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Abstract: There is a need to develop indicators of mangrove condition using remotely
sensed data. However, remote estimation of leaf and canopy biochemical properties and
vegetation condition remains challenging. In this paper, we (i) tested the performance of
selected hyperspectral and broad band indices to predict chlorophyll concentration (CC) on
mangrove leaves and (i1) showed the potential of Landsat 8 for estimation of mangrove CC
at the landscape level. Relative leaf CC and leaf spectral response were measured at 12
Elementary Sampling Units (ESU) distributed along the northwest coast of the Yucatan
Peninsula, Mexico. Linear regression models and coefficients of determination were
computed to measure the association between CC and spectral response. At leaf level, the
narrow band indices with the largest correlation with CC were Vogelmann indices and the
MTCI (R?> 0.5). Indices with spectral bands around the red edge (705-753 nm) were more
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sensitive to mangrove leaf CC. At the ESU level Landsat 8 NDVI green, which uses the
green band in its formulation explained most of the variation in CC (R? > 0.8). Accuracy
assessment between estimated CC and observed CC using the leave-one-out cross-validation
(LOOCV) method yielded a root mean squared error (RMSE) = 15 pg-cm 2, and R? = 0.703.
CC maps showing the spatiotemporal variation of CC at landscape scale were created using
the linear model. Our results indicate that Landsat 8 NDVI green can be employed to
estimate CC in large mangrove areas where ground networks cannot be applied, and mapping
techniques based on satellite data, are necessary. Furthermore, using upcoming technologies
that will include two bands around the red edge such as Sentinel 2 will improve mangrove
monitoring at higher spatial and temporal resolutions.
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1. Introduction

Mangrove forests cover approximately 13.7 million ha of tropical and subtropical shorelines across
118 countries [1]. Worldwide, Mexico ranks fourth in terms of mangrove coverage (742,000 ha), with
55% of the coverage distributed along the coast of the Yucatan Peninsula. Mangrove forests provide a
wealth of direct and indirect ecosystem services such as natural protection barriers and nursery habitat
for marine organisms [2—5]. Further, the ability of mangrove forests to act as a carbon (C) sink has been
the focus of recent research. Estimates suggest that mangrove C storage ranges between ~160 Mg-ha™'
and ~1000 Mg-ha™! depending on location, species composition, height, and canopy closure [6,7]. Data
on C stocks have been published for numerous mangrove systems across the globe including Australia [6],
China [8], Indo-Pacific [7,9], Western-Pacific [10], Caribbean [11], and Mexico [12]. In addition, C
removal from the atmosphere has been estimated at around 1,170 + 127 g-C-m 2-year ' [13]. These
figures acquire relevance in the context of climate change mitigation as C sequestration is emerging as
a major strategy to reduce atmospheric C. In spite of the array of ecosystem services provided by
mangroves, their high productivity, and their role played in C dynamics at the land—ocean interface [14],
large areal losses are presently occurring due to deforestation and land use conversion due to both human
and natural drivers [15,16].

The high productivity and C uptake of mangroves are intimately linked to photosynthesis, which is
largely dependent on the availability of leaf pigments. Chlorophylls (Chl) are the most important leaf
pigments responsible for photosynthesis. Leaf pigments have been identified as indicators of
physiological status, senescence and stress [17,18]. This is also true in mangroves, which exhibit pigment
variation between species and health conditions [19-21]. Furthermore, mangroves are subject to a range
of environmental gradients that vary seasonally, potentially inducing stress. In a coastal lagoon system
that was markedly seasonal in terms of water availability, Flores-de-Santiago Kovacs and
Flores-Verdugo [21,22] found higher Chl a concentration during the rainy season in two species of
degraded dwarf stands, suggesting that precipitation patterns might have an effect on leaf biochemical
constituents and possibly on the total productivity of the mangrove forest.
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Given the potential of Chl to act as a surrogate of vegetation status, Chl has become a key biophysical
variable to monitor. The standard approach to estimating Chl concentration (CC) involves extracting the leaf
pigment using an organic solvent followed by spectrophotometric determination of absorbance in the
laboratory and, finally, conversion to CC using empirical equations [23,24]. A more practical technique that
complements the aforementioned approach consists on the use of portable Chl meters such as the
Opti-Sciences CCM-200 Chlorophyll Content Meter (CCM-200) and Minolta SPAD-502 Chlorophyll Meter
(SPAD-502). Portable Chl meters have been used extensively in precision agriculture and have been tested
on a variety of tree species [25-29]. To our knowledge, the first documented example of the use a portable
Chl meter in mangrove species is Connelly [30]. Connelly [30] reported a large correlation between CC and
Minolta SPAD-502 readings in red mangrove (Rhizophora mangle) (R*> 0.6 total Chl; R?> 0.7 Chl a). Years
later, Biber [31] assessed the CCM-200 in R. mangle (R°> 0.9 Chl a) and other wetland species. Recently,
Flores-de-Santiago Kovacs and Flores-Verdugo [32] documented large correlations for healthy stands of
three mangrove species (R. mangle R’ > 0.76, Laguncularia racemosa R>> 0.68 and Avicennia germinans
R’> 0.74; rainy season) using the CCM-200. Calibration equations need to be applied to use portable Chl
meter readings to convert these readings to actual chlorophyll concentration.

Remote sensing offers an alternative set of techniques to estimate chlorophyll concentration. These
can be grouped into two main categories: (i) Radiative transfer models and (ii) vegetation indices (VIs).
The physically based canopy reflectance model relies on the principle that canopy reflectance is
controlled by a combination of canopy and soil background biophysical variables such as vegetation
structure, leaf composition, and illumination angle [33—35]. To estimate Chl from observed reflectance
data, the physical model must be inverted. The inversion consists of adjusting the input biophysical
variables to reduce the error between the simulated and measured reflectance [36,37]. While these
techniques have been applied with success [38,39], they can be computationally demanding. In addition,
they suffer from the so-called ill-posed problem [40,41] due to model and measurements uncertainties;
that is, different model parameters might result in very similar spectra [42]. The VI approach is based
on the statistical or empirical relationship between arithmetic combinations of two or more spectral
bands and a particular leaf or canopy characteristic (i.e., chlorophyll concentration) [43]. It has been
argued that this approach is sensor-specific, site-dependent, and does not account for variability in LAI
However, the VI approach offers computational simplicity and accuracy, and its potential for predicting
vegetation variables is well supported by numerous published studies [40,44].

VIs can be derived from hyperspectral and multispectral data. Several studies have examined the
relationship of VIs and CC leaf hyperspectral response at the leaf level [19,41,45]. Sensors on board different
satellites have estimated vegetation CC using VIs at varying spatial resolutions, from a few to hundreds of
meters [46—48]. While field spectroscopy and satellite-derived VIs have been used to estimate the chlorophyll
content in leaves and canopies in different vegetation types, only few studies have focused on mangrove
forests [21,22,30,32]. The spatial distribution and seasonal dynamics of mangrove forest CC is not well
understood as previous studies have been spatially localized. Given the importance of foliar pigments as
surrogates of mangrove physiological status, phenology, health condition, and potentially GPP, it is
fundamental to assess the accuracy of VIs to predict CC at the leaf and landscape level. Our main goal is to
show for the first time that the multispectral sensor Landsat 8 can be potentially used to produce maps
of spatial distribution and temporal variation of chlorophyll concentration in mangrove forests.
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The objectives of this research were to (a) assess the performance of selected hyperspectral and broad
band VIs for predicting CC at the leaf level, and (b) relate the estimated CC on the ground with Landsat 8
data to map the spatial distribution and temporal variability of mangrove CC at the landscape level.

2. Methods
2.1. Study Area

The NW of the Yucatan Peninsula is characterized by a semi-arid climate [49] with three clear,
distinct seasons: A dry season from March to May, a rainy season from June to October, and a third
season characterized by cold fronts locally known as ‘“Nortes” from November to February [50].
Topographic features on land do not exceed 2 m elevation, and the mangrove forest extends parallel to
the coast [51] (Figure 1). Two protected areas are established in the region, El Palmar State Reserve and
the Biosphere Reserve of Ria Celestun. Mangrove communities in the protected areas are well developed
with four species dominating the landscape: R. mangle, L. racemosa, A. germinans, and Conocarpus erectus.
The karstic nature of the ground favors the rapid infiltration of rainfall, resulting in the absence of runoff
and the lack of important streams above the surface. Furthermore, wetland and floodplain flooding is
controlled by groundwater discharge. In the wet season, aquifers recharge and reach saturation. At this
point the water displaces horizontally while a fraction of it is discharged through sinkholes and fractures
known locally as “petenes” Surface water is reduced significantly in the dry season, confined to pools
and saturated soils adjacent to the sinkholes [51].
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Figure 1. Location of sampling units in the mangrove forest in the north west of
Yucatan peninsula.

Based on tidal patterns and surface drainage (geomorphology and hydrology), Lugo and Snedaker [52]
proposed a classification scheme for mangrove forest. According to their framework, six well-defined
physiognomic types are distinguishable: fringe, riverine, overwashed, basin, scrub, and hammock.
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Except for the riverine type, all forest types are found in the NW of Yucatan Peninsula. In the study area,
four types have been recognized: fringe, dwarf, basin, and peten [53]. Fringe mangroves occur along the
edge of the lagoon, composed mainly by R. mangle at the front and L. racemosa at the interior zone.
Fringe mangroves reach 12—14 m in height and are exposed to daily tidal inundation [54]. On the
contrary, dwarf mangroves develop in highly saline environments with limited nutrient input and
generally they do not exceed 4 m; dwarf mangroves are composed mainly by R. mangle, followed by
A. germinans and L. racemosa [52,54,55]. Basin mangroves distribute inland, north of the study area,
along drainage depressions. They are flooded by runoff and the dominant species are 4. germinans and
R. mangle [54]. Peten mangroves, also known as “hammocks” consist of characteristic islands of
vegetation that stand out from a surrounding matrix composed of dwarf mangrove and savannah. These
islands may reach 20-25 m and flourish over freshwater springs. Therefore, salinity is considerably
lower and nutrient input is constant [54]. Representative species of this type of mangrove include
R. mangle, A. germinans, and L. racemosa, associated with other evergreen and semi-evergreen tropical
trees intolerant to salinity [54,56].

2.2. Data Acquisition

A field campaign was carried out between 7 and 14 January 2014. The purpose of the fieldwork was
to collect leaf hyperspectral data and SPAD-Chlorophyll meter readings. Multispectral Landsat 8 data were
acquired on 28 January to measure the association between CC and satellite-derived VIs. Landsat 8 was
selected in this study given that its medium spatial resolution (30 m) enables capture of the heterogeneity
of the mangrove landscape while its spectral resolution enables the computation of broad band indices
highly correlated with CC [1,57]. In addition, Landsat 8§ is the most recent instrument of the Landsat
mission and has a similar spatial resolution to the future Sentinel 2 MSI sensor; therefore, it allows the
continuity of mangrove chlorophyll concentration monitoring.

The leave-one-out cross-validation (LOOCV) method was used to validate the relationship between
CC at the ESU level and Landsat 8 NDVI green. Figure 2 provides a schematic overview of the
methodology followed in this paper.

Ground Data Collection

Twelve elementary sampling units (ESUs) of 30 m by 30 m to represent the Landsat spatial resolution
were sampled. Coordinates were recorded at each ESU with a Global Positioning System (GPS)
handheld receiver unit e-Trex (GARMIN International, Inc), with <15 m accuracy. At the center of each
ESU two or three trees were sampled, according to species richness. To take account of the uneven
distribution of CC in the canopy [58], on each sampled tree 15 leaves were taken from the top of the
canopy and 15 leaves from below the top. The following measurements were performed for each tree:

(1) Leaf hyperspectral measurements: Leaf adaxial spectra were measured using the leaf clip of the
Analytical Spectral Devices (ASD) Field Spec Pro spectrometer (Analytical Spectral Devices, Boulder,
CO, USA) with a 350-2500 nm spectral range. Three scans were taken per leaf. The ASD spectrum
averaging per scan was set to 25. Optimization and dark current collection were performed before
measuring each leaf.



Remote Sens. 2015, 7 14535

(i) Leaf Chlorophyll: All leaves used in (i) were measured using a portable Minolta SPAD-502
Chlorophyll Meter (SPAD-502). The average of five SPAD readings evenly distributed around the leaf
adaxial face was taken to represent the CC. Calibration equations were used to convert the SPAD values
to actual chlorophyll concentration. Finally, the ESU CC was expressed as the average of the total
number of leaves measured per ESU. For example, if in one ESU the total number of leaves measured
were 90, the chlorophyll concentration would be the average of 90 leaves.
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Figure 2. Schematic diagram of the procedures in relating CC to VIs. In this paper the
leaf level refers to the CC and hyperspectral response measured at individual leaves. ESU level
refers to CC and hyperspectral response averaged at Elementary Sampling Unit level (a plot of
30 m by 30 m to represent the spatial resolution of Landsat 8). Chl maps were computed using
the Landsat 8 VI, which had the best performance in terms of correlation with Chl at ESU level.

2.3. Ground Data Processing

2.3.1. SPAD Calibration

Several equations describing the statistical relationship between the SPAD readings and CC are
available in the literature. We used the homographic equation of Connelly (1997) for R. mangle to
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convert the SPAD readings to CC. Table S1 in the Supplementary Information shows the published
conversion equations including polynomial, exponential, linear, and homographic. The relationship
depends on leaf structure factors such as leaf thickness, leaf mass per area (LMA) [28], and the
proportion of vascular tissue [59], characteristics known to vary among species. Equations reported by
Coste et al. [28], Cerovic et al. [59], and Marenco et al. [60] have general applicability as they are
estimated from different species covering a range of leaf characteristics. For the particular case of
mangroves, the only equation reported in the literature is that of Connelly [30], established for the red
mangrove (R. mangle). This equation has a close agreement with equations estimated from different
species covering a range of leaf characteristics (Figure S1, Supplementary Information) and, therefore,
was deemed to be suitable for the purposes of the study. Once SPAD readings were converted to CC, each
individual leaf CC was compared with its corresponding spectral response to establish the CC and
spectral characteristics at the leaf level.

Table 1. Hyperspectral and broad band indices used in this research.

Vegetation Index Abbreviation Formula Reference

Simple Ratio Indexsso SReso 22% [61]
Simple Ratio Index7so SR750 z;% [62]
Normalized Difference Vegetation Indexeso NDVIsso % [63]
Normalized Difference Vegetation Index7os NDVI70s % [62]
Modified Red Edge Simple Ratio Index mSR79s % [45]
Modified Normalized Difference Vegetation Index =~ mND7os 075 O(£7p5700; 372())5() 0445) [45]
MERIS Terrestrial Chlorophyll Index MTCI Eg;i;;i :_ gzg?;g [40]
Vogelmann Red Edge Index ; VOG, % [64]
Vogelmann Red Edge Index , VOG; % [65]
Vogelmann Red Edge Index ; VOG; % [65]
Photochemical Reflectance Index PRI % [66]
Transformed Chlorophyll Absorption Ratio Index TCARI 3 x|(p700 = p670) — 0.2 X (p700 — p550) x (%) [67]

Modified Chlorophyll Absorption Index mCARI7s  [(p750 = p705) — 0.2 X (p750 — p550)] % (2;32) [68]

Green Normalized Difference Vegetation Index  NDVI green % [69]
Simple Ratio Simple Ratio e [61]
Green Chlorophyll Index CI green ggiﬁ -1 [44]

i i NIR — pRed

s oo g
Enhanced Vegetation Index EVI, 2.5x A+ pNIR ip6N LRp_RS: id;_S X pBlue) [70]
Enhanced Vegetation Index 2 EVIL, 2.5 % ar E)F;\]I\II;R ;;f idzRed) [71]
Wide Dynamic Rage Vegetation Index WDRVI % [72]

(a x pNIR — pGreen)
Green Wide Dynamic Range Vegetation Index WDRVI green (a X pNIR + pGreen) + =2 [73]

(1+a)
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2.3.2. Hyperspectral Data Processing

A total of 21 VIs were computed using the hyperspectral data collected in the field, 13 VIs were
narrow band indices while 8 were broad band indices (Table 1). Hyperspectral bands employed were
445, 531, 550, 570, 670, 680, 681, 700, 705, 708, 715, 720, 726, 734, 740, 747, 750, 753, and 800 nm.
Spectral bands used to compute broad band VIs were: Blue (436-528), green (512—610), red (625-691),
and NIR (829-900 nm). Broad band VIs were computed using the Landsat 8 spectral response function
available in the Landsat Science website (http://landsat.gsfc.nasa.gov/). Narrow and broad band indices
were then used to establish the relationship between CC and the spectral characteristics of mangrove
leaves. Therefore, the selection of these indices was based upon their tested ability to predict CC.

2.4. Satellite Sensor Data Processing

Six Landsat 8 images were obtained between April 2013 and March 2014 (path 21, row 45). All
images were pre-processed using the Fast Line-of-sight Atmospheric Analysis of Hypercubes
(FLAASH) algorithm in ENVI 5.0. The January 2014 image, which corresponds to the month where
field data were obtained, was employed to compute eight broad band VIs: NDVI green, WDRVI green,
NDVI, EVLz, WDRVI, CI green, SR, and EVI; (Table 1). These VIs produced a large correlation with
CC from previous analyses. The correlation between CC at the ESU level and Landsat 8 VIs was
examined. The index that provided the largest correlation between the Landsat 8 images and CC
measured at the ground was then used to produce the CC maps. Non-mangrove pixels were masked out
using the land cover map of the Yucatan Peninsula [74].

Statistical Analysis

The Kruskal-Wallis test was conducted to explore the overall statistical difference among mangrove
species. Further, pairwise comparisons between species were conducted using the Wilcoxon signed-rank
test. To establish the relationship between leaf CC and leaf spectral response, simple linear regression
was applied and the coefficient of determination was estimated for the entire dataset and on a per-species
basis. To examine the influence of a mixed species signal and its relationship with CC, CC and the VIs
were merged at each ESU and simple linear regression was applied and the coefficient of determination
estimated. Similarly, to examine the relationship between CC measured at the ground and Landsat 8 Vs,
the CC was merged at each ESU and simple linear regression was applied and the coefficient of
determination estimated. The LOOCYV approach was used to assess the accuracy of the CC map created
with the image acquired close to the field campaign dates, and the coefficient of determination and
RMSE were estimated. This LOOCV approach consists of training a model with the complete dataset
except for one point, then that point is predicted by the model allowing accuracy statistics to be
estimated. The process iterates N times and the RMSE is calculated [75]. Statistical analyses were
conducted in the R statistical software [76].
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3. Results
3.1. Spectral Variation among Species

Spectral reflectance curves of the four mangrove species are presented in Figure 3. In general, the
species exhibit similar curves typical of green vegetation. 4. germinans had the highest reflectance in
the visible region as well as in the NIR, while R. mangle had the lowest reflectance in the visible spectral
bands. C. erectus and A. germinans are not clearly distinguishable in the green region. Similarly,
R. mangle and C. erectus are confounded in the NIR region of the spectrum.
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Figure 3. Spectral reflectance of mangrove species (mean + SD). The smaller plots on the
upper right corner represent a zoom in of the visible range of the spectrum. The visible region
depicts features associated with differences in Chl (ug-cm2) among species. R. mangle, the
species with the highest CC shows the lower reflectance in the visible part of the spectrum.

3.2. Mangrove Species CC

Figure 4 shows the CC in leaves obtained from four species of mangrove. The range of CC was
2.28-92.28 ug-cm 2 for C. erectus, 16.67-84.39 pg-cm 2 for L. racemosa, 20.35-82.81 pg-cm 2 for
A. germinans, and 22.28-96.14 ug-cm 2 for R. mangle. On average, CC was highest for R. mangle and
lowest for C. erectus. Significant differences (p < 0.05) were observed between the following pairs:

(1) R. mangle—A. germinans, (i1) L. racemosa—C. erectus, and (ii1) R. mangle—C. erectus.
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Figure 4. Leaf CC (ug-cm2) for the four mangrove species. Each box embodies the first

and the third quartile. The bold line represents the median while the dark dot represents the

mean. Whiskers are located at 1.5 times the interquartile range and white dots denote

outliers. Significant differences (p < 0.05) were observed between the following pairs:

(1) R. mangle—A. germinans, (ii) L. racemosa—C. erectus, and (iii) R. mangle—C. erectus.

3.3. Performance of Vs

Leaf hyperspectral response was used to derive the Vs listed in Table 1. Leaf-level relationships were

computed between the narrow band VIs and CC. The narrow band VIs with the most explanatory power
(R?> 0.5) were VOG indices, MTCI, mND7ps, mSR70s, mCARI7s, and SR7s (Table 2, Figure 5). When
coefficients of determination were computed on a per-species basis, VIs followed the same trend

showing an increase in the percentage of explained variation in CC. The best performing narrow band
VIs in terms of coefficient of determination for R. mangle were VOG,, VOGs, VOG;, mND~s, and MTCI
(Table 3). Similarly, VOG,, VOG3;, MTCI, VOG,, and mSR7s performed best for L. racemosa (Table 4).
A. germinans CC had the largest correlation with VOG,, VOGs, mCARI705, MTCI, and mND;7s (Table 5),
while VOG;, VOG3;, VOG;, mCARIys, and mND+s best explained CC variation in C. erectus (Table 6).

Table 2. Relationship between CC and Vs (n = 987).

VI Intercept Slope R? RMSE Signif.
VOG: 20.382 —449.057 0.588 11.3 oAk
VOG; =77.714 91.798 0.587 11.3 oAk
VOG3 22.558 —379.752 0.582 11.4 i
MTCI 22.817 15.554 0.564 11.7 kK

mND7os —7.524 112.029 0.551 11.8 oAk
mSR70s 16.172 10.088 0.530 12.1 kK
mCARI7s 22.597 35.201 0.528 12.1 oAk
SR7s50 9.051 14.264 0.514 12.3 kK
TCARI 82.556 —103.717 0.457 13.0 oAk
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Table 2. Cont.

VI Intercept Slope R’ RMSE Signif.
WDRVI green 15.381 65.250 0.450 13.1 oAk
NDVI green 2.228 92.202 0.446 13.2 kK
CI green 30.693 7.828 0.432 13.3 oAk
NDVI —40.481 120.412 0.281 15.0 kK
WDRVI 27.422 60.234 0.274 15.1 oAk
SR 30.901 2.438 0.217 15.6 kK
EVI2 —-30.779 228.633 0.203 15.8 kK
EVII —34.546 221.288 0.198 15.8 oAk
NDVlIys 10.544 116.844 0.185 16.0 oAk
SRes0 32.193 1.614 0.116 16.6 oAk

NDVlIsgo 40.587 30.073 0.006 17.6 *

Notes: Statistical significance 0.05 “*”’; 0.001 “***>,
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Figure 5. Scatterplots of VIs that showed the highest correlation (R? > 0.53) with CC. Red:

R. mangle, black: A. germinans, grey: L. racemosa, and green: C. erectus.
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Table 3. Relationship between CC and Vs for R. mangle (n = 579).

VI Intercept  Slope R* RMSE Signif.
VOG; 18.188 —451.792  0.693 5.7 HA*
VOGs3 21.345 —373.644 0.688 5.7 ol
VOG; —87.574 96.967 0.672 5.8 Hkx

mND7s —42.674 163.958 0.672 5.8 HA*
MTCI 22.359 15.054 0.670 5.9 ol
mSR7os 14.913 9.963 0.650 6.0 Hkx
SR7s0 4.131 15.024  0.621 6.3 HA*
NDVIgreen —54.493 174.230  0.609 6.4 ol
WDRVIgreen —13.384 100.923  0.607 6.4 Hokx
Clgreen 24.163 8.929 0.584 6.6 wA*
mCARI7s 23.182 33.436 0.582 6.6 ol
TCARI 93.665 —-174.992 0.577 6.6 ol
NDVlIyos 29.339 81.311 0.114 9.6 HA*
WDRVI 31.829 51.978 0.056 10.0 ol

SR 44.576 1.352 0.055 10.0 Hkx
NDVI —43.281 123.583  0.055 10.0 HA*
EVI, 15.393 110.420 0.043 10.0 ol
EVI, 20.601 104.767  0.037 10.1 kol

NDVlIsso 44.377 33.138  0.011 10.2 ok
SReso 60.735 0.049 0.000 10.2 ns

Notes: Statistical significance, not significant “ns”; 0.05 “*; 0.01 “**>’; 0.001 “***”

Table 4. Relationship between CC and Vs for L. racemosa (n = 151).

VI Intercept Slope R? RMSE Signif.
VOG; 26.277  —274.101 0.881 0.6 Ak
VOGs; 27.114  —238.934 0.880 0.6 kK
MTCI 26.178 10.039  0.866 0.6 oxk
VOG; —26.703 50.467  0.865 0.6 Rk
mSR70s 19.105 7.395 0.852 0.7 kK

CI green 27.373 6.728 0.841 0.7 oxk
SR7s0 15.436 9.852 0.838 0.7 Rk
TCARI 60.562 —57.535 0.835 0.7 kK
mND7s 12.596 58.631  0.830 0.7 oxk
WDRVI green 21.085 41.491  0.830 0.7 Ak
NDVI green 14.663 53.726  0.809 0.8 kK
mCARI7s 26.561 21353  0.804 0.8 oxk
WDRVI 24.994 41.655  0.545 1.2 Rk

SR 23.427 2.278 0.541 1.2 kK

NDVI —22.222 82.947  0.536 1.2 oxk
EVI; -13.213 135.008 0.422 1.4 Rk
EVI, —10.006 138.282  0.420 1.4 kK

NDVlIys 16.729 65.825  0.384 1.4 oxk
SReso 29.778 0.964 0.139 1.7 Rk
NDVlIeso 19.155 43.457  0.059 1.7 **

Notes: Statistical significance, 0.01 “**”; 0.001 “***”,
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Table 5. Relationship between CC and VIs for A. germinans (n = 121).

\% | Intercept Slope R? RMSE  Signif.
VOG; 29.348 -309.760 0.639 09 Hokk
VOG; 30.320 —273.024 0.634 0.9 HokE

mCARI7s 28.267 29.045 0.627 0.9 ok
MTCI 28.543 14.332 0.594 1.0 Hokk
mND7¢s 12.727 77.113 0.590 1.0 Hokk
VOG; —34.331 61.339 0.589 1.0 ok
mSR 705 17.873 11.066 0.579 1.0 Hokk
SR 750 16.139 13.104 0.523 1.0 HkE
EVI1 —17.632 152.880 0.492 1.0 ok
EVI2 —16.545 164.050 0.452 1.1 Hokk
NDVI green 26.849 47.782 0.384 1.2 oAk
WDRVI green 32.141 38.064 0.372 1.2 ok
TCARI 66.330 —42.785 0.362 1.2 Hokok
CI green 37.155 6.625 0.346 1.2 HkE
NDVlIys 21.378 59.379 0.258 1.3 *kk
NDVI 14.489 45.855 0.188 1.3 Hokk
WDRVI 40.738 22.664 0.175 1.3 HokE
NDVlIsso 13.451 58.514 0.136 1.4 *x

SR 40.683 1.125 0.127 14 *x
SRes0 39.332 0.765 0.077 1.4 *

Notes: Statistical significance, 0.05 “*”; 0.01 “**; 0.001 “***>,

Table 6. Relationship between CC and Vs for C. erectus (n = 136).

VI Intercept Slope R? RMSE Signif.
VOG; 4.968 —1013.500 0.834 5.0 ok k
VOG; 6.924 —895.743  0.830 5.0 Rk
VOG; —182.561 181.758 0.817 5.2 Hokx

mCARI7s 6.077 84.213 0.810 5.3 ok k
mND7os —26.193 188.601 0.794 5.5 ok
EVI2 —146.001 602.331 0.794 5.5 Hokx
EVII —144.589 545.121 0.783 5.7 ok k
MTCI 4.549 36.791 0.779 5.7 ok
NDVTI70s —58.082 335.829  0.776 5.8 Hokx
SR7s0 —34.070 37.251 0.775 5.8 ok k
mSR7os —20.928 27.366 0.768 5.9 ok
SReso —64.088 12.103 0.755 6.0 Hokx
NDVI green —23.472 188.194  0.735 6.3 ok k
WDRVI green —7.665 157.046  0.726 6.4 ok
WDRVI 19.586 143.564  0.711 6.6 Hokx
NDVI -116.197 250.425 0.705 6.6 ok k
CI green 7.468 28.715 0.698 6.7 Rk
TCARI 130.880 -201.672 0.686 6.8 Hokx
SR —13.847 11.322 0.685 6.8 ok k
NDVlsso —253.313 605.497  0.501 8.6 Rk

Notes: Statistical significance, 0.001 “***”,
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3.4. VIs and CC at the ESU Level
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The CC of sampled leaves and narrow band VIs were averaged within the ESUs. The main difference

between this step and the previous section is that in this section we attempted to produce a mixed species

response. Linear models were fitted to describe quantitatively the response of VIs to change in CC at the
ESU level. The red-edge VIs mCARI, VOGi, EVL, EVIi, VOG2, VOGs, mND, NDVI, SR7s0, MTCI,
mSR, and NDVI green individually explained more than 60% of the variation in CC (Figure 6). It is
important to note that some of these indices (NDVI green, WDRVI green, NDVI, EVI2, WDRVI, CI
green, SR, and EVIi) can be calculated using Landsat 8 data, allowing measurements of chlorophyll

concentration at landscape scale.
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Figure 6. Correlations between VIs and CC (ug-cm2) at ESU level.
3.5. Chl Concentration and Landsat 8 VIs

One Landsat 8 image acquired in January 2014 was used to derive broad band VIs for comparison
with CC at the ESU level. Using the coordinates recorded in the field, each ESU plot was located on the
Landsat 8 image. The average CC per ESU was plotted against its corresponding pixel on the Landsat 8
NDVI green and the coefficient of determination was computed. The correlation analyses demonstrated
that Landsat 8 NDVI green is the broad band VI most sensitive to CC at the ESU level (R? = 0.805),
(Figure 7). The linear model that produced this large correlation, described by Equation 1, was used to
construct a Chl map.

y =—54.545 + 149.396x (D

where x = pixel value of the Landsat 8 NDVI green image.
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Figure 7. Correlations between Landsat 8 VIs and CC at ESU level.
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3.6. Accuracy Assessment

The relationship between CC at the ESU level and Landsat 8 NDVI green expressed by Equation (1)
was assessed using the LOOCV method. The coefficient of determination was relatively large
(R? = 0.703) indicating a good level of agreement between observed CC and predicted CC (Figure 8).
The root mean squared error (RMSE) was used to compare the observed vs. predicted CC
(RMSE = 15 g-cm2). RMSE was calculated using Equation (2):

n L N2
RMSE = \/lel(CCobsl CCpred;) ’ (2)

n

where CCobs and CCpred are the observed and predicted CC, respectively.

P
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y=0.7414x + 15.3063 ® .

R*=0.7032 ‘e
— p=T7e-04 /.»’
' RMSE =15 Chl (ug cm?) ’ °
5] rd
2 60 o L. @
= (]
= /b’
@] /
E e
(8]
= s
Ee)
207 ° 4

./
rd
7’
s
s
e
rd
40 - -~
] ] | I
40 50 60 70

Observed Chl (ug cm’z)

Figure 8. Observed against predicted CC using the leave-one-out cross-validation method.
Each point represents an ESU. RMSE =15 pg-cm 2, R? = 0.703.

3.7. Spatial Variation of Chlorophyll Concentration across the Study Site

A Landsat 8 image acquired in January 2014 was used to produce landscape scale mangrove leaf
CC map. First, NDVI green was computed for the region of interest then, using Equation (1), CC was
calculated for every pixel using the band math tool in ENVI 5.0. The same procedure was applied to
the Landsat 8 images acquired at different dates throughout a complete annual cycle (Figure 9). Maps
are able to show the spatial distribution of CC with a pattern that seems related to distance from water.
Larger CC values are observed at the borders of the Ria Celestun, in petenes (characterized by circular
shaped “islands™ of vegetation), and flooded areas, with values decreasing towards the continent or
the sea. With respect to the temporal variability, in general the maps depict an increasing gradient
from April 2013 to November 2013 and a decreasing pattern form November 2013 to March 2014
(Figure 10).
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4. Discussion

Leaf CC is an important biophysical variable used as an indicator of vegetation condition and stress.
Field-based measurements of biophysical variables in mangrove forests are labor-intensive and
time-consuming. Consequently, only a few spatially localized studies have focused on estimating
mangrove CC [21,22,32]. To obtain a synoptic view of mangrove condition at the landscape level, it is
important to generate more data on the spatial and temporal variation of mangrove biochemical
variables. The current research assessed the performance of hyperspectral and broad band VIs for
predicting the CC of mangroves at the leaf and ESU levels. The association between CC at the ESU
level and Landsat 8 NDVI green was validated using the LOOCV approach. In addition, six maps
depicting the spatiotemporal variability of CC using Landsat 8 data are presented.

4.1. Spectral Signature and Chl Concentration

Leaf spectral features in the visible and NIR regions of the spectrum have been associated to pigment
concentration (e.g., chlorophyll) and leaf structure, respectively [77]. Chl peaks of absorbance are
located in the blue and red regions of the spectrum. Since carotenoid absorbance also occurs in the blue
region, typically the red spectral bands are used to estimate Chl [45]. Low reflectance in the red part of
the spectrum is then related to the presence of Chl. In this study, R. mangle had the lowest reflectance
in the red spectral bands, followed by L. racemosa, A. germinans, and finally C. erectus with the highest
reflectance of the four species. Accordingly, the average CC followed the same gradient; it was highest
for R. mangle and lowest for C. erectus, no statistical difference was found between L. racemosa and
A. germinans and R. mangle and L. racemosa. Likewise, Flores-de-Santiago, Kovacs and
Flores-Verdugo [22,32] reported similar CC ranges per species; the highest CC in R. mangle and lowest
for L. racemosa and A. germinans was in the Mexican Pacific. In Brazil, Rebelo-Mochel and Ponzoni [78]
reported the highest reflectance in the visible bands for C. erectus and lowest for R. mangle, confirming
our results. However, they did not measure pigment concentration.

The NIR reflectance, in contrast, is known to be affected by leaf anatomical structure such as leaf
thickness, cell walls, and intracellular air spaces. We did not carry out leaf anatomical measurements;
however, the low NIR reflectance of R. mangle and significantly higher reflectance of 4. germinans
would suggest differences in leaf morphological characteristics. Rebelo-Mochel and Ponzoni [78] also
reported higher reflectance in the NIR for 4. germinans. In addition, Lima et al. [79] reported
significantly lower palisade, spongy parenchyma, and total leaf thickness for R. mangle. Furthermore,
physical gradients such as waterlogging [80] and salinity [81-83] act on mangrove leaf morphology and
pigment concentration and this, in turn, could affect the visible and NIR leaf reflectance.

4.2. Chl Concentration and Narrow Band Vegetation Indices

In general, the correlation between the VIs derived from remote sensing data and CC in the mangrove
leaves was significant at all levels. Indices specifically designed to be sensitive to CC such as VOG
indices and MTCI produced the largest coefficient of determination at the leaf level (R?> 0.5).

VIs that best explained the variability in CC were those that included in their formula spectral bands
in the range 705 to 753 nm (e.g., VOG and MTCI). VOG indices and MTCI had the largest correlation
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with CC at the leaf level (R? = 0.56-0.58) when all leaves were pooled together. Similarly, these indices
had the largest correlation on a per-species basis (Tables 3—6, Figure 5). Flores-de-Santiago, Kovacs and
Flores-Verdugo [32] and Zhang [19] suggested VOG: was the optimal VI in terms of its linear
correlation with Chl a concentration in mangrove leaves. Moreover, our results show that the MTCI had
equal or, in some cases, larger correlation with leaf CC than VOGi. For instance, VOG1 had an average
difference of 1.1% with respect to MTCI. Also, in this study VOG: correlated better with CC than VOGi
or MTCI. Finally, opposed to their counterparts, the modified indices mSR705, mND70s5, and mCARI7os
produced a larger correlation. Modified indices with spectral bands of 705 nm and 750 nm in general
had a larger correlation than those composed by 800 nm and 670 nm [68]; this is consistent with our
findings in that mND?7os performed at the same level of VOG indices in R. mangle, the species with the
highest CC.

4.3. Chl Concentration and Broad Band Vegetation Indices Performance from Leafto ESU Level

According to our results, the relationship between broad band VIs and CC increased as we move from
leaf level to ESU level (Figure 7). Although the correlation between CC and broad band VIs was
significant at leaf level (Table 2), this correlation was relatively weak (R>~ 0.4, p <0.001). The relatively
weak relationship is explained by the variability in the data. Differences in leaf structure among
mangrove species affect the leaf spectral reflectance. Therefore, the response of VIs to CC varies among
mangrove species (Tables 3—6). Conversely, at ESU level, high significant correlation was observed
between six Landsat 8 broad band VIs and CC (N = 12; R?> 0.7; p < 0.001). At this stage, the CC
measured at each ESU was averaged and compared with the Landsat 8 broad VI pixel value. In this
study, Landsat 8 NDVI green was able to explain ~80% of the variation in CC at the ESU level. The
linear model that produced this large correlation was the basis for upscaling CC at landscape scale.

The main difference between broad band and hyperspectral algorithms is the width of the spectral
band used for the computation of the index. Broad band indices use information from wide regions of
the spectrum such as blue, green, red, near infrared, and short wave near infrared regions. On the
contrary, hyperspectral indices include narrow regions of the spectrum. It is possible to derive
information about the structure and biochemical composition of vegetation from both types of indices,
however, hyperspectral indices that include bands in areas of the spectrum of high absorbance by
chlorophyll a and b (particularly between 650 and 690 nm) perform best at estimating chlorophyll
concentration. The transition region between the red and the near infrared part of the spectrum, the so-
called red edge (680-750 nm) tends to shift towards longer wavelengths at high chlorophyll
concentrations [41]; therefore, those indices that include narrow bands in the red edge are more sensitive
to variations in chlorophyll.

4.4. Chl Map

The VI that best explained the variation in CC at the ESU level, the Landsat 8 NDVI green, was used
to create the Chl maps. Gitelson et al. [69] developed the NDVI green for MODIS and, unlike its
predecessor, the NDVI that uses the red band (650-690 nm), the NDVI green incorporates the green
band (530-570 nm) in its formulation and is sensitive to a wider range of CC [69,84]. Similar to MODIS,
the Landsat 8 green band ranges between 530 and 590 nm, this region of the electromagnetic spectrum
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is located above the “green edge” between two regions of strong pigment absorption: blue (460—480 nm)
and red (650—690 nm) [69]. It has been observed that the green edge has behavior similar to the red edge
in the sense that both edges tend to shift towards longer wavelengths at high CC [41]. Therefore, as CC
increases and the red spectral band reaches minimum reflectance the green band still remains sensitive;
this may explain why Landsat 8 NDVI green was best correlated to CC at ESU level.

To our knowledge, this is the first time that Landsat 8 has been used to map the CC of mangrove
forest at landscape scale in Mexico. The importance of the relationship between Landsat 8 VIs and CC
stems from the potential of Chl to be used as a proxy of GPP, as has been suggested in precision
agriculture studies [85,86].

Although the Chl maps depict a reasonable spatial and temporal pattern in CC, there is uncertainty
associated to them as they were constructed under some limitations and assumptions. The main limitation
of this study is that LAI measurements were not collected during the field campaign. LAI is a major
component of canopy Chl content [87,88], this latter is defined as the product of CC and LAI [44,84].
Therefore, in this study it was not possible to derive canopy Chl content to plot against Landsat § NDVI
green. Instead of canopy Chl content, we used leaf CC averaged at the ESU level.

In addition, differences in plant structure, changes in soil reflectance, and changes in soil moisture
and leaf moisture might affect the relationship between Landsat 8 VIs and CC at ESU level [43]
particularly at LAI <3 [89].

Although this assumption requires further investigation, there are reasons to believe that LAI does
not vary much temporally. In an evergreen tropical forest Wagner et al. [90] reported seasonal variations
in EVI and litter fall, but the authors did not find a seasonal pattern in LAI. Similarly, in a mangrove
forest in the Mexican Pacific, Flores-de-Santiago, Kovacs and Flores-Verdugo [22] found no significant
difference in LAI between dry and rainy seasons for R. mangle and A. germinans, irrespective of their
condition; the authors only found significant difference in LAI in L. racemosa. In summary, one major
assumption in the present study was that Landsat 8 NDVI green responded to variation in CC at the ESU
level rather than to variation in LAI, canopy closure, and background reflectance, suggesting that further
research is needed to account for the potential contribution from LAI in CC estimation.

Another assumption was that the trees sampled were representative of a Landsat 8 pixel of 30 m % 30 m.
Pixels that cover more than one species are a source of uncertainty [68]. According to our results,
mangrove species contribute in different proportions to the total CC at ESU level. Although only four
species of mangrove dominate the landscape in the study area, species composition and density vary
spatially [91]. It is also important to note that the association between CC and VIs was based on the January
image (close to maximum canopy development) with average CC ranging between 40 and 70 pg-cm 2 thus
particularly the low CC values (e.g., those estimated in April/May 2013) are affected by a degree of
uncertainty. In addition, in order to convert SPAD readings into actual chlorophyll concentration
calibration equations have to be applied; however, due to logistical and equipment constrains in this
study it was not possible to derive calibration equations from the SPAD readings. Therefore, a published
equation based on the dominant species of mangrove was used.

To partially overcome some of these issues, it is recommended to sample a larger number of ESUs
including field measurements of LAI at different seasons and to develop Chl meter and CC calibration
equations. Finally, as this is a pioneer study the authors acknowledge that the limited number of ESUs



Remote Sens. 2015, 7 14551

may lead to optimistic results. For the reasons explained above, in this paper the focus is on the seasonal
variation of CC rather than in the absolute values of CC.

The results of this research have implications for the use of a new generation of satellites that include
a spectral band in the red edge position such as the Sentinel 2 from the European Space Agency. At a
leaf level, the hyperspectral indices tested in this study that had a red edge band in their formulation
achieved a larger correlation with leaf CC. At ESU level, the Landsat 8 broad band index NDVI green
achieved the largest correlation with Chl measured on the ground. Further, Sentinel 2 will enable
computation of commonly used broad band indices such as the NDVI green plus the highly correlated
VI’s using the red edge bands. Sentinel 2 transcends the capabilities of the Landsat mission in terms of
swath width, spatial resolution, revisit time, and number of spectral bands [92]. Information in the red
edge combined with the frequent revisit time of Sentinel 2 (5 days) is expected to increase the accuracy
of leaf CC estimation. To date, algorithms to estimate CC based on Sentinel 2 simulated spectral bands
are being revised, created, and validated in crops across Europe, showing promising results [93-95].
Therefore, there is much scope for the application of these algorithms to estimate CC in mangrove forests
once Sentinel 2 is operational.

5. Conclusions

The results presented in this work add to our understanding of the relationship between vegetation
indices and the biochemical composition of mangrove by showing which multispectral and hyperspectral
indices best explain the variation in chlorophyll concentration at the leaf and canopy level. We tested
the ability of broad band and hyperspectral VIs to predict mangrove CC at different scales. At leaf level
indices with spectral bands around the red edge (705-753 nm), Vogelmann indices and the MTCI were
the most sensitive to mangrove leaf CC (R? > 0.5). A key finding was that at ESU level, the best
performing Landsat 8 VI was NDVI green, which explained 80% of the variation in CC. The linear
model describing the relationship between CC and NDVI green was used to map the spatiotemporal
variability of CC in the mangrove landscape. The study demonstrated that the multispectral,
medium-resolution Landsat 8 can be used to quantify CC in mangrove forests where ground networks
and other possible tools cannot be applied and the use of mapping techniques based on satellite data is
absolutely necessary. A practical application of this result is that future efforts to estimate CC in
mangrove forests using multispectral remote sensing should consider the use of Landsat 8 NDVI green.
The findings also corroborated the utility of the red edge spectral bands to predict mangrove CC at leaf
and ESU level. This has implications for the improvement of mangrove monitoring using upcoming
technology such as Sentinel 2, which will include two spectral bands around the red edge position. This
spectral band arrangement will allow for the computation of VIs highly correlated with CC tested in this
work at finer spatial and temporal resolution. It is recommended that future research should focus on
testing existing and newly developed algorithms to estimate CC in mangrove forests using the new
generation of satellites that outperform the capabilities of current sensors.
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