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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Aerodynamics and Flight Mechanics

AERODYNAMIC NOISE FROM UNDULATED LEADING EDGE AEROFOILS

by Jacob Mansel Turner

A series of high fidelity numerical simulations are conducted to investigate the noise generated by

aerofoils undergoing interaction with vortical disturbances. In particular the focus is on aerofoil

leading edge undulations, which have been previously shown to effectively reduce broadband in-

teraction noise. The main objective of this work is to ascertain a comprehensive understanding of

the physical mechanisms behind the noise reductions, which to a large extent are still unexplained.

The simulations are based on the interaction of zero thickness aerofoils with a prescribed spanwise

vortex model. The approach is particularly convenient in that it captures non-linear motions, while

also maintaining a clean broadband spectra which aids in identifying fundamental trends. The work

is split into two main sections, primary leading edge and secondary trailing edge mechanisms. In

the first half a number of unique findings are presented concerning the aeroacoustic source mech-

anisms of the wavy leading edge (WLE). One of the most significant findings is the generation of

horseshoe vortex systems which are directly linked to source differences observed at the WLE peak

and root. Both source strength reduction and destructive interference mechanisms are investigated

in order to determine their contribution towards an increasing noise reduction vs. frequency trend.

It is found how the source characteristics over the full surface need to be considered in order to

avoid erroneous interpretations of the physics. The findings therefore have important consequences

for future approaches concerning which characteristics are crucial for modelling the WLE. In the

latter half of the work, the secondary interaction noise sources are investigated in detail. This

includes both acoustic backscattering (ABS) and trailing edge vortical scattering (TEVS) effects.

Surprising discoveries are made concerning the importance of TEVS at high frequencies, particu-

larly when a WLE is concerned. The TEVS is investigated for both inviscid and viscous flows, and

found to be highly dependent on Reynolds number and vortex strength. This highlights an impor-

tant limitation to WLE performance for implementation purposes, as well as a possible avenue for

future research.
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Chapter 1

Introduction

1.1 Research motivation

In recent years the volume of air traffic in the UK and Europe has continued to grow rapidly, and is

anticipated to do so for the foreseeable future. The UK Department for Transport (DfT) predicts

that the annual number of airline passengers will increase to 445 million by 2050, more than double

compared to 2013 levels (Department of Transport, 2013). A significant environmental consequence

of this trend is an increase in noise pollution primarily in the vicinity of major airports. The World

Health Organisation (WHO) predicts that noise pollution contributes to approximately 1.6 million

DALYs (disability adjusted life years) across western Europe. This figure considers the impact of

more minor annoyances such as sleep disturbance and tinnitus, as well as connection between noise

pollution and more serious health issues such as ischaemic heart disease and cognitive impairment

of young children (World Health Organization, 2011).

Figure 1.1: Aircraft noise contributions during take-off and approach conditions. Taken
from: Astley et al. (2007).

Recently the Advisory Council for Aviation Research in Europe (ACARE) introduced FlightPath

2050 outlining environmental targets for the civil aviation industry, including a reduction of 65%

to perceived aircraft noise relative to year 2000 technology levels. An overview of the current noise

1
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contributions from a modern hi-bypass turbofan engine is shown in figure 1.1 (obtained from Astley

et al. (2007)). It is apparent for both take-off and landing conditions that aerodynamic sound from

turbo-machinery represents one of the most significant noise sources, primarily from the fan on

approach. This is largely attributed to significant reductions to jet noise by nozzle suppressors

(chevrons) and ever increasing engine fan bypass ratios, both of which reduce the velocity of the

exhaust flow. In addition to turbofan applications, aerofoil noise represents a significant concern

for aircraft propellers, helicopter rotors, and wind turbines.

Aerofoil noise may be separated into two main categories, self-noise, and interaction noise. Self-

noise constitutes all sources of sound which the aerofoil generates in the absence of impinging

disturbances. At low angles of attack and at relatively high Reynolds numbers the primary compo-

nent is at the aerofoil trailing edge (TE), generated by the scattering of unsteady surface pressure

fluctuations contained within a turbulent boundary layer. Aerofoil self-noise also includes sound

generated by viscous hydrodynamic effects such as flow separation, vortex shedding and tip vor-

tex generation (Migliore & Oerlemans, 2004). On the other hand, interaction noise concerns the

impingement of upstream disturbances on the solid body, most typically gusts, vortices or tur-

bulence. In the case of an aircraft turbofan engine this primarily concerns interaction between

the fan wake and outlet-guide-vanes (OGV), as well as rotor-stator interaction in the compres-

sor/turbine. Additionally, interaction noise is prominent for wing high lift devices such as aerofoil

flaps and slats, counter rotating propellers (rotor-rotor interaction) including open rotor concept

engines, helicopter rotor noise during forward flight (aerofoil tip-vortex interaction), and during

gust interaction with wind turbines. Generally, for flows where there exists significant upstream

disturbances, interaction noise is dominant (Migliore & Oerlemans, 2004), typically occupying the

higher energy, lower frequency range. As a consequence interaction noise has attained substan-

tial interest from the research community in recent years through a wide range of approaches,

analytical, experimental, and numerical.

Unlike self noise contributions, interaction noise is primarily an inviscid mechanism. For aerofoils

with a compact chord it manifests mainly as dipole sound which may be decomposed into primary

and secondary sources. The primary mechanism (which contributes the largest acoustic pressure

signature) is the scattering of the impinging disturbance at the aerofoil leading edge (LE). This

event is herein referred to as leading-edge-vortex-scattering (LEVS). It is associated with the rapid

deformation of the impinging vortical field due to the no penetration condition on the aerofoil

surface (zero normal velocity), leading to the generation of unsteady pressure fluctuations which

will radiate to the far-field. It is characterised by a downstream orientated cardioid directivity

(Ffowcs Williams & Hall, 1970).

As for the secondary effects, the most well studied is sound from acoustic back-scattering (ABS).

This concerns the diffraction and scattering of impinging acoustic waves at sharp edges. It typi-

cally manifests as a negative feedback mechanism of progressively damped acoustic waves travelling

back and forth between the LE and TE, although most commonly in literature only the princi-

ple scattered wave is considered (Amiet, 1975). For aerofoil interaction noise, the most notable



Chapter 1 Introduction 3

contribution is the scattering of the main LEVS sound at the TE. This prompts higher order up-

stream travelling waves which are subsequently scattered at the LE, repeating the process. The

other secondary effect, more often overlooked in the study of interaction noise, is the scattering

of incident disturbances at the trailing edge. This occurs in a similar fashion to boundary layer

self-noise, although is generated by the now bisected upstream vortical disturbances (in addition to

secondary structures generated via the LE interaction). Throughout this work, this mechanism will

be referred to as trailing-edge-vortex-scattering (TEVS). Counter to LEVS, TEVS is characterised

by an upstream orientated cardioid directivity (Ffowcs Williams & Hall, 1970). Representations

of all three interaction noise components are shown in figure 1.2 for the case of a flat plate aerofoil

with an impinging spanwise vortex. The following sections contain a detailed overview of the cur-

rent state of the art concerning aerofoil LE interaction noise and wavy leading edges. Meanwhile

further discussions of the secondary sources (most notably TEVS) are provided in §5.

Figure 1.2: (a) Leading Edge Vortex Scattering (LEVS). (b) Acoustic Back-Scattering
(ABS) at the TE. (c) Trailing Edge Vortex Scattering (TEVS).

1.2 Analytical modelling of aerofoil interaction noise

1.2.1 Amiet’s model and extensions

One of the earliest contributions to interaction noise theory was introduced by Sears (1941), who

derived an expression for the unsteady lift (which directly relates to the radiated sound) produced

by a 2D aerofoil in an incompressible mean flow undergoing a harmonic gust. This work has since

been extended by Atassi (1984) for more realistic geometries including small camber, thickness

and angle of attack, achieved through a linear superposition of three Sear’s lift solutions for each

respective effect. An approximate solution for the compressible problem incorporating an oblique

gust and an infinite span swept aerofoil was later proposed by Adamczyk (1974). Adamcyzk derived

the unsteady lift response function through an iterative procedure which firstly treats the aerofoil

as a downstream semi-infinite flat plate with no Kutta condition (no TE). This solution is then

updated by a second solution for an upstream semi-infinite plate (no LE), therefore correcting the

TE and wake surface pressure jump to zero. Further iterations may then be performed to correct



4 Chapter 1 Introduction

the pressure jump upstream of the aerofoil LE, however typically the two leading order terms are

considered sufficient.

Perhaps the most well established analytical approach to the interaction noise problem is the

classical work of Amiet (1975) which considers a three-dimensional flat plate interacting with a

frozen turbulent field. The result incorporates an important result earlier identified by Graham

(1970), who realised “similarity rules” between the 2D and 3D problem based on whether the

impinging disturbance was sub- or supercritical. Graham showed that when the gust wave-front

translates the aerofoil LE at a rate less than the speed of sound the 3D problem is similar to a

skewed gust in incompressible fluid, meanwhile if the gust is supersonic a 2D compressible solution

is similar. Thus allowing Amiet to implement the lift response function of Adamczyk (1974), and

obtain a solution to the Helmholtz equation based on a previously developed iterative Schwarzchild

technique (Amiet, 1974). The approach is particularity useful for validation purposes as it only

requires knowledge of the impinging turbulence velocity spectrum, relatively easy to measure in

both simulations and experiments. An overview of the various limitations (small angle, thickness,

camber), and subsequent extensions of Amiet’s original theory is provided by Roger & Moreau

(2010). This also includes similar procedures based on Amiet’s Schwarzchild technique such as TE

self noise due to turbulent boundary layers (Amiet, 1976), and vortex shedding noise of a blunt

trailing edge (Roger et al., 2006). Another notable contribution is the work of Christophe et al.

(2009, 2008), who considered an Amiet model for spanwise varying impinging turbulence. The

model was based on a segmentation method, where the aerofoil is sliced into chord-wise strips each

with its own specified upstream conditions. The contribution from each strip is then summed to

get the net radiated noise. A similar approach was first used by Rozenberg et al. (2007) to calculate

aerofoil self-noise. However, introduction of small span strips can lead to major inaccuracies if the

noise generated by adjacent strips is correlated, e.g. if Lz < Λ. This was overcome by Christophe

et al. (2009, 2008) by implementing a new inverse strip theory. In their approach the contribution

from each small span segment is determined by subtracting the solution for two overlapping large

span aerofoils differing by the strip width.

Other extensions include Blandeau et al. (2011), who considered a strictly two-dimensional for-

mulation of the Amiet model to investigate the sound radiated from 2D isolated aerofoils and

cascades. Additionally, Santana et al. (2016) identified significant over estimations of the standard

Amiet model for low frequencies, and consequently proposed an extension for aerofoils of compact

chord (kLc � 1) including further iterations of the Schwarzchild technique. Most recently Karve

et al. (2017) accounted for wall effects by application of the Method of Images, thus extending the

existing theory to installed noise applications such as that from open rotors and un-ducted fans.

There are also semi-analytical methods based on the Amiet approach such as in Christophe et al.

(2007). In this paper the noise generated during low speed jet-aerofoil interaction was computed

with a combination of Curle’s acoustic analogy (Curle, 1955) at low frequencies where the source

can be considered compact, and Amiet’s model at high frequencies where non-compactness effects

are significant. The statistical input for the Amiet model was obtained through LES simulations

utilising ANSYS Fluent. Later, Kucukcoskun et al. (2013) extended this model by incorporating a
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near-field correction to the Amiet model in addition to the inverse strip theory of Christophe et al.

(2009, 2008). The new model was used in conjunction with the Boundary Element Method (BEM)

to account for scattering off rigid bodies. Comparison was made to an experiment of an aerofoil

in a turbulent jet placed directly above a rigid scattering screen. Reasonably good agreement was

obtained across all frequencies.

1.2.2 Rapid distortion theory

Rapid distortion theory considers a potential steady flow superimposed with unsteady linearised

velocity perturbations. The main principle of the theory is that the unsteady flow may be separated

into two components. The first which describes vortical effects, namely the distortion of the vortex

in mean flow gradients; The second a wave equation which describes the scattered acoustic pressure

generated by interaction with the solid body. It therefore accounts for two sources of sound:

disturbance scattering, and vortex source noise, but neglects viscosity and non-linear interactions

between disturbances.

The first to apply rapid distortion theory for compressible flow applications was Goldstein (1978).

However the derived formulation consisted of variable coefficients and hence had no general closed

form for a compressible mean flow. An asymptotic closed form representation was later introduced

by Myers & Kerschen (1995) for 2D flat plate aerofoils at low angles of incidence by considering only

high frequency gusts. A solution to the equations is then found through application of the Weiner-

Hopf technique. Their theory predicted a strong dependence between radiated sound power and

angle of attack particularly at high Mach numbers, increasing by an order of magnitude between

0◦ and 10◦ for M∞ = 0.75 and an aerodynamic reduced frequency of ωLc/(2U∞) = 7. In a later

publication Myers & Kerschen (1997) extended their analysis to flat plate cambered aerofoils by

introducing an acoustic boundary layer which deals with diffraction effects such as creeping waves.

Camber was found to have a fairly large influence on sound directivity even in modest amounts,

introducing asymmetry between the upper and lower aerofoil surfaces.

Evers & Peake (2000) introduced a counterpart to the Myers & Kerschen (1997) theory for transonic

flows, taking into account the effects of angle of attack, camber and small but non-zero thickness.

They discovered that the sound directivity was limited to two main lobes above and below the

aerofoil, with no significant radiation in the upstream direction. In a later paper Ayton & Peake

(2013) extended the theory this time to model noise scattering from incoming sound waves rather

than vortical disturbances. Additionally the effect of LE radius has been investigated by Ayton

& Paruchuri (2016) by including sharp/blunt edges of the form y ∼ xm, whereas the theory was

previously limited to parabolic leading edges (y ∼ √x). The most general application of the theory

is provided by Ayton (2016), which incorporates camber, thickness and angle of attack effects in

the gust-aerofoil interaction problem.
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1.2.3 Theory of vortex sound

The main principle behind the theory of vortex sound is to reformulate Lighthill’s acoustic analogy

(Lighthill, 1952) in term of the stagnation enthalpy of the flow (B). Howe (1997) shows that the

resulting inhomogeneous wave equation for H then contains a source term based on the Lamb

vector (ω × u). In a homentropic irrotational flow it may be shown that H may be expressed

as the time derivative of a velocity potential B = −∂ψ/∂t, thus in a steady flow B must be

constant, and the unsteady acoustic waves may be represented by perturbations of the stagnation

enthalpy. Assuming the Mach number is low M � 1 the stagnation enthalpy may then be related

to the acoustic pressure by B = pa/ρ. However, this does neglect the effects of sound scattering

and changes in propagation speed due to mean flow. The solution for H involves application of

a Green’s function, typically resulting in an integral of the vorticity source term multiplied by

the gradient of an incompressible velocity potential term over the volume. The theory has been

applied to various applications including the aerofoil-vortex interaction problem (Howe, 1988), and

unsteady lift from aerofoils in a turbulent boundary layer (Howe, 2001). Recently it has been

used in conjunction with a drift function to model the effects of aerofoil thickness on aerofoil-gust

interaction by Lysak et al. (2013). Further details of Howe’s approach are provided in Appendix

D.2.

Both the LEVS and TEVS for flat aerofoils events have been studied analytically by Howe (1988,

2014) through the vortex sound approach. This includes the parallel interaction of point vortices

with a non-zero vertical miss distance, and perpendicular collisions for vortices with finite velocity

defect. Typically the method requires modelling contributions from two vortex sources: the original

impinging vorticity; and secondary vorticity generated by application of the Kutta condition at

the trailing edge. Howe showed that the majority the radiated sound pressure emitted as a vortex

passes the TE is effectively eliminated through destructive interference with sound generated by the

shed “Kutta” or “wake vorticity”. However due to compact source approximations, this analysis

was mainly restricted to low frequency, focusing solely on the radiated pressure signal rather than

high frequency spectra. In the present work it is found that at high frequencies the TE vortical

scattering contribution makes a substantial impact on the radiated sound, despite greatly reduced

sound pressure amplitude relative to the LE scattering due to the aforementioned TE cancellation

effect. Interestingly in later work conducted by Howe (2001) and Glegg & Devenport (2009),

both including non-compactness effects, the shed wake vorticity response is shown to be mainly

limited to low frequency. The key distinction here is likely the existence of LE generated vorticity

captured in the current simulation approach which convects over the aerofoil surface. The secondary

vorticity is based on a smaller length scale and therefore probably corresponds to higher frequency

noise. Details of the secondary vorticity generation are contained in §3, while §5 provides further

discussion of the TEVS mechanism.
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1.3 Effects of realistic geometry and flow conditions

A substantial proportion of the existing literature concerns the influence of realistic geometric

parameters such as aerofoil camber, angle of attack and thickness. The effect of aerofoil thickness

is generally unanimous, although differing explanations for its mechanism exist. On the other

hand there is some disagreement in the literature concerning the importance of angle of attack and

camber effects, which appear to be dependent on the type of inflow disturbance.

Paterson & Amiet (1976) performed experimental investigations into the acoustic radiation of a two-

dimensional NACA0012 aerofoil at Mach numbers ranging from 0.1 to 0.5. The inflow conditions

were approximately homogeneous isotropic turbulence (HIT), with an intensity of around 4%. They

found that the interaction of the incident turbulence with the aerofoil produced a broadband sound

spectrum, more significant than other noise sources such as flow separation and turbulent boundary

layer effects. Cross-correlations between the aerofoil surface and the far field demonstrated that the

entire surface of the aerofoil was responsible for acoustic radiation, but by far the most prominent

radiating region was the aerofoil LE. Comparing the far field results to theoretical predictions

produced by Amiet’s model (Amiet, 1975) yielded good agreement up until a reduced frequency

fLth/U∞ = 1, where Lth is the aerofoil thickness, and U∞ is the freestream velocity. Beyond

this point there was a discrepancy of around 5 dB, which Paterson & Amiet (1976) attribute to

thickness effects present in the experimental case (reduced noise with increased thickness). Angle

of attack on the other hand was found to be of secondary importance, producing at most 1− 2 dB

increase in far field noise for all tested Mach numbers.

Atassi et al. (1990) on the other hand explored the effects of aerofoil thickness and angle of at-

tack from a computational aeroacoustics (CAA) approach. Their method consisted of solving the

unsteady linearised Euler equations (LEE) to obtain the near field solution, and application of

Kirchoff’s formula to obtain to the far field acoustic pressure. Simulations were based on a two-

dimensional Joukowski aerofoil interacting with both transverse and oblique gusts. At low Mach

numbers, and reduced frequencies fc/(2U∞) < 1 the influence of aerofoil thickness was found to

be insignificant. However a higher reduced frequencies increased thickness was found to have an

effect on sound directivity, tilting it towards an upstream bias. This resulted in increased noise

level upstream of the aerofoil, and reduced downstream. Variation of angle of attack revealed a

positive correlation with far-field acoustic pressure, although the extent of the noise increase was

found to be heavily dependant on the gust conditions and aerofoil geometry.

Thickness and angle of attack effects were also considered by Glegg & Devenport (2009), who

developed a generalised Blasius theorem to predict the unsteady lift response of 2D aerofoils in

incompressible flow. Both aerofoil-vortex interaction (AVI) and step upwash gust cases were con-

sidered. For AVI it was found that the influence of angle of attack depends on whether the vortex

passes on the pressure or suction side of the aerofoil, with the pressure side resulting in a reduction

of the unsteady loading pulse. Comparatively for the step upwash angle of attack was shown to
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have negligible impact on amplitude, but rotated the direction of the unsteady loading force for-

ward by the angle of attack. As with previous approaches, aerofoil thickness was found to reduce

unsteady loading at high frequency. It was suggested this is due to smoothing of the unsteady

blade response.

Glegg & Devenport (2010) later developed an unsteady panel method, effectively extending their

work to aerofoils of arbitrary shape, and accounting for mean flow distortion of disturbances.

Similar conclusions were drawn for both angle of attack and aerofoil thickness. Two methods

were considered: A standard panel method where the velocity is calculated based on the classical

Biot-Savart law; and a second approach based on a velocity potential derived from the stagnation

enthalpy, with the incident vorticity described by its Lamb vector ω × u. The advantage of the

second approach is that it can account for streamwise and vertical vorticity contributions whereas

the first approach is only suitable for spanwise vorticity. Despite this, Glegg & Devenport (2010)

demonstrates that for a 2D aerofoil in 3D HIT only the spanwise component of vorticity is required

to predict the noise. This result is similar to that of Howe (1988), who predicts the response

of a flat plate aerofoil undergoing a vortex interaction based only on the spanwise component of

vorticity.

A comprehensive study investigating the effect of realistic aerofoil geometry on aerofoil-turbulence

interaction was later conducted by Devenport et al. (2010). Noise measurements taken in the Vir-

ginia Tech Stability Wind Tunnel, with two symmetric aerofoils of varying thickness (NACA0012

and NACA0015), as well as a heavily cambered S831 aerofoil were compared to predictions made

by an incompressible vortex panel method. Investigations based on the symmetric foils in Homo-

geneous Isentropic Turbulence (HIT) yielded a similar result to Paterson & Amiet (1976), that

the influence of angle of attack on the LE noise is minimal. However upon conducting further

calculations based on non-homogeneous turbulence they discovered that the LE noise was a strong

function of angle of attack, increasing by 5 − 10 dB between 0◦ and 12◦. Additionally, experi-

mental measurements obtained with the S831 aerofoil in grid generated HIT showed that LE noise

increased by 4 dB between 0◦ and 4◦. This implies that the influence of angle of attack on LE

noise is in fact dependant on the inflow condition and geometric parameters, which may explain the

discrepancies between previous studies. In particular the disagreement between Myers & Kerschen

(1995, 1997) theory and the experimental results of Paterson & Amiet (1976). Further to this the

noise generated by the S831 aerofoil was found to be higher than the NACA0015 aerofoil despite

the S831 having a higher overall thickness (18%). It was also much lower than the NACA0012

aerofoil despite its smaller LE radius. This result implies that the thickness effect is not governed

solely by either one of these parameters, but a combination of both. Devenport et al. (2010) also

found that the far field noise spectra produced by the NACA0012 aerofoil began to deviate from

that obtained by a flat plate at frequencies greater than fLth/U∞ = 0.12, significantly lower than

the frequency suggested by Paterson & Amiet (1976).

These observations were investigated in detail by Gill et al. (2013), who utilised an LEE solver

to investigate the acoustic response of twenty four aerofoil geometries undergoing harmonic gust

disturbances. A total of six LE radii and four thickness values (ranging from 6-24%) were analysed.
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Gill showed that both LE radius and thickness are responsible for noise reductions relative to a flat

plate, although the aerofoils were more sensitive to thickness changes. Additionally, the reductions

are enhanced for high frequencies and Mach numbers. The main mechanism was found to be

related to the LE stagnation region. Effectively a blunter edge was found to distort the incoming

disturbances more severely due to large velocity gradients. The consequence is that the gust wave-

front is more spread out and the amplitude is reduced. However there are still some inconsistencies

regarding this explanation in the literature. Santana et al. (2012), utilising the same panel method

approach as Glegg & Devenport (2010) pointed out that high frequency noise reduction due to

aerofoil thickness was captured, despite neglecting LE vortex distortion.

There have also been efforts to quantify the effect of aerofoil thickness through empirical correction

factors. Gershfeld (2004) utilised the vortex sound acoustic analogy to investigate aerofoil LE

thickness effects. The procedure utilised a Green’s function for an arbitrary thick (t) half-plane

first used by Howe (1998) to investigate TE noise. It was shown that the effect of thickness is to

exponentially decay the sound power at high frequencies. An empirical correction factor for flat

plate aerofoils was therefore introduced: exp (−ωt/(2U∞)), and compared to the experimental data

of Paterson & Amiet (1976) with reasonably good agreement.

A simplified “Geometric” inflow turbulence model was suggested by Moriarty et al. (2005). A prior

developed BEM approach was implemented to calculate the noise reduction of six thick aerofoils

relative to a flat plate. After noticing that the aerofoil thickness noise reduction was approximately

linear, Moriarty et al. (2005) introduced a “inflow turbulence noise indicator” to predict the slopes

obtained by the BEM calculations. The noise indicator coefficients were optimised by a simulated

annealing approach, yielding a simplified model requiring only the aerofoil thickness at 1% and

10% of the chord to predict the noise reduction slope. The geometric model was tested on seven

additional aerofoils showing good agreement.

Another example is Lysak et al. (2013), who analytically modelled the high frequency response of

aerofoils with thickness to a step function gust. The method incorporated the distortion of the gust

vorticity through application of a drift function (Goldstein, 1978; Lighthill, 1956) which describes

the time for a gust to travel to an arbitrary point in space. The resulting vorticity is then used to

predict the unsteady lift based on vortex theory of Howe (2001). The model was compared to the

linear result of Sears (1941), allowing Lysak to developed a correction factor so that the classical

theory could be applied to NACA-65 aerofoil profiles.

Investigations have also been made regarding the influence of viscous effects on interaction noise.

Lockard & Morris (1998) applied a 2D Navier-Stokes code to investigate the radiated noise produced

by NACA aerofoils experiencing single frequency vortical gusts. Despite the inclusion of the viscous

terms, the same general trends were found for both thickness and angle of attack as Atassi et al.

(1990). By comparing the results to Euler simulations, it was found that viscosity had little effect

on the radiated noise. Although it did effect the sound directivity in the downstream direction,

due to instability introduced into the aerofoil wake. Somewhat similar findings have been made
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by Sandberg & Sandham (2006), who reported additional downstream directivity lobes in viscous

simulations of the trailing edge scattering of convected Tollmien-Schlichting waves.

1.3.1 Synthetic turbulence approaches

More recently efforts have turned towards obtaining more realistic CAA simulations based on syn-

thetic turbulence approaches. These have the distinct advantage of producing a broadband noise

spectrum which may be directly compared to experiments. However, numerically generating realis-

tic turbulence is far from trivial due to its non-linear chaotic nature. Perhaps the most widely used

procedure for its generation is the discrete Fourier mode summation approach, first developed by

Kraichnan (1970). The popularity of this method can be attributed to its capability of generating

a divergence free velocity field in a relatively straightforward manner. This is critical for compu-

tational aeroacoustic simulations in order to ensure zero noise from the upstream disturbances.

However, since the method is based on a discrete summation it cannot represent a continuous

spectrum.

An example of the Fourier summation mode approach applied to interaction noise is provided by

Gill et al. (2015), utilising the aforementioned LEE solver and a von Kármán energy spectrum. The

main purpose of this study was to investigate the modelling requirements for turbulence interaction

concerning the use of one, two, or three-dimensional disturbances. Gill et al. (2015) showed that

for symmetric aerofoils with low angle of attack (α < 2◦) a model only consisting of transverse

velocity perturbations was sufficient to capture the interaction noise. This can be explained by

considering the blockage to the flow caused by the aerofoil no-penetration condition. Unless the

aerofoil represents a large blockage in the streamwise direction through large thickness or high angle

of attack, or the spanwise direction through large sweep angle, it is likely the vertical perturbations

will be most distorted by the wall. These findings have significant implications for the current study

by providing justification for the use of a spanwise uniform impinging disturbance.

Another approach firstly proposed by Jarrin et al. (2006) for 3D Large Eddy Simulations (LES) is

the synthetic eddy method (SEM). This approach was made applicable to aeroacoustic simulations

by Sescu & Hixon (2013), by extending the method to satisfy a divergence free velocity field. Sescu

& Hixon (2013) also reported that additional spurious noise is generated during the simulation if

the convection velocity of the turbulent eddies is not in sync with that of the mean flow. This has

yet to be considered in the alternative methods, giving the SEM a distinct advantage over other

synthetic turbulence generation method in terms of reduced numerical noise.

Quite recently improvements were made to the method by Kim & Haeri (2015) with application

to the ATI noise problem. A series of constraints were introduced for the eddy sizes, strengths and

shape functions, which were subsequently optimised through use of a genetic algorithm (GA) to

reproduce a realistic HIT spectra. The method also takes advantage of a sponge zone technique

(Kim et al., 2010a) allowing the disturbances to be injected into the domain relatively noise free.

The far field sound pressure level (SPL) produced by a flat plate aerofoil was compared to that
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predicted by both Amiet (1975) and experimental data, with good agreement at all frequencies.

Additionally, the level of spurious noise produced during the simulations was shown to always be

least two orders of magnitude below the physical level.

Another approach for synthetic turbulence is the random vortex particle method (RPM). This

method has been used successfully by Ewert (2008) for slat noise predictions, and by Dieste &

Gabard (2012) to study wake-fan interaction noise. However as of yet only a two-dimensional

formulation exists for this method. A combination of both RPM and SEM approaches was recently

introduced by Gea-Aguilera (2017) who used the mathematical description of turbulent eddies

from RPM with the numerical implementation of SEM. The approach utilised a superposition of

Gaussian eddies to approximate a target von Kármán spectrum.

1.4 Leading edge undulation

As more traditional methods for aircraft noise reduction reach their practical limitations it becomes

inevitable that new novel technologies will be required to reach the ambitious noise targets. Passive

geometry treatments for the reduction of broadband interaction noise have received a great deal of

attention from the research community in the past few years. One of the most widely researched

is aerofoil LE undulation (wavy leading edges), which have been demonstrated to obtain noise

reductions as high as 10 dB at certain frequencies (Chaitanya et al., 2017; Chong et al., 2015;

Narayanan et al., 2015). Such geometry was originally considered for its aerodynamic properties

(Hansen et al., 2011; Johari et al., 2007; Miklosovic et al., 2004), inspired by the leading-edge

tubercles of the humpback whale’s pectoral flippers, shown in figure 1.3(a). It is believed that

these protrusions are responsible for the animals impressive manoeuvrability in the water while

catching its prey (Fish et al., 2008). More recently wavy leading edges (WLE) have also been

considered for there noise reduction capabilities. Another well known example occurring in nature

is the comb-like LE serrations of barn owl’s primary flight feathers, which are widely regarded

as one of the main features which contribute towards its silent flight (Graham, 1934) (see figure

1.3(b)). However this geometry has generally received less attention, in part due to its less certain

aerodynamic performance at higher Reynolds numbers (Ito, 2009), as well as materials/structural

considerations.

The noise reduction capabilities of wavy leading edges (WLE) have been exhibited for harmonic

gusts, turbulence and vortex disturbance types utilising analytical (Ayton, 2017; Lyu & Azarpey-

vand, 2017; Mathews & Peake, 2018), experimental (Biedermann et al., 2017; Chaitanya et al.,

2017; Chong et al., 2015; Hansen et al., 2010; Narayanan et al., 2015; Roger & Moreau, 2016), and

numerical methodologies (Clair et al., 2013; Kim et al., 2016; Lau et al., 2013; Reboul et al., 2017;

Tong et al., 2018b; Turner & Kim, 2017b). Generally speaking the LE noise reduction increases with

frequency in an approximately linear fashion (until masked by additional sources of sound). The

underlying trend has been demonstrated to be related to the Strouhal number based on the WLE

amplitude (2hLE) as ∆PWL = 10 log10(10fhLE/U∞) (Chaitanya et al., 2017). Consistently it is
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Figure 1.3: (a) Leading edge tubercles of the humpback whale’s pectoral flipper (photo
credit: Robbie Shade flickr.com) (b): Leading edge serrations of a Barn Owl’s flight feather,
(photo credit: Kay Schultz).

found that the noise reductions are determined mainly by the WLE amplitude (2hLE). Increasing

2hLE shifts the noise reduction spectrum to the left, resulting in an increase over the majority of

the frequency range. Recently, the influence of the various parameters on overall noise reductions

∆OASPL have been systematically ranked through a design of experiments (DOE) based approach

(Biedermann et al., 2017). Thus revealing amplitude, followed by Reynolds number, then leading

edge wavelength (λLE) as the major factors for noise reduction. The noise reduction capabilities of

WLEs demonstrated in figure 1.4, which shows the acoustic pressure contours (p′/p∞) generated

by baseline SLE (straight leading edge) and WLE zero-thickness aerofoils respectively. The data is

obtained through numerical simulations of synthetically generated turbulence (Kim & Haeri, 2015;

Kim et al., 2016). It is apparent how the WLE geometry produces a smoother acoustic pressure

profile, suggesting significant damping of higher frequency noise components.

Figure 1.4: (a) Acoustic pressure contours generated during aerofoil-turbulence-interaction
(ATI) by a flat plate aerofoil with a straight leading edge (SLE). (b) Equivalent plot for a
wavy leading edge (WLE) geometry. Taken from: (Kim & Haeri, 2015; Kim et al., 2016).
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1.4.1 Previous studies on leading edge undulation

Since they were first identified by Graham (1934), many studies have focused on the noise reduction

capabilities of owl inspired LE serrations and their engineering applications. An early example is

the experimental study conducted by Soderman (1973). Soderman carried out noise measurements

for low speed rotors with saw-tooth brass strips applied to their leading edge. It was found that

the serrations could obtain high frequency noise reductions in the range of around 4 dB overall

sound pressure level (OASPL) for a rotor 2.59 m in diameter with serration heights of 0.13-0.64

cm. Regarding their aerodynamic properties, Ito (2009) carried out wind tunnel experiments of

NACA63 − 414 aerofoils with saw-tooth serrations. He found that the serrated cases provided

an improvement to maximum lift coefficient and post-stall lift and drag. However this was only

observed at a low Reynolds number of 2.1 × 104, increasing the Reynolds number to 2.1 × 105

yielded no notable improvement.

1.4.1.1 Aerodynamic performance of undulated aerofoils

Unlike sawtooth serrations, sinusoidal serrations first gained attention for their impressive aerody-

namic capabilities at high angles of attack. This is most likely due to the function of tubercles on

the pectoral flippers of the humpback whale. It has been demonstrated extensively that they have

the potential to vastly improve performance at high angle of attack, specifically delaying onset

of stall, producing a softer stall profile, and increasing maximum lift coefficient (Hansen et al.,

2011; Johari et al., 2007; Miklosovic et al., 2004). The aerodynamic enhancements WLEs offer

do come at the cost of some small reduction in pre-stall aerodynamic efficiency, but importantly

they are observed at a wide range of Reynolds numbers, making them appropriate for a variety of

applications. This includes turbofan OGVs and wind turbines where the angle of attack relative

to the mean flow can be reasonable high.

The improved stall characteristics have been attributed to three primary mechanisms (Bolzon et al.,

2016). Firstly that streamwise vortices generated by the WLE act as vortex generators, mixing

high momentum fluid into the tired boundary layer. The second theory is that the streamwise

vortices produce vortex lift (a change in effective angle of attack due to downwash). Thirdly it

is possible that there exists a compartmentalisation effect where the propagation of stall in the

spanwise direction is delayed (much like a wing fence).

The development of the streamwise vortex structures have been described in detail by Rostamzadeh

et al. (2014) and Hansen et al. (2016) for transitional and laminar flow regimes respectively. They

proposed that a surface flux of vorticity is generated due to strong LE pressure gradients. The

vorticity is stretched and tilted by pressure gradients, as well as diffused by viscous forces eventually

leading to the creation of streamwise coherent structures located in between the LE peaks. Another

interpretation from Rostamzadeh et al. (2014) is that the spanwise vorticity contained in the

boundary layer is turned into the streamwise direction by a “flow skewness” effect, which is created
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by the curvature of streamlines at the LE. This mechanisms is referred to as Prandtl’s secondary

flow of the first kind.

Similar observations were also made by Skillen et al. (2015), who conducted an LES simulation of

a NACA0021 aerofoil for Reynolds number Re∞ = 1.2 × 105. Strong spanwise pressure gradients

were observed resulting in secondary flow developing in the WLE troughs. The re-energisation

of the boundary layer caused by the secondary flow resulted in a significantly reduced separated

region. Additionally, Skillen et al. (2015) noted that the unsteady force fluctuations (lift and drag)

were reduced for the WLE. This is also important for the aeroacoustic performance of WLEs as

the unsteady lift is proportional to the radiated sound at low Mach numbers (Curle, 1955). The

power spectral density of the unsteady lift revealed a reduced magnitude for the WLE throughout

the frequency range, as well as reduced tonal peaks. This result suggests that the WLE geometry

may be effective at reducing noise from both separation and coherent vortex shedding.

Further insight into the delayed separation and compartmentalisation effects of wavy leading edges

was provided in a recent LES by Pérez-Torró & Kim (2017). This study focused on a NACA0021

aerofoil at Reynolds number Re∞ = 1.2×105, focusing on 20 degrees angle of attack. It was shown

how low pressure observed at the WLE troughs (Hansen et al. (2016); Skillen et al. (2015); Yoon

et al. (2011)) is associated with laminar separation bubbles (LSBs). Unusually, the LSBs were

shown to form in a collocated pattern (non-uniform and non-periodic) in the spanwise direction.

A similar pattern has also been observed experimentally by Chong et al. (2015). It was speculated

that the streamwise vortices stop the LSB bubbles from merging, resulting in compartmentalisation

of the separated region, and a smaller wake volume. Additionally, the loss of spanwise coherence

due to the streamwise structures resulted in reduced von Kármán shedding, and consequently less

pressure drag in the stall regime. Similar to Skillen et al. (2015), they also showed a reduction of

unsteady lift fluctuations caused by the WLE.

1.4.1.2 Previous experimental and numerical work on WLE noise reduction

One of the first investigations to specifically consider the aeroaocustic performance of WLEs was

undertaken by Hansen et al. (2010), who performed experiments based on a NACA0021 aerofoil.

They found that WLE cases provided large reductions to tonal noise, as well as significant reduc-

tions to broadband noise around the tonal peaks (between 1.5 kHz and 2.5 kHz). Hansen et al.

(2010) theorised that the tonal noise reductions were related to the production of streamwise vor-

tices at the leading edge troughs. These improve the stability of the boundary layer by mixing

in higher momentum fluid from the freestream, which alters the shear layer and therefore the

generation of vorticity near the trailing edge.

Lau et al. (2013) used a computational aeroacoustic approach based on high order compact finite

differencing and filters to investigate the effect of wavy leading edge geometry on aerofoil-gust

interaction (AGI) noise. They investigated a series of wavy leading edge profiles based on a

NACA0015 aerofoil section at three gust frequencies at zero degrees angle of attack. They preserved
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the same planform area and cross section throughout the span for fair comparison with straight

leading edge counterparts. An upstream sinusoidal disturbance varying in both the streamwise and

vertical direction was used as a gust model. It was concluded that the most effective method for

reducing AGI was to increase the ratio between the leading edge amplitude and gust wavelength

2h/λg. In particular, significant reductions were obtained once 2h/λg > 0.3. Regarding the leading

edge wavelength (λ) its influence was found to be much less significant, however they state that this

could be due to the gust model lacking significant spanwise fluctuations. Examining the fluctuating

pressure signals along of the LE, Lau et al. (2013) found that WLE cases produce a phase shift

along the span resulting in a de-synchronised gust response, which they suggest is responsible for

the noise reduction. Despite this the cause of the phase change was left unexplained, as well as

whether this is the only reason for the reduced noise.

Clair et al. (2013) undertook both numerical and experimental investigations into the acoustic

properties of wavy leading edges. Three serrated wings based on a NACA65-1210 aerofoil were

tested in the University of Southampton ISVR anechoic wind tunnel. A square rod grid was

implemented at the tunnel nozzle exit, designed to provide HIT. This was necessary in order to

develop a scenario where ATI would be the dominant noise source over aerofoil self-noise (which is

significant in a uniform flow). The WLE aerofoils where effective over a wide range of frequencies,

broadening at lower mean flow speeds. Clair et al. (2013) describe the effect as similar to a low

pass filter, attenuating sound above a certain cut of point (around 1 kHz at 60 m/s). Similar

to Lau et al. (2013) they also found that performance was improved with increased leading edge

amplitude, obtaining reductions as high as 6 dB for serrations of 15 mm (10% of the chord) in the

mid-frequency range. Their CAA results also revealed reduced RMS surface pressure at the peak

and hill regions of the WLE, compared to the SLE case. Since RMS surface pressure is usually

correlated with radiated sound, this could be a reason for the lower noise generated by the WLE.

Narayanan et al. (2015) conducted a detailed parameter study into WLE amplitude (2h) and

wavelength (λ). They performed experiments in the ISVR anechoic wind tunnel primarily for both

flat plate aerofoils, validated with high-order CAA simulations. Inflow turbulence was generated

using a HIT grid, which produced a velocity spectra very close to the von Kármán spectra. They

found that sound power level reductions (∆PWL) were primarily influenced by the LE amplitude,

less so by LE wavelength, similar to Lau et al. (2013). The largest noise reductions were obtained

with long (high 2h) and wide (high λ) serrations. This finding agrees with the experimental results

of Chong et al. (2015), but is incompatible with Hansen et al. (2010) where narrow serrations

exhibited better performance. The noise reduction spectra obtained with a flat plate was also

compared to a NACA-65 utilising the same serration profile. Larger noise reductions were obtained

with the flat plate, 9 dB compared to 7 dB for the thick aerofoil. By plotting contour maps of

∆PWL vs frequency and flow speed (U∞) Narayanan et al. also identified a minimum frequency f0,

above which significant noise reductions are achieved (> 3dB). For all cases regardless of serration

geometry and flow speed, they found that the minimum frequency was located at f0 = αU∞/(2h),

with α ≈ 0.5 (varying between 0.4−0.6). This relation is consistent with the findings of Clair et al.

(2013), who discovered that the frequency range where noise reduction are observed broadens as
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U∞ is reduced. However, it was unclear as to why noise reductions are restricted to f > f0, as well

as the cause for the variation in α.

Roger & Moreau (2016) carried out experimental investigations of two passive leading edge ge-

ometries wavy leading edges and porous leading edges, for a NACA0012 and flat plate aerofoils

interacting with grid generated turbulence. For the NACA0012 experiments a spectral subtraction

procedure was utilised to isolate the interaction noise from the self-noise contributions (where the

self-noise was estimated by removing the upstream grid). For flat plate cases the interaction noise

level was considered dominant enough at high frequencies for this process to be unnecessary. All

geometries produced a ‘hump-like’ noise reduction profile which initially increases then drops off at

higher frequencies. In the current work it is speculated that this drop-off could be caused by TEVS

of the impinging disturbance. Generally better noise reductions were obtained by the wavy leading

edges, with a maximum noise reduction of 10 dB vs. 6dB for the porous leading edge. Roger &

Moreau (2016) also showed how the noise reduction spectra collapse when plot against the chord

based Strouhal number (fLc/U∞), suggesting the results are self-similar for the flow speed.

More recently Kim et al. (2016) investigated the noise reduction mechanisms associated with WLEs

with a CAA approach. Simulations were based on the 3D compressible Euler equations, effectively

removing the influence of self-noise components generated at the TE. Flat plate aerofoils with

various serration heights were positioned in a synthetically generated turbulence stream, based

on the von Kármán velocity spectra, and generated by a synthetic eddy method (SEM) (Kim &

Haeri, 2015). Kim et al. (2016) identified two mechanisms for noise reduction. The first is a source

”cut-off” effect, which they attribute to the obliqueness of the LE hill regions. It was found that

the mean squared surface pressure fluctuations at the hill regions and subsequently the source

power are significantly reduced compared to a root and peak regions, which are more comparable

to a SLE case. This effect is precipitated by the local increase in sweep angle at the LE hills, and

hence is amplified with increased serration height (h). Correlations of surface pressure fluctuations

along the LE also revealed a more rapid reduction for cases with higher h, suggesting a weaker

radiation to the farfield. The source cut-off effect was further explored by analysing the surface

pressure auto-spectrum along the LE, identifying that the hill regions are responsible for reducing

the sound power across the whole range of frequencies. Interestingly analysis of the root and peak

spectrum showed that relative to a SLE case the peak is a much weaker source of low frequency

noise, while the root produces an approximately equal level. Alternatively at high frequencies the

reverse trend is observed, all be it to a lesser degree. The second noise reduction mechanism put

forward by Kim et al. (2016) is a phase interference effect. It was reported that WLE cases exhibit

an increased out of phase shift between the LE peak and other locations along the LE, especially

the hill regions. The relative phase spectra between straight and wavy cases matched well with

the noise reduction spectra particularly at medium to high frequencies, thus demonstrating the

importance of phase interference.

Following up from the work of Kim et al. (2016), Turner & Kim (2017b) conducted a canonical

study based on CAA simulations of the interaction between at WLE and a single spanwise vortex.

By simplifying the incoming disturbance they were able to identify fundamental features of the
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flow which determine the source strength variation along the WLE. It was demonstrated that by

increasing WLE height (h) the source strength at the hill is reduced throughout the frequency

range (confirming the source cut-off effect identified by Kim et al. (2016)). At the peak, the source

strength was shown to reduce, although saturate with continued increase to h. Alternatively at the

root, the source strength was shown to remain almost constant regardless of the selected geometry.

The differences observed between the peak and the root are particularly interesting as one would

anticipate that they would maintain a similar pressure response since both are perpendicular to the

incoming flow. The mechanisms behind these observations were explained in relation to a system

of secondary horseshoe-like vortices which are generated on the aerofoil surface as the vortex passes

over the LE. Through induced velocity contributions they alter the upstream field and consequently

the unsteady pressure response on the surface. It should be noted that the streamwise vortices

discussed here are separate from those discussed by (Rostamzadeh et al., 2014) in that they are

created by turning the impinging spanwise vorticity into the streamwise direction rather than the

boundary layer vorticity. Full details of this study are included in this report under chapter 3.

Another important paper concerning the noise reduction mechanisms was recently introduced by

Chaitanya et al. (2017) utilsing the same experimental setup as Narayanan et al. (2015). The

main finding of this paper was the existence of an optimum WLE wavelength for a given impinging

spanwise length scale. The optimum value occurs for λLE/Λ = 4, where Λ is the spanwise integral

length scale of impinging turbulence. The discovery of an optimal serration explains the conflicting

findings of Narayanan et al. (2015) and Hansen et al. (2010). Based on the findings of Kim et al.

(2016) for the WLE root source strength, the authors of this paper speculated the optimum value

corresponds to the point when the adjacent roots are first excited incoherently. Under this condition

constructive interference of the high strength roots would be avoided, while simultaneously exciting

enough of the edge to gain the benefits of reduced source strength and destructive interference.

Another important discovery in this work is the existence of a Strouhal number dependence similar

to Roger & Moreau (2016), this time based on the WLE amplitude (fhLE/U∞). This outcome

highlights the importance of phase interference caused by the WLE as hLE/U∞ is proportional to

the phase-shift between peak and root (φ = 4πfhLE/U∞). Plotting the noise reductions against

the Strouhal number revealed an approximately linear trend when close to the optimum serration

wavelength. Chaitanya et al. (2017) also hypothesised a noise reduction mechanism based on the

variation of source characteristics along the LE. They proposed that the “effective length” of the

sources near the root scale linearly with the hydrodynamic wavelength U/f , therefore resulting in

a linear increase of noise reduction with frequency.

1.4.1.3 Analytical predictions for WLE noise reduction

There have also been recent developments in analytical approaches to predict ATI noise from WLEs.

Roger et al. (2013) utilised a strip theory approach to model a semi-infinite chord WLE. The

sinusoidal serration is separated into small spanwise strips each with a sweep angle corresponding

to the local tangent of the edge. An extension to Amiet’s method for swept blades is then utilised to
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obtain the contribution from each strip (Roger & Carao, 2010). The limitation of this approach is

that it neglects coupling between the spanwise strips. Regardless, it is useful for interpreting some

of the fundamental mechanisms of the WLE. The study demonstrates how the radiated sound

is highly dependent on whether the impinging gust is sub- or super-critical. Essentially a gust

which is parallel to the SLE (super-critical) may be sub-critical at the WLE hills (where the local

sweep angle is maximum) resulting in significantly reduced radiated sound. Similarly a sub-critical

gust for the SLE may become super-critical for the WLE if parallel with the WLE hill slopes.

This highlights a potential scenario where the WLE may under perform the baseline geometry.

An additional Schwarzschild technique model was also introduced by in this paper taking into

account the effect of LE curvature. This was accomplished by firstly transforming the problem

into stretched coordinates by subtracting the WLE shape function from the x coordinate. As

the aerofoil is semi-infinite, the now wavy TE can be considered sufficiently far downstream as to

be ignored. Similar qualitative trends were observed with this new model as for the simple strip

method.

An alternative approach to modelling the WLE noise reduction was carried out by Mathews &

Peake (2015, 2018) based on a procedure introduced for self-noise predictions from serrated trailing

edges (Howe, 1991). This study considered a flat plate semi-infinite chord WLE aerofoil interaction

with a specific distribution of turbulent eddies. Uniquely the non-linear motion of the disturbances

is captured analytically by determining the incident pressure field from the Euler momentum

equation. The incident pressure field is then used in conjunction with an appropriate Green’s

function derived for a serrated half plane to approximate the far-field noise. Both single, and

multiple eddy interactions are considered. It was found that in all cases a WLE exists which could

effectively reduce the noise. However, similar to the findings of Roger et al. (2013), it was found

that the WLE could increase the noise if the disturbances impinge at an oblique angle. Essentially,

a priori knowledge of the disturbance field is required in order to select an optimum WLE profile

for a given application.

A more recent attempt to extend the SLE flat plate theory of Amiet (1975) was carried out by

Lyu & Azarpeyvand (2017) for saw-tooth type LE geometry. This innovative approach utilises a

Fourier expansion method to eliminate the spanwise dependence of the boundary value problem.

The resulting set of PDEs is then solved with an iterative Schwarzschild technique. This approach

has also been applied with success to aerofoils with TE serrations (Lyu et al., 2016). The predicted

far field spectra showed good agreement with the experimental results produced by Narayanan

et al. (2015), particularly at medium-high frequencies, while at low frequencies the model resulted

in an over prediction. The predicted loss of noise reduction at low frequencies may be caused by not

fully capturing the source mechanisms due to the frozen turbulence assumption. In particular the

low frequency source strength reduction at hill and peak shown by Kim et al. (2016); Turner & Kim

(2017b). Lyu & Azarpeyvand (2017) proposed that the noise reduction mechanism is mainly due to

destructive interference occurring between points along the LE. This was demonstrated by plotting

the scattered pressure over the surface at individual frequencies, revealing that the sign of the

pressure response oscillates along the edge length. It was shown how increasing LE amplitude and
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frequency both reduce the edge length spacing between opposite sign regions, effectively increasing

the out-of-phase percentage of the LE, and the noise reductions. The destructive interference

mechanism is investigated in more detail in §4, and compared to other proposed mechanisms,

source strength reduction and effective source length.

Another attempt to analytically model the noise from serrations was carried out by Ayton (2017).

This approach utilises the Wiener-Hopf technique in addition to a non-orthogonal co-ordinate

transform to model the interaction of a sawtooth serration with semi-infinite chord length in a

channel. Good agreement concerning the fundamental trends in the literature are obtained, such

as the effect of increased frequency and LE amplitude. Additionally the surface response follows a

similar pattern to Lyu & Azarpeyvand (2017), also implying destructive interference is one of the

primary mechanisms.

1.4.1.4 Improved WLE geometries

Another recent development in the literature is the introduction of modified WLE geometries.

Two interesting examples were presented in a recent paper by Chaitanya et al. (2016). In this

study the WLE was modified with the aim of minimising the contribution from the root, which

has been shown as the primary WLE noise source ((Kim et al., 2016; Turner & Kim, 2017b)). The

first geometry was a dual-frequency wavy leading edge (DWLE) consisting of two summed sine

waves. The reasoning behind this was to introduce a streamwise displacement between consecutive

roots in order to entice destructive interference. In experiments undertaken in the University

of Southampton anechoic wind tunnel the DWLEs were successful in obtaining additional noise

reductions of around 4 dB in a narrow frequency band. A simple estimate for the frequency where

additional noise reduction occur is obtained by considering when half the hydrodynamic wavelength

equals the streamwise root-root distance (fdrr/U∞ = 0.5). The second modified WLE was a slitted

LE profile, obtained by cutting either rectangular or triangular streamwise slits at each WLE root.

Overall better performance was obtained by the triangular slits which produced additional noise

reductions from medium to high frequency. The largest noise reductions were obtained with greater

slit lengths and smaller slit widths.

DWLEs have also been investigated through numerical simulations conducted by Turner et al.

(2016a), utilising the same vortex-aerofoil interaction approach as outlined in Turner & Kim

(2017b). The aim of this study was to precisely demonstrate the destructive interference mecha-

nism by contrasting the DWLE acoustic sources with the resulting far field noise. It was shown

that the root-root estimate for additional noise reductions is not entirely accurate as the two roots

have different source strength. This is a consequence of differing local sweep angles at the adja-

cent hills, and therefore different strength horseshoe vortex structures (which determine the root

wall pressure response). Further to this, it was shown that for cases with larger serration height

additional noise reduction harmonics are observed at higher frequencies. It was speculated that

this was not observed in the experimental procedure (Chaitanya et al., 2016) due to them being
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masked by viscous self noise from the TE. Some results from this study are presented in Appendix

E.

Curved serrations which mimic owl feathers have also been investigated experimentally by Juknevi-

cius et al. (2017). It was hypothesised that the LE curvature may block the flow impinging on the

WLE root thereby increasing the noise reductions. The curved serrations outperformed undulated

leading edges obtaining an additional 5dB maximum noise reduction. It was speculated that the

LE curvature may increase the effective serration height, resulting in a stronger interference effect.

So far no evidence has been obtained for the flow blocking mechanism which represents a possible

future area of study.

1.5 Research aims and objectives

Despite rapid progress towards quantifying the extent of noise reductions from WLEs in recent

years, there is still much unexplained regarding the physical noise reduction mechanisms. This

includes fundamental aspects such as acoustic source generation and explanations for simple noise

reduction trends. The principle aim of this research is therefore to develop a more comprehensive

understanding of wavy leading edges as well as aerofoil interaction noise in general. The goal is

broken into four major categories which are as follows:

1. Provide a physical interpretation of the acoustic source mechanisms for wavy leading edges

during LEVS.

2. Investigate proposed noise reduction mechanisms in order to determine which is most fun-

damental to the WLE noise reduction trends, in particular source strength modification or

destructive interference.

3. Quantify the extent of secondary interaction noise sources ABS and TEVS for aerofoil-vortex

interaction.

4. Explore how the secondary interaction noise sources are effected by the WLE.

1.6 Original contributions

This work investigates the interaction noise generated by a spanwise vortex disturbance impinging

on zero-thickness aerofoils with sinusoidal leading edge profiles. It employs a high fidelity computa-

tional aeroacoustic (CAA) approach based on the full 3D non-linear Euler/Navier-Stokes equations

utilising high performance computing procedures.
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1.6.1 Thesis outline

The work in this thesis is presented as a collection of four papers, each addressing one of the above

objectives. Below are details of the work conducted for each paper:

§3-Primary Leading Edge Source Mechanisms contains the paper first presented in:

TURNER J.M. & KIM J.W. 2017 Aeroacoustic source mechanisms of an aerofoil with a wavy

leading edge undergoing vortical disturbances. J. Fluid Mech. 811, 582-611.

Abstract High-accuracy numerical simulations are performed to study aeroacoustic source mech-

anisms of wavy leading edges (WLEs) on a thin aerofoil undergoing vortical disturbances. This

canonical study is based on a prescribed spanwise vortex travelling downstream and creating sec-

ondary vortices as it passes through the aerofoils leading edge. The primary aim of the study is to

precisely understand the relationships between the vortex-induced velocity perturbation and the

wall pressure fluctuation on the WLE geometry. It is observed that by increasing the size (am-

plitude) of the WLE the source strength at the peak region is reduced rapidly to a certain point,

followed by a saturation stage, while at the root (trough) it remains fairly consistent regardless

of the WLE size. This observation is demonstrated to be the consequence of three-dimensional

vortex dynamics taking place along the WLE. One of the most profound features is that a system of

horseshoe-like secondary vortices are created from the WLE peak region upon the impingement of

the prescribed vortex. It is found that the horseshoe vortices produce a significantly non-uniform

velocity perturbation in front of the WLE leading to the disparity in the source characteristics

between the peak and root. The alterations to the impinging velocity perturbation are carefully

analysed and related to the wall pressure fluctuation in this study. In addition, a semi-analytic

model based on Biot-Savart’s law is developed to better understand and explain the role of the

horseshoe vortex systems and the source mechanisms.

§4-Noise Reduction Modelling and Underlying Mechanisms contains the paper:

TURNER J.M. & KIM J.W. 2019 On the universal trends in noise reduction due to wavy leading

edges in aerofoil-vortex interaction, Under review J. Fluid Mech.

Abstract It is well established in existing literature that wavy leading edges may offer substantial

broadband noise reductions for the problem of aerofoil interaction noise. However, despite rapid

growth in the field there still exists fundamental questions regarding the physical mechanisms

by which these reductions are made possible. In this paper two of the leading explanations –

destructive interference and source strength reduction – are investigated in order to determine

their contribution to the noise reductions. In particular the focus is on two universal properties

of the observed WLE noise reduction spectra. 1. The increase of noise reduction with frequency.

2. Zero noise reduction at low frequency. The resulting findings have important consequences for

future modelling approaches concerning which characteristics are critical for properly capturing

the physics. Through application of a 1D LE model the interference mechanism is shown as the

main driving force for the increasing noise reduction with frequency. However, it is found that this
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approach based solely on the LE can lead to erroneous conclusions regarding the significance of

source strength variation, which in fact requires a 2D representation. This is made apparent from

the surface spectra, which shows the source strength downstream of the LE is far from negligible at

high frequencies. As a consequence it is shown through application of the FW-H equation that the

source variation over almost the entire surface is required to properly predict the noise reduction

spectra. Regarding zero noise reduction at low frequency, it is found that despite previously

observed reduced strength along the LE line, the percentage of the surface with similar strength is

almost the same for SLE and WLE cases. This is caused by noise increase regions downstream of

the LE, thus leading to net zero noise reduction for very low frequencies.

§5-Secondary Noise Sources contains the paper:

TURNER J.M. & KIM J.W. 2019 Secondary noise sources in the aerofoil-vortex interaction prob-

lem, Preprint

Abstract The noise generated by vortical disturbances impinging on an aerofoil has widely been

studied in the past where the primary source mechanism is the vortical scattering at the leading

edge (LE) of the aerofoil. In this paper the secondary source mechanisms – the subsequent vor-

tical scattering at the trailing edge (TE) and the backscattering of the produced acoustic waves

– are investigated in detail. The present study is performed by employing high-fidelity numerical

simulations in which a prescribed spanwise vortex impinges on a non-lifting flat-plate aerofoil with

zero thickness situated in an inviscid mean flow. One of the most profound observations made

in this paper is that the vortical scattering at the TE is the dictating source of noise at high

frequencies in almost all observer directions. This is demonstrated for both exactly parallel inter-

actions, and interactions with vertical miss distances, even at distances where image vortex effects

are expected to be negligible. This unique discovery has significant consequences for analytical

approaches which typically neglect the TE scattering in aerofoil-vortex interaction. A series of two

and three-dimensional laminar LES simulations are also conducted to determine the sensitivity

of the TE event to the flow conditions. The resulting noise is found to be highly dependent on

Reynolds number and vortex strength, existing only if the convective structures persist to through

the boundary layer without being significantly dissipated.

§6-The Effect of WLEs on Secondary Sources contains the work first presented in:

TURNER J.M. & KIM J.W. 2019 Secondary noise sources in a vortical flow interacting with an

undulated aerofoil, Preprint

Abstract

The current investigation provides new findings on the secondary sources and their influence on the

noise reduction due to the LE undulation of the aerofoil. It is found that the secondary sources make

substantial impacts on the acoustic power spectra and directivity profiles in the far field, which are

not described by using the primary source only. The noise reduction directivity in particular can

change by more than 10dB when the secondary effects are included. When an undulated LE is used

the relative impact of the secondary sources is greater due to reduction of the primary LE noise.
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For upstream angles the secondary TE scattering even exceeds the primary source for the majority

of frequencies. The dominance of TE vortical scattering results in the noise reduction (a beneficial

effect of using an undulated LE) disappeared in the high-frequency range. An effective means to

regain the lost noise reduction is to also include a undulated TE, which results in superior high

frequency performance than the semi-infinite WLE. Towards the end of the paper additional LES

simulations are carried out in the laminar regime for Re∞ = 400, 000 in order to investigate if the

observed noise reduction trends persist when the convective disturbances interact with a boundary

layer. For the WLE aerofoil there is a sudden breakdown of the LE generated structures to tertiary

3D eddies on the aerofoil lower side. This phenomena is not observed for the SLE under the same

flow conditions. The outcome is a large increase of the TE vortical scattered sound relative to the

SLE, which raises a couple of critical questions to address in the future.

1.6.2 List of publications and conference proceedings

Journal papers-accepted

• TURNER J.M. & KIM J.W. 2017 Aeroacoustic source mechanisms of an aerofoil with a wavy

leading edge undergoing vortical disturbances. J. Fluid Mech. 811, 582-611.

• CHAITANYA, P., JOSEPH, P., NARAYANA, S., VANDERWEL, C., TURNER, J., KIM, J.

W. & GANAPATHISUBRAMANI, B. 2017 Performance and mechanism of sinusoidal leading

edge serrations for the reduction of turbulence-aerofoil interaction noise. J. Fluid Mech. 818,

435-464.

• TURNER J.M., HAERI, S. & KIM J.W. 2016 Improving the boundary efficiency of a compact

finite difference scheme through optimising its composite template. Comput. Fluids. 138,

9-25.

Journal papers-in preparation

• TURNER J.M. & KIM J.W. 2019 On the universal trends in noise reduction due to wavy

leading edges in aerofoil-vortex interaction. In review J. Fluid Mech.

• TURNER J.M. & KIM J.W. 2019 Secondary noise sources in the aerofoil-vortex interaction

problem. Preprint.

• TURNER J.M. & KIM J.W. 2019 Secondary noise sources in a vortical flow interacting with

an undulated aerofoil. Preprint.

Conference papers

• TURNER J.M. & KIM J.W. Aeroacoustic effects of the trailing edge of an undulated aerofoil

subjected to impinging disturbances. In 23rd AIAA/CEAS Aeroacoustics Conference. AIAA

Paper 2017-3494.
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• TURNER J.M. & KIM J.W. Towards understanding aerofoils with wavy leading edges inter-

acting with vortical disturbances. In 22nd AIAA/CEAS Aeroacoustics Conference. AIAA

Paper 2016-2952.

• TURNER J.M., KIM J.W., CHAITANYA P. & JOSEPH P. Towards understanding aero-

foils with dual-frequency wavy leading edges interacting with vortical disturbances. In 22nd

AIAA/CEAS Aeroacoustics Conference. AIAA Paper 2016-2951.

• CHAITANYA, P., NARAYANA, S., JOSEPH, P., VANDERWEL, C., TURNER, J., KIM,

J. W. & GANAPATHISUBRAMANI, B. 2015 Broadband noise reductions through leading

edge serrations on realistic aerofoils. In 21st AIAA/CEAS Aeroacoustics Conference. AIAA

Paper 2015-2202.



Chapter 2

Computational Methodology

2.1 Current computational approach

Previously synthetic turbulence approaches have been the primary basis for computational method-

ology used to model ATI noise. This approach has proved capable of capturing the underlying

physics of ATI, which has been demonstrated through good agreement with experimental data. It

has also yielded significant research findings with regards to the WLE noise reduction mechanisms

(most notably the oblique cut-off and decorrelation effects identified by Kim et al. (2016)). Despite

these successes there are some difficulties with this approach, particularly concerning the possible

identification of any coherent structures which may be generated during the interaction. In addi-

tion, it is difficult to determine what extent of the spanwise variation in acoustic source strength is

attributed to the LE geometry, opposed to a local inhomogeneity in the turbulent flow. In order to

properly decipher the WLE interaction mechanisms a canonical study has been developed based

on a single spanwise vortex disturbance. This approach offers a number of distinct advantages

including:

• Simpler flow regime allows for easier identification of fundamental structures in the flow

• The use of a single disturbance means the resulting sound spectra is smooth and requires no

additional filtering or averaging

• The spanwise vortex disturbance still maintains a reasonably large range of frequencies, unlike

many other single disturbance approaches to modeling ATI (e.g. harmonic gusts).

• More control over the vortex dynamics, for example effects such as impingement angle and

vertical offset can be predetermined.

The main limitation of this method is that we neglect spanwise length scale effects. A detailed study

on this mechanism is provided by Chaitanya et al. (2017). This can result in larger oscillations in

the spectra than an HIT approach as the LE interaction is coherent, and therefore promotes phase

25
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(a) (b)

Figure 2.1: (a) Previous synthetic turbulence approach based on randomly distributed
Gaussian eddies (Kim et al., 2016). (b) Current aerofoil-vortex interaction approach.
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Figure 2.2: Surface meshes (coarsened for illustration purposes) on the flat-plate aerofoils
used in the present study, with (a) straight and (b) wavy leading edges (SLE and WLE,
respectively). The case of hLE/Lc = 1/15 and λLE/Lc = 2/15 is shown in this figure.
Specific details of the grid resolution are contained within the relevant results sections.

interference effects. Despite this limitations it is shown in later sections that the numerical results

still follow similar underlying trends as experiments based on HIT (see figure 4.5).

The two inflow conditions are illustrated in figure 2.1. Two vortex shape functions are implemented

in the current work, details are provided in the relevant results sections (§3 and §4). The remainder

of this chapter provides details of the current computational setup and methodology.

2.1.1 Computational domain and aerofoil geometry

The computational domain is a rectangular cuboid which contains a flat-plate aerofoil at the centre

with zero thickness and zero angle of attack. The zero-thickness aerofoil is modelled by using a
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H-topology grid system where the central branch section represents the aerofoil’s upper and lower

surfaces with no gap between them. The longitudinal and vertical boundaries of the domain are

surrounded by a sponge layer through which the flow is (gently) forced to maintain the potential

mean flow condition. Any acoustic waves are attenuated and absorbed in the sponge layer to

prevent numerical reflections at the outer boundaries. More details of this technique are provided

in the following subsection and in Kim et al. (2010a,b). The lateral boundaries of the domain

are interconnected via a periodic boundary condition. In §3 the entire computational domain; the

inner region (physical domain) where meaningful simulation data are obtained; and, the sponge

layer zone are defined as

Ω∞ = {x |x/Lc ∈ [−5, 9], y/Lc ∈ [−7, 7], z ∈ [−1

2
Lz,

1

2
Lz]},

Ωphysical = {x |x/Lc ∈ [−3, 3], y/Lc ∈ [−5, 7], z ∈ [−1

2
Lz,

1

2
Lz]},

Ωsponge = Ω∞ − Ωphysical,


(2.1)

where Lz is the spanwise length of the domain. In the current simulations, Lz is set equal to

the wavelength of the WLE profile while the periodic boundary condition is used to produce an

essentially infinite span. This greatly reduces the cost of the simulation without having a significant

effect on the validity of the results since the vortex has a uniform spanwise distribution.

The aerofoil WLE profile is based on the following sine function

xLE(z) = −1

2
Lc + hLE sin

Å
2πz

λLE

ã
, z ∈

ï
−1

2
Lz,

1

2
Lz

ò
, (2.2)

where the most protruded points are defined as “peak”, the least as “root” and the middle as

“hill” (see figure 2.2). Herein, hLE is defined as the WLE amplitude/height, 2hLE the peak-to-root

amplitude, and λLE is the spanwise wavelength. The aerofoil centre chord point is located at x = 0,

with the trailing edge (TE) and mean LE at xTE = 1
2Lc and xLE = −1

2Lc respectively. Amplitudes

ranging from hLE/Lc = 1/40− 1/10 are investigated in this study with hLE/Lc = 1/15 generally

used as the default value. Unless explicitly stated the wavelength is fixed to λLE/Lc = 2/15 with

one wavelength in the span. These values are selected for consistency with previous publications

including (Chaitanya et al., 2015; Kim et al., 2016; Narayanan et al., 2015; Turner & Kim, 2017b).

Grid statistics and independence studies are contained within the relevant results chapters.

2.1.2 Sponge treatment

The primary function of the sponge zone forcing term on the RHS of (2.6) is to remove any non-

physical numerical reflections experienced at the domain boundaries. The principle behind the

technique is to force the flow to approach a desired reference solution within the sponge region.

The current methodology uses the technique outlined by Kim et al. (2010a,b). This proposes the

following forcing term for density, velocity and pressure in S
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S =

µs(x, y) [ρ− ρ∞, λs(x)ρ(u− ut), p− p∞] for x ∈ Ωsponge

0 for x ∈ Ωphysical

(2.3)

where the sponge coefficient profile µ(x, y) is given by

µs(x, y) =
µ0

2
[1 + cos(πA(x)B(y))]

A(x) = 1−max

Å
xa − x

xa − xmin
, 0

ã
−max

Å
x− xb

xmax − xb
, 0

ã
(2.4)

B(x) = 1−max

Å
ya − y

ya − ymin
, 0

ã
−max

Å
y − yb

ymax − yb
, 0

ã
and the weighting factor λs(x) is

λs(x) = (1 + δ)[1− tanh(x/Lc)] + 1 and δ = min[2M∞/(1 +M∞), 1] (2.5)

where the subscript ∞ represents freestream conditions, and the sponge strength parameter µ0 =

1.5. Within the sponge region (Ωsponge = Ω∞ − Ωphysical), the density and pressure are forced to

ambient conditions, while the velocities are forced to a target velocity ut, in this case mean flow U∞.

For pressure and density forcing the same sponge coefficient profile is employed in the upstream

and downstream directions. This increases in strength closer to the domain boundaries, eventually

reaching a maximum of µ0. On the other hand the velocity forcing is reduced downstream of the

aerofoil by use of the weighting factor λs(x), varying from 3 + 2δ at the inlet to 1 at the outlet.

Since we do not need to enforce an inflow condition downstream of the aerofoil, a weaker constraint

is applicable.

Additionally to reduce reflections at the domain exit boundary an increasingly stretched grid is

employed in the sponge to help dissipate the disturbances. Visualisation of the sponge coefficient

profiles is given in figures 2.3(a) for pressure and density and 2.3(b) for velocity.

(a) Density and pressure forcing (b) Velocity forcing

Figure 2.3: Sponge coefficient profiles
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2.1.3 Governing equations

Aerofoil noise generated by interaction with vortical disturbances is largely considered an inviscid

phenomenon and therefore exclusion of viscous terms is usually considered to be a reasonable

simplification (Atassi et al., 1990; Ayton & Peake, 2013; Evers & Peake, 2000; Gill et al., 2015;

Goldstein, 1978; Kim & Haeri, 2015; Lockard & Morris, 1998; Myers & Kerschen, 1995, 1997). In

accordance with this historical approach we employ an inviscid approach throughout the majority

of the current work, particularly when considering interaction with the LE. In chapters §5 and §6

focus switches to secondary sources of aerofoil-vorticity interaction noise, which primarily concern

scattering of vortical structures at the TE. In these sections additional investigations are carried

out to determine the role of viscosity on the vortex convection. We therefore employ the full three-

dimensional compressible Euler/Navier-Stokes equations (with a source term for the sponge layer

mentioned earlier) in a conservative form transformed onto a generalised coordinate system:

∂

∂t

Å
Q

J

ã
+

∂

∂ξi

Ç
Ej

J

∂ξi
∂xj

å
=
M∞
Re∞

∂

∂ξi

Ç
F j

J

∂ξi
∂xj

å
− a∞
Lc

S

J
, (2.6)

where a∞ is the ambient speed of sound; and, the indices i = 1, 2, 3 and j = 1, 2, 3 denote the three

dimensions. In (2.6), Q represents the conservative variables, E the convective fluxes, and F the

viscous and heat fluxes. F = 0 is employed for Euler calculations. The conservative variable and

flux vectors are given by

Q = [ρ, ρu, ρv, ρw, ρet]
T ,

Ej = [ρuj , (ρuuj + δ1jp), (ρvuj + δ2jp), (ρwuj + δ3jp), (ρet + p)uj ]
T ,

F j = [0, τ1j , τ2j , τ3j , uiτji + qj ]
T ,

 (2.7)

with

τij = µ

Ç
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂ui
∂xi

å
, qj =

µ

(γ − 1)Pr

∂T

∂xj
, (2.8)

where ξi = {ξ, η, ζ} are the generalised coordinates, xj = {x, y, z} are the Cartesian coordinates,

δij is the Kronecker delta, uj = {u, v, w}, et = p/[(γ − 1)ρ] + ujuj/2 and γ = 1.4 for air. Further-

more τij represents the stress tensor, the heat flux is given by qj , and Re∞ = ρ∞U∞Lc/µ∞ is the

Reynolds number. In the current setup, ξ, η and ζ are body fitted coordinates along the grid lines

in the streamwise, vertical and lateral directions, respectively. The Jacobian determinant of the co-

ordinate transformation (from Cartesian to the body fitted) is given by J−1 = |∂(x, y, z)/∂(ξ, η, ζ)|
(Kim & Morris, 2002). The extra source term S on the right-hand side of (2.6) is non-zero within

the sponge layer only, which is described in Kim et al. (2010a,b).
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2.1.4 Numerical methods

2.1.4.1 Spatial discretisation

Spatial discretisation of the governing equations is achieved with use of the pentadiagonal matrix

system of compact finite-differences schemes and filters outlined by Kim (2007, 2010), designed

specifically for aeroacoustic simulations. This consists of one central interior scheme and three

one-sided boundary closures, all of which achieve 4th order accuracy on seven point stencils. The

interior scheme is expressed as follows:

βf̄ ′i−2 + αf̄ ′i−1 + f̄ ′i + αf̄ ′i+1 + βf̄ ′i+2 =
1

h

3∑
m=1

am(fi+m − fi−m) (2.9)

where fi is a function evaluation at a nodal point i, f̄ ′i is the numerical approximation to the

exact derivative f ′i , and h is the grid spacing. In order to apply the same scheme as (2.9) to

the boundary nodes i = 0, 1, 2 and i = N,N − 1, N − 2 extrapolation functions are required for

the points outside of the boundary. The following spline function and its derivative are used as

extrapolation functions for fi and f̄ ′i beyond the boundaries:

gi(x
∗) = fi +

NA∑
m=1

pm(x∗)m +
NB∑
m=1

[qm cos(φmx
∗) + rm sin(φmx

∗)] (2.10)

g′i(x
∗) =

1

h


NA∑
m=1

mpm(x∗)m−1 −
NB∑
m=1

φm[qm sin(φmx
∗)− rm cos(φmx

∗)]

 (2.11)

where x∗ = (x − xi)/h is the normalised coordinate of the target point, and pm rm and qm are

coefficients selected via constraints to match the interior solutions. The remaining parameters φm

are used for resolution optimisation of the schemes. In order to maintain 4th order accuracy at the

boundaries the polynomial terms are also set to fourth order (NA = 4). Once the coefficients have

been determined the extrapolation functions may be replaced by a linear combination of interior

solutions. (2.9) may then be rearranged into the following set of one-sided differences for the three

boundary nodes

i = 0 : f̄ ′0 + γ01f̄
′
1 + γ02f̄

′
2 =

1

h

6∑
m=0, 6=0

b0m(fm − f0), (2.12)

i = 1 : γ10f̄
′
0 + f̄ ′1 + γ12f̄

′
2 + γ13f̄

′
3 =

1

h

6∑
m=0, 6=1

b1m(fm − f1), (2.13)

i = 2 : γ20f̄
′
0 + γ21f̄

′
1 + f̄ ′2 + γ23f̄

′
3 + γ24f̄

′
4 =

1

h

6∑
m=0, 6=2

b2m(fm − f2) (2.14)
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Full details of the extrapolation procedure, and a complete list of the coefficients can be found in

Kim (2007). In order to numerically evaluate the derivative using the above implicit schemes, the

following matrix system of equations is solved:

Pf̄ ′ =
1

h
Q(f + µ∆̃f) (2.15)

with

f̄ ′ = (f̄ ′0, f̄
′
1, f̄
′
2, · · · , f̄ ′N )T , f = (f0, f1, f2, · · · , fN )T , ∆̃f = (∆̃f0, ∆̃f1, ∆̃f2, · · · , ∆̃fN )T

The (N +1)× (N +1) matrices P and Q contain the finite-difference scheme coefficients, they may

be expressed as follows.

P =



1 γ01 γ02 0 · · · 0 0 0 0

γ10 1 γ12 γ13 0 · · · 0 0 0

γ20 γ21 1 γ23 γ24 0 · · · 0 0

0 β α 1 α β 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 β α 1 α β 0

0 0 · · · 0 γ24 γ23 1 γ21 γ20

0 0 0 · · · 0 γ13 γ12 1 γ10

0 0 0 0 · · · 0 γ02 γ01 1



Q =



b00 b01 b02 b03 b04 b05 b06 0 0 · · · 0

b10 b11 b12 b13 b14 b15 b16 0 0 · · · 0

b20 b21 b22 b23 b24 b25 b26 0 0 · · · 0

−a3 −a2 −a1 0 a1 a2 a3 0 0 · · · 0

0 −a3 −a2 −a1 0 a1 a2 a3 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 −a3 −a2 −a1 0 a1 a2 a3 0

0 · · · 0 0 −a3 −a2 −a1 0 a1 a2 a3

0 · · · 0 0 −b26 −b25 −b24 −b23 −b22 −b21 −b20

0 · · · 0 0 −b16 −b15 −b14 −b13 −b12 −b11 −b10

0 · · · 0 0 −b06 −b05 −b04 −b03 −b02 −b01 −b00


As can be seen by the above matrices the three boundary closure schemes are administered at the

boundary node i = [0, N ], and the first two interior nodes [1, N − 1] and [2, N − 2]. The interior

scheme is applied through the remainder of the domain (3 ≤ i ≤ N − 3). The parameter µ = 0||1
is used to determine whether compact filters are applied to the finite-difference system. Filtered

values are represented by f̃i = fi + ∆̃fi. ∆̃f . They are obtained in a similar manner, by solving
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the following matrix system.

R∆̃f = Tf (2.16)

where the matrices R and T are the filter coefficient counterparts (superscripted F ) of P and Q,

described as

R =



1 γF01 γ
F
02 0 · · · 0 0 0 0

γF10 1 γF12 γ
F
13 0 · · · 0 0 0

γF20 γ
F
21 1 γF23 γ

F
24 0 · · · 0 0

0 βF αF 1 αF βF 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 βF αF 1 αF βF 0

0 0 · · · 0 γF24 γ
F
23 1 γF21 γ

F
20

0 0 0 · · · 0 γF13 γ
F
12 1 γF10

0 0 0 0 · · · 0 γF02 γ
F
01 1



T =



bF02 b
F
02 b

F
01 b

F
00 b

F
01 b

F
02 b

F
03 0 0 0 0 0 · · · 0 0 0 0

0 bF13 b
F
12 b

F
11 b

F
10 b

F
11 b

F
12 b

F
13 0 0 0 0 · · · 0 0 0 0

0 0 bF23 b
F
22 b

F
21 b

F
20 b

F
21 b

F
22 b

F
23 0 0 0 · · · 0 0 0 0

0 0 0 aF3 aF2 aF1 aF0 aF1 aF2 aF3 0 0 · · · 0 0 0 0

0 0 0 0 aF3 aF2 aF1 aF0 aF1 aF2 aF3 0 · · · 0 0 0 0
...

...
...

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
...

...
...

0 0 0 0 · · · 0 aF3 aF2 aF1 aF0 aF1 aF2 aF3 0 0 0 0

0 0 0 0 · · · 0 0 aF3 aF2 aF1 aF0 aF1 aF2 aF3 0 0 0

0 0 0 0 · · · 0 0 0 bF23 b
F
22 b

F
21 b

F
20 b

F
21 b

F
22 b

F
23 0 0

0 0 0 0 · · · 0 0 0 0 bF13 b
F
12 b

F
11 b

F
10 b

F
11 b

F
12 b

F
13 0

0 0 0 0 · · · 0 0 0 0 0 bF03 b
F
02 b

F
01 b

F
00 b

F
01 b

F
02 b

F
03


where the terms aF0 = −2(aF1 +aF2 +aF3 ), and bFii = −2(bFi0 +bFi1 +bFi3). The function of the compact

filters is to ensure a linearly stable matrix system of equations, determined through eigenvalue

analysis. This is achieved by removing any unresolved scales from the solution at the end of

each time step by introducing a cut-off frequency Ωc. The filter coefficients offered in Kim (2010)

are designed to maintain a sixth order accuracy, to avoid introducing additional errors into the

domain which may be detrimental to the accuracy of the finite-difference schemes. Similarly to the

boundary closures, the boundary filters apply extrapolation functions at the domain boundaries.

The greyed out segments of the matrix T represent coefficients belonging to ghost points, which

are determined via extrapolation of interior solutions as:

fi = f0 +
i

2
(f3 − f0) +

i

10
(f6 − f0) +

i

90
(f9 − f0), for i = {−1,−2,−3} (2.17)
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For the current study the filter coefficients are determined using a consistent normalised filter cut-

off of Ωc = 0.85π at both interior and boundary nodes. The order of accuracy of the numerical

method, including finite-difference filters and non-reflecting boundary conditions (see §2.1.6), has

been demonstrated for 2D vortex convection problems on Cartesian (Kim, 2007) and Curvilinear

grids (Turner et al., 2016b).

In addition to formal order of accuracy, numerical schemes are often judged based on their spectral

resolution properties. These are typically quantified through Fourier analysis as dispersion and

dissipation errors. The discrete Fourier series is given by

f(x) =

N/2∑
k=−N/2

f̂(k) exp

Å
2πkx

L

ã
(2.18)

where L is the length of the domain, k is a wavenumber, f̂(k) is a Fourier coefficient and  is the

imaginary unit. Often the Fourier series will be simplified by converting to the scaled coordinate

system x∗ = x/h, and substituting for the scaled wavenumber ω = 2πkh/L. This results in the

following equation.

f(x) =

N/2∑
k=−N/2

f̂(k) exp (ωx∗) (2.19)

For a given wavenumber, the exact derivative of (2.19) is given by f ′ = ωf . Errors introduced

by the finite-difference approximation to the derivative may be expressed in terms of a modified

wavenumber ω̄, such that f̄ ′ = ω̄f . An expression for ω̄ can be obtained in a relatively straight-

forward manner, simply by applying the Fourier transform to each term in the differencing scheme

(taking into account that fi±m ≡ f(x∗ ±m)). For optimal performance it is desired that ω̄ = ω,

specifically Re(ω̄)→ ω and Im(ω̄)→ 0.

Compact schemes, such as those used in the current methodology are implicit based on a banded

Hermitian matrix (in this case pentadiagonal). This means that they require a costly matrix

inversion in order to evaluate the numerical derivative. However they offer a distinct advantage

over more traditional explicit schemes due to their superior resolution properties for a given stencil

size. This ultimately allows such a scheme to successfully resolve the desired scales with fewer

grid points, leading to large savings in computational cost. This has made compact schemes very

popular in the field of CAA.

By freeing up some of the coefficients constrained for formal order of accuracy, it is possible to

improve the spectral properties of a compact scheme through optimisations. This was achieved

by Kim (2007) by releasing three coefficients which were optimised by minimising an integral

error measure defined between the exact and modified curves over a specified optimisation range

[0 − 0.8505π] (Kim, 2007). The improvement to spectral resolution is made apparent by figure

2.4, which compares the modified wavenumber curves of the interior scheme suggested in Kim
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(2007), with those produced by explicit 2nd and 6th order central schemes. (N.B. there is no

dissipation error produced by a central scheme, hence only the real part (dispersion) of the modified

wavenumber is shown here). Figure 2.5 shows both the real and imaginary wavenumber curves

produced by the boundary closure schemes at the i = 0, 1 and 2 nodes. The dispersion errors are

very low, similar to that of the interior scheme, despite boundary closure schemes typically offering

inferior performance. However due to their one-sided structure additional dissipation is inevitable,

although low resolution errors are still maintained until a relatively high wavenumber.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ω/π

R
e[
ω̄
]/
π

Exact
2nd order central
6th order central
4th order compact 

Figure 2.4: Modified wavenumber curves produced by a standard 2nd order central scheme,
and 4th order compact used in the current methodology Kim (2007)

2.1.4.2 Temporal discretisation

Time marching schemes can be separated into to main categories, explicit and implicit. Explicit

schemes obtain the solution for the next time step solely based on past solutions, while implicit

schemes also require information at the current time step. The simplicity of explicit schemes

generally means they are relatively cheap to implement, while implicit schemes require some kind

of expensive matrix inversion or iterative procedure. On the other hand explicit schemes require

strict constraints on their time step size for numerical stability, while implicit schemes are inherently

stable. However for transient problems such as those considered here there is little advantage of

implicit schemes, since time step requirement for accuracy is often less than that needed for stability

in an explicit scheme (Pulliam & Zingg, 2014). In the current work time marching is achieved with

an explicit 4th-order Runge-Kutta scheme. It involves integrating the following ODE.

dQ

dt
= G(Q, t) (2.20)



Chapter 2 Computational Methodology 35

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ω/π

R
e[
ω̄
]/
π

 

 
Exact
i=0
i=1
i=2

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ω/π

I
m
[ω̄
]/
π

 

 
Exact
i=0
i=1
i=2

Figure 2.5: Real and imaginary modified wavenumber curves produced by boundary closure
schemes used in the current methodology Kim (2007)

where G contains the flux derivatives and sponge forcing terms contained in (2.6), and Q contains

the primitive variables. The procedure consists of four stages described as follows

K0 = Qn (2.21)

Ki = Qn +
∆t

4− i+ 1
G(Ki−1, t), for i = {1, 2, 3}

Qn+1 = Qn + ∆tG(K3, t)

where Qn represents the solution at the current time step n∆t, Qn+1 represents the solution at

the next time step (n + 1)∆t, and Ki are temporary solutions produced at subsequent stages. In

the current methodology we utilise an adaptive time stepping approach, where the time step ∆t is

determined by the Courant-Friedrichs-Lewy condition (CFL):

∆t =
CFL

uξ + uη + uζ
(2.22)

where uξ, uη, uζ represent the maximum speed with which information can propagate in the ξ, η

and ζ directions respectively. For stability it is usually recommended that CFL ≤ 1 for explicit

time marching schemes. For the current simulations CFL = 0.95 is used throughout.

2.1.5 Algorithm for compact schemes

In this section a description of the main algorithm used in the code is provided for a simple test

case. An advection-diffusion equation in two-dimensions and Cartesian space can be expressed as:
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∂f

∂t
+
∂f

∂x
+
∂f

∂y
=
∂2f

∂x2
+
∂2f

∂y2
(2.23)

where f is a primitive variable. All derivatives (1st and 2nd order) in the current setup are

determined via the compact schemes provided in (2.1.4.1). (2.23) is therefore rewritten as follows:

∂f

∂t
+
∂f

∂x
+
∂f

∂y
=

∂

∂x

Å
∂f

∂x

ã
+

∂

∂y

Å
∂f

∂y

ã
(2.24)

combining the convection and diffusion terms then leads to:

∂f

∂t
= − ∂

∂x

Å
f − ∂f

∂x

ã
− ∂

∂y

Å
f − ∂f

∂y

ã
(2.25)

(2.25) can be solved through the following procedure:

1. The first step is to calculate the derivative ∂f/∂x. Construct the matrices Px and Qx in

(2.15) which contain the finite difference coefficients for the x direction.

2. Decompose the matrix Px with Cholesky decomposition. Px = LLT where L is a lower

triangular matrix.

3. Loop in the y direction solving the linear system of equations (2.15) for each line of the grid

in the x-direction, i.e.:

for j = 0 to ny, solve:

Px

Å
∂f

∂x

ã
(:,j)

=
1

h
Qxf(:,j) (2.26)

where f(:,j) = [f(0,j), f(1,j), · · · , f(N,j)]
T , and (∂f/∂x)(:,j) = [f ′(0,j), f

′
(1,j), · · · , f ′(N,j)]T , with

primes denoting a derivative. (2.26) is solved in two stages. Firstly solve

Ly =
1

h
Qxf(:,j) (2.27)

by forward substitution, then

LT
Å
∂f

∂x

ã
(:,j)

= y (2.28)

by back substitution.

4. Repeat steps 1-3 for the y derivative:

for i = 0 to nx, solve:

Py

Å
∂f

∂x

ã
(i,:)

=
1

h
Qyf(i,:) (2.29)

where f(i,:) = [f(i,0), f(i,1), · · · , f(i,N)]
T , and (∂f/∂y)(i,:) = [f ′(i,0), f

′
(i,1), · · · , f ′(i,N)]

T .

5. The same process in steps 1-4 is then used to determine the derivatives on the R.H.S of

(2.25), substituting the calculated values for ∂f/∂x and ∂f/∂y.
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6. With the R.H.S determined, (2.25) is now ready for time integration, which is achieved with

4 stage Runge-Kutta, described in (2.20) and (2.21)

2.1.6 Boundary conditions

The current methodology makes use of Generalised Characteristic Boundary Conditions (GCBC)

for wall boundaries, domain boundaries and block interfaces. The principle behind this kind

of boundary condition is to consider characteristic waves travelling normal to the boundary in

consideration. They are derived by firstly considering the governing equations (2.6), which may be

rewritten as:
∂“Q
∂t

+
∂“E
∂ξ

+
∂“F
∂η

+
∂“G
∂ζ

= SV (2.30)

where “Q = Q/J (2.31)“E = (ξxE1 + ξyE2 + ξzE3)/J (2.32)“F = (ηxE1 + ηyE2 + ηzE3)/J (2.33)“G = (ζxE1 + ζyE2 + ζzE3)/J (2.34)

where SV represents the viscous flux terms, and Ej is defined as in (2.7). In the following derivation

we will consider the case where the ξ direction is normal to the boundary. Moving all the transverse

terms to the R.H.S, and expanding the normal terms (via chain rule) yields:

∂“Q
∂t

+
1

J

Å
ξx
∂E1

∂ξ
+ ξy

∂E2

∂ξ
+ ξz

∂E3

∂ξ

ã
= SV−

[
E1

∂

∂ξ

Å
ξx
J

ã
+ E2

∂

∂ξ

Å
ξy
J

ã
+ E3

∂

∂ξ

Å
ξz
J

ã
+
∂“F
∂η

+
∂“G
∂ζ

]
(2.35)

After multiplying (2.35) by J , the entire R.H.S is combined as a single source term S∗V . (2.35)

may then be expressed as:

∂Q

∂t
+

Å
ξx
∂E1

∂Q
+ ξy

∂E2

∂Q
+ ξz

∂E3

∂Q

ã
∂Q

∂ξ
= S∗V (2.36)

Pre-multiplying by the transformation matrix P−1 between conservative and characteristic vari-

ables results in:

P−1∂Q

∂t
+ P−1KPP−1∂Q

∂ξ
= P−1S∗V (2.37)

where K is the term in brackets in (2.36), also known as the Flux Jacobian matrix. Full details of

the transformation matrix P can be found in (Kim & Lee, 2000). This may then be expressed in
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terms of the characteristic variables R by utilising the expression δR = P−1δQ, resulting in:

∂R

∂t
+ Λ

∂R

∂ξ
= Sc (2.38)

with Λ = P−1KP , and Sc = P−1S∗V . The GCBCs are applied by considering the convection term

on the LHS of (2.38) defined as (Kim & Lee, 2000):

Li = λi
∂Ri
∂ξ

, for i = {1, · · · , 5} (2.39)

There are five modes of Li, the first representing entropy waves, the second and third vorticity

waves, and the final two acoustic waves. The principle behind the characteristic boundary con-

ditions is that waves coming into the domain through the boundary may be determined by the

outgoing waves for which an interior solution exists, according to the chosen condition. The direc-

tion of the Li terms is given by the eigenvalues of the system, that is the diagonal elements of the

matrix Λ.

Λii = [U,U, U, U + a∞(ξ2
x + ξ2

y + ξ2
z )

1
2 , U − a∞(ξ2

x + ξ2
y + ξ2

z )
1
2 ]T , for i = {1, · · · , 5} (2.40)

where U = ξxu + ξyv + ξzw is the contravariant velocity normal to the boundary. For a subsonic

flow, this reveals that the first four characteristic waves travel in the mean flow direction, while the

fifth travels in the opposite direction. For example in the case of a downstream outflow boundary,

the terms L1−4 represent outgoing waves, and L5 an incoming wave. In order to implement the

GCBCs the following steps are taken:

1. Calculate the normal flux derivative ∂“E/∂ξ using the finite difference schemes and filters.

2. Calculate the five modes in (2.39) as

L = Λ
∂R

∂ξ
= JP−1

(
∂“E
∂ξ
−
ï
E1

∂

∂ξ

Å
ξx
J

ã
+ E2

∂

∂ξ

Å
ξy
J

ã
+ E3

∂

∂ξ

Å
ξz
J

ãò)
(2.41)

3. Next, update L based on the choice of boundary condition (e.g. outlet, no-slip wall etc.).

4. Finally, the normal flux derivative is recalculated based on L∗, the corrected version of L(
∂“E
∂ξ

)∗
=

1

J
PL∗ +

ï
E1

∂

∂ξ

Å
ξx
J

ã
+ E2

∂

∂ξ

Å
ξy
J

ã
+ E3

∂

∂ξ

Å
ξz
J

ãò
(2.42)

5. The corrected flux derivative is then input into (2.30) for time integration. This procedure

is carried out every Runge-Kutta step.

The present work utilises non-reflecting conditions at the far field boundaries (Kim & Lee, 2000),

and as indicated earlier periodic boundary conditions are used in the spanwise direction. For the
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aerofoil surface a no-slip/slip wall boundary condition is applied (Kim & Lee, 2004) (for Euler/-

Navier Stokes equations respectively). Both finite (§5 and §6) and semi-infinite (§3 and §4) chord

aerofoils are considered. For the later the wall boundary condition is extended downstream in the

aerofoil xz-plane with the intention of removing any secondary interactions which takes place at

the aerofoil TE. This allows the analysis to solely focus on the LE noise which is the primary source

in ATI. A description of each GCBC used is provided as follows (Kim & Lee, 2004):

2.1.6.1 Inflow condition

Based on (2.40) at the inlet only the L5 wave component is an outgoing wave which can be

determined by the interior solution. The waves L1−4 must therefore be defined as follows:

L∗1 = 0 (2.43)

L∗2 =
Kin

2

î
ξ̃x(w − w∞)− ξ̃z(u− u∞)

ó
(2.44)

L∗3 =
Kin

2

î
−ξ̃x(v − v∞) + ξ̃y(u− u∞)

ó
(2.45)

L∗4 = Kin

ï
−ξ̃x(u− u∞) + ξ̃y(v − v∞) + ξ̃z(w − w∞) +

p− p∞
ρa∞

ò
(2.46)

and

Kin = σin(1−M2
max)

a∞
l

(2.47)

where σ = 0.25 is a parameter which controls the amount of reflectivity, l is the domain length, and

(ξ̃x, ξ̃y, ξ̃z) is the unit normal vector. In addition for viscous flows tangential stresses and normal

heat flux are set to zero.
∂τ12

∂n
=
∂τ23

∂n
=
∂τ31

∂n
=
∂qn
∂n

= 0 (2.48)

2.1.6.2 Non-reflecting outflow

For an outflow condition the modes L1−4 are all outgoing waves, the only incoming wave which

needs to be determined is L5, where:

L∗5 =
Kout(p− p∞)

ρa∞
(2.49)

and

Kout = σout(1−M2
max)

a∞
l

(2.50)

σout = 0 represents a perfect non-reflecting boundary condition, where the reflected waves have zero

amplitude. However, as pointed out by Poinsot & Lele (1992) this condition causes inaccuracies

for long time calculations. For this reason σout = 0.25 is selected. Condition (2.48) also applies if

the flow is viscous.
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2.1.6.3 Wall boundary conditions

There are two kinds of wall boundaries used in the current work, slip and no-slip (viscous) walls.

For slip walls the normal velocity is zero, and the transverse velocities unspecified. For the case of

a wall at the right boundary in the ξ direction the L5 wave is incoming and the L4 wave outgoing.

If the wall is on the left boundary the reverse is true. Following this:

L∗5 = L4 − Sc4 + Sc5 for r.h.s walls (2.51)

L∗4 = L5 − Sc5 + Sc4 for l.h.s walls (2.52)

If the wall is viscous, each component of velocity is zero on the wall. In this case it is also required

that:

L∗2 = L∗3 = 0 (2.53)

S∗c2 = S∗c3 = 0 (2.54)

The viscous source term in (2.30) is updated in a similar manner to the Euler terms via (2.54) and

S∗V =
1

J
PS∗c +

[
E1

∂

∂ξ

Å
ξx
J

ã
+ E2

∂

∂ξ

Å
ξy
J

ã
+ E3

∂

∂ξ

Å
ξz
J

ã
+
∂“F
∂η

+
∂“G
∂ζ

]
. (2.55)

2.1.6.4 Characteristic interface at block boundaries

In addition to physical boundaries a condition is also needed for computational boundaries due to

the grid. As previously mentioned the current step up uses an H-grid topology. This consists of 6

blocks with the aerofoil as the central branch, 3 blocks above and 3 below the aerofoil. Since each

block is meshed separately discontinuities may occur in the grid metrics at the block interfaces.

In order to avoid the numerical errors arising from these discontinuities the one-sided boundary

closure schemes are implemented. The consequence of this is that the solution for each block is

independent from its neighbours, a condition is therefore required between the blocks to ensure

the solution is identical at the interface.

Consider two blocks left and right. It is required that the privative variables and their time

derivatives are identical. Similarly, the time derivatives of the characteristics variables should also

be the same, i.e.: ∂RL/∂t = ∂RR/∂t. According to (2.38) and (2.39) it then follows that (Kim &

Lee, 2003):

LLm − SLcm = LRm − SRcm (2.56)

where m = 1, · · · , 5 represents the five characteristic waves. At an interface the outgoing waves of

one block represent the incoming waves of the adjacent block. The procedure is to update incoming
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convection terms based on outgoing terms of the adjacent block. The block to update is therefore

determined by the sign of the convection speed λm. The condition at the interface is expressed as:

LLm = LRm − SRcm + SLcm for
λLm
|λLm|

=
λRm
|λRm|

≤ 0 (2.57)

LRm = LLm − SLcm + SRcm for
λLm
|λLm|

=
λRm
|λRm|

≥ 0 (2.58)

2.1.7 Parallel routines

The compact finite difference system is parallelised through domain decompositions and MPI-

routines. The most challenging aspect of this procedure is the parallisation of the spatial schemes

which are implicit in space. This is accomplished through a recent quasi-disjoint pentadiagonal

matrix system technique (Kim, 2013). The computational grid is split into small separate subdo-

mains each of which is allocated one processor core. The pentadiagonal matrix systems for both

differencing and filtering (outlined in (2.15) and (2.16)) are then modified through linear-algebraic

transformations such that matrix inversions may be performed for each subdomain independently.

The algebraic transformation produces a set of subdomain finite-differences and filters which re-

quire a three point halo exchange with neighbouring subdomains, achieved with MPI routines.

These new schemes replace the original boundary closures when a subdomain boundary is present.

The performance of the subdomain schemes is a trade off between accuracy and efficiency. In-

creasing their stencil size will increases their cohesion with the interior finite-difference scheme and

filter, but at the cost of additional computations. Utilising stencil sizes of 11 for the subdomain

boundary scheme, and 8 for the subdomain filters, ensures the wavenumber and amplification rate

errors when compared to the interior remain less than 3%. These settings result in minimal artifact

noise, as well as a superlinear speed-up.

Two cluster machines are used in the current research, Iridis4 the local super computer facility at

the University of Southampton, and the national computing facility ARCHER. The distribution

of processor cores and approximate run times is contained within table 2.1. The data is shown

for the Iridis4 machine which has a processor limit of NP = 512. The settings are selected so

that approximately an even number of points is distributed to each subdomain to avoid any load

imbalance. The viscous cases are considerably more expensive due to the requirement of firstly

obtaining a converged base-flow solution, in addition to the smaller grid spacings required.

Case NP NPξ NPη NPζ run time (hrs)

Low frequency vortex (WLE) §3 480 20 12 2 3
High frequency vortex (WLE) §4-6 512 32 16 1 7
High frequency vortex (SLE, Re∞ = 4.0 × 105, 3D) §5-6 512 32 16 1 35

Table 2.1: Number of processor cores and approximate run time for the simulations in the
following sections. NPξ, NPη and NPζ are the streamwise, vertical and spanwise number
of processor cores respectively.
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2.1.8 Definition of variables for post-processing

Data processing and analysis are carried out upon the completion of each simulation. The main

property required in this study is the power spectral density (PSD) function of pressure fluctuations

on the aerofoil surface and at the far-field observer locations. The far-field (acoustic) pressure and

the surface (wall) pressure loading are defined as:

pa(x, t) = p(x, t)− p∞, ∆pw(x, t) = lim
y→0+

p(x, t)− lim
y→0−

p(x, t), (2.59)

where superscripts ‘y → 0+’ and ‘y → 0−’ indicate the upper and lower surfaces of the flat-plate

aerofoil, respectively. The PSD functions of the pressure fluctuations are then calculated by:

Sppa(x, f) =
2

T
p̂a(x, f)p̂a

∗(x, f), Sppw(x, f) =
2

T
’∆pw(x, f)’∆pw∗(x, f), (2.60)

where ‘∧’ represents a Fourier transformed variable and ‘∗’ denotes a complex conjugate. The

multiplier ‘2’ is introduced to consider the right-hand side of the spectra (positive frequencies)

only. The noise reduction due to a WLE relative to the SLE case is then quantified by

∆SPL(x, f) = 10 log10

ñ
Sppa(x, f)|SLE

Sppa(x, f)|WLE

ô
. (2.61)

All of the results presented in this work are based on dimensionless variables. Length scales are

normalised by the finite aerofoil chord length Lc, velocities are normalised by the speed of sound

a∞, density by the free-stream density ρ∞, and acoustic pressure by the free-stream pressure p∞.

2.1.9 Signal processing routines

The Fourier series can be used to obtain a frequency domain representation of a periodic time

signal by decomposing it into a sum of simple sine and cosines waves. If the signal is non-periodic

the Fourier transform may be used which represents the non-periodic signal as a periodic one with

period T →∞:

x̂(f) =

∫ ∞
−∞

x(t) exp(−2πift)dt (2.62)

In practice data measurements have finite length making the unbounded integration impossible.

Alternatively the data is usually truncated by multiplication of a window function w(t):

x̂(f) =

∫ T/2

−T/2
x(t)w(t) exp(−2πift)dt (2.63)

where T is the sample period. In practice signals recorded from experiments or simulations are

sampled. A discrete approximation of the Fourier transform is therefore used where the integration
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is replaced by a Riemann sum:

x̂[k] =
N−1∑
n=0

x[n]w[n] exp(−2πink/N)∆t (2.64)

where the signal x is evaluated for n = 0, 1, · · · , N − 1 samples with constant spacing ∆t. The

spectra is calculated at k = 0, 1, · · · , N − 1 frequencies with spacing k/(N∆t)=k/T . Unlike the

continuous form in (2.63), the minimum frequency which can be evaluated in (2.64) is linked to the

sample period T . The discrete Fourier transform therefore interprets any non-periodic input signal

as one with period equal to the sampling period T . The kinds of signals typically encountered

in the current work are single pulses generated as an impinging vortex is chopped by the aerofoil

LE. Although the LE-vortex interaction is an isolated event, the Fourier transform treats it as if

it occurs periodicity (multiple LE-vortex collisions separated by the period).

It is desirable that the chosen sampling window is large enough to approximate the infinite integral

in (2.62), so that the true Fourier transform is approximated. Figure 2.6 shows the time signals

and the corresponding magnitude of the Fourier transform obtained for semi-infinite chord (a-

b) and finite chord WLE aerofoils (c-d) based on the simulation settings of §4. The results are

calculated using the MATLAB fft (Fast Fourier Transform) function. It shows that as the window

is increased, the Fourier transform quickly converges. The window length also has an impact on

the magnitude of the PSD as suggested by (2.60). For this reason the same window length must

be used when comparing the spectra obtained by two simulations. The inviscid simulations carried

out throughout this work use a window period T ∗ = 10 which ranges from 5 to 15 for the 90◦

observer angle. For longer simulations (viscous cases in §5 and 6) the PSD is scaled so that direct

comparisons can be made to the inviscid cases.

In this work spectra are calculated using a MATLAB script provided in Appendix F. The code is

based on the MATLAB CPSD function which returns cross power spectral density when the input

signals are different, or power spectral density when they are equal. In the latter case the function is

also equivalent to the MATLAB function PWELCH. Welch averaging is typically used to minimise

variance in a PSD estimate. However, since the signals analysed in the current work are typically

short single pulses averaging quickly leads to excessive smoothing of the key features in the spectra.

For this reason spectra are calculated as a single periodogram estimate of the PSD as shown in

the MATLAB script and described by (2.60). A Tukey (tapered cosine) window is utilised which

ensures periodicity of the signal. This particular window is selected as it does not significantly

attenuate the spectra amplitude while providing less spectral leakage at high frequency relative

to a rectangular window. This is demonstrated in figure 2.7, which shows the spectra produced

using three window shapes. Comparisons are made for a semi-infinite chord (a), and finite chord

(b) WLE simulation (§4). The signals are also zero-padded by the CPSD function. Zero-padding

increases the length of the Fourier transform, effectively providing a sinc interpolation between the

k/T frequency samples. For the current results the number of samples is increased by a factor of

two.
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Figure 2.6: Effect of varying window length on the calculation of the Fourier transform.
(a) Semi-infinite chord length WLE simulation. (a) Finite-infinite chord.
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Figure 2.7: Effect of varying window shape on the calculation of the PSD (2.60). (a)
Semi-infinite chord WLE simulation. (a) Finite-infinite chord.



Chapter 3

Primary Leading Edge Source

Mechanisms

3.1 Problem description and computational set-up

3.1.1 Prescribed spanwise vortex model

The spanwise (two-dimensional) vortex model prescribed as an initial condition in this study is

based on the Gaussian synthetic eddy profile used in previous publications (Kim & Haeri, 2015;

Kim et al., 2016). It provides a divergence-free velocity field via taking the curl of the following

vector potential, i.e. u′(x, t = 0) = ∇× [Ψ(x)ez]:

Ψ(x) = a∞Lc
ε√
σ

exp{−[3σr(x)]2}, r(x) =
(x− x0)2 + y2

L2
c

, (3.1)

Figure 3.1: The initial velocity field induced by the spanwise vortex model given by (3.2):
(a) induced velocity magnitude contours and (b) the vertical velocity profile along the
centreline (y = 0).

45
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where Lc is the mean chord length, ε and σ are control parameters for the vortex strength and

size, x0 = −2.5Lc is the initial streamwise coordinate of the vortex core and ez is the spanwise

Cartesian unit vector. This results in the following formulae for the velocity field at t = 0:

u(x) = u∞ + 36
σ2

L2
c

yr(x)Ψ(x), v(x) = −36
σ2

L2
c

(x− x0)r(x)Ψ(x), (3.2)

while the pressure and the density are set to ambient/quiescent conditions (p∞ and ρ∞). The

control parameters are set to ε = 0.00228 and σ = 14.4. This produces a maximum velocity

perturbation equivalent to the RMS perturbation obtained in the studies of Narayanan et al.

(2015) and Chaitanya et al. (2015) (u′/a∞ = 0.006). Furthermore, with the chosen parameters,

the length scale of the vortex upwash/downwash stroke is similar to the radius of the largest eddies

(0.1Lc) in the synthetic turbulence approach used by Kim et al. (2016), i.e.:

Lv = 0.1Lc =
1

max |v(x)|

∫ x0+∞

x0

|v(x)|y=z=0dx. (3.3)

The resulting velocity field is plotted in 3.1. The prescribed vortex induces clockwise rotating

velocity components, firstly inducing a downwash stroke on to the aerofoil leading edge followed

by an upwash stroke as the vortex travels downstream. Figure 3.2 shows the noise generation

due to the interaction of the prescribed vortex and the LE. The initial downwash stroke creates a

compression pressure wave on the aerofoil upper surface, quickly followed by an expansion wave

produced by the subsequent downwash stroke. All of the simulations are conducted using a free-

stream Mach number of M∞ = u∞/a∞ = 0.24, which is equivalent to that used in various previous

studies (Kim et al., 2016; Narayanan et al., 2015). Comparison of the chosen vortex profile to

classical models is provided in §A, while further discussion of the chosen vortex parameters, and

their effect on the WLE noise reduction is provided in §C.1.

3.1.2 Computational grid

The simulations are carried out on a total of 43,760,640 grid cells (1036×660×64) in a H-block

topology. The smallest cells are located at the aerofoil LE where the size is ∆x = ∆y = 0.00625Lc

and ∆z = 0.002083Lc. The grid is stretched in the streamwise and vertical directions and kept

uniform in the span. Nevertheless, it still maintains a high resolution at the far field in order to

capture radiated high frequency components. The maximum ∆x spacing is 0.01 which provides a

minimum of 46 cells across the vortex diameter.

Figure 3.3 shows the results of a grid convergence test conducted with a WLE geometry: hLE/Lc =

1/15 and λLE/Lc = 2/15 (AR = 1). Three different levels of grid resolution (coarse, medium and

fine) were used. The medium level was used for all simulation data presented in this chapter.

Subsequent levels are refined by 20% in all directions. The number of grid points and the min/max

mesh sizes used for each resolution level are listed in table 3.1. Figures 3.3a and 3.3b demonstrates

that there is effectively no difference in the resulting time signals and spectra between the three

grids. Figure 3.3d also shows a comparison to the free-field solution obtained without the aerofoil in
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Figure 3.2: Description of the current problem: a prescribed spanwise vortex impinging
on a thin aerofoil with a wavy leading edge: (a) schematic diagram, (b) initial condition,
(c) during the interaction and (d) after the interaction.

place (using the medium grid). The level of background noise (numerical error residual) remained at

least 40dB lower than the physical SPL throughout the entire frequency range, which demonstrates

the quality of the current numerical solutions.

Resolution level nξ nη nζ ∆xmax/Lc ∆xmin/Lc
Coarse 836 528 52 0.012 0.0075

Medium 1036 660 64 0.01 0.00625
Fine 1254 792 78 0.008 0.005

Table 3.1: Supplementary information for the grid convergence test shown in figure 3.3,
where nξ, nη and nζ denote the number of grid cells in the ξ-, η- and ζ-directions, respec-
tively – see (2.6) and (2.7).

Each simulations is run until a non-dimensional time of ta∞/Lc = 20, which is sufficient to capture

both the fluctuating wall pressure signals and the far field sound.
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Figure 3.3: A grid convergence test of the current numerical simulation by using three
different levels of grid resolution, based on the far-field acoustic pressure signal (pa/p∞)
and its PSD (Sppa/p

2
∞) obtained at the observer point x0 = (0, 5Lc, 0) for hLE/Lc = 1/15

and λLE/Lc = 2/15 (corresponding to figure 3.5).

3.2 Initial findings and the questions emerged

3.2.1 Wall and acoustic pressure fluctuations

As a result of the current simulations, figure 3.4 shows the time signals and corresponding PSD

(power spectral density) of the wall pressure fluctuations (∆pw) on the leading edge points for

three different WLE geometries (hLE/Lc = 1/30, 1/15 and 1/10) compared with the SLE baseline

case. First, it is apparent in the figure that the level of wall pressure fluctuations (acoustic source

strength) at the hill location constantly decreases with increasing hLE (WLE amplitude) across the

entire frequency range. This is directly related to the “source cutoff” effect due to the geometric

obliqueness as suggested by Kim et al. (2016), i.e. ∆pw ∝ cos θ where θ is the local sweep angle

of the leading edge. Figure 3.4 also shows that the source strength at the root does not seem to

change much with hLE (maintained at the level of the SLE case apart from the high frequency

range), which might be rather simply anticipated because the sweep angle is locally zero at the

root. However, at the peak where the sweep angle is also zero, the source strength does change

with hLE although it does not drop as consistently as the hill case and seems to converge towards
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Figure 3.4: Fluctuating wall pressure time signals, ∆pw(t∗)/p∞, and the corresponding
power spectral density (PSD), Sppw(f∗)/p2

∞, obtained at three different locations on the
WLE (peak, hill centre and the root) for three different values of the WLE amplitude
(hLE/Lc = 1/30, 1/15 and 1/10) with its wavelength fixed (λLE/Lc = 2/15), compared
with the SLE baseline case.
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Figure 3.5: Far-field acoustic pressure time signals, p′a(t
∗)/p∞, the corresponding PSD,

Sppa(f
∗)/p2

∞, and the relative noise reduction spectra, ∆SPL(f∗), obtained at an observer
location, xo = (0, 5Lc, 0), from three different WLE geometries (hLE/Lc = 1/30, 1/15 and
1/10 with λLE/Lc = 2/15), compared with the SLE baseline case.

a constant level. The distinction in source strength between the peak and root was also reported

by Kim et al. (2016) with little understood about its cause. Consequently, the main aim of this

chapter is to provide an explanation for the different source behaviours at the peak and root.

Figure 3.5 shows the far-field radiated acoustic pressure signals, their PSDs and the relative noise

reduction spectra for the three different WLE amplitudes as tested in figure 3.4. The reduction

of the sound pressure level in the WLE cases is clear in this figure. It is apparent that the noise

reduction increases with the WLE amplitude (hLE) and with the frequency as well. The same

observations have also been made in previous studies with different upstream flow conditions as

mentioned in §1. The current vortex flow condition adds another example in which the WLE

successfully achieves noise reductions. However, it is still unknown as to how the radiated sound

field achieves such a large reduction in the high frequency range (figure 3.5b) when the source at

the peak and root does not generate as much reduction in the same frequency range (figure 3.4b

and 3.4f ). In addition, the weakened source strength in the low frequency range at the peak and

hill (figure 3.4b and 3.4d) does not seem to reflect in the radiated sound field at all (figure 3.5b). It

is speculated that these controversial results are due to crucial overlooked propagation mechanisms

which will be explored in the following chapter.
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3.2.2 Horseshoe vortex systems induced by WLE

As mentioned above, the distinction between the peak and root source behaviours seems contradic-

tory to some extent, as one would assume that both interact with the impinging vortex in a parallel

fashion (zero geometric obliqueness). It is found that the distinction is mainly attributed to the

dynamics of secondary vortices induced along the WLE. The impinging vortex (rotating clockwise

viewed from the xy-plane) induces a downwash (v < 0) downstream of its core and consequently

an upwash (v > 0) upstream of it as indicated in figure 3.1. As the vortex nears the aerofoil the

preceding downwash is rapidly forced to zero on the wall due to the no-penetration condition. The

upshot of this is that a high velocity gradient (∂v/∂x� 0 while ∂u/∂y ≈ 0) is created at the lead-

ing edge, which results in counter-clockwise (positive) vorticity there (ωz = ∂v/∂x− ∂u/∂y � 0).

This is a typical example of vortex-body interaction (Rockwell, 1998). In the SLE case the induced

spanwise vorticity is uniform along the span. However, for a WLE the vorticity varies along the

span in both the magnitude and the orientation (now consisting of both spanwise and streamwise

components).

Figure 3.6 shows snapshots of the WLE-vortex interaction taken as time elapses from the first

contact until the vortex completely detaches from the WLE. The vortex travelling through the

aerofoil is shown by the spanwise vorticity contour surfaces (ωzLc/a∞) and the induced secondary

vortices on the wall are visualised by using the Q-criterion contour surfaces. In addition, the plots

of p′a/p∞ in the xy-plane show the dipole sound pulses with an alternating sign being generated

when the downwash and upwash strokes of the travelling vortex impact the leading edge.

One of the most critical features shown in figure 3.6 is the creation of horseshoe-like vortex systems

emanating from the WLE as shown from the Q-criterion plots. The horseshoe vortex system

consists of a bound vortex sitting at the WLE around the peak and two counter-rotating streamwise

vortices trailing from the bound vortex as depicted in figure 3.6b. The horseshoe vortex systems

are created twice, firstly during the downwash, and then the upwash stroke, with the direction of

rotation reversed between them. The spanwise distance between a pair of the streamwise vortices

becomes larger as the initial vortex moves further downstream. However, this results in a decreasing

gap between two neighbouring streamwise vortices from two adjacent horseshoe vortex systems.

These are significantly different vortex dynamics, which do not appear in the SLE case.

In figure 3.7 the Q-criterion contour surfaces shown in figures 3.6b and 3.6e are recoloured by the

streamwise vorticity (ωxLc/a∞) indicating the direction of rotation about the x-axis. A schematic

diagram of this event is provided in figure 3.8 depicting the WLE-induced horseshoe vortex systems

at a single instant of time during the downwash stroke of the impinging vortex. In particular the

induced streamwise vorticity distribution is sketched in figure 3.8b. It is explained in the figure

that, during the downwash stroke of the impinging vortex, the WLE-induced streamwise vortices

create an additional downwash at the root but a counteracting upwash at the peak (figure 3.8b).

For the upwash stroke the opposite trend takes place. On a minor note, the streamwise vorticity

distribution observed from the simulation data is almost symmetrical across both sides of the

aerofoil with a small difference in magnitudes.
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Figure 3.6: Snapshots of WLE-vortex interaction in temporal order: contour plots for
perturbed acoustic pressure (p′a/p∞), spanwise vorticity (ωzLc/a∞) and the Q-criterion
(||ΩijLc/a∞||2−||SijLc/a∞||2 where Ωij and Sij are the vorticity and rate-of-strain tensors,
respectively). The figures show secondary vortices (Q-criterion) and sound waves (p′a/p∞)
generated at the leading edge during the interaction. The bottom left corner of images (b)–
(f ) provides a zoomed out perspective visualising the radiating sound waves. hLE/Lc =
1/30.
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Figure 3.7: Q-criterion iso-surfaces coloured by streamwise vorticity (ωxLc/a∞) taken
at two different points in time during (a) the downwash and (b) upwash strokes of the
impinging vortex. The red and blue surfaces indicate positive (clockwise) and negative
(anti-clockwise) rotations around the x-axis, respectively. The dashed yellow curves indi-
cate the WLE-induced horseshoe vortex systems.

Figure 3.8: Simplified illustration of the WLE-induced vorticity distribution exhibited in
Figures 3.6 and 3.7: (a) the sideview on the WLE showing the contribution of spanwise
vorticity components induced during the downwash stroke of the impinging vortex; and,
(b) the frontview on the WLE describing the streamwise vorticity contribution creating
an upwash at the peak and a downwash at the root as a result.

It is reasonable to assume that the acoustic source is almost purely driven by the vertical velocity

component (downwash and upwash) impinging on the leading edge since the current aerofoil ge-

ometry is completely horizontal with zero thickness and no viscosity. Based on this assumption,

it is suggested that the uneven spanwise distribution of the induced vertical velocity illustrated in

figure 3.8b is mainly responsible for the disparity in source behaviours between the peak and root

observed in §3.2.1. It is apparent in the figure 3.8b that the peak is experiencing a reduced level

of vertical velocity perturbation due to the counteracting effect of the streamwise vortices, hence

a weaker source strength at the peak as seen in figures 3.4a and 3.4b. On the other hand, the

root experiences an amplified level of the vertical velocity perturbation and therefore a reinforced

source strength, which is also manifested to a certain extent in figures 3.4e and 3.4f. However,

the relative difference to the baseline case is much smaller at the root compared to that taking

place at the peak. This requires further investigation. Furthermore, this in no way explains how

the root source strength remains almost consistent as the serration height is increase, nor how

the saturation event at the peak occurs. Additional quantitative investigations provided in the
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Figure 3.9: The distribution of maximum values (taken from time signals) of the per-
turbed vertical velocity (|v|max/a∞) and the vorticity magnitude (|ω|maxLc/a∞) on the
horizontal plane (y = 0): (a/b) for a SLE baseline case and (c/d) for a WLE case with
hLE/Lc = 1/15. The vertical velocity plots are shown in the flow field only, and the
vorticity magnitude plots on the aerofoil’s upper surface only.

following sections reveal further details on these matters.

3.3 Consistent source strength at the root

Figure 3.9 shows the distribution of maximum values of the net induced vertical velocity (|v|max/a∞)

and vorticity magnitude (|ω|maxLc/a∞) on the horizontal plane (y = 0) where the aerofoil is lo-

cated, obtained from their time signals at each and every point in space:

|v|max(x) =
∞

max
t=0
|v(x, t)|, |ω|max(x) =

∞
max
t=0
|ω(x, t)|. (3.4)

It can be seen in figure 3.9c that the amplitude of the induced vertical velocity is highest around

the WLE root area as expected. It is also indicated in figure 3.9d that the streamwise vortices once

created at the peak become amplified as they are moving downstream along the hill towards the

root, which results in the highly concentrated vertical velocity spot around the root. These are,

surprisingly, much higher (by a factor of two) than those of the SLE baseline cases, which leads to

a question how such a highly amplified level of velocity perturbation at the root settles down with

a minor increase in the acoustic source strength (wall pressure fluctuation) as seen in figures 3.4e

and 3.4f. A discussion on this follows below.
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Figure 3.10: A comparison between the induced vertical velocity and wall pressure fluctu-
ation (v/a∞ and ∆pw/p∞) at the WLE root for various WLE amplitudes (hLE/Lc): (a)
time signals of v/a∞ obtained one grid point upstream of the root; (b) time signals of
∆pw/p∞ obtained one grid point downstream of the root; (c) an instantaneous contour
plot of v/a∞ taken at t∗ = 8.08 (when the induced vertical velocity reaches its maximum,
for hLE/Lc = 1/15) indicating an oblique interaction with the root, where the value 0.0098
is the maximum of the SLE baseline case; and, (d) time signals of v cos[(φ1 + φ2)/2]/a∞
which includes the obliqueness effect. The values of φ1 and φ2 are listed in table 3.2.

Figure 3.11: Spectral similarity at the root between the wall pressure fluctuation and the
induced vertical velocity including the obliqueness effect: (a) PSD of ∆pw/p∞ and (b)
PSD of v cosφ/a∞ from figure 3.10b and 3.10d, respectively.
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hLE/Lc φ1 φ2 φ = φ1+φ2
2

1/30 30.13◦ 47.72◦ 38.93◦

1/15 45.37◦ 63.33◦ 54.35◦

1/10 50.76◦ 69.76◦ 60.26◦

Table 3.2: The cosine angles representing the oblique interaction between the induced
vertical velocity and the WLE shown in figure 3.10c.

The time signals of the induced vertical velocity impinging at the root are provided in figure 3.10a

for various values of hLE , where it is clear that the velocity fluctuation increases significantly and

steadily with hLE (linked with the streamwise vorticity intensifying as the WLE becomes slender).

On the contrary, the wall pressure fluctuation at the root shown in figure 3.10b does not vary

as much, and even slightly decreases with increasing hLE . One of the possible answers to this

paradoxical event might be related to the fact that the vertical velocity perturbation approaches

the root area in an oblique fashion as can be seen from figure 3.10c. The iso-contours of vertical

velocity are skewed and bent around the root area exhibiting the oblique interaction. In order to

quantify the obliqueness of the interaction, as shown in figure 3.10c, two cosine angles (φ1 and φ2)

are measured from the slender crescent-shaped high-intensity area in which the vertical velocity

perturbation is stronger than the maximum value of the SLE baseline case (−v/a∞ = 0.0098). The

angles φ1 and φ2 are defined between the tip and the two inflection points of the crescent. The

average of the two measures is then taken to represent the overall obliqueness, i.e. φ = (φ1 +φ2)/2.

This measure is only used as a rough estimate in order to determine the plausibility of the current

hypothesis, a more precise measurement for the obliqueness may be possible. The estimated angles

for each of the WLE cases (hLE/Lc = 1/30, 1/15 and 1/10) are listed in table 3.2. Figure 3.10d

reveals that the vertical velocity signals multiplied by the obliqueness factor (cosφ) are remarkably

similar to the wall pressure fluctuation signals (∆pw/p∞) given in figure 3.10b. They even show

the same trend of changes with respect to increasing hLE . The remarkable similarity is also

demonstrated in the spectral domain in figure 3.11 where the agreement is consistent throughout

the entire frequency range. A sensitivity test of φ for various threshold values (up to ±20% from

0.0098) is also carried out with no significant changes found, this is shown in Appendix A. The

result here therefore strongly suggests that the oblique interaction is a possible explanation for the

consistent source strength at the root.

An additional investigation is performed in this section to find out if there is a certain normalisation

applicable to the vertical velocity perturbation which leads to a meaningful correlation with the

wall pressure fluctuation at the root. In this regard, an area-averaged norm of the vertical velocity

perturbations is defined around the root as a function of time as follows:

vmean(t) =
1

A

∫ 1
2
λLE

0

∫ xLE

− 1
2
Lc

v(x, y = 0, z, t)dxdz,

A =

∫ 1
2
λLE

0

∫ xLE

− 1
2
Lc

dxdz =
λLEhLE

π
,

 (3.5)

where A is the area of integration enclosed by the concave part of the WLE (near the root) and
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Figure 3.12: Mean vertical velocity signals calculated from (3.5) around the root area for
various values of hLE/Lc (WLE amplitude), in relation to the consistent source strength
at the root irrespective of hLE .

a straight line at x = −0.5Lc in the xz-plane. The expression for xLE as a function of z is given

in (2.2). The calculated mean vertical velocity signals are presented in figure 3.12. It is shown

that the mean vertical velocity perturbation remains relatively unchanged despite the substantial

variation in hLE . This might indicate that the overall vertical momentum (created by the initial

vortex) is conserved although the vertical velocity tends to surge locally around the root area.

The vmean/a∞ signals also exhibit a good similarity with the ∆pw/p∞ (wall pressure fluctuation)

signals at the root shown in figure 3.10b. Therefore, it may be concluded here that the source

strength at the root is better correlated with the mean vertical velocity signal than with the local

one nearest to it. This outcome is analogous to the theoretical consideration based on a Poisson

equation, i.e. ∇2p = −ρ(∂ui/∂xj)(∂uj/∂xi) – see Tsuji et al. (2007) – indicating that pressure at

a certain location is determined by integrating velocity properties surrounding it.

3.4 Variations in source strength at the peak

The focus is now moved on to the WLE peak in this section. It has been observed earlier in §3.2

that the acoustic source characteristics at the peak are considerably different to those at the root.

The source strength at the peak decreases significantly with increasing WLE amplitude (hLE) as

shown in figure 3.4a and 3.4b. It seemed rather straightforward from figure 3.8 that this was due

to the attenuating vertical velocity contribution created at the peak by the streamwise vorticity

components that are growing with hLE as can be seen in figures 3.13 and 3.14. The time signals

of the induced vertical velocity (v) and the corresponding wall pressure fluctuation (∆pw) at the

peak for different values of hLE are shown in figure 3.15. It is apparent in the figure that the

vertical velocity perturbation decreases with increasing hLE and it results in the reduction of the

source strength at the peak. One thing to note is that for the downwash stroke the flow near the

LE has not necessarily had sufficient time to return to ambient conditions. For this reason we

observe that the vertical velocity plateau caused by the spacing between the up and downwash
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Figure 3.13: Instantaneous contour plots of streamwise vorticity (ωxLc/a∞: left) and
spanwise vorticity (ωzLc/a∞: right) on the upper surface of the aerofoil for three different
WLE amplitudes, obtained when the induced vertical velocity in front of the peak reaches
its maximum amplitude: (a/b) ta∞/Lc = 7.540, (c/d) 7.461 and (e/f ) 7.305 – see figure
3.15a.

strokes is non-zero. Once this is taken into account the same trend is observed for both upwash

and downwash strokes.

A more interesting observation is that both v and ∆pw become significantly less sensitive to in-

creasing hLE after a certain point. In particular the v signal seems to converge towards that of the

free-field solution generated without the aerofoil in place. This section is focused on explaining the

mechanism of the convergence/saturation phenomenon taking place at the peak.

Considering the horseshoe vortex (HV) system identified in §3.2, a semi-analytic approach based

on Biot-Savart’s law is proposed in order to obtain more information on the induced velocity

components from the HV system. The general form of Biot-Savart’s law is expressed by

dv(x0, l) =
Γ

4π

r × dl

|r|3 , r = l− x0, (3.6)
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Figure 3.14: Vorticity distributions in span along the leading edge for various values of
hLE/Lc obtained when the induced vertical velocity in front ot the peak reaches its maxi-
mum amplitude: (a) streamwise vorticity (ωxLc/a∞) and (b) spanwise vorticity (ωzLc/a∞)
on the upper surface of the aerofoil – see figure 3.13. The spanwise coordinate of the peak
is denoted by z0 in the x-axis labels.

Figure 3.15: A comparison between the induced vertical velocity and wall pressure fluctu-
ation (v/a∞ and ∆pw/p∞) at the WLE peak for various WLE amplitudes (hLE/Lc): (a)
time signals of v/a∞ obtained one grid point upstream of the peak; and, (b) time signals
of ∆pw/p∞ obtained one grid point downstream of the peak. The case with “Free field”
indicates a free-field solution (without the aerofoil) recorded at (x, y) = (−0.7Lc, 0).

where x0 and l are position vectors of the observer and a certain point on the vortex filament,

respectively; and, Γ is the cross-sectional circulation induced by the vortex. Since the current HV

(horseshoe vortex) system is on a horizontal plane, the above equation with the observer position

fixed at the peak can be simplified as

dvHVpeak =
Γ

4π

(r3dx− r1dz)

(r2
1 + r2

3)
3
2

, (3.7)

where the subscripts “1” and “3” denote the streamwise and spanwise coordinates, respectively. In-

tegrating all contributions from the bound vortex and the two trailing vortices lead to the following
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Figure 3.16: Schematic of the horseshoe vortex (HV) system used to estimate the WLE-
induced vertical velocity in front of the peak, in relation to (3.8).

formula (see figure 3.16):

vHVpeak = vA + vB,

vA =
1

4π

∫ z0+H

z0−H

ΓA

[(xLE − x0)2 + (z − z0)2]
3
2

ï
(z − z0)

dxLE
dz

− (xLE − x0)

ò
dz,

vB =
H

2π

∫ ∞
xH

ΓBdx

[(x− x0)2 +H2]
3
2

,


(3.8)

where the subscripts “A” and “B” represent contributions from the bound and trailing vortices,

respectively; (x0, z0) = (−Lc/2 − hLE −∆x,−λLE/4) is the observer position one grid cell ahead

of the peak point; and, H is the half width of the HV. The bound vortex is located along the WLE

(x = xLE(z)) that is given by (2.2) and xH = xLE(z0 + H) is the starting x-coordinate of the

trailing vortices. Here, xH is selected at the position where the largest streamwise vorticity (|ωx|)
is obtained.

In (3.8), the cross-sectional circulations ΓA and ΓB are calculated at each grid point along the HV

based on the simulation data by using the Stokes’ theorem with a constraint for the Q-criterion as

Γ =

∫
A
ωndA

∣∣∣∣
Q>max(Q)/100

, (3.9)

where A is the integration area on a plane that is perpendicular to the WLE curve and accordingly

ωn is the vorticity component normal to the plane. The Q-criterion constraint is used to elimi-

nate the circulation produced by the initial upstream vortex in the current evaluation. Since the

upstream disturbance has a significantly lower strength, a value blanking method can be adopted

for this purpose. This is achieved by restricting A to the region where the Q-criterion remains

above 1% of the global maximum value. Since the HV structure exists on both the upper and lower

surfaces of the aerofoil, the calculation is repeated for both and added together to obtain the total

induced velocity.

The result of the semi-analytic prediction by using (3.8) for the HV-induced vertical velocity in
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Figure 3.17: Semi-analytic predictions of the HV-induced vertical velocity components in
front of the peak, obtained by using (3.8) for various values of hLE/Lc. The predictions
are made at ta∞/Lc = 7.770, 7.540, 7.461 and 7.305 for hLE/Lc = 0, 1/30, 1/15 and 1/10,
respectively, when the vertical velocity reaches its maximum amplitude (see figure 3.15).

Figure 3.18: Profiles of dvA/dz (normalised by a∞ and Lc) from (3.8): (a) entire and (b)
zoomed-up views, showing local piecewise contributions of the bound vortex to the overall
induced vertical velocity in front of the peak resulted in figure 3.17.

front of the peak is presented in figure 3.17. It is clearly shown in the figure that the net HV-induced

vertical velocity diminishes with increasing hLE . It is due to the contributions from the bound

and trailing vortices (vA and vB) cancelling out each other. The cancellation is almost perfect

resulting in a zero sum when hLE/Lc = 1/15 or higher, in which case the overall vertical velocity

is effectively maintained by the initial vortex approaching (free-field solution). This explains the

convergence/saturation of the vertical velocity signal at the peak for high hLE/Lc, which was

questioned in the beginning of the section.

Some more information can be found from the semi-analytic prediction data. In figure 3.17 the

contribution of the trailing vortices (vB) seems to gradually decreases with increasing hLE , although

the streamwise vorticity (ωx) grows with hLE as shown in figures 3.13 and 3.14. It may be explained

by using (3.8) where vB is proportional to H and asymptotically to (xH−x0)−3. For a higher hLE ,

H decreases and xH increases (as shown in figures 3.14 and 3.16), which may result in a reduced

vB despite a higher ωx or ΓB.
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Figure 3.19: Far-field acoustic pressure PSD profiles, Sppa(f
∗)/p2

∞, obtained at an observer
location, xo = (0, 5Lc, 0), for three different WLE aspect ratios (AR = 2hLE/λLE = 0.5,
1 and 1.5). The aspect ratios with “∗” indicate that the size of the WLE is doubled
(AR∗ = 2h∗LE/λ

∗
LE where h∗LE = 2hLE and λ∗LE = 2λLE). The dotted curves are from the

SLE baseline case.

In the meantime, in figure 3.17, the contribution of the bound vortex (vA) decreases rapidly and

converges towards zero with increasing hLE . This may be explained in three steps. First, between

hLE = 0 (SLE) and 1/30, there is a large drop in the spanwise vorticity (ωz) and the appearance of

ωx, which are shown in figure 3.14. Secondly, between hLE = 1/30 and 1/15, there is a moderate

drop in ωz and a further growth in ωx leading to a continued reduction of vA up to this point. Lastly,

between hLE = 1/15 and 1/10, ωx still grows consistently (with very little change in ωz); however,

this does not reflect efficiently on vA due to the fact that the term [(z− z0)dxLE/dz− (xLE − x0)]

in (3.8) tends to zero or a very small number (except for the area nearest to the peak where ωz

prevails) as the WLE profile becomes substantially slender. These trends can also be found in figure

3.18 which provides local piecewise contributions of the bound vortex (dvA/dz as a function of z)

showing the rapid decrease of the bound vortex contribution and its convergence at high hLE/Lc.

The figure also shows a certain amount of upwash generated by the bound vortex indicating the

influence of the streamwise vorticity component prevalent around the edges of the bound vortex.

3.5 Additional findings and discussions

This section briefly presents additional findings made with regard to two different aspects based on

the current simulation framework: 1) the relationship between the aeroacoustic source strength and

the WLE aspect ratio; and, 2) the effect of a three-dimensional profile introduced in the impinging

vortex on the interaction with the leading-edge geometries.

3.5.1 WLE aspect ratio and source strength

A parametric study is carried out to find a relationship between the aeroacoustic source strength

and the WLE aspect ratio (AR = 2hLE/λLE). Three different values of AR = 0.5, 1 and 1.5

have been studied in §3.2 to §3.4 with the wavelength fixed at λLE/Lc = 2/15. In this section,

additional simulations are performed with both hLE and λLE doubled (hence, the aspect ratios
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Figure 3.20: Wall pressure PSD profiles, Sppw(f∗)/p2
∞, obtained at three different locations

on the WLE (peak, hill centre and the root) for three different WLE aspect ratios (AR =
2hLE/λLE = 0.5, 1 and 1.5). The aspect ratios with “∗” indicate that the size of the WLE
is doubled (AR∗ = 2h∗LE/λ

∗
LE where h∗LE = 2hLE and λ∗LE = 2λLE).

remain the same) in order to investigate the differences in the source characteristics. In terms of

the radiated sound pressure level (SPL), it is well known that the SPL is dependent largely on

hLE with secondary contributions from λLE (Chaitanya et al., 2015; Kim et al., 2016; Lau et al.,

2013; Narayanan et al., 2015). This means that the SPL would be further reduced in the cases of

doubled hLE for the same aspect ratio, which is also true in the current study as shown in figure

3.19 (AR∗ = 0.5, 1 and 1.5). The further reduction of sound is apparent across the whole frequency

range. However, the reduced sound does not necessarily relate to a reduced source strength as far

as the current results are concerned.

Figure 3.20 shows the source strength (wall pressure spectra) at the peak, hill centre and root,

obtained from the additional simulations with double sized WLEs, compared with the earlier

original cases of the same aspect ratios. It is noticeable that the source strength remains relatively

unchanged by doubling the size of the WLE as far as the aspect ratio is maintained. Although

moderate deviations are seen at the peak at some frequencies, a remarkable level of similarities can

be found at the root and the hill. The result might suggest that the WLE aspect ratio is a similarity

parameter which dictates the source strength and characteristics, despite the radiated sound being

influenced mainly by the WLE amplitude. It also suggests that there exist imperative mechanisms



64 Chapter 3 Primary Leading Edge Source Mechanisms

)(a WV SLE )(b WV WLE

ph
as

e)
 

(in

)(c WV WLE Inverted

ph
as

e)
 

of 
(o

ut

Figure 3.21: Schematics of a wavy vortex (WV) interacting with three different leading-
edge geometries: (a) SLE, (b) WLE and (c) the WLE inverted. The centreline of the
wavy vortex is undulated along the span in the same fashion applied to the WLE profile
– based on (2.2). The inverted WLE (IWLE) has an out-of-phase formation against the
prescribed WV.
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Figure 3.22: Far-field acoustic pressure time signals and the corresponding PSD: (a)
pa(t

∗)/p∞ and (b) Sppa(f
∗)/p2

∞ obtained at an observer location, xo = (0, 5Lc, 0), from
the additional simulations described in figure 3.21. The new results are compared with
the earlier cases (SV-SLE and SV-WLE) that used a straight vortex. The WLE and WV
profiles are based on hLE/Lc = 1/30 and λLE/Lc = 2/15.

contributing to the noise reduction purely associated with the propagation of the sound waves.

Most likely destructive interference as outlined in §1. Regardless, there is little known about the

propagation mechanisms regarding the discrepancies between the source spectra and the radiated

sound spectrum as highlighted towards the end of §3.2.1. An explanation of this observation is one

of the key outcomes of the following chapter on the noise reduction mechanisms (§4).

3.5.2 The effect of a three-dimensional profile in the impinging vortex

A miscellaneous test has been performed in order to briefly demonstrate the effect of three-

dimensionality introduced in the impinging vortex on the interaction with the leading-edge ge-

ometries. The schematics of the additional test cases are described in figure 3.21. The centreline of

the impinging vortex no longer remains straight but forms a wavy profile in the same fashion as the

WLE considered in this work. Three additional cases of aerofoil-vortex interaction are considered
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as depicted in figure 3.21: (a) WV-SLE, (b) WV-WLE and (c) WV-IWLE, where WV and IWLE

stand for wavy vortex and inverted WLE, respectively. The WV and WLE profiles are identical

but the IWLE (inverted WLE) has an 180◦ phase-shift against the WV. The WV profile is created

simply by changing the centre coordinate (x0) of the vortex used in (3.1) and (3.2) as follows:

x0 = −2.5Lc + hLE sin

Å
2πz

λLE

ã
, z ∈

ï
−1

2
Lz,

1

2
Lz

ò
. (3.10)

The result of the additional simulations is presented in figure 3.22 in comparison with the earlier

cases (SV-SLE and SV-WLE) that was based on a straight vortex (SV). It is shown that the

WV-WLE case yields an almost identical sound pressure spectrum to that of the SV-SLE case.

Also, the WV-SLE and SV-WLE cases are remarkably similar to each other except a marginal

difference at high frequencies. In comparison, the WV-IWLE case exhibits a substantial noise

reduction across a wide range of frequencies. These results could be explained by looking at the

streamwise distance between the impinging vortex and the leading edge. First, the WV-WLE and

SV-SLE cases have the same relative distance that is constant along the span. Therefore the impact

takes place synchronously (with no time delay) across the span. The WV-SLE and SV-WLE cases

also have the same relative distance but varying along the span, which results in an asynchronous

interaction over the span, hence a reduced noise level. Finally, the WV-IWLE case is effectively

comparable to the SV-WLE case with the WLE amplitude doubled (hLE/Lc = 1/15 instead of

1/30) and therefore resulting in a significantly increased noise reduction (see figure 3.5).

It is also possible to consider more complex cases such as a wavy vortex with different wavelength,

amplitude or phase-shift to those of the wavy leading edge geometry. Also, the impinging vortex

can be finite in span (similar to an individual eddy) as explored in Mathews & Peake (2015,

2018). Studying these increasingly complex cases may enhance the understanding of the noise

generation/reduction mechanisms in more details later on.

3.6 Concluding remarks

Detailed understandings of the aeroacoustic source mechanisms of a thin aerofoil with a WLE

interacting with a prescribed impinging vortex have been achieved by using high-order accurate

aeroacoustics simulations in this chapter. The numerical flow visualisation showed that the WLE

upon interaction with the impinging vortex created a horseshoe vortex (HV) system stemming

from the peak area. The HV-induced vorticity and velocity fields around the WLE provided key

information to quantify and understand the changes in the wall pressure fluctuations compared to

the SLE baseline cases. Two distinctive source behaviours were observed and questioned during the

initial analysis of the simulation data. Some scientific explanations to the questions have emerged

after investigating into the role of the HV system and the induced velocity field induced by it.

The aeroacoustic source strength at the root remained consistent (similar to that of the SLE

counterpart) irrespective of the WLE amplitude (hLE). This initially seemed incompatible with the
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growing contribution of the HVs substantially amplifying the vertical velocity perturbation around

the root with increasing hLE . The current investigation showed that the oblique interaction between

the vertical velocity perturbation and the root area could be one of the mechanisms to explain the

paradoxical event. From another point of view, it was demonstrated that the area-averaged vertical

velocity remained at a constant level irrespective of hLE (indicating the conservation of vertical

momentum), which might suggest that the source strength at the root was determined mainly by

the overall amount of vertical momentum possessed in the upstream of the root.

Unlike the root, the source strength at the peak was significantly reduced with increasing hLE up to

a certain point. The reduction of source strength at the peak was well correlated with the growth

in streamwise vorticity and the decay in the spanwise vorticity along the HV which efficiently

attenuated the vertical velocity perturbation. However, the source strength at the peak ceased to

decrease further when hLE was sufficiently large. The source convergence/saturation event was

explained by using a semi-analytic model of the HV (a curved bound vortex connected with two

straight trailing vortices) based on Biot-Savart’s law. The semi-analytic model showed that the

HV-induced downwash and upwash components eventually led to a complete mutual cancellation

as hLE becomes large, and therefore the net vertical velocity in front of the peak converged to that

of the free-field solution with no aerofoil in place. It was also found that the highly slender WLE

geometry made the HV effectively non-responsive to the source strength at the peak despite the

intensified streamwise vorticity components surrounding it.

It appeared that there was a strong similarity rule existing in the source characteristics between

two different WLE geometries with the same aspect ratio. The level of similarity viewed from the

wall pressure spectra was maintained at all frequencies and all probing points (peak, hill centre

and root). This might suggest that the source mechanisms explained in this chapter have a certain

level of universality applicable to a wide range of WLE geometries. This hypothesis also highlights

the importance of investigating the “propagation” mechanisms such as destructive interference

since there is a significant disagreement between the source power spectra at the wall and the noise

reduction spectrum at the far field, as addressed in §3.2.1. Also, the linear growth of noise reduction

with frequency – reported repeatedly by Chaitanya et al. (2015); Kim et al. (2016); Narayanan

et al. (2015) – is unexplained solely by the source mechanisms.

The current study was focused on the most basic scenario where the impinging vortex was kept

two-dimensional and only the leading-edge geometry was changed from 2D to 3D such that it was

straightforward to identify the differences that the geometric modification made to the flow and

sound. It would be necessary afterwards to consider a more complex case where the impinging

vortex has a three-dimensional profile as briefly demonstrated in §3.5.2. It will aid better under-

standing of the realistic aerofoil-turbulence interaction that has a certain spanwise length scale and

coherence. However, the size of the parametric space to explore will become substantial.



Chapter 4

Noise Reduction Modelling and

Underlying Mechanisms

4.1 Motivation

It is now well established how undulated leading edges are an effective means to reduce broadband

noise caused by interaction of aerofoils with unsteady vortical disturbances. However despite the

rapid progress obtained by the research community in the last few years, there are still various gaps

to fill in order to complete the understanding of the core mechanisms. In particular there are two

explanations for the noise reductions offered by undulated leading edges which are most prevalent

in the literature: 1. Spanwise destructive interference; 2. Source strength magnitude reduction.

There are compelling arguments for both mechanisms, however to date there is no comprehensive

study detailing the relative significance of the two mechanisms.

Both source cut-off and spanwise decorrelation effects were suggested as potential noise reduction

mechanisms by Kim et al. (2016). It was demonstrated how the WLE hill region reduces the

source strength (wall pressure spectra) throughout the frequency range, while the WLE peak has a

reduced magnitude at low frequencies. Reduced wall pressure magnitude at the hill has also been

observed numerically by Clair et al. (2013) and Tong et al. (2018a). Additionally, both two point

correlation and phase spectra showed an increasingly out-of-phase shift between the LE peak and

points across the span. The LE source mechanisms were later investigated in detail by Turner

& Kim (2017b) (§3), who revealed secondary hydrodynamic structures (most notably streamwise

vortices) were responsible for the variation in strength along the span. This work also noted that

the low frequency source reductions reported at the hill were not perceived at the far-field, revealing

a significant gap in our understanding of the noise reduction mechanisms.

An approximately linear noise reduction trend was demonstrated by Chaitanya et al. (2017) after

realising their experimental results were self-similar based on the LE amplitude Strouhal number

(fhLE/U∞). A simplified model was introduced based on the integral of the LE phase variation

67
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(ω cos(θ)hLE/U∞) across one LE cycle. Although the result produces large overshoots, its sta-

tionary points match well with the experimental data and linear noise reduction trend, indicating

that the noise reductions are determined primarily by destructive interference. Simultaneously,

a conflicting theory for the Strouhal number dependence was proposed based on the hypothesis

that the effective source length of the WLE scales with the impinging streamwise hydrodynamic

wavelength (U/f).

Strong evidence for the destructive interference mechanism was also provided by Lyu & Azarpey-

vand (2017), who extended the Amiet approach to applications with saw-tooth type serrations.

Lyu & Azarpeyvand (2017) demonstrated how the predicted scattered surface pressure along the

edge exhibits more phase difference at a fixed frequency as LE amplitude is increased. They sug-

gested two geometric criteria for noise reduction ωhLE/U∞ >> 1, which is required to provide

sufficient phase variation along the span; and ωhe/U∞ >> 1 (he = ARly, where ly is the spanwise

correlation lengths scale) which ensures the impinging disturbance is wide enough to excite with

multiple in/out-phase regions. Predictions obtained by the model were compared to the experi-

mental data of Narayanan et al. (2015) with good in the medium-high frequency range. However,

at low frequency the WLE obtained a noise increase which was not observed in the experiment.

Lyu & Azarpeyvand (2017) suggested this is caused by a larger wetted edge length for the WLE

compared to the SLE case. In the present work it is shown that inclusion of the complete source

strength reduction mechanisms negates the increased wetted length of the WLE.

As a response to the previous work there are two main objectives in this chapter. Firstly, to

establish the relative contributions from the source reduction and phase interference mechanisms

respectively, and to establish which is responsible for the linear noise reduction trend. To that

end, also to investigate the proposed effective edge length hypothesis of Chaitanya et al. (2017).

Secondly, to answer the question proposed by Turner & Kim (2017b), explaining why the far-field

noise does not reflect the low frequency reductions observed on the surface. The same methodology

is continued here as in the previous chapter. This approach neglects spanwise lengths scale effects,

which can result in exaggerated interference peaks relative to a HIT approach. Despite this the

underlying linear noise reduction trend suggested is still similar to the experiments.

Firstly this chapter extends the work of Chaitanya et al. (2017) by introducing a similar 1D LE

line model for predicting the noise reductions. The model is primarily based on the spanwise

phase variation, but also accounts for the difference in edge length between straight and wavy

cases, spanwise periodic boundary conditions, retarded time effects, and source reduction at the

hill. This approach provides strong evidence for the phase interference mechanisms being the

primary reason for the noise reduction frequency trend. However one of the main findings of this

work is that such an approach provides erroneous conclusions regarding the significance of source

strength variation, which in fact requires 2D surface information to be properly captured. This is

made apparent by analysing the 2D surface spectra which shows the source is non-compact at high

frequencies. This is speculated to be a response of high frequency content contained within the

convected secondary vortex structures generated at the LE. A FW-H propagation model is applied

to incrementally increasing portions of the surface, revealing approximately 4 vortex diameters are
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required in the streamwise direction to obtain a reasonable prediction. Regarding the low frequency

surface vs far-field disparity, it is found that despite reduced low frequency source strength on the

LE line, the percentage of the surface with similar magnitude wall pressure spectra is comparable.

It is also revealed that the effective source area (rather than length) reduces with frequency to a

significant extent. Finally an attempt is made to isolate the two mechanisms by modifying the

source input to the FW-H model. The work raises some concerns for models based solely on the

destructive interference mechanism, which can produce misleading results regarding the physics.

It is shown that both mechanisms increase the noise reduction with frequency. However, it is also

important to remember the mechanisms are coupled, meaning variation in source strength reduces

the effectiveness of destructive interference.

4.2 Problem description and computational set-up

4.2.1 Prescribed spanwise vortex model

The current study employs a spanwise (two-dimensional) vortex model prescribed as an initial

condition. The vortex model is based on a Gaussian shape function suggested by Yee et al. (1999),

which provides a divergence-free velocity field:

{u(x) , v(x) , w(x)} = a∞ψ(x)

ß
M∞ + σ

y

Lc
, −σx− x0

Lc
, 0

™
, (4.1)

where x0 is the initial location of the vortex. The Gaussian shape function is defined as

ψ(x) =
ε

2π

√
exp

ñ
1− σ2

(x− x0)2 + y2

L2
c

ô
. (4.2)

The pressure and density are determined by assuming an isentropic initial flow condition:

ρ(x) = ρ∞

ï
1− γ − 1

2
ψ2(x)

ò 1
γ−1

, p(x) = p∞

Å
ρ

ρ∞

ãγ
. (4.3)

The subscript ‘∞’ denotes the free-stream condition. The free parameters σ and ε in (4.2) determine

the size and strength of the vortex. In the following chapters the default parameters are set to

ε = 0.0377 and σ = 44.25. This set of parameters results in the largest vertical velocity perturbation

to reach 2.5% of the free-stream velocity, i.e. vmax = 0.025u∞. The size (diameter) of the vortex

is about 16% of the aerofoil chord, defined by the locations where the velocity perturbation drops

down to 1% of the maximum value, i.e. |v(x)|y=0 = 0.01vmax.

The vortex diameter is reduced from the previous section in order to analyse a larger range of

frequencies. Although the previous vortex produces a broadband spectra most of it’s energy is

contained at low frequencies. In addition, the smaller diameter makes it easier to distinguish

secondary source effects such as ABS and TEVS in the acoustic pressure signals, which is the

subject of chapter §5. With regards to the shape function, the current vortex provides a spectra
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without lobes, which is particularly helpful for identifying interference peaks shown in the following

chapters. It is important to note that changing the vortex shape function only has a small effect on

the WLE noise reduction spectra, suggesting the previous results are still applicable to the following

chapters. Further discussion of the vortex parameters, and their effect on the noise reduction is

provided in appendix C.1.

In all cases the vortex is positioned 0.5Lc upstream of the aerofoil LE (x0 = −1.0Lc). Simulations

are run for 15 non-dimensional time units (t∗ = ta∞/Lc = 15) which sufficiently captures the

acoustic pressure signals in all observer directions.

4.2.2 Computational grid and domain

As in the previous chapter the cases presented here are based on semi-infinite chord length, the fol-

lowing chapter which utilises the same grid settings additionally presents finite chord simulations.

The total grid cell count isNξ×Nη×Nζ = 1600×960×64 = 98, 304, 000 whereNξ, Nη andNζ are the

number of cells in the streamwise, vertical and lateral/spanwise directions, respectively. The small-

est cells are positioned at the LE and TE where ∆xmin = ∆ymin = 0.002Lc and ∆zmin = 0.002083Lc.

The aerofoil surface (for the finite-chord case) is covered by Nξ × Nζ = 400 × 64 = 25, 600 cells

to keep a high resolution across the vortices while they are travelling over the aerofoil. The dense

grid is maintained in the far field as well in order to capture the high-frequency components of

the radiated acoustic waves. The domain is also extended in the following work so that the noise

directivity may be analysed five chord lengths from the aerofoil centre.

D∞ = {x |x/Lc ∈ [−7, 11], y/Lc ∈ [−7, 7], z/Lz ∈ [−1

2
,
1

2
]}

Dphysical = {x |x/Lc ∈ [−5, 5], y/Lc ∈ [−5, 5], z/Lz ∈ [−1

2
,
1

2
]}

Dsponge = D∞ −Dphysical


, (4.4)

The outcome of a grid-dependency test based on a finite-chord aerofoil is provided in figure 4.1.

The grid information is given in table 4.1, where level 2 represents the resolution of choice selected

for all inviscid simulations in the remainder of the work (unless otherwise stated). It is shown that

the resolution levels 2 and 3 produce almost identical acoustic power spectra for both SLE and

WLE cases whereas level 1 exhibits noticeable numerical dissipation at high frequencies. Figure

4.1(b) and (d) compare the measured spectra to the background noise level for SLE and WLE

cases respectively. The background noise is approximated by convecting the vortex on the same

grid without the aerofoil present. For all frequencies the background noise remains at least two

orders of magnitude below the physical level, therby confirming that it has no significant influence

on the analysis. Acoustic directivity profiles are also presented in figure 4.2 for both low and

high frequencies (f∗ = 2 and 6), which further verifies that levels 2 and 3 are produce sufficiently

converged results.
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Grid resolution level Nξ Nη Nζ Total ∆xmin/Lc CPW at xo
Level 1 1280 768 52 51,118,080 0.0024 3.93
Level 2 1600 960 64 98,304,000 0.0020 5.71
Level 3 1760 1056 70 130,099,200 0.0018 6.74

Table 4.1: Three different levels of grid resolution used for the current grid-dependency
tests shown in figures 4.1 and 4.2. Nξ, Nη and Nζ denote the number of grid cells used
in the streamwise, vertical and spanwise directions, respectively. ∆xmin is the smallest
cell size used at LE and TE of the aerofoil. CPW (cells per wavelength) indicates the
minimum number of grid cells used across the acoustic wavelength. CPW is measured at
the far-field observer location xo/Lc = (0, 5, 0).
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Figure 4.1: Grid-dependency test for the acoustic power spectra obtained at xo/Lc =
(0, 5, 0) based a finite chord aerofoil using three different levels of grid resolution described
in table 4.1: (a) SLE; (b) a comparison to the background noise level produced on the SLE
grid; (c) WLE hLE/Lc = 1/15 and λLE/Lc = 2/15; (d) comparison to the background
noise level produced on the WLE grid.
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Figure 4.2: Grid dependence test for the acoustic directivity based a finite chord aerofoil.
(a) and (b) SLE f∗ = 2 and 6. (c) and (d) WLE (hLE/Lc = 1/15 and λLE/Lc = 2/15)
f∗ = 2 and 6.

In addition to the grid dependency study, the maximum feasible length of the simulation is esti-

mated by running an additional simulation of a stationary vortex on the skewed grid (WLE case).

The simulation is run with no flow for 30 non-dimensional time units with the vortex is initialised at

x0 = −0.5Lc on the ARLE = 1 WLE grid (the location of maximum grid skewness). Figure 4.3(a)

shows the vertical velocity profile of the vortex taken at the mid-span at times t∗ = 0, 6, 15, 21 and

30, while figure 4.3(b) shows the corresponding wavenumber spectrum calculated in the x-direction

(based on the spatial equivalent of (2.60)). For reference kLc = 157 corresponds to a normalised

frequency f∗ = 6 for u∞ = 0.24. The solution remains consistent until approximately t∗ = 24,

where errors begin to accumulate at high wavenumbers. In the current work the vortex reaches

the aerofoil TE at approximately t∗ = 6, and the maximum simulation times are t∗ = 15 and 20

for inviscid and viscous cases respectively. This therefore confirms that the skewed grid near the

LE (for wavy cases) does not introduce significant errors during the simulations.

4.3 Observed noise reduction trends

Figure 4.4 shows the acoustic pressure data at an observer x = (0, 5Lc, 0) for SLE and three

WLE geometries with amplitudes hLE/Lc = 1/20, 1/15 and 1/10. This figure demonstrates the

aforementioned trends associated with the WLE, identifying the key questions we aim to answer
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Figure 4.3: (a) Vertical velocity profile produced by stationary vortex in the centre of the
skewed grid (aerofoil LE) at various times. (b) Corresponding wavenumber spectrum.

in this chapter. Figure 4.4(a) shows the acoustic pressure time signals, while figure 4.4(b) shows

the corresponding PSD. The resulting noise reduction (obtained by subtracting the WLE from the

SLE PSD) is shown in figure 4.5(a). The WLE amplitude is typically considered to be the defining

parameter for the WLE noise reduction, and it is clear here how it improves the noise reduction

for the majority of frequencies.

Meanwhile, figure 4.5(b) shows the noise reduction vs. the Strouhal number calculated from the

WLE amplitude and mean flow speed fhLE/U∞. This clearly demonstrates the approximately

linear increase of noise reduction with frequency, which highlights the first main question of this

chapter. The collapse of the noise reduction curves to the linear trend line 10 log10(10fhLE/U∞)

(Chaitanya et al., 2017) highlights the importance of destructive interference for the noise reduction.

For the current spanwise uniform flow condition the phase difference at a far-field observer for sound

emitted by two source locations can be approximated by:

φA|B = 2πf

ï
xA − xB
u∞

+ r(xA)− r(xB)

ò
(4.5)

where r is the distance to the observer. It is worth noting how the noise reduction minima/maxima

occur at almost exact intervals of ∆f∗ = nU∞/4hLE (∆f∗hLE/U∞ = n/4), which according to

(4.5) approximates a peak-root nπ phase shift. Contrasting figure 4.5(a) and (b) it is clear that

for a given dimensional frequency the noise reduction offered by a larger amplitude WLE is usually

greater, however corresponding destructive interference peaks are smaller. It is therefore likely

that WLE amplitude increases the noise reduction by forcing destructive interference to begin

earlier, effectively shifting the spectra to the left as shown in figure 4.5(a). An explanation for the

reduced interference peaks with larger amplitude may be due to the variation of source strength

along the LE. Typically a larger amplitude WLE will have greatly reduced strength near the WLE

hill and peak regions due to oblique cut-off and streamwise vortex effects respectively Kim et al.

(2016); Turner & Kim (2017b). This disparity in strength along the span (in contrast with small

amplitude WLEs which will be almost uniform) will result in less complete interference. In this
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Figure 4.4: Acoustic pressure data obtained at observer xo/Lc = (0, 5, 0) for SLE and three
WLE geometries with differing amplitude (hLE/Lc = 1/20, 1/15 & 1/10, λ/Lc = 2/15).
(a) time signals of pa(xo, t)/p∞; (b) the corresponding power spectra; (c) an instantaneous
contour plot of pa(xo, t

∗ = 7.34)/p∞ taken at mid-span (z = 0) for the SLE case; and, (d)
LE source strength (wall power spectra) for the SLE, WLE Peak, Hill centre and Root,
taken one grid point downstream of the LE with hLE/Lc = 1/15.

chapter we show that both destructive interference and reduced source strength contribute to the

noise reduction when considered individually. However in relativity they are coupled and to some

extent may contradict each other as proposed here. Similar conclusions are also drawn for the LE

wavelength in Appendix C.2.

The next most prominent trend in literature concerns the WLE source characteristics. Figure

4.4(d) shows the surface pressure spectra obtained one point aft of the LE for SLE and WLE peak,

hill and root (default amplitude hLE/Lc = 1/15). There is significant source strength reduction

obtained by the WLE hill throughout the frequency range. As previously discussed the source

strength reduction increases proportionally with WLE aspect ratio (or amplitude for a fixed λLE)

(Turner & Kim, 2017b). Source reduction therefore represents the other possible noise reduction

mechanism responsible for the linear noise reduction trend in addition to destructive interference.

However, questions arise regarding the low frequency source reductions of the peak and hill, which

are not echoed in the far-field spectra. The confusion comes from only considering the source along
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Figure 4.5: (a) Noise reduction spectra (∆SPL(xo, f
∗
hLE

)) obtained for the three WLE
amplitudes at observer xo/Lc = (0, 5, 0). (b) Noise reduction re-plot vs Strouhal number
(based on WLE amplitude) f∗ = fhLE/U∞ demonstrating the linear trend in question.
Comparison is also made to the experimental data obtained by Chaitanya et al. (2017) for
hLE/Lc = 1/10 at the optimum wavelength λ/Λ = 4.

the leading edge. In this chapter we show that if the source area is considered, the percentage of

the surface with similar strength is comparable at low frequencies.

4.4 One-dimensional modelling of the leading edge

4.4.1 Effective source length

In this we aim to investigate the speculations made by Chaitanya et al. (2017), regarding the root

source length theory for the linear noise reduction trend. The basis for this theory is that the

root represents the dominant portion of the WLE source and radiates with similar strength to the

SLE baseline. This has been observed for both synthetic turbulence and spanwise vortex flows

(Kim et al., 2016; Turner & Kim, 2017b). If the root region may be considered to be the only

significant radiator of sound then, it follows that ∆SPL ∼ Lz/L(f) where Lz is the SLE span,

and L represents the effective root source length. It is speculated that L should scale linearly

with the hydrodynamic wavelength (U/f) interacting with the root, and therefore is inversely

proportional to the frequency. To validate this theory the WLE source length is approximated

from the numerical data as follows:

L = Lpeak + Lroot =

∫ λLE/2

0

SWLE
ppw (xLE , z, f

∗)

SSLEppw (−0.5Lc, f∗)
dz +

∫ 0

−λLE/2

SWLE
ppw (xLE , z, f

∗)

SSLEppw (−0.5Lc, f∗)
dz (4.6)

Figure 4.6 shows the calculated effective root and peak source lengths as a function of frequency

compared to the expected source length. The expected length is calculated as the ratio of WLE to

SLE far-field sound spectra:
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Figure 4.6: Effective source edge lengths L (peak and root regions) as predicted by (4.6).
For comparison the change in length required to constitute the far field noise reduction is
also included as (SWLE

ppa /SSLEppa )L(f∗ = 0).

LE =
λLE

2

SppWLE
a (x, f∗)

SppSLEa (x, f∗)
(4.7)

(4.7) is scaled by λLE/2, which represents the source length of either the peak or root region when

the strength is the same as the SLE. Although the root source length decreases with frequency in

an approximately linear fashion, the rate of change is insufficient when compared to the expected

source length. Furthermore, as frequency is increased the effective peak source length actually

increases rapidly. This is expected from figure 4.4(d) which shows the peak source strength begins

to approach that of the root for high frequency. It is therefore unlikely that effective LE source

length is the primary noise reduction mechanism, however it may play a secondary role which

contributes to the noise reduction-frequency trend.

4.4.2 LE phase interference modelling

In this section a semi-analytical model for the noise reduction of the WLE is introduced in order

to gain insight into the contribution of LE phase on the noise reduction vs. frequency relationship.

The model takes inspiration from the work of Chaitanya et al. (2017) who considered the integrated

LE phase-shift along one cycle of the WLE. In addition to the LE phase we consider the LE source

strength variation, the retarded time caused by varying effective acoustic distance in span, the

WLE arc length, and the influence of the simulation infinite span caused by the lateral periodic

boundary condition. Firstly, assuming that the aerofoil aeroacoustic source is concentrated at the

LE, we consider a single frequency sinusoidal response from a single element of the LE arc. (The

validity of this assumption is investigated in detail in §4.5.):
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pLE = pm(θ)sin

ñ
2πf

Ç
t− hLE sin(θ)

U∞

åô
(4.8)

where pm is the pressure based source strength of the element, and 2πfhLE sin(θ)/U∞ is the

spanwise LE phase-shift caused by convection of the vortex with the mean flow. Assuming the

signals originating along the LE are coherent, the total far field response is then modelled by

integrating (4.8) along the LE curve:

F (xo, yo, f, t) =

∫
C

pm(θ)

r
sin

ñ
2πf

Ç
τ(x)− hLE sin(θ)

U∞

åô
dl (4.9)

where dl =
»

1 + (dx/dz)2dz indicates integration along the LE arc length, θ = 2πz/λ is the phase

of the sinusoidal LE geometry, and τ(x) = t−∆to(x) is the retarded time due to radiation of the

sound in a mean flow, with ∆to(x) given by Garrick & Watkins (1953):

∆to(x) =
M∞(x− xo) +

»
M2
∞(x− xo)2 + (1−M2

∞)|x− xo|2
a∞(1−M2

∞)
. (4.10)

Spherical radiation of the propagating acoustic waves from each LE element is considered via the

1/r term in (4.9), where r = ∆to(x)/a∞. Finally substituting for dl =
»

(dx/dθ)2 + (dz/dθ)2dθ

in (4.9) allows the integral to be expressed in terms of θ, then evaluated over m cycles:

F (xo, yo, f, t)

=

∫ mπ

−mπ

pm(θ)

r
sin

ñ
2πf

Ç
t−∆to(θ)− hLE sin(θ)

U∞

åô√
h2
LE cos2(θ) +

Å
λLE
2π

ã2

dθ (4.11)

The current results are based on m = 15 LE cycles, although it was found that this parameter

has little to no influence on the result. Since F represents the pressure time response for a given

frequency, the noise reduction spectra can be approximated by simply calculating the relative

difference between the maximum values in time obtained by both SLE and WLE cases, resulting

in the following:

∆SPL(xo, yo, f) = 20 log10

Ç
maxi[FSLE(xo, yo, f, ti)]

maxi[FWLE(xo, yo, f, ti)]

å
(4.12)

There are a number of simplifications made in the derivation of (4.12). This includes: coherent

LE excitation, source concentrated at the LE, and that the disturbance is parallel to the SLE.

Figure 4.7(a) shows a comparison between the numerically predicted noise reduction spectra for

hLE/Lc = 1/15, and that predicted by (4.11) based on different expressions for the LE source term

(pm(θ)). Three models for the source strength are considered with increasing complexity. The
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simplest, Model A, utilises pm = 1, and therefore only considers the LE phase shift and retarded

time effects.

 ∗
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Figure 4.7: (a) Comparison between numerical noise reduction spectra (∆SPL(xo, f
∗))

and that predicted by the erroneous 1D semi-analytical model of (4.12). Models A-C
provide different representations of the LE source characteristics. A: constant source along
the edge (equivalent to SLE). B: cosine of local sweep angle (cos(Φ)). C: realistic phase
and source obtained from numerical data. For all cases the WLE geometry is constant at
hLE/Lc = 1/15 and λ/Lc = 2/15.

The accuracy of this model is fairly poor, the local maximums represent large overshoots and are

offset in frequency from those obtained by the numerical result. Moreover at low frequency a nega-

tive noise reduction is predicted, which contradicts previous experimental observations Chaitanya

et al. (2017). We note here that low frequency under prediction is also observed by the Amiet

approach adopted by Lyu & Azarpeyvand (2017). This is a consequence of the increased edge

length for the WLE case, which especially influences the low frequencies due to the LE elements

being relatively in-phase. Figure 4.7(b) compares the local minima of model A to the far-field

noise reduction. Despite the exaggerated peaks and poor low frequency prediction, the stationary

points of model A seem to capture the correct noise reduction slope at medium-high frequency.

4.4.3 Influence of realistic source on leading-edge model

An immediate improvement to the LE line model of Figure 4.7 can be made by modelling the

variation in source strength along the span. A simple analytical expression for the LE source is to

consider the LE sweep angle as suggested by Kim et al. (2016). This follows from the the work of

Roger & Carao (2010), who showed that the acoustic pressure response due to a aerofoil swept from

the mean flow direction follows p′ ∝ cos(Φ). pm(θ) = cos(Φ) is therefore implemented as model

B in figure 4.7. Inclusion of this simple source term rectifies the low frequency under prediction,

and improves the location of the peaks (particularly at low frequencies). Furthermore, comparison

between the model stationary points, and a linear regression of the simulation data shows a near

perfect agreement.
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A more complete description of the source may be implemented by adopting a semi-analytical

approach which incorporates data extracted directly from the simulation. The source wall pressure

and phase spectra are included as pm(θ) =
»
Sppw(θ, f) (Sppw ∝ p2), and 2πfhLE sin(θ)/U∞ =

φppw(xHill,x, f) respectively in (4.11). Surprisingly, inclusion of these more realistic terms only

offers minor improvements compared to the sweep angle source prediction mainly in terms of

reduced magnitude overshoots for medium-high frequency.

An explanation for the improved accuracy of models B and C at low frequency is made apparent

by considering the following:»
SHillppw (x, f∗) ∼ cos(Φ) = cos

Å
atan

Å
dx

dz

ãã
=

1√
1 +
Ä

dx
dz

ä2 =
dz

dl
(4.13)

This implies a cancellation effect between the increased edge length of the WLE and the reduced

source strength of the hill region. A comparison between the source strength along the span at

three frequencies is compared to the cosine sweep angle prediction in figure 4.8(a). The local sweep

angle is revealed to accurately predict the source strength near the WLE root and nearby hill region

for medium and high frequencies. However, the peak strength is generally over predicted, while the

peak adjacent hill region is under predicted. The asymmetry about the hill centre consequently

influences the destructive interference mechanism which results in the shifted peaks produced by

model C relative to B. As previously mentioned the source strength reduction at the peak actually

conflicts with the destructive interference mechanisms. However, the full impact of this effect is not

captured in one-dimension, and therefore requires further investigation in the following section. It

should be noted here that the model result is completely independent of WLE wavelength (λLE).

As is shown in Appendix C.2 better agreement for the noise reduction peaks is possible when

the wavelength is increase, which is believed to be caused by more compatible peak-root source

strengths.

In figure 4.8(b) the LE source ratio is scaled by dl/dz, revealing the extent of the cancellation

between edge length and source strength. Integration of the curves w.r.t. z/λLE results in values

of 1.215, 1.210 and 1.172 for f∗ = 1, 3 and 5, indicating a near perfect cancellation which improves

with frequency. It will be shown in the following section that this turns out to be an erroneous

conclusion, reached by imposing that the source is located very close to the LE. In reality the

aerofoil surface is two-dimensional, and the radiation area for SLE and WLE cases is equivalent.

Therefore the loss of noise reduction at low frequency must be caused by noise increase regions

aft of the LE. Consequently this chapter highlights the danger of neglecting the complex source

characteristics when describing the physical mechanisms of noise reduction, although doing so may

yield reasonable predictions.
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Figure 4.8: (a) WLE-SLE source strength ratio at three selected frequencies f∗ = 1, 3 and
5, compared to the cosine of the local LE sweep angle Φ. (b) Source strength ratio scaled
by dl/dz

 ∗
∞

(φ
)

ω ∞
φ

Figure 4.9: Comparison of numerical and modelled two-point phase spectra taken between
LE hill and peak.

4.5 Consideration of distributed source

4.5.1 Surface source distribution

Figure 4.10 and 4.11 show the wall pressure spectra distribution over the aerofoil surface for SLE

and WLE cases at frequencies 0.2, 1, and 4, 6 respectively. The results are plot in decibel scale,

as SPL = 10 log10(Sppw/p2
ref ), where pref = 2× 105 Pa. At the lowest frequency (f∗ = 0.2) the

source is highly concentrated near the leading edge, and rapidly reduces downstream. This agrees

with observations made by Kim et al. (2016) regarding the RMS surface pressure distribution. At

a more moderate frequency of f∗ = 1 the source is more spread in the streamwise direction. It
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Figure 4.10: Surface source strength distribution Sppw(x, z, f∗) for SLE and WLE geome-
tries plot as SPL (dB scale). (a) SLE f∗ = 0.2; (b) WLE f∗ = 0.2; (c) SLE f∗ = 1; (d)
WLE f∗ = 1.

was also noted by Agrawal & Sharma (2016) that the source was radiated from a surprisingly large

portion of the surface for f∗ = 0.456 and 0.84. For the WLE case there is also significant spread of

the high intensity source near the LE root. Table 4.2 shows the percentage of the aerofoil surface

(within 1Lc of the LE) radiating noise within various magnitude bandwidths at four frequencies,

f∗ = 0.2, 1, 4 and 6. Despite the reduced low frequency source strength on the LE line (figure 4.4),

the total surface percentage within each magnitude bandwidth is almost the same for SLE and

WLE cases at f∗ = 0.2. It is worth noting that each magnitude bandwidth is 10 times weaker than

the previous but possesses approximately 10 times more surface area, and therefore contributes

comparably to the radiated sound. It is therefore reasonable to conclude that the lack of WLE

noise reduction at low frequency occurs due to the source characteristics being comparable over

the full surface, albeit modified very locally at the LE.

At high frequency (f∗ = 4) the SLE exhibits moderate-high source strength over the majority of the
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Figure 4.11: Surface source strength distribution Sppw(x, z, f∗) for SLE and WLE geome-
tries plot as SPL (dB scale). (a) SLE f∗ = 4; (b) WLE f∗ = 4; (c) SLE f∗ = 6; (d) WLE
f∗ = 6.

surface. Comparatively the WLE source is still concentrated near the LE, highlighting the source

reduction mechanism and how it becomes more prominent with frequency. This is also highlighted

by table 4.2, which shows the majority of the WLE aerofoil surface is contained within a smaller

magnitude band than the SLE case. There are also different patterns observed downstream of the

leading edge root, which alternate between high and low strength in the streamwise direction. The

author speculates that these patterns are related to the propagation of secondary vorticity over the

aerofoil surface which results in a small pressure jump as it propagates downstream. The generation

of the secondary vorticity is discussed in detail in Turner & Kim (2017b), and its influence on the

high frequency noise is demonstrated in Turner & Kim (2017a) and the following chapter.

The unusual observations made at f∗ = 4 are even more prominent at f∗ = 6. For the SLE aerofoil

the wall pressure spectra over the majority of the surface remains within approximately 20 dB

of the LE maximum. For both cases the downstream source regions associated with secondary
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Geometry f∗ SPL ≥ 120 110 ≤ SPL < 120 100 ≤ SPL < 110 SPL < 100

SLE 0.2 0.800 9.32 89.5 0.38
WLE 0.2 0.720 12.1 84.3 2.88
SLE 1 2.41 22.1 75.0 0.490
WLE 1 0.891 13.2 81.9 4.01

SPL ≥ 110 100 ≤ SPL < 110 90 ≤ SPL < 100 SPL < 90

SLE 4 0.400 4.67 56.6 38.3
WLE 4 0.0438 0.962 2.67 96.3

SPL ≥ 80 70 ≤ SPL < 80 60 ≤ SPL < 70 SPL < 60

SLE 6 0.804 55.8 30.2 13.2
WLE 6 5.90 53.1 27.2 13.8

Table 4.2: Percentage of source surface area satisfying various magnitude constraints at
frequencies f∗ = 0.2, 1, 4 and 6. Only the first 1Lc of the surface is considered.

vorticity convection are apparent. In particular the WLE aerofoil possesses a streamwise strip

downstream of the root which represents the maximum strength region. At this frequency table

4.2 shows the strongest source magnitude bandwidth contains a larger surface area for the WLE

than the SLE, while the lower magnitude bandwidths contain similar area proportions. Therefore

implies any noise reduction at this frequency must be generated by destructive interference.

In order to verify that the unusual surface spectra patterns observed at high frequencies are not

artefacts of the grid the WLE simulation is repeated with a finer surface mesh. The new grid

consists of 1920 × 960 × 128 = 236M grid cells which represents a factor 1.5 refinement in the

streamwise direction over the surface of the flat plate, and a factor 2 refinement in the spanwise

direction. The minimum spacings at the LE and TE are also reduced to ∆xmin = ∆ymin =

0.0015Lc. A comparison of the wall pressure spectra distribution obtained by the baseline and

refined grids is shown for f∗ = 4 and 6 in 4.12. Overall there is good agreement between the

baseline and refined solutions at both frequencies. The two grid levels obtain nearly identical

patterns at the lower frequency, while at the higher frequency the finer grid obtains a slightly

smoother distribution particularly in regions with low source strength. The key feature (high

strength streak downstream of the root) is present at both levels with only subtle magnitude

differences. Based on these findings it is reasonable to conclude that the downstream sources are

not artefacts of poor grid resolution.

The above analysis is repeated in figure 4.13 and table 4.3 for the maximum noise reduction

frequencies (f∗ = 1.32, 3.04 and 4.76) of the LE line model described in §4.4 (model B). In

all three cases there are contributions made to the source away from the LE line. For the lowest

frequency case the second magnitude band has similar significance to the upper band by containing

approximately 10 times more surface area despite reduced magnitude. This band mainly includes

the region located laterally from the root. This region is highlighted more clearly for the second

frequency peak (f∗ = 3.04) which generally shows similar results. Meanwhile for the third peak,

downstream contributions start to gain some significance.

The previous discussions highlight that in order to progress further it is important to verify exactly

what extent of the aerofoil surface is required to correctly predict the far-field noise reduction. To

this end, a Ffowcs-Williams and Hawkings (FW-H) propagation solver based on the Farassat 1A
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Figure 4.12: Comparison of wall pressure spectra distribution (Sppw(x, z, f∗)) plot as SPL
(dB scale) obtained by baseline and refined grids. (a-b) f∗ = 4; (c-d) f = 6. The refined
grid contains 1920× 960× 128 = 236M grid cells (factor 1.5 refinement in the streamwise
directions, and factor 2 in span).

Geometry f∗ SPL ≥ 120 110 ≤ SPL < 120 100 ≤ SPL < 110 SPL < 100

SLE 1.32 2.41 24.8 72.8 0
WLE 1.32 0.838 8.9 53.8 36.5
SLE 3.04 0.400 4.04 42.9 52.7
WLE 3.04 0.0250 0.951 4.38 94.6

SPL ≥ 100 90 ≤ SPL < 100 80 ≤ SPL < 90 SPL < 80

SLE 4.76 0.600 7.38 64.9 27.1
WLE 4.76 0.0500 0.953 7.35 91.6

Table 4.3: Percentage of source surface area satisfying various magnitude constraints at
frequencies f∗ = 1.26, 3.04, 4.76. Only the first 1Lc of the surface is considered.
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Figure 4.13: Surface source strength distribution Sppw(x, z, f∗)2 for WLE geometry plot
as SPL (dB scale) at the maximum interference frequencies of the LE line model. (a)
f∗ = 1.32; (b) f∗ = 3.04; (c) f∗ = 4.76.

formulation is implemented taking the aerofoil geometry as the integration surface (Farassat, 2007;

Ffowcs Williams & Hawkings, 1969):

4πpa(x, t) =

∫ ñ
ṗ cos(θ)

cr(1−Mr)2
+

p cos(θ)

r2(1−Mr)2
+

(Mr −M2)p cos(θ)

r2(1−Mr)3

ô
ret

dS (4.14)

where subscript ret indicates variables are analysed at the retarded time, dotted variables indicate

the time derivative, Mr = M · r̂ and r is the acoustic distance. The periodic boundary condition

is accounted for by performing the surface integral iteratively in span, typically around 200 span

lengths are required to reach the converged solution. Figure 4.14 compares the predicted far-

field acoustic pressure time signals and spectra for SLE and WLE cases to that obtained by

the implemented FW-H solver. There is good agreement for both cases throughout the desired

frequency range.

In the current procedure we incrementally increase the surface integral region as described by the

schematic diagram in figure 4.15(a). The various FW-H predictions are shown in figure 4.15(b)-

(e). Additionally the one-to-one source strength difference based on (4.15) is shown for frequencies

f∗ = 0.2, 1, 4 and 6 in figure 4.16.
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Figure 4.14: Validation of FW-H solver for predicted (a) far field acoustic pressure for
SLE and WLE cases; (b) corresponding power spectra.

∆Sppw(x, z, f∗) = 10 log10

(
SSLEppw (x, z, f∗)

SWLE
ppw (x, z, f∗)

)
(4.15)

Figure 4.15(b) shows the result for the first 3 integration surfaces. The prediction is massively

improved by including the source region downstream of the LE peak/hill in the third integration

surface. The overshot peaks are greatly reduced and occur at approximately correct frequencies.

Additionally the low frequency noise reduction is reduced towards 0. As was previously shown by

table 4.2 it is apparent that the 2D source distribution is responsible for the lack of low frequency

noise reduction, and therefore a significant percentage of the source must be included to capture

this effect. The noise increase regions at low frequency are shown by figure 4.16(a), revealing they

are mainly located near the LE root, although a large proportion of the downstream surface also

represents a small noise increase. Figure 4.15(c) and (d) shows gradual convergence of the FW-H

prediction as the integration region is increased to include 12 LE amplitudes (≈ 5 vortex diameters).

The integration surface is extended further to 30 LE amplitudes (≈ 12.5 vortex diameters) in figure

4.15(e). It is apparent that an exact match is not possible unless the full surface is included,

although it could be argued a reasonable match is observed from around 9 LE amplitudes (≈ 3.75

vortex diameters) onwards.

4.5.2 Quantification of destructive interference and source reduction mecha-

nisms

A 2D interpretation of the effective source region (§4.4.1) is provided by (4.16):

A =

∫ λLE/2

−λLE/2

∫ xTE−hLE

−0.5Lc

W SWLE
ppw (x′, z, f∗)

SSLEppw (x′, z, f∗)
dx′dz (4.16)
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Figure 4.15: FW-H predicted noise reduction spectra obtained by integrating incremen-
tally increasing proportions of the aerofoil surface. (a) Schematic diagram indicating the
incrementally increasing surface integration region. (b) three integration regions starting
from the LE and extending to x = xLE + 0.025Lc, x = xLE + hLE and x = xhill + 2hLE
respectively. (c) further extensions to the integration region increasing in increments of
hLE until xhill + 5hLE ; (d) extensions increasing by 2hLE until xhill + 12hLE ; (e) exten-
sions increasing by 7.5hLE until xhill+30hLE . Comparison is consistently made to the full
surface integration.
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Figure 4.16: One-to-one source strength difference spectra (4.15). (a) f∗ = 0.2; (b) f∗ = 1;
(c) f∗ = 2; (d) f∗ = 6.

where x′ = x− xLE − 0.5Lc. The above formulation is based on the ratio between WLE and SLE

source at a given distance from the LE line. The change of coordinates maps the WLE to a SLE

with a wavy trailing edge (similar to the stretched coordinates used in Roger et al. (2013)). The

inner integral is therefore calculated over the range −0.5Lc ≤ x′ ≤ xTE − hLE , which represents

the range where the SLE and stretched WLE geometries overlap. In the following analysis we

use xTE = 15hLE , which was shown previously to represent enough of the surface to capture the

underlying noise reduction vs. frequency relationship. An optional weighting term:

W = SSLEppw (x′, z, f∗)/SSLEppw (−0.5Lc, z, f
∗), (4.17)

is also included to avoid bias from surface regions with a comparatively weaker source magnitude.

The result is plot in figure 4.17. Remarkably the un-weighted effective source area agrees very

well with the noise reduction spectra until f∗ ≈ 4. At this point the source downstream of

the LE which is comparable for SLE and WLE aerofoils begins to dominate, causing the source

area to increase rapidly. Inclusion of the weighting term results in a less accurate prediction,

although possibly a fairer representation of the source strength contribution to the noise reduction

mechanisms. Regardless, this result highlights that source strength reductions may contribute to

the increasing noise reduction with frequency trend at least to moderate frequencies (despite the

misleading information obtained by only modelling the LE line).

Another simple quantification of the LE source strength noise reduction can be obtained by simply
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Figure 4.17: Effective source area A as predicted by (4.16). As in figure 4.6, the required
reduction with frequency is also plot for comparison, showing a good match until f∗ = 4.

integrating the source along the LE curve or surface. One and two-dimension representations of

the ‘integrated source strength’ (ISS) are calculated as:

ISS1D =
1

λLE

∫
Sppw(xLE , f

∗)dl

p2
∞

(4.18)

and

ISS2D =
1

λLELc

∫ ∫
Sppw(x, z, f∗)dS

p2
∞

(4.19)

Figure 4.18 compares the LE integrated source strength as described by (4.18) with the surface

integrated source strength (4.19). It is clear that the WLE source characteristics make a non-

negligible contribution to the noise reduction for frequencies below f∗ = 5. It is also apparent

how a LE-only representation of the WLE source characteristics can lead to misleading results. It

is worth noting that the current quantification of source based noise reduction excludes retarded

time effects due to different chord wise location, which is considered in the following analysis.

A more sophisticated approximation of the source and phase based noise reduction contributions

is achieved by modifying the input to the FW-H solver. The two mechanisms are decoupled by

altering the source characteristics over the surface. The interference only prediction is obtained by

transforming the SLE to a WLE and introducing a spanwise phase shift. Firstly the x coordinates

are stretched by adding the WLE profile to the SLE geometry x′ = xSLE + hLE sin(2πz/λ), then

surface pressure signals are evaluated at the retarded time τ = t−hLE sin(2πz/λ)/U∞. Meanwhile,

the source only prediction is obtained by transforming the WLE to a SLE and eliminating the

spanwise variation in sound emission time from the WLE case. This is the reverse procedure of

the previous case. The WLE coordinates are stretched as x′ = xWLE − hLE sin(2πz/λ), and the

time signals evaluated at τ = t+hLE sin(2πz/λ)/U∞. In both cases the coordinate transformation

introduces a wavy trailing edge. However, since this occurs at the domain exit boundary (x/Lc =
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Figure 4.18: (a) Source strength integrated along the LE line as in (4.18) compared
with surface integrated source strength (4.19). (b) Corresponding ISS difference spectra
10 log10[ISSSLE(xo, f

∗)/ISSWLE(xo, f
∗)].

11), it is assumed to be sufficiently far downstream to not effect the result. Figure 4.19 shows the

results of the two FW-H calculations, in addition comparison is made to the LE line model B from

§4.4.

We immediately notice that the interference FW-H prediction exceeds the source prediction except

at low frequency (f∗ < 1). The interference prediction generally overestimates the actual far-field

noise reduction, while the source prediction underestimates. (Note: the source prediction still has

streamwise interference effects, which may allow the noise reduction to continue beyond the drop

off point f∗ = 5 shown in figure 4.18.) We may therefore conclude that individually interference

has a stronger influence on noise reduction at high frequencies. Although, in reality the two

effects are coupled, and therefore the source variation may actually weaken the phase interference

effect resulting in a more comparable level from the two mechanisms (imperfect cancellation due

to different strengths). The net results is then somewhere in between the two predictions. As we

have previously stated the LE line approximation leads to false conclusions regarding the impact of

source variation, however it is clear from this figure that it accurately capture the phase interference

effect.

4.6 Concluding remarks

The noise reduction mechanisms of a WLE aerofoil have been investigated in detail utilising a

high resolution numerical approach. The problem considers a flat plate aerofoil interacting with a

spanwise vortex disturbance which allows for easy identification of noise reduction trends associated

with spanwise destructive interference and source strength modification. This chapter makes an

attempt to quantify the contribution of these two mechanisms to the far-field noise reduction,

particularly the source reduction which has been largely overlooked by literature.
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Figure 4.19: Modified FW-H noise reduction predictions highlighting contributions from
destructive interference and source strength variation respectively. The phase effect pre-
diction is obtained by mapping the SLE surface pressure data onto the WLE geometry.
Meanwhile the source alone prediction is obtained by eliminating the spanwise variation in
retarded time from the WLE case. Comparison is also made to the 1D model B outlined
in §4.4.

Firstly a simple noise reduction prediction model based on the aerofoil LE line is introduced. The

model considers the destructive interference mechanism due to the WLE geometry and takes into

account the variation of source strength along the LE. The model is capable of predicting the

general noise reduction relationship with frequency with good accuracy.

Despite its capability to provide reasonable predictions, it is later demonstrated that the LE ap-

proach leads to misleading conclusions regarding the physics. In particular the importance of the

source characteristics on the noise reduction trend. This realisation comes from analysing the wall

pressure spectra over the full surface, which reveals downstream regions which make significant

contributions to the source (particularly at higher frequencies). The importance of considering

the full source characteristics is ultimately demonstrated by performing FW-H calculations with

progressively larger surface areas. It is shown that approximately 3-4 vortex diameters in the

streamwise direction is required to produce adequate results. Analysis of the wall pressure spectra

also provides an explanation for the lack of noise reduction offered at low frequency. A question

proposed due to the large low frequency surface pressure reductions exhibited locally at the LE

hill. It is found that despite these previous observations the percentage of the surface with similar

strength is almost the same for SLE and WLE cases. Around 1 vortex diameter in the streamwise

direction is required to capture this effect.

Although it is difficult to determine which mechanism is most significant (as they are coupled). At-

tempts are made to quantify their contributions to the noise reduction independently. The source

mechanism contribution is estimated by considering the effective surface area which radiates sound

with same strength as the SLE baseline. It is shown that this quantity reduces with frequency and
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approximately follows the far-field noise reduction trend. Source and interference only predictions

are also made by modifying the input to the FW-H solver to eliminate spanwise differences in

strength and retarded time respectively. Generally noise reduction predictions based solely on de-

structive interference over predict the noise reduction, while source only predictions under predict

at high frequencies. The results indicating that destructive interference is likely the more domi-

nant mechanism at high frequencies where the source actually produces a noise increase. At low

frequencies on the other hand source reduction is a crucial mechanism for the noise reduction. It is

also important to consider that the variation of source will reduce the effectiveness of destructive

interference due to incomplete cancellations.



Chapter 5

Secondary Noise Sources

5.1 Problem background

It is well established that the majority of the aerofoil noise due to upstream vortical disturbances

emanates from the leading edge (LE) where the impinging vortices scatter into acoustic waves,

which is the primary source mechanism. The secondary source mechanisms on the other hand are

associated with the existence of a trailing edge (TE) and are twofold: (a) the backscattering of the

acoustic waves produced earlier (travelling back and forth between the LE and TE); and, (b) the

scattering of the vortices at the TE (after being bisected and modified at the LE).

The acoustic back scattering event is a well known physical phenomena in classical acoustics,

and we refer to the work of Ayton & Peake (2013); Rienstra (1981); Roger et al. (2016) on the

matter. TE vortical scattering event on the other hand is significantly less studied. The well

known theoretical work of Howe (1976, 2002) investigated the parallel aerofoil-vortex interaction

problem for a point vortex convected above a flat plate aerofoil. It was found that the generation of

sound is highly dependent on application of the Kutta condition at the trailing edge. Remarkably

if it is included Howe shows that shed vorticity from the TE effectively cancels the scattered

sound caused by the impinging vortex. These results were later reiterated by Glegg & Devenport

(2009) and extended to aerofoils of arbitrary thickness. Despite this there is plenty of speculative

experimental and numerical evidence supporting vortical TE scattered sound through analysis of

unsteady lift data. Straus et al. (1990) compared experimental pressure coefficient data with the

linear theory of Sears (1941), noting a major departure from theory approximately when the vortex

passed the TE. A later study by Horner et al. (1992) specifically focused on convective events in

aerofoil-vortex interaction experiments. The vortex position was correlated with force and moment

data, revealing a relationship between passage of the vortex over the TE and magnitude changes.

Furthermore pressure transducer experiments by Kitaplioglu et al. (1997) identified convective

disturbances propagating at approximately the mean flow speed followed by secondary BVI events.

The findings of Kitaplioglu et al. (1997) were later reiterated by Thom & Duraisamy (2010) who

conducted Euler simulations of the same configuration. The failure of the analytical approaches to

93
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capture the sound generated by the vortex at the TE is likely due to linearity or rapid distortion

theory (RDT) assumptions. Therefore treating unsteady disturbances as mean flow perturbations

which only change strength due to mean flow gradients and solid boundaries. These kind of

assumptions are usually considered reasonable if the vortex is weak, or far from the wall, such that

its strength and trajectory is not significantly influenced by image vortices. It is worth noting that

these studies all consider high strength vortex disturbances, however the results of Straus et al.

(1990) fit the requirements for linear assumptions suggested by Grace (2001) (induced velocity n%

of the mean flow passing within n% of the aerofoil half chord).

There is insufficient investigation into the validity of linearised analytical theory, and the extend

of the secondary TE sound when it breaks down. This chapter therefore aims to provide compre-

hensive understandings of the secondary noise sources present in the event of vortical disturbances

impinging on an aerofoil. The current work follows directly from Turner & Kim (2017b) where the

primary noise source was investigated in detail. The earlier work employed semi-infinite aerofoils

only and therefore did not involve any of the secondary sources. In contrast this work focuses on

the secondary sources, which is achieved by eliminating the semi-infinite-chord solution (primary

source) from the finite-chord one. The decomposed solutions reveal various characteristics of the

secondary sources that contrast with those of the primary source.

One of the most significant findings captured in this study is that the TE vortical scattering is the

dictating source of noise at high frequencies in almost all observer directions. This is particularly

true for exactly parallel interactions, but also significant for moderate vertical miss distances (well

beyond the RDT validity range suggested by Grace (2001)). The generation of the TE vortical

scattered sound is linked to the interaction of LE generated bound vorticity with the impinging

vortex which results in an asymmetric vorticity distribution between upper and lower sides. This

phenomena has been neglected in historical analytical approaches as the bound vorticity is believed

to make no direct contribution to the LE sound (Howe, 2002). Although this study primarily

concerns the inviscid flow considered by the analytical theory, the effects of viscosity are investigated

towards the end of the chapter and found to play a significant role. Effectively secondary TE noise

can only exist if the vortex is strong enough (or dissipative effects weak enough) to survive travel

through the boundary layer. The inviscid case therefore represents the limiting case where TE

vortical scattering is most severe.

The chapter is organised into the followings sections. In §5.2 the significance of the secondary noise

sources is revealed by analysing their acoustic power spectra obtained at a certain observer loca-

tion. In §5.3 the effect of vertical miss distance during the leading edge interaction is investigated

primarily concerning the cut-off where non-linear TE effects are negligible. Additional discussions

are then provided in §5.4 with regard to the provision of existing analytical prediction models based

on the major findings achieved in this chapter. Penultimately §5.5 investigates the significance of

viscous effects on the presented findings. In particular the importance of viscous dissipation is

discussed. Finally some concluding remarks are made in §5.6.
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5.1.1 Description of problem and the computational set-up

The current problem of aerofoil noise generation due to interaction with a prescribed spanwise

vortex impinging on the leading edge is depicted in figure 5.1(a and b). Instantaneous contour

plots of the acoustic pressure generated as a result of the interaction are shown in figure 5.1(c to

f ) for the aerofoil with a semi-infinite chord and with a finite chord compared against each other.

The aerofoil is a flat plate with zero thickness and zero angle of attack against the mean flow.

The semi-infinite-chord case shows the LE vortical scattering (LEVS) that is the primary source

(denoted by S1) of the interaction noise generation. In the meantime the finite-chord case reveals

additional acoustic waves generated due to the presence of a TE, which are herein referred to as the

secondary source (denoted by S2). In this work the secondary source is subdivided into two: (1)

the scattering of the vortex at the TE (after being bisected and modified at the LE); and, (2) the

backscattering of the acoustic waves produced earlier (travelling back and forth between the LE

and TE). The former is referred to as “TE vortical scattering” (TEVS) and the latter is “acoustic

backscattering” (ABS) in this thesis.

The computational domain is constructed in the same manner as the previous section, although

only the SLE geometry is considered in this section. Towards the end of this chapter we consider

viscous flow simulations for which we employ the full three-dimensional compressible Navier-Stokes

equations. The computational approach implements no turbulence modelling, and is in essence an

implicit LES calculation utilising the filter technique highlighting in §2.1.4 to remove the unresolved

scales.

As mentioned earlier, we focus on the secondary sources of the aerofoil-vortex interaction in this

chapter. The secondary sources are obtained by eliminating the primary source from the full

solution. In order to do this, two different simulations are carried out where one is based on a

semi-infinite chord aerofoil (containing the primary source only) and the other based on a finite-

chord aerofoil (containing both the primary and secondary sources), and the difference is calculated:

pS2(x, t) = p(x, t)− pS1(x, t), (5.1)

where pS1 is the solution from the semi-infinite-chord aerofoil and p is from the finite-chord one.

5.2 The secondary sources associated with aerofoil vortex inter-

action

The acoustic pressure data obtained at the far field as a result of the simulations are provided in

figure 5.2. The data are collected at a single observer location xo/Lc = (0, 5, 0) that is five chords

above the aerofoil’s centre (in terms of the finite-chord case). Figures 5.2a and b show the time

signals of the acoustic pressure and the corresponding power spectra for a finite and a semi-infinite
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Figure 5.1: The current numerical simulation of aerofoil noise due to an impinging vortex:
(a) the initial and boundary conditions where the prescribed vortex is visualised by iso-
contour surfaces of vertical velocity; (b) the initial condition viewed from the mid span
(z = 0) in the xy-plane where the origin of the coordinates is located at the mid chord;
(c & d) instantaneous contour plots of acoustic pressure (pa/p∞) in the case of a semi-
infinite-chord aerofoil at the dimensionless time of t∗ = ta∞/Lc = 4.68 and 7.34; and, (e
& f ) equivalent plots in the case of a finite-chord aerofoil. The aerofoil has a SLE in (c
to f ). The acronyms are defined as follows: S1 = primary source; S2 = secondary source;
LEVS = leading-edge vortical scattering; TEVS = trailing-edge vortical scattering; and,
ABS = acoustic backscattering.
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Figure 5.2: Acoustic pressure data obtained at an observer location from the current
simulations with two different chord lengths (finite and semi-infinite, where the former
includes all noise sources and the latter contains S1 only): (a) time signals of pa(xo, t)/p∞
where xo/Lc = (0, 5, 0); (b) the corresponding power spectra. It is worth noting here that
S1 = LEVS and S2 = TEVS+ABS.

chord length of the flat-plate aerofoil. As indicated earlier the semi-infinite-chord case shows the

primary source only whereas the finite-chord case includes both the primary and secondary sources.

5.2.1 Initial findings

The first thing that can be observed in figure 5.2a is that the pressure response generated by the

TEVS (approx t∗ = 11.5) is significantly weaker than that from the LEVS (approx t∗ = 7). This is

anticipated by the theory of Howe (Howe, 1988) who quotes “sound produced by vorticity shed from

the trailing edge in order to satisfy the Kutta condition, interferes destructively with the ‘direct’

sound generated by the impinging vorticity”. This effect can be observed in figure 5.3 which shows

the development of spanwise vorticity (ωzLc/a∞) during the aerofoil-vortex interaction. Figure

5.3 (c) and (d) show the vorticity as the vortex passes xTE for semi-infinite and finite chord cases

respectively. It is clear how the finite chord case generates secondary vorticity at the TE which is

of opposite sign to the impinging vorticity. According to Howe, the far-field radiated pressure may

be determined through the following equation:

pa(x, t) = −ρ0

∫
(ω × u)(y, τ) · ∂G

∂y
(x,y; t− τ)d3ydτ (5.2)

where G is an appropriate Green’s function for the geometry and τ is the retarded time. Based

on (5.2) it is easy to see how the opposite signed TE generated vorticity will reduce the overall

pressure response.

One of the principle finding of this chapter is that unlike analytical approaches (Glegg & Devenport,

2009; Howe, 1988) the cancellation of the two sources at the TE is not complete. Relative to the

LEVS, the TEVS acoustic pressure magnitude is reduced by approximately 93%, however we
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find that the residual response acts as a major source of sound under certain conditions. The

discrepancy is caused by non-linear effects captured in the current Euler approach which are not

present under RDT assumptions or linearised theory. The first non-linear effect is the interaction

of the vortex with its image as it convects over the wall. This effect is particularly significant if

the vortex is strong or if the interaction is exactly parallel, and will influence the trajectory of the

vorticity. Additionally in a full non-linear approach secondary vorticity will be generated at the LE

which will convect with the impinging disturbance. The generation of the secondary LE vorticity

has been discussed in detail in Turner & Kim (2017b), and is also shown in figure 5.3(b). This

phenomena is usually omitted on application of (5.2) as ∇G is parallel to the surface and therefore

(ω × u) · ∇G = 0 (Howe, 2002). Consequently there will be no cancellation between generated

and impinging vorticity at the LE (as with the TE). However, it is clear from figure 5.3(c) that

the LE vorticity will interact with the impinging disturbance, drastically changing the vorticity

distribution which arrives at the TE. Effectively, once the vortex reaches the TE its upper/lower

halves are no longer symmetric and represent a small pressure jump which is scattered by the TE.

Furthermore it is apparent how the TE shed vorticity changes sign as the convective secondary

structures pass the TE, see figure 5.3(d), further indicating it plays a major role in the TEVS

mechanism.

Turning to the the acoustic power spectra in figure 5.2b the first thing we observe is that there is a

drastic change in the slope of the spectra at high frequencies (f∗ > 5) when the secondary sources

are included. It is shown later in this chapter that the increased high-frequency noise associated

with the finite chord case is related with the dominance of TEVS over the other sources.

In order to focus on the secondary sources, the equation (5.1) is implemented to remove the primary

source from the full solution as mentioned earlier. The remaining secondary solution pa-S2 is shown

in figure 5.4. Five sub-components of the secondary sources are detailed in figure 5.4a. The figure

shows that 1) the first sub-component (labelled A) is due to the ABS (acoustic backscattering) of

the initial wave that was created by the primary source (LEVS) shown in figure 5.1; 2) B is the

subsequent ABS of A; 3) TEVS is the vortical scattering at the TE as defined earlier; 4) C is the

ABS of the TEVS; and, 5) D is the subsequent ABS of C. In this chapter, the ABS represents the

sum of A, B, C and D, where the contribution of D is insignificant compared to others.

Perhaps the most striking feature displayed in figure 5.4c (as well as figure 5.2b) is that there is a

remarkable change in the spectral shape and slope at around f∗ ≈ 4.5. It should also be noted that

the spectral oscillations disappear after the critical frequency indicating that the phase interference

between the LE and TE sources becomes insignificant. In other words one of the secondary sources

(either TEVS or ABS) dominates over the other and therefore there is no longer a meaningful

competition taking place between them after the critical frequency. The next logical step in this

investigation is to figure out which one of them is responsible for the high-frequency events and

how the phase relationship between the LE and TE sources changes with frequency.
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Figure 5.3: Contours of spanwise vorticity (ωzLc/a∞) in the xy-plane at initial condition
(a), after LE interaction ta∞/Lc = 2.81 (b), and at ta∞/Lc = 6.33 for semi-infinite chord
(c), and finite chord cases (d).

5.2.2 Dominance of TE vortical scattering at high frequencies

In order to find an answer to the questions emerged above, an additional simulation is carried

out. The aim of the new simulation is to extract isolated TEVS that is separated from ABS.

The detailed procedure of the new simulation is described in figure 5.5. Firstly the finite chord

simulation is run until a non-dimensional time of ta∞/Lc = 25/6 where the solution for the

primitive variables is saved. At this time the vortex has convected 1Lc and is now at the aerofoil

mid-chord. Next the freestream condition is restored away from the vortex by applying a window

with radius r/Lc = 1/4 about the vortex mid-point. This is achieved with a hyperbolic tangent

function 0.5(tanh(25(0.25 − r)) + 1). Following this the LE is removed by extending the slip-

wall boundary condition upstream to the domain inlet (resulting in an inverse semi-infinite-chord

aerofoil). The simulation is then restarted and run for an additional 10 time units. The resulting

time signal is then windowed to the range 10 ≤ t∗ ≤ 13 where the TEVS occurs.

The main assumption of this approach is the principle of superposition. This should be a reasonable

assumption if the different wave components (LEVS, ABS and TEVS) interfere linearly. For this

reason it may not be applicable for higher vortex strengths. The current vortex strength based
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Figure 5.4: Acoustic pressure generated by the secondary sources (with the primary source
excluded) obtained by using (5.1): (a) instantaneous contours of the acoustic pressure
pa-S2/p∞ at t∗ = 9.0; (b) the time signals of pa-S2/p∞ obtained at the observer location
xo/Lc = (0, 5, 0); and, (c) the corresponding power spectra. The acronyms are defined in
figure 5.1 (as well as in the text).

on ε = 0.0377, produces a linear response, as is demonstrated in appendix C. The application

of this assumption is further supported by considering that based on the current vortex size the

LEVS and TEVS waves are emitted distinctly with no overlap (as shown in figure 5.2). Despite

this, it is possible that the ABS waves travelling back and forth between the LE and TE may

have an impact on the vortex as it convects over the surface (which would not be captured in

the above procedure). In order to verify that this is not a concern, the isolated TEVS signal

determined through the procedure outlined above is compared to the original acoustic pressure

signal obtained by the finite chord simulation in figure 5.6. The two signals are identical in the

range 11 ≤ ta∞/Lc ≤ 12 where the TEVS interaction takes place. This confirms that the above

approach accurately captures the required portion of the signal.

Once the solution for isolated TEVS is obtained the other solution for isolated ABS can be evaluated
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Figure 5.5: An additional simulation procedure in order to isolate the TEVS event: (a)
continue the original simulation with the finite-chord aerofoil until ta∞/Lc = 25/6 by
which time the upstream vortex is bisected and convected down to the mid-chord location
(x = 0); (b) restore the unperturbed freestream condition outside a radius of r/Lc = 1/4
from the mid-chord location to remove all the acoustic waves that have propagated but keep
the bisected vortices contained inside the radius (on both the upper and lower sides of the
aerofoil); and, (c) extend the wall boundary condition upstream to create an inverse semi-
infinite-chord aerofoil (with no LE) and restart the simulation with the filtered solution in
(b) as the initial condition.

∗
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Figure 5.6: Far-field acoustic pressure signal obtained through the procedure outlined in
figure 5.5 compared to the original signal produced by the finite-chord length WLE.

by subtracting the new solution from the entire secondary solution that was already made available

via (5.1):

pABS(x, t) = pS2(x, t)− pTEVS(x, t). (5.3)

The resulting acoustic power spectra obtained at the observer location xo/Lc = (0, 5, 0) from each

of the split solutions pTEVS and pABS are presented in figure 5.7. The figure clearly shows that

TEVS is the dominating source responsible for the high-frequency noise. It also reveals here that

TEVS even exceeds the primary source (LEVS) in the high-frequency range as indicated in figure

5.2b. The starting frequency of the TEVS dominance over ABS is f∗ ≈ 4.5. On another note, it
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Figure 5.7: Acoustic power spectra for each individual TEVS and ABS components of
the secondary source. The observer location is xo/Lc = (0, 5, 0). The curve denoted by
TEVS+ABS is that presented in figure 5.4c.
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Figure 5.8: Directivity profiles (on a logarithmic scale) of Sppa(f
∗)/p2

∞ at two different
frequencies: (a) f∗ = 2 and (b) f∗ = 6, around a circle of xo/Lc = (5 cos θ, 5 sin θ, 0),
obtained from each individual noise source and also from all sources combined (S1+S2).
Lower half planes are not repeated due to symmetry.

is shown in figure 5.7 that the spectral oscillations in the spectra for TEVS+ABS intensify when

the amplitudes of TEVS and ABS are similar, but disappear when one of them is superior to the

other. This is a strong indication of the phase relationship existing between the two secondary

sources (which is investigated in more detail in the following §6). The high frequency dominance of

TEVS is also confirmed by the directivity patterns of Sppa(f
∗)/p2

∞ for two different (low and high)

frequencies shown in figure 5.8. LEVS is the dominant noise source at f∗ = 2, while TEVS is at

f∗ = 6. The only exception is for far upstream/downstream directions where there is a changeover.

The directivity patterns of the secondary sources are covered in more detail in the following chapter

§6 including comparison with WLE cases.

In order to verify the peculiar characteristics of TEVS, the wall pressure loading fluctuations
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Figure 5.9: Comparison of the far-field acoustic pressure and wall pressure loading fluc-
tuations at the TE due to the TEVS, averaged over the span: (a) the time signals of
∆pw-TEVS/p∞ and pa/p∞ scaled to the wall pressure fluctuation magnitude. (b) the cor-
responding power spectra.

∆pw-TEVS collected at the TE (averaged over the span) are examined as shown in figure 5.9. The

results shows that the wall pressure loading PSD (figure 5.9b) at the TE matches almost perfectly

with the far-field acoustic PSD (figure 5.7c) based purely on the TEVS event. This means that

the peculiar characteristics of TEVS are a direct projection of what has happened at the wall, i.e.

the vortex dynamics and evolution processes taking place across the aerofoil surface.

Interestingly work conducted by Howe (2001) indicates the TE shed vorticity response is mainly

limited to low frequency. The author therefore speculates that the high frequency contribution

from the TEVS is caused by the scattering of the convective LE generated vorticity at the TE,

which is naturally of a smaller length scale than the main impinging disturbance.

5.3 The effect of vertical miss distance

In this section the findings discussed thus far are extended to account for a vertical offset between

the aerofoil and impinging disturbance. This is particularly useful for evaluating the validity

cut-off of linear assumptions by determining at which point the contribution from TEVS becomes

negligible. This also provides a fairer comparison with models based on point or line vortices, which

are incapable of predicting perfectly parallel interactions due to LE singularities. Figure 5.10 shows

the far-field acoustic pressure data for three vortex vertical miss distances, y0 = 0, y0 = 0.03 and

y0 = 0.06. The latter is larger than the vortex core radius (see figure 5.3). The pressure and

spectral data are scaled by max pa and (max pa)
2 respectively so that direct comparisons may be

made. It is apparent that the LEVS, ABS-A and ABS-B portions of the time signal scale linearly

with the vertical wall distance. The TEVS signal on the other hand changes both shape and relative

magnitude suggesting non-linear effects are present. Looking at the frequency distribution in figure

5.10(b) we find that the spectra collapse for f∗ < 3.5, although there are significant differences
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Figure 5.10: Magnitude scaled acoustic pressure data obtained at an observer location
from the current simulations with three different vertical miss distances (y0 = 0 (exactly
parallel), y0 = 0.03 and y0 = 0.06): (a) time signals of pa(xo, t)/(max pa) where xo/Lc =
(0, 5, 0); (b) the corresponding power spectra.

at higher frequencies where TEVS begins to dominate. As the vertical miss distance is increased

the high frequency content of the S1+S2 spectra becomes comparatively weaker eventually tending

towards the S1 only solution. This is good news for RDT based models which typically consider

cases with non-zero miss distances. However, care must still be taken with moderate miss distances

as we observe no relative reduction in the TEVS acoustic pressure amplitude, and oscillations due

to phase interaction with TEVS may still exist at high frequency (as for the y0 = 0.06 cases).

Similar findings are made by Grace (2001), who suggested that RDT approaches may be invalid if

the non-linear interactions at the wall are significant, i.e. the vortex strength is high or the miss

distance is small. Grace (2001) suggested an approximate validity cut-off for RDT assumptions

as a vortex of strength n% passing within n% of the aerofoil half chord. For the current example

(u′ = 0.025U∞) this would equate to a validity limit of y0 = 0.0125. Despite this we still observer

strong differences between the y0 = 0.03 and y0 = 0.06 cases at very high frequency suggesting

non-linear effects still play some role. The discrepancy here likely emerges from the very large

range of frequencies considered in the current study, approximately 5 time higher than in Grace

(2001). If the high frequency sound produced during TEVS is a consequence of the convective LE

generated disturbances then it is easy to explain the loss of high frequency power. Simply increasing

miss distance results in weaker LE secondary vorticity due to a less severe vertical velocity field

impinging at the LE.

5.4 Provision for analytical predictions

One of the main findings in this chapter is the dominance of TEVS at high frequencies that is even

exceeding the primary source (LEVS). It is therefore imperative to take the effect of TEVS into

account when an analytical prediction model is considered. One of the most favoured analytical
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Figure 5.11: Amiet’s model predictions of the acoustic power spectra at xo/Lc = (0, 5, 0)
given by (5.4) and (5.5) compared with the current SLE simulation results, with respect
to two different source scenarios: (a) LEVS only; and, (b) LEVS and ABS-A combined.
The velocity power spectrum (Φvv) required in the Amiet’s models is given by (4.1).

models for aerofoil noise prediction was proposed by Amiet (1975, 1976). The Amiet’s model is

basically split into two independent models where one is for LE interaction noise due to upstream

velocity disturbances and the other for TE self-noise due to boundary-layer turbulence. The first

one (Amiet, 1975) naturally has a direct relevance to the current work. Blandeau et al. (2011)

recently derived a two-dimensional version (for an infinite span) of the original model which can

directly be compared to the current results. The two-dimensional model is written as

Sppa-Amiet1(kx) =
πkxM∞ρ

2
∞u

2
∞L

2
c sin2 θ

8roA3(θ)
Φvv(kx) |L(kx)|2 , (5.4)

where kx = 2πf/u∞; A(θ) = (1−M2
∞ sin2 θ)1/2; ro is the observer distance from the mid-chord of

the aerofoil; Φvv(kx) is the PSD of the vertical velocity fluctuations impinging on the LE of the

aerofoil; and, L(kx) describes the unsteady loading on the aerofoil – see Blandeau et al. (2011)

for full details. This model accommodates the primary source (LEVS) and the first acoustic

backscattering component (ABS-A in figure 5.4). However, this means that the model omits TEVS

and the rest of the acoustic backscattering components (ABS-B, C and D). In this section we apply

a semi-infinite-chord approximation (Lc →∞) to (5.4) and remove the acoustic backscattering term

in L(kx) in order to obtain the pure LEVS solution (after some algebraic manipulations):

Sppa-Amiet1-LEVS(kx) =
ρ2
∞u

2
∞(1−M∞) sin2 θ

2πrokxA(θ)2[A(θ)− cos θ]
Φvv(kx). (5.5)

A comparison of the analytical predictions and the current simulation results is provided in figure

5.11. It is shown that there is a very good agreement between them (except at the very high

frequencies), which confirms the validity of both approaches. However, the current work also

suggests that the prediction model needs to be extended and improved in order to accommodate

the rest of the sources (ABS-B to D and TEVS) that are excluded in this model. In particular



106 Chapter 5 Secondary Noise Sources

(a) (b)

S
p
p
a
(f

∗ )
/
p
2 ∞

f∗ = fLc/a∞f∗ = fLc/a∞

Amiet’s (5.3)

Current SLE
(TEVS+ABS-C)

Amiet’s
(5.1)+(5.3)

Current SLE
(Total: S1+S2)

11 22 33 44 55 66 77 88 0.20.2

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

-10-10

-11-11

-12-12

-13-13

-14-14

-15-15

-16-16

-17-17

Figure 5.12: Amiet’s model predictions of the acoustic power spectra at xo/Lc = (0, 5, 0):
(a) by using (5.6) for TEVS and ABS-C; and, (b) by adding (5.4) and (5.6) to represent
a combination of LEVS, TEVS, ABS-A and ABS-C (without complete phase interactions
between them). The current simulation result (Total: S1+S2) includes all noise sources
(LEVS, TEVS and ABS-A to D) and their phase interactions. The SQQ term required in
(5.6) is calculated by using the simulation data (∆pw) consisting of TEVS and ABS-C.

the dominance of TEVS at high frequencies should be addressed as a matter of priority. In this

regard we suggest employing Amiet’s second prediction model (Amiet, 1976) developed for TE

scattering of boundary-layer turbulence (self-noise) and its acoustic backscattering at LE. The

two-dimensional version (for an infinite span) of the self-noise model has been derived by Sandberg

& Sandham (2007) as

Sppa-Amiet2(kx) = −β
2µ2

0

16
(yTE − yo)2

∫∫
SQQ(x1, x2, kx)

R(x1)R(x2)
×

H
(2)
1 (S(x1))H

(1)
1 (S(x2))dx1dx2

R(x) =
»

(x− xo)2 + β2(yTE − yo)2, S(x) = µ0[M∞(x− xo) +R(x)]


, (5.6)

where µ0 = M∞Lckx/(2β
2); β = (1−M2

∞)1/2; H
(1)
1 and H

(2)
1 are the first-order Hankel functions of

the first and second kinds, respectively; and, SQQ is the cross-PSD of ∆pw over the aerofoil surface.

This model is able to accommodate TEVS and ABS-C (via SQQ) although they are not produced

by a turbulent boundary layer. The calculated values of (5.6) are presented in figure 5.12 compared

with the current simulation data. Again it is demonstrated that the analytical predictions and the

simulation data agree very well each other. However, a more important message delivered here

is that the Amiet’s interaction-noise model (5.4) is in fact incomplete without an additional term

to describe the dominance of TEVS at high frequencies. The self-noise model (5.6) used here for

this purpose, however, relies on the term SQQ that is not given/known a priori (unlike Φvv), which

poses significant limitations in practice. Also, additional capability to model the impact of WLE

on the secondary sources is an additional challenge.

The result shown above also implies that some of the previous experimental measurements (Chai-

tanya et al., 2017; Narayanan et al., 2015) might contain a noticeable signature of the TEVS
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Grid resolution level Nξ Nη Nζ ∆xmin/Lc ∆ymin/Lc CPW at xo
Re∞ = 40, 000, ε = 0.0377, two-dimensional

Level 1 1600 960 - 0.0020 0.0020 5.71
Level 2 1760 1056 - 0.0020 0.0010 6.55
Level 3 1920 1152 - 0.0018 0.0008 7.64

Re∞ = 400, 000, ε = 0.0377, two-dimensional

Level 1 1600 1120 - 0.0020 0.000350 7.13
Level 2 1920 1232 - 0.0018 0.000315 8.52
Level 3 2240 1344 - 0.0016 0.000280 10.02

Re∞ = 400, 000, ε = 0.377, three-dimensional

Level 1 1600 1120 32 0.0020 0.000350 7.13
Level 2 1920 1232 35 0.0018 0.000315 8.52
Level 3 2240 1344 38 0.0016 0.000280 10.02

Re∞ = 800, 000, ε = 0.377, two-dimensional

Level 1 1600 1120 - 0.0020 0.000200 7.08
Level 2 1920 1232 - 0.0010 0.000180 8.46
Level 3 2240 1344 - 0.0008 0.000120 9.98

Table 5.1: Grid resolution levels used for the four grid-dependency tests shown in figure
5.13. Nξ, Nη and Nζ denote the number of grid cells used in the streamwise, vertical and
spanwise directions, respectively. ∆xmin is the smallest cell size used at LE and TE of the
aerofoil. CPW (cells per wavelength) indicates the number of grid cells used across the
acoustic wavelength at the frequency of f∗ = 8. CPW is measured at the far-field observer
location xo/Lc = (0, 5, 0).

dominance at high frequencies. The earlier experimental work consistently speculated that the

high-frequency range of their aerofoil-turbulence interaction noise spectra was masked by the con-

tribution of self-noise. While this is a reasonable speculation, the current study reveals that the

high-frequency range may still be dominated by the TEVS event due to the freestream turbulence

rather than the boundary-layer turbulence. Therefore it is suggested that the experimental data

should be carefully re-examined to clarify whether the self-noise was truly the major contributor

to the high-frequency range (or not).

5.5 The effect of flow viscosity on TE vortex scattering

In this section we move beyond the inviscid theory to investigate the effects of viscous dissipa-

tion and vortex-boundary layer interaction on the AVI problem. In particular how it affects the

contribution from TEVS. We consider viscous flow at three Reynolds numbers, Re∞ = 4.0× 104,

4.0 × 105 and 8.0 × 105. The majority of the simulations are two-dimensional which significantly

saves computation cost while also ensuring boundary layer transition effects are avoided at the

higher Reynolds number. It is preferable to avoid boundary layer turbulence as the resulting self-

noise will interfere with the TEVS event. The aim here is not to investigate how secondary vortices

interact with turbulence altering the self-noise, but rather to determine if TEVS is significant in a

viscous flow.
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5.5.1 Grid independence study for viscous simulations

This section provides the validation of the set-up used for viscous simulations. Three different

levels of grid resolution are considered for four cases the details of which are given in table 5.1.

Level 3 is selected as the chosen resolution for each of the cases. The far-field acoustic spectra

(Sppw(x, z, f∗)/p2
∞) is compared for the three grid levels at the observer xo/Lc = (0, 5, 0) in figure

5.13. Each case considers a finite chord flat plate with a SLE. Two vortex strengths and three

Reynolds numbers are investigated. Figure 5.13(a) considers a two dimensional flow at Re∞ =

4×104 with low impinging vortex strength umax = 0.025u∞. There is very good agreement for

all three grid levels until approximately f∗ = 7. Beyond this point the coarser grids over predict

the sound level, and fail to detect the peak at f∗ = 7.8 associated with shedding at the TE.

The low magnitude (approx 10−17) suggests this may be caused by an increased level of spurious

noise on the coarser grids. Figure 5.13(b) considers the same vortex at increased Reynolds number

Re∞ = 4×105. The medium and fine grid levels show some disagreement in terms of the size

of oscillations especially at high frequency. However, generally there is a good match for the

shape and magnitude of the spectra. The coarse grid on the other hand significantly under resolves

frequencies beyond f∗ = 8. Figure 5.13(c) considers a three-dimensional flow at the same Reynolds

number and with higher vortex strength (umax = 0.25u∞). A similar result is obtained for all

three levels of grid resolution, albeit with some variation in the phase oscillations occurring at

high frequencies. As demonstrated in §6.2 the phase oscillations are determined primarily by the

emission time of sound at the TE. In order for this aspect to fully converge the full range of

scales exhibited by the secondary disturbances needs to be resolved which is a challenging task at

such high Reynolds numbers. Despite this, it is clear from figure 5.13(c) that the current grids

are capable of capturing at least the general acoustic trends (e.g. which source is dominant) by

obtaining the correct magnitude and shape of the spectra. Finally, in figure 5.13(d) the grid is

tested for a strong vortex interaction in a two-dimensional flow at Re∞ = 8×105. The outcome is

similar to the previous case, although the differences in LE-TE phase oscillations are more apparent

since TEVS is comparable to the LEVS over a wider frequency range. The current grid (level 3)

is sufficient to compare the effect of Reynolds number on the approximate magnitude of the high

frequency sources. Comparing the current results to higher resolution simulations where the full

range of scales is captured would be useful (particularly in 3D), but this is beyond the scope of the

current work.

5.5.2 Weak vortex interactions

Firstly the boundary layer u-velocity and skin friction coefficient profiles (Cf ) are compared to

the Blasius solution in figure 5.14. Generally there is good agreement except very close to the TE

where the Blasius solution begins to break down. In figure 5.15(a-b) the acoustic pressure signals

and spectra are shown for the default observer x = (0, 5Lc, 0) under inviscid, Re∞ = 4.0×104, and

4.0× 105 flow conditions. It is clear from figure 5.15(b) how the high frequencies begin to converge

towards the inviscid case as the Reynolds number is increased. For the lowest Reynolds number



Chapter 5 Secondary Noise Sources 109

∞

( ∗
)

∞
( )

∞

 ∗
∞

∞

 ∗
∞

( ∗
)

∞

( )
∞

( )

( )

Figure 5.13: Results of the current grid-dependency test by using three different levels of
grid resolution described in table 5.1: (a) acoustic power spectra obtained at xo/Lc =
(0, 5, 0) for Re∞ = 4×104 weak vortex interaction 2D; (b) Re∞ = 4×105 weak vortex
interaction 2D; (c) Re∞ = 4×105 strong vortex interaction 3D; (d) Re∞ = 8×105 strong
vortex interaction 2D.
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Figure 5.14: Boundary layer profiles obtained two Reynolds numbers Re∞ = 4.0 × 105

and 8.0 × 105: (a) streamwise velocity profile at x/Lc = 0.4; (b) skin friction coefficient
Cf = 2τw/(ρU

2
∞).
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Figure 5.15: Comparison of the acoustic pressure data obtained at the observer location
xo/Lc = (0, 5, 0) for a weak vortex interaction (2.5% strength) at Reynolds numbers 40,000,
400,000 and ∞. (a) time signals, (b) corresponding PSD.

and most dissipative case the high frequency components of the vortex (and associated convective

disturbances) are almost entirely eliminated before they can reach the TE, resulting in reduced

magnitude low-frequency pressure signature from TEVS. As a result the spectra is reminiscent of

the LEVS+ABS-A solution figure 5.11(b), with exception of additional phase oscillations observed

at very high frequency. As the Reynolds number is increased to 4.0×105 the acoustic pressure time

signal displays a clear compression-expansion pulse at around ta∞/Lc = 13 as well as an increased

level of broadband noise for frequencies f∗ > 6. Both of these observations are consistent with

trends observed for TEVS in inviscid flow. Additionally the time signal contains small oscillations

of consistent period ≈ 0.125. These oscillations are caused by vortex shedding in the wake which

is triggered by the passing of the LEVS wave past the TE. The wake shedding manifests as a tone

at f∗ ≈ 8 corresponding to the observed shedding period.

5.5.3 Impact of high vortex strength

The previous results demonstrate how increasing the Reynolds number increases the significance

of TEVS due to weaker dissipative effects. This suggests that altering the vortex strength will

also increase the TEVS response. Additional simulations are carried out based on a stronger

vortex disturbance using the same shape function. The maximum velocity perturbation of the

high strength vortex is |u′| = 0.25U∞, which is obtained with σ = 0.377. This is more comparable

to that encountered in helicopter rotor noise than turbomachinery applications. The strength

parameter used here is selected to match the experimental work of Straus et al. (1990).

The development of the impinging vortex and secondary structures is shown in figure 5.16(a) which

plots spanwise vorticity at four instances for Re∞ = 4.0 × 105: (i) the generation of secondary

vortices after the impinging vortex is chopped by the LE; (ii) the vortex near the mid-chord;

(iii) scattering of the vortex at the TE; (iv) scattering of secondary disturbances at the TE. As
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Figure 5.16: (a) Spanwise vorticity ωzLc/u∞ contours obtained at four instances for
Re∞ = 4 × 105 and σ = 0.377: (i) after the vortex is bisected by the LE; (ii) vortex
near the mid-chord; (iii) vortex interacting with the wake; (iv) secondary vorticity inter-
acting with the wake. (b-c) Corresponding acoustic pressure contours obtained during the
last two vorticity snapshots.

the vortex convects the upper and lower halves begin to separate due to reversed image vortex

induced velocities (this is particularly severe due to the high vortex strength). The main vortex

and upwash stroke secondary vorticity convect more quickly on the aerofoil lower side, while the

downwash vorticity convects at a lower speed causing it to collide with the main vortex. There

is also a strong disparity between the secondary vortices on either half, which are significantly

stronger on the lower side. The disturbances are primarily contained within the boundary layer

but can be clearly observed by their acoustic pressure signature in 5.16(b). For high vortex strength

viscous cases the TEVS can be clearly separated into two categories: TEVS-1, caused by scattering

of the bisected vortex which resides outside of the boundary layer; TEVS-2 caused by scattering

of disturbances inside the boundary layer including secondary vortices generated at the LE. Both

events are present in figure 5.16(b) and (c) which show acoustic pressure contours near the TE at

time instances ta∞/Lc = 7.0 and 11.0 respectively.

Figure 5.17(a-b) shows similar analysis as figure 5.15 for the high strength vortex case at Reynolds

numbers Re∞ = 4.0×105, and 8.0×105. The TEVS-2 fluctuations are substantially larger relative

to TEVS-1 with comparable magnitude to ABS-A. In terms of spectra, a similar level is obtained at

both Reynolds numbers for most of the frequency range. Relative to the weak vortex cases (figure

5.15) phase oscillations are more severe, suggesting competing sources exist over a wider range of

frequencies. The phase oscillations also have shorter wavelength due to a larger time lag between

LEVS:TEVS-2, relative to LEVS:TEVS-1. This is a consequence of slower convection speeds in
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Figure 5.17: Comparison of the acoustic pressure data obtained at the observer location
xo/Lc = (0, 5, 0) for a strong vortex interaction (25% strength) at Reynolds numbers
4×105 and 8×105. (a) time signals of pa(xo, t)/p∞; (b) the corresponding power spectra;
(c) Power spectra obtained for t∗ < 11 (approximate LEVS contribution + ABS A+B);
(c) Power spectra obtained for t∗ ≥ 11 (approximate TEVS contribution + ABS C+D).

the boundary layer. Figure 5.17(c-d) shows a comparison of the LEVS and TEVS noise produced

at the two Reynolds numbers. It is not possible to extract the isolated TEVS signal through the

same procedure as the inviscid cases as the approach will interfere with boundary layer profile.

Additionally, the principle of linear superposition is no longer a reasonable assumption due to non-

linear effects caused by high vortex strengths. Alternatively in figure 5.17 the LEVS and TEVS

contributions are approximated by a simple windowing procedure. The LEVS solution is obtained

by considering t∗ < 11, whereas TEVS is obtained for t∗ ≥ 11. A tapered cosine window is applied

before taking the Fourier transform to ensure the signals are periodic. This interpretation of the

sources also contains contributions from relevant ABS events (ABS-A & B for LEVS, ABS-C & D

for TEVS). The approach is therefore a way to quantify the total impact of TEVS concurrently

(since ABS-C & D are outcomes of TEVS). Comparatively the Re∞ = 8.0 × 105 case displays

significantly increased levels of TEVS for f∗ ' 5. This result is consistent with the weak vortex

trend and suggests as viscosity is reduced TEVS becomes stronger at high frequencies.
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Figure 5.18: Comparison of approximate LEVS, TEVS and wake noise contributions to
the overall acoustic spectra. Each component is obtained by windowing the time signal
t∗ < 11 for LEVS, t∗ ≥ 11 for TEVS, 10 ≥ t∗ ≤ 14 for wake. LEVS and TEVS solutions
also contain ABS A+B, and C+D components respectively. (a) Re∞ = 4.0 × 105; (b)
Re∞ = 8.0× 105.

In figure 5.18 LEVS, TEVS and wake contributions are re-plot and compared against each other.

For the lower Reynolds number the TEVS component becomes dominant in the range 5 ≤ fLc/a∞ ≤
6.6. TEVS dominance does not persist beyond this upper band due to an increase in the high fre-

quency content of the LEVS noise. The high frequency LEVS contribution is not registered in the

weaker vortex case, and is likely associated with non-linear effects at the LE due to the high vortex

strength. Much more strikingly for Re∞ = 8.0×105 the TEVS shows levels typically around 10 dB

higher than LEVS from fLc/a∞ = 4 onwards. Approximate contributions from the wake shedding

are made by considering the time signals in the range 10 ≤ t∗ ≤ 14, where there is no significant

LEVS, ABS or TEVS sound. In both cases the wake noise is at least two orders of magnitude

lower than the TEVS for the majority of frequencies.

5.5.4 Three-dimensional effects

The next logical step in the current investigation is to extend the analysis to account for three-

dimensional effects on the development of the convective vortical structures. To this end the

Re∞ = 4.0 × 105 strong vortex simulation is rerun with a finite span Lz = 0.05Lc. It is expected

that the results will be sensitive to the chosen span, however the current set-up should be sufficient

to demonstrate some of the differences with the two-dimensional flow presented in the previous

section.

Figure 5.19(a) and (b) shows of the flow structures generated by the three-dimensional case at time

instants ta∞/Lc = 4.33 and 8.66 respectively. The plots show iso-surfaces of spanwise vorticity

ωzLc/u∞ with 50 contour levels as well as the acoustic pressure in the xy-plane. Spanwise vorticity

is selected as it is directly linked to the TE noise (5.2).
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Figure 5.19: Iso-surfaces of spanwise vorticity ωzLc/u∞ (50 levels shown) and contours of
acoustic pressure pa/p∞ obtained for the 3D Re∞ = 4.0 × 105 (ε = 0.377) case shortly
after the vortex has convected past the LE at ta∞/Lc = 4.33 (a). ta∞/Lc = 8.66, as the
secondary vorticity passes the TE (b). Solution repeated in span for visualisation.

In figure 5.19(a) the chopped vortex is shown near the mid-chord. The trailing secondary structures

(which are initially uniform in span) have been broken down into smaller three-dimensional eddies

(which are referred to as tertiary structures in this work). Spanwise non-uniformity of the secondary

structures occurs rapidly near the LE particularly for the structures generated during the upwash

(second) stroke. Comparatively the downwash stroke structures show some similarity to the two-

dimensional flow in figure 5.16(a)(i)-(ii) until a later time. Unlike the two-dimensional flow the

secondary structures protrude significantly from the BL due to the increased mixing caused by

streamwise components of vorticity. This results in an earlier interaction at the TE due to higher

convection speeds. It should be noted that the three-dimensional flow behaviour is not observed

for the weak vortex interaction (not presented here).

Figure 5.19(b) shows the scattering of the secondary structures at the TE. It is clear how the
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Figure 5.20: Boundary layer profiles taken at t∗ = 0 and t∗ = 20 (before and after the
aerofoil-vortex interaction) for the 3D Re∞ = 4.0 × 105 simulation (ε = 0.377): (a)
streamwise velocity profile for x/Lc = 0.4; (b) skin friction coefficient Cf = 2τw/(ρU

2
∞).

radiated sound field contains smaller lengths scales relative to the two-dimensional case in figure

5.16. It is also worth noting that the three-dimensional flow is entirely transient meaning the

boundary layer profile returns to the laminar solution after the vortex has passed the TE, see figure

5.20. Categorising the noise in this case is somewhat of a grey area. As previously demonstrated

TEVS is also observed in inviscid flow, however development of the secondary eddies relies on

interaction within the boundary layer. Arguments could therefore be made for either interaction

noise or boundary layer self-noise.

A comparison of the TEVS noise with the two-dimensional solution is shown in figure 5.21(a)

for a 90 degree observer angle. The 3D flow produces more noise in the high frequency range

6 ≤ f∗ ≤ 8 and less at low frequencies which is indicative of the reduced lengths scales of the

secondary structures. Figure 5.21(b) compares the directivity pattern for f∗ = 7. There is some

asymmetry between upper and lower half planes especially for the the three-dimensional solution.

Increased TEVS noise is exhibited for all observer angles in the lower half and for angles less than

120 degrees on the upper half plane.

Figure 5.22 compares LEVS and TEVS sources obtained in the three-dimensional simulation based

on the windowing procedure outlined in section 5.5.3. The acoustic spectra at a 90 degree observer

is shown in figure 5.22 (a). The LEVS source is comparable to that demonstrated in the two-

dimensional flow at the same Reynolds number. The TEVS also becomes dominant in a similar

range 5.7 ≤ f∗ ≤ 6.7, but also remains comparable to LEVS for larger frequencies. Directivity

patterns of LEVS and TEVS are shown at three frequencies f∗ = 6.0, 6.5 and 7.5 in figure 5.22

(a-c). For f∗ = 6.0 the LEVS solution radiates more significantly in the lower half plane which

allows TEVS to dominate in the upper halve. TEVS also makes a significant contribution for

upstream angles in the lower half plane. A similar trend is observed for f∗ = 6.5 where TEVS is

the largest source for 44 ≤ θ ≤ 169 and 190 ≤ θ ≤ 244 by up to 10.5 dB. Finally for f∗ = 7.5 the

TEVS dominance is restricted to upstream angles approximately in the range 130 ≤ θ ≤ 240.
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Figure 5.21: Comparison of acoustic pressure data obtained for 2D and 3D simulations for
Re∞ = 4.0 × 105 and ε = 0.377. The TEVS signals are obtained through the windowing
procedure outlined in section 5.5.3: (a) power spectra of acoustic pressure at xo/Lc =
(0, 5, 0);; (b) directivity profiles for fLc/a∞ = 7.0.
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Figure 5.22: Power spectra comparison for LEVS and TEVS obtained for the 3D Re∞ =
4.0×105 simulation at xo/Lc = (0, 5, 0) (a). Directivity profiles (linear scale) at frequencies
fLc/a∞ = 6.0, 6.5 and 7.5 where TEVS is the dominant source of noise (b-d). The TEVS
and LEVS components are obtained through the windowing procedure outlined in section
5.5.3 which also includes ABS components.



Chapter 5 Secondary Noise Sources 117

5.6 Concluding remarks

Detailed high-resolution numerical simulations have successfully been conducted to study the sec-

ondary noise sources that are generated in the event of interaction between a vortical flow and a

flat-plate aerofoil. The identified secondary noise sources are TEVS (TE vortical scattering) and

ABS (acoustic backscattering) as opposed to the primary source, LEVS (LE vortical scattering).

In-depth investigations have been made on each of the individual sources by accurately splitting

the numerical solutions for each. This is achieved by manipulating the time signals of finite chord

(total noise), downstream semi-infinite chord (primary noise), and upstream semi-infinite chord

(vortex-trailing edge noise) aerofoil simulations.

Linearised analytical theory predicts a complete cancellation of vortex scattered sound at the TE

with Kutta condition shed vorticity. However, if non-linear effects are included the cancellation is

not complete, and noise may radiate from the TE during AVI. It is suspected by the author that the

secondary vorticity generated at the LE plays an important role in the generation of TEVS. The

secondary vorticity is nearest to the wall, and therefore is most severely effected by image vorticity

induced velocity. The interaction between the two sources of vorticity results in asymmetric vortex

distribution and therefore a pressure jump which near the TE.

At low frequencies the ABS is the more prominent secondary effect (particularly in the downstream

direction), while at high frequencies the TEVS scattering takes over. The power spectrum relating

to the TEVS decays at a lower rate relative to the LEVS, predicted by Amiet’s TE and LE ana-

lytical models respectively (Amiet, 1975, 1976)). As a consequence TEVS dominates all the other

sources beyond a certain threshold, despite significant reduced acoustic pressure magnitude due to

TE cancellation. This means that TEVS was effectively the primary source at high frequencies,

contrary to historical analytical approaches.

The effect of vertical offset during the interaction is also investigated concerning the validity cut-

off for linear approaches (where TEVS effects become negligible). The TEVS is found to make a

significant contribution to the acoustic pressure signal even for relatively large miss distances. The

high frequency contribution to the noise is shown to decrease with offset, however it extends well

beyond the expected range where image vortex effects are anticipated to be negligible.

Finally a series of viscous laminar simulations are conducted in order to verify the existence of

TEVS in a viscous flow. It is demonstrated how TEVS depends heavily on the Reynolds number

and vortex strength. Essentially for a TEVS event to occur the secondary vorticity must convect

through the boundary layer without being significantly dissipated at high frequencies. Somewhat

ironically, this means analytical methods which typically neglect the boundary layer are most

effective when the flow is highly viscous.





Chapter 6

The Effect of WLEs on Secondary

Sources

Following directly from the previous chapter on secondary interaction noise mechanisms, this chap-

ter aims to investigate the impact of secondary sources on WLE noise reduction. In depth analysis

is provided in the following sections concerning the time signals and noise reduction spectra in §6.1,

secondary source phase relationships in §6.2, and acoustic directivity in §6.3. Following this in §6.4

results are presented for undulated trailing edges, with the purpose of reducing the TEVS noise.

As was shown in the previous section the secondary mechanisms (particularly TEVS) are highly

susceptible to flow conditions including vortex strength and Reynolds number. For this reason we

choose to focus primarily on the most sever case, an inviscid flow. This may also provides insight

for analytical modelling of WLEs which typically follows an inviscid approach Ayton (2017); Lyu

& Azarpeyvand (2017); Mathews & Peake (2018). Regardless, in §6.5 a viscous study is conducted

and contrasted to the results in §5.5. The outcome highlights some concerns for the WLE geometry

which represents the principle future work of this study.

6.1 The secondary sources associated with a wavy leading edge

Acoustic pressure data for both SLE and WLE cases is shown in figure 6.1. As in the previous

section the data is collected at a single observer location xo/Lc = (0, 5, 0) that is five chords

above the finite-chord aerofoil’s centre (as highlighted in figure 6.1c). The time signals and the

corresponding power spectral density are shown in figures 6.1a and b respectively for all four cases

(semi-infinite + finite chord length, SLE and WLE). Figure 6.1d shows the noise reduction – a

beneficial effect of using a WLE – varying with frequency, where the semi-infinite-chord case has

been studied in detail in chapters §3 to §4. The new result of the finite-chord case reveal significant

differences to the earlier semi-infinite-chord case, which indicates profound effects of the secondary

sources due to the presence of TE. Detailed investigations into the secondary sources in relation

with the WLE are followed below.
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Figure 6.1: Acoustic pressure data obtained at an observer location from the current sim-
ulations with two different LE geometries (SLE and WLE) and two different chord lengths
(finite and semi-infinite, where the former includes all noise sources and the latter contains
S1 only): (a) time signals of pa(xo, t)/p∞ where xo/Lc = (0, 5, 0); (b) the corresponding
power spectra; (c) an instantaneous contour plot of pa(x, t

∗ = 7.34)/p∞ taken at the mid-
span (z = 0) for the SLE finite-chord case; and, (d) the spectra of the noise reduction due
to the WLE defined by (2.61) in comparison with a semi-empirical prediction by Chaitanya
et al. (2017) (∆SPL = 10 log10(fhLE/u∞) + 10). It should be noted that the plot in (d)
for the S1-only case is terminated at f∗ = 6.5 due to the value of Sppa(f

∗)/p2
∞ for WLE

falling below the lower bound of the machine accuracy (double precision used).

6.1.1 Initial findings

The first thing that can be observed in figure 6.1b is that the SLE and WLE cases produce almost

identical spectra at the high frequencies (f∗ > 5) when the secondary sources are involved. This

leads to a loss of the noise reduction in the high-frequency range shown in figure 6.1d, which is

a big contrast to the primary-source-only case where the noise reduction continues to increase

with frequency. Additionally we notice that there are significant differences between the spectral

oscillation for SLE and WLE cases. It is shown later in this section that the spectral oscillations

are due to phase relationships between the noise sources (LEVS, TEVS and ABS), which involves

the retarded source time difference between LE and TE. As can be anticipated from the previous
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Figure 6.2: Acoustic pressure generated by the secondary sources (with the primary source
excluded) obtained by using (5.1): (a) instantaneous contours of the acoustic pressure
pa-S2/p∞ at t∗ = 9.0 from the SLE case; (b) the time signals of pa-S2/p∞ obtained at the
observer location xo/Lc = (0, 5, 0) for the SLE and WLE cases; and, (c) the corresponding
power spectra. The acronyms are defined in figure 5.1 (as well as in the text).

chapter, it is also shown later that the loss of noise reduction in the high-frequency range is related

with the dominance of TEVS over the other sources at the high frequencies.

As in the previous section the equation (5.1) is implemented in order to focus on the secondary

sources. Comparing the SLE and WLE cases in figure 6.2b, the acoustic waves A and B that are

by-products of the LEVS are weaker in the WLE case and this is an expected result since the LEVS

has already been weakened due to the WLE (see figure 6.1a). On the contrary, the later events

that are caused by the TEVS exhibit a slightly amplified level of acoustic waves in the WLE case,

which was not expected earlier. This finding suggests that the secondary source (TEVS) may have

a negative impact on the noise reduction effect of WLE. It also implies that the vortex bisected

and modified by the WLE, when it reaches TE, may produce stronger wall pressure fluctuations

compared to the SLE counterpart. As a consequence, the noise reduction contributed from the
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Figure 6.3: Acoustic power spectra for each individual component of the secondary sources:
(a & b) comparing S2-TEVS and S2-ABS in each of the SLE and WLE cases; and, (c & d)
comparing the SLE and WLE cases for each of the individual components. The observer
location is xo = (0, 5Lc, 0). The curves denoted by S2 (all) in (a) and (b) are those
presented in figure 6.2c.

secondary sources is significantly smaller than that from the primary source as shown in figure 6.2c

compared to figure 6.1b (looking at the gaps between the SLE and WLE cases).

6.1.2 Dominance of TE vortical scattering at high frequencies

Continuing the same procedure an additional semi-infinite (no LE) simulation is conducted in order

to isolate the ABS from the TEVS components. The resulting acoustic power spectra obtained

from the individual secondary source components is presented in figure 6.3. The starting frequency

of the TEVS dominance over ABS is much earlier for the WLE case at f∗ ≈ 1.5 (figure 6.3b),

compared to f∗ ≈ 4.5 in the SLE case (figure 6.3a). The early dominance of TEVS in the WLE

case is attributed to the fact that LEVS is already weaker compared to the SLE case and therefore

its subsequent acoustic backscattering is also reduced.
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Figure 6.4: Wall pressure loading fluctuations at the TE due to the TEVS, averaged over
the span: (a) the time signals of ∆pw-TEVS/p∞ and (b) the corresponding power spectra,
comparing the SLE and WLE cases.

Figures 6.3c and d show the comparison of the acoustic power spectra between the SLE and WLE

cases for each of the secondary sources (TEVS and ABS). They both show that the spectral gap

between the SLE and WLE cases is noticeably smaller at high frequencies than that at the low-

to-mid frequencies. It is evident now that the collapse of the spectral gap at the high frequencies

particularly in TEVS is responsible for the loss of noise reduction identified from figure 6.1d.

Another interesting outcome captured in figures 6.3c and d is that TEVS is amplified at low

frequencies when the WLE is used, whereas ABS (at low-to-mid frequencies) and LEVS (at all

frequencies) are reduced by using WLE. As before we compare the wall pressure loading fluctuations

∆pw-TEVS collected at TE (averaged over the span) shown in figure 6.4, to the far-field TEVS

spectra figure 6.3(c). The wall pressure spectra successfully captures the trend observed at the

far-field. This indicates that unlike the LE interaction spanwise phase interference does not play a

major role in the TEVS. This comes as some surprise as one may anticipate significant deformation

of the impinging vortex as it interacts with the WLE. It is necessary to understand the fluid

dynamics of the bisected vortices travelling downstream in order to find out how they evolve and

produce a similar high frequency response for SLE and WLE cases at the TE. This is investigated

in more detail in Appendix D.

6.2 Phase relationships between noise sources

As mentioned earlier there exist phase relationships between the noise sources which lead to the

oscillatory patterns appearing in some of the acoustic power spectra presented above. This is

mainly due to the different emission times of acoustic waves at the LE and TE, and also due to

the difference in the effective distance they travel to reach an observer location. It is a well known

classical theory in acoustics and therefore not needed to reiterate in this work. However, it is

worth having a look at the phase relationships in this work since there are multiple sources (and
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Period of Spectral Oscillations SLE WLE

∆f∗LEVS|ABS-A 0.9424 1.0029

∆f∗LEVS|TEVS 0.2262 0.2419

∆f∗ABS-A|TEVS 0.2976 0.3189

Table 6.1: The calculated values of (6.1) and (6.3) for the periods of spectral oscillations
(due to phase interactions between the noise sources) that appear in figures 6.1b and 6.2c
with the observer location given at xo/Lc = (0, 5, 0).

therefore multiple relationships) involved. For any two different sources, the phase relationship

may be expressed by ∆φ = 2πf∆t where ∆t is the difference in the time taken for their acoustic

waves to arrive at a given observer location. The relationship is most constructive when ∆φ = 2mπ

and most destructive when ∆φ = (2m ± 1)π where m is an integer. The spectral oscillations will

form local maxima when the phase relationship is most constructive and local minima when most

destructive. Therefore the period of oscillations in the acoustic power spectra is expected to be

∆f = 1/∆t.

First, the phase relationships of LEVS against the others (TEVS and ABS) are considered. Based

on the findings from figure 6.3, it is deduced that LEVS interacts mainly with ABS at low frequen-

cies and with TEVS at high frequencies. Also, given the information from figures 6.2a and b, it

is expected that up to five separate interactions exist for LEVS against the sub-components of S2

(ABS-A to D and TEVS). Among the S2 sub-components we consider the strongest two (ABS-A

and TEVS) from which the dimensionless periods of the oscillations to appear in the total acoustic

power spectra (figure 6.1b) are predicted to be

∆f∗LEVS|ABS-A =
Lc
a∞

ï
xTE − x̂LE
a∞ + u∞

+ ∆to(xTE)−∆to(x̂LE)

ò−1

∆f∗LEVS|TEVS =
Lc
a∞

ï
xTE − x̂LE

u∞
+ ∆to(xTE)−∆to(x̂LE)

ò−1

 , (6.1)

where ∆to is the time taken for an acoustic wave to travel from its source location (x) to the

observer (xo) (Garrick & Watkins, 1953):

∆to(x) =
M∞(x− xo) +

»
M2
∞(x− xo)2 + (1−M2

∞)|x− xo|2
a∞(1−M2

∞)
. (6.2)

In (6.1), x̂LE = −Lc/2 + hLE (the root position) is used for the WLE case since the source

is strongest at the root as reported by Kim et al. (2016) and Turner & Kim (2017b), whereas

x̂LE = −Lc/2 for the SLE case. The calculated values of ∆f∗LEVS|ABS-A and ∆f∗LEVS|TEVS are

listed in table 6.1. The predicted periods of the spectral oscillations are compared with the actual

simulation data in figure 6.5. The result shows that the prediction is correct and accurate. It is

also displayed that ∆f∗LEVS|ABS-A is prevalent at low frequencies but subsequently taken over by

∆f∗LEVS|TEVS when the dominance of S2-TEVS begins to appear at f∗ ≈ 4.5 and 1.5 for SLE and

WLE, respectively.

Another phase relationship can be found amongst the secondary sources (excluding the primary
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Figure 6.5: Spectral oscillations appeared in the overall acoustic power spectra (S1+S2 in
figure 6.1b) due to the phase relationships between S1 and S2: (a) the SLE case at low
frequencies, (b) the SLE case at high frequencies and (c) the WLE case. The values of
∆f∗LEVS|ABS-A and ∆f∗LEVS|TEVS are calculated from (6.1) and listed in table 6.1.

source). The spectral oscillations purely due to the secondary sources are displayed in figure 6.2c.

It is easily expected that the S2 sub-components ABS-A and TEVS considered above make the

strongest phase interaction with each other. According to this the phase relationship between them

is predicted to be:

∆f∗ABS-A|TEVS =
Lc
a∞

Å
xTE − x̂LE

u∞
− xTE − x̂LE

a∞ + u∞

ã−1

, (6.3)

where both ABS-A and TEVS are emitted from TE and therefore the relative acoustic distance is

equal. The predicted values of f∗ABS-A|TEVS are listed in table 6.1 and compared with the actual

simulation data in figure 6.6. Again the prediction is correct and accurate, which confirms the

additional phase relationship existing between the secondary sources.
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Figure 6.6: Spectral oscillations appeared in the acoustic power spectra from the secondary
sources only (figure 6.2c) due to the phase relationships between ABS-A and TEVS: the
(a) SLE and (b) WLE cases. The values of ∆f∗ABS-A|TEVS are calculated from (6.3) and
listed in table 6.1.

6.3 The effect of secondary sources on acoustic directivity

In this section we further investigate the secondary sources with regard to the directivity of acoustic

radiation that changes with the leading-edge geometry. Figure 6.7 shows the acoustic directivity

patterns for different noise sources, calculated based on the variance of the acoustic pressure:

〈p2
a〉 =

1

T

∫ T

0
p2
a(t)dt, (6.4)

which mainly represents the low-frequency contributions. Figure 6.7a shows typical dipolar direc-

tiviy patterns where the strongest radiation is moderately biased towards the downstream direction

for both the SLE and WLE cases. It is apparent that the downstream bias is contributed mainly

by LEVS (figure 6.7b) and partially by ABS (figure 6.7d). TEVS is the weakest of all, except in

the upstream direction. It is found that the level of noise reduction (in terms of OA∆SPL) due to

WLE is consistent and omni-directional. However, figure 6.7c reveals that there is a contribution

towards increasing the noise in all directions made by TEVS, which has been hinted in the previous

section but limited in the vertical direction (θ = 90◦). The plots shown in figure 6.7 are, how-

ever, governed by the low-frequency components as mentioned above, and therefore an additional

investigation is required for higher frequencies.
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Figure 6.7: Directivity profiles (on a logarithmic scale) of the variance of the acoustic
pressure 〈p2

a〉/p2
∞ around a circle with a radius of 5Lc with its origin at centre of the finite-

chord aerofoil (on the centre plane, z = 0), obtained from (a) all noise sources combined
and, individually from (b) LEVS, (c) TEVS and (d) ABS. Comparisons are made between
the SLE and WLE cases. Lower half planes are not repeated due to symmetry.

Figure 6.8 displays a series of acoustic power spectra obtained from each individual noise source

at three different observer angles. This figure shows that the directivity trends seen earlier in

figure 6.7 are consistent across a wide range of frequencies, not limited to the low frequencies.

This is particularly true for TEVS where the same trend holds for all frequencies. However, LEVS

and ABS (in the WLE cases) exhibits significant deviations from the consistent trend at various

frequencies so that the increase/decrease of noise with the observer angle is not very predictable.

On the other hand ABS produces a consistent but reversed trend (to that of the low frequencies)

in the high-frequency range (from about f∗ ≈ 6 and 5 for SLE and WLE, respectively) so that

the noise (due to ABS) gets louder as the observer angle turns upstream. This was not foreseen in

figure 6.7 that was based on 〈p2
a〉, and is likely caused by the ABS-C component.

It is seen in figure 6.8 that ABS (for both SLE and WLE) produces increasingly oscillatory spectra

as the observer angle turns upstream. This is due to the phase relationship between ABS-A and

ABS-C (see figure 6.2a) that is significant in the upstream direction as the amplitude of ABS-

C becomes comparable to that of ABS-A. Based on the same approach used in §6.2 the phase
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Figure 6.8: Acoustic power spectra obtained from individual noise sources: (a & b)
LEVS, (c & d) TEVS and (e & f ) ABS, at three different observer locations: xo/Lc =
(5 cos θ, 5 sin θ, 0) for θ = 30◦, 90◦ and 150◦. The left and right columns are for the SLE
and WLE cases, respectively.

relationship between ABS-A and ABS-C is predicted to be

∆f∗ABS-A|ABS-C =
Lc
a∞

ï
xTE − x̂LE

u∞
+
xTE − x̂LE
a∞ − u∞

+ ∆to(x̂LE)

− xTE − x̂LE
a∞ + u∞

−∆to(xTE)

ò−1

.

(6.5)

The calculated values of ∆f∗ABS-A|ABS-C at θ = 150◦ are 0.2860 for SLE and 0.3066 for WLE, which

match well with those appearing in figure 6.8(e & f ).

Figure 6.9 rearranges figure 6.8 in order to show how the acoustic power spectra of the individual
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Figure 6.9: Acoustic power spectra obtained at three different observer locations: xo/Lc =
(5 cos θ, 5 sin θ, 0) for (a & b) θ = 30◦, (c & d) θ = 90◦ and (e & f ) θ = 150◦, from individual
noise sources (LEVS, TEVS and ABS). The left and right columns are for the SLE and
WLE cases, respectively.

noise sources compare against each other at three different observer angles. One of the main

features found is that, with the observer angle turning upstream, the gaps between the spectra

significantly decrease at low frequencies but increase at high frequencies. This is due to TEVS

strengthens in the upstream directions whereas LEVS and ABS weaken. It is also evident that

the dominance of TEVS at high frequencies (as discussed in the previous section) is consistent

regardless of the observer angle although the dominance becomes stronger in a wider frequency

range in the upstream directions. This tendency is significantly more pronounced in the WLE case

so that TEVS is the strongest noise source in the upstream directions at almost all frequencies

(except very low frequencies) even exceeding the primary source (LEVS). These unique findings
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Figure 6.10: Directivity profiles (on a logarithmic scale) of Sppa(f
∗)/p2

∞ at two different
frequencies: (a & c) f∗ = 2 and (b & d) f∗ = 6, around a circle with a radius of 5Lc with
its origin at centre of the finite-chord aerofoil (on the centre plane, z = 0), obtained from
each individual noise source. The top and bottom rows are for the SLE and WLE cases,
respectively. Lower half planes are not repeated due to symmetry.

are also confirmed by viewing the directivity patterns of Sppa(f
∗)/p2

∞ for two different (low and

high) frequencies shown in figure 6.10.

Based on the result shown in figure 6.10 the directivity profiles of the noise reduction made by

WLE (∆SPL defined in §2.1.8) at the two different frequencies (f∗ = 2 and 6) are plotted in figure

6.11. The figure shows that the overall ∆SPL (S1+S2) changes tremendously with the observer

angle and the frequency by up to multiple tens of decibels. There is a sudden loss of noise reduction

(or even noise increase) in the upstream direction at f∗ = 2 and an unexpected large gain of noise

reduction in the downstream direction at f∗ = 6. These rather surprising events involved with the

secondary sources have not been addressed or encountered in the earlier studies based on either

semi-infinite-chord aerofoils (Kim et al., 2016; Turner & Kim, 2017b) or limited observer angles

50◦ ≤ θ ≤ 130◦ (Chaitanya et al., 2017; Narayanan et al., 2015).

There are additional findings from the directivity plots. First of all, as discussed in the previous

section the dominating noise source at f∗ = 2 is LEVS in most directions and it is TEVS at f∗ = 6

(figure 6.10), and therefore they determine the main level of overall ∆SPL (S1+S2) at those

frequencies (figure 6.11), except the sudden loss/gain in the far upstream/downstream directions

mentioned above. The sudden loss/gain in overall ∆SPL (S1+S2) around 150◦ < θ ≤ 180◦ at
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Figure 6.11: Directivity profiles (on a decibel scale) of the noise reduction made by WLE
compared to SLE, i.e. ∆SPL defined by (2.61), at two different frequencies: (a) f∗ = 2
and (b) f∗ = 6, based on the result shown in figure 6.10. The inner semicircle area outlined
indicates noise increase (negative ∆SPL).

f∗ = 2 and 0◦ ≤ θ < 30◦ at f∗ = 6 are mainly due to the fact that there is a changeover of

the dominating source within the narrow angles in either of the SLE and WLE cases (or both)

shown in figure 6.10. The oscillatory lobes in the directivity plots are a consequence of the phase

interactions between different sources discussed in the previous section. Secondly it is noticeable

in figure 6.11 that the ∆SPL profiles of ABS show a very good similarity to those of all the sources

combined (S1+S2). This is explained by recalling that ABS is the acoustic backscattering of the

all other sources combined (LEVS and TEVS), which means that its amplitude depends mainly on

the dominating one and its behaviour changes when there is a changeover between them. Therefore

the relative change (∆SPL) in ABS between SLE and WLE is reasonably similar to that from all

the sources combined (S1+S2).

6.4 Undulated trailing edge

In this section additional tests are conducted in order to quantify the extent of additional noise

reductions which may be available by adopting an undulated trailing edge. The investigated

geometries include WLE with wavy trailing edge (WTE) of equal amplitude and phase, π out-

of-phase WLE and WTE, and finally SLE with WTE. The resulting acoustic spectra, and noise

reduction spectra are contrasted alongside the SLE baseline and WLE-STE case in figures 6.12(a)

and (b) respectively.

Over low–medium frequencies undulation of the TE has little impact on the noise level, although

it is successful in reducing the degree of spectral oscillations caused by phase interaction between

primary and secondary effects. Conversely at high frequency (fLc/a∞ & 5.5) the noise associated

with the TEVS scattering is dramatically reduced. Both these effects are more clear from figure

6.13(a)-(d), which show the TEVS and ABS isolated spectra and individual noise reduction spectra

respectively.
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Figure 6.12: (a) Power spectral density of the far field fluctuating pressure (Sppa(f

∗)/p2
∞)

obtained by SLE baseline, WLE, WLE+WTE, WLE+IWTE (Inverted WTE) and
SLE+WTE cases. The amplitude and wavelength for both LE and TE serrations is
hLE/Lc = 1/15 and λ/Lc = 2/15. (b) Noise reduction spectra obtained for each case.
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Figure 6.13: (a & c) Acoustic power spectra for S2-TEVS and S2-ABS for SLE, WLE and
WLE+WTE cases. (b & d) Secondary source noise reduction spectra obtained by WLE
and WLE+WTE cases for TEVS (b) and ABS (d) respectively.
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Also plot in figure 6.12(b) is the empirical linear noise reduction relation identified by Chaitanya

et al. (2017). As mentioned earlier, the simulation noise reduction vs frequency data follows this

trend relatively well until high frequency where secondary convective effects become dominant.

After significant removal of the TEVS source (through WTE) it may be expected that the noise

reduction levels would return to the linear trend, however this is actually exceeded by a significant

proportion. The cause of this is currently unknown and may be a worthwhile focus of further

investigation.

It is also interesting to note that there is no real preference between the WLE-WTE and WLE-

IWTE geometries. A simple explanation for this observation is found in figure 6.14. It shows

iso-surfaces of Q-criterion coloured by spanwise vorticity (ωzLc/a∞) during the LE interaction

(a), and when the vortex is close to the TE (b). Equivalent streamwise vorticity plots (ωxLc/a∞)

are also shown in figure 6.14(c) and (d). The vortex disturbance, lacking any streamwise vorticity

component, is clearly shown separate from the induced secondary structures. We known from

Howe’s theory (Howe, 1998) that the scattered sound at the TE is related to the Lamb vector

ω × u, which will be dominated by the U∞ωz term. Since the spanwise vorticity is approximately

constant in span, there are only small differences between the two WTE cases.
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Figure 6.14: Iso-surfaces of Q-criterion (||ΩijLc/a∞||2 − ||SijLc/a∞||2 where Ωij and Sij
are the vorticity and rate-of-strain tensors, respectively) coloured by spanwise vorticity
(ωzLc/a∞) obtained during interaction of the prescribed vortex and the LE (t∗ = 2.2) (a),
and after the now bisected vortex has travelled further downstream (t∗ = 5.2) (b). (c) &
(d) Equivalent plots recoloured by streamwise vorticity (ωxLc/a∞).
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Figure 6.15: Boundary layer profiles obtained for WLE geometry at Reynolds numbers
Re∞ = 4.0×105: (a) streamwise velocity profile for x/Lc = 0.4; (b) skin friction coefficient
Cf = 2τw/(ρU

2
∞) at WLE hill; (c); WLE peak and (d) WLE root.

6.5 WLEs with a laminar boundary layer profile

In this section the discussions are expanded to include viscous effects in the form of a laminar

boundary layer. The same Reynolds number (Re∞ = 4.0 × 105) and grid settings are used as in

§5.5 for the 3D SLE case. A relatively small amplitude is selected for the WLE (hLE/Lc = 1/40)

with one wavelength captured in the spanwise domain (λLE = Lz = 0.05Lc). This ensures the LE

aspect ratio is not too large (AR = 1), which could considerably increase computational cost due

to highly skewed cells near the LE.

Firstly the boundary layer profiles developed by the WLE geometry are shown in figure 6.16. The

boundary layer is approximately laminar over most of the span, following the Blasius solution. The

exception is near the WLE root where the boundary layer profile is more typical of an adverse pres-

sure gradient. This may be caused by a low pressure which is observed in the current simulations

at the root, causing the pressure to increase in the streamwise direction.
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Figure 6.16: Acoustic pressure data obtained for SLE and WLE geometries from the
current 3D viscous (Re∞ = 4.0×105) simulations based on the linear 2.5% and non-linear
25% strength vortex interactions: (a & c) time signals of pa(xo, t)/p∞ for weak and strong
interactions respectively; (b & d) the corresponding power spectra.

The acoustic pressure data for both weak (|u| = 0.025U∞) and strong (|u| = 0.25U∞) vortex

cases are presented and compared to the SLE case in figure 6.16. The strong vortex interaction

(figure 6.16 (c & d) is mostly as expected. In this case both SLE and WLE geometries produce 3D

structures and obtain a comparable high frequency noise level. Much more surprising is the weak

vortex pressure signal (figure 6.16 (a)) which shows the WLE produces an enormous TEVS wave

comparable in magnitude to it’s LEVS component. Consequently the spectral oscillations in the

WLE PSD are significantly increased even at low frequencies as there are now two competing low

frequency events. Additionally there is a significant increase in noise for fLc/a∞ > 5.5. In order

to explain this unusual result the flow is examined in more detail. Figure 6.17 shows iso-surfaces

of spanwise vorticity alongside the contours of acoustic pressure obtained in the xy-plane at two

instants of time, ta∞/Lc = 8.33 and 10.0.

As it turns out the secondary vorticity breaks down into 3D tertiary structures on the lower side of

the WLE in a similar manner to the strong vortex case (§5.5). However, unlike the strong vortex

case which transitions almost immediately, the breakdown does not occur until the vortex has past
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Figure 6.17: Iso-surfaces of spanwise vorticity ωzLc/a∞ and contours of acoustic pressure
pa/p∞ obtained during interaction of the weak vortex disturbance and a WLE. (a) Non-
dimensional time ta∞/Lc = 8.33 showing 3D tertiary structures generated on the aerofoil
lower side. (b) ta∞/Lc = 10, when the tertiary structures are scattered by the TE.

the mid-chord. It should be emphasized that the flow remains two-dimensional in the SLE case

(when run in 3D), meaning this phenomenon is specific to the WLE. It makes sense that the WLE

is more likely to develop three-dimensionality as streamwise vorticity is introduced naturally into

the boundary layer by the geometry.

Finally in 6.18 the noise reduction spectra is plot for the two cases and compared to the respective

LEVS+ABS result obtained through the same windowing procedure as §5.5. For lower frequencies

(fLc/a∞ < 4.5) the WLE obtains an improved noise reduction during the stronger vortex interac-

tion as well as significantly reduced spectral oscillations. The weak vortex noise reduction on the

other hand approximately follows the expected trend line (Chaitanya et al., 2017). The cause of

this difference is currently unknown, but likely related to strong non-linearities occurring during

the interaction.
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Figure 6.18: Noise reduction spectra obtained by the WLE case at Re∞ = 4.0 × 105 for
the total noise and LEVS+ABS AB components. The LEVS+ABS AB contribution is
obtained through the windowing procedure described in §5.5. (a) Default weak vortex
case; (b) enhanced strength vortex. Also shown is the noise reduction trend of Chaitanya
et al. (2017) based on hLE/Lc = 0.025.

During the weak interaction the TEVS noise begins to dominate for fLc/a∞ > 4 resulting in a

premature loss of noise reduction similar to the inviscid cases. At very high frequency (fLc/a∞ > 6)

the effect is most severe, resulting in excess of 20 dB noise increase relative to SLE. A portion of the

high frequency noise increase is actually caused by an increase in LEVS+ABS AB noise. This is

likely a consequence of convective disturbance wall pressure fluctuations, as indicated by the source

maps in §4). The strong vortex interaction exhibits entirely different behaviour. Although the

noise reduction is lost at a similar frequency, it is primarily a consequence of increased WLE LEVS

noise. Unlike all other cases presented here the TEVS becomes dominant for the WLE at a higher

frequency than the SLE case (fLca∞ ≈ 9, see figure 6.16(d)). This results in the noise reduction

actually improving slightly by including the TEVS contribution where it begins to dominants the

SLE solution but not the wavy one (between 6 ≤ fLc/a∞ ≤ 7). To the author’s knowledge

there is little work on the interaction of highly non-linear disturbances (such as that presented

here) with undulated leading edges. The current results indicate how the known findings are not

necessarily translatable to higher strength interactions and therefore represent a opportunity for

future research.

6.6 Concluding remarks

Non-linear compressible simulations are conducted in order to investigate the secondary interaction

noise effects generated by the impingement of a single spanwise vortex and zero-thickness undulated

aerofoils. The secondary effects are categorised as acoustic scattering at the leading and trailing

edges, and scattering of the bisected vortex halves at the trailing edge. The secondary effect

contributions to the total far field perturbed pressure and PSD are contrasted directly with the

primary (vortex-LE scattering). This is achieved by manipulating the time signals of finite chord
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(total noise), downstream semi-infinite chord (primary noise), and upstream semi-infinite chord

(vortex-trailing edge noise) aerofoil simulations.

The processed numerical results revealed that there were various substantial changes made in

the acoustic power spectra and directivity profiles when the secondary sources were present in

the solutions compared to the case where only the primary source was considered. The relative

impact of the secondary sources was stronger with WLE than SLE since the primary source was

reduced due to the presence of WLE. The relative reduction in TEVS due to WLE was insignificant

(compared to those of the other sources) at high frequencies, and therefore the reduction of noise

(a beneficial effect of WLE) disappeared in the high-frequency range where TEVS dominates. In

addition the TEVS event was even strengthened at low frequencies when WLE was used. The

combination of this effect and the WLE LEVS reduction means the TEVS dominates almost the

entire frequency range at upstream angles.

For both SLE and WLE aerofoils at low frequencies ABS was the more prominent secondary

source particularly in the downstream observer directions. ABS was also the main driver to produce

oscillatory profiles in the acoustic power spectra due to its phase relationships with the other sources

and also between its own sub-components (ABS-A to D). The spectral oscillations were significantly

more pronounced at certain frequencies when the two competing sources had equal/similar strength.

An interesting observation made was that the noise reduction measured from ABS only and that

from all sources combined were fairly similar across all observer directions at a given frequency.

This was understood by recalling the fact that ABS is the acoustic backscattering of all sources

involved, and therefore it follows the trend of the dominating one that determines the level of noise

reduction between the SLE and WLE cases. Phase oscillations initiated by the TEVS compared

to the ABS are based on a shorter ∆f , and consequently the spectral oscillations are most severe

in the range where TEVS is significant (but stills secondary to LEVS). One possible approach to

reduce the contribution from the secondary interaction sources is to introduce a undulated trailing

edge. This modification successfully damps the ABS phase oscillations, and TEVS high frequency

noise. It is also interesting to note that in-phase and out-of-phase WLE and WTEs show little

difference in performance.

Additional viscous simulations are also carried out at Re∞ = 400, 000 in order to investigate how

the WLE TEVS is effected by a laminar boundary layer. Surprisingly the TEVS noise is greatly

increased by the WLE geometry as the spanwise waviness triggers breakdown of the secondary

vorticity to three-dimensional eddies. Similar behaviour is also exhibited by the SLE for much

higher vortex strength (see §5.5). Additionally, viscous simulation are carried out for a higher vor-

tex strength (more similar to that encountered in helicopter rotor noise applications). The noise

reduction properties are significantly altered by vortex strength, both in terms of the low frequency

noise reduction trend, and dominance range of TEVS. This chapter therefore highlights two po-

tential avenues for future research: The sensitivity of the WLE TEVS to viscosity (particularly

concerning the breakdown to 3D flow); and WLE performance for high strength interactions.
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The outcomes of the current study deliver a few useful messages to those working on aerofoil-

turbulence noise and its reduction by using WLE. First, the results purely relying on the primary

source mechanism (LEVS) may result in misleading conclusions for application purposes. The

acoustic directivity profiles particularly with respect to the noise reduction may differ by 20dB (or

more) in many observer directions even at low frequencies when the secondary sources take part.

Secondly, investigating the results only at the vertical direction or within a narrow observer angle

(e.g. 50◦ ≤ θ ≤ 130◦ as in the previous experimental work) would be insufficient to complete the

knowledge since the secondary sources behave very differently in the upstream (150◦ < θ ≤ 180◦)

and downstream (0◦ ≤ θ < 30◦) directions. Lastly, the loss of noise reduction from the WLE is often

attributed to self-noise dominance at high frequencies in experimental work. A fresh investigation

into the previous data is required in order to clarify as to how much of the high-frequency spectra

was influenced by the self-noise generation in contrast to the dominance of TEVS that is newly

identified interaction noise effect (existing for inviscid and viscous flow). One possible approach is

to subtract the TE self-noise before calculating the noise reductions as implemented in Roger &

Moreau (2016).

This chapter has focused on the most fundamental scenario where the aerofoil is a flat plate.

An interesting extension to the current work may be to consider realistic aerofoil geometries,

particularly camber and angle of attack, as the asymmetric flow speeds for upper and lower sides

may modify the TEVS response.





Chapter 7

Conclusions and Future Work

7.1 Summary of findings

This research presents investigations into the reduction of aerofoil-turbulence interaction (ATI)

noise through application of sinusoidal wavy leading edges (WLE). The research methodology

consists of high fidelity numerical simulations of the 3D compressible Euler equations based on

high order implicit schemes and stretched meshes. It focuses on zero-thickness aerofoils at zero

angle of attack undergoing interaction with an upstream vortical disturbances. The prescribed

disturbance is a single spanwise vortex, which provides divergence free velocity field. Unlike other

single disturbance methods (e.g. harmonic gusts) the approach contains a broadband spectrum

of frequencies and is capable of capturing non-linear vortex motions. This approach also has

two primary advantages with regards to understanding the mechanisms of ATI noise compared to

synthetic turbulence approaches. Firstly, it makes identification of fundamental coherent structures

generated during the interaction easier to identify; Secondly, it provides cleaner spectra which helps

to reveal underlying noise reduction trends.

The current study includes a comprehensive overview of the existing literature concerning both

interaction noise and wavy leading edges (WLE). The WLE geometry is consistently reported as

providing significant broadband noise reductions in various scenarios (interactions with HIT, gusts

and vortex flows). Studies agree that the main parameter which controls the level of noise re-

ductions is the LE amplitude, followed by flow speed (or Reynolds number), then LE wavelength.

Other significant findings in the literature include a linear noise reduction vs. frequency trend, op-

timum serration wavelength, and the possibility of phase interference and source strength reduction

as noise reduction mechanisms.

The papers presented in this thesis provide a comprehensive understanding of the fundamental

mechanisms associated with aerofoil-vorticity interaction and WLEs. This includes: in-depth anal-

ysis of the acoustic-fluid dynamic interactions occurring at the LE; investigation of proposed noise

reduction mechanisms (phase interference and source strength reduction); and identification of sec-

ondary interaction noise effects including their significance for WLE noise reduction. A reoccurring
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theme of this work is that a restricted view of the problem can result in misleading observations

concerning the physics. The results therefore highlight a number of important considerations for

future simulation and modelling approaches on the topic. In particular, which mechanisms are

crucial in order to properly model the noise reduction associated with WLEs. Moreover, the de-

tailed analysis of the mechanisms should help lead to better designs for noise reduction beyond

undulated leading edges. Significant improvements have already been made guided by the earlier

source strength findings, particularly the source dominance of the root. This includes slitted-LE

and dual-frequency WLEs (Chaitanya et al., 2016; Turner et al., 2016a). Additionally, a number

of significant discoveries are made concerning the importance of scattering at the TE in inviscid

flow, which reveals an area of study neglected by analytical methods. The inviscid TE scattering

also raises an important question for experimental approaches concerning its significance relative

to self-noise at high frequencies.

The major findings of this work are listed below:

i As LE amplitude is increased the pressure response at the hill is reduced at all frequencies, at

the peak it reduces at low frequencies until saturation, and at the root it remains similar to

the SLE baseline.

ii Secondary horseshoe vortex structures are responsible for the source dissimilarity between peak

and root by modifying the upstream impinging velocity field.

iii The WLE source characteristics are related to the serration aspect ratio.

iv LE amplitude is the main noise reduction parameter as it effects the source characteristics and

causes phase-interference to occur at lower frequencies.

v Low frequency source reductions observed at the peak and hill are not observed in the far-field

as the source strength over the full aerofoil surface is not significantly reduced.

vi Both source reduction and destructive interference effects become more significant as frequency

is increased, although at high frequencies interference is dominant.

vii The source reduction mechanism actually disrupts the interference mechanisms (minimising

the interference peaks) due to different source strengths observed between the peak and root.

viii TEVS is demonstrated for inviscid aerofoil-vortex interaction problems, with or without vertical

miss distance

ix TEVS is the dominant source of noise at high frequencies (greater than LEVS). Relatively It

is more significant for WLEs and for upstream observer angles.

x The dominance of TEVS at high frequency results in the loss of noise reduction from the WLE.

This may be remedied by introducing TE undulation.

xi Secondary sources (ABS and TEVS) significantly change the WLE noise reduction directivity.
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xii TEVS is also exhibited for viscous flows in the laminar regime. However it is highly dependent

on the Reynolds number and vortex strength.

7.2 Future work arising from this study

The work presented in this thesis represents a simplified model of ATI in order to better understand

the fundamental physics of the problem. Now that the simplified case is relatively well understood

the next step is to increase the complexity of the problem towards more realistic scenarios. This in-

cludes introducing realistic geometry including aerofoil thickness, camber and angle of attack. Each

of these effects is well understood on its own, but together may introduced interesting interactions

between the various parameters. For example, camber will have a significant effect on the TEVS as

convective disturbances will travel at different speeds on the upper and lower sides of the aerofoil.

In a similar manner, the work presented here considers the source strength and phase-interference

effects of a spanwise coherent interaction. It may be interesting to incorporate spanwise incoher-

ence effects by modelling a spherical impinging disturbance. For very small disturbances (where

only a small portion of the edge is excited) the phase interference effect is expected to be restricted

to higher frequencies (Lyu & Azarpeyvand, 2017). It has also been shown by Chaitanya et al.

(2017) that spanwise length scale is important for determining an optimal WLE wavelength. Com-

paratively for the current disturbance (or for λ/Λ ≤ 1) larger wavelength is generally better (see

§C.2). Another avenue for future research is a parameter study of vortex strength, it is apparent

from the later stages of the work that the previous findings for weak disturbance interactions are

not transferable to strong interactions.

A number of questions also remain concerning the TEVS. It was revealed how the analytical models

of Amiet are capable of replicating the LEVS and ABS spectra produced during AVI, however

the TEVS sound is only predictable with ad-hoc knowledge of the surface pressure fluctuations.

A more detailed study of the convective disturbances and how they develop in time might be

required in order to develop a complete model for AVI. Additionally the effect of Reynolds number

on TEVS has been investigated, but only in the laminar regime. This limitation was primarily

for practical reasons. Firstly, to avoid contributions from self-noise which may interfere with the

TEVS. Secondly, due to the significant computational cost of resolving a turbulent boundary layer.

Extending this analysis may lead to interesting conclusions concerning how secondary and tertiary

TEVS structures interact with turbulent eddies, perhaps modifying the extent of self-noise or

inducing early transition of the boundary layer downstream. Further investigation into the TEVS

event in viscous flow for a WLE is also required. It is demonstrated how the WLE may obtain

a stronger TEVS response due to breakdown of secondary vortices to tertiary structures. This

however has only been shown under one flow condition with one WLE amplitude and wavelength.

A sensitivity test for vortex strength, and geometric parameter study may therefore be useful.



Appendix A

Sensitivity test for the measure of

interaction obliqueness

The following tables show the estimated angles of the oblique interaction (φ) described in §3.3 for

various values of the −v/a∞ contour threshold selected from figure 3.10c. The sensitivity test was

performed for all three WLE geometries used in §3 (hLE/Lc =1/30, 1/15 and 1/10). The tables

show that the choice of the threshold (within the 40% bandwidth tested) makes an insignificant

change to the estimated obliqueness angle with a deviation of up to 4.07% at maximum as far as

the current test cases are concerned.

Threshold selected φ1 φ2 φ = (φ1 + φ2)/2 Relative difference in φ

0.00784 (–20%) 30.18◦ 45.03◦ 37.61◦ –3.39%
0.00882 (–10%) 29.48◦ 46.34◦ 37.91◦ –2.62%
0.0098 (original) 30.13◦ 47.72◦ 38.93◦ -
0.01078 (+10%) 34.43◦ 45.11◦ 39.77◦ +2.16%
0.01176 (+20%) 32.46◦ 45.01◦ 38.74◦ –0.49%

Table A.1: The estimation of φ for various thresholds in the case of hLE/Lc = 1/30.

Threshold selected φ1 φ2 φ = (φ1 + φ2)/2 Relative difference in φ

0.00784 (–20%) 42.85◦ 61.42◦ 52.14◦ –4.07%
0.00882 (–10%) 44.75◦ 62.80◦ 53.78◦ –1.05%
0.0098 (original) 45.37◦ 63.33◦ 54.35◦ -
0.01078 (+10%) 44.34◦ 61.45◦ 52.90◦ –2.67%
0.01176 (+20%) 43.42◦ 61.10◦ 52.26◦ –3.85%

Table A.2: The estimation of φ for various thresholds in the case of hLE/Lc = 1/15.

Threshold selected φ1 φ2 φ = (φ1 + φ2)/2 Relative difference in φ

0.00784 (–20%) 48.97◦ 69.55◦ 59.26◦ –1.66%
0.00882 (–10%) 47.97◦ 69.23◦ 58.60◦ –2.75%
0.0098 (original) 50.76◦ 69.76◦ 60.26◦ -
0.01078 (+10%) 51.08◦ 67.97◦ 59.53◦ –1.21%
0.01176 (+20%) 51.00◦ 67.45◦ 59.23◦ –1.71%

Table A.3: The estimation of φ for various thresholds in the case of hLE/Lc = 1/10.
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Appendix B

Discussion of vortex models

This section of the appendix includes additional discussion of the vortex models utilised in §3 and

§4, including comparison to classical models in literature. The most idealised model for a vortex

is an irrotational potential vortex:

vθ(r) =
Γ

2πr
(B.1)

where vθ is the tangential velocity, Γ is the circulation, and r is the radial distance from the vortex

axis. Clearly (B.1) is not practical for the purpose of simulations due to the singularity occurring

at r = 0. In real viscous flows a vortex is split into two regions, a core region where the induced

velocity is zero at the centre and increases with r, and an outer region where the induced velocity

decays with r. A simplest model which accounts for a vortex core is the Rankine vortex. This

model assumes solid body rotation of a finite core of radius R surrounded by the potential flow

solution.

vθ =


Γr

2πR2 for r ≤ R
Γ

2πr for r > R
(B.2)

Although this model solves the issue of the singularity at r = 0 a discontinuity exists in the vorticity

at r = R. In reality, this discontinuity will be smoothed by viscous effects. A simple model which

accounts for this effect is the Kaufmann (Scully) vortex:

vθ =
Γr

2π(R2 + r2)
(B.3)

Figure B.1 compares the velocity profiles produced by (B.1)-(B.3) with the two vortex models

implemented in the current simulations ((3.2) and (4.1)). Unlike the above classical models which

decay linearly in the outer region, the vortex models implemented in this thesis decay exponentially.

They are therefore referred to as r4 (§3) and r2 (§4) models, which corresponds to their respective

exponential decay rates. The parameters used for the classical models are R = 0.0225Lc and

Γ = −0.012πR, additionally the value for σ for the r4 vortex is changed to 560 for better comparison

of the velocity profile. The r4 vortex velocity profile has a stationary point (zero vorticity) at the
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Figure B.1: Comparison of the vertical velocity profiles obtained by the vortex models
utilised in the current with classical models from literature.

centre which differs from the classical models. Comparatively the r2 vortex produces a very similar

velocity profile to the Kaufmann model.

The main reason for choosing the current vortex profiles over the classical models is that they

produce a more compact velocity disturbance. This allows the vortex to be initialised closer to the

aerofoil LE which significantly reduces the run time of the simulation. Additionally there is a less

strict requirement on the grid resolution far upstream in order to capture the impinging vortex,

which significantly reduces the computational cost. The diameter of the vortex (determined where

v = 0.01vmax)) is 4.5Lc for the Rankine and Kaufmann profiles, compared to 0.16Lc for the r2

profile.

Figure B.2 shows the PSD of vertical velocity produced by the two vortex models considered in the

current work. Both linear and logarithmic scales are shown in figure B.2(a) and (b) respectively.

The r4 vortex profile produces a multi-modal Gaussian distribution, while the r2 vortex produces

a positively skewed normal distribution. The lobes shown for the r4 vortex in figure B.2(b) are a

result of phase interference between the upwash and downwash strokes, occurring at frequencies

f∗ = n/(2∆t∗), where ∆t∗ = 1.182. The frequency bandwidth of the vortex can be easily controlled

by changing the vortex diameter (through the parameter σ). This is clearly shown by figure B.3.
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Figure B.2: PSD of vertical velocity fluctuations obtained by the two vortex models utilised
in the current study. (a) Linear scale; (a) Log scale.
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Figure B.3: Effect of changing the vortex size on the frequency bandwidth of the r2 vortex
model. Lv = 1.2λLE is the default vortex size (σ = 44.25) used in §5-6.



Appendix C

Additional noise reduction trends

C.1 Sensitivity of results to vortex parameters

In this section the generality of the current findings is investigated with respect to vortex strength,

size and shape. The vortex strength parameter was selected for consistency with previous studies.

Most notably (Chaitanya et al., 2017; Kim et al., 2016; Narayanan et al., 2015) who all consider

problems with mean impinging velocity vmax = 0.025u∞. Additionally the default vortex strength

used in this thesis is well within the linear regime, which suggests some generality of the current

findings. This is demonstrated in figure C.1, which compares the far-field acoustic pressure data

presented for default strength (ε = 0.0377 and vmax = 0.025u∞) to a case with half the vortex

induced velocity (ε = 0.01885 and vmax = 0.0125u∞). The acoustic pressure and spectra are

normalised by max(pSLEa ) and max(pSLEa )2 respectively for easier comparisons between the two

results. The time signals and spectra collapse almost perfectly (except for a small difference for

the SLE at very high frequency).

It is also important to confirm that neither change in shape nor size significantly alters the noise

reduction mechanisms. Figure C.2 shows the noise reduction spectra obtained by the default WLE

profile with semi-infinite chord for interaction with the two vortex shape functions. The diameter

of the r4 profile has been reduced here to match the r2 profile (Lv/Lc = 0.16 based on the location

the induced velocity drops below 1%). The noise reduction profiles are almost identical until high

frequencies (f∗ > 5) where there is a small magnitude offset (< 2 dB). This may be caused by

small differences in the secondary vortex dynamics which make a significant impact on the sources

at high frequencies (as shown in §4.5).

The impact of changing the vortex size is shown in figure C.3 which compares the noise reduction

obtained for three vortex diameters Lv = 0.17Lc (σ = 44.25), Lv = 0.255Lc (σ = 29.5), and

Lv = 0.34Lc (σ = 22.125) with default amplitude and wavelength. In each case the NR follows

the same trend until a certain frequency where it quickly drops to zero. The range of frequencies

where NR is achieved is an indication of the frequency bandwidth of the vortex, which is reduced
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Figure C.1: (a) Time signals of acoustic pressure pa(xo, t)/p∞ obtained at observer loca-
tion xo/Lc = (0, 5, 0) for SLE and WLE geometries with two different impinging vortex
strengths. (b) The corresponding power spectra of the former. The pressure and spectra
are scaled by max(pSLEa ) and max(pSLEa )2 so that direct comparison can be made.
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Figure C.2: Comparison of the SIC noise reduction obtained using the two vortex shape
functions utilsing the same vortex diameter Lv|1% = 0.17Lc.

as the vortex size is increased. The consistent trends confirms that a single vortex size is sufficient

for the current investigations in order to understand the noise reduction mechanisms. A small

diameter is desirable as it allows a larger range of frequencies to be evaluated (see figure B.3). The

default vortex size is therefore the smallest of the three tested (Lv = 0.17Lc). An even smaller

vortex could be used in order to analyse even higher frequencies but is avoided as this would incur

additional computational cost (finer grid required upstream to resolve the vortex).
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Figure C.3: Effect of changing vortex diameter Lv on the undulated LE noise reduction
spectra with WLE amplitude and wavelength fixed at hLE/Lc = 1/15 and λ/Lc = 2/15
respectively.

C.2 Effect of leading edge wavelength for a spanwise infinite dis-

turbance

This section of the appendix considers the impact of LE wavelength λLE on the far-field noise

reduction spectra obtained during interaction with a spanwise infinite disturbance. Figure C.4

revisits the noise reduction predicted by the LE line model introduced in §4. The result is compared

to the numerical solution for two WLE profiles, both with default amplitude but with a factor of

two difference in wavelength. Overall the larger wavelength case agrees better with the analytical

model particularly for the higher frequency noise reduction peak.

As previously discussed (§4) the extent of destructive interference is mainly determined by hLE ,

with a large hLE allowing noise reductions to occur at a lower frequency. The source strength on

the other hand is determined by the LE aspect ratio AR = 2hLE/λLE (§3), with a more consistent

spanwise source obtained when aspect ratio is reduced. As wavelength is increased the source

characteristics along the LE therefore become more compatible and destructive interference is more

severe. In summary, in order to maximise the interference mechanism AR must be minimised and

hLE maximised.

It is worth noting here that this result is only general for coherent spanwise interactions (λ/Λ ≤
1). In this case the destructive interference peaks are enhanced as the sources along the LE are

always correlated. It has well been documented how the LE wavelength reaches an optimum if

the disturbance has a spanwise length scale (Chaitanya et al., 2017, 2015). It is thought that the

optimum wavelength will occur when the adjacent roots are excited incoherently, so that they may

not constructively interfere.
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Figure C.4: Comparison of noise reduction spectra obtained by the default WLE
(hLE/Lc = 1/15 and λLE/Lc = 2/15) and one with twice the WLE wavelength compared
to the LE line model B of §4.4.2.



Appendix D

Additional analysis of WLE TEVS

response

D.1 Wall pressure observations

In this section we elaborate on the mechanisms which enable the TEVS to be increased at low

frequencies for the WLE, while remaining similar to the SLE at high frequencies. Firstly figure D.1

shows the TEVS time signals and corresponding spectra for observer locations directly downstream

of the peak, hill and root locations, in addition to the SLE baseline. It is clear how the peak and

hill actually produced an increased low frequency TEVS pressure response relative to the SLE.

The root on the other hand exhibits increased magnitude at high frequency and occasionally out-

of-phase pressure fluctuations relative to the rest of the edge (as is clear from figure D.1(a). This

indicates the similar strength at high frequencies may be related to an interference effect observed

between the root (high strength out-of-phase) and rest of the TE (lower strength in-phase). Figure

D.2 shows the two-point phase spectrum between the point directly downstream of the peak and

other points along the span. The two-point phase spectrum is calculated as follows:

φppw(x1, x2, f
∗) = Im[log[Sppw(x1,x2, f)]] (D.1)

where Sppw(x1,x2, f) is the cross power spectral density:

Sppw(x1,x2, f) =
2

T
’∆pw(x1, f)’∆pw∗(x2, f) (D.2)

It is clear from figure D.2 how the region directly downstream of the root is significantly out of

phase for frequencies between f∗ = 4 and 7, where the TEVS contributions are similar for SLE

and WLE. On the other hand at low frequencies the edge is relatively in-phase, the increased

wall pressure magnitude directly downstream of the peak and hill will therefore result in TEVS

increase at low frequency. Also shown in figure D.3 is a comparison of the ABS and TEVS spectra

obtained by two WLE aerofoils of different amplitude (hLE/Lc = 1/15 and hLE/Lc = 1/10).
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Figure D.1: Comparison of the wall pressure loading fluctuations at the TE due to the
TEVS obtained directly downstream of the WLE peak, hill and root compared to the SLE.
Signals extracted one grid point upstream of the TE: (a) the time signals of ∆pw-TEVS/p∞
and pa/p∞. (b) The corresponding power spectra.

 ∗
∞

[φ
(

:
 ∗
)]

Figure D.2: Cosine of the two-point phase spectra (cos[φppw(x1, x2, f
∗)]) of wall pressure

fluctuations between the TE point directly downstream of the LE peak and four points
equally spaced in span. Hill 25% and 75% refer to the mid points of peak–hill, and hill–root
respectively.
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Figure D.3: Acoustic power spectra for ABS (a) and TEVS (b) components of the sec-
ondary source obtained with two WLE amplitudes (hLE/Lc = 1/15 and 1/10). The
observer location is xo/Lc = (0, 5, 0).

This demonstrates how the consistent high frequency response of TEVS (and increased WLE low

frequency response) is not limited to the single test case in §6.

D.2 Application of Howe’s theory

An important part of the future work is to better understand the development of the fluid dynamic

structures as they convect over the aerofoil surface and how they relate to the generated TEVS.

In order to achieve this outcome it is important to firstly determine which aspects of the flow are

related to the generation of sound at the TE. One possible route is to utilise the vortex-sound

theory of Howe (1988), which relates the hydrodynamic field to the stagnation enthalpy B in the

following manner:

B = −
∫

(ω × u)(y, τ)
∂G

∂y
(x,y; t− τ)d3ydτ (D.3)

Where G is the problem specific Greens function, x represents far-field coordinates, and y source

coordinates. It is assumed in the far-field that the acoustic pressure can be approximated by

B = pa/ρ for M∞ << 1. For the TEVS problem we opt for a half-plane Greens function. This

is appropriate as the TEVS propagates in an upstream cardioid pattern. From Howe (2014) the

compact Green’s function is:

G(x,y, t− τ) ≈ G0(x, t− τ) +G1(x,y, t− τ) + · · · (D.4)

G0 is not a function of y and therefore is neglected (∂G0/∂y = 0), yielding:

G1(x,y, t− τ) ≈ ψ∗(x)ψ∗(y)

π|x| δ

Ç
t− τ − |x|

c0

å
, |x| → ∞ (D.5)
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with

ψ∗(x) =
√
r sin

Å
θ

2

ã
and ψ∗(y) =

√
r0 sin

Å
θ0

2

ã
(D.6)

The above equations assumes far-field conditions |x− y| → |x| and that the distance between the

vorticity and the edge is small compared to the acoustic wavelength (compact source approxima-

tion). Substituting (D.5) into (D.3) yields:

pa(x, t) = −ρ0ψ
∗(x)

π|x|

∫
(ω × u)

Ç
y, t− |x|

c0

å
∂ψ∗(y)

∂y
(y)d3y (D.7)

where ψ∗(y) = Real(−i√y1 + iy2) is the velocity potential around the half plane edge. Considering

that ∂ψ∗(y)/∂y3 = 0 and U∞ >> |u′| it is reasonable to simply (D.7) to the following:

pa(x, t) = −ρ0ψ
∗(x)U∞
π|x|

∫
ωz

Ç
y, t− |x|

c0

å
∂ψ∗(y)

∂y2
(y)d3y (D.8)

The above equation demonstrates how spanwise vorticity is directly related to the radiated sound

during TEVS. The velocity potential gradient (∂ψ∗(y)/∂y2) is zero on the aerofoil surface, maxi-

mum at the TE, and decreasing further downstream. This indicates that the sound is generated

as the spanwise vorticity is convected past the TE point.

Figure D.4 shows the spanwise vorticity on the aerofoil surface (upper side) for SLE and WLE at

ta∞/Lc = 5.5, shortly before interaction with the TE. Generally the spanwise vorticity agrees well

with the wall pressure fluctuation time signals. There is a greater magnitude for the WLE case

downstream of the root and peak during the downwash stroke (1st stroke), and for the majority of

the span (excluding root) during the upwash stroke. Additionally, there is opposite signed vorticity

in span directly downstream of the root during the upwash stroke. According to (D.8) this will

reduce the net response at the TE, further confirming an inference mechanism between downstream

root and the rest of the TE.

A number of questions still remain concerning the TEVS mechanisms, most notably why the

spanwise vorticity decays at a slower rate for the WLE than the SLE. (At the LE a larger magnitude

is observed for the SLE, see figure 3.14). Additionally, it is not fully understood why the changed

sign spanwise vorticity appears downstream of the root.

D.3 Dynamic mode decomposition

Dynamic mode decomposition (DMD) first utilised by Schmid (2010) may be used to approximate

the non-linear dynamics of flow data through eigenvalue decomposition of a linear model (Chen

et al., 2012). It is convenient for our purposes as it extracts the frequency information of each

dynamic mode through the phase of its eigenvalue. DMD is therefore used in this section to gain

some additional insight as to how the spanwise vorticity develops before it is scattered at the TE.
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Figure D.4: Contours of spanwise vorticity ωzLc/a∞ obtained on the aerofoil upper side
taken at ta∞/Lc = 5.5, just before the disturbances are scattered at the TE: (a) WLE;
(b) SLE.

In order to perform the DMD algorithm we first require a series of flow field snapshots taken with

a constant sampling interval ∆t:

VN
1 = {v1,v2,v3, · · · ,vN} (D.9)

where v represents a flow field variable (ρ, u, v, w, p), and N is the total number of snapshots. It

is then assumed that the flow field at subsequent steps may be approximated by a linear mapping

A such that

vi+1 = Avi (D.10)

and consequently:

V N
1 = {v1,Av1,A

2v1, · · · ,AN−1v1} (D.11)

it then follows that:

AV N−1
1 = V N

2 (D.12)
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Figure D.5: Dynamic mode for f∗ = 6 obtained at y = 0+ for SLE (a) and WLE (b) cases

The aim of DMD is to estimate the dynamic behaviour of the process A acting on the snapshot

sequence. We may also represent the final snapshot of the sequence vN as a linear combination of

all the previous:

vN = a1v1 + a2v2 + · · ·+ aN−1vN−1 + r (D.13)

where r is a residual term due to our discrete approximation of the process. It is then possible to

show that:

V N
2 = V N−1

1 S + reTN−1 (D.14)

where eN−1 is the N − 1th unit vector and

S =



0 a1

1 0 a2

. . .
. . .

...

1 0 aN−2

1 aN−1



Equating (D.12) and (D.14) reveals that the eigenvalues of A and S approximate one another.

The dynamic mode may then be obtained through calculation of the eigenvalues and vectors of

S. It was noted by Schmid (2010) that it is preferable to firstly include a prepossessing step to

avoid an ill conditioned matrix. This involves a singular value decomposition (V N−1
1 = UΣW T ).

Substitution into (D.12) and (D.14) then yields

UHAU = UHV N
2 WΣ−1 ≡ ‹S (D.15)
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Finally the DMD modes are extracted from the eigenvectors (yi) of ‹S as:

Φi = Uyi (D.16)

with frequency and growth rate of each mode are determined by fi = atan(λi))/(2π∆t) and

σi = ln(|λi)|)/(∆t) respectively.

Figure D.5 shows the dynamic mode obtained for f∗ = 6 based on spanwise vorticity plot on

the aerofoil upper side for SLE (a) and WLE (b) cases. A total of 800 images were used for the

DMD analysis during the period 1.5 ≤ t∗ ≤ 7.3. The figure shows how the high frequency mode

develops as the vortex (and secondary structures) convect over the aerofoil surface towards the

TE. Generally for the WLE aerofoil the mode grows in the streamwise direction, while for the SLE

it initially grows then decays as it approaches the TE. It is clear from figure D.5(b) how initially

the spanwise vorticity downstream of the root is in phase with the rest of the span, but gradually

drifts as the disturbances convect downstream. This explains the out-of-phase shift observed in

figure D.2 at this frequency.



Appendix E

Dual-wavelength wavy leading edges

This section of the appendix covers some of the results presented in Turner et al. (2016a) concerning

dual-wavelength wavy leading edges (DWLE). The aim of introducing an additional LE wavelength

is to entice destructive interference, and therefore additional noise reductions, between the two

LE root regions. The root has been shown in §3 to be the most prominent noise source for a

WLE, remaining comparable to the straight leading edge (SLE) baseline across the majority of the

frequency range. The performance benefit obtained by DWLEs was first observed experimentally by

Chaitanya et al. (2016). The results presented here provide confirmation of the DWLE performance

for a different disturbance type. Additionally insight is also provided concerning the root-root

interference mechanism.

The DWLE profile is constructed by combining two sinusoidal components of equal amplitude but

different wavelength. This results in a LE profile with an additional ”peak” (local maximum point)

and ”root” (local minimum point) per wavelength. Here we keep the amplitude of the two sine

components constant while the wavelength is varied by a factor of two. This results in the following

equation for the DWLE profile:

xLE(z) = αh

ñ
sin

Å
2πz

λ

ã
+ sin

Ç
2πz

λ/2
+ φ

åô
− Lc

2
(E.1)

where α is a weighting factor used to scale the DWLE peak-root amplitude (2hLE) such that it

remains consistent with the single-frequency cases:

α =
max(xWLE

LE )−min(xWLE
LE )

max(xDWLE
LE )−min(xDWLE

LE )
, (E.2)

and φ is a phase shift between the two sinusoidal functions. The simulations are conducted with

the same vortex profile as in §3. Figure E.1 compares the noise reduction spectra obtained by

four DWLE geometries with different amplitudes and phase shifts. This confirms how the DWLE

aerofoils offer substantial noise reductions improvements relative to the equivalent WLE cases in

small frequency bands. As the amplitude increases the noise reduction peaks shift to a lower

159



160 Appendix E Dual-wavelength wavy leading edges

Δ
(  

   
)

( )

=1/15

Δ
(  

   
)

 ∗
∞

=1/10

( )

 ∗
∞

( )

=1/15

 ∗
∞

=2/15

( )

Figure E.1: Comparison of the noise reduction spectra obtained by four DWLE geometries
compared to the corresponding averaged WLE components of the same amplitude. (a)
hLE/Lc = 1/15 and φ = 3π/2; (b) hLE/Lc = 1/15 and φ = 0; (c) hLE/Lc = 1/10 and
φ = 3π/2; and (d) hLE/Lc = 2/15 and φ = 3π/2;

frequency which is due to a larger difference in retarded time between the two roots. Another

interesting observation is that the case with Φ = 0 significantly out performs the equivalent Φ =

3π/2 case. This is likely due to the fact that the same streamwise offset is obtained between

adjacent roots, peaks, and surrounding hill regions, meaning a greater portion of the LE interferes

destructively at the maximum noise reduction frequency.

A simple approximation for the maximum noise reduction frequencies is obtained by considering

when the two roots will be mπ out of phase:

2πfd

U∞
= mπ (E.3)

→ f =
mU∞

2d
(E.4)

where d is the streamwise distance between the two roots. Application of the above equation results

in the predictions presented in table E.1. This simple and quick prediction obtains reasonable

accuracy and is therefore useful for selection of a DWLE targeting a specific frequency band.

The error is simple to explain in the context of this thesis. Firstly there is a difference in the

sweep angle in the vicinity of the two roots. As pointed out in §3 this will result in different
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streamwise vortex production and therefore different surface pressure magnitudes. Consequently

more significant phase interference may be obtained between other points with a more comparable

source strengths. In addition, it was revealed in §4 that the source cannot be considered restricted

to the LE line. In order to get an accurate prediction of the phase interference peaks the distributed

source must be taken into account over a significant portion of the surface.

hLE Φ Actual Predicted

1/15 3π/2 1.26m 1.41m
1/15 0 2.08m 2.28m
1/10 3π/2 0.84m 0.936m
2/15 3π/2 0.64m 0.70m

Table E.1: Predicted maximum noise reduction frequencies obtained via. E.3 for the
DWLE geometries presented in figure E.1.



Appendix F

Signal processing code

1 function [Spp ,freq] = spectra(t,pa,pb ,padfactor)

2 %Function for calculating PSD/CPSD from AVI time signal

3 %pa=/=pb returns CPSD

4 %pa==pb returns PSD (equivalent to matlab pwelch function)

5 %padfactor specifies the extent of zero -padding , padfactor =1 for no padding

6 lmt=length(t);

7 period=t(end)-t(1);

8 tpop =2*pi/period;

9 ra0=tpop;

10 ra1=ra0+lmt*tpop;

11 fctr=(ra1 -ra0)/lmt;

12 for j=1:( padfactor*lmt)/2+1

13 freq(j)=(j-1)*fctr/padfactor;

14 end

15 freq=freq *0.5/ pi;

16

17 nfft=length(t)*padfactor;

18 fs=lmt/period;

19

20 win=tukeywin(lmt ,0.2) ’;

21 [Spp]=cpsd(pa ,pb,win ,0,nfft ,fs);

22 end
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