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Abstract: There is a need to develop indicators of mangrove condition using remotely 

sensed data. However, remote estimation of leaf and canopy biochemical properties and 

vegetation condition remains challenging. In this paper, we (i) tested the performance of 

selected hyperspectral and broad band indices to predict chlorophyll concentration (CC) on 

mangrove leaves and (ii) showed the potential of Landsat 8 for estimation of mangrove CC 

at the landscape level. Relative leaf CC and leaf spectral response were measured at 12 

Elementary Sampling Units (ESU) distributed along the northwest coast of the Yucatan 

Peninsula, Mexico. Linear regression models and coefficients of determination were 

computed to measure the association between CC and spectral response. At leaf level, the 

narrow band indices with the largest correlation with CC were Vogelmann indices and the 

MTCI (R2 > 0.5). Indices with spectral bands around the red edge (705–753 nm) were more 
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sensitive to mangrove leaf CC. At the ESU level Landsat 8 NDVI green, which uses the 

green band in its formulation explained most of the variation in CC (R2 > 0.8). Accuracy 

assessment between estimated CC and observed CC using the leave-one-out cross-validation 

(LOOCV) method yielded a root mean squared error (RMSE) = 15 μg·cm−2, and R2 = 0.703. 

CC maps showing the spatiotemporal variation of CC at landscape scale were created using 

the linear model. Our results indicate that Landsat 8 NDVI green can be employed to 

estimate CC in large mangrove areas where ground networks cannot be applied, and mapping 

techniques based on satellite data, are necessary. Furthermore, using upcoming technologies 

that will include two bands around the red edge such as Sentinel 2 will improve mangrove 

monitoring at higher spatial and temporal resolutions. 

Keywords: Landsat 8; mangrove; spatiotemporal; chlorophyll map; vegetation indices 

 

1. Introduction 

Mangrove forests cover approximately 13.7 million ha of tropical and subtropical shorelines across 

118 countries [1]. Worldwide, Mexico ranks fourth in terms of mangrove coverage (742,000 ha), with 

55% of the coverage distributed along the coast of the Yucatan Peninsula. Mangrove forests provide a 

wealth of direct and indirect ecosystem services such as natural protection barriers and nursery habitat 

for marine organisms [2–5]. Further, the ability of mangrove forests to act as a carbon (C) sink has been 

the focus of recent research. Estimates suggest that mangrove C storage ranges between ~160 Mg·ha−1 

and ~1000 Mg·ha−1 depending on location, species composition, height, and canopy closure [6,7]. Data 

on C stocks have been published for numerous mangrove systems across the globe including Australia [6], 

China [8], Indo-Pacific [7,9], Western-Pacific [10], Caribbean [11], and Mexico [12]. In addition, C 

removal from the atmosphere has been estimated at around 1,170 ± 127 g·C·m−2·year−1 [13]. These 

figures acquire relevance in the context of climate change mitigation as C sequestration is emerging as 

a major strategy to reduce atmospheric C. In spite of the array of ecosystem services provided by 

mangroves, their high productivity, and their role played in C dynamics at the land–ocean interface [14], 

large areal losses are presently occurring due to deforestation and land use conversion due to both human 

and natural drivers [15,16].  

The high productivity and C uptake of mangroves are intimately linked to photosynthesis, which is 

largely dependent on the availability of leaf pigments. Chlorophylls (Chl) are the most important leaf 

pigments responsible for photosynthesis. Leaf pigments have been identified as indicators of 

physiological status, senescence and stress [17,18]. This is also true in mangroves, which exhibit pigment 

variation between species and health conditions [19–21]. Furthermore, mangroves are subject to a range 

of environmental gradients that vary seasonally, potentially inducing stress. In a coastal lagoon system 

that was markedly seasonal in terms of water availability, Flores-de-Santiago Kovacs and  

Flores-Verdugo [21,22] found higher Chl a concentration during the rainy season in two species of 

degraded dwarf stands, suggesting that precipitation patterns might have an effect on leaf biochemical 

constituents and possibly on the total productivity of the mangrove forest. 
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Given the potential of Chl to act as a surrogate of vegetation status, Chl has become a key biophysical 

variable to monitor. The standard approach to estimating Chl concentration (CC) involves extracting the leaf 

pigment using an organic solvent followed by spectrophotometric determination of absorbance in the 

laboratory and, finally, conversion to CC using empirical equations [23,24]. A more practical technique that 

complements the aforementioned approach consists on the use of portable Chl meters such as the  

Opti-Sciences CCM-200 Chlorophyll Content Meter (CCM-200) and Minolta SPAD-502 Chlorophyll Meter 

(SPAD-502). Portable Chl meters have been used extensively in precision agriculture and have been tested 

on a variety of tree species [25–29]. To our knowledge, the first documented example of the use a portable 

Chl meter in mangrove species is Connelly [30]. Connelly [30] reported a large correlation between CC and 

Minolta SPAD-502 readings in red mangrove (Rhizophora mangle) (R2 > 0.6 total Chl; R2 > 0.7 Chl a). Years 

later, Biber [31] assessed the CCM-200 in R. mangle (R2 > 0.9 Chl a) and other wetland species. Recently, 

Flores-de-Santiago Kovacs and Flores-Verdugo [32] documented large correlations for healthy stands of 

three mangrove species (R. mangle R2 > 0.76, Laguncularia racemosa R2 > 0.68 and Avicennia germinans 

R2 > 0.74; rainy season) using the CCM-200. Calibration equations need to be applied to use portable Chl 

meter readings to convert these readings to actual chlorophyll concentration.  

Remote sensing offers an alternative set of techniques to estimate chlorophyll concentration. These 

can be grouped into two main categories: (i) Radiative transfer models and (ii) vegetation indices (VIs). 

The physically based canopy reflectance model relies on the principle that canopy reflectance is 

controlled by a combination of canopy and soil background biophysical variables such as vegetation 

structure, leaf composition, and illumination angle [33–35]. To estimate Chl from observed reflectance 

data, the physical model must be inverted. The inversion consists of adjusting the input biophysical 

variables to reduce the error between the simulated and measured reflectance [36,37]. While these 

techniques have been applied with success [38,39], they can be computationally demanding. In addition, 

they suffer from the so-called ill-posed problem [40,41] due to model and measurements uncertainties; 

that is, different model parameters might result in very similar spectra [42]. The VI approach is based 

on the statistical or empirical relationship between arithmetic combinations of two or more spectral 

bands and a particular leaf or canopy characteristic (i.e., chlorophyll concentration) [43]. It has been 

argued that this approach is sensor-specific, site-dependent, and does not account for variability in LAI. 

However, the VI approach offers computational simplicity and accuracy, and its potential for predicting 

vegetation variables is well supported by numerous published studies [40,44]. 

VIs can be derived from hyperspectral and multispectral data. Several studies have examined the 

relationship of VIs and CC leaf hyperspectral response at the leaf level [19,41,45]. Sensors on board different 

satellites have estimated vegetation CC using VIs at varying spatial resolutions, from a few to hundreds of 

meters [46–48]. While field spectroscopy and satellite-derived VIs have been used to estimate the chlorophyll 

content in leaves and canopies in different vegetation types, only few studies have focused on mangrove 

forests [21,22,30,32]. The spatial distribution and seasonal dynamics of mangrove forest CC is not well 

understood as previous studies have been spatially localized. Given the importance of foliar pigments as 

surrogates of mangrove physiological status, phenology, health condition, and potentially GPP, it is 

fundamental to assess the accuracy of VIs to predict CC at the leaf and landscape level. Our main goal is to 

show for the first time that the multispectral sensor Landsat 8 can be potentially used to produce maps 

of spatial distribution and temporal variation of chlorophyll concentration in mangrove forests. 
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The objectives of this research were to (a) assess the performance of selected hyperspectral and broad 

band VIs for predicting CC at the leaf level, and (b) relate the estimated CC on the ground with Landsat 8 

data to map the spatial distribution and temporal variability of mangrove CC at the landscape level. 

2. Methods 

2.1. Study Area 

The NW of the Yucatán Peninsula is characterized by a semi-arid climate [49] with three clear, 

distinct seasons: A dry season from March to May, a rainy season from June to October, and a third 

season characterized by cold fronts locally known as “Nortes” from November to February [50]. 

Topographic features on land do not exceed 2 m elevation, and the mangrove forest extends parallel to 

the coast [51] (Figure 1). Two protected areas are established in the region, El Palmar State Reserve and 

the Biosphere Reserve of Ría Celestún. Mangrove communities in the protected areas are well developed 

with four species dominating the landscape: R. mangle, L. racemosa, A. germinans, and Conocarpus erectus. 

The karstic nature of the ground favors the rapid infiltration of rainfall, resulting in the absence of runoff 

and the lack of important streams above the surface. Furthermore, wetland and floodplain flooding is 

controlled by groundwater discharge. In the wet season, aquifers recharge and reach saturation. At this 

point the water displaces horizontally while a fraction of it is discharged through sinkholes and fractures 

known locally as “petenes” Surface water is reduced significantly in the dry season, confined to pools 

and saturated soils adjacent to the sinkholes [51]. 

 

Figure 1. Location of sampling units in the mangrove forest in the north west of  

Yucatan peninsula. 

Based on tidal patterns and surface drainage (geomorphology and hydrology), Lugo and Snedaker [52] 

proposed a classification scheme for mangrove forest. According to their framework, six well-defined 

physiognomic types are distinguishable: fringe, riverine, overwashed, basin, scrub, and hammock. 
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Except for the riverine type, all forest types are found in the NW of Yucatan Peninsula. In the study area, 

four types have been recognized: fringe, dwarf, basin, and peten [53]. Fringe mangroves occur along the 

edge of the lagoon, composed mainly by R. mangle at the front and L. racemosa at the interior zone. 

Fringe mangroves reach 12–14 m in height and are exposed to daily tidal inundation [54]. On the 

contrary, dwarf mangroves develop in highly saline environments with limited nutrient input and 

generally they do not exceed 4 m; dwarf mangroves are composed mainly by R. mangle, followed by  

A. germinans and L. racemosa [52,54,55]. Basin mangroves distribute inland, north of the study area, 

along drainage depressions. They are flooded by runoff and the dominant species are A. germinans and 

R. mangle [54]. Peten mangroves, also known as “hammocks” consist of characteristic islands of 

vegetation that stand out from a surrounding matrix composed of dwarf mangrove and savannah. These 

islands may reach 20–25 m and flourish over freshwater springs. Therefore, salinity is considerably 

lower and nutrient input is constant [54]. Representative species of this type of mangrove include  

R. mangle, A. germinans, and L. racemosa, associated with other evergreen and semi-evergreen tropical 

trees intolerant to salinity [54,56]. 

2.2. Data Acquisition 

A field campaign was carried out between 7 and 14 January 2014. The purpose of the fieldwork was 

to collect leaf hyperspectral data and SPAD-Chlorophyll meter readings. Multispectral Landsat 8 data were 

acquired on 28 January to measure the association between CC and satellite-derived VIs. Landsat 8 was 

selected in this study given that its medium spatial resolution (30 m) enables capture of the heterogeneity 

of the mangrove landscape while its spectral resolution enables the computation of broad band indices 

highly correlated with CC [1,57]. In addition, Landsat 8 is the most recent instrument of the Landsat 

mission and has a similar spatial resolution to the future Sentinel 2 MSI sensor; therefore, it allows the 

continuity of mangrove chlorophyll concentration monitoring. 

The leave-one-out cross-validation (LOOCV) method was used to validate the relationship between 

CC at the ESU level and Landsat 8 NDVI green. Figure 2 provides a schematic overview of the 

methodology followed in this paper. 

Ground Data Collection 

Twelve elementary sampling units (ESUs) of 30 m by 30 m to represent the Landsat spatial resolution 

were sampled. Coordinates were recorded at each ESU with a Global Positioning System (GPS) 

handheld receiver unit e-Trex (GARMIN International, Inc), with <15 m accuracy. At the center of each 

ESU two or three trees were sampled, according to species richness. To take account of the uneven 

distribution of CC in the canopy [58], on each sampled tree 15 leaves were taken from the top of the 

canopy and 15 leaves from below the top. The following measurements were performed for each tree:  

(i) Leaf hyperspectral measurements: Leaf adaxial spectra were measured using the leaf clip of the 

Analytical Spectral Devices (ASD) Field Spec Pro spectrometer (Analytical Spectral Devices, Boulder, 

CO, USA) with a 350–2500 nm spectral range. Three scans were taken per leaf. The ASD spectrum 

averaging per scan was set to 25. Optimization and dark current collection were performed before 

measuring each leaf.  
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(ii) Leaf Chlorophyll: All leaves used in (i) were measured using a portable Minolta SPAD-502 

Chlorophyll Meter (SPAD-502). The average of five SPAD readings evenly distributed around the leaf 

adaxial face was taken to represent the CC. Calibration equations were used to convert the SPAD values 

to actual chlorophyll concentration. Finally, the ESU CC was expressed as the average of the total 

number of leaves measured per ESU. For example, if in one ESU the total number of leaves measured 

were 90, the chlorophyll concentration would be the average of 90 leaves. 

 

Figure 2. Schematic diagram of the procedures in relating CC to VIs. In this paper the  

leaf level refers to the CC and hyperspectral response measured at individual leaves. ESU level 

refers to CC and hyperspectral response averaged at Elementary Sampling Unit level (a plot of 

30 m by 30 m to represent the spatial resolution of Landsat 8). Chl maps were computed using 

the Landsat 8 VI, which had the best performance in terms of correlation with Chl at ESU level. 

2.3. Ground Data Processing 

2.3.1. SPAD Calibration 

Several equations describing the statistical relationship between the SPAD readings and CC are 

available in the literature. We used the homographic equation of Connelly (1997) for R. mangle to 
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convert the SPAD readings to CC. Table S1 in the Supplementary Information shows the published 

conversion equations including polynomial, exponential, linear, and homographic. The relationship 

depends on leaf structure factors such as leaf thickness, leaf mass per area (LMA) [28], and the 

proportion of vascular tissue [59], characteristics known to vary among species. Equations reported by  

Coste et al. [28], Cerovic et al. [59], and Marenco et al. [60] have general applicability as they are 

estimated from different species covering a range of leaf characteristics. For the particular case of 

mangroves, the only equation reported in the literature is that of Connelly [30], established for the red 

mangrove (R. mangle). This equation has a close agreement with equations estimated from different 

species covering a range of leaf characteristics (Figure S1, Supplementary Information) and, therefore, 

was deemed to be suitable for the purposes of the study. Once SPAD readings were converted to CC, each 

individual leaf CC was compared with its corresponding spectral response to establish the CC and 

spectral characteristics at the leaf level. 

Table 1. Hyperspectral and broad band indices used in this research. 

Vegetation Index Abbreviation Formula Reference

Simple Ratio Index680 SR680 
ρ800ρ680 [61] 

Simple Ratio Index750 SR750 
ρ750ρ705 [62] 

Normalized Difference Vegetation Index680 NDVI680 
(ρ800 − ρ680)(ρ800 + ρ680) [63] 

Normalized Difference Vegetation Index705 NDVI705 
(ρ750 − ρ705)(ρ750 + ρ705) [62] 

Modified Red Edge Simple Ratio Index mSR705 
(ρ750 − ρ445)(ρ705 − ρ445) [45] 

Modified Normalized Difference Vegetation Index mND705 
(ρ750 − ρ705)(ρ750 + ρ705 − 2 × ρ445) [45] 

MERIS Terrestrial Chlorophyll Index MTCI 
(ρ753.75 − ρ708.75)(ρ708.75 + ρ681.25) [40] 

Vogelmann Red Edge Index 1 VOG1 
ρ740ρ720 [64] 

Vogelmann Red Edge Index 2 VOG2 
(ρ734 − ρ747)(ρ715 + ρ726) [65] 

Vogelmann Red Edge Index 3 VOG3 
(ρ734 − ρ747)(ρ715 + ρ720) [65] 

Photochemical Reflectance Index PRI 
(ρ531 − ρ570)(ρ531 + ρ570) [66] 

Transformed Chlorophyll Absorption Ratio Index TCARI 3 × (ρ700 − ρ670) − 0.2 × (ρ700 − ρ550) × (ρ700ρ670) [67] 

Modified Chlorophyll Absorption Index mCARI705 (ρ750 − ρ705) − 0.2 × (ρ750 − ρ550) × (ρ750ρ705) [68] 

Green Normalized Difference Vegetation Index NDVI green 
(ρNIR − ρGreen)(ρNIR + ρGreen) [69] 

Simple Ratio  Simple Ratio
ρNIRρRed [61] 

Green Chlorophyll Index CI green 
ρNIRρRed − 1 [44] 

Normalized Difference 

 Vegetation Index 
NDVI 

(ρNIR − ρRed)(ρNIR + ρRed) [63] 

Enhanced Vegetation Index EVI1 2. 5 × (ρNIR − ρRed)(1 + ρNIR + 6 × ρRed − 7.5 × ρBlue) [70] 

Enhanced Vegetation Index 2 EVI2 2.5 × (ρNIR − ρRed)(1 + ρNIR + 2.4 × ρRed) [71] 

Wide Dynamic Rage Vegetation Index WDRVI 
(α × ρNIR − ρRed)(α × ρNIR + ρRed) [72] 

Green Wide Dynamic Range Vegetation Index WDRVI green
(α × ρNIR − ρGreen)(α × ρNIR + ρGreen) + ( )( ) [73] 
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2.3.2. Hyperspectral Data Processing 

A total of 21 VIs were computed using the hyperspectral data collected in the field, 13 VIs were 

narrow band indices while 8 were broad band indices (Table 1). Hyperspectral bands employed were 

445, 531, 550, 570, 670, 680, 681, 700, 705, 708, 715, 720, 726, 734, 740, 747, 750, 753, and 800 nm. 

Spectral bands used to compute broad band VIs were: Blue (436–528), green (512–610), red (625–691), 

and NIR (829–900 nm). Broad band VIs were computed using the Landsat 8 spectral response function 

available in the Landsat Science website (http://landsat.gsfc.nasa.gov/). Narrow and broad band indices 

were then used to establish the relationship between CC and the spectral characteristics of mangrove 

leaves. Therefore, the selection of these indices was based upon their tested ability to predict CC.  

2.4. Satellite Sensor Data Processing 

Six Landsat 8 images were obtained between April 2013 and March 2014 (path 21, row 45). All 

images were pre-processed using the Fast Line-of-sight Atmospheric Analysis of Hypercubes 

(FLAASH) algorithm in ENVI 5.0. The January 2014 image, which corresponds to the month where 

field data were obtained, was employed to compute eight broad band VIs: NDVI green, WDRVI green, 

NDVI, EVI2, WDRVI, CI green, SR, and EVI1 (Table 1). These VIs produced a large correlation with 

CC from previous analyses. The correlation between CC at the ESU level and Landsat 8 VIs was 

examined. The index that provided the largest correlation between the Landsat 8 images and CC 

measured at the ground was then used to produce the CC maps. Non-mangrove pixels were masked out 

using the land cover map of the Yucatan Peninsula [74]. 

Statistical Analysis 

The Kruskal–Wallis test was conducted to explore the overall statistical difference among mangrove 

species. Further, pairwise comparisons between species were conducted using the Wilcoxon signed-rank 

test. To establish the relationship between leaf CC and leaf spectral response, simple linear regression 

was applied and the coefficient of determination was estimated for the entire dataset and on a per-species 

basis. To examine the influence of a mixed species signal and its relationship with CC, CC and the VIs 

were merged at each ESU and simple linear regression was applied and the coefficient of determination 

estimated. Similarly, to examine the relationship between CC measured at the ground and Landsat 8 VIs, 

the CC was merged at each ESU and simple linear regression was applied and the coefficient of 

determination estimated. The LOOCV approach was used to assess the accuracy of the CC map created 

with the image acquired close to the field campaign dates, and the coefficient of determination and 

RMSE were estimated. This LOOCV approach consists of training a model with the complete dataset 

except for one point, then that point is predicted by the model allowing accuracy statistics to be 

estimated. The process iterates N times and the RMSE is calculated [75]. Statistical analyses were 

conducted in the R statistical software [76]. 
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3. Results 

3.1. Spectral Variation among Species 

Spectral reflectance curves of the four mangrove species are presented in Figure 3. In general, the 

species exhibit similar curves typical of green vegetation. A. germinans had the highest reflectance in 

the visible region as well as in the NIR, while R. mangle had the lowest reflectance in the visible spectral 

bands. C. erectus and A. germinans are not clearly distinguishable in the green region. Similarly,  

R. mangle and C. erectus are confounded in the NIR region of the spectrum. 

 

Figure 3. Spectral reflectance of mangrove species (mean ± SD). The smaller plots on the 

upper right corner represent a zoom in of the visible range of the spectrum. The visible region 

depicts features associated with differences in Chl (μg·cm−2) among species. R. mangle, the 

species with the highest CC shows the lower reflectance in the visible part of the spectrum. 

3.2. Mangrove Species CC 

Figure 4 shows the CC in leaves obtained from four species of mangrove. The range of CC was  

2.28–92.28 μg·cm−2 for C. erectus, 16.67–84.39 μg·cm−2 for L. racemosa, 20.35–82.81 μg·cm−2 for  

A. germinans, and 22.28–96.14 μg·cm−2 for R. mangle. On average, CC was highest for R. mangle and 

lowest for C. erectus. Significant differences (p < 0.05) were observed between the following pairs:  

(i) R. mangle–A. germinans, (ii) L. racemosa–C. erectus, and (iii) R. mangle–C. erectus. 
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Figure 4. Leaf CC (μg·cm−2) for the four mangrove species. Each box embodies the first 

and the third quartile. The bold line represents the median while the dark dot represents the 

mean. Whiskers are located at 1.5 times the interquartile range and white dots denote 

outliers. Significant differences (p < 0.05) were observed between the following pairs:  

(i) R. mangle–A. germinans, (ii) L. racemosa–C. erectus, and (iii) R. mangle–C. erectus. 

3.3. Performance of VIs 

Leaf hyperspectral response was used to derive the VIs listed in Table 1. Leaf-level relationships were 

computed between the narrow band VIs and CC. The narrow band VIs with the most explanatory power 

(R2 > 0.5) were VOG indices, MTCI, mND705, mSR705, mCARI705, and SR750 (Table 2, Figure 5). When 

coefficients of determination were computed on a per-species basis, VIs followed the same trend 

showing an increase in the percentage of explained variation in CC. The best performing narrow band 

VIs in terms of coefficient of determination for R. mangle were VOG2, VOG3, VOG1, mND705, and MTCI 

(Table 3). Similarly, VOG2, VOG3, MTCI, VOG1, and mSR705 performed best for L. racemosa (Table 4). 

A. germinans CC had the largest correlation with VOG1, VOG3, mCARI705, MTCI, and mND705 (Table 5), 

while VOG2, VOG3, VOG1, mCARI705, and mND705 best explained CC variation in C. erectus (Table 6). 

Table 2. Relationship between CC and VIs (n = 987). 

VI Intercept Slope R2 RMSE Signif. 

VOG2 20.382 –449.057 0.588 11.3 *** 
VOG1 −77.714 91.798 0.587 11.3 *** 
VOG3 22.558 −379.752 0.582 11.4 *** 
MTCI 22.817 15.554 0.564 11.7 *** 

mND705 −7.524 112.029 0.551 11.8 *** 
mSR705 16.172 10.088 0.530 12.1 *** 

mCARI705 22.597 35.201 0.528 12.1 *** 
SR750 9.051 14.264 0.514 12.3 *** 

TCARI 82.556 −103.717 0.457 13.0 *** 
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Table 2. Cont. 

VI Intercept Slope R2 RMSE Signif. 
WDRVI green 15.381 65.250 0.450 13.1 *** 
NDVI green 2.228 92.202 0.446 13.2 *** 

CI green 30.693 7.828 0.432 13.3 *** 
NDVI −40.481 120.412 0.281 15.0 *** 

WDRVI 27.422 60.234 0.274 15.1 *** 
SR 30.901 2.438 0.217 15.6 *** 

EVI2 −30.779 228.633 0.203 15.8 *** 
EVI1 −34.546 221.288 0.198 15.8 *** 

NDVI705 10.544 116.844 0.185 16.0 *** 
SR680 32.193 1.614 0.116 16.6 *** 

NDVI680 40.587 30.073 0.006 17.6 * 

Notes: Statistical significance 0.05 “*”; 0.001 “***”. 

 

Figure 5. Scatterplots of VIs that showed the highest correlation (R2 > 0.53) with CC. Red: 

R. mangle, black: A. germinans, grey: L. racemosa, and green: C. erectus. 
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Table 3. Relationship between CC and VIs for R. mangle (n = 579). 

VI Intercept Slope R2 RMSE Signif. 
VOG2 18.188 −451.792 0.693 5.7 *** 
VOG3 21.345 −373.644 0.688 5.7 *** 
VOG1 −87.574 96.967 0.672 5.8 *** 

mND705 −42.674 163.958 0.672 5.8 *** 
MTCI 22.359 15.054 0.670 5.9 *** 
mSR705 14.913 9.963 0.650 6.0 *** 
SR750 4.131 15.024 0.621 6.3 *** 

NDVIgreen −54.493 174.230 0.609 6.4 *** 
WDRVIgreen −13.384 100.923 0.607 6.4 *** 

CIgreen 24.163 8.929 0.584 6.6 *** 
mCARI705 23.182 33.436 0.582 6.6 *** 

TCARI 93.665 −174.992 0.577 6.6 *** 
NDVI705 29.339 81.311 0.114 9.6 *** 
WDRVI 31.829 51.978 0.056 10.0 *** 

SR 44.576 1.352 0.055 10.0 *** 
NDVI −43.281 123.583 0.055 10.0 *** 
EVI1 15.393 110.420 0.043 10.0 *** 
EVI2 20.601 104.767 0.037 10.1 *** 

NDVI680 44.377 33.138 0.011 10.2 ** 
SR680 60.735 0.049 0.000 10.2 ns 

Notes: Statistical significance, not significant “ns”; 0.05 “*”; 0.01 “**”; 0.001 “***”. 

Table 4. Relationship between CC and VIs for L. racemosa (n = 151). 

VI Intercept Slope R2 RMSE Signif. 
VOG2 26.277 −274.101 0.881 0.6 *** 
VOG3 27.114 −238.934 0.880 0.6 *** 
MTCI 26.178 10.039 0.866 0.6 *** 
VOG1 −26.703 50.467 0.865 0.6 *** 
mSR705 19.105 7.395 0.852 0.7 *** 

CI green 27.373 6.728 0.841 0.7 *** 
SR750 15.436 9.852 0.838 0.7 *** 

TCARI 60.562 −57.535 0.835 0.7 *** 
mND705 12.596 58.631 0.830 0.7 *** 

WDRVI green 21.085 41.491 0.830 0.7 *** 
NDVI green 14.663 53.726 0.809 0.8 *** 
mCARI705 26.561 21.353 0.804 0.8 *** 
WDRVI 24.994 41.655 0.545 1.2 *** 

SR 23.427 2.278 0.541 1.2 *** 
NDVI −22.222 82.947 0.536 1.2 *** 
EVI1 −13.213 135.008 0.422 1.4 *** 
EVI2 −10.006 138.282 0.420 1.4 *** 

NDVI705 16.729 65.825 0.384 1.4 *** 
SR680 29.778 0.964 0.139 1.7 *** 

NDVI680 19.155 43.457 0.059 1.7 ** 
Notes: Statistical significance, 0.01 “**”; 0.001 “***”. 
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Table 5. Relationship between CC and VIs for A. germinans (n = 121). 

VI Intercept Slope R2 RMSE Signif. 

VOG2 29.348 −309.760 0.639 0.9 *** 
VOG3 30.320 −273.024 0.634 0.9 *** 

mCARI705 28.267 29.045 0.627 0.9 *** 
MTCI 28.543 14.332 0.594 1.0 *** 

mND705 12.727 77.113 0.590 1.0 *** 
VOG1 −34.331 61.339 0.589 1.0 *** 
mSR705 17.873 11.066 0.579 1.0 *** 
SR750 16.139 13.104 0.523 1.0 *** 
EVI1 −17.632 152.880 0.492 1.0 *** 
EVI2 −16.545 164.050 0.452 1.1 *** 

NDVI green 26.849 47.782 0.384 1.2 *** 
WDRVI green 32.141 38.064 0.372 1.2 *** 

TCARI 66.330 −42.785 0.362 1.2 *** 
CI green 37.155 6.625 0.346 1.2 *** 
NDVI705 21.378 59.379 0.258 1.3 *** 
NDVI 14.489 45.855 0.188 1.3 *** 

WDRVI 40.738 22.664 0.175 1.3 *** 
NDVI680 13.451 58.514 0.136 1.4 ** 

SR 40.683 1.125 0.127 1.4 ** 
SR680 39.332 0.765 0.077 1.4 * 

Notes: Statistical significance, 0.05 “*”; 0.01 “**”; 0.001 “***”. 

Table 6. Relationship between CC and VIs for C. erectus (n = 136). 

VI Intercept Slope R2 RMSE Signif. 

VOG2 4.968 −1013.500 0.834 5.0 *** 
VOG3 6.924 −895.743 0.830 5.0 *** 
VOG1 −182.561 181.758 0.817 5.2 *** 

mCARI705 6.077 84.213 0.810 5.3 *** 
mND705 −26.193 188.601 0.794 5.5 *** 

EVI2 −146.001 602.331 0.794 5.5 *** 
EVI1 −144.589 545.121 0.783 5.7 *** 
MTCI 4.549 36.791 0.779 5.7 *** 

NDVI705 −58.082 335.829 0.776 5.8 *** 
SR750 −34.070 37.251 0.775 5.8 *** 

mSR705 −20.928 27.366 0.768 5.9 *** 
SR680 −64.088 12.103 0.755 6.0 *** 

NDVI green −23.472 188.194 0.735 6.3 *** 
WDRVI green −7.665 157.046 0.726 6.4 *** 

WDRVI 19.586 143.564 0.711 6.6 *** 
NDVI −116.197 250.425 0.705 6.6 *** 

CI green 7.468 28.715 0.698 6.7 *** 
TCARI 130.880 −201.672 0.686 6.8 *** 

SR −13.847 11.322 0.685 6.8 *** 
NDVI680 −253.313 605.497 0.501 8.6 *** 

Notes:  Statistical significance, 0.001 “***”. 
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3.4. VIs and CC at the ESU Level 

The CC of sampled leaves and narrow band VIs were averaged within the ESUs. The main difference 

between this step and the previous section is that in this section we attempted to produce a mixed species 

response. Linear models were fitted to describe quantitatively the response of VIs to change in CC at the 

ESU level. The red-edge VIs mCARI, VOG1, EVI2, EVI1, VOG2, VOG3, mND, NDVI, SR750, MTCI, 

mSR, and NDVI green individually explained more than 60% of the variation in CC (Figure 6). It is 

important to note that some of these indices (NDVI green, WDRVI green, NDVI, EVI2, WDRVI, CI 

green, SR, and EVI1) can be calculated using Landsat 8 data, allowing measurements of chlorophyll 

concentration at landscape scale. 

 

Figure 6. Cont. 
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Figure 6. Correlations between VIs and CC (μg·cm−2) at ESU level. 

3.5. Chl Concentration and Landsat 8 VIs 

One Landsat 8 image acquired in January 2014 was used to derive broad band VIs for comparison 

with CC at the ESU level. Using the coordinates recorded in the field, each ESU plot was located on the 

Landsat 8 image. The average CC per ESU was plotted against its corresponding pixel on the Landsat 8 

NDVI green and the coefficient of determination was computed. The correlation analyses demonstrated 

that Landsat 8 NDVI green is the broad band VI most sensitive to CC at the ESU level (R2 = 0.805), 

(Figure 7). The linear model that produced this large correlation, described by Equation 1, was used to 

construct a Chl map. 

y =−54.545 + 149.396x (1)

where x = pixel value of the Landsat 8 NDVI green image. 
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Figure 7. Correlations between Landsat 8 VIs and CC at ESU level. 
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3.6. Accuracy Assessment 

The relationship between CC at the ESU level and Landsat 8 NDVI green expressed by Equation (1) 

was assessed using the LOOCV method. The coefficient of determination was relatively large  

(R2 = 0.703) indicating a good level of agreement between observed CC and predicted CC (Figure 8). 

The root mean squared error (RMSE) was used to compare the observed vs. predicted CC  

(RMSE = 15 g·cm−2). RMSE was calculated using Equation (2): = ∑ ( )
, (2)

where CCobs and CCpred are the observed and predicted CC, respectively. 

 

Figure 8. Observed against predicted CC using the leave-one-out cross-validation method. 

Each point represents an ESU. RMSE =15 μg·cm−2, R2 = 0.703. 

3.7. Spatial Variation of Chlorophyll Concentration across the Study Site  

A Landsat 8 image acquired in January 2014 was used to produce landscape scale mangrove leaf 

CC map. First, NDVI green was computed for the region of interest then, using Equation (1), CC was 

calculated for every pixel using the band math tool in ENVI 5.0. The same procedure was applied to 

the Landsat 8 images acquired at different dates throughout a complete annual cycle (Figure 9). Maps 

are able to show the spatial distribution of CC with a pattern that seems related to distance from water. 

Larger CC values are observed at the borders of the Ría Celestún, in petenes (characterized by circular 

shaped “islands” of vegetation), and flooded areas, with values decreasing towards the continent or 

the sea. With respect to the temporal variability, in general the maps depict an increasing gradient 

from April 2013 to November 2013 and a decreasing pattern form November 2013 to March 2014 

(Figure 10). 
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Figure 9. Remote sensing-based maps of the spatiotemporal variation in CC (μg·cm−2) 

estimated using the relationship between Landsat 8 NDVI green and Chl measurements 

obtained in the field. The non-mangrove pixels have been masked out. 

 

Figure 10. Temporal variation in CC. The boxes represent each CC map. Each box embodies 

the first and the third quartile. The bold line represents the median while the dark dot 

represents the mean. Whiskers are located at 1.5 times the interquartile range and white dots 

denote outliers. 
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4. Discussion 

Leaf CC is an important biophysical variable used as an indicator of vegetation condition and stress. 

Field-based measurements of biophysical variables in mangrove forests are labor-intensive and  

time-consuming. Consequently, only a few spatially localized studies have focused on estimating 

mangrove CC [21,22,32]. To obtain a synoptic view of mangrove condition at the landscape level, it is 

important to generate more data on the spatial and temporal variation of mangrove biochemical 

variables. The current research assessed the performance of hyperspectral and broad band VIs for 

predicting the CC of mangroves at the leaf and ESU levels. The association between CC at the ESU 

level and Landsat 8 NDVI green was validated using the LOOCV approach. In addition, six maps 

depicting the spatiotemporal variability of CC using Landsat 8 data are presented. 

4.1. Spectral Signature and Chl Concentration 

Leaf spectral features in the visible and NIR regions of the spectrum have been associated to pigment 

concentration (e.g., chlorophyll) and leaf structure, respectively [77]. Chl peaks of absorbance are 

located in the blue and red regions of the spectrum. Since carotenoid absorbance also occurs in the blue 

region, typically the red spectral bands are used to estimate Chl [45]. Low reflectance in the red part of 

the spectrum is then related to the presence of Chl. In this study, R. mangle had the lowest reflectance 

in the red spectral bands, followed by L. racemosa, A. germinans, and finally C. erectus with the highest 

reflectance of the four species. Accordingly, the average CC followed the same gradient; it was highest 

for R. mangle and lowest for C. erectus, no statistical difference was found between L. racemosa and  

A. germinans and R. mangle and L. racemosa. Likewise, Flores-de-Santiago, Kovacs and  

Flores-Verdugo [22,32] reported similar CC ranges per species; the highest CC in R. mangle and lowest 

for L. racemosa and A. germinans was in the Mexican Pacific. In Brazil, Rebelo-Mochel and Ponzoni [78] 

reported the highest reflectance in the visible bands for C. erectus and lowest for R. mangle, confirming 

our results. However, they did not measure pigment concentration. 

The NIR reflectance, in contrast, is known to be affected by leaf anatomical structure such as leaf 

thickness, cell walls, and intracellular air spaces. We did not carry out leaf anatomical measurements; 

however, the low NIR reflectance of R. mangle and significantly higher reflectance of A. germinans 

would suggest differences in leaf morphological characteristics. Rebelo-Mochel and Ponzoni [78] also 

reported higher reflectance in the NIR for A. germinans. In addition, Lima et al. [79] reported 

significantly lower palisade, spongy parenchyma, and total leaf thickness for R. mangle. Furthermore, 

physical gradients such as waterlogging [80] and salinity [81–83] act on mangrove leaf morphology and 

pigment concentration and this, in turn, could affect the visible and NIR leaf reflectance. 

4.2. Chl Concentration and Narrow Band Vegetation Indices 

In general, the correlation between the VIs derived from remote sensing data and CC in the mangrove 

leaves was significant at all levels. Indices specifically designed to be sensitive to CC such as VOG 

indices and MTCI produced the largest coefficient of determination at the leaf level (R2 > 0.5). 

VIs that best explained the variability in CC were those that included in their formula spectral bands 

in the range 705 to 753 nm (e.g., VOG and MTCI). VOG indices and MTCI had the largest correlation 
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with CC at the leaf level (R2 = 0.56–0.58) when all leaves were pooled together. Similarly, these indices 

had the largest correlation on a per-species basis (Tables 3–6, Figure 5). Flores-de-Santiago, Kovacs and 

Flores-Verdugo [32] and Zhang [19] suggested VOG1 was the optimal VI in terms of its linear 

correlation with Chl a concentration in mangrove leaves. Moreover, our results show that the MTCI had 

equal or, in some cases, larger correlation with leaf CC than VOG1. For instance, VOG1 had an average 

difference of 1.1% with respect to MTCI. Also, in this study VOG2 correlated better with CC than VOG1 

or MTCI. Finally, opposed to their counterparts, the modified indices mSR705, mND705, and mCARI705 

produced a larger correlation. Modified indices with spectral bands of 705 nm and 750 nm in general 

had a larger correlation than those composed by 800 nm and 670 nm [68]; this is consistent with our 

findings in that mND705 performed at the same level of VOG indices in R. mangle, the species with the 

highest CC.  

4.3. Chl Concentration and Broad Band Vegetation Indices Performance from Leaf to ESU Level 

According to our results, the relationship between broad band VIs and CC increased as we move from 

leaf level to ESU level (Figure 7). Although the correlation between CC and broad band VIs was 

significant at leaf level (Table 2), this correlation was relatively weak (R2 ~ 0.4, p < 0.001). The relatively 

weak relationship is explained by the variability in the data. Differences in leaf structure among 

mangrove species affect the leaf spectral reflectance. Therefore, the response of VIs to CC varies among 

mangrove species (Tables 3–6). Conversely, at ESU level, high significant correlation was observed 

between six Landsat 8 broad band VIs and CC (N = 12; R2 > 0.7; p < 0.001). At this stage, the CC 

measured at each ESU was averaged and compared with the Landsat 8 broad VI pixel value. In this 

study, Landsat 8 NDVI green was able to explain ~80% of the variation in CC at the ESU level. The 

linear model that produced this large correlation was the basis for upscaling CC at landscape scale. 

The main difference between broad band and hyperspectral algorithms is the width of the spectral 

band used for the computation of the index. Broad band indices use information from wide regions of 

the spectrum such as blue, green, red, near infrared, and short wave near infrared regions. On the 

contrary, hyperspectral indices include narrow regions of the spectrum. It is possible to derive 

information about the structure and biochemical composition of vegetation from both types of indices, 

however, hyperspectral indices that include bands in areas of the spectrum of high absorbance by 

chlorophyll a and b (particularly between 650 and 690 nm) perform best at estimating chlorophyll 

concentration. The transition region between the red and the near infrared part of the spectrum, the so-

called red edge (680–750 nm) tends to shift towards longer wavelengths at high chlorophyll 

concentrations [41]; therefore, those indices that include narrow bands in the red edge are more sensitive 

to variations in chlorophyll. 

4.4. Chl Map 

The VI that best explained the variation in CC at the ESU level, the Landsat 8 NDVI green, was used 

to create the Chl maps. Gitelson et al. [69] developed the NDVI green for MODIS and, unlike its 

predecessor, the NDVI that uses the red band (650–690 nm), the NDVI green incorporates the green 

band (530–570 nm) in its formulation and is sensitive to a wider range of CC [69,84]. Similar to MODIS, 

the Landsat 8 green band ranges between 530 and 590 nm, this region of the electromagnetic spectrum 
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is located above the “green edge” between two regions of strong pigment absorption: blue (460–480 nm) 

and red (650–690 nm) [69]. It has been observed that the green edge has behavior similar to the red edge 

in the sense that both edges tend to shift towards longer wavelengths at high CC [41]. Therefore, as CC 

increases and the red spectral band reaches minimum reflectance the green band still remains sensitive; 

this may explain why Landsat 8 NDVI green was best correlated to CC at ESU level. 

To our knowledge, this is the first time that Landsat 8 has been used to map the CC of mangrove 

forest at landscape scale in Mexico. The importance of the relationship between Landsat 8 VIs and CC 

stems from the potential of Chl to be used as a proxy of GPP, as has been suggested in precision 

agriculture studies [85,86].  

Although the Chl maps depict a reasonable spatial and temporal pattern in CC, there is uncertainty 

associated to them as they were constructed under some limitations and assumptions. The main limitation 

of this study is that LAI measurements were not collected during the field campaign. LAI is a major 

component of canopy Chl content [87,88], this latter is defined as the product of CC and LAI [44,84]. 

Therefore, in this study it was not possible to derive canopy Chl content to plot against Landsat 8 NDVI 

green. Instead of canopy Chl content, we used leaf CC averaged at the ESU level.  

In addition, differences in plant structure, changes in soil reflectance, and changes in soil moisture 

and leaf moisture might affect the relationship between Landsat 8 VIs and CC at ESU level [43] 

particularly at LAI < 3 [89].  

Although this assumption requires further investigation, there are reasons to believe that LAI does 

not vary much temporally. In an evergreen tropical forest Wagner et al. [90] reported seasonal variations 

in EVI and litter fall, but the authors did not find a seasonal pattern in LAI. Similarly, in a mangrove 

forest in the Mexican Pacific, Flores-de-Santiago, Kovacs and Flores-Verdugo [22] found no significant 

difference in LAI between dry and rainy seasons for R. mangle and A. germinans, irrespective of their 

condition; the authors only found significant difference in LAI in L. racemosa. In summary, one major 

assumption in the present study was that Landsat 8 NDVI green responded to variation in CC at the ESU 

level rather than to variation in LAI, canopy closure, and background reflectance, suggesting that further 

research is needed to account for the potential contribution from LAI in CC estimation. 

Another assumption was that the trees sampled were representative of a Landsat 8 pixel of 30 m × 30 m. 

Pixels that cover more than one species are a source of uncertainty [68]. According to our results, 

mangrove species contribute in different proportions to the total CC at ESU level. Although only four 

species of mangrove dominate the landscape in the study area, species composition and density vary 

spatially [91]. It is also important to note that the association between CC and VIs was based on the January 

image (close to maximum canopy development) with average CC ranging between 40 and 70 μg·cm−2 thus 

particularly the low CC values (e.g., those estimated in April/May 2013) are affected by a degree of 

uncertainty. In addition, in order to convert SPAD readings into actual chlorophyll concentration 

calibration equations have to be applied; however, due to logistical and equipment constrains in this 

study it was not possible to derive calibration equations from the SPAD readings. Therefore, a published 

equation based on the dominant species of mangrove was used. 

To partially overcome some of these issues, it is recommended to sample a larger number of ESUs 

including field measurements of LAI at different seasons and to develop Chl meter and CC calibration 

equations. Finally, as this is a pioneer study the authors acknowledge that the limited number of ESUs 
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may lead to optimistic results. For the reasons explained above, in this paper the focus is on the seasonal 

variation of CC rather than in the absolute values of CC. 

The results of this research have implications for the use of a new generation of satellites that include 

a spectral band in the red edge position such as the Sentinel 2 from the European Space Agency. At a 

leaf level, the hyperspectral indices tested in this study that had a red edge band in their formulation 

achieved a larger correlation with leaf CC. At ESU level, the Landsat 8 broad band index NDVI green 

achieved the largest correlation with Chl measured on the ground. Further, Sentinel 2 will enable 

computation of commonly used broad band indices such as the NDVI green plus the highly correlated 

VI’s using the red edge bands. Sentinel 2 transcends the capabilities of the Landsat mission in terms of 

swath width, spatial resolution, revisit time, and number of spectral bands [92]. Information in the red 

edge combined with the frequent revisit time of Sentinel 2 (5 days) is expected to increase the accuracy 

of leaf CC estimation. To date, algorithms to estimate CC based on Sentinel 2 simulated spectral bands 

are being revised, created, and validated in crops across Europe, showing promising results [93–95]. 

Therefore, there is much scope for the application of these algorithms to estimate CC in mangrove forests 

once Sentinel 2 is operational. 

5. Conclusions  

The results presented in this work add to our understanding of the relationship between vegetation 

indices and the biochemical composition of mangrove by showing which multispectral and hyperspectral 

indices best explain the variation in chlorophyll concentration at the leaf and canopy level. We tested 

the ability of broad band and hyperspectral VIs to predict mangrove CC at different scales. At leaf level 

indices with spectral bands around the red edge (705–753 nm), Vogelmann indices and the MTCI were 

the most sensitive to mangrove leaf CC (R2 > 0.5). A key finding was that at ESU level, the best 

performing Landsat 8 VI was NDVI green, which explained 80% of the variation in CC. The linear 

model describing the relationship between CC and NDVI green was used to map the spatiotemporal 

variability of CC in the mangrove landscape. The study demonstrated that the multispectral,  

medium-resolution Landsat 8 can be used to quantify CC in mangrove forests where ground networks 

and other possible tools cannot be applied and the use of mapping techniques based on satellite data is 

absolutely necessary. A practical application of this result is that future efforts to estimate CC in 

mangrove forests using multispectral remote sensing should consider the use of Landsat 8 NDVI green. 

The findings also corroborated the utility of the red edge spectral bands to predict mangrove CC at leaf 

and ESU level. This has implications for the improvement of mangrove monitoring using upcoming 

technology such as Sentinel 2, which will include two spectral bands around the red edge position. This 

spectral band arrangement will allow for the computation of VIs highly correlated with CC tested in this 

work at finer spatial and temporal resolution. It is recommended that future research should focus on 

testing existing and newly developed algorithms to estimate CC in mangrove forests using the new 

generation of satellites that outperform the capabilities of current sensors. 
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