and that these creatures did not alter the shape of

their supralaryngeal vocal tracts by means of tongue manoeuvres during vocalisations.

This, along with a number of observations concerning the key differential features be-

tween the vocal tracts of humans and nonhuman primates (table 2.1), led Lieberman

(1968) to the conclusion that “speech cannot be viewed as an overlaid function that

makes use of a vocal tract that has evolved solely for respiratory and deglutition pur-

poses” (ibid:1574). He further concluded that the hominid fossil record displays a series

of changes from the primate vocal tract, that may have been partly for the purpose of

speech. Furthermore, Lieberman (1968) argued how nonhuman primates are unable to

produce the point vowels that are seen in all human languages (/a/, /i/, /u/), and that

they use a limited set of articulatory gestures in order to modify the resonances of the

supralaryngeal vocal tract. Lieberman (1984) thus argued for the idea that a process

of gradual anatomical change can, at certain points, lead to functional advantages that

will ultimately lead to different patterns of behaviour within a species.

Feature Humans Nonhumans

Position of larynx in throat Low High
Length of mandible Long Short
Size and shape of tongue Large and rounded Short and flat
Angle between pharyngeal and oral cavities Approximately 90 degree end No bend or very slight
Number of resonating cavities Two-plus one

Table 2.1: Featural comparison between the supralaryngeal vocal tracts of humans
and nonhuman primates. Replicated from Hauser (1996).

This logic led to Lieberman (1968) making three important points regarding the vocal

tract anatomy of humans. First, the supralaryngeal vocal tract of a neonate is more

like that of a nonhuman primate, with it dropping at around three months of age before

becoming adult-like at the ‘babbling’ stage at six months. Secondly, the vocal tract of

modern humans would not fit into a Neanderthal. The belief here was that the larynx

was placed significantly higher in Neanderthals, and moved lower down the throat with

the arrival of anatomically modern humans (Negus 1949, Lieberman 2006). Therefore,

the Neanderthals lacked an adult-human supralaryngeal vocal tract, with theirs being

more akin to that of human infants and non-human primates. As such, they were unable

to produce the quantal vowels /a/, /i/, and /u/. Thus indicating that human speech

emerged with the evolution of the modern human vocal tract post-Neanderthals.

Whether or not the Neanderthal larynx was high or low in the throat is unclear due

to the fact that the soft tissue that makes up the vocal tract does not fossilise, forcing
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all reconstructions to rely upon indirect inferences (Balari et al. 2013). However, Boe

et al. (1999) demonstrated that, by calculating the position of the larynx and the length

ratio of the pharyngeal cavity to the oral cavity, that the ratios are within range of

those of a modern human female or child. Using an articulatory model, the authors also

argued that the vowel space of Neanderthals was not much smaller than that of modern

humans; and that they were, therefore, not handicapped for speech. In addition, by

attempting to reconstruct the auditory system of Homo heidelbergensis, Martinez et al.

(2008) demonstrated that the skeletal anatomy of the outer and middle ear, which

supports the perception of human speech were present in this species; which can be

dated back to around 5,000 years ago. As Balari et al. (2013) observe, although what

sounds Homo heidelbergensis or the Neanderthals made is unkown from the audiogram

produced by Martinez et al. (2008), it can be seen that they were able to discriminate

between /i/ and /u/, as well as being able to distinguish relevant acoustic properties of

sibilant sounds like /s/.

2.1.4 Genetics and Molecular Biology

The results from the sequencing of the human genome revealed that humans only have

around 20,000-25,000 genes, far fewer than anticipated (International Human Genome

Sequencing Consortium, 2004). This, combined with how humans share 99% of their

genome with chimpanzees and bonobos, suggests that relatively few genes are respon-

sible for the differences between ourselves and the Paninas (Gibson 2002). Two factors

account for this; most genes are pleiotropic, meaning that they control more than one

trait, and many genes are regulatory in nature.

These regulatory genes serve as binary switches that turn multiple downstream genes

on or off, and those that are active during the early stages of development can have

a profound impact upon phenotypic traits of individuals. Thus, it is believed that the

small number of genetic differences between ourselves and the Paninas is largely the

result of regulatory genes (Tallerman & Gibson 2013a). These observations support the

argument against the idea that the distinctively human aspects of neurology, behaviour,

and language are controlled by distinct genes (Gibson 2002, Diller & Cann 2013).

An area of genetic research that has been particularly interesting over recent years, for

those studying language and the communicative systems of other species, concerns the

discovery of FOXP2. This is a regulatory gene that dictates when and where other

genes are transcribed into proteins. While it is a very conserved gene among species

from worm to humans, meaning it has not changed much throughout evolutionary time,

the number of genes regulated by it has increased gradually throughout evolutionary

time (Okanoya 2013). More specifically, three point mutations have occurred in FOXP2

throughout the course of mammalian evolution; two of these within the six million years

or so since we shared a common ancestor with chimpanzees. This has led to the belief
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that the mutation of this gene was accelerated and reserved in the human lineage (Lai

et al. 2001, Okanoya 2013).

Following the discovery that FOXP2 was relevant for human speech, many experiments

were conducted on songbirds; with much of this data supporting link between this par-

ticular gene and vocal learning (Scharff & Haesler 2005, Fisher & Scharff 2009, Bolhuis

et al. 2010). Indeed, such findings are perhaps the reason why one often encounters the

assumption that FOXP2 is directly responsible for human language. Thus earning it

the title of the language-gene.

However, the human version of FOXP2, while being no more than 200,000 years old and

very much relevant to human language, is certainly not the single gene responsible for all

of the Homo sapiens language abilities (Enard et al. 2002, Hurford 2007). This is largely

due to language being a trait that is too polygenic to be controlled by this gene alone,

meaning that FOXP2 could not constitute the kind of macro-mutation that Bickerton

(1981) referred to. This is demonstrated in work, such as that of Krause et al. (2007),

who made the particularly interesting discovery that the two mutations of FOXP2 that

were believed to be unique to modern humans were actually also present in late Nean-

derthals. However, the problem here is that, while this finding is somewhat enlightening,

it doesn’t actually tell us anything about the linguistic capabilities of Neanderthals. It

is also quite likely that these amino acids were selected for in Neanderthals, but for

causes quite different from that which operated upon our own species; causes that were

perhaps unrelated to complex language (Balari et al. 2013).

Such an idea is supported by various bodies of work, which have demonstrated how

this gene has undergone very few evolutionary changes within vertebrates, as well as

displaying different orthologues in different species; such as bird song and eco-location

in bats. Indeed, Konopka et al. (2009) demonstrated how the two aminoacids that

differentiate the human and chimpanzee versions of FOXP2 change the function of

the gene by conferring differential transcriptional regulation in vitro. It is therefore

likely that “the ability with which each FOXP2 orthologue relates in each species is

a function of the molecular context in which the protein coded by the gene integrates

in each particular case, and not of minor structural modifications experienced by its

different variants” (Balari et al. 2013:499).

Thus, the key to understanding the significance of FOXP2 presence within Neanderthals

would be to know whether the targets were the same; information that is still unavailable

to us (Balari et al. 2013).

In short, the surest thing that can be said about FOXP2 and its relation to human

language, as research currently stands, is that it appears to have a consistent role in the

early brain development of avian and mammalian species (Bolhuis et al. 2010). The role

of FOXP2 in this process does, however, lend credence to the adaptionist argument, due

to the way in which mutations tend to be tiny copying errors, which typically affect a
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single nucleotide base, and the kind of massive macro-mutation suggested by the non-

adaptionists, which change the whole DNA sequence, seldom happen all at once (Pinker

2003).

2.1.5 The Comparative Method

Modern humans are incredibly sophisticated creatures, of that there is no doubt. We

are at once complicated individual psychological beings and highly social creatures that

partake in various social-cultural behaviours. However, we are not the only species

on the planet to display such sophistication. Recent work has started to show that

many human-like cognitive processes occur in other species, such as elephants (Payne

2003, Plotnik et al. 2006), dolphins (Tyack 2003, Reiss & Marino 2001), killer whales

(Whitehead 2003), and certain avian species (Bolhuis et al. 2010). Social transmission

of learned behaviour, which allows for the existence of simple cultural evolution has also

been documented in such animals (Whiten 2000, Rendell & Whitehead 2001, Sadedin

& Paperin 2011, Whiten & van Schaik 2007).

However, despite the readiness of the scientific community to accept that a large amount

of human behaviour can be explained in terms of complex cultural processes, it is largely

unaccepted that cultural transmission within non-human animals is as influential on

behaviour and evolution. Moreover, such processes are thought to not only be more

simple and rare within other species, but also, with the exception of birdsong, deemed

to not possess the stability that is necessary to make any substantial impact upon genetic

evolution (Feldman & Laland 1996, Rendell & Whitehead 2001).

Although there is considerable debate in regards to what the analysis of the communica-

tive and cognitive abilities of other species can tell us about human language, evolution

is not prone to creating radically new systems with no evolutionary precursors. It is

thus good scientific practice to look for homologous features that are the result of com-

mon ancestry in closely-related species, as well as analogous mechanisms that could be

the result of convergent evolutionary processes. Furthermore, much of the literature on

human language evolution tends to focus on the evolution of syntax, and although this

is understandable given that syntactic structures are its most salient feature (Oliphant

2002), it is arguably worthwhile for a researcher to focus on the more basic features that

separate human language from other communication systems seen within the animal

kingdom.

This idea may be controversial for linguists, whose field has a tendency to assert that

human language is so much more complex than that of any other animal communication

system that none of them could be used to model the emergence and evolution of lan-

guage. After all, despite certain characteristics being present in other species, it is true

that human language, as a system, is exceptional and largely unique in most respects,
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with no ‘simpler’ analogues or homologues in other species (Bickerton 1990, Tallerman

& Gibson 2013a).

However, it is important to remember that any system cannot be a model of any other

one without some level of abstraction (Okanoya 2013). Furthermore, we are not looking

for traces of, language as we know it, in these species, but mechanisms that would allow

for proto-linguistic abilities in early hominins.

Indeed, despite this lack of analogues/homologues issue, the comparative method has

proven to be rather fruitful in providing insights in to language evolution and its as-

sociated cognitive architecture (Fitch 2010). For example, it was traditionally believed

that, unlike human language, most animal species had a closed system of vocal de-

velopment, whereby they have a relatively fixed repertoire of species- and sex-specific

vocalisations, that were very much situation specific. It was deemed that there was little

evidence that non-human species of mammal, even non-human primates, possessed the

kind of vocal plasticity that is characteristic of an open system of vocal communication.

However, work done over the last few decades has built up a body of evidence which ap-

pears to indicate that such vocal characteristics are present in a number of species that

are phylogenetically quite different to us Homo sapiens. These include the bottlenose

dolphin (Tursiops truncatus), the harbour seal (Phoca vitulina), the humpback whale

(Megaptera novaeangliae), the beluga whale (Delphinapterus leucas), and the horseshoe

bat (Thinolophus ferrumequinum) (Janik & Slater 1997).

The comparative method has traditionally been employed in two ways. The first involves

comparing similar traits within a clad. The wide spread use of tools within great ape

species, for example, leads one to believe that such behaviour is a homologue that

stems from common ancestry. It therefore follows that the last common ancestor (LCA)

between the Pan and Homo genera also used tools in some form.

The second manner concerns the way in which different evolutionary lineages have

evolved surprisingly similar behavioural and genetic solutions for particular functions;

such as vision. This is known as evolutionary convergence, and is more formally de-

fined as referring to functional traits that occur in species as an adaptation to similar

environmental pressures; and not because of phylogenetic closeness. The archetypal ex-

ample of functional convergence without structural convergence is the evolution of flight;

something that has evolved in birds, bees, bats and pterosaurs.

2.1.5.1 Non-human Primates

Whether or not evolutionary precursors, or intermediates, to human language can be

found in the communicative systems of non-human primates has been a subject of con-

siderable interest; likely due to their phylogenetic closeness to ourselves. Indeed, many

non-human primates share a suite of complex cognitive capabilities, which include motor
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control, memories, transitive reasoning, basic numerical abilities, and hierarchical un-

derstanding of social structure; all of which are relevant to language acquisition (Fitch

2010).

Research into the existence of evolutionary precursors to human language in non-human

primate species tend to be dividable into two schools of thought. The first focuses on

vocal modality, and believes that human language stems from the evolution of the vocal

systems in our ancestors (Lieberman 1984, Seyfarth & Cheney 1984, Mithen 2000), while

the second posits that human language owes its roots to the use of gestural communica-

tion (Rizzolatti & Arbib 1998, Corballis 2003, Arbib 2005, Meguerditchian et al. 2011).

However, as will be seen, the data suggests that both are true, to a degree.

2.1.5.2 Non-human Primate Vocalisations

The vocalisations of non-human primates tend to be the main form of communication

for these creatures. It was traditionally thought that they were largely species-specific,

which was indicative of them being mostly innate. This is probably what led to many

dichotomies being drawn between humans and non-human primates during the early

years of primate vocal research; voluntary versus involuntary, semantic versus affective,

graded versus discrete, learned versus unmodifiable, etc. However, such views are being

increasingly challenged with the emergence of data that appear to contradict these initial

beliefs (Seyfarth 1987, Slocombe 2013); this is largely the result of work done in three

inter-related research areas.

First, there are the ‘ape-language’ projects, which have achieved some success in teaching

elements of human language to chimpanzees, gorillas, and orangutans. Although these

creatures are unable to control their lips and tongues in the manner necessary to produce

the spoken sounds that we humans do (Slocombe 2013), teaching them to communicate

with American sign language (ASL) demonstrated that apes can use a large number

of signs in a manner akin to humans (Gibson 2013). This line of inquiry thus became

primarily concerned with searching for grammar within the test subjects (Seyfarth 1987).

The contemporary data for this line of enquiry indicates that, while captive apes can use

signs to refer to objects, which suggests that they are able to understand the relation

between a sign and referent, they are highly unlikely to be able to combine such signs

into anything resembling human sentences (Cartmill & Byrne 2010, Hurford 2007).

Secondly, studies of primate vocalisations have indicated parallels with the way in which

human words are used. Despite initial beliefs, it has been shown that primate calls are

not just reflexive responses to external stimuli. The vocalisations of chimpanzees, for

example, are the result of a number of social factors, such as the composition of the

audiences and the presence of alphas (Townsend et al. 2008, Laporte & Zuberbuhler 2010,

Slocombe & Zuberbuhler 2007, Slocombe 2013); with orangutans even being known to
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partake in deceptive vocalisations (Hardus, Lameira, Van Schaik & Wich 2009). Indeed,

great apes appear to be aware that others have thoughts and intentional states, and are

able to use this knowledge in a number of social ways (Call & Tomasello 2008).

Furthermore, it is now known that the vocal repertoires of monkeys are both much larger

and more specific than initial studies had indicated. They appear to be under volitional

control, as well as effectively representing objects in their environment.

Additionally, there is now a large body of work that suggests that acoustical structures

of vocalisations can be modified, likely through a process of vocal learning; such as the

way in which the acoustic parameters of the ‘pant-hoot’ call appears to vary between

different chimpanzee communities (Crockford et al. 2004). Such evidence suggests that,

although the vocal repertoires of great ape species are largely fixed, some degree of novel

vocalisation can be produced; an argument that is supported by a number of findings.

These include the way in which Herbinger et al. (2009) used playback experiments in

order to demonstrate how, when numerous groups of chimpanzees inhabit the same

geographical region, individuals are able to distinguish between the ‘pant-hoot’ calls

of members of different groups. The way in which orangutans have exhibited group-

specific vocalisations (Hardus, Lameira, Singleton, Morrogh-Bernard, Knott, Ancrenaz

& Wich 2009), with reports of captive orangutans replicating human whistling (Wich

et al. 2009). As well as reports of captive chimpanzees producing raspberry sounds,

which serve as attention-getting vocalisations; something that does not appear to occur

in the wild (Hopkins et al. 2007)1. Additionally, it has been demonstrated that Diana

and Campbell’s monkeys often form mixed-species associations; with species responding

to one another’s alarm calls (Zuberbuhler 2000).

Indeed, non-human primates also appear to make subtle acoustic discriminations when

distinguishing between calls (Seyfarth 1987, Cheney & Seyfarth 1990), and it has been

shown that chorusing causes convergence. Both of which are indicative of differences at

the group and individual levels having their origin in social influences (Marshall et al.

1999, McGrew 2004).

The third and final area of non-human primate vocal research that is of interest to

us here is a body of work that indicates that monkeys perceive and classify objects in

the external world, including conspecifics (Cheney & Seyfarth 1990, Tomasello & Call

1997). There are two main, and contradictory, stances concerning the call comprehension

of these species. The first posits that they possess only the knowledge of how to best

respond to a particular signal, without really understanding the associated referential

context of such signals (Deacon 1997). For example, the vervet hearing a leopard call and

climbing a tree because it knows that is the best thing to do when it hears such a signal.

The second argues that the processing of such signals are potentially more complex,

1Two things should be noted here. First, identification of group-specific calls do depend upon their
absences in other groups, something that is hard to ascertain with certainty (Slocombe 2013). Second,
unlike human speech, none of these vocal behaviours engage the larynx (Fitch 2000).
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perhaps more akin to the cognitive processes that underpin human language perception.

Here, the signal refers an associated mental state to conspecifics. In other words, upon

hearing a conspecific giving a call, an individual generates a mental representation of

the current situation, and then uses this representation to guide its behaviour (Cheney

& Seyfarth 1990, Zuberbuhler 2003).

Current empirical evidence adds more credibility to the latter stance. Specifically, the

evidence suggests that even members of the same group will produce distinct vocalisa-

tions and that those within a social group will respond differently to calls from distinct

individuals; depending on variables, such as social rank, etc (Hansen 1976, Tenaza 1976,

Smith et al. 1982, Seyfarth 1987, Cheney & Seyfarth 1990). Additionally, the meanings

of vocal signals vary in accordance with how signallers use them, and listeners are often

unable to rely on just simple stimulus-response associations, but need to retrieve mean-

ing through inferential processes (Zuberbuhler 2013). All of which indicates that these

species are able to hold mental representations of other individuals and relate them to

events.

In short, the conclusions that can be drawn from the contemporary data on vocalisations

of non-human primates is perhaps best summed up by McGrew (2004):

“The upshot of vocal communication in chimpanzees is that it is influenced

socially in ways that, if we saw similar variation in other areas of chimpanzee

life, we would term it ‘cultural’. On the other hand, we are reminded that no

behavioural pattern exhibited by any organism develops in an environmental

vacuum.”

- ibid:133.

2.1.5.3 Non-vocal Communication in Non-human Primates

Communication in non-human primates is not just vocal, it occurs in all major modal-

ities, and a prominent one is the use of gestural communication. The literature on

gestural communication is incredibly thin compared to that of vocal communication.

Perhaps due to the increased difficulty in exploring this phenomenon in the wild (Slo-

combe 2013).

It is generally accepted that primates use a range of facial and body movements as

signals, such as the chest beating of gorillas. Indeed, gestural communication is present

in all great ape species, leading a number of human language researchers to argue that

early hominins used manual gestures in a linguistic capacity prior to the emergence of

speech (Arbib et al. 2008, Corballis 2013, de Waal & Pollick 2013).

The study of gesture use has predominantly been carried out on great apes, where it

appears to function primarily to facilitate ongoing social interactions, or to manipulate
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behaviour in a desired way (Zuberbuhler 2012). Although there is very little evidence

of such gestural communication carrying any form of symbolic meaning (Cartmill &

Byrne 2010), given that apes can take each other’s attentional state into account so as

to better deploy signals (Tomasello & Call 1997), it is possible that behaviours such

as pointing were the origin of referential communication (Hurford 2007). This would

make intuitive sense, given how this ability arises quickly during ontogenetic growth in

humans (Povinelli et al. 2000), and how it has been shown that both wild and captive

apes are able to mimic gestures made by humans and conspecifics (de Waal & Pollick

2013).

Corballis (2003) takes such data as supporting the gestural-origins-of-language hypoth-

esis, and argues that that there is sufficient evidence to support the notion that the

evolution of human speech, and even language itself, is unrelated to animal communica-

tion systems, and that it instead emerged from manual gestures. This argument stems

from the way in which gesture usage in apes tends to be very much culture-specific

(de Waal & Pollick 2013); in a manner similar to that seen in our own species. Corballis

(2002, 2003) suggests that the flexibility seen in gestural communication indicates that

this was perhaps the communicative channel through which our hominin ancestors de-

veloped symbolic meaning, perhaps along with referential vocalisations; an ability that

arose with bipedalism.

However, Corballis (2003) is eager to point out that it might not have been language

per se that characterised the emergence of our species. Moreover, it was autonomous

speech, in the form of a combination of speech and gestures; not unlike Bickerton’s

protolanguage. This is supported by the fact that apes possess greater control over their

gestural communication than they do the production of other signals (de Waal & Pollick

2013). Corballis (2003) goes on to argue that facial gestures were also crucial to this

process, and that gestures were punctuated with vocalisations and other sounds, such

as the teeth chattering seen in chimpanzees; which became increasingly associated with

facial gestures, which then led to considerable modifications to the tongue and vocal

tract.

Further support for the manual-gesture-origin-of-language hypothesis came from Rizzo-

latti and Arbib’s evolutionary framework for ‘language readiness’, which concerns the

brain mechanisms for action and perception; mechanisms that are shared by both human

and non-human primates.

Referred to as the mirror system hypothesis (MSH) (Rizzolatti et al. 1995, Rizzolatti

& Arbib 1998, Arbib 2010, 2005), this line of work stems from the discovery that the

rostral part of the ventral premotor cortex (area F5) in monkeys contains neurons that

discharge when a monkey either grasps an object or witnesses a human experimenter

grabbing an object. This is of particular interest, as it is largely believed that this part
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of the brain is the monkey homolog of Broca’s area in humans; an area that is closely

related to speech production.

Thus, it has been concluded that the specific function offered by the human brain’s

Broca’s area developed from ancient mechanisms that were related to the ability to

perform and perceive motor actions (Rizzolatti et al. 1995, Wilkins & Wakefield 1995).

Therefore leading Rizzolatti & Arbib (1998) to argue that language stems from communi-

cation methods as an integrated whole, including manual gestures and facial expressions.

It is important to note, however, that the authors are not positing that the mirror system

evolved for communicative purposes. Moreover, they argue that it provided the ability

to recognise and generate actions, which was crucial for language parity ; meaning that

what counts for a speaker would also count for the listener (Arbib 2010, 2005).

In short, gestural communication of the kind seen in other ape species is a modality that

has the strong potential to have acquired symbolic meaning in early hominins (de Waal &

Pollick 2013), and the discontinuity between humans and other primate species regarding

the gestural modality is indicative of a fairly recent swift towards more intentional and

flexible communicative behaviours.

2.1.5.4 Evidence Of Primate Syntax

We have seen that non-human primates do produce vocalisations that consist of a com-

bination of calls, that are meaningful to others in context-specific ways. This is seen in

chimpanzees (Crockford & Boesch 2005), bonobos (Clay & Zuberbuhler 2009), gibbons

(Clarke et al. 2006), Campbell’s (Zuberbuhler 2002), and Diana monkeys (Stephan &

Zuberbuhler 2008). Although, it is unclear in the case of apes as to whether or not

different sequences carry any specific meaning (Zuberbuhler 2013), a study has recently

indicated that the chimpanzees of the Tai forest produce many call sequences that are a

combination of other calls (Crockford & Boesch 2005). Indeed, combining calls appears

to be an important part of chimpanzee vocal behaviour (Slocombe 2013). However, there

does not appear to be any form of re-ordering in order to convey different meanings, as

was demonstrated by the aforementioned ‘ape-language’ experiments.

Despite this, Seyfarth & Cheney (2013) argue that, although these aspects of non-human

primate social knowledge are by no means human, they do resemble the meanings that

are expressed in human language; which are built by combining discrete-valued entities

in a structured, hierarchical, rule-governed, and open-ended manner. This leads one to

the belief that our internal representations, that we utilise for language meaning were

built upon the knowledge of social relations possessed by our pre-linguistic ancestors

(Worden 1998, Bickerton 2000, Seyfarth & Cheney 2013).

The idea here is that a precursor to the hominin mind evolved in a social milieu that

was characterised by various social challenges, and that these, in turn, created selection
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pressures that favoured structured, rule-governed intelligence (Seyfarth & Cheney 2013).

Indeed, as Studdert-Kennedy (2013) observes, this need for understanding social life

requires discrete, compositional thinking; making such a cognitive area a prime candidate

for the origin of compositional structure in spoken language.

2.1.5.5 Avian Species

We refer to a particular class of avian vocalisations as ‘birdsong’, not just due to the way

in which the sound patterns are organised, but because our musical aesthetics naturally

create such an analogy (Hartshorne 1973). Indeed, despite diverging from the lineage

that eventually led to modern humans roughly 280 million years ago, avian species can

provide interesting models for the evolution of vocal communication (Pepperberg 2013);

and, like humans, birds have a huge repertoire of sounds (Slater 2013).

These ideas were largely pioneered by Peter Marler, who investigated the nature of

structure-function relationships within avian alarm calls, and found that they were non-

arbitrary (Marler 1957). In a seminal paper, Marler (1970) went on to note a number

of parallels between birdsong and human speech:

1. Juveniles learn the species-typical repertoire from adult models.

2. Dialects are formed as a result of learning.

3. Experimentally guided learning is most significant during a critical period.

4. To develop a normal vocal repertoire, the young must be able to hear sounds from

their species-typical repertoire and to hear themselves reproduce such sounds.

5. Like human infants, young birds also go through a series of developmental stages,

including a sub-song phase that resembles babbling.

6. Vocal imitation, in and of itself, may be self-reinforcing.

7. The left hemisphere is dominant for the control of sound production.

Since then, many studies have now been conducted into the development of songs in

avian species, all of which tend to paint a similar overall picture. Young males being

isolated from other members of their species will develop more simplistic songs that

lack the detailed structure and phrasing seen in normal adult song. However, if they

are raised in an environment where adult males are present, or where there are audio

recordings of adult male songs, then they will reproduce the songs of the adult males

recordings. Sometimes, however, slight errors are made in song copy; and this tends to

lead to the emergence of new song types, which can lead to regional differences in songs

(Catchpole & Slater 1995, Slater 2013).
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Birdsong is of particular interest to human language researchers, given how it conveys the

motivational, cultural, and ontogenetic conditions of the signallers, and is often referred

to as having syntax, due to the way in which the notes of the song are ordered according

to rules. However, these notes do not have any referential meanings; hence, birdsong does

not have syntax, merely the ordering of the elements (Hauser 1996, Tallerman & Gibson

2013a). Thus, given that birdsong is a graded or holistic system of communication and

human language is compositional (Hauser 1996, Okanoya 2013), one cannot directly

compare the two. Despite this, the study of avian vocalisations can still provide a

potentially important biological model for the study of human language; a model that

looks at the interactions between culture and heredity, due to the way in which it is

learned and has social functions, as well as depending upon a certain level of innateness

to acquire it (Bolhuis et al. 2010, Okanoya 2013).

Indeed, it is now commonly accepted that avian vocalisations are learned, to differing

degrees, in three avian species; parrots, hummingbirds, and passerines, which make up

around 5,000 species (Okanoya 2013, Slater 2013). Initial data supporting this belief

came from the way in which, without exposure to a tutor, a juvenile produces an ab-

normal so-called isolate song ; which demonstrates an amount of predisposition, in the

way in which they retain some species-specific features (Bolhuis et al. 2010).

Feher et al. (2009), for example, found that upon tutoring zebra finches (Taeniopygia

guttata) with such an isolate song, they produced a fairly accurate representation of the

song; but also ‘improved’ the song to match the species-specific features. Then, using

each generation’s newly improved song to tutor next generation, it was found that, with

each subsequent generation, the song more closely resembled, and eventually became

indistinguishable from, the typical zebra finch song.

It has been observed that these findings demonstrate that the neural substrates for

learned vocalisations can apparently carry quite exact pre-specifications for particular

acoustic features and an overall acoustic ‘gestalt’, yet allow a high degree of plasticity

for what can be learned within those constraints; in a manner similar to the way in

which Bickerton (1981, 2000) describes the emergence of pidgins and creoles.

This is particularly interesting, given how the architecture and connectivity of avian

and mammalian brains are much more similar than originally thought. For instance,

“avian pallial ‘song’ regions bear functional similarities with human auditory and motor

cortices and the importance of the basal ganglia for both speech and birdsong is starting

to be understood mechanistically” (Bolhuis et al., 2010:747). Suggesting that language

evolved within a biological substrate which is largely shared with other animals.

As mentioned above, another similarity between human and avian vocal learning is

the way in which both humans and songbirds exhibit a sensitivity period during early

ontogenetic development; the point in life history at which vocal learning is best achieved.

In addition, the production phase of vocal learning is preceded by a listening phase in
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both groups (Bolhuis et al. 2010). Indeed, there are striking parallels between the way

infants learn to speak and birds learn to sing. In that both involve the imitation of

species-specific communicative sounds (Doupe & Kuhl 1999, Bolhuis et al. 2010); much

like humans learning to speak.

2.1.5.6 Cetaceans

Out at sea, one can find many examples of social, cognitive, and cultural co-evolution

taking place; in ways that parallel those seen in the above terrestrial creatures. Despite

the fact that they diverged from primates over 65 million years ago, cetaceans display

sophisticated communicative abilities, complex fission/fusion social structures, and ad-

vanced abilities in cognition and social learning (Rendell & Whitehead 2001, Whitehead

2003) All of which suggest that complex communication is not limited to just primate

species (Janik 2009, Zuberbuhler 2012). This is fascinating given how these creatures

inhabit an environment where there is “little potential for technology, no refuges against

predators, few barriers and cheap movement, excellent acoustic propagation, and high

biological variability over medium to large temporal and spatial scales” (Whitehead,

2003:461-462); in stark contrast to life on land.

Of all cetaceans studied, dolphins are perhaps the most interesting to those studying

human language, due to the way in which they not only develop distinctive calls that

function in many ways like the contact calls of parrots (Bradbury 2003), but because the

process of learning to match calls appears to be very strongly linked to the development

of social bonds (Tyack 2003).

Furthermore, it appears as though bottlenose dolphins are able to create abstract mental

representations of objects and actions in order to guide their own behaviour (Herman

et al. 1994); much like we see in primate societies. Indeed, Kako (1999) argued that the

comprehension abilities of dolphins were akin to that seen in language-trained apes, in

that they were able to understand the referential nature of artificial signals (Herman &

Forestell 1985, Janik 2013), and pointing by human trainers (Herman et al. 1999).

This indicates that they are able to form concepts (Janik 2013), as well as being capable

of other forms of social learning other than just that of a vocal nature; including im-

itation (Herman 2002), self-recognition (Reiss & Marino 2001), and emulation (Tayler

& Saayman 1973). However, as Gibson (2013) observes, there is no evidence that sug-

gests that wild dolphins communicate about absent animals, food, or events; i.e. exhibit

displacement.
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2.2 Conclusion

The fact that evolution does not make leaps and bounds, but only develops what already

exists, makes it beneficial to look for insights from other species when investigating a

natural phenomenon such as human language.

From the above discussions, it can be seen that the existing data indicates that strategic

learning behaviours have evolved in a range of taxa, with strikingly similar context-

specific patterns of copying to those observed in humans. This suggests that the evo-

lution of such copying behaviour is best regarded as a convergent response to specific

selection pressures, and might not be well predicted by the relatedness of a specific

species to our own (Rendell et al. 2011). Furthermore, the presence of such abilities

in non-human primates suggests that mental representations are phylogenetically older

than language, which allows us to argue against the idea that language evolved to allow

abstract thought. Although, it may well have been a driving force behind this capacity

becoming increasingly abstract and more influential as an evolutionary selection pres-

sure.

Possession of mental representations, vocal learning, social learning/feedback, and a

high level of self-awareness and understanding of conspecifics are arguably the basic

prerequisites for any advanced communication system to emerge. We have seen that

mental representations are present in a wide range of animals, which appear to use them

to guide their own behaviour (Herman et al. 1994), and this is likely to have created

a selection pressure for high-levels of self-awareness to co-evolve with these internal

representations. This, in turn, perhaps led to these skills being co-opted to allow an

individual to interact with others. The existence of these abilities in apes also suggests

that these abilities were in place prior to the Pan/Homo genera split, and therefore in

the last common ancestor (LCA) (Calvin 2004).

Indeed, all species of great ape appear to possess sufficient mental and communicative

capacities to enable them to use a form of protolanguage; and yet, none do in the wild

(Gibson 2013, Knight & Power 2013, Cann 2013). Further, the fact that all great ape

species appear to be able to master the essential components of protolanguage indicates

that the required cognitive capacities were also present in the LCA (Steiper & Young

2006, Gibson 2013). Thus, although we can safely conclude that language is a ho-

minin innovation, and that australopithecines and early homo had taken strides towards

human-like adaptations (Tallerman & Gibson, 2013a:27), such as bipedalism (Bickerton

1981, MacLarnon 2013), it is unknown whether any of the known hominin species in the

fossil record possessed any form of proto-linguistic speech abilities approaching our own.

The fact that there appears to be little in terms of evolutionary precursors to human

language does tend to cause issues for those studying it, a problem that is exacerbated
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by the fact that human language is not a monolithic entity, but a complex bundle of

traits that have emerged and developed over evolutionary time.

It therefore makes sense that no single research methodology would be able to explain the

nature of its existence to a satisfactory standard. Moreover, it is perhaps more beneficial

to treat each of these different types of data as pieces in a puzzle; one that is slowly being

filled in, but has a long way to go before it is completed (Fitch 2010). Nevertheless,

as a result of this, the literature on human language is vast, often contradictory, and

potentially bewildering to the casual observer. This chapter has aimed to give the reader

a brief overview of the parts of the literature that are most relevant for the central tenets

of this thesis.

The first half of the chapter was very much an historical overview, which demonstrated

how certain ideas to be explored later have a long pedigree in human language research.

Most importantly, later chapters will explore the role of individual learner bias in the

evolution of linguistic systems, meaning that languages themselves evolve to be easier

to learn by language users; an idea that other researchers have touched upon before.

Indeed, we have seen that Chomsky (1980) came to the conclusion that language users

must possess a set of rules or procedures for comprehending when various parts of speech

can occur within and among sentences. He argued that these rules and procedures adhere

to the intuitions of said language users; a process that can be seen to allude to such an

idea. It has also been seen that Bickerton (1990) believed language to be a phenomenon

that produced output that was the result of the input given to the language users; an

idea he extended to the evolution of pidgins and creoles.

The second half of this chapter took a brief look at the different research methodologies

that have been utilised in human language research. The aim here was to provide the

reader with the necessary background knowledge to understand the work to be presented,

as well as to enable them to see as to where this work should be placed within the wider

literature. More specifically, we have seen that many different methodologies have been

utilised in human language research, and these have offered many valuable insights.

However, there is a methodology that was not discussed here. Namely, modelling

methodologies, which use mathematical equations and computational simulations in

order to model the dynamics of either linguistic systems or individuals that attempt to

communicate with one another. In doing so, they aim to understand the dynamics that

underpin language evolution and change. This will be the focus of the next chapter.
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Modelling Language Evolution

3.1 Introduction

In recent decades, with the arrival of more powerful desktop computers, research into

naturally occurring communication systems has benefitted from computer-based simu-

lations. Indeed, exploring the origin and nature of language, and communication sys-

tems in general, involves understanding the nature, behaviour, and complex interac-

tions between large numbers of variables within a dynamical system. It is here that

computer-based models can aid one in overcoming problems provided by using either

verbal theorising or mathematical models in isolation; largely due to the way in which

they provide one with a middle ground between abstract theorising and rigorous mathe-

matical approaches. The motivation behind such computational-based work is the belief

that language is like a traffic jam, in that it exhibits the properties that it does as a

result of the interaction between many individual elements (Kirby 2013).

Given the growth of computational research into human language over the last two

decades, it is unsurprising that there have been numerous attempts to classify the dif-

ferent models seen in the literature into various categories, so as to allow comparisons

and contrasts to be drawn (Perfors 2002, Kaplan et al. 2008, Vogt 2009, Jaeger et al.

2009, Grifoni et al. 2015). Indeed, a number of different approaches have been used in

attempting to do so, such as the theoretical stance or the methodology adopted by the

authors. The scheme presented here results from a merge of those presented by Kaplan

et al. (2008) and Grifoni et al. (2015). This overview of models will begin brief and grow

in detail the closer we get to the focus of this thesis.

37



38 Chapter 3 Modelling Language Evolution

3.2 Grammatical Representations

The literature on human language modelling contains a wealth of different modelling

paradigms that are concerned with representing linguistic features, with a particular

focus on how grammars are used to represent the symbolic units, semantics, and syntax

seen in human language. These modelling grammars come in various flavours, which

have been implemented in a number of different models1.

3.2.1 Universal Grammars

First and foremost, Universal Grammars (UGs) are theoretical grammatical systems

that have been used in various language evolution models. As we have seen, this idea

was first proposed by Chomsky (1980), as part of his investigations into the poverty of

the stimulus, as a search space upon which natural selection allows for the emergence

of syntactic structures. As Grifoni et al. (2015) observes, while UG helps the learner

to generalise rules and allow for creative language use, it does not take the different

social-environmental factors of learners into account; just those of ideal learners.

3.2.2 Context-free Grammars

Context-free grammars (CFGs) are perhaps the oldest, and certainly most common, type

of grammar formalism found within the computational literature. They are essentially a

set of recursive re-writing rules that can be used in order to generate patterns of strings;

where the expansion of a symbol does not depend on its context.

Their theoretical foundation stems from the generative stance that dominated linguistics

during the latter half of the 20th century, which deemed the learning of syntax to be

the central problem in the acquisition of language. Thus, CFGs are often employed for

work that involves learning a mapping between the space of a sentence and the binary

space code for syntactic correctness/incorrectness (Kaplan et al. 2008).

In being used in such a manner, this formalism lends weight to the aforementioned

poverty of the stimulus hypothesis, which claims that a child’s linguistic input under-

determines what they learn about language. Thus the need for some form of genetic

pre-programming of specific linguistic neural circuits (Pinker & Bloom 1990, Pinker

1994).

CFGs have a number of advantages in that they are computationally tractable, making

it easy to determine whether or not a produced string is grammatically correct, they are

easily interpretable by both human beings and computers. Most importantly, however,

1The interested reader is advised to consult Jaeger et al. (2009) or Grifoni et al. (2015) for a more
detailed discussion.
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they are able to capture all linguistic phenomena of human languages while assuring

a low parsing complexity. However, CFGs do not provide any semantic information

while carrying out derivation; meaning that they cannot express sentences which are

context-dependent (Grifoni et al. 2015).

De Pauw (2003) presents an agent-based evolutionary computing technique as a machine-

learning method for data-driven grammar development. Referred to as GRAEL, this

system is geared towards the induction and optimisation of natural language grammars.

Here, a population of agents hold a set of idiosyncratic linguistic structures, and use

a CFG formalism in order to both compose their own sentences and to analyse those

of other agents. The evolution of the agent’s grammatical knowledge then occurs as a

result of a series of interactions between agents, with the aid of error-driven learning, and

it is shown that such a framework is able to optimise any type of grammar, regardless

of its initial starting quality.

3.2.3 Attribute Grammars

Attribute Grammars (AG) were developed with the aim of addressing the aforemen-

tioned lack of semantic information and increase the context-dependency seen in CFGs

(Boyland 1996). In short, AGs are essentially CFGs, but with an added method that

allows for context-sensitive derivation. Thus allowing them to encode the constraints on

language evolution as part of the production rule specification, as well as allowing it to

encode semantic information into attributes (Grifoni et al. 2015). Further advantages

come from the way in which AGs allow new production rules to be added without alter-

ing other rules (often referred to as modularity) and the way in which the production

rules do not have to be applied in any specific order (Boyland 1996).

Juergen & Pizka (2006) use AGs as a specification formalism for both syntax and se-

mantics in presenting a tool for exploring the nature of the evolution of domain specific

languages. This is done by looking at how making evolutionary changes to domain spe-

cific languages cheaper, by way of automating the adaptation of its parser, impacts the

domain specific languages.

3.2.4 Christiansen Grammars

Christiansen Grammars (CG) are in turn an extension of AGs, and are adaptive gram-

mars that are capable of altering their own production rules (Christiansen 1990). This

is achieved by having the first attribute of every symbol take the form of a CG, which

defines the production rules that can be applied when expanding or deleting rules. While

CGs allow for the creation of new linguistic constructs, as well as allowing the gram-

mar to be modified while its being used, it does only possess a small set of primitive
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constructs that are combined in a small number of ways, so as to build the linguistic

structures (Grifoni et al. 2015).

Ortega et al. (2007) present an evolutionary algorithm, which they refer to as Chris-

tiansen grammar evolution (CGE), that extends standard grammar evolution by replac-

ing CFGs with CGs. In doing so, they added semantics so as to ensure that individuals

are created that are semantically and syntactically valid. Their belief here is that, given

how grammar evolution is a general purpose stochastic search technique that utilises

CFGs so as to improve syntactic performance, adding semantics should improve perfor-

mance even further.

The results presented by Ortega et al. (2007) not only support this notion, but also

demonstrates how this improvement does not actually depend upon the context-dependent

nature of constraints, but on the ease of the formalism used to express them.

3.2.5 Fluid Construction Grammar

Inspired by Construction Grammars, Fluid Construction Grammar (FCG) was primar-

ily designed to allow researchers to formally write down the inventory of lexical and

grammatical constructions necessary in parsing and producing utterances. This was

done with the aim of capturing the cognitive and interactional foundations of language

and present it within a grammatical model (Steels 2011a,b).

In short, FCGs are a form of construction grammar that offer a way to structure and

represent semantic meaning into patterns and named constructions. FCGs have two

main advantages over those above, in that they are able to use the same construction

for both parsing and producing without compromising efficiency, as well as offering

flexibility in usage; meaning that sentences can be understood even if they are not

completely grammatical. They do, however, demonstrate a lack of matching between

syntactic structures and semantic categories (Grifoni et al. 2015).

FCG was used by Steels & Garcia-Casademont (2015) in order to explore phrase struc-

ture and its relation to the origins of syntax. In doing so, they present a minimal

language game whereby grammar is needed in order to avoid semantic and syntactic

uncertainty. This model demonstrated how agents were able to give rise to phrase struc-

ture grammar during the course of their interactions as a result of collective invention,

adoption, and alignment of culturally established conventions.

3.3 Game Theoretic Modelling

Not all models of language evolution involve exploring specific linguistic representations.

Game theoretic models explore the nature of language evolution in regards to the search
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for optimal behaviour within populations of interacting individuals. Game theory is a

method of modelling rational decision making during interactions between individuals

with the use of mathematical equations. Here, all individuals involved in an interaction,

or game, receive some kind of payoff; a payoff that is the direct result of the actions

taken by said individuals during the course of the game.

When exploring language evolution, such a game tends to take the form of a commu-

nicative interaction between a speaker and hearer; whose actions take the form of the

production and interpretation of an utterance, respectively. The maximum payoff for

the players being the communicative strategy that maximises communicative accuracy.

More specifically, such a game theoretic model involves meanings being presented to a

speaker in accordance with some probability distribution, P , which represents cognitive

and communicative tendencies, and not the peculiarities of a given language. It is then

assumed that there are a fixed set of meanings, M , and utterances, U . A speaker, S,

is then any strategy or function that produces a mapping from M to U ; what is often

referred to as a production grammar. Thus, in a single game, a speaker is presented

with a single meaning m (where m ∈ M), which it has to convey to the hearer using

an utterance, u (where u ∈ U). The interaction is then deemed successful if the hearer

recovers the intended m from the presented u.

3.3.1 Jager

Jager (2007) uses just this approach in order to explore the patterns, in terms of ac-

cusative and ergative systems, within the typology of case marking across the languages

of the world. In other words, he explores why certain features of language are typologi-

cally common and stable across various languages.

Here, a given grammar is considered to be better than another grammar if it increases

communicative success while minimising speaker effort. Jager (2007) makes the simpli-

fying assumption that the complexity of such utterances can be measured numerically

as its cost, which is a function from U to non-negative real numbers. Thus, the speaker

wants to achieve the highest level of communicative accuracy while simultaneously min-

imising the complexity of u; which is captured by the utility function. The hearer then

wants to recover the intended m as accurately as possible.

This model demonstrates that, while the majority of languages are in a stochastically

stable state, whereby stability is a gradient notion and the empirical predictions of an

evolutionary approach are necessarily probabilistic instead of categorical, there are some

exceptions. In short, Jager (2007) is able to use a game theoretic model to predict what

type of harmonic alignment patterns seen in languages are typologically dominant.
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3.3.2 Niyogi & Berwick

A different flavour of such work comes from Niyogi & Berwick (1997), who present a

model of language change that is derived from a model of language acquisition; whereby

language users acquire a particular grammar from a class of grammars. This model

explores how a population of such language-users give rise to global linguistic charac-

teristics that develop over multiple generations. More specifically, it is shown that any

triple of a family of target grammars, G, acquisition algorithm used by language-learners

to hypothesise a grammar based on linguistic input, A, and a distribution that dictates

the sentences presented to the language-learner, P , can be transformed into a dynamical

system that can capture the evolving linguistic composition of a population that uses

memoryless learning algorithms and parameterised grammatical theories.

The key point of this work is that such models are logical consequences of grammatical

and learning theories; meaning that whenever one is proposed, a specific evolutionary

framework is also being proposed.

Specifically, Niyogi & Berwick (1997) use this approach to propose a diachronic criterion

for grammatical theories. Building upon other work, this enables them to argue that G

and A can be reduced to a dynamical system, the evolution of which should match the

real-life evolution of human language. This is demonstrated by looking at the historical

loss of ‘verb second’ during the transition from old to modern French.

3.3.3 Nowak

In a similar vein, Nowak (2000) presents a model whereby agents are represented as a

n x m association matrix, A; where n is the number of objects and m the number of

signals. The entries on the matrix, aij , are non-negative real-numbers and represent the

strength of the association between an object, i, and signal, j. Here, it is demonstrated

how errors made during language learning lead to evolutionary change and improved

information transfer. It was also found that maximum fitness is achieved in a system

where agents use a small number of signals to refer to a small number of objects. This

constitutes an error limit that can be overcome with word formation.

In a later work, Nowak et al. (2001) proposed a similar model, but with the aim of

exploring the evolution of UG. Here, each agent has an idiosyncratic grammar. Some-

times, however, a grammar produced by the speaker’s grammar, Gi, may not be in-

terpretable by the hearer’s grammar, Gj . The probability of this being the case, Aij ,

being 0 ≤ aij ≤ 1 and aii=1. Pay-off utilities for an agent using a specific grammar is

then gained from the reproductive success of those using said grammar. Children in this

model acquire the grammars of their respective parents.
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The authors go on to show how, in this model, the adoption of a single dominant

grammar by the entirety of the population is an incredibly rare occurrence, and will

only occur if children learn the grammars of their parents perfectly.

3.3.4 Mitchener

Similarly, Mitchener (2007) explores the case of two genetic variants of UGs, where it

is assumed that each allows for two possible grammars. It is shown by way of a com-

munication game that, if the pay-off matrix obeys certain constraints, then genetically

homogeneous populations are evolutionary stable. More specifically, it is shown that,

due to substantial differences in the languages admitted by the two UGs, they are stable

against invasion from one another.

Thus, the benefits of communicating with the rest of the population limit linguistic

evolution to innovations that are fairly compatible with the current UG, meaning that

some beneficial mutations will die out before their advantage is realised.

Additionally, it is shown that, for very similar UGs, evolutionary stability cannot be

assured by the payoff matrix constraints alone, and that the various UGs can determine

the outcome. It is also shown that it is hard to define the fitness of one UG in regards

to another, and such a definition would have to be parameterised by the linguistic

environment. UGs are meta-structures, meaning that they are one level removed from

the payoff, indicating that the particular mixture of languages present in a population

may dictate whether a mutation spreads or dies out.

In other words, the results presented by Mitchener (2007) indicate that the genetic

history of languages are constrained by the need for compatibility with the current

UG, and that mutations in the human language faculty may have spread or died out

in accordance with historical accident rather than as a result of any simple notion of

relative fitness.

3.3.5 Oliphant & Batali

Another model that will prove to be of interest in the next chapter was originally pre-

sented by Oliphant & Batali (1997). Here, each speaker assumes that the hearer’s in-

ternal mapping between signals and meanings is similar to its own. Consequently, when

choosing which signal to make for a particular meaning, the speaker will choose the

signal that, if presented as input to themselves, would cause them to infer the meaning

currently under consideration; the authors termed this the obverter procedure.

Oliphant & Batali (1997) prove that individuals using the obverter will tend to im-

prove their communicative accuracy over time until an optimal communication system
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is achieved. Since the space of signals is finite and relatively small, this type of mecha-

nism is feasible in the model.

Oliphant & Batali (1997) use Cheney & Seyfarth’s (1990) work on the vervet monkeys

(Chlorocebus pygerythrus) as a backdrop in exploring how a coordinated communication

system can emerge from learning within a population. Here, it is assumed that individ-

uals within a population are able to recognise different types of predators, specifically

leopards, eagles, and pythons, in such a way that there is a distinct and correct response

to each; the authors refer to these as ‘meanings’. Oliphant & Batali (1997) also assume

that individuals have a distinct set of actions that they are able to perform, at no cost

to themselves, which are recognisable to conspecifics; these are referred to as ‘signals’.

Oliphant & Batali (1997) characterise the communicative dispositions of the individuals

with two probability functions; a ‘send’ and a ‘receive’ function. The former gives the

average probability that an individual will send the indicated signal for the meaning

in question; giving the ‘leopard’ alarm call when it spots a leopard, for example. The

latter, gives the probability that another individual will interpret a given signal as the

intended meaning.

Within a send and receive function, the probability that a signal, σ, is sent for a meaning,

µ, by a send function, s, is represented as s(µ, σ). Conversely, the probability that the

corresponding receive function, r, interprets a signal, σ, as meaning, µ, is represented

as r(σ, µ).

Table 3.1: An example send and receive function replicated from Oliphant & Batali
(1997). In send function S1, each entry gives the average probability that an individual
will send the indicated signal for that meaning. While the receive function, R1, gives
the average probability that the member of the population will interpret a given signal

as a given meaning.

For the send and receive function depicted in table 3.1, while the cough signal is most

likely to be selected to indicate the presence of a snake, with a probability of 0.475, the

chances of this signal being interpreted correctly is only 0.050.
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This led Oliphant & Batali (1997) to the observation that, if one’s signal is to be in-

terpreted correctly, then the signaller should send, for each meaning, the signal that

it would itself most likely interpret as that meaning. Thus, in order to maximise the

probability that one will correctly interpret the signals sent by conspecifics, one should

interpret a given signal as the meaning it most often encodes. In this example therefore,

the speaker would achieve greater communicative success if it sent a chutter signal in

order to draw attention to a snake.

This obverter procedure can be expressed more formally in the following manner:

For each meaning µ:

s.1: Find the signal kµ for which r(kµ, µ) is maximum.

s.2: Set sob(µ, kµ) = 1.0, and set sob(µ, σ) = 0 for all σ 6= kµ

For each signal σ:

r.1: Find the meaning ησ for which s(η, σ) is maximum.

r.2: Set rob(σ, ησ) = 1.0, and set rob(σ, µ) = 0 for all µ 6= ησ

Oliphant & Batali (1997) demonstrated how the obverter procedure yields the highest

possible level of communicative accuracy within a given population when applied to

its send and receive functions. Take, for example, the send and receive functions in

table 3.1, if one were to apply obverter-based learning to these, it would yield the set of

send and receive functions in table 3.2:

Table 3.2: The send and receive functions for a population, whose average commu-
nicative accuracy was depicted in figure 3.1, after application of the obverter learning

procedure. Replicated from (Oliphant & Batali 1997).

Oliphant & Batali (1997) use mathematical proofs to show that, unless the population

in question already has an optimal communication system, individuals using obverter

will acquire a send and receive function with a communicative accuracy higher than

the average accuracy. Indeed, Oliphant & Batali (1997) go on to demonstrate that,
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with obverter-based learning, the average communicative accuracy of the population

will steadily increase until an optimally coordinated communication system emerges.

3.4 Evolutionary-based Computational Models

Evolutionary computation stems from the field of artificial intelligence, and tends to

focus on simplifying the representation of the four evolutionary mechanisms of selection,

reproduction, mutation, and crossover, in order to solve problems of optimisation.

These kind of computational models arose as a result of the need to simplify mathemat-

ical models that grew in complexity as more complex systems were being investigated

(Grifoni et al. 2015). An example of such an evolutionary algorithm can be seen in

figure 3.1.

3.4.1 Genetic Algorithms

Genetic algorithms involve a population of potential solutions to an optimisation prob-

lem, and tend to function in the manner depicted in figure 3.1. Here, individuals take

the form of fixed-length bit strings, which in the case of language evolution models,

represent linguistic structures which then evolve.

In the aforementioned work of De Pauw (2003), for example, a genetic algorithm was

implemented whereby individuals were constrained by a fitness function in order to

explore the content and quality of grammars that evolved over multiple generations.

3.4.2 Evolving Grammar Models

Evolutionary models of grammar add some form of semantics into the grammatical pro-

cess, allowing for only syntactically and semantically correct languages to be generated.

Thus avoiding a generational time step of syntactic mistakes (Ortega et al. 2007, Grifoni

et al. 2015).

Here, the grammar evolves itself, which allows for the automatic incorporation of new

features into the language. Such models tend to follow an algorithm similar to that

depicted in figure 3.1, with an additional key feature in the form of a grammatical

representation that constrains and biases the search space, and which encodes domain

knowledge (Grifoni et al. 2015). An example of grammatical evolution can be seen in

Juergen & Pizka (2006), who use a three-step evolutionary process in order to evolve

domain specific languages.
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Figure 3.1: A basic evolutionary algorithm.

3.5 Agent-based Models

Agent-based models (ABMs) involve creating a population of agents, who are equipped

with various cognitive, linguistic, and social behaviours, and allowing them to interact

with one another in accordance with particular principles of a model. This then allows

language evolution researchers to explore the origins and evolution of language from a

‘bottom-up’ perspective; as an emergent phenomenon of the interactions between the

agents. ABMs will be the focus of this thesis, and given how the literature on them is

already quite vast and is still growing, we will focus the next few pages on a number of

notable models.
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3.5.1 Evolution Of Communication

Some of the earliest ABM models focused on the evolution of natural, non-linguistic,

communication; with a particular focus on the role of cooperation.

3.5.2 Werner & Dyer

One such model is that of Werner & Dyer (1992). The premise here was to create an

environment where there was a selection pressure placed upon the agents within it to

communicate. Then, as the environment became increasingly complex, progressively

more interesting and complex communication systems would arise.

Werner & Dyer (1992) presented a grid-world environment, consisting of roughly 40,000

possible locations, containing both male and female agents, which are represented as an

8-bit genome of integer values that correspond to the connection strengths of each unit

of a recurrent neural network that is capable of feedback. Females can see the males and

utter sounds in order to gain their attention, while the males are blind, but can hear

the utterances of the females. The males must then attempt to make their way to the

females in order to reproduce; creating two offspring, one male and one female. Thus,

only those that are good at communicating will reproduce into the next generation.

During simulation runs, the agents initially behave randomly, but after a time, the males

begin to develop strategies. Those who stand still were not selected for, while those that

continuously moved in a straight line, thereby maximising the area covered, were selected

for. After a certain number of males incorporated this strategy, the males began listen-

ing to the females due to the random walks becoming the non-optimal strategy. Thus

creating a situation where communicating offered an evolutionary advantage. Further-

more, the more agents that adopted this strategy, the more stable the communicative

system became.

3.5.2.1 MacLennan & Burghardt

Another example of such work that is also widely cited within the literature is that of

MacLennan & Burghardt (1994), who attempted to make as few assumptions about

their agents as possible by simplifying their model in every way.

They present a population of agents, whose level of cooperation is used as a fitness

measure. This, as well as the organisation of the signals used by the agents, are then

compared and contrasted under three conditions; with suppressed communication, per-

mitted communication, and permitted learning.

Agents take the form of finite state machines, consisting of transition tables in the form

of genetic strings, where each state is represented by a finite number of integers. In
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order for these agents to be successful at communicating, they need to both transmit a

signal and take action at some point. The former transfer information about the local

environment to the global environment, so that it is accessible to other agents. Whereas

the latter are necessary to base a behaviour on the agent’s local environment, so as to

allow cooperation.

Fitness is then calculated from the number of times an organism has cooperated with

another agent. In other words, how many times said agent acted upon the local envi-

ronment of others. Due to the way in which information about the local environment

is unavailable, except through communication via the global environment, measures of

cooperation are a direct measure of communication. Thus, if they coordinate more than

they should by chance, it can be seen that communication is having an impact upon the

system.

3.5.3 Evolving A Symbolic System

Another flavour of agent-based models that explore aspects of language evolution are

those that focus on the establishment and evolution of symbolic communicative systems.

3.5.3.1 Steels

One of the most widely cited, and perhaps influential, models in language modelling

was originally presented by Steels (1995), and has since been worked on by a number of

others. This has become colloquially become known as the Naming Game.

Here, a population of agents take turns in being a speaker and a hearer. They, play

a series of language games, involving the speaker being presented with a subset of all

possible meanings and selecting a topic from these at random, and looking up the name

of the selected object from its memory. This name is then presented to the hearer, who

is only given the name selected by the speaker, and has to infer the topic from it. A

game is then considered a success if the hearer selects the correct topic. The speaker

can invent a new word if one does not yet exist for the topic, and the hearer is able to

adopt an unknown word because the speaker corrects a wrong choice if the game fails.

The speaker and the hearer can change their opinion about which word is most common

for the naming of an object. The agents have bi-directional memories, which consist of

weights between topics and their names; these are bounded between 0.0 and 1.0.

This work is largely based upon two hypothesis (Steels 1995). First, that language, like

many other phenomena in nature, is a self-organisational process. This belief is based

on the observation that no single language user has a complete view of their language, in

that there is no single linguistic master that controls the form of the language for all those

that use it, and that language users shape and reshape language through their localised
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conversations. Steels (1995) also argues, perhaps more contentiously, that no separate

mechanisms for language acquisition are necessary because the same mechanisms that

are behind language formation also allow new language users to acquire the language of

their given social group. Second, Language is driven towards ever greater complexity in

light of the constraints placed upon language use; limited time to communicate/interpret

an utterance, limited feedback about success, etc.

The Naming Game, as presented in its original form, then explores how a group of agent,

within a single generation develop a vocabulary to name themselves and to identify each

other using spatial relations. Specifically, Steels (1995) explores how the amplification

and self-enforcement of fluctuations, which here take the form of random changes to

word-meaning associations, are influenced by communicative success. This ultimately

leads to coherence in the form of an emerging vocabulary, even when new agents and

meanings are introduced.

The agents in this model exist in a two-dimensional plane, and each agent has a di-

rectional orientation; north, east, south, and west. Agents are able to perceive spatial

relationships between themselves and other agents by way of a visual field. This enables

them to both determine the direction in which an object is located, so as to identify it to

another agent, and to determine which objects satisfy a given spatial description so as

to deduce which object an agent is referring to. When communicating to one another,

both the speaker agent and the hearer agent share the same context.

Linguistic behaviour then takes the form of a language game, the basic premise of which

is similar to the game theoretic models above. The speaker starts the game by selecting

another agent to talk about, then uses its own language to try to produce a word to

identify them. The hearer then receives said word and attempts to deduce which agent

the speaker was referring to. The speaker then indicates whether or not the hearer was

correct in its interpretation.

The communicative success of such a word-meaning association is recorded over multiple

conversations, and the average success rate is then used to consider a change in the

association. If the average success is 1.0, no change is required; and if it is 0.0, the

opposite is true. Whether or not a change is required for intermediate values between

0.0 and 1.0 is then calculated by a sigmoid function. The words used in the last context

then influence any subsequent change in the agent’s language. Such a change takes one

of two forms. If no word was used in the last conversation, which would happen if no

word-meaning pair yet existed for the meaning the speaker wanted to convey, a new

word is created with a probability of 0.5. Alternatively, if a word was used in the last

context then it is probabilistically adopted in the new word-meaning association.

The model presented by Steels (1995) demonstrated that, under these circumstances,

agents will give rise to a conventionalised language. More interestingly, it shows how

these same self-organisational processes can support language change. This is due to
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the way in which, although new language users will create new words and associations

during their initial conversations, these will die-out and be replaced by the linguistic

conventions of the group due to them not achieving any communicative success.

A more recent incarnation of the Naming Game has been put forward by Steels (2007).

Here, the ideas of recruitment theory are adopted in arguing that language users exper-

iment with different strategies for solving the task of communication, and opt for those

that optimise communicative success and cognitive economy; much like the aforemen-

tioned model by Jager (2007).

Each strategy requires specific cognitive mechanisms, which may not have evolved for

purely linguistic purposes. The adoption of any particular strategy has an impact on

the emergent language and fixates the strategy within a population of language users.

In other words, the idea here is that autonomous language users discover strategies that

help them to establish and negotiate a shared lexicon through interactions with their

peers; meaning that the resulting lexicon is a culturally transmitted temporal consensus.

Steels (2007) demonstrated how this model behaves with the agents using various strate-

gies:

1. Adoption: There is no lateral inhibition and no decrease on failure.

2. Enforcement: There is an increase in cases of success but no decrease of competitors

and no decrease on failure.

3. Lateral inhibition: There is both enforcement and lateral inhibition but no decrease

on failure.

4. Damping: There is enforcement, lateral inhibition and also a decrease on failure.

All of these strategies lead to the emergence of a successful communication system, but

only strategies three and four lead to an optimal lexicon size.

Thus, although a number of different strategies may be successful, some are more suc-

cessful than others due to such strategies resulting in a smaller lexicon. This allows

a population to arrive at a communicative convention, even when the population is in

flux. It is also demonstrated in this model that the key mechanisms that were required

for these agents to be successful was a bi-directional associative memory.

3.5.3.2 Cangelosi

In keeping with the theme of spatial navigation, Cangelosi (2001; Cangelosi et al., 2002)

presents a model that explores how symbols and syntax can emerge from relatively

simple communication signals. This model is based on the argument that there is a
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need for models of language evolution to draw a distinction between signals, symbols,

and words, as well as the need for simulating the grounding of symbols and words.

These models contain a population of agents, which take the form of three-layered, feed-

forward neural networks with randomly assigned weights. These agents live in a grid

world, where there are both edible and poisonous mushrooms. Agents reproduce on the

basis of their ability to eat edible mushrooms and avoid poisonous ones, which obviously

involves categorising them. In order to categorise a mushroom within an agent’s visual

field, the input into the agent’s neural network consists of the angle (in a clockwise

direction) of the mushroom from the agent’s current facing direction, a 10-bit binary

representation of the mushroom’s perceptual features, and a 3-bit binary representation

of one of the eight possible signals. The output of the neural network then includes the

movement of an agent and one of the eight possible emitted signals in the same manner

as the signal encoding input units. Agents then wander around the world, and in each

iteration, perceive and encode the details of the nearest mushroom in this manner.

Three different population types are experimented with; one where there is no language,

one where the language is provided by the researcher, and one where the language evolves

autonomously. In the third type, the speaker agent selects the closest mushroom and

the hearer is randomly selected from the population and placed next to the speaker so

that they have the same objects in their visual field. The hearer processes the chosen

mushroom’s perceptual features and the signal part of its output is used as the signal-

part for the input for the speaker; who then has to decide whether or not to eat the

mushroom.

This model demonstrated that the agents were not only able to evolve an efficient and

informative language, but by comparing the fitness performance of the three different

population types, were also able to demonstrate that language is a useful adaptation for

such agents.

Cangelosi (2001; Cangelosi et al., 2002) then explore the emergence of symbolism with

a similar model set up. The input into the neural network consists of the location of

the closest mushroom, its perceptual features, and the communicative symbols. While

the output layer consists of the mushroom type, the movements required to approach

it, and the mushroom names. The name being divided into a 2-bit binary ‘verbs’ which

translates to ‘eat’ or ‘don’t eat’, while the rest of the representation refers to the mush-

room’s perceptual features. During the first 300 generations, agents do not communicate

and therefore do not use their symbol nodes. Generations 301-400 then involve only the

newly created agents foraging for mushrooms, while the older agents act as teachers of

the mushroom names.

This model demonstrated that, in the vast majority of cases, agents learned a language

that was based on symbolic association between the mushroom names and the two verbs.
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This indicated that the agents in this model adopted a symbolic strategy when learning

linguistic symbols and the syntactic rules for combining them.

3.5.3.3 Hashimoto

In exploring the emergence of a symbolic communication system, Hashimoto (1997)

built upon previous work that demonstrated how syntactic structure was useful in a

community (Hashimoto & Ikegami 1996). This later model incorporated a word-meaning

feature, which allowed for the analysis of the relationships between words; and in doing

so, Hashimoto (1997) was able to investigate the development of linguistic structures.

Underpinning this work is the belief that the meanings of words can be best understood

in regards to their inter-relationships. This is achieved by adopting an algorithm that

measures the graded similarity between words, based on the logic that similar words are

used in similar sentences and similar sentences are composed of similar words2.

Agents in the model are defined as a grammatical system consisting of a set of non-

terminal symbols, a set of terminable symbols, a start symbol, and a list of rewriting

rules. Agents can have either a context-free or regular grammar. The model then

explores the development of structure in terms of word similarity within these agents.

It was found that the structures that developed formed clusters of word types. These

clusters constitute a categorisation of words due to the way in which words within a

cluster have stronger relationships with one another than they do with words in other

clusters.

3.5.3.4 Ginzburg & Macura

In a similar vein, Ginzburg & Macura (2007) look at the emergence of a class of utter-

ances that they refer to as meta-communicative interaction utterances (MCI), in order

to illustrate that semantic expressiveness is not correlated with syntactic complexity.

MCIs are utterances that require either an acknowledgement in order to ensure that the

utterance has been correctly understood, and clarification if there are unclear aspects of

the utterance or it there are indications of erroneous assumptions concerning naming.

These allow concepts associated with a state of equilibrium or lack of divergence to be

maintained within a linguistic population.

This gives rise to three questions. First, under what circumstances does a non-MCI

linguistic system evolve into an MCI system? Second, what mechanisms are involved in

such a shift? Third, why is the resulting interaction system maintained?

2An algorithm originally developed by Karov & Edelman (1996).
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The simulation starts off with a set of agents that possess distinct lexicons, and ends in

a state whereby the agents associate meanings with each word in their lexicon. This is

achieved due to the way in which the convergence rate of a population that relies solely

on introspection is intrinsically bounded.

The utterances made by the agents consist of a single word and are stored in a tu-

ple along with the meaning for that particular object (a plant in this model); i.e.

(plant-type,plant-word). The speaker always has a word to use for the selected

plant. However, the hearer may not be able to interpret said word, in which case, one of

two things happen, depending on the type of agent. A clarification request agent (CRA)

will ask for a clarification, which involves the speaker presenting the hearer with the

tuple to store in its lexicon. An introspective agent (IA) will try to guess the meaning

by looking at each of the plants in its field of vision, increase the association of the

plant-word, and then store it in a temporary lexicon until it has enough information to

pick a meaning for the unknown word. At which point, the plant-word becomes part of

its permanent lexicon.

Agents have a vision capacity, and randomly wander around their world in search of

food and other agents. When two agents meet, they play a naming game whereby the

speaker chooses a food resource in its field of vision, and sends its name for it to the

hearer, who then tries to interpret it.

Ginzburg & Macura (2007) ran the model with various values for several parameters;

meaning space, population size, and acquisition threshold. The last of these being the

number of times an agent has to be exposed to an unknown word before it can acquire

it. In doing so, they demonstrated that the convergence rate of a population of purely

introspective agents is bounded; a bound that decreases as the population size increases.

However, this bound disappears completely once CRAs are introduced.

3.5.3.5 De Boer

In a model with quite different research interests, de Boer (1997) puts forward a func-

tional explanation for certain universals that are present in vowel systems. Other work

had demonstrated, by way of computational simulations, that such universals within a

vowel system can be explained, while simultaneously minimising the necessary articu-

latory gestures (Lilijencrants & Lindbolm 1972, Carre & Mrayati 1995). Building on

this, de Boer (1997) explores by which actions of the individual language-users such a

minimisation is caused.

All agents possess a list of vowels that are empty upon creation. Vowels are represented

by three parameters, tongue position, tongue height, and lip rounding, all of which have

a value between 0 and 1. The simulation is then concerned with the emergence of a

coherent and useful phonology within a population of initially empty agents. Thus,
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agents need to invent speech sounds in order to get the simulation running, as well as to

introduce new sounds into the simulation run; both based upon a probability function.

Once created, the agents participate in language games. Here, the speaker agent selects

one of its phonemes and conveys it to the hearer agent, who then interprets it in relation

to its own phonemes and then produces the phenome it thinks it has recognised. The

speaker then interprets the hearer’s phenome in relation to its own list to see if it matches

the one it originally produced. If it does, the game is considered to have been a success.

The agents keep track of how many times each phoneme is successfully used. The

quality of the phoneme is the success score divided by the number of times it was used.

If successful, the hearer attempts to shift the phoneme used a little closer to the one

given by the speaker. If it is unsuccessful, and if the quality of the phoneme is low,

the phoneme is shifted. It is not shifted if the quality is high, due to the probability

of it being a good representation of another possibility. Otherwise, a new phenome is

created, again using a hill climber heuristic, that is similar to the one presented by the

speaker. In addition, phonemes with a persistently low quality have the possibility of

being removed, while phonemes that are similar will be merged.

The results presented by de Boer (1997) demonstrated that a population of language

users can, under a specific set of constraints, give rise to a vowel system without the

need for innate mechanisms or the ability to mind-read. Furthermore, this vowel system

is in a constant state of flux, much like natural language.

3.5.4 Evolving Grammar And Syntax

So far, we have looked at models that have been primarily concerned with either the

evolution of communication or the evolution of symbolic representation. There is a third

category to be discussed here. Namely, models that are concerned with the evolution of

syntax.

3.5.4.1 Batali

Batali (1998) presents a model where a population of agents can not only encode struc-

tured meanings as a sequences of tokens, but also interpret sequences as tokens. Agents

in this model take the form of real-numbered ‘meaning vectors’ and a simple recurrent

neural network is used to receive sequences of characters from a set.

During each communicative interaction, all of the values in the speaker’s meaning vector

are set to either 0.0 or 1.0, depending on which of the set of meanings is to be conveyed.

The meaning vector is then used by the network to determine the sequence of characters

to send. This sequence is then presented to the hearer, who attempts to infer the
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meaning intended by the speaker. Communicative accuracy of the interaction is then

assessed by comparing the values of both the speaker’s and the hearer’s vectors after

the hearer has processed the sequences.

Here, agents eventually develop a communication system that is highly successful, even

when presented with novel meaning combinations. This inter-agent coordination is

achieved as a result of a distributed process in which individuals learn by observing

the behaviour of others, with no external guidance.

3.5.4.2 Briscoe

The work of Briscoe (1998, 1999) was motivated by four aims. Firstly, to demonstrate

that specific triggers can lead to the creation of individuals who can effectively acquire

a grammar. Secondly, to explore to what extent certain environmental variables could

impact the grammar that is learned. Thirdly, to analyse the extent to which such a

grammar is encoded ‘biologically’. Finally, to explore how selection pressures, such as

learnability and interpretability, interact with one another to mould and constrain the

evolution of language.

In his models, Briscoe (1998, 1999) implements his agents with a language acquisition

device (LAD). This consists of twenty parameter settings, which define seventy languages

and roughly three hundred grammars. Whether or not an agent has default parameter

settings dictates whether or not said agent has some form of innate language ability. The

agents are also equipped with an algorithm consisting of three steps; shift, reduce, and

halt. These modify the stack that contains the categories that correspond to the input

sentence. A secondary algorithm, that is attached to the first, ranks the ability to parse

sentences. Finally, the agents also possess a parameter setting algorithm, which will

alter the parameter when the input cannot be understood. When a communicative act

fails, a parameter is chosen, in accordance with the location within the partial ordering

of the inheritance hierarchy of parameters, and is reset. Due to the way in which each

parameter can only be reset once, the most general are reset first, and the most specific

reset last.

These models identified three selection pressures that drive the evolution of language;

learnability, expressivity, and interpretability. The first is seen in the number of param-

eters that need to be set to acquire a target grammar. The second, is reflected by the

number of trigger types that are necessary in order to converge on a language. Finally,

interpretability is reflected by working memory load; the parsing cost in the context of

this model.
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3.5.4.3 Gong et al.

In a piece of work that fits in with the research themes seen in Briscoe (1998, 1999),Gong

et al. (2014) presents a rule-based model exploring the nature of lexicon-syntax co-

evolution.

The agents in the model are equipped with general learning mechanisms and clearly

defined holistic and compositional linguistic rules. The aim here is to ascertain whether

or not these mechanisms can bring around a transition from a holistic protolanguage to

a compositional communal language. Here, languages take the form of meaning-signal

pairings.

Agents share a semantic space, where the meanings can be encoded into signals (sen-

tences). While signals are a string of syllables drawn from a signalling space. A signal

encoding an integrated meaning can be segmented into subparts mapping semantic con-

stituents, and sub-parts can also combine to encode an integrated meaning.

Lexical rules come in both, holistic and compositional form. The former take the form

of chase<wolf,bear> ↔ /abcde/, while the latter map semantic constituents onto a

subpart of a sentence; ‘wolf’ ↔ /cd/. In the latter case, ordering rules are used, such

as category 1 << category 2, which denotes that category 1 comes before, but not

necessarily immediately before, category 2.

It is shown that, when the agents start off by sharing a small number of holistic rules,

there are at first many iterations that are holistic. However, given more linguistic ex-

periences, recurrent patterns start to emerge and are processed as compositional rules.

There is then competition between holistic and compositional rules, which the latter

win due to the advantage they gain from being combinational, which allows for many

meanings to be expressed involving encoded constituents.

3.5.4.4 Smith

Motivated by the above work of Oliphant & Batali (1997), Smith (2007) sought to explore

the inferential nature of language transmission and its relationship between language

change and the indeterminacy of meaning. In this sense, inferential communication

refers to how information in a communicative act is transferred indirectly, by way of the

hearer having to infer the meaning of a signal with the aid of pragmatic insights and

the context in which it is used.

The motivation here is that the majority of models of cultural language transmission

involve the explicit conjunction of meaning-signal pairs. Smith (2007) argues that this

weakens the claims made by them due to the way in which such a set-up would lead

to the emergence of a syntactic structure that is identical to the pre-defined semantic
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structure. Thus, this model starts off with agents that have neither conceptual nor

lexical structures, but do possess the ability to create their own representations and

infer meanings based on their experiences.

To create a meaning, the speaker selects a subset of meanings to act as the context, and

then randomly selects a meaning from this subset to try to convey it to the hearer. The

speaker then tries to find a distinctive feature of this object, which does not describe

any other object within the context. If one cannot be found, then the speaker selects an

existing category and splits it into two equal parts, thereby creating two new categories

that are each a subset of the existing category. This, over time, results in a hierarchical

meaning tree, with nodes near the tree root representing more generic meanings.

Once a distinctive feature has been choosen, a signal is selected for it from the speaker’s

own lexicon. This is done by way of the speaker using the aforementioned obverter

method, which involves choosing the signal which it would be most likely to interpret

correctly given the current context and its own existing semantic categories; resulting

in signal choice being based upon the speaker’s own interpretive behaviour. If there is

not a suitable signal, one is created from a random string of letters. This signal is then

presented to the hearer agent who can only observe said signal and the context. In turn,

the hearer uses its own conceptual structures to try and discriminate each object in the

context from all of the others, and thereby create a list of possible meanings.

By allowing these agents to interact in a generational setting, Smith (2007) showed

that individual meaning creation, and the uncertainty inherent in meaning inference

lead to different degrees of variation in both conceptual and lexical structure. With

the conceptual variation and imperfect learning resulting in different bottlenecks on

transmission, which in turn, result in rapid language change across generations. Despite

this rapid change, however, the language itself remains sufficiently stable; with each

subsequent generation able to re-establish itself and maintain the utility of its successful

communication system.

3.6 Conclusion

Many models have been put forward consisting of a population of agents attempting to

learn meaning-signal mappings. Models where the meanings are fixed and non-changing,

while the associations between them and the signals are learned without the aid of any

linguistic overlord dictating which signal should map to which meaning; and vice-versa

(Steels 1995, Hurford 2000, Kirby 2002c, Kirby & Hurford 2002, Barr 2004, Belpaeme

& Bleys 2007, Steels 2007, Smith 2007).

A disproportionate number of the models discussed here can be classified as expres-

sion/induction models (Henceforth E/I). One of the main characteristics of E/I models
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is that the representation of language pervades across generations of the model in two

forms; the mental grammars of the individual agents and the utterances used in agent

interactions. A distinction that Chomsky (1986) originally observed with his concepts

of I-Language and E-Language, respectively. However, E/I have a number of other char-

acteristics that are worth mentioning here3:

Agents: In E/I models, there are populations of individual agents that each have two

features. First, they possess some form of expression/invention capacity. Whereby

an agent, upon being presented with a meaning to convey, will either use its current

mental grammar to produce an utterance or will create an entirely new utterance if the

meaning is novel. Second, they possess an induction capacity, which enables them to

acquire an internal representation of a language system from an impoverished sample of

said language.

Non-evolving agents: During the course of simulation runs, all new agents are created

equally, there is no biological evolution, and they all have identical linguistic abilities. As

such, E/I models are always primarily concerned with the cultural evolutionary processes

behind language evolution. Given that E/I models always start of with no language

(mappings between meanings and utterances) in place, they thus seek to explore the

emergence of linguistic systems through cultural transmission and not the process of

historical change in relatively more complex languages4.

Pre-defined meanings: E/I models always have a pre-defined meaning space that

does not change during the course of the simulation, with only their mappings to utter-

ances changing. One can interpret the kind of meanings seen in these models as being

reminiscent of how the grammar seen in early linguistic communication systems may

have resembled the inflectional morphology of verbs in modern language (Batali 1998).

Finite vocabulary: E/I models always have a finite set of atomic symbols from which

utterances can be created. Indeed, Hurford (2002) observes how the size of this vo-

cabulary relative to the meaning space is an important factor in the behaviour of the

models.

3.6.1 Population Dynamics

The literature on E/I models features two types of population dynamics; uni-generational

and multi-generational. In the former, the evolution of language is explored within a

single generation of agents, meaning that the population comprises of the same indi-

viduals for the duration of the simulation run. In the latter, language is passed from

3The interested reader is advised to consult Hurford (2002) for an in-depth discussion on the nature
of E/I models.

4Although, the feasibility of applying such methods to the analysis of such historical linguistic devel-
opment has been explored (Hare & Elman 1995).
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one generation of agents to the next, with agents being periodically removed from the

population; thus remvoing their particular grammar. Their legacy lives on in the form

of their observed behaviour, which acted as training input into new language-learners

that were created without any internalised grammar.

The main focus of this thesis is on E/I models, with a particular focus on how population

size and dynamics impact linguistic change. It has been seen that multi-generational

E/I models tend to have two aspect to their population dynamics.

First, the size of populations tend to be rather small (Hurford 2000, 2002, Kirby 2002c,

Kirby & Hurford 2002), with some only having two agents per generation; one mature

speaker and one immature learner.

As Hurford (2002) observes, although such small population sizes may at first seem like

a gross oversimplification, it does eliminate one factor from the evolutionary scenario.

Namely, the behaviour seen in most E/I models is the result of social coordination

between individual agents; an establishment of conventionalised usage of meaning-signal

pairs between individual agents. Thus, as will be seen later, at the start of a simulation

run with a mature population of more than one agent, there will be a number of different

signals for the same meaning. However, as the authors of such models observe, such

coordination is not actually the focus of these models. Moreover, they are interested in

the evolutionary transition into syntax; which is a matter of how individuals organise

their internal grammar, and not of coordination behaviour. Therefore, a simulation with

such a minimal population size enables the researcher to focus on the development of

such grammar, without having to be concerned with matters of coordinated behaviour.

This is true. Nevertheless, as was demonstrated by the aforementioned early A-life simu-

lations of Werner & Dyer (1992) and MacLennan & Burghardt (1994), coordination has

undoubtedly played a crucial role in the emergence of language and change in linguistic

structure.

Second, in E/I models, the number of agents within a population tends to remain con-

stant throughout the simulation run. This is perfectly fine when addressing the issues

that the authors of these models were interested in. However, it would be interesting

to explore how an expanding and contracting population size, with varying numbers of

mature language users and immature language learners, could impact the emergence

and form of syntax (Johansson 1997, Hurford 2002).

Indeed, such an E/I model geared towards these interests could provide valuable insights

for a growing body of research that is interested in the nature of the relationship between

language and population change; such as the impact of population size on linguistic

structure (Johansson 1997, Nettle 1999a, Wichmann & Holman 2009, Lupyan & Dale

2010, Milroy 2013, Trudgill 2013). This will be the focus of the remainder of this thesis.



Chapter 4

Language Change and

Transmission Through Iterated

Learning

4.1 Introduction

As we have seen, although all language evolution researchers would agree that language

is the result of both innateness and lifelong learning, there is much contention over

which, and where, lines should be drawn. Notwithstanding some of the interesting find-

ings of previous work, it would perhaps be beneficial to, instead of positing such work

within strict dichotomies, analyse these findings in terms of gene-environment interac-

tions (Tallerman & Gibson 2013b), and how such dynamics may be largely responsible

for linguistic structure and behaviours. Kirby (2002, 2002b) presented a framework that

could prove to be useful to researchers of this persuasion; a framework that views lan-

guage as the result of the interaction between three different complex systems (fig. 4.1).

Biology: Here, the focus is on all of the phylogenetic adaptations that must have oc-

curred in the hominin lineage in order for language to emerge. Such adaptations,

which enable language comprehension and production, would have evolved in ac-

cordance with known biological processes. They must have therefore developed

in accordance with selection pressures from the environment in which early ho-

minins found themselves, with protolanguage and its accompanying neurological

or anatomical changes having no a negative impact upon selection.

Culture: Although an instinct to learn languages may have been encoded into the

human genome, no specific lexical items of syntactic constructions are. Thus,

socio-cultural processes play a role in language evolution. Perhaps not just through

61
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Figure 4.1: Diagram adapted from Kirby & Hurford (2002) showing the interactions
between the three adaptive systems that give rise to language.

the continual flux we see in vocabularies and variations in the flexibility of use,

but also through the way in which extensive contact between different linguistic

communities is likely to have had an impact upon the evolutionary process of

language.

Ontogeny: Ontogenetic processes in this context are concerned with how an individ-

ual’s language use develops and changes throughout the course of their lifetime,

and with how they alter their knowledge in accordance with their environment.

MacNeilage (2013) argues that ontogeny recapitulates phylogeny in the form of

speech production, in that infants and early hominins must both share the same

biomechanical constraints on mouth movements. This leads to initially simple

syllable patterns in both cases; such as babbling.

The idea here is that we learn languages by observing others, but these languages change

through a process of cultural change, which in turn alters the environment, and thus the

selection pressures that guide human biological evolution (Kirby 2002b). Indeed, it is

likely that linguistic structure has, at least in part, been shaped by external functional

pressures. However, such pressures are by no means completely ‘external’, in that they

are a result of the way in which humans process and learn about the world around

them (Tallerman & Gibson 2013b); which in most cases are likely to be phylogenetically

primitive.

Thus, it is arguable that the learning mechanisms possessed by early linguistic hominins

dictated the linguistic structures that emerged through selection for the structures that

were easiest to learn. In other words, these early languages evolved in accordance with
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learner bias. Assuming that such a language faculty is adaptive, one would expect that

“early humans evolved in ways that would better enable them to learn ambient languages

quickly, and making the most of a fragmented input” (Tallerman & Gibson 2013b:506).

The scheme laid out by Kirby & Hurford (2002) above was the motivation behind a par-

ticularly influential E/I model that sought to explore such notions; the iterated learning

model. Following the conclusions of chapter 3, in regards to future research using popu-

lations of agents, this chapter will take a model originally presented by Kirby & Hurford

(2002). This model had a population size of one mature speaking agent and one imma-

ture language learning agent per generation. Here, it will be extended to incorporate a

population with multiple mature and immature agents; with language learners learning

their language from multiple trainers.

4.2 Compositionality and Iterated Learning1

As stated above, human language has a number of notable design features. One that

is of particular interest is the way in which utterances are constructed from sub-parts,

such as words and parts of words, which are re-used and recombined in systematic ways.

Thus, the meaning of an expression is related to the meanings of its constituent parts

and the way in which they are combined. This trait enables language to be expressively

open-ended, and is known as compositionality (Brighton & Kirby 2001, Kirby 2002b,

Smith et al. 2003).

Compositionality endows human languages with an obvious adaptive advantage in terms

of their ability to communicate novel meanings (Kirby 2007). Indeed, given the utility

associated with the ability to construct a wide range of messages from just a few learned

basic units (Kirby 2013), it is remarkable that we do not see compositionality being

used as part of a learned mapping between meanings and signals in the communication

systems of other species2.

This, combined with the view that language is culturally-transmitted, and that this

may have a crucial role in shaping the way in which it is formed (Smith 2002, Brighton

et al. 2005, Christiansen & Chater 2008) has led to a body of work arguing that com-

positionality may have arisen, not due to its utility to us, but because it better ensures

the continued existence of the language itself (Kirby 2007). This work sees the self-

preservational development of language occurring as a result of a cultural-evolutionary

process termed iterated learning (Brighton & Kirby 2001, Kirby & Hurford 2002, Smith

et al. 2003, Kirby et al. 2008, 2014). This is a process whereby an individual learns

1The following section draws from Brace et al. (2015).
2It has been claimed that bee dances display limited compositionality (Kirby 2012).
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their cultural behaviour from other individuals, who have themselves acquired their cul-

tural behaviour in the same way. In other words, the input into an individual’s learning

process is, itself, the output of prior learning in other individuals.

Here, this involves an individual being presented with a set of meanings that it wishes

to convey, choosing signals for each of these meanings, and then transmitting these

meaning-signal pairs, or utterances, to another individual who then learns from them.

This process is repeated generation after generation, and can be seen to represent how

language competence and understanding can develop through observational learning

(Brighton 2002).

Iterated learning is arguably one of the two major categories of E/I models, along with

the aforementioned naming game (Steels 1995, 2007, Steels & Garcia-Casademont 2015),

and captures an important aspect of language. Namely, the linguistic bottleneck, which

refers to the way in which no single language user will ever have a complete picture

of a given language. Thus, resulting in language users always learning their language

through a limited subset of the full, and potentially large set, of grammars. The belief

here is that languages exists in two forms; the internal version, consisting of mappings

between meanings and signals within the minds of language users, and the external form

consisting of the actual spoken language. Thus, in order to pervade from one generation

to the next, a language needs to be consistently mapped from the internal form to the

external form, and back again. This is reminiscent of Chomsky’s (1986) aforementioned

concepts of I-language and E-language.

4.3 The Iterated Learning Model3

There have been several published variants of the Iterated Learning Model (ILM). Here,

the focus will be on the ILM originally presented by Kirby & Hurford (2002). The

central contribution of iterated learning models is first to have successfully idealised this

process in a simplified setting that is amenable to study. Then to have demonstrated

that the character of the linguistic bottleneck is crucially important to both whether

or not language can be successfully passed from one generation to the next and, in

the situations where this transmission can be achieved successfully, show that it is also

crucial to the linguistic structure that arises. Kirby and Hurford’s (2002) model has four

key components:

1. A finite meaning space, M.

2. A finite signal space, S.

3. One speaker.

4. One learner.

3The following section draws from Brace et al. (2015).
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Here, a language is defined as a mapping between a finite space of signals and a finite

space of meanings. Each meaning and each signal are represented as an 8-bit binary

string. Thus:

M = {m1,m2, . . . ,m256} (4.1)

S = {s1, s2, . . . , s256} (4.2)

Each agent’s personal mapping from signals to meanings is implemented in the form

of a three-layer feed-forward artificial neural network with eight nodes in each layer

(figure. 4.2). Each of the eight nodes in the input layer are influenced by one of the

eight bits in an uttered signal. The degree of activation of each node in the input and

hidden layers influences every node in the immediately downstream layer via a weighted

connection. Each node’s activation is determined by the weighted input it receives from

all of the upstream nodes, squashed by a standard logistic activation function:

yi =
1.0

1.0 + e−xi
+ θi + Ii (4.3)

xi =
∑
j

ωjiyj (4.4)

Where yi is the activation level of a particular neuron, i, and xi is incoming stimulation

received by i, calculated as the weighted sum of all of the immediately upstream activa-

tion values. Each neuron in the hidden layer also receives a constant bias input, θi = 1.0,

and may receive an external input Ii ∈ {0, 1}. The activation values of the output layer

are then translated into an 8-bit binary meaning by thresholding each node’s activation

value. This string represents an agent’s best guess as to the meaning of the utterance

that was input into the network. During learning, an agent updates the weights of its

network using back propagation with a learning rate of 0.1 and no momentum term

(Rumelhart et al. 1986).

Initially two agents are created, a mature language user (or ‘speaker”) and an immature

language user (or ‘learner”). At the outset of the simulation there is no established

language in place, so the mature language user is assigned a language comprising of

a random mapping from each meaning to a randomly chosen signal. The immature

language user is assigned a random neural network, i.e, each network weight is drawn

from a normal distribution with a mean of 0 and a standard deviation of 0.1; with each

node’s bias input being 1.0.



66 Chapter 4 Language Change and Transmission Through Iterated Learning

Figure 4.2: The agent’s neural network architecture.

The mature language user, M , then trains the immature language user, I, for a number

of training episodes, T . Each episode involves M being assigned a meaning to express

and generating an associated signal, and I using their neural network to infer a mean-

ing associated with that utterance. Any difference between the true meaning that M

attempted to express and the meaning that I infers then results in back propagation

making changes to I’s neural network in an effort to minimise this comprehension error.

Note that in order for this supervised learning to take place, ILMs assume that I is able

to make use of knowledge of the true meaning that M intended to convey.

The full set of training episodes that an immature language user experiences often involve

multiple exposures to the same fixed set of unique meanings. An agent might experience

E epochs of training with each epoch comprising the same set of B randomly chosen

unique meanings experienced in an order that is randomised for each epoch; i.e., T =

E × B. The number of different meanings communicated to a language learner, B,

represents the aforementioned bottleneck.

After all training episodes are complete, the mature language user is discarded, the

immature language user is promoted to become the new mature language user, and a

new randomly configured immature user is created to be trained. This process repeats

for some fixed number of generations. Note that at the start of every generation the

immature language user is assigned an entirely random neural network; there is no

inheritance of language other than through experience of language learning episodes.

Note also that the population structure is 1 + 1; at any moment in time one mature

speaker is training one immature learner.
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Since these agents have a neural network that maps unidirectionally from signals to

meanings, they require an additional mechanism in order to generate signals for partic-

ular meanings. To this end, Kirby & Hurford (2002) adopt the aforementioned obverter

learning procedure by Oliphant & Batali (1997). Here, each speaker assumes that the

hearer’s internal mapping between signals and meanings is similar to its own. Conse-

quently, when choosing which signal to make for a particular meaning, the speaker will

choose the signal that, if presented as input to their own neural network, would most

strongly cause them to infer this meaning themselves.

In order to apply the obverter procedure to the ILM, Kirby & Hurford (2002) employ a

confidence measure to determine which signal to produce for a given meaning. A speaker

aiming to express a particular meaning, m, identifies their favoured signal, s∗, in the

following manner:

For each signal, s ∈ S, the speaker calculates an associated confidence value4 :

Vs =
∏
i

(1− |m[i]− o[i]|) (4.5)

where m[i] is the ith bit of the target meaning and o[i] is the ith real valued output of

the signaller’s neural network. The signaller then picks s∗ as the signal with the largest

confidence. Here, the obverter procedure does most of the work. Lets take, for example,

a situation whereby an agent is trained on a simple language where the input signal is

replicated in the training meaning (for simplicity, they are each two bits in length):

Signals Meanings

0, 0 0, 0

0, 1 0, 1

1, 0 1, 0

1, 1 1, 1

Now, imagine that, after a number of training sessions, the agent produced the following

output activation patterns for each of the training input signals:

Signals Meanings

0, 0 0.1, 0.1

0, 1 0.05, 0.15

1, 0 0.4, 0.15

1, 1 0.45, 0.4

At first glance, although it has learned the first pairing, the agent has performed rather

poorly at learning the other three pairs. However, at this point, obverter is used, and

4Note: the product is used here over any other method, such as Euclidean distance, due to this model
being a replication of that presented by Kirby & Hurford (2002), who themselves used the product
measure.
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this algorithm produces the following output (note that the meanings are now in the

first column and the signals in the second):

Signals Meanings

0, 0 0, 1

0, 1 0, 1

1, 0 1, 0

1, 1 1, 1

Thus, despite the raw output of the agent’s network producing poor activation values,

the obverter procedure ‘cleans up’ the output to provide us with adequate mappings. It

can be seen that the obverter procedure can cause ambiguity in the language, with the

signal 0, 1 being the best signal for both of the first two meanings. This is due to the

output activation of 0.05, 0.15 being, in accordance with the above closeness measure,

the best match to both 0, 1 and 0, 0. Therefore, it actually produces the wrong, and

more ambiguous signal, for the one meaning it seemed to have learned best by looking

at the raw output pattern.

4.4 ILM Results

Three metrics were employed to evaluate language development; expressivity, stability

and compositionality. A language’s expressivity, X, is the proportion of possible mean-

ings that are generated by the full set of possible signals. A language with maximal

expressivity is said to be complete.

A language’s stability, S, is a relational property involving two agents, and is measured

as the proportion of the meaning space that can be recovered accurately when one agent

signals to another. When a language is maximally stable, any meaning expressed by one

agent can be inferred correctly by the other. In the results presented in this chapter,

S is calculated by subtracting the number of identical meaning-signal pairs produced

by to randomly selected immature agents from 256; this latter number being the total

number of meanings and signals featured in the model.

The compositionality, C, of an agent’s language is the extent to which utterance parts

convey distinct meanings. A language with zero compositionality is one in which every

utterance is paired with a meaning in an uncorrelated fashion. Knowing part of the ut-

terance provides no knowledge of part of the meaning. In contrast, a fully compositional

language is one in which every part of an utterance conveys an associated part of the

meaning perfectly.

The degree of compositionality in an agent’s language is evaluated by first employing

the obverter procedure to generate a signal for each of the meanings in the meaning

space. We then calculate the values of each of the 8 × 8 correlations, Cij , between the
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256 values at the ith bit of the set of signals and the 256 values at the jth bit of the

set of meanings. For each row, i, of this matrix we then calculate Ci∗ = maxiCij , the

maximum correlation between the values at index i of the signal set and the values

at each of the indices of the meaning set5. Finally, C is calculated as the average of

these eight maximal correlation values; C = 1
8

∑
iCi∗. For a random language mapping

meanings to signals, C = 0.5. Where a complete language is fully compositional, C = 1,

each bit in an utterance conveys the value of one bit in the associated meaning.

It should be noted that this measure of compositionality does not completely reflect

the linguistic concept of compositionality upon which it is based. Specifically, linguists

define compositionality as being the way in which the meaning of a sentence is made

up of the meanings of each of the individual words contained within it, and the way

in which they are ordered. However, the meanings in this ILM are represented as 8-

bit binary bit-strings. As a result, this measure of compositionality would equate to

a linguist trying to measure the compositionality of a single word by looking at each

of the individual letters that make up said word in the real world. Despite this, the

compositionality measure defined here will sufficiently allow us to explore the behaviour

of this ILM due to the binary nature of the representation of language itself.

The model by Kirby & Hurford (2002) displays three different types of behaviour, de-

pending upon the size of the bottleneck. If the bottleneck is too small, then the agents do

not learn; this results in a language that is both inexpressive and unstable. If, however,

the bottleneck is too big, then an expressive and stable system is eventually reached;

although, only after a prolonged period of time. However, agents quickly achieve a

language that is expressive and stable (fig. 4.3) with a bottleneck of size 50.

The original paper by Kirby & Hurford (2002) presented results of a single typical run.

Thus, figure 4.3 depicts the results of a typical single run of the replicated ILM. As

such, it was deemed beneficial to also depict the behaviour of this standard ILM over

multiple runs. Accordingly, figure 4.4 demonstrates how the agents still achieve an

expressive and stable language, but measuring this over multiple runs ‘smooths out’ the

lines. Additionally, the error bars demonstrate how the amount of success during the

early generations fluctuates between different runs. The same is also true for figure 4.5,

which depicts the amount of compositionality during these runs.

5It should be noted that the average of each row could have just as easily been calculated and used.
However, due to the nature of how the overter procedure operates, the maximum correlation felt like
the more natural design choice to the authors.
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Figure 4.3: ILM replication behaviour. The blue line represents language expressivity
and the red line represents the language stability, 256−S. Where, NM=1, NI=1, B=50,

E=100, MT =1, IT =0.

Figure 4.4: Averaged ILM replication behaviour. The blue line represents language
expressivity and the red line represents the language stability. Where, NM=1, NI=1,
B=50, E=100, MT =1, IT =0. The values are the average over 30 runs of the model.
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Figure 4.5: Langauge compositionality, over time for the ILM replication, where
NM=1, NI=1, B=50, E=100, MT =1, IT =0. Here, the values are the average over 30

runs of the model.

4.5 Population-based Iterated Learning6

As stated in chapter 3, population structure has very rarely been taken into account

in E/I models7. Given that iterated learning models aim to shed light on the relation-

ship between the properties of individuals and the population-level behaviour that they

exhibit, combined with the fact that much of the work done in this area thus far has

been concerned primarily with vertical cultural transmission, it is of significant interest

to explore the behaviour of this particular ILM within a population of agents.

The impact of population dynamics have been modelled previously within an iterated

learning context. Griffiths (2007), explored iterated learning dynamics within a model

where learning algorithms were based on the principles of Bayesian inference. By ex-

tending his framework to a population of such Bayesian agents, where each language

user learns from a single member of the previous generation, he showed that iterated

learning in this population produced language outcomes that could be understood as

the result of solely the agent’s individual learning biases. Therefore negating the role of

other constraints, such as the transmission bottleneck.

6The following section draws from Brace et al. (2015).
7Kirby & Hurford (2002) themselves point out that complex population dynamics were traded off for

computational power in the original model.
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However, Smith (2009) argues that Griffiths’s (2007) findings imply that it is possible

to understand the prior biases of learners by looking at the typological distributions of

languages. To support his argument, Smith (2009) presents a model of Bayesian agents

in order to demonstrate that Griffiths’s (2007) results are based upon the idealisation

that a language user learns from a single teacher, and once multiple teachers are included,

the mapping from the learner biases to typology breaks down. Based upon this result,

Smith (2009) concludes that inferring learning bias from typology could yield unsafe

results. Furthermore, Griffiths’ (2007) model is limited by the fact that the agents use

very specific statistical learning algorithms. They are therefore not applicable to cases

where the subjects of study use more general-purpose learning algorithms, which are

more akin to the general purpose cognitive architecture that is likely to underpin human

language (Hurford 2014).

In a later work, Burkett & Griffiths (2010) explored the problems raised by Smith (2009)

in developing a model where Bayesian agents were allowed to learn multiple languages.

In doing so, they demonstrate that, so long as an agent’s hypothesis space explicitly takes

into account the possibility of receiving input from multiple speakers with potentially

different languages, then Bayesian learning does tend to reflect the learner’s inductive

biases in the same manner as the single teacher model presented in Griffiths (2007).

However, this model still makes the simplifying assumption that agents only receive

input from vertical transmission. This is clearly not the case for real-life language users,

who are likely to learn from their immature peers as well as from their mature role-

models.

Thus, in the model presented here, each iteration consists of a population of N language

users, comprising of NM mature individuals and NI immature individuals; where N =

NM +NI . During each iteration of the model, every immature language user is assigned

a number of trainers from whom they infer the structure of their language through a

series of training episodes. This set of trainers may involve both a number of randomly

chosen mature trainers, MT , and also a possible number of randomly chosen immature

trainers, IT (fig. 4.6). The presence of immature trainers represents scenarios in which

language learners are not kept isolated from one another, but may influence one another’s

language learning.

An immature individual’s total number of training episodes, T , is evenly split between

their trainers; with each trainer being involved in B
MT+IT

episodes per training epoch8.

As in the original ILM, it remains the case that the total number of training episodes, T ,

is the product of the bottleneck size, B, and the number of training epochs, E. Hence,

T = B × E. The training episodes involving a specific trainer will involve the same set

of randomly selected meanings in each training epoch. The set of B training episodes

that comprise a single epoch are encountered in random order.

8Fractional numbers of training episodes are avoided by rounding up.
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Figure 4.6: Diagrammatic representation of an ILM population divided into mature
(upper set) and immature (lower set) agents, with N = NM +NI agents per generation.
Lines represent one immature agent’s trainers: four mature trainers (MT = 4, solid

lines) and four immature trainers (IT = 4, dashed lines).

4.6 Population-based Iterated Learning Model Results9

Figure 4.7 depicts a cross section of possible combinations of MT and IT , and how

expressivity, X, and stability, S, develops in this population-based iterated learning

model (PILM). In comparing figure 4.7A with figure 4.3, it is clear that training input

from multiple mature agents has a significant impact upon the number of generations

required for a fully expressive and stable communication system to arise. Unsurprisingly,

given the nature of iterated learning, figure 4.7B shows how the system fails to improve

above the scores obtained by random chance when MT=0. Figures 4.7C and 4.7D depict

how the system is able to produce a largely expressive and stable system when both MT

and IT are set equal at 5 and 10, respectively.

To further explore the impact of multiple mature trainers on model behaviour, a series

of tests were conducted with the aim of exploring the linguistic bottleneck. In figure 4.8,

we see the result of different bottleneck sizes upon compositionality in a population.

Here, IT=0 and E=50; meaning that agents get half of the training sessions that they

did in the original model, which should make learning far more difficult. The top graph

of figure 4.8 shows the MT = 1 case, while the bottom shows the MT = 10 case. In

both graphs, it can be seen that, unsurprisingly, the system does not learn when the

bottleneck is set too low, the system does, unsurprisingly, not learn. When agents learn

from only one mature trainer, a bottleneck of at least 80 meanings is required before a

reasonably compositional language can survive. However, with ten mature trainers, a

high level of compositionality can arise and survive with a much smaller bottleneck of

9Some of the following results are taken from Brace et al. (2015).
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Figure 4.7: System behaviour for a single run of the PILM for various combinations
of MT and IT . The blue lines depict expressivity and the red lines represents stability.
Parameter settings for each: A. MT = 10, IT = 0; B. MT = 0, IT =10; C. MT = 5, IT

=5; D. MT = 10, IT = 10; where NM=15, NI=15, B=50, and E=100 for all.

around 50. Moreover, when a compositional language arises, it does so at an increased

rate when multiple trainers are present.

Figure 4.9 depicts analogous results for scenarios in which immature language users are

allowed to influence each others’ learning (IT = 5). When immature trainers outnumber

mature trainers (figure 4.9 top), language learning is compromised, with compositionality

varying erratically over successive generations. This is due to the immature trainers,

who are not yet fully linguistically competent themselves, essentially adding noise to

the language-learner’s input data. Despite this, it is notable that bottleneck size does

influence the language; with larger bottlenecks allowing languages to achieve somewhat

higher compositionality.

When immature trainers are outnumbered by mature trainers (figure 4.9 bottom), lan-

guage learning is successful for scenarios with larger bottleneck sizes. Although composi-

tionality does vary more from generation to generation in comparison with an equivalent

scenario without immature trainers (compare figure 4.8 bottom). This is due to the fact

that increasing the bottleneck size while allowing immature agents to interact with one

another results in immature agents receiving extra signal diversity in their input training

data.
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Figure 4.8: Graph depicting the impact of various value of B. Top: MT = 1, with
B = 20 (blue line: µ = 0.49, σ = 0.04), B = 40 (red line: µ = 0.52, σ = 0.04),
B = 50 (green line: µ = 0.56, σ = 0.04), B = 60 (black line: µ = 0.58, σ = 0.05), and
B = 80 (magenta line: µ = 0.65, σ = 0.06). Bottom: MT = 10, with B = 20 (blue
line: µ = 0.52, σ = 0.04), B = 40 (red line: µ = 0.63, σ = 0.05), B = 50 (green line:
µ = 0.80, σ = 0.06), B = 60 (black line: µ = 0.90, σ = 0.08), and B = 80 (magenta
line: µ = 0.97, σ = 0.07). With NM=15, NI=15, IT = 0 and E=50 in both cases.

Averaged over 30 runs.

Further evidence of the number of trainers having an impact on system behaviour can

be seen in figure 4.10, which plots the average level of compositionality that the system

exhibits over 50 generations for various combinations of MT and IT . In line with the

above, it can be seen that compositional language tends to arise to the extent that the

number of mature trainers is greater than the number of immature trainers, and that a
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Figure 4.9: Graph depicting the impact of various values of B. Top: MT = 1, with
B = 20 (blue line: µ = 0.51, σ = 0.04), B = 40 (red line: µ = 0.62, σ = 0.06),
B = 50 (green line: µ = 0.65, σ = 0.09), B = 60 (black line: µ = 0.73, σ = 0.07), and
B = 80 (magenta line: µ = 0.96, σ = 0.08). Bottom: MT = 10, with B = 20 (blue
line: µ = 0.58, σ = 0.05), B = 40 (red line: µ = 0.76, σ = 0.05), B = 50 (green line:
µ = 0.92, σ = 0.05), B = 60 (black line: µ = 0.98, σ = 0.04), and B = 80 (magenta
line: µ = 0.99, σ = 0.03). With NM=15, NI=15, IT = 5 and E=50 in both cases.

Averaged over 30 runs.

greater number of mature trainers enable the system to develop and maintain a higher

level of language compositionality.
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Figure 4.10: Heatmap of the average amount of compositionality over 50 generations,
where NM=15, NI=15, B=50, and E=100, throughout.

Why might dividing the same number of learning episodes between a greater number of

mature trainers lead to improved learning in language users? The traditional wisdom

of those that have worked with E/I models is that they essentially simulate a standard-

isation in usage of meaning-signal pairings being established between agents. Thus, it

follows that, in cases where MT = 1, it takes a number of generations for an expressive

and stable communicative system to arise (figure 4.3), due to the way in which there

are multiple signals being mapped to single meanings during the early generations. In-

tuitively then, a situation with MT > 1 would exacerbate this problem, due to the fact

that such a scenario would see the various mature trainers behaving the same way, with

the agents in the next generation being trained on multiple degenerate languages; due

to the input data coming from multiple mature agents, each of which is producing its

own version of a degenerate language. This factor should make it much more difficult

for a conventionalised system to establish itself.

However, this appears to not be the case. Moreover, the results presented here demon-

strate that, while the mature agents in the initial generation may indeed use multiple

signals for the same meaning, when language-learners learn their ‘language’ from mul-

tiple tutors, such inconsistencies in the language are coalesced by the immature agents

during their language training due to the obverter procedure. Thus, when the initial

immature population is promoted to mature agent status, they receive varied, but sim-

ilar input during their training episodes; meaning that they all posses similar weights.

This, in turn, results in them producing linguistic output that is similar to one another;

output that is then used to train the second batch of immature agents. This is why

figure 4.11 shows that the immature agents in the second generation tend to have more
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unique signals in their training data when they learn their language from a higher num-

ber of different mature agents. Ergo, we see that a higher number of mature trainers

results in a fully expressive, compositional, and stable language emerging in far fewer

generational steps, than in the original model presented by Kirby & Hurford (2002).

Figure 4.11: Graph depicting the average number of unique signals in the training
sets for all immature agents at generation 2 and the average level of compositionality

at generation 5 for MT ∈ {1, 2, 5, 10}, where NM=15, NI=15, B=50, and E=100.

4.7 Conclusions

It has been shown here that our understanding of language can benefit from viewing

human language as an emergent phenomenon of the three interacting complex systems of

biology, culture and ontogeny. More specifically, it has been demonstrated that language

learners can benefit from learning signals from multiple trainers due to the way in which

they see that multiple signals can be used for a single meaning. However, due to the

way in which the agent networks and obverter procedure operate, they are quickly able

to pick the most commonly used signal for such a meaning.

These results provide an encouraging first step in our aim to use computational methods

in order to explore the relationship that researchers using different methodologies belief

to exist between population structure/social dynamics and linguistic form. In so much

that it has shown that language learners can benefit from learning signals from multiple

trainers.

In regards to E/I models more generally, such results can be seen to support the myriad of

computational work that has demonstrated how cognitively rather sophisticated agents

can successfully map a structured meaning space to a structured signal space in such
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a manner as to give rise to, and learn, a compositional language (Steels 1995, Hurford

2000, Kirby 2002c, Kirby & Hurford 2002, Barr 2004, Belpaeme & Bleys 2007, Steels

2007, Smith 2007).

More interestingly, traditional wisdom within the field of E/I research is that these

models essentially simulate the establishment of a standardisation of usage of meaning-

signal pairings between agents; meaning that having more mature speaker agents in the

simulation would lead to different signals being used for the same meaning. Thus making

it more difficult for a conventionalised system to establish itself. However, this has been

shown to not be the case, and although the mature agents in the initial generation may

indeed use multiple signals for the same meaning, when an immature agent learns its

‘language’ from multiple tutors, such inconsistencies in the language are coalesced by the

immature agent during their language training. This, in turn, results in the immature

agents producing linguistic output that is similar to one another; output that is then

used to train the second batch of immature agents. This is why we see that a higher

number of unique signals appearing in the training input for the second batch of mature

agents in figure 4.11. Thus meaning that a higher number of mature trainers results in

a fully expressive, compositional, and stable language emerging in the population-based

iterated learning model much faster than in the original model presented by Kirby &

Hurford (2002).

However, this work can be criticised from both a theoretical and technical stand point.

Technical criticisms take the form of modelling choices in the implementation of the

model. The agents within this ILM are feed-forward neural networks which use back-

propagation. The first issue here is that standard multi-layer neural networks require

the length of input data to be the same as that of the output data, but not all human

utterances are the same length10.

Secondly, as Turner (2002) observes, the neurological plausibility of the back-propagation

algorithm is questionable for a number of reasons. It is not clear that synapses can trans-

mit error backwards, in that we rarely have the opportunity to quantify our errors by

comparing our actual behaviours with target behaviours; and, unlike real-world learning,

back-propagation requires exposure to a vast number of examples.

Thirdly, there is a question as to whether the behaviour seen in the data is a genuine

reflection of language dynamics, or a result of specific neural network behaviour; such

as the way in which the agents coalesce multiple inputs into a single output.

Finally, the obverter procedure itself was designed to implement a bias towards an

alignment between interpretation and production (Hurford 1989, Franke 2015); meaning

that it produces behaviour that specifically aims to create efficient communication.

10This problem could potentially be overcome through the use of recurrent neural networks, which
allow such sequential processing (Elman 1990, Turner 2002).
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In conclusion, the results presented here provide a fascinating starting point for our

exploration into the behaviour of E/I models and the impact of population dynamics

upon linguistic form. However, there is a possibility that these results were obtained

purely as a result of some idiosyncrasies of the model or its algorithm. This possibility

will be explored in the next chapter.



Chapter 5

Convention Emergence Through

Reinforcement Learning

5.1 Introduction

It was demonstrated in the last chapter that a population of agents learning their lan-

guage from multiple mature trainers enables a compositional linguistic system to be

established with greater ease. However, given the rather sophisticated algorithm em-

ployed by the PILM, it would arguably be beneficial to explore whether those results

are generalisable. As such, this chapter will explore the same ideas, but with cognitively

simplistic agents by looking at how the meanings of lexical items change over time, which

is indicative of cultural factors playing a crucial role in the shaping of human language.

The establishment of the meanings of lexical items and the subsequent change in these

meanings is in part what led Lewis (1969) to work on the conventionality of meaning. He

introduced a signalling game in order to explore how meaningful language might evolve

from the use of initially random signals. The motivation here was to demonstrate how

interactions between rational individuals could give rise to conventions in meaning and

usage with the aid of common understanding of other player’s rationality and knowledge

of the pay-offs.

Renewed interest in these ideas over recent years have focused on how such conventions

can emerge from mindless evolutionary processes, and this has led to a body of work

that has explored the evolution of term-based languages through coordination games

(Skyrms 2004, 2009, 2010, Huttegger 2007, Barrett 2006, 2009, Argiento et al. 2009).

81
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5.2 The Lewis Signalling Game1

In a Lewis signalling game there are two players, a sender and a receiver. A single bout

of the game involves the sender knowing that the world is in some random state, t, but

the receiver being ignorant of this information. The sender then selects a signal, s, with

which to convey the world state to the receiver. The receiver observes s and has to

pick an appropriate action, a. If the action chosen by the receiver matches the world

state (i.e., a = t), the bout is considered to have been a success. In other words, the

communicative episode is deemed to be a success if the hearer can accurately determine

the world state, t, from the signal, s produced by the speaker. Here, t, s, and a are

drawn from finite sets T , S, and A, respectively. All of these finite sets are of size n; in

Lewis’ (1969) original model n = 2.

Over successive bouts of the game, both players are expected to adapt their behaviour

in order to increase the chance of achieving communicative success; typically through

some kind of reinforcement learning.

The easiest way to conceptualise this is in terms of urns and balls. At the outset of the

simulation run, an unbiased sender will have n urns, one for each state of the world;

each of which will contain n balls, one associated with each of the n possible signals.

Let’s suppose that during the first bout of the game, t = “red”. The sender picks a

random ball from their red urn. The symbol on this ball dictates the signal to be made,

s; in this case, suppose s =“fah”. Likewise, the receiver observes s = “fah”, and picks

a random ball from their fah urn, which indicates the action to be taken, a. Both balls

are then returned to their respective urns. If a = t, the interaction was a success, and in

accordance with the principles of Roth-Erev reinforcement learning (Roth & Erev 1995),

the sender adds extra balls of type s to urn t and the receiver adds extra balls of type

a to urn s. The number of extra balls added to the urns, u, corresponds to the utility

associated with the outcome of the signalling bout; in Lewis’ (1969) original game u = 1

if a bout is successful and u = 0 otherwise.

More formally, at any point in time, b(t, s) is the number of balls for signal s in the

sender’s urn for state t, and accordingly, b(s, a) is the number of balls corresponding to

act a in the receiver’s urn s. Thus, the behavioural strategies for sender (σ) and receiver

(ρ) are as follows:

σ(t, s) =
b(t, s)∑

s′∈S b(t, s
′)

ρ(s, a) =
b(s, a)∑

a′∈A b(s, a
′)

(5.1)

Essentially, these equations describe the probability that an agent will produce a specific

signal for a given meaning. At the start of its lifetime, each agent has an equally chance

of producing any of the possible signals for any meaning presented to it. However,

1The following section is drawn from Brace & Bullock (2016).
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throughout the course of its interactions with other agents, the probability of said agent

producing the same signal every time it is presented with a specific meaning increases

every time the agent uses the signal in question to successfully convey a specific meaning,

world state, to another agent. Likewise, for the probability of an agent producing a

specific action upon being presented with a signal.

There are a number of possible signalling equilibria that can arise in such a game.

Perfect signalling strategies result in optimal pay-offs for the players by mapping each

world state onto a unique signal and each signal onto the unique appropriate action

(figure 5.1). This behaviour constitutes an evolutionarily stable strategy (ESS) because,

when it is played by the whole population, there is no incentive for any individual to

change their strategy.

However, players may spend significant time playing sub-optimal ‘pooling’ strategies,

in which senders employ the same signal for multiple world states (pooling these world

states together). Thereby making it impossible for receivers to determine the state of

the world from the signals that they receive (figure 5.2). Pooling strategies are not ESSs

since adjacent strategies often achieve equal fitness; i.e., the two pooling strategies in

figure 5.2. The expected pay-off for such a pooling strategy is 0.5 when n = 2.

Figure 5.1: Optimal strategies for the n = 2 game.

Figure 5.2: Two of the possible sub-optimal pooling strategies for the n = 2 game.

It has been shown by way of both computational simulations (Barrett 2006, 2009, Skyrms

2010) and mathematical modelling (Huttegger 2007, Argiento et al. 2009) that the n = 2

game will nearly always converge upon an optimal signalling system. Indeed, Skyrms

(2009) went on to demonstrate that this behaviour also holds in cases where there are

two senders and one receiver. These results are further supported by Table 5.1, where

it can be seen that a replicated computational model of the n = 2 game being played

for 106 bouts will almost always reach a perfect signalling equilibrium.
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5.2.1 Higher-n games

However, a successful outcome is not always achieved when the game is played with

n > 2; i.e., with a higher number of states, signals, and actions (Skyrms 2010, Huttegger

2007, Barrett 2006, 2009).

In adopting the methodology of Barrett (2006, 2009), the R-L model that formed the

basis of the population-based R-L model was run multiple times for various values of n.

Each run consisted of 106 bouts, B, of the game. A run of the simulation is considered

to fail if the number of successful bouts is less than 90% of the total number of bouts.

Table 5.1 (left) shows the results of these runs, which agree with those of Barrett (2006,

2009). Table 5.1 (right) shows the results of a smaller sample of 100 runs, with all other

parameters being held constant2. It can be seen clearly from Table 5.1 that, in a n=3

game, the players fail to achieve a high enough rate of signalling success roughly 10% of

the time, and that this increases to ≈ 20% for n=4 games, ≈ 60% for n=8 games, and

so on.

1000 runs

Success

2-n 0.999
3-n 0.881
4-n 0.784
8-n 0.391
10-n 0.281
20-n 0.264

100 runs

Success

2-n 0.99
3-n 0.87
4-n 0.84
8-n 0.33
10-n 0.22
20-n 0.23

Table 5.1: Table depicting the success rates of the replicated R-L model after 106

bouts for various values of n, with 1000 runs (left) and 100 runs (right).

5.3 Generational Population-based Reinforcement Learn-

ing Model3

Although interesting in their own right, the dyadic setting considered so far limits the

conclusions that can be drawn from such models. After all, human language persists in a

highly complex social milieu, and it has been shown that the structure and composition

of a population can influence the dynamics of language change over time (Brace et al.,

2015; chapter 4).

As such, the original reinforcement learning model (R-L) was extended in a number of

ways. First, whereas the original model focused on a single sender and receiver playing

2The comparison in Table 5.1 is important to show, as the extended model presented later is run for
100 runs due to limits on computational power.

3The following section is drawn from Brace & Bullock (2016).
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for B bouts, in the population model (R-L-P), there are a population of agents. This

population is divided into a number of mature agents, NM , and a number of immature

agents, NI . All agents start life as immature and then get promoted to mature status

after the first epoch of their existence; in the same manner as the model from the

previous chapter.

Mature agents play bouts of the language game with one another, updating their lan-

guage behaviour according to game outcomes. By contrast, while agents are immature

they merely observe the language bouts played by their mature parent, and update their

language behaviour on the basis of the outcomes of these observed games. The lifespan

of agents is two epochs, the first as an immature agent and the second as a mature

agent; after which they are removed from the simulation.

It is important to emphasise here that, throughout the simulation, when new immature

individuals are added to the population, as in the standard R-L model, they have no

knowledge of the language currently being used. This is true for the initial population of

mature agents, and also true for new immature agents born into all subsequent epochs.

For each immature agent, each world state, t, is associated equally with each signal,

s, when playing as Sender, and each signal, s, is associated equally with each action,

a, when playing as receiver. In other words, each of an immature agent’s n state urns

contain a single ball for each possible signal, and each of their signal urns contain a

single ball for each possible action. Thus, any change in communicative performance or

language use over generations is the result of language evolution; there is no biological

evolution on the part of the agents.

Furthermore, instead of agents merely interacting B times, the R-L model is extended

to include a generational aspect. In other words, the model is set up to run for a number

of epochs, E. During each epoch, every mature agent plays B bouts as the sender with

other mature agents; with the amount of bouts it plays as the hearer being the result

of how many other agents it is partnered with, divided by B. The number of different

mature agents that a mature agent interacts with, P , is a key parameter of the model.

Each mature agent’s total number of interactions, B, being equally divided amongst its

P unique partners, i.e., the number of interactions that a mature agent plays as a hearer

is the result of B/P (rounded up).

The R-L-P model thus proceeds as follows. At the start of the simulation run, an initial

population of NM = 15 unbiased mature agents are created, with an equal chance of

generating each signal for each world state. For each epoch, E, a fresh population ofNI =

15 unbiased immature agents is created, each having an equal chance of generating each

signal for each world state. Each immature agent is assigned a randomly selected mature

agent to act as their parent. Each mature agent is assigned P unique randomly selected

mature partners with which to play the signalling game. Each of the mature agents then

engages in B/P bouts with each assigned partner, with each participant updating their
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signalling or receiving strategy at the end of each bout through reinforcement learning.

Each child will update their behaviour based on the outcome of the bouts that their

parents are involved in; i.e., at the end of a successful bout, a sender’s child will add

a ball of type s to urn t, and a receiver’s child will add a ball of type a to urn s. At

the end of an epoch, all mature agents are removed, all immature agents are promoted

to mature agent status, and a new set of unbiased immature agents are created for the

next generation.

5.4 Genertaional Population-based Reinforcement Learn-

ing model Results4

The R-L-P model does not achieve a successful signalling system as often as the standard

R-L model. Indeed, comparing table 5.2 to table 5.1 shows how, with P = 1, overall

success rates are lower for all n-games than in the standard R-L model.

Partners = 1 Partners =2 Partners = 5 Partners = 10

4-n 0.3 0.36 0.77 0.81
8-n 0.0 0.3 0.48 0.62
10-n 0.0 0.2 0.20 0.46
20-n 0.0 0.0 0.29 0.57

Table 5.2: Table depicting the success rates after 20 epochs for 100 runs of the R-L-P
model for various values of N and P .

However, increasing the value of P does increase the rate of success (table 5.2 and

figure 5.3). In figure 5.3, with P = 1 or 2, there is an initial level of success, which

corresponds to the number of successful bouts that would be seen in the normal R-L

model for a n=20 game, but this then drops during generation 2.

Here, low P values create a situation whereby mature agents form a communicative

system based on conventions agreed upon between themselves and only a small number

of other agents. Thus, in subsequent epochs, when the child of a mature agent has to

interact with the child of another mature agent, who has not previously interacted with

the mature agent in question, the agreed upon conventions that both parties formulated

during the first epoch are likely to be of little use; due to different agents forming

conventions based upon their idiosyncratic experiences. This gives rise to sub-optimal

behaviour at the population-level.

However, any immature agents that are present learn from the successful bouts of their

respective parents; hence the steady increase in success rates for these lower P values5. In

contrast, with high P values, we see an obvious and immediate increase in communicative

4The following is drawn from Brace & Bullock (2016).
5Given enough epochs, it is likely that the agents would give rise to a successful communicative

system.
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Figure 5.3: Graph depicting the average number of successful bouts across epochs for P = 1

(blue line: µ = 599028.9, σ = 12176.42), P = 2 (red line: µ = 711869.4.9, σ = 14145.25),

P = 4 (pink line: µ = 857588.7, σ = 12754.06), P = 8 (black line: µ = 906913.7, σ = 8977.71),

and P = 10 (green line: µ = 902448.8, σ = 14507.5) for a n = 20 game withNM = 15, NI = 15,

B = 106, and u = 1. Averaged over 30 runs.

Figure 5.4: Graph depicting the average percentage of successful communicative bouts

between all mature agents plotted against the number of unique signals presented to them

during said bouts in the second epoch for a n = 20 game, for P=1, 2, 5, 10 and NM = 15,

NI = 15, B = 106, and u = 1. Averaged over 60 runs.

success. This is due to the way in which an increase in P leads to the children of the

mature agents having more diversity in their training input. This better enables these

individuals to communicate with a larger number of other agents upon being promoted

to mature agent status (figure 5.4). This greater chance of success then leads to this

first batch of immature agents essentially coalescing the meaning-signal pairings; again,

similar to the model from the previous chapter.

Imagine a hypothetical mature agent from epoch one, who is partnered with ten other

randomly selected agents; who in turn, are partnered with ten other agents. In the

simulation, bouts are scheduled in such a way that agent1 will have one of the allocated
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Figure 5.5: Graph depicting the number of successful bouts out of every 100 bouts, over all

106 bouts of a random agent during the first epoch (left) and the second epoch (right); with

P=1 (blue line) and P=10 (red line). Where n = 20, NM = 15, NI = 15, B = 106, and u = 1.

bouts with one of its randomly selected partners, then agent2 will do the same; and so

on, until we reach agentMN
. At which point we go back to agent1 and allow it to have

its second bout, again with a randomly selected partner; and so on until each partner

of every agent has played B/P bouts with the agent.

In the P=1 case, unsurprisingly, we see higher levels of initial success during the first

generation than in the P=10. This is due to the establishment of a convention involving

fewer agents having to negotiate with one another (figure 5.5, left).

In contrast, with P = 10, it is slightly harder to establish a conventionalised usage

because each agent has to negotiate with an increased number of different agents, which

results in higher levels of signal diversity (figures 5.4 and 5.5, left). However, when the

offspring of the first epoch’s mature agents are forced to interact with a different subset

of the population in the second epoch, populations with higher P values exhibit higher

communicative success due to the increased signal diversity in the previous epoch. This

is the result of the immature agents learning from the successful bouts of their parents.

In turn, this results in these agents establishing a conventionalised usage that requires

less renegotiating when speaking to previously unencountered agents than in the P = 1

case; where agents have a more idiosyncratic language that requires them to renegotiate

the conventions established by their parents (figure 5.5, right).

This is why figure 5.4 shows an increase in communicative success with higher values of

P , while also indicating a negative trend in each of the data clusters for each specific

P value. Although it is harder to establish a language when negotiating meaning-

signal pairs with more individuals, doing so makes it more stable across generations
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(figure 5.5). Indeed, as figure 5.5 (right) shows, the agreed upon convention of usage in

cases of lower P values has to be renegotiated in subsequent epochs due to it offering

little communicative success to agents when communicating with newly encountered

individuals.

It is important to note that the increase in communicative success is the result of higher

P values and not of another variable, such as B. Indeed, figure 5.6 demonstrates the

average level of communicative success over twenty epochs is significantly lower for P = 1

or 2, as compared to P = 4; a trend that continues as P is increased. Furthermore,

it can be seen from figure 5.6 that higher P values allow for an increased amount of

communicative success, even when agents have significantly fewer training sessions (lower

B values).

5.4.1 Impact of Immature Language Users

In the real world, children are not just passive receivers of linguistic input. They interact

with others; including other children, who may not yet be fully linguistically competent.

Thus, a number of model runs were conducted where immature agents had B bouts with

P other immature agents while witnessing their parents bouts (figure 5.7). These imma-

ture agent bouts are scheduled in a similar manner to the mature agent bouts described

above, in that we allow each agent to have one bout with a randomly selected partner;

starting with agent1 and cycling through to agentNI
, before going back to agent1 again.

In these runs, mature agents only interact with mature agents and immature agents only

interact with other immature agents. Although, immature agents still learn from their

parent’s interactions.

Figure 5.7 demonstrates how performance in the P = 10 case is impeded by allowing

interactions between immature agents. This is to be expected, as linguistically under-

developed individuals interacting with one another will add a degree of noise into the

communicative system. However, with P = 1, allowing immature agents to interact with

one another dramatically increases communicative success. This difference in behaviour

can again be attributed to signal diversity. While in the above results, immature agents

only learned from the interactions of their parents, meaning they got a degenerative

sample of the language because they only ever witnessed the same two individuals com-

municating during their first epoch, here they are also interacting and learning with

another individual who is likely to have witnessed two different mature agent’s inter-

acting with one another. This would increase the amount of signal diversity in the

immature agents training data.
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Figure 5.6: Graph depicting the average amount of communicative success over 20 epochs

for various values of B and P . Where n = 20, NM = 15, NI = 15, B = 106, and u = 1.

Averaged over 30 runs.

Figure 5.7: Graph depicting the average amount of communicative success over 20 gen-

erations for P = 1 where only NM interact with one another (blue solid line: µ = 63342.1,

σ = 15604.78) and where both NM and NI interact with other mature and immature agents

(blue dashed line: µ = 89468.85, σ = 6159.112), and likewise for P = 10 where only NM in-

teract with one another (red solid line: µ = 94822.5, σ = 9862.42 and where both NM and NI

interact with other mature and immature agents (red dashed line:µ = 89468.85, σ = 6159.112

. Where n = 20, NM = 15, NI = 15, B = 106, and u = 1. Averaged over 30 runs.

5.5 Conclusions

The results presented here build upon a larger body of work, both in regards to sig-

nalling conventions (Skyrms 2004, 2010, Barrett 2006, 2009) and expression/induction

model research in general (Hurford 2002). It has been shown that a signal can acquire

a conventionalised meaning without the sender intending for it to do so, and that the

meaning of such simple signals is dependent upon the stabilisation of usage conventions,
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which emerge from functional historical signal production. Thus, even the most auto-

matic or reflexive signals can acquire meaning, so long as the production and response

mechanisms are co-adapted to coordinate their behaviours in accordance with such an

arbitrary signal (Harms 2004).

More interestingly, it has been shown that a population structure that allows for inter-

actions between more of its members is beneficial in allowing it to evolve an efficient

term-based language. Specifically, it has been shown that, as intuition dictates, while it

is initially harder to establish a conventionalised system of usage with larger numbers

of individuals, doing so enables the emerging language to persist in subsequent epochs.

This is due to the input into language learners being initially more diverse, which pre-

vents these learners from developing a more idiosyncratic communicative system that

makes it harder to communicate with previously unencountered individuals.

In addition, the results reported here can be seen to be linked to the aforementioned

concept of a linguistic bottleneck, which refers to how the input data for a language

learner will only be a subset of the potentially large range of grammars of the language

user from which it is learning. We have seen that ILMs have demonstrated how the

linguistic bottleneck is crucially important in regards to whether or not language can

be successfully passed from one generation to the next and, in situations where this

transmission can be achieved successfully, show that it is also crucial to the linguistic

structures that arise (Kirby 2002b,a, Kirby & Hurford 2002, Kirby et al. 2014, Smith

2002, Smith et al. 2003, Brace et al. 2015). Although a similar effect to the bottleneck

is seen in uni-generational models, such as the naming game (Steels 1995)6, the model

presented here is novel in that it demonstrates the impact of bottleneck-like behaviour

in a generational-based simulation that explores the use of term-based languages.

Here, this bottleneck-like behaviour takes the form of the way in which internal repre-

sentations of individuals are induced from limited examples of the behaviour of other

agents (Hurford 2002). This supports the results from chapter 4, which demonstrated a

link between the linguistic bottleneck and the number of linguistic tutors (Brace et al.

2015).

Additionally, the behaviour seen in figure 5.7 indicates that the factors underpinning the

cultural transmission of language change and linguistic variation are perhaps too com-

plicated to be understood by analysing the nature of just inter- and intra-generational

transmission; and that further research into linguistic change should focus on the make-

up of the social group that underpins linguistic populations (Wichmann & Holman 2009,

Lupyan & Dale 2010, Milroy 2013).

Indeed, it would be interesting to explore how an expanding and contracting population

size, with varying numbers of mature language users and immature language learners,

6See chapter 3.
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could impact the emergence and form of a language (Johansson 1997, Hurford 2002). An

expression/induction model geared towards this interest could provide valuable insights

for a growing body of research that is interested in the nature of the relationship between

language and population change (Johansson 1997, Nettle 1999a, Wichmann & Holman

2009, Lupyan & Dale 2010, Milroy 2013, Trudgill 2013). These ideas will be the focus

of the next chapter.



Chapter 6

Population Dynamics and

Language Emergence

6.1 Introduction

Technological developments over the last couple of decades have resulted in a number of

new methodologies becoming available to language evolution researchers; including the

development of global linguistic databases that enable one to performs statistical anal-

ysis on linguistic structures of languages from across the world. These developments

have led to a growing body of work that posits a relationship between changes in lin-

guistic structure and population dynamics (Johansson 1997, Wichmann & Holman 2009,

Lupyan & Dale 2010, Milroy 2013, Atkinson et al. 2015). Given the nature of expres-

sion and induction (E/I) models and their focus on the behaviour within populations of

agents, computational simulations of this kind are well positioned to explore the nature

of this theorised relationship. Especially given the results from the models in chapters

4 and 5 that indicate an intimate relationship between iterated learning dynamics and

population structure.

However, the two models presented thus far have only looked at how linguistic structure

has been affected by populations that have been static in nature. This is obviously

not reflective of reality, where population sizes tend to be in a constant state of flux;

often exhibiting periods of severe contraction of expansion. Furthermore, the previous

two models have only explored how agents create a mapping between meanings and a

pre-defined, and fixed, set of signals. As such, the model presented in this chapter will

draw upon the reinforcement learning concept from chapter 5 and the iterated learning

framework, specifically the iterated learning model as implemented by Kirby (2002a,b),

in order to explore how agents create their own signals and syntactic rules and use these

in order to convey meanings.

93



94 Chapter 6 Population Dynamics and Language Emergence

6.2 Linguistic Change And Social Groups

A number of scholars have attempted to explore links between aspects of societies and

features of the languages spoken by the individuals therein; with much of this work

focusing on aspects of culture (Trudgill 2013). In the vast majority of such work, the

make-up of social groups are considered to be a determining factor in language change,

contact, maintenance, and shift (Labov 2001, de Bot & Stoessel 2002, Ke et al. 2008).

Sociolinguists have produced empirical studies that focus on the social networks of small

communities and the linguistic performance of the individuals within them (Milroy

1987). These have quantitatively demonstrated that the linguistic behaviours of in-

dividuals are highly correlated with their degrees of integration into the social group.

In other words, an individual is likely to have less variation in their language abilities,

and will better conform to the speaking norms of the linguistic population, the more

integrated they are within the network when linguistic variations are present within the

social groups (Ke et al. 2008).

Some of this work has explored how differing social network structures and properties

can explain the presence of language varieties that are specific to particular social groups.

These network-orientated studies of linguistic change take the form of both sociolinguis-

tic variationist work1 and socio-historical studies of changes that occurred during the

earlier stages of a language's life (Milroy 2013). However, for practical reasons, such

empirical work tends to only look at small communities of individuals; and few have ex-

plored the effect of different network types upon linguistic change over longer historical

periods (Ke et al. 2008). This is perhaps why only a few empirical studies have been

able to quantitatively demonstrate that population make-up is an important factor in

language change.

Another line of enquiry has also come about with the establishment of online linguis-

tic databases, such as the World Atlas of Language Structures (WALS). Specifically,

Bromham et al. (2015) demonstrates that there is the potential for demographic factors

to influence language evolution, while Lupyan & Dale (2010) showed that languages that

are spoken by larger groups of individuals, such as modern English, tend to have simpler

inflectional morphology2 than those spoken by smaller groups. Furthermore, Cysouw

(2009) conducted a study looking at how the values of a language's features have low

frequencies in the entire database; what he termed ‘rarity’. In doing so, he found that,

out of the fifteen languages in the WALS with the highest rarity, twelve had fewer than

6,000 speakers. However, instead of attributing this to population size, he argued in

favour of geographical locations and genealogical inheritance as being the cause of this

finding.

1The study of the way in which many languages have more than one way of saying the same thing.
2This refers to the processes that distinguish the forms of words in certain grammatical categories;

such as affixation and suffixation.



Chapter 6 Population Dynamics and Language Emergence 95

More specific to this thesis, a significant amount of data has been gained through the use

of computational simulations. However, these simulations have yielded mixed results on

the relationship between populations and language change, with the results being heavily

dependent upon the kind of social interaction used within the model (Wichmann &

Holman 2009).

Nettle (1999a, 1999b, 1999c) was the first to raise questions concerning, and use compu-

tational simulations to explore the nature of population sizes and linguistic change. In

doing so, he presented a model that demonstrated that higher rates of linguistic change

occurred in smaller populations. He further supported these results using indirect em-

pirical evidence, which suggested that languages with fewer speakers experience higher

rates of linguistic change compared to those with many speakers. He demonstrated this

by comparing the way in which languages in the Americas are divided into many unre-

lated families, all of which are characterised by having relatively few speakers. While

languages in Eurasia and Africa are divided into a few, large, families and tend to have

many speakers.

Initially, Nettle (1999a) argued that the cause of this stemmed from the way in which

linguistic change occurs too rapidly in languages with a small number of speakers for

them to grow very large before evidence of their relationships to other languages are lost.

Whereas larger languages change slow enough for their relationships to be documented.

However, Nettle (1999c) presents a model that attributes the higher level of linguistic

diversity in the Americas, not to population size, but to a rapid growth in diversity

followed by a slower rate of decay; a model that allows higher diversity in geographi-

cal areas that were settled relatively recently than those settled in prehistory. Nettle’s

(1999a) logic is that it is easier to spread an innovation throughout a tribe of 500 people

than it is through one of 5 million. This notion is explored through a simulation con-

sisting of two linguistic features, which demonstrate that the rate at which the majority

of the population switches between one of these two choices decreases to a small, but

nonzero, limit when the population is increased from 120 to 500.

Wichmann et al. (2008, 2009) built upon the work of Nettle (1999a; 1999b; 1999c)

by using a scale-free network, whereby the social influence of a particular individual

increases during network growth in proportion with the amount of influence that this

individual already exerts. Social distance in this model refers to the distances among

individuals in the network.

In a variation of the model whereby a speaker randomly adopts variations from the

entire population, the size of the population that has been given the linguistic variation

indirectly impacts the probability that such a variation will diffuse further within the

network. This version was tested with a number of different parameter settings, and it

was found that with small diffusion rates, there was no impact on the rate of linguistic

change from population sizes, but there was for larger diffusion rates.
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In Wichmann et al.’s (2008) model, it was found that population size had no systematic

effect on diffusibility, and that the degree to which languages undergo contact-induced

change is likely to be dependent upon the particular history of interactions between the

speakers. Although, their model did demonstrate that larger populations lead to slower

rates of linguistic change. The authors found that, an increased population size will

yield a lower rate of linguistic change in a situation where individuals adopt linguistic

features from others anywhere in the speech community, where certain individuals are

more connected than others, and where diffusion of innovations are high. Given these

results, the authors go on to argue that languages such as English and Mandarin will

change at a slower rate than languages spoken by populations in relative isolation to one

another; as the situation might have been for some traditional societies.

In addition, Wichmann & Holman (2009) used a newer form of empirical test to that

used by Nettle (1999a; 1999b; 1999c) to demonstrate that, during the breakup of dialects

into separate languages, there is a tendency for a somewhat faster rate of change in the

dialect of the majority. The tests here mainly show negligible effects of population. The

exception being an apparently faster rate of change in the larger of two closely related

variants. Wichmann & Holman (2009) argue that a possible reason for this could be

the influence on emerging standard (or cross-regional) variants from speakers who shift

from different dialects to the standard. The results of the work by Wichmann & Holman

(2009) appear to demonstrate that the sizes of speaker populations do not in, and of,

themselves determine rates of language change.

In sum, comparison of these empirical findings, accompanied with the results presented

thus far in this thesis, suggest that the most plausible model for language change is one

in which changes propagate on the level of individual interactions; in a network where

individuals have different degrees of connectivity.

Furthermore, although the research output to date could be seen as a ‘mixed bag’ of

data, there are some common themes. First, rates of language change tend to be lower

in larger linguistic populations. Second, population size is not the sole factor that

determines rates of linguistic change. Moreover, how integrated into their social group a

language user is, or in our modelling terminology, how many linguistic tutors a language

learner has, tends to be more important. Third, certain linguistic individuals being

socially connected to more individuals than others also appear to play a crucial role in

the rate of linguistic change.

These notions will be explored in this chapter through a model that incorporates the

language learning mechanisms featured in the models presented in chapters 4 and 5;

the behaviour of which have already been well documented in populations of static size.

More specifically, this model will first explore the roles played by differing numbers

of linguistic tutors and bottleneck sizes, before varying the amount of influence upon
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language learners. Finally, it will explore how the model behaves with larger population

sizes that contract and expand in varying ways.

Although empirical studies using real-life participants have failed to provide convincing

evidence that variability in speaker input influences language learning and evolution

(Atkinson et al. 2015), the data presented in the aforementioned works, combined with

the nature of E/I models and the results presented in chapter 4 and chapter 5 arguably

make this a worthwhile endeavour.

6.3 The E/I Baseline Model

As mentioned above, the model presented here draws upon that presented by Kirby

(2002a,b), in so much as it uses the ILM framework, a meaning-signal space that takes

the form of predicate logic, and having both a production and learning phase. Although

this last similarity is a common feature of all E/I models. Indeed, the algorithms used

in these phases are quite different from those seen in Kirby’s (2002b, 2002a) models, not

least because they incorporate the principles of reinforcement learning.

As was the case with the previous two models, all the agents in every generation of this

model are born as blank agents. They have no innate linguistic abilities and have to

learn their language, in its entirety, in the manner described below.

At the start of a simulation run, an initial mature population, M , and an initial immature

population, I, are created. Each mature agent is then assigned PMM other randomly

selected mature agents to play a language game with, and immature agents are each

assigned PMI randomly selected mature agents to act as their linguistic tutors. Due to

mature tutors being selected at random, it is often the case that certain mature agents

will train more immature agents than others, and will therefore exert more influence on

the shape of the emerging language.

Each mature agent then plays a number of bouts, B, of the language game. Here, the

number of bouts that each mature agent plays as the speaker with each of its assigned

partners is the result of rounding up B/PMM . After all the mature agents have played

B bouts of the language game as the speaker, the mature population is removed and the

immature population are promoted to mature agent status. Then, at the start of the

next generation, a new immature population is created; and so on, until the maximum

number of generations is reached.

Meanings in this model consist of one of five possible verbs and two of five possible

names. When a meaning is created, these are chosen at random and used to construct

the meaning. Meanings therefore take the form of likes(Heather, John), for example.
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In the discussion that follows, a distinction will be drawn between structure (or syntactic)

rules and semantic rules3, which will be created by the agents during their induction

process. Semantic rules are denoted with an A/ and consist of a meaning part and a

signal part. Using the above meaning as an example, the semantic rule for ‘Heather’

would take the form of A/ Heather, ‘zkh’; where ‘zkh’ is a randomly generated

string that is constructed by randomly selecting between one and three letters from the

alphabet. In comparison, structure rules are denoted by an S/ and dictate the way

in which signal bits are ordered. These take the form of S/ p(x, y), ‘/x/’(‘/p/’,

‘/y/’), for example.

The agents begin life producing complete S/ rules, by generating a signal part for each

meaning part; such as S/ detests(John, Heather), ‘jfi’(‘dol’, ‘ewp’), for ex-

ample. Then, throughout the course of its lifetime, the agent learns the given gram-

matical rules of its group. This allows it to produce specific signal parts for each of the

different meaning parts, and order the whole signal in an manner that has, like the signal

parts themselves, emerged through the agent’s interactions to become a conventionalised

system of usage.

As an example, imagine that we are looking at the grammar of a hypothetical agent after

some language learning has taken place, this agent may have the following grammatical

rules that pertain to the above meaning:

S/ p(x, y), ‘/x/’(‘/p/’, ‘/y/’)

A/ John, ‘utr’

A/ Heather, ‘zkh’

S/ p(x, y), ‘/p/’(‘/y/’, ‘/x/’)

A/ likes, ‘dew’

S/ hates(x, y), ‘tjh’(‘/y/’, ‘/x/’)

S/ hates(x, y), ‘/x/’(‘hfd’, ‘/y/’)

S/ admires(Pete, Gavin), ‘ryt’(‘wde’, ‘zou’)

.

.

.

.

A/ John, ‘iws’

This would result in the agent being able to produce one of the following possible

meaning-signal pairs when presented with the meaning likes(Heather, John):

S/ likes(Heather, John), ‘zkh’(‘dew’, ‘utr’)

S/ likes(Heather, John), ‘zkh’(‘dew’, ‘iws’)

3Similar distinctions are seen in the models by Kirby (2002a,b). Although the manner in which they
are created and used by the agents vary greatly.
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S/ likes(Heather, John), ‘dew’(‘utr’, ‘zkh’)

S/ likes(Heather, John), ‘dew’(‘iws’, ‘zkh’)

The agents develop these grammars by playing a language game that involves producing

and inducing meaning-signal pairs. This language game has a number of steps to it.

First, a meaning is randomly generated using the possible meaning parts. The mature

agent currently under consideration takes the role of the speaker and one of its randomly

selected partners takes the role of the hearer. Both produce a signal for the meaning.

There are a number of steps involved in producing a signal. First, if the agent’s grammar

contains no entries, a signal part between one and three characters in length are created

for each of the meaning bits using randomly chosen letters from the alphabet, these are

then collated to create the signal for the meaning. Otherwise, the agent cycles through

each of the rules within its grammar, and if a rule begins with S/ (a structure rule),

then the agent compares each semantic part of this structure rule to the corresponding

semantic part of the meaning. If the two match, the rule is given a point. If they do

not match, and the semantic part of the grammar rule is a variable, the agent will cycle

through each of its grammatical rules and find a rule that is prefixed with A/ (a semantic

rule). If the semantic part of this rule matches the meaning part that is currently under

consideration, then the rule is added to a temporary urn; an urn here is used in the same

sense as in the reinforcement-learning model from the previous chapter. A semantic rule

is then randomly selected from this temporary urn, and its semantic part temporarily

replaces the variable in the main S/ rule that is currently under consideration, and the

signal part of this semantic rule is placed in the part of the S/ rule’s signal part that

corresponds to the variable. A point is awarded. The highest scoring structure rule is

then used as the agent’s meaning-signal pairing.

Once both speaker and hearer have produced a meaning-signal pair, one of two things

happens. If the two pairs match, the bout is considered to have been successful. In

which case, a copy of each of the rules used by the speaker in constructing its meaning-

signal pairing, both structure and semantic in nature, are added to the speaker and the

hearer’s grammar, as well as to the grammar of any immature agents that are assigned

to the speaker or hearer; all of which then also apply the induction algorithm to the

meaning-signal pair produced by the speaker. If, however, the hearer’s pair does not

match the speaker’s pair, then only the hearer, applies the induction algorithm to the

meaning-signal pair produced by the speaker.

The motivation behind this design choice is context. Up until now, the models presented

here have involved one agent producing a signal for a meaning and the other agent trying

to infer said meaning. However, in real-life, so very much of the meaning conveyed in

conversation is drawn from context, with speakers using the specific words they use so

as to ensure that the listener will understand. Indeed, both parties producing signals for

the same meaning is one of the ways in which infants learn languages. We also see this
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behaviour when two individuals, without any common language attempt to communicate

with one another; a phenomenon that this model will be used to explore in the next

chapter. Ergo, both agents producing a signal for a given meaning and then comparing

them can be seen as a short hand for providing agents with context. In reality, this is

likely to make little difference when compared to the procedures of the models presented

in the two preceding chapters, since all three mechanisms essentially involve the hearer

knowing which meaning is trying to be conveyed by the speaker. However, adopting this

specific procedure here enables this model to be used in subsequent chapters to explore

the nature of contact language emergence.

The induction algorithm also has a number of steps to it. First, a copy of the meaning-

signal pair produced by the speaker is created. Then, each signal part in this copy is

compared to all of the semantic rules in the learning agent’s grammar. If the signal part

in the semantic rule that is currently under consideration matches the signal part of the

speaker’s produced signal that is currently being considered, and if the semantic part of

this semantic rule matches the corresponding semantic part in the speaker’s meaning-

signal pair, then the signal part and its corresponding semantic part in the copy of the

speaker’s meaning-signal part is replaced by a variable and an extra copy of this semantic

rule is added to the learning agent’s grammar. Secondly, for any signal and semantic

parts that do not match in this manner, a semantic part and signal part are randomly

selected from the copy of the speaker’s pairing. Both of which are not variables, and

are used to construct a new semantic rule. This is then added to the learning agent’s

grammar. The semantic and signal bits used to construct this new semantic rule are

then replaced in the copy of the speaker’s meaning-signal pair by variables. Finally, a

copy of the speaker’s meaning-signal pair, which by now will consist solely of variables,

is added to the learning agent’s grammar.

6.4 Baseline Model Results

Following on from the findings of the previous two models, the analysis of this baseline

model predominantly focuses on the impact of population size and different numbers,

and types, of linguistic partners, as well as the size of the bottleneck (number of bouts)

upon the amount of communicative success achieved. There will also be an analysis of

contracting and expanding population sizes and the impact that this has upon language

learning.

6.4.1 Baseline Social Interactions

It was shown in the previous models that the amount of diversity within an immature’s

linguistic training data played a crucial role in how quick, if at all, an expressive and
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stable linguistic system emerged within a population of language users. As such, the first

step in the exploration of this baseline model’s behaviour was to look at how different

values of PMM affected the amount of communicative success.

Figure 6.1: Graph depicting the amount of communicative success achieved with different

values of PMM , with PMI=1, M and I=10, and B=50. Averaged over 30 runs. PMM=1,

PMI=1, PII=0 (blue line):µ = 27.76, σ = 1.47. PMM=2, PMI=1, PII=0 (red line):µ = 17.82,

σ = 1.40. PMM=5, PMI=1, PII=0 (green line):µ = 2.73, σ = 0.79. PMM=9, PMI=1, PII=0

(black line):µ = 1.17, σ = 0.52.

It can be seen from figure 6.1 that higher values of PMM are actually detrimental to the

population being able to achieve a high level of communicative success when PMI=1.

In comparison, figure 6.2 shows how higher values of PMI have a significantly positive

impact upon the communicative success of the population.

These results make logical sense. In figure 6.1, the higher values of PMM and low level

of PMI result in a situation whereby mature agents communicating with one another

leads to more signal diversity within the population, but the immature agents are only

learning a very limited sub-sample of the linguistic system. In ILM terms, the bottleneck

is too small to enable a stable communicative system to emerge. In contrast, the exact

opposite is true in figure 6.2, where there is less signal diversity due to mature agents

only communicating with one other mature agent, and immature agents experiencing a

much wider spectrum of potential signals for each specific meaning. Thus improving the

chances of these immature agents having more successful communicative episodes once

they become mature. This is further supported by figure 6.3.



102 Chapter 6 Population Dynamics and Language Emergence

Figure 6.2: Graph depicting the amount of communicative success achieved with different

values of PMI , with PMM=1, M and I=10, and B=50. Averaged over 30 runs. PMM=1,

PMI=1, PII=0 (blue line):µ = 27.76, σ = 1.47. PMM=1, PMI=2, PII=0 (red line):µ = 48.07,

σ = 0.26. PMM=1, PMI=5, PII=0 (green line):µ = 48.89, σ = 0.11. PMM=1, PMI=10,

PII=0 (black line):µ = 48.77, σ = 0.11.

By looking at figure 6.4, it can be seen how the language during a successful run of

the simulation changes over generational time. During early generations, an agent has

numerous meaning-signal pairings for both syntactic (S/) and semantic (A/) rules. The

number of different rules for each meaning-signal mapping then decreases until the pop-

ulation has a linguistic system that consists of a single meaning-signal mapping for

each of the potential meaning parts and a single syntactic rule; a linguistic system that

achieves 100% success rate. It should be noted here that no meanings or signals are

being explicitly removed from the simulation by the researcher. Moreover, as the sim-

ulation progresses over generations, the agents give rise to a language that has fewer

and fewer signals associated with any specific meaning. This continues until there is a

situation akin to what is seen in generation 38 of figure 6.4, where the agents only have

one choice of signal for each specific meaning. This is the result of the agents giving rise

to a convention of usage through the course of their interactions.

The next step in the exploration of this model’s behaviour was to investigate as to what

kind of impact allowing the immature agents to communicate with one another would

have upon the communicative success of the population. Figure 6.5 shows how, although

the population does continue to develop the linguistic system in the same manner as

when PII=0, allowing the immature agents to learn from one another does impact the

amount of generational time it takes for a fully stable language to arise.
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Figure 6.3: Graph depicting the amount of communicative success achieved with different

values of PMM and PMI , with M and I=10, and B=50. Averaged over 30 runs. PMM=1,

PMI=1, PII=0 (blue line):µ = 27.76, σ = 1.47. PMM=2, PMI=2, PII=0 (red line):µ = 47.57,

σ = 0.32. PMM=5, PMI=5, PII=0 (green line):µ = 46.95, σ = 0.40. PMM=9, PMI=10,

PII=0 (black line):µ = 46.46, σ = 0.45.

6.4.2 Baseline Bottleneck Exploration

In exploring the bottleneck, the two extremes in terms partner combinations (PMM

and PMI= 1 and PMM and PMI= 10), were taken and B was increased. Figure 6.6

demonstrates how with higher PMM and PMI , there is no significant change in behaviour;

with the success rate increasing less smoothly. However, in the PMM and PMI=1 case,

there is a significant impact upon communicative success. This is understandable, given

that a larger number of bouts, which essentially acts as a bottleneck, offers the agents a

larger sub-sample from which to learn.

6.4.3 Larger Population Sizes

As was seen above, many researchers have used a number of methods in order to explore

the nature of the relationship between population size and linguistic change. This body

of work appears to indicate that it is not the size of the population per se that has

influence on linguistic change. Moreover, given how different social network structures

yield different results, it is arguable that language change is more heavily influenced by

the connectivity of a linguistic social group. An argument that is supported by the data
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Figure 6.4: Example of how a language evolves over generational time during a successful

run, taken from a random mature agent in each generation.

thus far presented in this thesis. Thus, it was deemed worth while to explore whether

or not increasing M and I from 10 to 30 had any significant impact upon language

emergence within the current model.

Figure 6.7 demonstrates how, with this larger population size of 30 mature and 30

immature agents, it is much harder for the model to give rise to a stable communicative

system. Indeed, the PMM=1, PMI=1, PII=0 and PMM=1, PMI=1, PII=1 cases fail

completely. However, the PMM=9, PMI=10 PII=9 does achieve some level of stability,

and the PMM=9, PMI=10, and PII=0 case could potentially reach complete stability

after a prolonged period of time. Despite this, it is clear that, in this model, larger

populations struggle to give rise to an expressive and stable linguistic system.
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Figure 6.5: Comparison of the amount of communicative success achieved when immature

agents are permitted to play the language game with one another, for PMM and PMI=1 and

PII=0 (blue line) and PII=1 (red line), likewise for PMM=9 and PMI=10 (green and black

lines, respectively). Averaged over 30 runs. PMM=1, PMI=1, PII=0 (blue line):µ = 27.76,

σ = 1.47. PMM=1, PMI=1, PII=1 (red line):µ = 18.28, σ = 1.48. PMM=9, PMI=10, PII=0

(green line):µ = 46.46, σ = 0.45. PMM=9, PMI=10, PII=9 (black line):µ = 32.43, σ = 1.13

6.4.4 Even Amounts Of Influence

Given the above discussion, and the way in which the rate of linguistic change and

communicative success is tied to the amount of diversity featured in an immature lan-

guage learner’s input training data, it is worthwhile exploring what the impact would

be if all of the mature language users trained the same number of immature agents. In

other words, if all of the mature agents exerted equal influence on the next generation

of language users.had the same influence.

The reader may remember that, for whatever value PMI is, each immature agent se-

lects that number of mature agents at random to act as a linguistic tutor; while not

selecting the same mature agent more than once. This results in a situation where some

mature agents have more linguistic influence than others; a factor that the above lit-

erature indicates could play a significant role in rates of linguistic change. Thus, the

behaviour of the model was tested in situations whereby the PMI assigning procedure

cycled through each of the mature agents in turn and assigned PMI immature agents,

selected at random. Again, ensuring not to select the same immature agent more than

once4.

4This method of assigning language tutors is only applied to data presented in this sub-section. The
results that are featured in subsequent sections use the original assigning method.
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Figure 6.6: Graph depicting the amount of communicative success achieved with PMM

and PMI=1 with B=50 (blue line: µ = 27.76, σ = 1.47) and B=100 (red line: µ = 38.82,

σ = 1.79), and PMM=9 and PMI=10 with B=50 (green line: µ = 46.46, σ = 0.45) and B=100

(black line: µ = 43.52, σ = 0.54). With M and I=10. Averaged over 30 runs.

Figure 6.8 depicts the amount of communicative success achieved for two different com-

binations of linguistic tutors when they influence the same number of immature language

learners, compared to that achieved when the linguistic tutors are assigned randomly;

as seen in figure 6.5. Here, it can be seen that the success rate for PMM=1, PMI=1, and

PII=1 is severely lowered when all mature agents have the same amount of influence.

This is in line with arguments from the above literature, which suggests that a number of

individuals being more connected within the social network than others, results in them

having more influence; and that this is a key factor in the rate of linguistic change. The

PMM=9, PMI=10, and PII=9 remains relatively unchanged; likely due to the limited

population and meaning space sizes of the model.

6.4.5 Population Contraction And Expansion

All three of the models presented thus far have had one feature in common. Although

they all had population turnover, the size of the population was always constant, with

there being no fluctuation in size. This is clearly not the case in the real world, where

social groups go through population growth and decline; a phenomenon that has an

impact upon the demography of the linguistic community. Thus, two extensions were
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Figure 6.7: Graph depicting the amount of communicative success achieved with PMM=1,

PMI=1, and PII=0 (blue line:µ = 0.03, σ = 0.01), PMM=1, PMI=1, and PII=1 (red line:µ =

0.01, σ = 0.01), PMM=9, PMI=10, and PII=0 (green line:µ = 40.84, σ = 0.45), and PMM=9,

PMI=10, and PII=9 (black line:µ = 25.48, σ = 0.35), with M and I=30 in all cases. Averaged

over 30 runs.

implemented with this baseline model. The first aimed to simulate the impact of pop-

ulation contraction, and the second explored the impact of population expansion. Both

of these extensions involved the model going through exactly the same steps as detailed

above, except for the differences discussed below.

After the first generation of the contraction model, if the length of the total population

(M + I) is equal to what the total size of the population was set to during the first

generation (i.e. M + I in generation one), then the contraction procedure begins before

any other actions are taken in this generation. Otherwise, a new batch of agents are

created as before.

The contraction procedure removes a proportion, 0 ≤ C < 1, of the population, but

does not reduce the population size below 4, since at least two agents of each type are

required for the process of iterated learning to proceed in this model. The proportion of

agents to be removed, at random, from the total population (M + I) is set at the start

of the simulation. If R is the number of agents to be removed, then:

R = min(M + I − 4, C(M + I))
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Figure 6.8: Graph depicting the amount of communicative success achieved with PMM=1,

PMI=1, and PII=1 with even influence (blue solid line:µ = 9.57, σ = 1.32) and normal

influence (blue dashed line:µ = 18.28, σ = 1.48), compared to PMM=9, PMI=10, and PII=9

with even influence (red solid line: µ = 31.62, σ = 1.12) and normal influence (red dashed

line: µ = 32.43, σ = 1.13). When M and I=10 and B=50. Averaged over 30 runs.

The expansion version of the model works in a similar way. In that after the first

generation, the size of the total population (i.e. the current values of M and I) are

taken. A parameter set at the start of the simulation, E, is then taken and converted

into a proportion the current total population size, and this number of new agents are

created and added to I. More mathematically, where A is the number of new agents to

add to I:

0 ≤ E
A = E(M + I)

In both versions of the model, the values of PMM , PMI , and PII that were set at the start

of the simulation run are then taken and converted into a percentage of their originals

values for the original half of the population that they applied to. This percentage

of partners is then assigned in accordance with the size of the respective half of the

population. If, for example, PMM=5 and M and I=10 during the first generation, then

the contraction procedure would result in M and I=5, PMM would be adjusted to equal

3; due to the value of PMM being rounded up. In mathematical terms, taking PMM as

an example and where M ′ is the new value of M :

P ′MM = (PMM/M)×M ′



Chapter 6 Population Dynamics and Language Emergence 109

Due to how the population size fluctuates during a run of either of these model versions,

the rest of the graphs presented in this chapter, unless stated otherwise, are the result of

a single typical run of the model. This enables an analysis of the way in which population

size and interconnectivity can impact the emergence of a conventionalised language.

The ‘partner percentage’, PP , measure used below is the result of taking the total

number of trainers that each immature agent has (PMI + PII) for the current generation,

and calculating this as a percentage of the total population size for this generation (M

+ I). More concisely, where M ′ and I ′ are the new values of M and I, respectively:

P = (PMI + PII)/(M + I)

PP = P × 100

In addition, the communicative success and partner percentage shown in the graphs be-

low are normalised, so as to allow comparisons to be made between different population

sizes. To do this, data was collected for four aspects of the models; PMM=1, PMI=1,

with PII=1 and PMM=9, PMI=10, with PII=9. The amount of communicative suc-

cess achieved and partner percentage for each generation of these four runs were then

taken and normalised between the lowest and the highest population percentage achieved

during every generation of all four runs of the models; likewise for the communicative

success.

Figure 6.9 shows how contracting the population of the model is far more successful in

achieving a stable linguistic system with PMM , PMI , and PII=1 than in the standard

baseline version of the model (figure 6.5). This increased success rate is due to the

way in which the overall population size tends to be much smaller each generation than

in the baseline model, while the number of training partners each immature agent has

remains the same; one mature and one fellow immature trainer. In other words, the

model performs better under these parameters due to the way in which the population

has a higher percentage of overall interconnectivity than in figure 6.5.

This argument is supported by figure 6.10, which shows the same two parameters being

tested on the expansion version of the model. Here, it can be seen that when PMM ,

PMI , with PII=1 the model achieves no level of communicative success; a performance

that is worse than in the baseline model (figure 6.5). As in the contracting model,

this difference in performance is due to the way in which the total number of different

communicative partners from which each immature agent learns is significantly lower

in this much larger population size; which averages 38 throughout the course of the

simulation run. The spike in the success rate for the PMM=9, PMI=10, with PII=9

case shows how, when agents achieve successful communication 50% of the time, the

agents can add a certain degree of noise to the linguistic system. This is due to the

way in which, at this point, there are a number of conventions in place that are being
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used regularly by all agents, but there are also some agent-specific linguistic conventions

in the system. The latter of which can still spread throughout the system due to the

way in which the hearer will add an idiosyncratic convention used by a sinlge speaker

to its own grammar; even if the hearer’s best guess as to the meaning that the speaker

was referring to is incorrect. However, the more widely agreed upon conventions will

continue to be used more regularly than these more idiosyncratic linguistic conventions;

which is why the system ultimately achieves 100% communicative success.

Figure 6.9: Graph depicting communicative success plotted against partner percentage,

with all scores normalised. The blue lines representing the case whereby PMM=1, PMI=1,

and PII=1 for the first generation, with success represented by the solid lines (µ = 0.97,

σ = 0.14) and partner percentage represented by dashed lines (µ = 0.23, σ = 0.04). Likewise,

red lines represent the case whereby PMM=9, PMI=10, and PII=9 for the first generation,

with success rate represented by the solid lines (µ = 0.93, σ = 0.24) and partner percentage

represented by dashed lines (µ = 0.88, σ = 0.02). Here, C=2, and both M and I are initially

set to 10, with the contracting procedure occuring every generation after the first.

The difference in the amount of communicative success achieved by the contracting and

expanding models can be seen more clearly seen in figure 6.11, which demonstrates how

a higher overall percentage of population connectivity results in a completely stable

linguistic system emerging within a couple of generations.

However, populations do not always have sudden shifts in size like this; sometimes it

is a gradual process. Therefore, similar tests were conducted on versions of the model

whereby the total population started low and slowly increased before slowly decreasing

again (figure 6.12), and where the total population size started high and slowly decreased

before increasing again (figure 6.13). Combined, figures 6.12 and 6.13 demonstrate how,
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Figure 6.10: Graph depicting communicative success plotted against partner percentage

seen in a single run of the expansion model, with all scores normalised. The blue lines repre-

senting the case whereby PMM=1, PMI=1, and PII=1 for the first generation, with success

represented by the solid lines (µ = 0.00, σ = 0.00) and partner percentage represented by

dashed lines (µ = 0.00, σ = 0.00). Likewise, red lines represent the case whereby PMM=9,

PMI=10, and PII=9 for the first generation, with success rate represented by the solid lines

(µ = 0.82, σ = 0.35) and partner percentage represented by dashed lines (µ = 0.99, σ = 0.00).

Here, E=30, and both M and I initially set to 10, with the expansion procedure occuring

every generation after the first.

regardless of the number of partners agents are assigned, a successful linguistic systems

fails to evolve in any system whereby the population size changes gradually.

6.5 Conclusions

In line with the results presented elsewhere in this thesis, the model presented in this

chapter has demonstrated that a key parameter in the emergence of a stable linguistic

system within a population of language users is the number of trainers from which

immature language users learn their linguistic system.

Specifically, it has been shown that the agents in this simulation are far more successful in

establishing a conventionalised language when mature agents only interact with a small

number of other mature agents, while immature agents get their linguistic training data

from a large number of different mature agents, due to this improving their chances of

experiencing successful communicative episodes upon their promotion to mature agent
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Figure 6.11: Graph depicting communicative success plotted against partner percentagel,

with all scores normalised. The blue lines showing the communicative success (solid line:

µ = 0.97, σ = 0.14) and partner percentage (µ = 0.23, σ = 0.04) for a run of the contraction

version of the model when PMM , PMI , and PII=1, with C=2 in the first generation. Likewise,

the red lines showing the communicative success (solid line: µ = 0.00, σ = 0.00) and partner

percentage (µ = 0.00, σ = 0.00) for a run of the expansion version of the model when PMM ,

PMI , and PII=1, with E=30 in the first generation. Here, both M and I initially set to 10.

status. In addition, the agents in this model struggled to achieve communicative success

with greater population sizes.

Taken together, these results lend support to the notion that population size, in and of

itself, does not have a direct impact upon linguistic evolution and change. Moreover, it

is the make-up and connectivity of said population that is the determining factor, with

individuals displaying less variability in their linguistic conventions the more integrated

they are in the social group (Labov 2001, de Bot & Stoessel 2002, Ke et al. 2008). This

argument is further supported by the results yielded by the contraction and expansion

models, which demonstrated how smaller population sizes with a higher percentage of

connectivity perform much better when establishing communicative norms than larger

populations with proportionally smaller rates of connectivity.

A major criticism that could be levelled against the model presented in this chapter is

that, when an agent has no grammar whatsoever during the first generation of the sim-

ulation run, the production algorithm constructs a randomly generated signal part for

each of the meaning parts presented in the meaning; and these early signal parts are then

organised in the same manner as the meaning. As a result, the agents should inadver-

tently be more inclined to a specific syntactic rule; namely S/p(x, y), ‘/p/’(‘/x/’, ‘/y/’).
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Figure 6.12: Graph depicting the amount of communicative success achieved for PMM=1,

PMI=1, and PII=1 (blue line: µ = 0.04, σ = 0.07) and PMM=9, PMI=10, and PII=9 (red

line: µ = 0.07, σ = 0.10) and how the total population size (M + I) changes over generational

time (green line: µ = 0.55, σ = 0.31), with both M and I initially set to 4 and slowly

increasing first. Averaged over 30 runs and with both population size and communicative

success normalised between 0 and 1.

However, the results presented above show that the structure rule that ends up being

dominant, and therefore dictating the syntactic tendencies of the population, is often

very different to this. Thus, it is arguable that the syntactic structure of the linguis-

tic systems in this model are the result of social evolution, which in turn stems from

individual learner biases.

It should also be noted that a number of the graphs depicting system behaviour within

this chapter demonstrate step-like changes in communicative success. After close exam-

ination of the data, it became apparent that this is caused by severe fluctuation in the

number of generational time-steps it takes for runs included in the average performance

calculation to reach various levels of communicative success. Thus, while the graphs

in question accurately depict the average success of the linguistic systems within these

various runs, future work should include re-running these experiments and averaging

over more than 30 runs. This would eliminate this step-like behaviour.

In sum, the model and results presented here support previous work in demonstrating

that the most successful model for language emergence and linguistic change is one

that sees linguistic variation occurring and propagating at the local level of individual

interactions; where individuals are well integrated into the social network (Ke et al.

2008, Wichmann & Holman 2009).
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Figure 6.13: Graph depicting the amount of communicative success achieved for PMM=1,

PMI=1, and PII=1 (blue line: µ = 0.04, σ = 0.07) and PMM=9, PMI=10, and PII=9 (red

line: µ = 0.07, σ = 0.10) and how the total population size (M + I) changes over generational

time (green line: µ = 0.46, σ = 0.29), with both M and I initially set to 25 and slowly

decreasing first. Averaged over 30 runs and with both population size and communicative

success normalised between 0 and 1.



Chapter 7

Linguistic Populations And

Contact Languages

7.1 Introduction

A contact language is a linguistic system that tends to take its vocabulary from one

language and its grammar from another. Indeed, it is regularly the case that the great

majority of a contact language’s lexicon is drawn from just one language; with a much

smaller, roughly 20%, contribution from other languages (Sebba 1997). In such a case,

the language that contributes the majority of the lexicon is referred to as the lexifer or

superstrate, while the substrate refers to the language from which the smaller propor-

tion of grammar is drawn. The dominant theory here is that the users of the substrate

language normally possess less social power and are therefore likely to be more accom-

modating and use words from the superstrate language due to its user having more social

power. Although, the meaning, form, and use of these words may be influenced by the

substrate language (Holm 2000).

In the case of Fanagalo, for example, grammatical aspects resemble those seen in En-

glish much more than those seen in Zulu, while the bulk of the vocabulary stems from

Zulu. Thus, Zulu is regarded as the lexifer and English and/or Afrikaans the substrate

(Mesthrie 1989). As with so many other cases, it is difficult to state here as to what

extent the similarities between the pidgin grammar and the substrate grammar derive

from the substrate grammar itself, and to what extent it is present in the pidgin as a

result of simplification of the lexifer in accordance with ‘universal’ principles of simpli-

fication that are applicable to any language (Sebba 1997). Indeed, how influential the

substrate can be is an active research question in pidgin and creole research.

There is a body of work which claims that developing our understanding of the processes

that underpin contact language emergence has the significant potential to improve our

115
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undestanding of linguistic change as a whole (Botha 2003, 2006, Roberge 2009, Tallerman

& Gibson 2013a). Furthermore, as will be seen below, these contact languages go through

a refinement process; and it stands to reason that this refinement could be dictated by

learner bias. As such, iterated learning-based models are well suited to exploring the

process of contact language emergence.

7.2 Pidgins

A pidgin is the linguistic result of two communities, without any prior common language,

coming into contact with one another over a prolonged period of time, and having the

need to communicate with one another for a specific purpose; such as trading.

They are restricted linguistic systems in that they have limited lexical range and struc-

tural means when compared to full languages (Holm 2000, Roberge 2013)1. In other

words, the resultant make-shift language will reduce the number of words and drop

unnecessary complications, such as inflections; i.e. ‘two knives’ becomes ‘two knife’.

However, these reductions will be compensated for by expanding the usage of the words

that do feature in the pidgin (Holm 2000).

It should be noted that not all diminished languages qualify as a pidgin. For example,

an Englishman using broken Spanish while on holiday in order to communicate with

the locals does not constitute a pidgin; but is referred to as jargon. The difference here

stems from the way in which a pidgin is a stabilised convention of usage.

7.2.1 Monogenesis And Relexification Orgins

The theory of a monogenetic origin of pidgins essentially argues that all modern-day

pidgins and creoles are linked, either directly or indirectly, to a Mediterranean pidgin;

most likely Savir (Sebba 1997). According to those who subscribe to this theory, the

proto-pidgin in question mostly drew its lexicon from Portuguese, and was subsequently

spread across the world as a result of European colonisation.

A major component of this theory is the concept of relexification. The idea here is that,

although Portuguese was the original lexifer, as this proto-pidgin came to be used among

different groups of English, French, Dutch, and Spanish colonisers, it was subjected to

an almost complete substitution of vocabulary. The operative word here being ‘almost’,

due to there being a few words of Portuguese origin that are incredibly wide spread, and

continue to pervade within the world’s languages to this day (Sebba 1997).

1Although, it has been argued that there is a tendency to overlook the way in which pidgins can
develop a considerable degree of complexity (Botha 2009).
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However, the notion of relexification can only be relevant to pidgin genesis when explored

in relation to pidgins evolving in a particular socio-temporal context. Indeed, although

relexification is crucial to the monogenesis theory, it does have a number of weaknesses.

Including being unable to explain why the proto-pidgin had the features that it did,

or take into account that relexification could occur locally under the right conditions

(Muhlhausler 1986). Furthermore, despite the monogenesis argument accounting for the

similarities seen in pidgins and creole grammars, it has been argued that these similarities

could be the result of a common linguistic ‘blueprint’, or universal redundancy to simplify

a language in a specific manner (Sebba 1997).

The concept of nautical jargon is not too dissimilar to that of monogenesis, in so much as

it posits that pidgins and creoles around the world are related to either English or French

seafarer’s jargon. It has even been shown that seafaring English could account for much

of the lexical similarity seen in pidgins and creoles of the Pacific region; some of which

are shared as far away as the Caribbean and the Atlantic (Clark 1979, Sebba 1997).

However, a key criticism of this notion is that there are many pidgins and creoles that

share grammatical similarities in geographical regions outside of the Atlantic and Pacific.

This latter point could, in turn, be seen to support the above ‘blueprint’ argument.

Despite these criticisms, such ideas do still offer a slight insight into the historical rela-

tionships between various contact languages. Indeed, there is no reason to doubt that

nautical language played some role in the global emergence of pidgins and creoles, given

that some of them were certainly spread by seafarers; even if they were not responsible

for their ultimate origin (Hall 1966).

7.2.2 Polygenesis And Parallel Origins

The logical counter-argument to the idea of monogenesis is that of polygenesis. In the

pidgin and creole literature, this is largely an umbrella term for a number of different

theories. One such notion is that of the universalist theories, which draw upon the

‘linguistic blueprint’ argument in positing that humans possess universal strategies for

simplifying languages, and that these are part of our innate language learning abilities.

Hall (1966), for example, describes a process whereby the similarities between contact

languages around the world can be attributed to similar processes acting upon the

different languages. As Hinnenkamp (1984) states:

“languages that are structurally quite different may be simplified in very sim-

ilar ways, yielding nearly identical surface structures [...] Every language has

its way of arriving at this kind of surface structure.”

- Hinnenkamp (1984:160)
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Thus, it has been argued that there is the possibility of innate universal principles

being at work in the pidginisation process. Sebba (1997) highlights how such universal

principles might take different forms, which would affect the pidginisation process in

various ways:

1. They could manifest themselves as restraints on what adult language users are capable

of learning, or at least provide a scale of learnability whereby some types of structure or

vocabulary would be too difficult to learn under certain circumstances. This would then

account for the absence of complex sentences (i.e. relative clauses) or words of more

than two syllables in rudimentary pidgins.

2. They could manifest themselves as constraints on permissible relationships between

form and meaning.

3. They could take the form of strategies for simplifying language during interactions

with other speakers, so as to achieve maximum communicative efficiency; resulting in

foreigner talk on the one hand and simplified ‘learners’ interlanguage’ on the other.

If one were to accept the notion of universals in human language and Chomsky’s idea of

a parameter setting model, then it is arguable that pidgins would choose the simplest,

minimal, specification of each of these parameters. This would result in pidgins being

the ‘default case’ of human grammar (Sebba 1997).

Another noteworthy polygenesis theory is the common core concept, which attempts

to account for similarities in the combinations of grammars that are involved in the

emergence of pidgins. The idea here is that the pidgin which emergences from the

interactions between social group A and social group B will only have in its grammar

the part of the grammar of the language of social group A that is also found in language

of social group B. In other words, the overlapping parts of the two grammars.

A final, and popular, hypothesis that is of interest is referred to as foreigner talk. In-

spired by the concept of baby talk, the logic here is that, when we interact with individ-

uals who are non-natives, and who are attempting to communicate with us in our own

language, we use a simplified version of our language in an attempt to reduce errors in

communication. In other words, foreigner talk is a special communicative style by which

native speakers communicate with foreigners, and not vice-versa; much like the locals

interacting with the aforementioned Englishman on holiday in Spain.

Foreigner talk-based systems have a number of similarities to pidgins, such as being

grammatically simplified, possessing a limited vocabulary, and only being employed in a

limited range of interactions; mostly where communication is essential and no alternative

method of communication is available (Sebba 1997).

This is interesting, given that contact situations between European colonisers and indige-

nous people must have been a rather common occurrences during the age of discovery.
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In an effort to communicate with one another, it is entirely possible that both groups

spoke their own version of foreigner talk to the non-native speakers. Thus, while each

side would have walked away from the interaction with a practical understanding of

important vocabulary, and perhaps a rough idea of word order, which would no doubt

prove useful in future contact situations, they probably also had a false understanding

of the actual nature of the language used by these ‘others’.

In studying the role of English-based foreigner talk in the emergence of Tok Pisin,

Muhlhausler (1986) concluded that foreigner talk played a very crucial role in the very

early stages of the emergence of the pidgin, even if it was of little relevance in its later de-

velopment. However, Hinnenkamp (1982, 1984) argued that his own work demonstrated

that foreigner talk was too inconsistent and unpredictable to provide an adequate model

for second language acquisition. Although, he did observe that, through an interactive

process, native speakers in a Turkish town using a conventionalised foreigner talk (known

as Tarzanca or ‘Tarzan talk’) and German tourists using broken Turkish were giving rise

to a form of ‘tourist pidgin’. It is arguable that a process of conventionalisation was

crucial in this case. If there was a tradition in place of using foreigner talk to commu-

nicate on a regular basis with foreigners, as appears to be the case with Tarzanca, then

it is logical that a convention of usage may emerge and be consistent enough to act as

a language model for non-native speakers.

These polygenesis-based theories, and others like them, have gained significant support

in recent years. This is largely due to the discovery of a number of African (i.e. Lingala

of Zaire and Sango of the Central African Repbulic), Asian (Nagamese of India), and

Oceanic (Pidgin Fijian) pidgins, which are completely void of any European connections,

and yet, still exhibit basic similarities to their European-inspired counterparts. Prior

to these discoveries, it was possible for monogenesis advocates to find an historical,

European-based, link between all pidgins and creoles (Sebba 1997). However, it can

now safely be argued that any theory of pidgin origins must be polygenetic in nature.

In summary, it is safe to argue that foreigner talk is likely to have played a crucial role

in the emergence of pidgins across the world, at least to some degree. However, it is not

sufficient, in and of, itself to enable a pidgin to develop (Hinnenkamp 1984), and there is

currently not enough data to safely conclude that it is a necessary pre-condition either.

Indeed, despite the amount of academic interest in the process of pidginisation, the way

in which they develop remains uncertain for a simple reason; there are no first-hand

observer accounts of the phenomenon from trained linguists (Sebba 1997).

7.3 Pidgin To Creole Transitions

Both Tok Pisin and Russenorsk originally emerged in the South Pacific and Artic waters,

respectively, as forms of maritime jargon used by sailors and traders. The former evolved
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to become the national language of Papua New Guinea, while the latter died out after a

few centuries without ever developing into anything more complex than maritime jargon.

This indicates that pidgins go through a form of developmental continuum (Sebba 1997).

Muhlhausler (1986) presented a schematic representation of this pidgin-creole continuum

(figure 7.1). The first stage, aptly named the jargon stage, is a pidgin in its most

rudimentary form; with both limited structure and range of functions. It is therefore

only used in the most restricted of circumstances. These jargons tend to be characterised

by great instability, both in terms of vocabulary and grammar:

“[they are] unstable linguistically and socially. Moreover, they are not trans-

mitted in any consistent way from generation to generation, but invented in

an ad-hoc fashion”.

- Muhlhausler (1986:147)

These jargons tend to be the result of contact between two groups, both of which possess

their own language. To advance beyond this stage, it seems necessary for more groups

and languages to become involved (Sebba 1997).

Figure 7.1: Steps involved in the transition from an informal jargon through to a stabilisaed

pidgin. Replicated from Sebba (1997).

It has been argued that this leads to a process known as tertiary hybridisation, which

draws influence from the realm of biology. In a biological context, primary hybridisation

refers to the development of multiple species from a single ancestral species. This trans-

lates linguistically to the idea of a ‘family tree model’ of human languages. Similarly, the

term secondary hybridisation refers to the interbreeding of two distinct species to form

a new one.Whinnom (1968) argues that pidgins could be seen as the result of secondary

hybridisation, in a linguistic sense, as they appear to be the result of ‘interbreeding’

between European and indigenous languages. However, Sebba (1997) observes how this

idea may be too simple due to the way in which, while mixed communication systems

do arise from contact between two languages, Whinnom’s (1968) theory suggests that

one side is invariably trying to learn the other’s language. The resulting mixture of this

language would lack stability because, while there is still a target language available as
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a model to learn from, the speakers of the other language will continue to learn it in its

normal form. This would result in a continuum of learners’ interlanguages, rather than

a stable language with its own norms. Thus, we would have a range of different ‘ver-

sions’ of the target language, which are dependent upon the proficiency of the individual

speakers.

Whinnom (1968) then goes on to argue that the emergence of a ‘proper’ pidgin results

from tertiary hybridisation, whereby the pidgin comes to be used for communication

between speakers who are not speakers of the original target language. Thus, there is

now a language that is not native to any of its speakers being used as lingua franca by

people who have no other language in common. By this stage, the pidgin would have to

be stable, in that the norms for vocabulary and grammar would have to be fixed, due

to the groups no longer having access to the target language.

The basic argument here is that, if speakers of a superstrate become the least important

part of such a pidgin triangle, and if close contact is established and maintained between

speakers of two different substrate languages over a prolonged period of time, then an

expanded pidgin results (Holm 2000). This is achieved through a process whereby the

original pidgin is continually developed in order to meet more demanding communicative

needs (Muhlhausler 1986).

Holm (2000) observes two more important distinctions between pidgins and other forms

of contact languages that should be noted when looking at this continuum. First, it is

important that an amount of social distance is kept between speakers of the superstrate

and speakers of the substrate languages, otherwise the latter would likely acquire enough

information to learn the superstrate language in its entirety. Secondly, the two languages

must not be closely related.

In additionally, it should be noted that contact languages can emerge between trading

partners of equal social power. In such cases, vocabulary is drawn equally from both

languages; such as Russenorsk.

In short, most of the contemporary arguments concerning pidgin formation view these

languages as developing through a series of steps:

Stage 1: Two groups, A and B, communicate by means of one another’s languages; A

attempts to learn B’s language and vice-versa. However, both A and B are simplifying

their languages for the benefit of the other group. Thus, A is modelling a foreigner

talk-based version of B’s language, and vice-versa.

Stage 2: The norm for communication becomes a version of one of the languages, say

language A. This is likely to be the language whose speakers dominate the interactions

by virtue of greater social power, while group B continues to learn the languages of group

A but does not have full access to it, and may only ever be exposed to the foreigner talk

version. Thus, people in B never learn A’s complete language, only a reduced version
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of it, which suffices for their interactions with A. This reduced version of language A

becomes the norm for inter-group communication between A and B.

Stage 3: Group B begins to use their reduced version of language A to communicate

with members of another group, C. B and C now communicate with one another by

means of a pidgin form of language A. Members of group A are not involved and may

no longer be present at all. So there will now be no model for the native speaker version

of language A, and no pressure to learn it completely and correctly. This process would

result in a stable version of pidgin A.

This idea that ‘proper’ pidgins will only develop with stable norms, grammar, pronun-

ciation, and vocabulary once they are taken up by a third party appears to be largely

supported by the fact that most of the successful pidgins, those with the longest histories

and spoken most widely, in the world today are also lingua francas used by speakers of

large numbers of mutually unintelligible languages.

The second stage sees an unstable jargon develop into a stable pidgin, with its own gram-

matical norms, and lexicon. Linguists are torn as to the process behind this transforma-

tion. Some argue that it may be through a process akin to tertiary hybridisation, while

others believe that the emergence of established norms are what counts. Muhlhausler

(1986), for example, argues that the following are the crucial features of the stabilisation

stage:

1. The reduction of variability found in preceding jargon stages.

2. The establishment of relatively firm lexical and grammatical conventions.

3. The development of grammatical structures independent from possible source lan-

guages.

However, whatever mechanisms one subscribes to, the crucial point is that for a pidgin

to stabilise, it must develop its own norms of grammar, lexicon, and pronunciation. At

which point, the target language becomes the pidgin and not the lexifer language (Sebba

1997).

After that stage, we have the extension or expansion stage. Stable pidgins emerge

during the course of a generation or so, but once stable norms have begun to emerge,

the process of development does not necessarily stop there. What happens at this point

largely depends upon the functions that the pidgin is used to perform and the areas of

life in which it is used (Sebba 1997).

If it continues to only be used in a limited number of scenarios, such as trading, it is

unlikely to develop due to it being unable to move forward unless its users extend its

usage and functions by using it in new social domains. If this does not happen, it may

remain stable for some time, but its usefulness may eventually start to decline and it
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will die out; as was the case with Russenorsk. Alternatively, the pidgin may become

extended or expanded, whereby it is used in a multilingual environment. Due to its

usage here, it is extended and used beyond the original limited function that caused

it to come into being (Todd 1990). These fully extended pidgins may then begin to

act like first languages, and may develop into a full creole depending upon historical

circumstance (Muhlhausler 1986).

Finally, the pidgin becomes a creole when children are born into a pidgin-speaking social

milieu and end up requiring the pidgin as their primary language. It appears as though

this could happen at any stage in the pidgin developmental process (Sebba 1997). Here,

as a pidgin develops, it may become the primary language of a social group, none of whom

speak it natively. The pidgin becomes the only common medium of communication, and

is used in everyday interactions in many social domains, even in interactions between

members of the same house. Then, when children come along, the pidgin will be learned

by them as their first language; these children are then first generation creole speakers.

7.4 Creoles

The term creole refers to a class of vernaculars that emerged during the 17th-19th

centuries, under similar social conditions. Namely, colonies settled by Europeans, who

typically spoke non-standard varieties of metropolitan languages, and who utilised non-

indigenous labour (Mufwene 2008, Roberge 2013).

Despite the similarities among pidgins and creoles, there is one key difference. As we

have seen, pidgins are acquired as second languages, while creoles become such when

they are learned as first languages. In other words, creoles have a jargon or pidgin in

their ancestry, and are spoken natively by an entire speech community whose ancestors

are likely to have been geographically displaced.

It has been argued that, in order to be learnable, the structure of the language has

to adhere to a strict set of constraints being placed upon the possible structures that

could be formed with it. These act as a kind of linguistic ‘blueprint’, and a language that

violates these constraints would not exist because it would be un-learnable (Sebba 1997).

However, as is demonstrated by the ample body of ILM work, languages themselves can

evolve in accordance with the selection pressures placed upon them by language user

bias, so as become more learnable. Given the above discussion, there is a chance that

this same process occurs during pidgin to creole transformation.

The idea that children on plantations quickly create creole languages, complete with all

of the features of human language that pidgins lacked, is still accepted in some language

research (Pinker 2003). However, more recent thinking has begun to distance itself from
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the argument that creole formation requires the special intervention of children and that

creole grammar reflects some form of Universal Grammar (Roberge 2013).

The argument put forward by this more contemporary view is that structural expansion

is not dependent upon some form of nativisation process, and that the emergence of a

creole language is not necessarily abrupt. Moreover, “complex linguistic systems can

arise out of long-term encounters between adults in contexts of increasing use of a re-

stricted but developing [medium of inter-ethnic communication]” (Roberge, 2013:540);

with child language learners levelling out variability and producing more regular gram-

mars, while not actually being the innovators (Mufwene 2008, Roberge 2013). This

process is remarkably similar to what we have seen in the process of iterated learning.

Thus making it hard to ignore the possibility that such phenomena are the result of

learner bias.

7.4.1 Theories Of Creole Origins

As with most areas of human language research, there is agreement that pidgins and

creoles possess some properties that call for explanation, but there is disagreement upon

the nature of such properties. Nevertheless, there are four properties of creole languages

that are believed to play a role in the genesis of such a communicative system:

1. Creole languages are assumed to be more akin to other creole languages, in terms

of their structural features, than to other ‘normal’ languages; even when compared to

the lexifer and substrate languages that form the basis for a creole. It has been largely

argued that this cannot be coincidental.

2. Creoles are often seen as being simpler in terms of morphology, phonology, and syntax

when compared to full languages.

3. Creoles often exhibit more mixed grammars than full languages. This observation has

led to numerous parallels being drawn between biological processes and creole genesis.

Most notably, it has been argued that, just as individuals are the result of a mix of

African, European, and Asian ancestry, so too are their languages likely to be a mix of

European vocabulary, with some African and Asian syntax and semantics.

4. Creoles are often seen to exhibit more internal variability than full languages. Indeed,

they are assumed to be highly dynamical linguistic systems, which often co-exist with

their lexifer languages in the same speech community.

Calvin & Bickerton (2000) argue that the transition from pidgin to creole is akin to the

transition from protolanguage to full language. In that creoles have not normally existed

for more than a single generation as a secondary language before becoming the primary

linguistic input data for children.
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In the case of plantation labourers, the children could have acquired the language of

their parents, but there was little incentive for them to do so in such a diverse social

milieu. Instead, they formulated a language based upon the mixed and inconsistent lin-

guistic input that they received (Roberge 2013). If one were to look at this phenomenon

through an ILM lense, then it would make sense that immature language learners who

receive inconsistent learning data would give rise to a more coherent linguistic system. It

would also support the observation that creole grammars tend to have more in common

with other creole languages than they do the grammars of their lexifers or substrates

(Bickerton 1995, Sebba 1997).

7.5 Model Motivation

There are three main reasons as to why this thesis will explore the nature of contact

languages by way of an iterated learning-based E/I model. First, there is a growing body

of work which argues that researchers stand to gain valuable insights into the nature of

linguistic evolution as a whole by studying the nature of contact language emergence

and change (Botha 2003, 2006, Roberge 2009, Tallerman 2013).

Second, doing so would constitute a novel application of the iterated learning framework.

One that could offer valuable insights into the nature of the self-organisational properties

of contact languages by exploring whether or not learner biases play as much of a role

there as they do in ‘normal’ linguistic evolution.

Third, as Holm (2000) observes, the validity of theories put forward to account for the

genesis and development of pidgins and creoles crucially depend upon their ability to

account for all of the various socio-linguistic situations within which they come into

being and pervade. However, developing such a theory is notoriously difficult given that

creole researchers have not yet been able to observe the process of abrupt creolisation

first-hand, and in cases of gradual creolisation of expanded pidgins, competent adult

non-native speakers always co-exist with the children growing up as native speakers.

Thus making it incredibly difficult to observe which group is contributing what to the

emerging structure.

Additionally, there always seems to be outliers to any theories or rules put forward.

Tertiary hybridisation, for example, is often thought to be a crucial factor in a contact

language’s stabilisation, but the existence of Chinese pidgin English suggests that this

may not be the case (Holm 2000). As another example, we have seen that social power

is often cited as being a critical factor in determining which language becomes the

superstrate and which one becomes the substrate. However, the existence of contact

languages, such a Russenorsk, raises doubts about this claim.
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Furthermore, as discussed above, there is a strong argument made in the literature in

favour of a linguistic ‘blueprint’ which ensures that languages adhere to a strict set of

principles, so as to make them learnable. However, the work presented in this thesis

thus far has built upon a larger body of research that shows how learner bias acts as a

selection pressure upon languages; resulting in linguistic structures themselves evolving

so as to be easier to learn. Combined with the observations that creoles do not typically

exist for more than a single generation as a secondary language before becoming the

primary linguistic input for immature language users, and that creole grammars tend

to have more features in common with one another than they do with their lexifers and

substrates, there is a compelling case for the origin and evolution of pidgins and creoles

to be investigated by way of the ILM framework.

As such, this chapter will use an iterated learning-influenced model in order to explore a

number of the aforementioned subjects seen in the contact language literature. Specifi-

cally, varying the make up of linguistic tutors in order to explore what impact his has on

the behaviours of the model described below, before exploring what impact one linguis-

tic social group possessing more social power than another during contact situations has

upon the emergence of contact languages, as well as the nature of tertiary hybridisation.

Most significantly, however, this model will feature both a pidgin and creole phase, so

as to emulate an aforementioned argument in the literature. Namely, that a success-

ful pidgin remains as such until a time when it is used by immature language users

as their primary language. At which point, the pidgin goes through a transformation

into a linguistic system that is more akin to a full language. The idea here is that this

transformation could be the result of mechanisms seen elsewhere in linguistic evolution.

Specifically, the pidgins evolving in accordance with learner bias so as to be easier to

learn.

7.6 The Pidgin And Creole Model

Here, the baseline model discussed in the previous chapter is extended to explore the

nature of contact languages. This model has number of parameters that are similar to

those used in the model from the previous chapter. In order to make this model amenable

to study, it consists of three distinct phases (figure 7.2). The first phase proceeds as

detailed in the last chapter, without any population contraction or expansion. There are,

however, three distinct populations of agents; each evolving their own unique linguistic

system in isolation from the other two.

That is to say that, at the start of the simulation, three populations are created; each

consisting of M mature agents and I immature language learners. Each of the mature

agents in the simulation are then assigned PMM other mature agents, selected at random

from the same population, to play the language game with. Each immature agent is
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then assigned PMI mature agents, selected at random from the same population, to act

as its linguistic tutors. As before, each mature agent then plays B number of bouts of

the language game. As before, the number of bouts that each mature agent plays as the

speaker with each of its assigned partners is the result of rounding up B/PMM . After

all the mature agents have played B bouts of the language game as the speaker, the

mature population is removed and the immature population are promoted to mature

agent status. Then, at the start of the next generation, a new immature population is

created; and so on, until the maximum number of generations is reached2.

Once all three isolated populations achieve a perfect score for their respective linguistic

systems, we allow them to continue for a further five generations before beginning phase

two, where we introduce mature agents from population one to mature agents from pop-

ulation two (figure 7.2). During this second phase, which can also be seen as the pidgin

phase, each member of the mature half of population one is randomly assigned a number

of mature agents from population two to act as linguistic partners, PCMM , in the pidgin

game. Likewise, mature agents in population two are randomly assigned mature agents

from population one. Meanwhile, all three populations continue to develop their social

group-specific linguistic systems each generation, as discussed in the previous chapter.

Crucially, while populations one and two are interacting with one another, population

three remains isolated from both groups. Keeping population three in isolation, and

not allowing its agents to interact with agents from either of the other two populations

is crucial to the future steps in the simulation as it allows the model to simulate the

concept of tertiary hybridisation.

For each bout of the pidgin game, the number of which is set by the parameter Bp,

we allow each distinct agent in population one and two, selected in a random order, to

play the pidgin game as the speaker; with the hearer being randomly selected from the

speaker’s assigned pidgin partners. Each of the immature agents in both populations

two and three are assigned PCMI mature agents, selected at random from the same

population as the immature agent in question, to act as their linguistic tutors. It is

important to note here that a mature agent’s pidgin partners are a different group from

the partners that were drawn from its own population and assigned to the agent to act

as linguistic partners for the baseline language game; which is still on-going during this

phase of the simulation.

However, unlike the baseline game, not all speakers playing this pidgin game play the

same number of bouts as the speaker. In order to simulate the proposal in the literature

that one of the populations involved in pidgin formation has a higher level of social power

than the other, a dominance parameter, D, was implemented. If D is set to 0.8 and Bp

is set to 1000, for example, mature agents in population one will play 800 bouts as the

2In order to avoid repetition, the reader is advised to consult Chapter 6 for a detailed discussion as
to the nature of the language game used during this first stage. The important point to remember is
that this first stage essentially involves three of these models from Chapter 6 learning at the same time,
and that there is no interaction between these three different populations.
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speaker while those in population two will only play 200. More specifically, where BP1

is the number of bouts that each mature agent in population one plays as the speaker

and BP2 is the same for population two:

BP1 = D ×BP
BP2 = BP −BP1

The pidgin language game then proceeds by creating a randomly generated meaning,

as in the baseline phase. The speaker then produces a signal for this meaning. During

this phase of the simulation, each agent has two distinct language stores. The first is

the linguistic system that it has learned/developed while interacting with other agents

from its own population; henchforth referred to as L1. The second stores the linguistic

system that it has developed while interacting with agents from the other population,

this constitutes the pidgin language and will be referred to as the agent’s L2 language.

As such, in order to produce a pidgin-based signal for this meaning, the speaker first

cycles through each of the meaning parts in turn, and gathers together all of the semantic

rules within its L2 that match the meaning part currently under consideration, and places

them in a temporary ‘urn’. As before, a random rule is them selected from this urn and

is used to convey the meaning part currently under consideration. However, if there is

not a semantic rule in the speaker’s L2 that matches the current meaning part, then the

speaker conducts the same semantic rule search procedure on its L1. If no appropriate

rule can be found there, then a random signal bit is produced, as in the baseline phase.

This speaker production algorithm was designed so as to simulate the logical process of

“this individual is from a different social group with a different language in place, and

we do not share a word for this meaning, so I will attempt to teach him the word that

I know for it”.

One of the major differences between the pidgin game and the baseline language game

concerns how the hearer in the pidgin game has a different production algorithm to that

of the speaker. In so much as it only conducts the search for signal parts for the various

meaning parts on its L2, but does not check its L1. If a suitable semantic rule cannot

be found in its L2, then no signal part is produced for the meaning part currently under

consideration.

It is important to note that meaning-signal pairings in the pidgin game consist solely

of semantic rules, there are no structure rules. This is done to simulate the concept of

foreigner talk. It could be argued that this foreigner talk-like behaviour should not be

explicitly encoded into the agent’s behaviour. However, this behavioural characteristic

is so prolific in human interaction that it is unlikely to be a result of the kind of social-

cultural processes that are being studied here. Thus making this a justified design choice

of the model.
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If one of the semantic rules presented by the hearer is present within the collection of

rules produced by the speaker, the interaction is deemed to have been a success. In

which case, a copy of each of the rules used by the speaker is added to the L2 of the

speaker, hearer, and any immature agents for whom the speaker or hearer are acting as

linguistic tutors. If, however, the bout is unsuccessful, then a single rule used by the

speaker is selected at random and added to the L2 of the hearer only.

This process of all three populations playing their own population-specific language

games, and then populations one and two playing the pidgin game continues for a single

generation. In the results presented below, BP=1000; and under such a parameter

setting, the agents achieve >90% success rate in the pidgin game by the end of this

single generation.

The simulation then moves onto the third, creole, phase of the simulation. The intention

behind having both a pidgin and creole phase to the simulation was to emulate the

common agreement within the literature that a useful pidgin remains as such until a

time when it is used by immature language users as their primary language; which is

typically a single generation. At this point, the pidgin goes through a transformation

into a linguistic system that is more akin to a full language.

In this third phase of the simulation, known as the creole phase, population one is

removed from the simulation. Mature agents in populations two and three are each

assigned PCMM number of linguistic partners from the other population; in the same

way as mature agents from populations one and two were during the pidgin phase. Then,

for the first generation of the creole phase, the model proceeds exactly the same way as

it did in the pidgin phase; with one notable exception. Namely, any immature agents

assigned to the mature agents update their L1 with the successful meaning-signal pairs

used by the speaker during the pidgin game instead of adding them to their L2.

After this first generation of the creole phase, the simulation procedure changes. From

here on out, neither of the remaining populations play the baseline language game. In

other words, they no longer develop their population-specific linguistic systems. Instead,

each mature agent is assigned PCMM linguistic partners selected at random from the

mature half of the other population. The mature agents then play the creole game.

During this game, as with the pidgin game, the agents are subjected to the D parameter

whereby the mature agents of population two act as the speaker more than the mature

agents from population three if D ≥ 50.

The creole game proceeds in exactly the same fashion as the baseline language game,

just with a signal production algorithm that is different in one respect from that used

in the baseline language game. Namely, if there is no structure, S/, rule in the speaker’s

L1 at the start of the signal production procedure, then a semantic rule is randomly

selected as described above for each part of the meaning, and this signal is added to the

agent’s grammar and used as the linguistic output.
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Figure 7.2: A diagrammatic representation of the various phases featured in the pidgin

and creole model. The black solid lines representing interactions where mature agents update

their L1 grammar store, the black dashed lines representing interactions where immature

agents update their L1 grammar store, and the blue solid lines representing interactions where

mature agents update their L2 grammar store.

7.7 Pidgin And Creole Model Results

A number of experiments were conducted with the pidgin and creole model, using various

parameter settings, so as to explore the arguments in the above literature.

7.7.1 Impact Of Social Interactions

Following on from the analysis of the baseline model, figure 7.3 demonstrates that,

throughout the course of an entire simulation run, from the baseline through to the creole

phase, that higher values of PCMI lead to a stable linguistic system arising. It can also
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be seen that higher values of PCMM offer an additional advantage in the PCMM=9 with

PCMI=1 case. Again, this is due to the immature agents receiving diminished training

data from a linguistic system with a large amount of signal diversity. Thus leading to

them being able to communicate successfully a larger percentage of the time.

Two other interesting behaviours can be seen in figure 7.3. First, the PCMM=9, PCMI=1,

with PCII=9 case plateaus at 20 bouts of success out of every 50. This is due to the fact

that there are a large numbers of mature agents interacting with each other, enough for

the immature agents to learn enough of the languages to be successful at communicating

∼50% of the time; with the average over 30 runs being a constant 20 across generations.

Second, in the PCMM=1, PCMI=1, with PCII=0 case, the communicative success rate

always drops to 0 once the simulation reaches the creole phase. However, the number of

generations it takes for the simulation to get to the creole phase fluctuates between runs,

meaning that different runs drop to 0 at different generational time steps. Thus, the

slow, step-like, decline that that can be seen in the PCMM=1, PCMI=1, with PCII=0

case is caused by some of the runs in the average score still having a communicative

success of 100% where they have not yet entered the pidgin and creole phases of the

simulation. In contrast, other runs are outputting a 0% communicative success rate

during these same generational time steps due to them already being in these latter

phases of the simulation, whereby they fail to estblaish a successful contact language

and therefore continue to have a 0% success rate.

Indeed, it should be noted here that figure 7.3 is the result of averaging communicative

success over multiple simulation runs. However, as stated above, the agents in this

simulation do not begin to play the pidgin and creole games until all three populations

have had a communicative system with a 100% success rate in place for five generations.

The amount of time that it takes for all three populations to achieve this varies drastically

between runs, and this is why figure 7.3 does not show any of the trend lines reaching

a perfect 50 (which is what B was set to during these runs) before the agents go on

to play the creole game. It is also why the PCMM with PCMI = 1 case shows a slight

increase in success in the last few generations. Thus, unless explicitly stated otherwise,

the rest of the graphs contained within this chapter will depict the results for a typical

run of the model. This will allow for an analysis of creole emergence. Additionally,

results are only shown for population two, as the results presented here will be the same

for both populations two and three, due to the analysis being conducted on the same

communicative system.

It should also be noted that, during all of these runs, PMM and PMI were all set to the

highest value to enable the evolution of the base languages to occur relatively quickly.

Once the simulation begins the pidgin phase, however, the PCMM and PCMI variables

are used in their stead, with the former denoting the number of mature agents from the

other population each mature agent is assigned as a partner to, and the latter operating
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Figure 7.3: Graph depicting the amount of communicative success achieved throughout the

course of the simulation run by the mature agents of population 2, for PCMM=1, PCMI=1,

and PCII=0 (blue line: µ = 9.79, σ = 0.90); PCMM=1, PCMI=10, and PCII=0 (red line:

µ = 43.93, σ = 0.56); PCMM=9, PCMI=1, and PCII=0 (green line: µ = 21.52, σ = 1.35);

PCMM=9, PCMI=10, and PCII=0 (black line: µ = 45.87, σ = 0.47). Here, M and I=10 and

B=50, and D=50. Averaged over 30 runs. Note that none of the trend lines reach a perfect

50 (which is what B was set to during these runs) before the agents go on to play the creole

game due to this graph displaying the average communicative success rate per generation, over

a number of runs; with there being fluctuation in behaviour between these runs.

in the exact same way as PMI . Due to newly created immature agents always being

blank, and language evolution within this model being a purely social phenomenon, the

fact that the partner parameters during the baseline phase are always set to the highest

value does not impact the behaviour we see once the agents engage in the pidgin and

creole phases.

By looking at figure 7.4, we see that with PCMM and PCMI=1, there is an instant

drop in communicative success when the agents enter the pidgin/creole phases. Despite

a couple of successful communication attempts, the two populations are never able to

develop a linguistic system that enables them to communicate effectively. The same is

also true when PCMM=9 with PCMI=1. However, as with the baseline model results,

we see that PCMM=1 with PCMI=10 quickly give rise to a successful communicative

system. While the PCMM=9 with PCMI=10 case never actually drops all the way to

zero during the first creole generation; meaning that the agents are somewhat successful

at communicating even during the pidgin game generation. Thus, once again, it appears
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Figure 7.4: Graph depicting the amount of communicative success achieved by population

2 durng a single run of the model, for the various possible combinations of PCMM=1 and 9

and PCMI=1 and 10; with M and I = 10, B = 50, and D = 50. For each data set, the

first sharp decrease in success rate is the pidgin phase generation, every subsequent generation

then sees the agents playing the creole phase. The coloured arrows indicate when the version

of the simulation represented by the corresponding coloured line enters phase two and plays

the pidgin game, before entering phase three and playing the creole game in all subsequent

generations.

that the crucial parameter in the model is the number of mature trainers from which

the immature agents learn their language.

The reason that the system exhibits these various behaviours is, again, due to signal

diversity. By taking the PCMM parameter as an example, picking an agent at random

during generation 205 of the simulation run and looking at each of the grammatical

rules within its grammar store, we see that the agent in the PCMM and PCMI=1 case

has multiple semantic rules for each of the possible meaning bits that it can experience

and multiple structure rules for ordering these semantic rules, while the PCMM=1 with

PCMI=10 only has one (figure 7.5). In short, a higher value of PCMI enables a stable

creole to emerge by making it easier for a population to establish a convention of usage

in regards to symbols (the semantic rules) and syntax (the structure rules).

However, this raises the question as to why this is the case. By comparing figures 7.6

and 7.7, which look at the same behaviour as the last two graphs, but during the first

generation of the creole phase of the simulation, we see something interesting. In contrast

to the baseline model, increasing PCMM from 1 to 9 has an obvious beneficial impact

upon creole semantic emergence; regardless of the value of PCMI .
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Figure 7.5: Graph depicting the number of different rules that a randomly selected agent

from generation 205 has within its grammar store for each of the different meaning bits and

possible structure rules used by the simulation for PCMM=1 and PCMI=1 (blue bars) and

PCMM=1 and PCMI=10 (red bars), with M and I=10, B=50, and D=50.

This is due to the fact that each of the mature agents in this generation were imma-

ture agents during the previous generation, which was also the generation where the

agents played the pidgin game. This results in this particular batch of agents receiving

linguistic training data in the form of pidgin-based signals that originate from a larger

number of mature agents playing the pidgin game. This, in turn, results in greater sig-

nal diversity, making the agents less idiosyncratic in their communicative system. These

less idiosyncratic communicators are then better at communicating with one another as

mature agents.

However, in the PCMM=9 case, the mature agents have a better chance of being more

successful in using the same signals as their partners than in the PCMM=1 case due to the

fact that there is a better chance that the hearer has already encountered the signals used

by the speaker. Such success then obviously increases the chance of the agent using the

meaning-signal pairs it encountered in future communicative episodes. This, combined

with the way in which their children learn from the successful interactions, leads to

these immature agents essentially acting as a filter, due to them being more acquainted

with the more successful meaning-signal pairs. Thus resulting in the behaviour seen in

figure 7.5. This is the exact same behaviour that we saw in the reinforcement learning

model.

Although we see that, under certain circumstances, these agents are able to give rise to

a successful communicative system, the question remains as to whether or not this new

linguistic system is a creole in nature. Figure 7.8 depicts the grammar of a randomly

selected mature agent from populations two and three during the final generation of
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Figure 7.6: Graph depicting the number of different signals that a randomly selected agent

from the first generation of the creole phase of the simulation has within its grammar store

for each of the different meaning bits and possible structure rules used by the simulation for

PCMM=1 and PCMI=1 (blue bars) and PCMM=1 and PCMI=10 (red bars), with M and I =

10 and B = 50 and D = 50.

Figure 7.7: Graph depicting the number of different signals that a randomly selected agent

from the first generation of the creole phase of the simulation has within its grammar store

for each of the different meaning bits and possible structure rules used by the simulation for

PCMM=9 and PCMI=1 (blue bars) and PCMM=9 and PCMI=10 (red bars), with M and I=10

and B=50 and D=50.

the baseline language game, before the simulation moves onto the pidgin phase. By

comparing these two grammar lists to the creole list, which was taken from a randomly

selected mature agent once the creole had reached 100% success rate at generation 210,

we see that the resulting creole is a mix of the linguistic systems of populations two and

three.



136 Chapter 7 Linguistic Populations And Contact Languages

Figure 7.8: List of each of the different grammar rules within a random mature agent from

population 2 (left) and population 3 (middle) during the final generation before the agents

enter the pidgin phase. The list on the right shows a randomly selected agent’s language at

generation 210, and with tertiary hybridisation playing a role in the emergence of the creole.

It can be seen here that the resulting creole language has adopted features of the languages of

both populations two and three. For PCMM=1 with PCMI=10, with M and I=10 and B=50

and D=50.

7.7.2 Exploring The Bottleneck

Given how the bottleneck size affected the rate of compositionality emergence in the

iterated learning model from chapter 4, it is worth exploring whether or not we see a

similar behaviour here. Thus, figure 7.9 shows the average amount of communicative

success achieved over 30 runs with PCMM and PCMI=1 (blue line) and PCMM=1 with

PCMI=10 (red line) with a larger bottleneck (B=100).

It can be seen here that the larger bottleneck does not impact the baseline model be-

haviour very much, but there is a distinct difference in success during the creole phase of

the game. Namely, the PCMM and PCMI=1 case achieves a fully stable communicative

system after a number of generations. However, this larger bottleneck size does result

in the PCMM=1 with PCMI=10 case taking more generations to give to rise to a stable

creole language. It should be noted that the step-like decline and increase in commu-

nicative success seen in the PCMM and PCMI=1 case is caused by the same behaviour

that caused the step-like decline in figure 7.3. Namely, the average score for each gen-

eration includes a number of simulation runs that are still achieving 100% success rate

due to them not yet entering the pidgin and creole phases of the simulation, while other

runs have already entered these phases and are achieving a very low, often 0%, commu-

nicative success rate during these same generations. However, unlike in figure 7.3, the

larger bottleneck size in the runs from figure 7.9 enables a successful linguistic system

to emerge.

This difference in behaviour can be seen more clearly by looking at a single run. Fig-

ure 7.10 shows how, in the PCMM and PCMI=1 case, the system is unable to give rise

to a successful language in conditions where B ≈< 80, but with B ≥ 80, the system can
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Figure 7.9: Graph depicting the difference in the percentage of communicative success for

PCMM=1 and PCMI=1 (blue line: µ = 82.01, σ = 1.61) and PCMM=1 and PCMI=10 (red

line: µ = 91.97, σ = 0.85), with M and I=10 and B=100 and D=50. Averaged over 30 runs.

Note that none of the trend lines reach a perfect 100 (which is what B was set to during

these runs) before the agents go on to play the creole game due to this graph displaying the

average communicative success rate per generation, over a number of runs; with there being

fluctuation in behaviour between these runs.

give rise to a linguistic system after a certain number of generations. However, this lan-

guage is not a creole, but a completely novel linguistic system that has been developed

by these agents; a phenomenon that will be discussed in more detail below. In contrast,

in the PCMM=1 with PCMI=10 case, the system achieves 100% success rate the vast

majority of the time (figure 7.11).

Although these results are interesting insomuch as they support the results and conclu-

sions drawn from the previous two models, the aim of this model was to explore some

of the open questions within the creole literature. Specifically, there were two questions

that this model aimed to explore; whether or not one group has to be more socially

powerful than another for a pidgin and creole to emerge, and whether or not tertiary

hybridisation was a necessary prerequisite for creole emergence.

7.7.3 Social Power

As stated above, one of the key ideas encountered in the pidgin and creole literature

concerns the idea of social power. This is the belief that the reason creoles tend to gain

most of their semantics from the lexifer language is due to the users of that language

having a greater amount of social influence over those using the substrate languages; as

often seen in colonising scenarios.
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Figure 7.10: Graph depicting communicative success of a single run for PCMM and PCMI=1

with PCII=0, when B=50 (top left), 60 (top right), 80 (bottom left), and 100 (bottom right);

with M and I=10 and D=50. For each data set, the first sharp decrease in success rate is the

pidgin phase generation, every subsequent generation then sees the agents playing the creole

phase. The coloured arrows indicate when the version of the simulation represented by the

corresponding coloured line enters phase two and plays the pidgin game, before entering phase

three and playing the creole game in all subsequent generations.

In order to explore this notion, the simulation was built with a D parameter, as described

above. Although multiple tests were conducted, altering this parameter did not result

in any change in the amount of communicative success (figure 7.12). Indeed, as above,

the crucial parameter is still the number of mature agents from which each immature

agent learns their language; and as this increases, so does the amount of communicative

success.

7.7.4 Tertiary Hybridisation

The role of tertiary hybridisation was explored by running the simulation without pop-

ulation three. In other words, the simulation proceeds exactly as described above, going

through the baseline, pidgin and creole phases. The only difference being that, during

the creole phase, populations one and two go straight from playing the pidgin game to

playing the creole game with one another.
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Figure 7.11: Graph depicting communicative success of a single run for PCMM=1 with

PCMI=10 with PCII=0, when B=50 (top left), 60 (top right), 80 (bottom left), and 100

(bottom right); with M and I=10 and B=100 and D=50. For each data set, the first sharp

decrease in success rate is the pidgin phase generation, every subsequent generation then

sees the agents playing the creole phase. The coloured arrows indicate when the version of

the simulation represented by the corresponding coloured line enters phase two and plays

the pidgin game, before entering phase three and playing the creole game in all subsequent

generations.

It can be seen from figure 7.13 that a lack of tertiary hybridisation has a notable effect

upon communicative success of the system in cases with a higher value of PCMI ; with

tertiary hybridisation enabling the populations to give rise to a stable creole language.

This arguably lends some support to the tertiary hybridisation argument seen in the

literature. The literature thus far has been unable to present any empirical evidence

as to why tertiary hybridation would play the crucial role that many believe to, mostly

due to the problems that pidgin and creole researchers experience in documenting creole

emergence. However, by again looking at the internal grammars of randomly selected

agents, this simulation offers some insight into how this phenomenon works within this

particular model. In contrast to figure 7.8, figure 7.14 shows the same information but

for a simulation run where there was no tertiary hybridisation. Here, we see that the

resulting creole language is essentially an entirely new language, with only a couple of

grammar rules originating from the lexifer or substrate languages. This is due to the way

in which, despite playing the pidgin game with one another, both populations were still

using their already well-established baseline languages, the signals of which continued

to be more dominant than the linguistic conventions established during the pidgin-game
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Figure 7.12: Graph depicting the amount of communicative success achieved by a single of

the model for PCMM and PCMI=1 (blue line), PCMM=1 with PCMI=10 (red line), PCMM=9

with PCMI=5, PCMM=5 with PCMI=10, and PCMM=9 with PCMI=10, with M and I=10

and B=50 and D=100. For each data set, the first sharp decrease in success rate is the

pidgin phase generation, every subsequent generation then sees the agents playing the creole

phase. The coloured arrows indicate when the version of the simulation represented by the

corresponding coloured line enters phase two and plays the pidgin game, before entering phase

three and playing the creole game in all subsequent generations.

generation of the simulation; largely due to the amount of exposure that agents had to

them.

Thus, when the simulation went on to the creole phase, both populations continued to

use the meaning-signal pairs that they knew to be most successful. This resulted in the

two populations having to re-negotiate and create an entirely new language in order to

conduct inter-population communication.

This is supported by figures 7.15 and 7.16. Here, it can be seen that both with and

without tertiary hybridisation, the agents in both populations have a pidgin that allows

them to communicate with one another more than 90% of the time. However, without

hybridisation, we get the resulting language we see in figure 7.14.

Figure 7.17 shows the no tertiary hybridisation version of the model being run under

the same parameter settings, but with D=100. In comparing this graph to figure 7.12,

we see that there is no difference in communicative success for the PCMI=10 case. After

a prolonged period of time, the PCMI=1 case appears to achieve a 100% success rate.

However, as in the above case, this is not a creole, but the result of the agents giving rise
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Figure 7.13: Graph depicting the amount of communicative success achieved by a single

run of the model for PCMMand PCMI=1 with tertiary hybridisation playing and role (blue

line) and without tertiary hybridisation (green line), and likewise for PCMM=1 with PCMI=10

(red line and black line, respectively), with M and I=10 and B=50 and D=50. For each data

set, the first sharp decrease in success rate is the pidgin phase generation, every subsequent

generation then sees the agents playing the creole phase. The coloured arrows indicate when

the version of the simulation represented by the corresponding coloured line enters phase two

and plays the pidgin game, before entering phase three and playing the creole game in all

subsequent generations.

to a completely new linguistic system that is different from either population’s previous

linguistic systems.

7.8 Conclusions

The model presented in this chapter yielded a number of interesting results. The first

concerns the role of social power, whereby the speakers of the lexifer adopt a passive role

in the linguistic process. It was shown that was not the case in the model presented here,

and that pidginisation had to be an interactive process involving multiple communicative

efforts on the part of all parties involved. This is a finding that is supported by the fact

that contact languages in the real world can emerge between trading partners of equal

social power, with vocabulary being drawn equally from both languages. Indeed, the

results gained from the pidgin/creole model in this chapter demonstrated that altering

the dominance, D, parameter had no significant impact upon the behaviour of the model.
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Figure 7.14: List of each of the different grammar rules within a random mature agent from

population 2 (left) and population 3 (middle) during the final generation before the agents

begin to play the pidgin phase. The list on the right shows the same for a randomly selected

agent’s creole language at generation 210, with tertiary hybridisation not playing a role in the

emergence of the creole. For PCMM=1 with PCMI=10, with M and I=10 and B=50 and

D=50.

Figure 7.15: List of each of the different grammar rules within a random mature agent’s

pidgin grammar for population 1 (left) and population 2 (right) during the final generation

before the agents begin to play the creole phase, with tertiary hybridisation playing a role.

For PCMM=1 with PCMI=10, with M and I=10 and B=50 and D=50.

Secondly, it has been shown here that tertiary hybridisation results in the simulation

giving rise to a creole that is a mix of the languages of both populations two and three.

While without tertiary hybridisation, the resulting language is essentially a whole new

linguistic system.
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Figure 7.16: List of each of the different grammar rules within a random mature agent’s

pidgin grammar for population 1 (left) and population 2 (right) during the final generation

before the agents begin to play the creole phase, with tertiary hybridisation not playing any

role. It is shown here that, without tertiary hyrbridisation, the agents are still able to establish

a pidgin that can achieve a success rate of roughly 90%. For PCMM=1 with PCMI=10, with

M and I=10 and B=50 and D=50.

We see that the presence of tertiary hybridisation results in one of the languages acting as

the lexifer and another as the substrate language. It is arguable that the lexifer/substrate

effect, which has typically been associated with social power, only plays a significant role

in cases where tertiary hybridisation takes place.

This would make logical sense given that, in a tertiary hybridisation scenario, the third

social group would have no understanding of the language of either population one or

population two. This would result in them taking on more of the pidgin vocabulary

being presented to them by population two and contributing less vocabulary from their

own language. Indeed, we have seen the argument made that contact languages will

only develop with stable norms, grammar, pronunciation, and vocabulary, once they

are taken up by a third party (Muhlhausler 1986). This argument is supported by the

fact that most of the successful pidgins, those with the longest histories and spoken

most widely, are also lingua francas used by speakers of large numbers of mutually

unintelligible languages.

Finally, it can also be seen that, while communication between higher numbers of mature

language users allow for faster establishment of semantic conventions, such as seen in

cases of pidgin emergence, it is really the inter-generational transmission of language

through a bottleneck that fosters language development through its exposure to different

learner biases. This explains why the transformation from pidgin to creole tends to
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Figure 7.17: Graph depicting the amount of communicative success achieved by a single

run of the model for PCMM=1 and PCMI=1 (blue line) and 10 (red line) without tertiary

hybrisation playing and role (blue line) and D = 100, with M and I = 10 and B = 50. For

each data set, the first sharp decrease in success rate is the pidgin phase generation, every

subsequent generation then sees the agents playing the creole phase. The coloured arrows

indicate when the version of the simulation represented by the corresponding coloured line

enters phase two and plays the pidgin game, before entering phase three and playing the

creole game in all subsequent generations.

happen at an incredibly fast rate; typically within a single generation. Indeed, it was

mentioned above that, at any stage during the pidgin-creole developmental process,

pidgins become creoles once immature language learners are born into a social milieu

with a pidgin that they end up acquiring as their primary language.

This notion is largely supported by the way in which increasing PCMM from 1 to 10 had

an obvious beneficial impact upon creole emergence, regardless of the value of PCMI .

This was due to the fact that each of the mature agents in the first generation of the

creole phase were immature agents during the previous generation, which was also the

generation where the agents played the pidgin game. This resulted in this particular

batch of agents receiving linguistic training data in the form of pidgin-based signals that

originate from a larger number of mature agents playing the pidgin game. This in turn

resulted in greater signal diversity. Thus, making the agents less idiosyncratic in their

communicative system.

This idea, supported by the results presented here, also relates back to the ‘linguis-

tic blueprint’ argument. Specifically, the results presented here make it arguable that,

instead of there being any specific ‘linguistic blueprint’ for creoles, these languages pos-

sess the structure they do as a result of being exposed to learner biases that shape the
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languages in order to be more learnable. This results in immature language learners

essentially levelling out variability and producing more regular grammars, while not

actually innovating. This is supported by the way in which the children of plantation

labourers, who lived within a diverse socio-linguistic milieu, developed a linguistic sys-

tem based upon the mixed and inconsistent linguistic input that they received, and not

based upon that of their parents (Roberge 2013).

Indeed, as will be seen in the following chapter, this kind of linguistic evolutionary

behaviour has been present in all of the models presented in this thesis.





Chapter 8

Conclusions

8.1 Introduction

This thesis was motivated by the two umbrella questions that arguably underpin all re-

search into human language evolution (Tallerman & Gibson 2013b). The first concerning

how much of the human language faculty can be attributed to a genetic endowment for

language learning, and to what extent can it be accounted for by other mechanisms;

such as the nature of observational learning and social interactions? The second con-

cerns how much of linguistic structure can be attributed to natural selection, such as

which linguistic features were adaptive to early hominins, and to what extent does lin-

guistic structure arise from self-organisational processes; such as languages themselves

adapting to be easier to learn? Indeed, it was demonstrated in the early parts of this

thesis that, while many researchers would agree that human language is the result of

both innateness and ontogenetic development, there are vast differences of opinion in

regards to what, and where, lines should be drawn.

However, it is clear that human language is strongly influenced by biology, and the case

of the Nicaraguan school children, who developed a novel sign language in the absence

of any pre-existing linguistic system (Senghas et al. 2005) is testament to this. However,

given the rate at which lexical items change, it is clear that languages themselves are

social-cultural phenomena. Interestingly, we saw evidence in chapter 2 that contempo-

rary data also demonstrates that context-specific learning behaviours, akin to those seen

in humans, have evolved in a range of taxa. In addition, the species that exhibit such

behaviours also possess communication systems that are heavily influenced by social

interactions and cultural learning.

This indicates that the development of such social learning mechanisms can be a response

to specific evolutionary selection pressures; likely to be social in nature. Additionally,

given the way in which mental representations and awareness of self and others are also

147
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well documented within the primate lineage, indicating that such traits are phylogenet-

ically much older than Homo sapiens and were likely to have been in place prior to the

Pan/Homo genera split, it could be argued that individual-based social learning plays a

significant role in language learning in our species.

Overall, these observations suggest that any study of the evolution of human language

should view it as being the result of three interacting dynamical systems; biology, onto-

genetic growth, and social-cultural factors (Kirby & Hurford 2002, Kirby 2002b). Indeed,

while it is clear that the biological and neurological apparatus that enables linguistic

evolution is what endowed early homo with certain linguistic abilities, the earliest forms

of protolanguage must also have been social-cultural phenomena learned by individuals

during their lifetimes. Further, it is entirely plausible that the biological and social as-

pects of language eventually co-evolved to result in the biological/neurological apparatus

and linguistic structures we see in the world today.

This is the theoretical foundation that this thesis adopted when exploring the above two

questions. Once combined with contemporary data indicating a relationship between

population make-up and linguistic structure (Johansson 1997, Wichmann & Holman

2009, Lupyan & Dale 2010, Milroy 2013, Trudgill 2013, Atkinson et al. 2015) and a shift

in social dynamics being related to the evolutionary origins of human language (Dunbar

1993, Aiello & Dunbar 1993, Kudo & Dunbar 2001, Fitch 2010), it makes logical sense

to frame these issues in terms of social co-ordination.

As such, the primary focus of this thesis was on expression/induction (E/I) models that

adhered to the iterated learning framework. This particular flavour of agent-based model

was selected for two reasons. Firstly, iterated learning models (ILMs) are specifically

tailored to explore how linguistic structures evolve through self-organisational processes;

how languages are affected by learner bias. Secondly, they have traditionally been

characterised by both their particularly small population sizes, often just one mature

and one immature agent per generation, and the way in which they aim to explore the

nature of the emergence and evolution of mappings between meaning-signal pairs.

This second characteristic constituted a clear research gap; one that this thesis was

well-positioned to explore. Although a large body of work existed that demonstrate

how agents within such models force languages to evolve due to the way in which their

individual learner biases impose selection pressures on it, such behaviour had not been

extensively explored in larger, structured, populations with varying dynamics. Indeed,

E/I models have traditionally not been concerned with matters of social structure or

social dynamics, and their potential to impact linguistic form. Instead, the agent pop-

ulations within such models tend to be both constant and small in size (Hurford 2000,

2002, Kirby 2002c, Kirby & Hurford 2002). This, from a computational research perspec-

tive, was a particularly important aspect of E/I models to explore. Particularly given
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the way in which early A-life research demonstrated the importance of co-ordinated be-

haviour in the emergence of communication systems (Werner & Dyer 1992, MacLennan

& Burghardt 1994).

8.2 Contributions

This thesis had four specific aims to explore. Firstly, what impact, if any at all, does

population size have upon the dynamics of iterated learning? Secondly, if population

size does affected iterated learning dynamics, then in what manner does the make-up

of said population impact linguistic structure? Thirdly, what impact does a fluctuating

population size have upon the rate and nature of linguistic change within an iterated

learning model? Finally, could iterated learning models be used in order to explore the

nature of contact language emergence? The models presented here demonstrated the

following for each of these four research questions.

8.2.1 Does population size have an impact upon the dynamics of iter-

ated learning over generational time?

As a starting point, a well-documented iterated learning model, originally by Kirby

& Hurford (2002), was re-implemented and extended to include multiple mature and

immature agents per generation. Despite intuition dictating that the presence of more

speaker agents within the population would make it more difficult for a stable linguistic

system to emerge was, this model demonstrated that this is incorrect.

It did hold true that the various mature agents in the initial generation used different

signals for the same meaning, and that this created inconsistent training input data for

immature language learners. However, exposing these immature agents to a number of

different linguistic tutors actually resulted in them coalescing this varied input. This, in

turn, resulted in these immature agents having similar languages upon being promoted

to mature agent status. These agents thus produced similar linguistic output to one

another, which was then used to train the second generation of immature language

users; and so on. In other words, while the initial language learning task was made more

problematic for each individual language learner by the presence of multiple language

trainers, the language itself benefitted from the rapid regularisation that this resulted in.

This is due to the way in which language learners in the model benefitted from learning

signals from multiple trainers, due to the way in which they see that multiple signals can

be used for a particular meaning. However, due to the way in which the agent networks

and obverter procedure operate, they are quickly able to pick the most commonly used

signal for such a meaning.
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8.2.2 In what manner does the make-up of a population of agents

impact linguistic structure within iterated learning models?

In chapter 4, an ILM featuring an alternative learning mechanism was explored in order

to discover whether the results in chapter 4 would generalise to a different setting. This

model built upon previous work in exploring how simple signals can emerge as successful

communicative devices as long as there is a stable and conventionalised system of usage

(Skyrms 2004, 2010, Barrett 2006, 2009). This second model supported many of the

findings reported chapter 4.

First, although it was initially harder for the agents in this latter model to establish a

convention of usage for their relatively simplistic signals, once they had successfully done

so, the resulting language was far more successful at being transmitted to subsequent

generations of agents. This was shown to be the result of the linguistic training input

being presented to immature agents. It is true that this training input is initially more

diverse in situations where said agents are learning their version of the language from

higher numbers of different mature agents. However, learning from multiple mature

agents resulted in these immature agents developing a far less idiosyncratic language.

This greatly increased their chances of successfully communicating with other agents

once they were promoted to mature agent status. This increased chance of success, in

turn, resulted in a particular convention being adopted by a wider number of agents,

and in turn, resulted in the communicative system of the agents being far more stable

across generations.

Second, this model also demonstrated that this increased success rate was even more

efficient in situations where mature agents only interacted with a small number of other

mature agents, while immature agents are tutored by a higher number of different mature

agents. This is due to the way in which the mature agents that communicate with only

a small number of other mature agents give rise to a well-established usage convention

due to them having less variety in their potential outputs, compared to mature agents

who interact with a large number of other mature agents. This, in turn, resulted in

the immature agents having fewer potential signals to choose from when attempting to

convey a meaning to their peers. A benefit that was even greater to the immature agents

in subsequent generations.

These findings suggest that a key factor in the emergence and development of an expres-

sive and stable communicative system was the number of trainers from which immature

language users learned their language.
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8.2.3 Does a fluctuating population size impact the rate of linguistic

change within an iterated learning model?

There were two main conclusions to be drawn from the model presented in chapter 6.

First, it yielded data that supported results gained from the first two models, in that

the amount of diversity within an immature language learner’s linguistic training data

played a crucial role in how quickly, if at all, an expressive and stable linguistic system

emerged within a population of agents.

This observation was most notable in this third model, when the agent population was

contracting or expanding. Here, it was found that if the number of assigned commu-

nicative partners is held constant at a low amount of population interconnectivity, then

a stable and successful linguistic system not only emerges, but does so at a much faster

rate than in smaller populations. In short, this model demonstrated how a higher per-

centage of population interconnectivity aids a linguistic group in giving rise to a stable

and successful language.

Secondly, and following on from the first finding, the model in chapter 6 produced data

that was in-line with much of the contemporary work in the literature. Work that

argues how it is not the size of the population per se that influences language emergence

and change. Moreover, given that varying the social network structure yielded different

results, linguistic changes within this model are linked to the connectivity of a linguistic

social group. In other words, an individual is less likely to exhibit linguistic variations

when they have a higher level of integration within the social group (Ke et al. 2008,

Wichmann & Holman 2009); i.e. connected to a higher number of other language users.

8.2.4 Can iterated learning models be adapted in order to explore the

development of contact languages, and if so, what inferences can

be made from the data yielded by such simulations?

It has been argued elsewhere (Botha 2003, 2006, Roberge 2009, Tallerman & Gibson

2013a) that the nature of the emergence and evolution of contact languages could offer

a lot to researchers in regards to understanding the nature of linguistic change. This is

a reasonable assertion, given the evidence in favour of languages themselves changing

and adapting in relation to the biases of their users. After all, despite some of the issues

surrounding the nature of second language acquisition, it is highly unlikely that we would

possess a completely different, and secondary, set of language learning mechanisms;

either social or biological. As such, it was deemed interesting to explore these issues

using the iterated learning framework, which was now a possibility given the nature of

the model presented in chapter 6.
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As such, the model presented in chapter 7 adapted the model from the preceding chapter

in order to explore some of the open questions encountered in the contact language

literature. When tailored to mimic the social circumstances under which pidgins and

creoles come into existence, this model displayed a number of interesting behaviours.

First, it suggested that the idea of there needing to be an in-balance in terms of social

power in order for a pidgin to arise may not hold true. In the model, pidgin formation had

to be bilateral, involving multiple communicative efforts by both language communities

involved. This finding is supported by the way in which such contact languages come

into being through communicative episodes between social groups of equal power. As is

the case with trading partners and sea-fearers (Holm 2000).

Secondly, this model was also used in order to explore the enigmatic role of tertiary

hybridisation in pidginisation and creole origins. Specifically, when social circumstances

akin to tertiary hybridisation were forced upon the agents during the creole phase of the

simulation, these agents gave rise to a linguistic system that was a blend of that used

by both groups in order to communicate with members of their respective social group.

In comparison, without tertiary hybridisation, the agents had to establish a completely

novel linguistic system in order to communicate between social groups. Thus, in the

context of the model in chapter 7, tertiary hybridisation was a crucial component in

the establishment of a successful creole. A conclusion that is supported by the empir-

ical evidence that indicates how users of such a contact language will only establish a

between-groups language, with stable norms and grammar, once a third party is included

in the equation (Whinnom 1968, Sebba 1997).

Finally, this model adds more weight to the overall argument of this thesis. Namely,

that it is the inter-generational linguistic transmission between mature and immature

agents, through a linguistic bottleneck, that truly fosters linguistic change as a result

of the language being exposed to learner biases in E/I models. Although it had been

demonstrated before by previous ILM-based work that the linguistic bottleneck is a

key factor in regards to whether or not languages can be successfully passed from one

generation, and how the bottleneck can dictate the nature of the resulting linguistic

structure (Kirby 2002b,a, Kirby & Hurford 2002, Kirby et al. 2014, Smith 2002, Smith

et al. 2003), the data presented in this thesis clearly demonstrates that another crucial

factor is the amount of signal variety that is passed through the linguistic bottleneck.

Furthermore, by using contact languages as a case study, where it has been observed

that children of plantation labourers were quickly able to form a coherent and expressive

linguistic systems from varied and inconsistent input (Roberge 2013), it is possible to

argue that, what has traditionally been mistaken for humans creating languages in

accordance with some form of innate ‘linguistic blueprint’ may have actually been the

result of linguistic systems themselves being refined through usage in accordance with

learner bias.
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8.3 Future Work

Although the models presented here were novel in a number of ways and produced a

number of interesting findings, there is still a lot of further work that could be done in

this area. Specifically, in regards to two key areas.

First, a particular characteristic of E/I models that could provide further interesting

results is the way in which they, rather unrealistically, create a noise-free environment

(Hurford 2002). In other words, every utterance produced by a speaker is perfectly

observed by the hearer, and language learners are assumed to have perfect access to the

meanings expressed by the speakers that they are exposed to. As such, E/I models ar-

guably fail to capture, and take into account, a potentially significant source of linguistic

change.

Secondly, given the aforementioned literature concerning how social network structures

impact linguistic change, valuable results could be gained from taking the models pre-

sented here and altering the population structure to mimic different network structures

that are discussed in the network theory literature (Newman 2010, Milroy 2013); such

as random and scale-free networks, etc.

8.4 Summary Of Thesis

This thesis aimed to explore how much of linguistic structure could be accounted for

by self-organisational processes and ontogenetic social learning, by utilising a specific

form of agent-based model. In doing so, the models it presented enable a number of

conclusions to be drawn.

Firstly, once a species has productive and interpretive mechanisms in place, as the avail-

able data indicates was the case long before the Pan/Homo genera split, then it is

relatively easy for communicative systems to emerge through a social process of conven-

tionalisation. Communicative systems may then be refined by way of social learning on

the part of future generations of the species.

Secondly, a higher level of interconnectivity between different individuals within a social

group leads to linguistic conventions becoming more stable at a much faster rate. This

is due to the way in which such a language will, over time, be increasingly refined by

learner bias. Thus resulting in said language adapting at a much faster rate.

In answer to the discussion that began this chapter, while biological evolution clearly

played a role in endowing us with the mechanisms necessary to produce and interpret

signals, the work presented in this thesis has built upon a larger body of research, and

demonstrated how learner bias acts as a selection pressure upon languages. One that

results in linguistic structures themselves evolving so as to be easier to learn.
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In short, social-cultural factors in the form of individual learning over generations can

have a significant impact upon linguistic structure; as a language is refined in order to

be easier for its speakers to learn and use. This refinement process is accelerated when

individuals are presented with a more varied linguistic sample, due to the way in which

it better enables them to use the most optimal communicative option of the language.
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