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In 2016, Thach et al. reported figures of merit of the GeSn photodiodes with large

mesa sizes of 500 and 250µm to show the potential of the GeSn materials in

short-wave infrared photonics23. However, there are only a few discussions about high

frequency capabilities of GeSn photodetectors. It is needed to understand the potential

of GeSn detectors as high frequency devices. This paper discusses comprehensively

about the performance of GeSn photodiodes with 6.44 and 9.24% Sn for high

frequency applications including high speed measurements and simulations. With high

Sn incorporation, the cutoff wavelength is extended up to 2.2 and 2.5µmwavelengths for

6.44 and 9.24% Sn devices, respectively. The photodiodes’ bandwidth is 1.78 GHz, and

the simulation shows excellent agreement with measurement results. The reported GeSn

photodetectors together with recently reported GeSn lasers and other GeSn microwave

photonic components will be a potential candidate for integrated microwave photonics.

Keywords: GeSn photodetector, mid-infrared, high frequency, integrated microwave photonics, two-photon

absorption

INTRODUCTION

Silicon-based photonic components are especially attractive for realizing low-cost photonic
integrated circuits using large-scale manufacture (Thomson et al., 2016). Microwave photonics
(MWP) not only marries the fields of the radiofrequency (RF) engineering and optoelectronics,
but also brings in a considerable added value to traditional microwave and RF systems.
Integrated Microwave Photonics (IMWP) incorporates the functions of MWP components in
monolithic or hybrid photonic circuits (Capmany and Novak, 2007). Hence, IMWP offers
the promise of reduction of size-weight-and-power (SWAP) and low-cost of production.
Moreover, the traditional MWP platform has confronted the two-photon absorption issue.
It requires a shift of the working wavelength to 2µm and beyond in order for it to be
utilized in MWP applications (Capmany et al., 2013; Liu et al., 2016; Zhang and Yao, 2016).
In addition, a monolithic integrated solution combining high-performance light sources and
detectors, low loss passive devices, and complementary metal-oxide-semiconductor (CMOS) and
RF circuits on a single platform with operating wavelength beyond 2µm is also a challenge
(Soref, 2008; Roelkens et al., 2013; Hagan et al., 2019).
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Recently, Silicon-germanium-tin (SiGeSn) and Germanium-
tin (GeSn) techniques have drawn much attention due to
the success of developing all-group-IV alloy with outstanding
material properties including (i) independent tuning of the
lattice constant and bandgap by simultaneously varying the
compositions of Si, Ge, and Sn (Jenkins and Dow, 1987);
(ii) true direct-bandgap material (Zhou et al., 2019); (iii)
wavelength coverage up to 12µm (Du et al., 2016); and (iv) a
low material growth temperature fully compatible with CMOS
processes (Grant et al., 2019). The advantages of a SiGeSn
approach are (i) compatibility with the proven high-performance
Silicon on Insulator (SOI) passive and Electro-optic (EO)
components, and (ii) enhanced dynamic range as two-photon
absorption at 1.55µm in Si under high laser power operation
is effectively suppressed by shifting the operating wavelength to
2µm and beyond (Cao et al., 2018). Hence, SiGeSn and GeSn
materials are strong candidates for the monolithic silicon-based
factory-compatible integrated photonics technology with high-
performance for Si-based digital/RF photonics link for operation
at 2µm wavelength and beyond.

Over the last 10 years, many GeSn-based photodetectors have
been reported with their performance dramatically improved.
The responsivity of photodetectors keeps increasing as well as
more Sn incorporation in the materials, which extends cut-off
wavelength to mid-infrared ranges (Mathews et al., 2009; Su
et al., 2011; Werner et al., 2011; Kim et al., 2013; Tseng et al.,
2013; Zhang et al., 2013; Peng et al., 2014; Dong et al., 2015;
Chang et al., 2016; Pham et al., 2016; Huang et al., 2017; Tran
et al., 2018). However, only a few reports are available discussing
the high-speed capability of the GeSn photodetectors (Oehme
et al., 2014; Dong et al., 2017; Xu et al., 2019). It is highly
desired to fully understand the potential of GeSn detectors as high
frequency devices for the 2µm wavelength range and beyond. In
this work, we report comprehensive studies of 6.44 and 9.24%
Sn photodiodes to demonstrate high frequency functionality. The
cutoff wavelengths are extended beyond 2µm. The measured
bandwidths of the devices achieve 1.78 GHz, while the bitrate
is 1 Gbit/s. The simulation shows excellent agreement with
measurement results. Further simulation has indicated that a
reduction of the mesa diameter could increase the bandwidth to
one order of magnitude higher than that of the reported devices.

EXPERIMENTAL METHODS

Growth and Fabrication
The GeSn double heterostructure (DHS) samples were grown
using an industry standard ASM Epsilon R© 2000 Plus reduced
pressure chemical vapor deposition system (RPCVD) with SnCl4
and GeH4 as Sn and Ge precursors, respectively. A 750-nm-thick
p-type (Boron as dopant) Ge buffer was first grown on the Si
substrate. Then, a 200-nm-thick (unintentionally doped) GeSn
layer was grown followed by a 50-nm-thick n-type (Arsenic as
the dopant) Ge cap layer. The GeSn layer has a background
doping level of 1 × 1017 cm−3, while the doping concentration
at Ge buffer and Ge cap layer were 5 × 1018 and 1 × 1019

cm−3, respectively. The details of the growth technique have been
published elsewhere (Margetis et al., 2019). The X-ray diffraction

(XRD) shows Sn compositions of 6.44 and 9.24%, corresponding
to nominal 7 and 10% Sn, respectively. The detailed analysis of
XRD data was published elsewhere (Zhou et al., 2016).

Circular mesa structures with diameters of 500, 250, and
100µm were defined by standard photolithography and then
etched using wet chemical etching process. The solution of HCl:
H2O2: H2O = 1:1:20 was used in the process. To determine the
etching rate, several testing samples were etched with different
etch time. A stable etching rate of 100 nm/min at room
temperature regardless of Sn composition was observed. The
mesas were etched until the p-type Ge buffer was reached. A 100-
nm-thick SiO2 passivation layer was then deposited by plasma-
enhanced chemical vapor deposition. The oxide was opened to
form the metal contacts. Electrode pads were patterned and
metalized with 10/200 nm of Cr/Au. Figure 1a shows the top-
view scanning electronmicroscope (SEM) image using FEI- XL30
Environmental Scanning Electron Microscope. The schematic
of device cross-sectional view is plotted in Figure 1a inset. The
cross-sectional SEM image (see Figure 1b) shows clearly resolved
Ge and GeSn layers with defects trapped near GeSn/Ge and
Ge/Si interfaces.

Measurement
The dark current-voltage characteristics were measured with a
direct current (DC) source (Keithley 236 Source Measurement
Unit). The temperature-dependent spectral response of the
devices was conducted using a Fourier-transform infrared (FTIR)
(Nicolet 8700 FTIR spectrometer) spectrometer at a bias of−2V.
The devices’ responsivity was measured using a 1.55µm laser
diode (Thorlabs ML925B45F) as a light source, a chopper at
380Hz and a lock-in amplifier (Stanford Research SR830). The
power of the light sources from the FTIR and the laser diode were
calibrated using the pre-calibrated InGaAs and extended-InGaAs
detectors under the same ambience conditions.

For the high frequency measurements, the detectors’ electrical
bandwidth and eye diagrams were conducted. Using a network
analyzer (N5225A-200), port one was connected to the RF input
of a fiber coupled lithium niobate modulator (model MX-2000-
LN-10) rated for 10 GHz. A 2µm laser diode fed the optical input
of the modulator, with the optical output passed to the surface of
the detector via a lensed fiber. The electrical pads of the detector
were contacted with an RF probe, with the electrical signal passed
through a bias tee to port 2 of the network analyzer. The bias tee
was used to allow a DC bias to be applied to the detector.

Figure 2 shows 2µm high speed setup to gather the eye
diagrams. The light source used was a fiber coupled laser diode
with a wavelength of 1.963µm. A home-built thulium doped
optical fiber amplifier (TDFA) (Li et al., 2013) was used to boost
input power prior to the LiNbO3 modulator. A polarization
controller and PM2000 lensed fiber connected to the output of
the modulator was used to vertically couple light into the device
under test (DUT) mounted on a piezoelectric xyz stage. The
modulator was driven by a 1 Gbps bit pattern generator with an
RF amplifier rated for up to 40 Gbps operation.

The photodetector was interfaced with a 40 GHz RF probe
with a ground-signal contact configuration. A picoseconds pulse
labs model 5543 bias tee rated at 50 GHz was used to apply
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FIGURE 1 | (a) The top-view SEM image of the typical device (Inset) its cross-sectional view. (b) Cross-section SEM image.

FIGURE 2 | A schematic of the experimental setup to obtain eye diagrams at 2µm.

FIGURE 3 | Simulated and measured J-V characteristics of (A) the Ge0.9356Sn0.0644 device and (B) the Ge0.9076Sn0.0924 device.
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bias using a source meter. The AC signal was sent do a digital
communications analyzer with electrical input rated for 80 GHz.

Simulation
The devices were simulated using the commercial Silvaco
software with Atlas simulator. The three basic semiconductor
equations such as Poisson, carrier continuity, and transport
equations were solved1. The detectors were modeled using a
pseudo-3D method which assumes that they have cylindrical
geometry and symmetry by defining cylindrical mesh. The
material models were default Ge material, but the bandgap,
effective density of states and intrinsic carrier concentration
were modified for GeSn materials. The drift-diffusion transport
model was used with field dependent mobility. The Shockley-
Read-Hall (SRH) recombination model was used with electron
and hole lifetimes of 1 ns (Elbaz et al., 2018). Surface
recombination on the devices’ surfaces and sidewalls was
considered with the recombination velocities of 105 cm/s
for electrons and holes (McEvoy et al., 2012). The default

1Atlas User’s Manual, June 2019, [online] available: http://www.Silvaco.com.

refractive index and extinction coefficient of the Ge were
overwritten using data that were measured by ellipsometry for
the GeSn materials to simulate the devices under illumination
(Tran et al., 2016). The intensity that is assumed to be
uniform across the width of the beam has a density of
0.01 W/cm2.

RESULTS AND DISCUSSION

The simulated (solid points) and measured (curves) current
density-voltage (J-V) characteristics are shown in Figure 3 for
the Ge0.9356Sn0.0644 and Ge0.9076Sn0.0924 photodiodes. Under
forward bias, where the series resistance is dominant, a good
agreement between the experimental and simulated data for the
forward bias was observed. At the zero bias voltage, the shunt
resistance originally from surface leakage current becomes a
dominant factor. At higher reverse bias, the SRH recombination
becomes more effective than the others. Because of the lattice
mismatch between Ge buffer and GeSn materials, the GeSn/Ge
interface is defective, which might be the main reason for the
relative high dark current. In the SRH model to represent the

FIGURE 4 | Spectral response of (A) the Ge0.9356Sn0.0644 device and (B) the Ge0.9076Sn0.0924 device.

FIGURE 5 | Responsivity measured at 1.55µm of the (A) 6.44% Sn and (B) 9.24% Sn devices.
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TABLE 1 | Bandwidth of the GeSn devices with different mesa sizes and at

different bias voltages.

Bias (V) 3 dB optical bandwidth (GHz)

6.44% Sn 9.24% Sn

100 250 500 100 250 500

0 0.0849 0.035 0.035 0.0849 0.035 0.035

−1 0.21 0.0599 0.035 0.16 0.16 0.0849

−3 0.709 0.309 0.185 0.908 0.684 0.21

−5 1.78 0.534 0.309 1.53 0.933 0.759

−7 1.78 0.783 0.584 1.03 0.659 0.534

defective layers, short carrier lifetimes are also considered. At
a certain reverse voltage, the current density of the 9.24% Sn
device is higher than that of the 6.44% Sn device. Because
the bandgap of the 9.24% Sn device is narrower than that
of the 6.44% Sn device, which leads to the 9.24% Sn device
having higher intrinsic carrier concentration. Moreover, there is
deviation between the measurement and simulation for 6.44%
Sn device at small reverse bias from −0.4V to −0.1V, shown
in Figure 3A. The measured dark current may be limited
by diffusion current, which leads to lower values comparing
with the simulated current, in which we assumed SRH is a
dominant mechanism.

Figure 4 shows the simulated and measured spectral response
of (a) 6.44% and (b) 9.24% Sn photodiode detectors. The
6.44% Sn device exhibits a cutoff wavelength of 2.2µm. The
cutoff wavelength is much longer than the Ge band-to-band
absorption edge (1.55µm), indicating major photo response
contribution is from GeSn layer. For the 9.24% Sn device, the
spectral response is extended to 2.5µm. This longer wavelength
coverage is due to the reduced bandgap for the increased
Sn composition as expected. The simulated results match the
measured ones, which indicates that the GeSn material models
are valid. It is worth noting that the devices’ spectral response
not only covers the traditional L- and C-band, but also the 2µm
telecommunication band.

The responsivity at 1.55µm of the 6.44 and 9.24% Sn
photodiode devices are shown in Figures 5A,B, respectively.
Peak responsivities of 0.12 and 0.19 A/W were obtained
with a 0.1V reverse bias voltage for the 6.44 and 9.24% Sn
samples, respectively. As the reverse bias voltage increases,
the responsivity decreases. This responsivity reduction is
possibly associated with the Franz-Keldysh effect (Pham
et al., 2016; Lin and Chang, 2018; Tran et al., 2018).
At a 1V reverse bias voltage, the responsivities reduce to
0.08 and 0.07 A/W for the 6.44 and 9.24% Sn devices,
respectively. Since the simulation cannot take the Franz-
Keldysh effect into account, the simulated responsivity shows
independent behaviors with bias voltage (not shown here), and
it is inaccurate. Moreover, the responsivity of both devices
show similar values, suggesting that the material qualities
are comparable.

FIGURE 6 | Electrical bandwidth of 1.78 GHz for both devices with mesa’s

diameter of 100µm; (inset) simulated results for optical bandwidth of 2 GHz

for both devices.

FIGURE 7 | Eye diagram of the 6.44% Sn device.

High frequency performances of the GeSn devices with
different mesa sizes of 500, 250, and 100µm at different applied
voltages were summarized in Table 1. The operation bandwidth
increases as the mesa size decreases, which is due to reduction
of junction resistance-capacitance. As the reverse bias voltage
increases, the depletion width increases, which also increases
the bandwidth of the devices. The RF response of the GeSn
devices with mesa’s diameter of 100µm are shown in Figure 6,
while the simulated results are shown in the inset. The frequency
response at−6 dB bandwidth is 1.78 GHz at−7V bias, while the
simulations of optical bandwidth at−3 dB show 2GHzmeasured
at 2µm and −7V bias. In general, the bandwidths of the devices
depend on the two significant factors: (i) the carrier lifetime, and
(ii) the junction resistance-capacitance. The devices’ dimensions
were not optimized in this work. In order to achieve much
higher bandwidth for the devices, the devices’ size needs to be
reduced. In further simulation, the simulated −3 dB bandwidth
of the 10µm diameter device was 10 GHz which was almost
one order of magnitude higher than that of the 100µm mesa
device. The frequency response achieved at 2 GHz indicates the
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great potential of GeSn photodiodes for high-speed applications
in MWP.

Figure 7 shows a 1 Gbit/s eye diagram obtained from the
6.44% Sn device. The bit rate is lower than the bandwidth. It
is worth noting that there may be a pitfall of relying on the
bandwidth value for evaluating the time-domain performance. In
fact, the behavior of the system in the frequency-domain (i.e., the
slope in the frequency domain) is also important. However, the
determination of the bandwidth at −3 dB is still valid in the case
of the steeper slope of the frequency response.

CONCLUSIONS

In summary, systematic studies of Ge0.9356Sn0.0644 and
Ge0.9076Sn0.0924 photodiodes were conducted. Detection of
the reported 6.44 and 9.24% Sn devices are up to 2.2 and
2.5µm wavelengths, respectively. The measured bandwidths
of the devices achieve 1.78 GHz, while the bitrate is 1
Gbit/s. Moreover, in the further simulation, the reduction
of the mesa diameter could increase the bandwidth. The
detection wavelengths can be extended to the mid- and
far-infrared as more Sn is incorporated into the materials.
The current GeSn photodetectors, together with the recently
reported GeSn lasers and other GeSn microwave photonic
components (i.e., high-speed modulator and waveguide)
will be a potential candidate for integrated microwave
photonic applications.
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