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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

Southampton Business School
Department of Decision Analytics and Risk

Doctor of Philosophy

by Ivan Rajković

This thesis presents a new modelling framework for dynamic discrete decision-making
problem settings, in which persistence in preferences, derived from previously made
ranked choices, is taken into account. The endorsed framework leverages trends of the
revealed preferences to model the evolution of the temporal persistence of unobserved at-
tributes of alternatives, and it effectively incorporates changing choice sets and irregular
time durations between the repeated availability of alternatives in consecutive decision
events. The new model structure eliminates effect-confounding problems inherent in
incumbent models, and it highlights the effects of time duration bias and the unreliabil-
ity of lower ranked choices on the probabilities of future choice selections. Following a
post-positivistic research paradigm, empirical validation of the models in a naturalistic
market environment (UK horse-betting markets), which integrates behavioural (decision-
maker-related) and economic (betting-market-related) information sets, is carried out.
The proposed methodology centres around a two-stage model structure, which includes
elements of the classical Conditional Logit approach, revealed order of preferences, and
the Kalman filtering of the latent states, aimed at providing forecasts of choice proba-
bilities. These probabilities are subsequently used for implementation of a Kelly betting
strategy, which, together with standard statistical tests of significance, assesses the mer-
its of the modelling approach. In particular, it is shown that a novel Kalman filter
algorithm, developed for filter divergence mitigation, outperforms traditional Kalman
filtering algorithms.

The empirical results and the associated analysis confirm that forecasted trend variables
add statistically significant information over public market information (betting odds)
and that incorporating trend variable forecasts in a betting strategy yields above-average
monetary gains. Analysis of the evidence collected in the study leads to the conclusion
that persistence in preference effects are significant and have to be controlled for, in order
to mitigate the effects of the considered biases. In a wider context, obtained evidence
confirms the propensity of vested decision makers to time duration bias in a revealed
preference setup and that importance weighting of the ranked choice data may be used
to mitigate the effects of lower ranked alternatives’ unreliability.
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Chapter 1

Introduction

In his 2000 Nobel Prize lecture, Daniel McFadden presented the theory and methods
for analysing discrete choices, posited as an extension to the representative agent theory
(McFadden, 2001). This theoretical extension has proven to be important for economists
and other social scientists seeking to study many important settings in which choices
involve discrete rather than continuous alternatives. His seminal model – in its original
formulation named the Conditional Logit (CL) model – captures decision behaviour as
the conditional distribution of demand (or desirability) amongst a set of non-overlapping
alternatives in a standalone (i.e. static) decision event. Practical applications of discrete
choice models in the fields of economics, psychology, and marketing expanded the original
scope considerably to form aggregate (or market-level) models and include those that
could account for different choice substitution patterns (Train, 2009).

The need to extend discrete choice models capable of analysing persistence and/or the
variability effects of ‘unexplainable’ choice variance in repeated decision events realised
by the same individual or households was identified more than three decades ago (Cher-
chi, 2012). For example, these problem settings occur naturally when repeated everyday
purchases are captured for analysis (e.g. through shop loyalty programme data collec-
tion), when consumer attempt to evaluate the attractiveness of different transportation
and leisure opportunities based on their previous experiences (Cherchi et al., 2017), pol-
icy makers estimates of job utility preferences of welfare receipts (Bhuller et al., 2017),
and in behavioural sciences and consumer psychology (Lee et al., 2015). Models designed
to analyse and/or predict persistence in preferences over time are referred to as ‘dynamic
discrete choice models’.

Inclusion of dynamic aspects expands the general structure of classical decision-making
models, reportedly used by: (1) marketing researchers seeking to investigate the effects of
different parameters, such as price changes and promotions on loyalty (Dubé et al., 2010)
and brand value (Guhl, 2014) on consumer loyalty, (2) psychologists seeking to describe
the process of learning and adaptation of Decision Makers (DMs) on first encountering

3



4 Chapter 1 Introduction

a new product, the subsequent building of stable preferences and the usage of heuris-
tics and habits instead of actually repeating the decision process during every decision
event (Hoeffler and Ariely, 1999), (3) labour economists investigating, for example, the
conditions and probability of re-entering into the labour force (Heckman, 1981), (4) en-
vironmental economists in quantisation of temporal impacts on welfare measures caused
by an environmental policy (Swait et al., 2004), (5) public transportation planners eval-
uating levels of service (Hirobata and Kawakami, 1990) and the benefits of building of a
new railway line (Bradley, 1997), and (6) economists interested in the demand-building
process (Williams, 1977), to mention but a few.

The following section describes the problem statement, i.e. limitations of the incumbent
approaches, and identifies gaps in the literature.

1.1 Problem Statement and Contribution

All of the academic studies listed above share common theoretical elements, used ei-
ther individually or in combination, to capture behavioural dynamics effects in discrete
choice settings: state dependence, habit persistence, and heterogeneity (Ramadurai and
Srinivasan, 2006). State dependence is defined as a decision-maker’s propensity to se-
lect an alternative because he selected it in a past decision event (i.e. the choice made).
Some of the reasons for state dependence, for example, include reluctance to re-evaluate
choices over time because of inertia, intrinsic satisfaction with the choice, and avoidance
of switching costs (Hyslop, 1999). Habit persistence captures the lagged impact of past
utility values on current choice, and it aims to determine the influence of habit and
the temporal persistence of any unobserved attributes of the alternatives on the choice
behaviour. Heterogeneity aims to explain variations in choice behaviour across multi-
ple decision-makers having the same observed characteristics (explanatory attributes) or
during repeated decision events realised by an individual DM. These variations can be
caused either by unobserved static intrinsic attributes (i.e. idiosyncratic for each DM) or
transitory behavioural shocks, represented through serial correlation of the unobserved
characteristics affecting previous choices (Kitamura, 1990; Nerlove, 2014).

The above-identified components act concurrently, and the determination of their true
relative contribution is not trivial, i.e. the unequivocal estimation of the parameters
of an underlying model structure is prone to confounding effects (Cherchi, 2012). In
addition, if unobservable and serially correlated characteristics (i.e. heterogeneity) are
not controlled properly, spurious state dependence and habit persistence may be inferred
and could result in a biased model (Heckman, 1981; Heiss, 2008; Hsiao, 2014; Tavassoli
and Karlsson, 2015).
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Figure 1.1: Schematic representation of State Dependence
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Figure 1.3: Schematic representation of Heterogeneity

The fundamental underpinning of Discrete Choice Models (DCMs) is mapping from a
latent utility function, structured as an additive combination of an externally observ-
able component and a random component, which contains all unobservable decision at-
tributes, including heterogeneity effects, relating to a discrete choice. Models with such
a structure are called Random Utility Models (RUMs). Decision-making based on RUM

is typically derived by applying the principle of utility maximisation (Train, 2009). A
schematic representation of the described dynamic effects are given in Figure 1.1 (State
Dependency), Figure 1.2 (Habit Persistence), and Figure 1.3 (Heterogeinity).



6 Chapter 1 Introduction

Incorporating dynamic effects in a choice model typically follows one of three approaches:
(1) additive correction of the alternative-specific utility functions constructed in the form
of an autoregressive error process, (2) an adjustment to the latent utility function by
taking into account information from the past, in the form of state dependence, inertia
(through lagged choice information), habit persistence (through a lagged utility function
and/or other exogenous variables) and heterogeneity/variety-seeking (through autocor-
relation of the unobserved factors), and (3) discrete choice models in which functional
parameters are time-variable and their evolution is based on distributed lag specifica-
tions. Several authors (Lachaab et al., 2006; Lee, 2014; Guhl, 2014) have endorsed the
usage of State Space Models (SSMs) to model dynamic effects in combination with differ-
ent Bayesian methods for parameter estimation, including a classical method borrowed
from control engineering, namely the Kalman Filter (KF) algorithm, when the assumed
functional form of the utility is linear in parameters.

A common characteristic of all dynamic models with lagged effects of previous choices, as
discussed in the literature, is that all of them have been tested on equidistantly sampled
and balanced panel type data, typically using short to medium length panels, with an
implicit assumption that there are no time (forgetting) effects beyond the time between
the current and the preceding decision event and that the same choice set is always
available (Keane, 2015). Lack of support for changing choice sets (GAP 1) and different
times between availability of alternatives (GAP 2) are identified as gaps in the knowledge
in terms of discrete choice modelling.

Furthermore, in some of the mentioned disciplines, available data may also include the
ranking of alternatives in the choice set evaluated in a decision event, in the form of
ordered data. Examples of inherently ordered data are bond ratings, consumption pref-
erences, and political and health satisfaction surveys (Hensher et al., 2005), to mention
but a few. Ordered data contain additional information compared to the standard dis-
crete one-out-of-many alternatives (i.e. multinomial) case and dynamic choice models
can be adapted to exploit it in the form of lagged rankings. Lagged ranking may model
the effects of state dependence and heterogeneity (in the form of autocorrelation of the
unobserved variables).

Historically, dynamic models leveraging ordered data have been studied in finance. In
these instances, for example, the Bank Rate (BR) adjustment policy of the Bank of
England (Park, 2011), discrete stock price movements (Tsay, 2005) and high-frequency
trading returns (Müller and Czado, 2005) were modelled, as well as in medical socio-
economic studies aiming to explain the development of the perceived severity of headaches
(Czado et al., 2005) or health satisfaction (Contoyannis and Jones, 2004). Dependent on
the type of data used in these applications – time series type (i.e. single DM participating
in repeated decision events) or panel type (i.e. multiple DMs) – the studies focused either
on the serial correlation of alternative-specific utility function errors or state dependency
types of models, assuming very similar model structures as seen in multinomial choice
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models (Kitamura and Bunch, 1990). However, due to the similarities between latent
variable structures, dynamic ordered choice models suffer from similar limitations and
exhibit the same gaps as presented previously, namely lack of support for changing choice
sets and non-uniform sampling times.

The main goal of this research is to contribute a novel model structure that captures the
evolution of preferences for alternatives over time in dynamic discrete choice problem
settings. In order to accomplish this aim, a dynamic SSM that uses weighted revealed
order of preference data from previous decision events is used to extract residual infor-
mation beyond that captured by static DCMs. In essence, the method builds on the
Kalman state filtering algorithm and hence initiates a noticeable departure from the clas-
sical approaches to dynamic discrete choice models leveraging either the lagged outcome
variable (Keane, 2015) or continuous latent states to control for the impact of previous
(unknown) utility functions (Lee, 2014). Furthermore, a new model fitting methodology,
using a two-step approach for separating the linear state space and CL model parameters,
is endorsed and its theoretical viability explained.

This research should contribute to understanding of DCMs with explicit modelling of
the choice persistence effects (i.e. the effects of inertia, which influences the probability
of repeated choice if the same choice was already made in the past), and how they can
be used for predicting the behaviour of a DM. Postulating the lagged effects of a choice
causes us to depart from the classical modelling assumptions used regularly in numerous
marketing studies since McFadden (1974) endorsed the logit modelling structure and the
associated statistical methods for parameter estimation.

The distinctive feature of the proposed approach is that it allows for separating multiple
sources of preference and choice dynamics (persistence in preferences), i.e. it overcomes
the problem of effect-confounding, inherent in other models (especially in state depen-
dence models). Furthermore, it shows how the state space approach can model unob-
served heterogeneity and temporal variability in preferences (variance seeking), using an
ordered outcome as information. Finally, an empirical example of the derived approach,
related both to behavioural (decision-maker related) and economic (betting market re-
lated) information sets, using recent data obtained from UK horse-wagering markets, is
used to illustrate the model’s usefulness and the effects of model bias if persistence in
preferences is not taken into account.

Moreover, since the ultimate result of the described modelling approach is a probability
of choosing an alternative from a given choice set, which occur regularly in several rele-
vant problem settings, there are tangible academic and practical benefits of closing the
identified gaps in the literature. In principle, all discrete choice modelling applications
bound to the persistence in preferences can be classified either as behavioural-descriptive
or direct prediction/forecast focused. The behavioural-descriptive category is bound to
analysis and explanations of mechanisms related to persistence in preferences affecting
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the decisions made by a particular DM and derivation of decision-making strategies lever-
aging the obtained information. For example, studies designed to assess effects of some
exogenous events, e.g. policies, on settings related to persistence in preferences under the
conditions of changing choice sets combined with irregular times between availabilities of
alternatives in decision events will directly benefit from the methodology that closes the
mentioned gaps. There are numerous practical settings that can be related to the gap,
such as credit risk scoring (Florez-Lopez and Ramon-Jeronimo, 2014), real options eval-
uations (Damaraju et al., 2015), transportation decisions evaluations (Mahmassani and
Liu, 1999), political science (Berg et al., 2008), insurance (Florez-Lopez, 2007), labour
economics (Dostie and Sahn, 2008), immigrant welfare (Hansen and Lofstrom, 2009),
and corporate insolvency predictions (Khoja et al., 2016), to mention but a few.

On the other hand, applications that use direct prediction/forecast information may
benefit from the methodology that closes the identified gaps in the literature in a very
straightforward way. Indeed, a resulting model of persistence in preferences that would
offer a ‘better’ model of probabilities of outcomes of competitive sporting or political
events traded in bookmakers or exchange betting markets, could yield above average
profit at the expense of less skilful market participants. The horse-wagering markets,
used in this thesis as an empirical test setting for model evaluations, represent the most
intensively studied market for forecasts of competitive events (Bruce and Johnson, 2000)
and, arguably, the most important application domain. Beyond that, participants in
forecasting markets for other competitive events, such as election results markets (Berg
et al., 2008), or even market makers of general speculative markets (Ghosh, 2002) may
profit from modelling strategy, methodology, and analyses used to close the identified
knowledge gaps. The importance of both focus categories and the associated scope of
research underpin the scientific relevance of the gaps’ closing endeavours.

In summary, this thesis makes a significant contribution to understanding dynamic dis-
crete choice models and persistence in preferences, applied in a naturalistic market en-
vironment, which can be extended easily to forecasting outcomes in financial and other
competitive markets.

The next section discusses the research objectives derived from the problem statement
and correlates them with potential application areas bound to models developed in the
course of this research.

1.2 Research Objectives and Research Application Areas

Two interrelated gaps in the literature help formulate the formal research objectives
bound to the persistence effects in changing choice sets and with irregular sampling.
The first objective addresses the changing choice sets in sequential choice events for
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one decision-maker by taking the information contained in the revealed ranking of the
alternatives, i.e. modelling of the changing choice sets part of the identified gap.

Research Objective 1. To design a decision-making model that feeds back or-
dered choice information obtained from previous decision events, and to predict
the behaviour of a decision-maker facing changing choice sets both in size (num-
ber of alternatives) and the actual selection of alternatives, based on the trend of
the alternative-specific proxy of the preference (or worthiness). The trend shall be
considered endogenous to the model.

The problem setting derived from changing choice sets is not artificial, even if it may seem
to be the case at the first glance. For example, in a political context, representatives
in a democratic parliament face constantly changing alternatives during voting, even
though some of the alternative categories may be similar. Another example from the
same context are municipal elections, in which some parties do not have representatives
in all municipalities (Yamamoto, 2011). Furthermore, varying choice sets can model the
results of sporting events where the probability of a winner from many teams/athletes is
of interest. In such cases, the result of the sporting event can be modelled as the result of
a choice process of an abstract DM (‘nature’), which acts rationally through weighting
of the underlying utility functions. Probably the best example of this approach is found
in horseracing, as first posited by Bolton and Chapman (1986).

In order to close the non-uniform sampling portion of the identified gaps in theoretical
coverage of dynamic discrete decision-making settings, a unified model which utilises
ordered choice information from irregularly occurring previous decision events is required.

The second objective of the work is:

Research Objective 2. To close the gap between uniform and non-uniform (irreg-
ular) sampling times in the context of changing choice sets in a dynamic discrete
decision model that unifies support for non-uniform sampling, changing choice sets,
and ordered choice information on preferences revealed in previous decision events.
If available, information on the relative importance of past decision events can be
used to enhance the informational content of the revealed preference and to miti-
gate effects bound to uncertain reliability of lower ranked alternatives. In particular,
those interested in this research should appreciate the KF as a powerful and flex-
ible method for estimating latent states, especially in the framework of dynamic
decision-making derived from RUM and the utility maximisation principle. A model
parameter identification methodology, which combines both the linear SSMs and
non-linear structures of the CL in a likelihood functional form, shall be derived and
its limitations explained.
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Irregular times between the presence of alternatives in a choice set can occur in cases
of real options, such as opening and closing of mines (Moel and Tufano, 2002) and
divestment alternatives (Damaraju et al., 2015), market studies of differentiable (luxury)
commodities, such as luxury wines (Wolf et al., 2018), and different prediction markets
of irregular events (e.g. extraordinary elections). Moreover, many longitudinal surveys
may lead to incomplete and/or corrupt data (Florez-Lopez, 2010), which can be treated
as irregularly spaced dynamic decision models (Millimet and McDonough, 2017).

Moreover, empirical studies should validate that the endogenous trend variable extracts
statistically significant additional information, which in turn allows for better decision
prediction, compared to the case when only exogenous static variables are included. The
example has a twofold intention: (1) it should present a proof of concept for the proposed
methodology and (2) it should outline an approach that can be used to model competitive
sporting or political events as well as some special financial and competitive markets.

1.3 Potential Challenges

Most of the applications mentioned above postulate, either explicitly or implicitly, the
availability of balanced panel data for parameter fitting and inference, in spite of the fact
that unbalanced panels are the norm (Baltagi, 2008). In a balanced panel, the number
of time periods (i.e. the number of decision events) is the same for all decision makers.
In addition, decision makers face the same alternatives in every decision event. Balanced
panel applications do not pose any principal difficulties as long as the number of unknown
model parameters is relatively small compared to the number of data points available.

Models developed under the assumption that the one decision-maker maker participates
repeatedly in decision events, with changing choice sets and irregular times between two
subsequent instances in which a particular alternative is part of the choice set, have to
overcome two principal difficulties, assuming that the irregular times are a-priori known
(Van Heerde et al., 2004): (1) capturing the correlation of choice attributes that exists
over time and (2) different choice attribute sequence lengths with a significant portion
of very short sequences attributes’ evolution.

Resolving the first challenge is bound to the correct (or at least reasonably good) spec-
ification of the underlying dynamic model, which has to be selected based on some
a-priori considerations. Obviously, since the actual Data Generating Process (DGP)
of attributes’ evolution is unknown, every selected model will generate either a smaller
or a larger approximation error. Hence, the modelling strategy has to make explicit
or implicit provisions for error compensation. For the purposes of this study, there are
two ways of addressing this challenge. First, the trend estimation performance of some
of traditional model-error compensation algorithms (c.f. Jazwinski (1970)), known from
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aerospace applications, is evaluated. Second, for the cases when the traditional algo-
rithms do not yield a sufficient improvement of out-of-sample performance, derivation
of a novel algorithm based on a-priori knowledge of the model structure and the noise
propagation properties between the states and the measurement noise and minimisation
of an estimation error functional with exponential ageweighting of the observed data is
given instead.

The second challenge is of a statistical (data-fitting) nature and has two main con-
sequences: first, correct initialisation of the dynamic model is essential for the short
alternative attribute sequence lengths considered herein, since large initial condition er-
rors could render any forecasted attribute values for the whole (short) sequence useless.
From the practical point of view this translates to the maximum model order require-
ment and model initialisation with a diffuse prior. These requirements are addressed
through a-priori model structure definition and selection of a simulation tool function
that supports diffuse initialisation procedure (Matlab).

Second, the resulting likelihood function, constructed over all alternatives for purposes
of parameter fitting, may become very flat, so that standard optimisation algorithms
may fail to converge and, consequently, optimal parameter values cannot be found. The
problem of flatness of the likelihood function can be overcome through substitution of
classical, gradient-based, optimisation algorithms with their modern evolutionary based
counterparts, such as particle swarm or simulated annealing (Simon, 2013), because of
their reduced sensitivity to local minima.

Furthermore, an additional aggravating effect is the non-stationarity of any a-priori
selected DGP capable of incorporating irregular sampling times. As shown in this study,
the KF with deterministic and known system matrices, as an optimal linear estimator,
can be used to address all challenges inherent in dynamic discrete choice models aiming to
close the identified gaps in the literature. In fact, the proposed model structure generates
a behavioural proxy variable that is statistically significant over the best single attribute
of choice in horse-racing markets (starting price), which is notoriously difficult to achieve
(Bruce and Johnson, 2000).

1.4 Research Contributions – Preliminary Assesments

Guided by the stated research objectives, the thesis provides a gradual build-up and inte-
gration of theoretical and methodological elements needed to close the identified knowl-
edge gaps. During the research endeavour, theoretical and methodological discussions,
analyses, rationales, and evidence contribute, both incrementally and cumulatively, to
knowledge in general and to understanding of dynamic decision-making and modelling
of persistence in preferences in particular. Moreover, the study develops new insights
relating to behavioural biases bound to time duration misperception and unreliability
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of lower ranked preferences, by developing several innovative models and carrying out
empirical tests on recent data drawn from UK betting markets. Furthermore, it assesses
the economic implications of the biases discussed.

This section provides a preliminary assessment of the theoretical and methodological
aspects of the conducted research and its contribution to academic knowledge. In should
be noted though, that the details of the contribution are deliberated throughout the
thesis, and that this preliminary assessment pre-fetches some of the results and conclu-
sions that can be put in the correct sequence only as the thesis develops. A concluding
summary (see 6.2) reiterates the contributions and provides the final outlook on the evi-
dence provided that this thesis makes a significant contribution towards understanding of
the nature of dynamic decision-making in naturalistic environments and the associated
economic importance of the obtained findings.

1.4.1 Theoretical Contributions

The stated research objectives call for formalisation of several effects observable in dy-
namic decision-making, modelled through variables proxying the effects and their integra-
tion aimed to explain and forecast the extent of persistence in preferences. The research
objectives are formulated to close the identified gaps in literature and are bound to def-
inition of a model framework that embeds support for evolving choice sets (GAP 1),
ranked preference data, and irregular duration times between decision events (GAP 2).

Research endeavours presented in this thesis yield five significant theoretical contribu-
tions, derived and implemented in order to obtain an operational modelling framework,
founded on the post-positivistic research paradigm. Explicitly, the first contribution is
bound to estimation of trends of the ‘attractiveness’ of the alternatives, that may be
arbitrary combined in a decision event, thus offering the needed flexibility to model
changing choice sets. The second theoretical contribution is related to the definition
of the stochastic trend dynamics, thus parting from known model structures without
satisfactory provisions against possible confounding of dynamic effects, which in turn
may lead to modelling biases. Treatise on the research-philosophical underpinning of the
study, founded on author’s understanding of the modelling process as incremental reduc-
tion of elements of randomness in existing dynamic decision-making models, comprises
the third theoretical contribution. The fourth contribution of the research is bound to
the research design which allows integration of the persistence in preferences effects, the
unreliability of lower ranked preferences, and the time duration bias. Finally, the fifth
theoretical contribution results from measures of economic significance of the decision-
making biases, reflecting the evidence that trends in horse performances contain residual
information over the market.
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1.4.2 Methodological Contributions

Research objectives, as defined in section 1.2, are predominantly oriented towards def-
inition of a novel modelling framework and far-reaching expansions of the incumbent
methods. Hence, several methodological contributions resulted from the research en-
deavours. The first major methodological contribution is inherent in the designed model
structure, that combines trends of revealed preferences for observed alternatives with
the CL discrete decision-making structure capable of incorporating changing choice sets.
The second major methodological contribution is closely related to the capability of the
designed model structure to use the linear KF including the parameter estimation and
filter initialisation in spite of the nonlinear model setting as a whole. The third major
contribution is bound to the novel error-correcting algorithm, derived in order to mitigate
filter divergence effects caused by unknown statistical properties of the trend DGP and
over-fitting effects, which outperforms both standard linear and incumbent error-filtering
algorithms used in different engineering applications.

In summary, outlined theoretical and methodological contributions are significant and
relevant for researchers and practitioners who apply DCMs with choice persistence as a
modelling approach, since it compensates for effects of some heuristic biases, significantly
improves out-of-sample forecasts of alternative selections, mitigates the effects of over-
fitting, and may offer insights undisclosed by incumbent modelling approaches.

1.5 Thesis Structure

The structure of the remaining chapters in the thesis is as follows:

Chapter 2 begins by introducing the general theory of discrete choice modelling and
the connection between RUMs and modelling assumptions put forward by Thurstone
(1927) and Luce and Suppes (1965). Next, a probabilistic model of decision-making for
a model postulating the utility function, consisting of an observable and an unobservable
random part derived from an expected value over all alternatives, is discussed without
explicitly specifying the stochastic characteristics of the random variables describing the
unobservable parts of the utility function. Specification of a particular form of the Prob-
ability Density Function (PDF) (Gumbel) leads to a logit model definition, which yields
a closed-form representation of the probability of selecting an alternative. Comments
on the usability of the logit model family, and subsequent critique and limitations for
use, conclude the section, which aims at explaining the underlying theory required to
understand the fundamental tools used in classical (static) DCMs.

The same chapter (2.1.2) develops further the structures of DCMs, aiming at capturing
the behaviour of an adaptive DM, which uses information from decisions actually made
and/or the perceived utility elicitation from the past (backward-looking information)
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and/or evaluates the consequences of decisions made today on a future accumulated pay-
off (forward-looking models – Discrete Choice Dynamic Programming Models (DCDPs)).
Two seminal dynamic models suggested by Heckman (1981) and Guadagni and Little
(1983) endorse the usage of information on previous choices in the form of an additive
dummy variable as a proxy of the state dependence effect. Limitations of the dummy
variable approaches are discussed, together with a recent approach presented by Lee
(2014), who includes direct feedback on previously made decisions, with the aim of
mitigating some of the problems inherent in older models, such as the initialisation
and overlapping of state dependence and habit persistence effects. Comments on the
virtues of this model, and a critique regarding inflexibility with respect to time interval
irregularity between the decision events, conclude this section, which sets the stage for
delineating the gap in theoretical understanding of the dynamic DCMs.

Section 2.2 reviews the fundamental structure and equations of linear SSMs as a particu-
larly convenient tool for analysing dynamic systems regularly used in control engineering.
It provides the theoretical underpinning of a model structure capable of capturing the
state dependence and heterogeneity effects defined above. Moreover, it identifies a link
between the Markov property of the latent states vector and the stochastic characteristics
of the two endogenous types of noise, namely the state and output noise. Furthermore,
the concept of state estimation, using a recursive filtering algorithm, KF, is explained,
together with details relating to recursive computation techniques. The intuition behind
correcting the a-priori estimations of latent states and the magnitude of the Kalman
gain, defined as the ratio of variances of the state and output noise, is given. Consider-
ations regarding the optimality of the algorithm under certain assumptions follow. Two
particular model structures, based on state space structural time series models, com-
monly used in econometrics, are put forward for extracting endogenous latent trends,
namely a first-order model (Local Level Model (LLM)) and a second-order model (Local
Linear Trend (LLT)), which are then compared and related to a classical smoothing
algorithm – Exponentially Weighted Moving Average (EWMA). The KF is the central
tool of the envisioned methodology and can be used to satisfy both research objectives.

Section 2.2.4 summarises the capabilities of KF when dealing with irregular and missing
observations, i.e. providing a framework needed for the Research Objective 2, as well
as ways to incorporate them into an operational model. In continuation, model-error
compensation techniques, used when uncertainties regarding the correct model structure
arise, are presented and commented upon.

Finally, Chapter 2 concludes with the formulation of the research questions derived from
the research objectives, which, if analysed and answered, meet the set objectives of the
research and close the identified gaps in the literature.
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Chapter 3 describes the overall methodology selected to meet the research objectives.
It starts with the research-philosophical considerations leading to the selected post-
positivistic research paradigm. Next, the chapter turns to defining the necessary con-
ditions for using KF as a data filtering, smoothing and prediction algorithm, and the
concept of linearisation (inflation) of ordered discrete data, which allows its application.
In 3.4, the tailoring of two general SSMs for trend estimation, with provisions for ir-
regular sampling, is discussed. The operational algorithmic form of the models with the
diffuse prior initialisation approach is explored, together with a definition of the likeli-
hood function that needs to be maximised for model parameter identification. In order to
demonstrate the viability of the selected modelling approach, an empirical validation of
the first- and second-order linear SSMs is conducted, using a dataset capturing six years
of Betfair UK horse-racing data. The dataset description includes the basic descriptive
statistics of the invoked data and an explanation of the split into three data subsets for
model parameter fitting, time series burn-in, and model quality evaluation.

The research design and an associated methodology for model parameter fitting and
model quality evaluation are discussed next. An empirical illustration of the model
leverages horse-betting data collected from UK racing tracks for the years 2007-2012 as
a real-world decision-making setting. Testing the prediction power of the selected model
structure, both in terms of the pseudo-R2 metric and profit from a betting strategy,
allows for an analysis that yields an answers to the research questions asked herein.
Methods and criteria for model quality evaluation, both in-sample and out-of-sample,
are deliberated next.

Empirical results in Chapter 4 present the results obtained from the parameter-fitting
efforts and model evaluation based on the model setup and performance criteria both in-
and out-of-sample. Results from univariate, bivariate, and trivariate models are used to
analyse the statistical significance and economic merits of forecasting models. The results
of the analysis are then used to answer all primary and secondary research questions.

Chapter 5 ties together all of the main findings from the conducted study to discuss
the effects of persistence in preferences in a broader scientific context. Starting from
the empirical results and the evidence collected during their analysis, sources and effects
of the biases are put into the perspective of forecasting performance in the naturalistic
decision-making environment used in this study. The discussion confirms some of the
known effects in the selected setting and shows the way to mitigate the effects of the
highlighted biases.

The conclusions (Chapter 6) reiterate the research in a condensed form whilst highlighting
the theoretical and methodological contributions to knowledge. Internal and external
reflection on the thesis chart the limitations of the study and indicate possibilities for
future research paths that could address some of these limitations and allow for the
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generalisation of the results obtained herein. A research accomplishment summary recaps
the major findings stemming from the results of this study and concludes the thesis.

Figure 1.4 shows the structure of the thesis following Dunleavy (2003)’s model that
describes different breadth levels expected in every chapter.

Breadth of coverage

Sequence of Chapters

Literature Review Methodology Empirical Results Discussion

Introduction

Conclusion 

Figure 1.4: Opening out thesis structure



Chapter 2

Literature Review

Discrete choice models can be both static and dynamic. In section 2.1.1 the main ideas
and conceptual basis behind classical DCMs logit and probit, applied on cross sectional
(static) problem settings are discussed. This is used in section 2.1.2 to explore applica-
tions where a series of choices are made by a DM, who implicitly or explicitly modulates
his behaviour over a sequence of choices or upon estimation of total future pay-off af-
fected by decisions made now. In section 2.2, the theory of linear dynamic discrete SSMs
together with some special forms used commonly in econometrics – structural time se-
ries models – are discussed. In section 2.2.1, the standard linear KF algorithm and its
modification for models with irregular sampling are explained. Finally, in section 2.3,
research questions designed to enlarge upon the research objectives and the identified
gaps in the literature, as defined in Chapter 1, are formulated. Summary of the chapter
concludes.

The chapter structure is selected with the aim to introduce and discuss the main theo-
retical and methodological components of the study. First, the historical development of
the discrete decision making theory, together with the basic DCMs logit and probit is in-
troduced. These models make up the basic building blocks, necessary for understanding
of the dynamic DCMs (see 2.1.2).

2.1 The Discrete Choice Model and Extensions

The famous management science academic Peter Drucker (1954) observed that the fun-
damental activity of management is decision making. Indeed, a manager, acting as an
agent, regularly faces choices, or a series of choices over time, and exercises judgement
by selecting one or multiple alternatives from a set of given options. Even though, theo-
retically, the agent might be facing an infinite number of alternatives, certainly the most
relevant practical case is the one with a countable and finite number of alternatives (i.e. a

17
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discrete choice set). Furthermore, RUMs are based on the assumption that the decision
maker acts rationally and causally, and identifies, assesses, and weighs decision factors
which are unambiguously determining his choice. Unfortunately, in practical settings,
not all decision factors can be identified, so that those elusive, latent, factors are consid-
ered to be unobservable to a scientist (observer) interested in formulating a mathematical
model of decision making in the given setting (Train, 2009). From the scientist’s point of
view, the unobserved components are stochastic as they cannot be determined exactly.
Hence, an approach based on probability theory and statistics is needed for any practical
modelling of decision-making processes and the DM behaviour underpinning it.

2.1.1 Choice Models

Thurstone (1927), whilst trying to define a comparison model of the physical stimulus
intensities and comparative qualitative judgements resulting from them, formulated the
law of comparative judgement. This became the initial idea behind the DCMs. His
model and its underlying assumptions yielded what is now known as binary probit model
applied on resolution of ambiguity of the perception (i.e. perception variance) reported
by the same observer exposed to repeated sequence of stimuli. He introduced the variable
‘psychological state’, which is taken implicitly into account by the decision maker, who
would in turn choose the alternative with the highest value of the ‘psychological state’.
Obviously, this variable is very difficult to model through the first principles of physiol-
ogy, neurology, sociology, and other behavioural sciences (Georgescu-Roegen, 1958) and
should instead be modelled by a random variable.

The ambiguity, inherent in randomness, can be used to conveniently explain variability in
responses, seen as unobserved and different realisations of the random variable proxying
psychological state both between the individuals and when observing repeated decision
outcomes from the same choice set due to time variability of the mentioned state. Thur-
stone (1927) assumed a simple additive utility model encompassing a deterministic and
externally observable (i.e. known) variable Vnj and an unobservable random variable
ϵnj . In other words, the utility Unj , describing a decision event n where one amongst J

alternatives is selected can be expressed as:

Unj = Vnj + ϵn,j , J ∈ [1, 2], (2.1)

where Vnj is a function that relates the observed factors characterising the alternative
and/or the decision maker to the decision maker‘s utility (termed ‘representative utility’)
and ϵnj is a random variable, an ‘error term’, having some ‘convenient’ distributional
properties. Since ϵnj depends implicitly on time (n), this may explain apparently in-
consistent judgements made by the same decision maker facing repeated choices. This
approach was termed RUM due to the stochastic (random) properties of the model.
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Economic research swiftly embraced the theory of choice as a convenient simplifica-
tion. This complements the theory of demand by offering a proxy of human cognition
bound to biological and cultural desires of humans (Georgescu-Roegen, 1958). Marschak
(1960) put forward an interpretation of physical stimulus intensities as random utility
functions. Moreover, Holman and Marley (cited as an unpublished paper in Luce and
Suppes (1965)), provided a decision making model derivation based on utility maximiza-
tion, which reconciled Independence of Irrelevant Alternatives (IIA) axioms and RUMs
for a specific (Gumbel) distribution of the error term variable in the additive utility
model, paving the path for – arguably the most widespread discrete choice model – the
logit model (Luce, 2005). Finally, in his seminal work, McFadden (1974) proved that the
logit functional form for the choice probabilities inevitably yields that the unobserved
error term has Gumbel (extreme value) PDF and is consistent with stochastic utility
maximisation principle (Maddala, 1983; Train, 2009). Mathematical convenience of the
logit models can be easily understood through derivation of probabilities of particular
outcomes, as explained below.

In order to make a probabilistic statement regarding the decision maker’s choice in a de-
cision event n, the probability that the alternative i is selected over all other alternatives
from the choice set i ∈ (1, . . . , J) has to be evaluated:

Pni = Pr(Uni > Unj , ∀j ̸= i)

= Pr(Vni + ϵni > Vnj + ϵnj ,∀j ̸= i)

= Pr(ϵni − ϵnj > Vnj − Vni, ∀j ̸= i),

(2.2)

using the same notation as in (2.1). This is equivalent to the probability that every
pairwise difference of the disturbance terms ϵni − ϵnj is greater than the observed deter-
ministic quantity Vnj − Vni and can be calculated as the expected value of the indicator
function of the inequality expression in (2.2) over all possible values of the unobserved
factors ϵni. Indicator function, defined for a logical (binary) variable x, 1X : X ↦→ 0, 1

as

1(x) =

⎧⎨⎩1 if x is true

0 otherwise,
(2.3)

allows simplification of (2.2) to

Pni = Pr(ϵni − ϵnj > Vnj − Vni,∀j ̸= i)

=

∫
ϵ
1(ϵni − ϵnj > Vnj − Vni,∀j ̸= i) f(ϵ)dϵn.

(2.4)

where ϵ = [ϵn1, ϵn2, . . . , ϵnJ ]
′ is a stacked vector of all random disturbances and f(ε)

is the associated joint PDF. The multidimensional integral in (2.4) can be calculated
analytically only for certain forms of f(ε). Alternative specifications, e.g. multivariable
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normal (which defines the probit family of models) do not have a general closed form
solution except for J = 2 alternatives. Distributional properties characteristic of a
particular member of the exponential family of densities for each unobserved disturbance,
namely type I extreme value (Gumbel), with the PDF in the form are as follows:

f(ϵn,j) = exp(−ϵn,j) exp(− exp(−ϵn,j)). (2.5)

and the corresponding Cumulative Density Function (CDF)

F (ϵn,j) = exp(− exp(−ϵn,j)), (2.6)

allow derivation of choice probabilities in closed form.

This PDF has two important characteristics: a constant variance (π2/6) and a non-zero
mean, which may appear as a nuisance because of the complete lack of flexibility possibly
needed to model different absolute values of the utility. Fortunately, since only the
difference in the utilities matter, the absolute scale of a utility is irrelevant. Moreover, the
first property secures an implicit normalisation of the utility, i.e. the normalisation follows
automatically from the assumptions regarding the underlying distribution. Indeed, since
all disturbances appear pairwise in direct comparison to each other, i.e. as a difference,
the absolute values of the utilities are irrelevant. It can be shown (Krishnamoorthy,
2016), that the difference between two Gumbel distributed random variables follows a
logistic distribution. In other words, random variable ϵ∗n,j,i = ϵn,j − ϵn,i, i ̸= j has a
logistic CDF

F (ϵ∗n,j,i) =
exp(ϵ∗n,j,i)

1 + exp(ϵ∗n,j,i)
. (2.7)

Even though the choice of the Gumbel distribution for modelling the unobserved portion
of the utility function may seem artificial, driven only by the numerical considerations,
and that a choice of the normal distribution would be more logical, this is not necessar-
ily the case. For example, the univariate normal and the logistic distributions are very
close to each other in the wide range of probabilities (especially between 0.3 and 0.7).
Furthermore, outside of that range, logistic distribution has slightly heavier tails, thus
allowing more aberrant behaviour than the normal, i.e. it implies, conservatively, higher
variability of choice probabilities. Hence, for practical purposes, the difference between
the logistic and independent normal errors is negligible. On the other hand, when the
correlation between the unobserved portion of utility of the alternatives is relevant from
a statistical and/or domain specific standpoint, other assumptions regarding the distri-
butional properties, (for example multivariate normal (probit) or Generalised Extreme
Value (GEV)) are clearly preferable.
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Evaluation of the integral in (2.4), yields a closed, readily interpretable, expression for a
choice probability Pn,j (Train, 2009; Pleskac, 2015):

Pn,j =
exp(Vn,j)∑
k

exp(Vn,k)
. (2.8)

Note that the functional form of the observable portion Vn,j is not specified and it may
also contain random variables. In that case, the probability Pn,j becomes conditional
on the realisations of the random variables and evaluation of the probability will involve
multidimentional integration to evaluate the expected value of the sought probability.
In addition, the observed portion of the utility function may be bound both to the
characteristics of the choice and/or the preferences of the decision maker (Baltagi et al.,
2016). For notational purposes, the selected choice, i.e. the result of the decision event i
with respect to the alternative j is defined as follows:

dij =

⎧⎨⎩1 if the alternative j is selected in a decision event i

0 otherwise.
(2.9)

In summary, logit is a very widespread and capable model, which can model a large va-
riety of decision making problem settings. Building on the linear functional form of the
observable utility function, which describes the characteristics of the alternatives (denom-
inated CL by McFadden (1974)), a plethora of logit-based human decision-making mod-
els have been put forward in domains of transportation/carpooling (Neoh et al., 2018),
economics (Martinelli et al., 2018), tax policy (Grigolon et al., 2018), credit rankings
(Florez-Lopez and Ramon-Jeronimo, 2014), corporate insolvency (Khoja et al., 2016),
insurance (Florez-Lopez, 2007), marketing (Elshiewy et al., 2017), financial education
(Becchetti et al., 2018), gambling studies (Gainsbury et al., 2016), and others (Athey
and Imbens, 2007; Hensher and Johnson, 2018). Logit-based models are appropriate
when systematic taste variation (related to observed characteristics of the alternatives
and/or decision maker) as opposed to random (uninformative) taste variation (differences
in tastes that appear random and cannot be put in a functional relation to observed char-
acteristics) are of interest. On the other hand, in cases when IIA does not hold, and more
flexible forms of substitution between alternatives are inherent in the problem setting,
alternative models may have to be invoked. Furthermore, if the effects of correlation in
time are negligible, i.e. if disturbances as proxies for unobserved decision factors have
constant statistical characteristics over time in repeated choice situations, then logit can
capture the dynamics of repeated choice. In all other cases, where disturbances are cor-
related over time, the logit model structure, in the presented form, cannot be applied
without risking significant bias. Consequently, an effective approach for modelling of
dynamic choices has to be put forward (Hsiao, 2014).
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All introduced rationales and models until now aim to explain the static decision be-
haviour of a single DM participating in a decision event. The next section discusses
state-of-the-art models of evolution of preferences for alternatives over time, i.e. dy-
namic DCM models. Based on the critique of the properties of the available models, two
gaps in the literature are identified. The gaps encompass lack of support for changing
choice sets in repeated choices and non-uniform time distance between the successive
availability of different alternatives. Fundamental characteristic of the studied dynamic
models is the lagged information on the preferences revealed in the past.

2.1.2 Dynamic Discrete Choice Models

DCM discussed until now, certainly play a fundamental role in many sciences interested
in the description of both aggregate and disaggregate decision making processes. How-
ever, especially in economics and marketing-driven studies of markets, a case for rigid
structures and consistent behaviour of market participants can hardly be made (Hensher
and Johnson, 2018). For example, demand preferences are in constant flux (e.g. shift-
ing market conditions: appearance of new products and product substitutes, evolution
of market participants, calendar effects, etc.), which indicates a need for an approach
which takes the temporal dimension of decision making into account (Lachaab et al.,
2006; Keane et al., 2011).

Economic decision making research was traditionally founded on the assumption that
every discrete decision is based on a set of preferences for the given opportunity, evaluated
using stochastic complete information. Considering, for example, a rational decision
maker, aiming at utility maximisation resulting from his choice, a researcher could build
a number of choices derived from the information set available. These might include
product attributes, prices, and promotional activities (advertising, visual merchandising,
etc.). Assuming that the attributes (under complete stochastic information), prices,
and promotional activities are constant over time, the individual utility maximization
principle will inevitably yield the same choice at every decision making instance (e.g.
purchase) (Adamowicz and Swait, 2012).

On the other hand, psychologists have defended the stand that the preferences are con-
structed on the spot by an ‘adaptive decision maker’, based on the task and context
factors present during choice evaluation (Dai et al., 2010). Casual observation suggests
that the decisions made by an ‘adaptive decision maker’ may be temporally variable even
in ceteris paribus cases (Swait et al., 2004; Leong and Hensher, 2012), caused possibly
by learning (temporal preference evolution), habit persistence (current preferences be-
ing affected by previous preferences), consumption inertia (use of heuristics), and state
dependence (current preferences being affected by previous choices).
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Moreover, recent research in behavioural marketing endorses a family of models of deci-
sion making lifecycles (Cherchi and Manca, 2011). These start from initial (uninformed)
preferences of a DM, defined as a initially favoured selection of attributes and follows
their evolution from one decision event to the next, as the DM learn and acquire taste
over time.

Furthermore, evolution of consumer preferences (translation of the initial decision into
inertia of repeated choices) are of large practical interest, especially for marketeers and
economists. In its essence, any model of taste evolution has to put forward a mechanism
capable of capturing different levels of correlation between successive choices (Cherchi
and Manca, 2011). As a consequence of the correlation, any DCM, which does not ac-
count for these temporal (dynamic) factors, is likely to be biased. In order to account
for the dynamic behaviour, a representative utility function, which, in every time slice
(i.e. between the decision events), depends on observed variables from previous periods
and, possibly, characterize how will current decisions affect future choices and outcomes
(resulting cumulative utilities). Models built around utility functions that depend both
on forward and backward time horizons are called full dynamic models. Forward look-
ing models (sometimes called DCDP in academic literature) postulate that the decision
maker is solving a Bellman dynamic programming problem over the time period of in-
terest. This is achieved by splitting the resulting cumulative utility (pay-off) into the
component contemporaneous with the decision event and the future utility component,
under the assumption that every future decision event instance will yield an optimal de-
cision (Arcidiacono and Ellickson, 2011; Abbaszadeh, 2015). In order to formally define
a DCDP model, both (1) an explicit expectation function for calculations of the present
discounted value of lifetime utility or profits across all possible choices and (2) an optimal
ex-ante decision rule for future decision events, have to be specified. In addition to the
intrinsic complexity of such models and the computational burden for the optimal solu-
tion of the decision strategy (rule and pay-off evaluation), existence of multiple equilibria
at decision event times can cause the indeterminacy of the solution for multiple-agents
models (Aguirregabiria and Mira, 2010).

Full (forward) dynamic choice models are still relatively rare, in spite of numerous em-
pirical problem settings in which total net future pay-off, derived from current decisions,
plays a central role, caused predominantly by the computational burden and tractability
of estimation of the parameters of the structural model. Several important studies of
(1) occupational choices and job matching (Sullivan, 2010; Keane et al., 2011), (2) patent
valuation (Pakes, 1986; Collan and Kyläheiko, 2013), (3) valuation of real options in
mining business (Collan et al., 2016) (4) capital equipment replacement decision making
(Rust, 1987; Schiraldi, 2011) and, (5) dynamic stochastic models of fertility and child
mortality (timing and spacing of children) (Wolpin, 1984; Werding, 2014; Adda et al.,
2017) demonstrated that, under certain restrictions, the full dynamic approach is math-
ematically tractable and economically feasible. However, due to the high modelling and
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computational effort (‘the curse of dimensionality’), it is likely that fully dynamic dis-
crete choice models will remain of interest only in cases that promise high net returns
as a result of search for an optimal dynamic decision strategy and execution (Cantillo
et al., 2007; Arcidiacono and Ellickson, 2011).

Backwards looking dynamic DCM are far more widespread. Ever since Guadagni and
Little (1983) explored scanner data captured in supermarkets to model customer pur-
chase dynamics and analyse effects of price and other marketing variables on repeated
purchases, the application of choice models to panel type of data has been discussed in
numerous studies by researchers from different social sciences (e.g. marketing, transporta-
tion research, agricultural, labour, and environmental economics (Keane, 2015)). Even
before scanner data became a major source of empirical data, labour economist Heckman
(1981), whilst studying employment dynamics, put forward a model of repeated choice.
His model accounted for: (1) permanent unobserved heterogeneity in preferences (taste
variation between decision makers) (2) state dependence (current preferences being af-
fected by previous choices), (3) initial conditions (a-priori information about preferences
before the observation period available to the researcher), and (4) serial correlation in id-
iosyncratic taste shocks (arising either from time variant unmodelled attributes of choice
or from genuine random choice behaviour). He combined these four sources of dynamics
in a ‘canonical’ additive model for the utility that a DM i receives from the choice j, at
the choice event time t. This model is linear in known and exogenous (i.e. independent
of the unobserved component of the utility choice attributes Xi,j,t):

Uijt = αi,j +Xi,j,tβ + γdi,j,t−1 + εi,j,t; εi,j,t = ρεi,j,t−1 + ηi,j,t (2.10a)

di,j,t−1 =

{
1 if Ui,j,t−1 > Ui,k,t−1 ∀k ̸= j

0 else
(2.10b)

The first term αi,j in (2.10a) describes DM intrinsic unobservable time invariant prefer-
ence for the choice j; β is a standard linear weighting of the attributes Xi,j,t common
across all DM. Utility state dependence is approximated through a lagged choice vari-
able di,j,t−1. In its simplest form, it is only a dummy variable indicating whether the
particular alternative has been selected during the last decision event (2.10b), named by
Heckman (1981) ‘structural’ state dependence. The parameter γ reflects the effects of the
selection made in the decision event at time t− 1 on the utility function constructed for
the event at time t. The literature also describes other variants of the state dependence,
based either on classical weighted smoothing of the discrete time series of choices made
(for example ‘brand loyalty’ by (Guadagni and Little, 1983; Vulcano et al., 2012)) or on
a more sophisticated discrete or continuous state space model (Erdem and Keane, 1996;
Lee, 2014). Defined in such way, state dependence is a proxy of combined psychological
or microeconomic effects such as habit persistence, learning, variety seeking behaviour,
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switching barriers, growth of inventories, etc. The term εi,j,t models time evolution of
preferences through decision-maker-specific taste shocks (i.e. individual effects) following
an autoregressive process (2.10a) with the fundamental disturbance ηi,j,t. Interpretation
of the idiosyncratic taste shock εi,j,t is dependent on the general modelling philosophy.
In case of economic RUM theory, the taste shock models the time varying development
preference part, as opposed to time invariant intrinsic preference portion αi,j of a DM’s
heterogeneous and unobserved utility (Manzini and Mariotti, 2014; Fudenberg et al.,
2015). On the other hand, in psychology-based models of choice, ηi,j,t are genuinely ran-
dom (erratic) portions of choice behaviour. For both models, a DM always maximizes
his (externally unobservable) utility Ui,j,t at time t (2.10b).

In spite of the relatively straight forward interpretation of the elements from (2.10a),
lagged choices can generate a nuisance ‘spurious state dependence’ effect in models with
serial correlation of the εi,j,t shocks. This is caused by residual informational content in
lagged choices (which can be used to predict the shocks), observed also in the economet-
ric mover-stayer models (Singer and Spilerman, 1976; Cipollini et al., 2012; Shen and
Cook, 2014). The same informational content can lead statistical tests to erroneously
indicate the significance of the state dependence (Dubé et al., 2010) even when only serial
correlation is present. In other words, serial correlation models explain persistence in
individual unobserved differences between the decision makers, which (1) made an exter-
nally unexplainable preponderance in previous decision events and (2) do not affect the
observed utility function of a decision maker. Obviously, the problem of distinguishing
the true state dependence from serial correlation is difficult due to the unknown specifi-
cation and theoretically infinite path dependence of the disturbance structure, and the
fact that the conditional probability of a choice in not equal to the marginal probabil-
ity, i.e. Pr(di,j,t|di,j,t−s, Xi,j,t) ̸= Pr(di,j,t|Xi,j,t). Even though spurious state dependence
was studied extensively in labour economics (Bell and Blanchflower, 2011; Mosthaf et al.,
2014), lack of robustness against the disturbance functional form misspecification remains
both a theoretical and a practical problem.

Another non-trivial problem bound to any model that contains lagged dependent vari-
ables is the problem of initial conditions, i.e. model fit reliance on dependent variable
values di,j,0, di,j,−1, . . . realised before the beginning of the observation period t = 1.
Lack of knowledge regarding the previous decisions made at t ≤ 0 may lead to an incon-
sistent and biased model (Hsiao, 2014). Even though the problem of initial conditions
has been investigated extensively in the past, for non-linear models one of the following,
rather strong assumptions, is typically made; either (1) the initial conditions are assumed
to be truly exogenous and can be treated similarly to a deterministic variable Xi,j,0, or
(2) the initial conditions are random and the conditional distribution is in the steady
state (in equilibrium). Neither of the approaches is really satisfactory. Both assumptions
yield significantly biased estimators and are mathematically challenging with respect to
derivation of the conditional likelihood function in the same time (Wooldridge, 2005;
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Hsiao, 2014). Even though an approximate solution proposed by Heckman (1981) yields
an effective bias correction (Miranda et al., 2007; Akay, 2012; Stegmueller, 2013), it is
somewhat more complex to implement. In any case, any dynamic method proposed will
have to put forward a method to address the initialisation and treatment of conditional
probabilities in the model.

A recent PhD thesis by Lee (2014) endorsed a substantial modification of the model
(2.10a), which starts from a discrete state Markov process towards more flexible (latent)
continuous underlying utility state µi,j,t. The expression for the utility function Ui,j,t

is additive, encompassing two latent variables: the underlying utility state µi,j,t and
the serially correlated error term wi,j,t = λiwi,j,t−1 + ηi,j,t; ηi,j,t ∼ NID(0, σ2

η) with the
fundamental shock variable ηi,j,t:

Ui,j,t = µi,j,t + wi,j,t (2.11a)

µi,j,t = ϕiµi,j,t−1 + αi,j +Xi,j,tβ + (λi + ϕi)wi,j,t−1 + ξi,j,t. (2.11b)

Here, the dynamics is defined in terms of development of µi,j,t, αi (the intrinsic preference
proxy of the decision maker i for the choice j) and the fixed utility weightings β for the
(exogenous) attributes of the alternatives. Since Ui,j,t is independent of its previous
values (i.e. Ui,j,t−1), the current choice di,j,t is independent of previous choices given the
value of the current underlying state µi,j,t. Parameters ϕi and λi are parameters of an
equivalent ARMA(1,1) models of the latent state (habit persistence) with the input noise
wi,j,t.

For clarity, several comments regarding the model structure are in order: (1) Gumbel
disturbance ξi,j,t does not affect the utility function directly, but instead the latent state
µi,j,t, (2) the dynamic portion of the model (2.11b), together with the serially correlated
error term builds a regression model with ARMA(1, 1) errors, and (3) in spite of the
name of the model with terms ‘state space’ and ‘habit’ stressed, state dependence is not
accounted for, since there is no direct feedback from the actually made decision di,j,t to
the utility function model.

Furthermore, Lee (2014) commented on insights regarding the decision making behaviour
in the example of repeated purchases of fast-moving consumer goods in a major grocery
store, captured as cashier scanner data. This demonstrated some improvement of the
model fit compared to classical models with the lagged dummy variable capturing pre-
vious choices measured. Comparison of the fit criteria was derived from Bayesian In-
formation Criteria (BIC). Somewhat surprisingly, his model is not affected by initiation
problems and the autoregressive nature of the state space utility model provides better
control of prior features and other shocks, thus allowing differentiation between habit
and variety seeking behaviour. However, the modelling approach has some significant
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limitations; first, lack of the feedback on the actually made decision makes its usage in
forecasting and out-of-sample studies (e.g. marketing applications aimed at estimating
of price and promotion effects, and analyses across markets for hedonistic and utilitarian
goods), problematic at best. In addition, the model is an event-dependent discrete time
model (i.e. it does not take elapsed time between purchases into account), which could
affect both habit and variety seeking. Furthermore, usage of Bayesian fitting in panel
model setting requires long sequences of decision events on a single decision maker (typi-
cally more than 30), something which is available to researchers practically for utilitarian
fast moving everyday goods only.

Addition of the revealed ordered preference information from previous decision events
allows a generalisation of the proposed models. The next section discusses the informa-
tional gain given through inclusion of the ordered information in the model.

2.1.3 Dynamic Ordered Choice Models

All models discussed until now use binary or multinomial choice models, i.e. models
which captured the decision made from a discrete choice set without specifying the order
of preference for non-selected alternatives. In cases when the decision maker reveals this
order the additional information may be taken into account to model dynamic changes of
the underlying utility functions even in classical ‘one-out-of-many’ multinomial problem
setting. Examples of ordered classification of choices include bond ratings, polls on
political issues, product preferences, and happiness/health condition surveys (Boes and
Winkelmann, 2006; Greene et al., 2010; MacKerron, 2012), to mention but a few.

Ordered choice dynamic effects in models have been studied in two settings (1) time series
setting where behaviour of only one decision maker over a long time period is studied and
(2) panel data setting, where the decision-making behaviour of multiple decision makers
is addressed. The remainder of the section synthesises the taxonomy and ‘show-case’
examples of ordered choice dynamic effects models given in Greene et al. (2010).

Time series settings have been predominantly used for modelling tasks where behaviour
of an ‘abstract’ decision maker – such as ‘Nature’ or ‘Stock Market’ is studied. For
example, decisions made by ‘stock market’ determine stock prices movements, effects
of monetary policy on unemployment rates and interest rate changes, foreign exchange
rates, etc. Tsay (2005) describes a model with a latent continuous time random variable
y∗i,t underlying an asset i at time t

y∗i,t = β
′
xi,t + εi,t (2.12)

where xi,t are exogenous explanatory variables and εi,t is heteroscedeastic disturbance
with E(εi,t|xi,t,wi,t) = 0 and Var(εi,t|xi,t,wi,t) = σ2(wi,t), where wi,t is a vector of
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explanatory variables which includes the time between t and t− 1 and ‘some conditional
heteroscedeastic variables’ (Hensher et al., 2005). Under the assumption that the ob-
served asset price change is discretised into a fixed set of intervals, an observable variable
yi,t reflecting the associated return of the asset, has an ordered probit model structure

yi,t = sj if αj−1 < y∗i,t ≤ αj , j = 1, . . . , J, (2.13)

with categorisation in J discrete groups and natural ordering with boundaries αi. In the
show-case application of the model, a panel of more than 100 New York Stock Exchange
stock prices was initially presented by Hausman et al. (1992) and consolidated by Tsay
(2005). A similar approach using the Australian Securities Exchange data was recently
put forward by Yang and Parwada (2012). The received models allowed treatment of
the irregular (and random) timing of transactions whilst accounting for the correlations
between price changes and other exogenous macroeconomic and trading variables (e.g.
trading volume). Model structure selection was very application oriented. Indeed, in the
time of the study, the price changes were expressed in ticks, i.e. fractions of a dollar.
Consequently, a discrete output variable was a natural choice and the heteroscedasticity
of the disturbance dictated the usage of a probit model due to mathematical problems
bound to the Gumbel distribution in the conditional probability concepts (Campbell
et al., 1997; Gourieroux and Jasiak, 2018). However, in spite of the relatively good
results on the studied data set, two modelling issues remained unsolved - selection of the
the specification of the explanatory and conditional distribution density regressors and
potential non-stationarity of the choice set.

Attempts to use an alternative specification of the error term (simple autoregressive
structure εi,t = ρεi,t−1 + ut, with normal fundamental disturbance ut and serial auto-
correlation coefficient ρ), complicates the parameter estimation considerably. This arises
since the serial correlation in the model means that the time series is a path-dependent
sequence of duration N , which, as a consequence, requires evaluation of a N -variate
normal integral for parameter estimation (Eichengreen et al., 1985; Park, 2011). The
models used the Bank of England BR adjustments policies data over a period of over six
years (during the period of the inter war gold standard) with BR increments as a latent
dependent variable and with absolute values of BR in the ordered probit evaluation.
Their results revealed the violations of the stated Bank of England policies in a ex-post
analysis and provided the benchmark for comparative research on central bank policies.
However, this did not resolve the modelling issues inherent in the models described before
– namely, the numerical complexity of model fitting caused by path dependence (due to
the serial correlation) and lack of provisions for irregular sampling and out-of-sample
forecasting.

A state dependency model, similar to (2.10b) without the disturbance correlation or
heteroscedeasticity, was designed to study the perceived severity of migraine headaches
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of a single patient captured several times per day over nine months (Czado et al., 2005).
The model implements a feedback on previous choice (state dependence), ordered by
severity on a six-value scale in an autoregressive structure

y∗t = β
′
xt + γy∗t−1 + εi,t, (2.14)

where y∗t is a continuous underlying state reflecting to migraine severity, recorded as
a discrete value yt ∈ 0, 1, . . . , 5. Observed parameters, linearly weighted include the
attributes such as weather conditions and day of the week. The parameter γ is the
coefficient of autoregression (persistence of migraine severity compared to previous day)
and εi,t is the proxy of unobserved effects.

As expected, the state feedback component complicates the estimation and even though
a fitting approach was proposed, the model suffers from the same problems as (2.10a).
These problems include initialisation issues and lack of provisions for irregular sampling
and changing choice set (Müller and Czado, 2005; Mizen and Tsoukas, 2012).

This thesis focuses on preference dynamics in choice models described by a time varying
random utility model, where a choice decision has to be made through comparison of
utilities Uijn of j alternatives from the choice set Jk, all indexed on decision events n:

Uijn = βxin + ϵjn + yijn, j = 1, . . . , Jn; i = 1, . . . , NRmax;n = 1, . . . , NEmax (2.15)

Here, NRmax is the total number of alternatives in all decision events and NEmax is the
total number of decision events. The equation has the same basic structure as (2.1),
with the specification of the representative utility as the linear combination of exogenous
choice attributes and the split between two uncorrelated endogenous random variables
ϵnj and yijn that can have different statistical properties, which can be understood as a
decomposition of the latent error term in (2.1) in two independent random components.
Idea behind this decomposition is that one of the endogenous random variables (yijn)
can be an output of a random process that takes ordered information from previous
decision events and constructs a random trend. The expected value of the trend at the
time of the event n is then used as dynamic characteristic of an alternative and taken
into account in the CL model (2.8). A conceptual representation of the introduced split
of the unobserved utility is given in Figure 2.1. It should be noted that, even though
there is no explicit time variable in (2.15), the dynamics of decision making is captured
through the decision event index n. Furthermore, the decision set size Jn varies from
one decision event n to another n+1. All possible alternatives are captured in a discrete
pool and indexed by i. This is a decision event setup, in which the alternatives available
in a decision event are a-priori known.

DCM with underlying unobservable, latent, states, which track dynamics of change
and allow for estimation of choice preferences, temporal, and memory effects are not
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Figure 2.1: Error Components Decomposition

a new idea (as mentioned in Chapter 1). However, models with hidden states offer
satisfactory results only in combination with an algorithm for estimation of the latent
states following revelation of the actual choices. Unfortunately, the KF, as the optimal
linear filter for state estimation, cannot be directly implemented in a decision making
context when states represent a portion of a utility function. This arises because of
the inherent nonlinearity of logit and probit functions used. Indeed, KF was used for
adaptive adjustment of parameters of nonlinear models under the assumption that their
evolution follows linear dynamic laws. A recent dissertation by Guhl (2014) discussed
KF for demand and price estimation where the parameters follow a random walk. In
spite of the sound theoretical treatise presented, the data sets used are seriously limited.
In addition, there were no exogenous covariates available and the work only involved
fixed choice sets. Moreover, only balanced and time equidistant panels were considered.

In an earlier publication, Edelman (2007b) applied KF on Hong Kong horse-racing panel
type of data in which regression parameters of CL evolve race by race and are corrected
after every race. Classical KF that tracks linear regression parameters of the logit func-
tion did not deliver good results. This may have arisen because the parameters of the KF

were guessed and not estimated. A modified version of logit model, with KF using Radial
Basis Functions instead of linear regression delivered viable Return on Investment (ROI)
and pseudo-R2 results. However, they mostly arose under selection of longshot horses
implying highly risky betting patterns. In conclusion, a KF based model of underlying
utility presented in this thesis is a novel approach and will be developed in section 3.2.

The next section discusses the fundamentals of SSM models and the adequacy of their
usage in DCM, where the states underlying the utility function are modelled and where
expectations about attributes are incorporated. In addition to the introduction on the
intuition behind linear SSMs, the central topic of this section is the application of the
KF for state estimation purposes, together with the modifications of the algorithms for
non-uniform times between state updates and the model-error correction, implemented
to mitigate effects of filter divergence.
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2.2 State Space Models

Linear state space modelling approach is arguably one of the most important tools in
a control engineer’s toolbox – it is used for control of different systems, such as rocket
propulsion vectoring, missile guidance, power plants, vehicle stability control, robotics,
tracking applications (Kovacević and Djurović, 2008), etc. In spite of several simplifying
assumptions that are practically never met, SSM are also used extensively in statistics,
finance, and econometrics (Harvey, 1990; Durbin and Koopman, 2012; Schlittgen, 2015).

Fundamentally, every linear deterministic (stochastic) dynamic system described by a
set of ordinary (stochastic) differential equations can be transformed into a SSM. State
space models are extremely flexible and can be used to easily describe very general
model settings with multiple inputs and/or multiple outputs, called multivariable models.
Whilst multiple inputs alone do not principally cause any difficulties even in classical
Autoregressive Moving Average (ARMA) settings, SSM are particularly convenient for
definition of multivariate time series, i.e. systems with multiple cross-coupled inputs and
outputs (Shumway and Stoffer, 2006). The model described below outlines the state
space equations for the general multivariate case, which are than adjusted to a given
problem setting.

The name ‘state space’ models reveals that it consists of states, which, contrary to the
outputs y of the models, are hidden and cannot be observed directly. In physical systems
the states model elements of the system having inertia (i.e. can store energy) or some
kind of memory of the past which influences the present.

The relationship between unobserved states αt and the output yt is given through the
measurement equation, yielding m observed output values stacked in a vector

yt = Ztαt + dt + εt, t = 1, . . . , T (2.16)

with Zt as an sensor matrix (which generates linear combination of the states to form the
output) and dt is a vector (output offset) and εt is a noise vector of normally distributed
and serially uncorrelated disturbances with zero mean (E(εt) = 0) and known variance
(Var(εt) = Ht). Furthermore, dynamics of the model is captured in the state equation
which has a first order Markov property, i.e. states depend only on the immediately
preceding state and have no memory of other past states (Anderson and Moore, 1979).
The transition equation

αt = Ttαt−1 + ct + ηt,E(ηt) = 0,Var(ηt) = Qt, t = 1, . . . , T, (2.17)

with Tt is a state transition matrix, ct is a drift vector, and ηt is a state disturbance
variable (called process noise in the further text). It should be noted that the vectors
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dt and ct model additive effects caused by exogenous variables, such as economic policy
changes or seasonal effects. Disturbances εt and ηt represent measuring uncertainties
(measurement noise) and unmodelled dynamics (process noise). In the simplest form,
the disturbances are neither cross correlated with each other nor correlated with the
initial state vector α0 which has a mean of a0 and a covariance matrix P0. The general
term for the matrices Tt, Zt, Ht, and Qt is system matrices and they are assumed to
be deterministic (i.e. non-stochastic) but possibly time-variant. This notation is kept
throughout the thesis.

Tightly connected to the time variance of the system matrices is the notion of stationarity
of the stochastic processes described by the model; a stochastic process X(t) is said to
be stationary if its properties do not change over time, i.e. if any joint PDF, constructed
on a finite number of discrete time points f(X(t1), X(t2), . . . , X(tn)) is invariant to time
shifts f(X(t1), X(t2), . . . , X(tn)) = f(X(t1 + τ), X(t2 + τ), . . . , X(tn + τ)), ∀ti, τ, n of
the realisation time points. Weak stationarity, i.e. the stationarity up to the second
moment, is given for Gaussian processes when the autocorrelation function Rxx(t1, t2)

is dependent only on the time difference τ = t2 − t1, Rxx(t1, t2) = Rxx(τ) and not on
the actual times t1 and t2. Obviously, if the system matrices are time-variant, the model
is non-stationary. Unfortunately, the opposite does not hold – even with time-invariant
system matrices, a model is not necessarily stationary. Since the econometric models
are seldom stationary, the ability of the SSM to handle non-stationarity is of crucial
importance.

A fundamental characteristic of the model defined by (2.16) and (2.17) is that it describes
a linear model, since all states and all variables are linear combinations of either previous
or current states. In other words, the linearity allows that the output yt at any time can
be expressed by a linear combination of the initial state α0 and the actual realisations
of the disturbances εt and ηt. Finally, for the model (2.16) and (2.17) the whole set
of mathematical tools inherited from control theory used to characterise the dynamic
behaviour, such as stability, controllability, and observability criteria are readily available
and well understood. For example, the linearity allows conclusions about the stationarity
based on the stability criteria for systems with time-invariant system matrices and the
observability criteria give indication regarding the identifiability of the model parameters.

Linear SSMs defined by (2.16) and (2.17) are very versatile, since (1) many nonlin-
ear models can be approximated through linearisation and (2) even nonlinear effects of
exogenous variables can be successfully modelled if the underlying functional form is
known.

In addition, non-stationary time series models can easily be represented by SSMs, con-
trary to classical time series ARMA models. However, it should be noted that the
models are capable of tracking dynamics of the states αt (and, subsequently, yt) only if
all (eventually non-stationary) system matrices and exogenous inputs are predetermined
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(known), since only the states αt are endogenous to the model (Harvey, 1990; Durbin
and Koopman, 2012).

Definition of a SSM is achieved by construction (selection) of hidden state variables,
whose dynamics is of interest. Moreover, the states may or may not have a physical (e.g.
temperature, voltage) or substantive (e.g. trend, seasonality) interpretation, i.e. they
can also be abstract constructs selected using some auxiliary criteria, such as numerical
stability or value limitations. A SSM designed for a given problem is, as a rule, not
unique, since for the same set of equations an infinite number of different models can
be built through, for example, linear transformations. Hence, the model quality has to
be evaluated based on general criteria, such as parsimony, on one side, and inclusion of
all relevant information on the other. Models with the minimum system dynamics order
(i.e. dimension of the state vector αt), which can describe the dynamics satisfactory,
have, in general, also the minimal number of parameter needed for system definition. In
the most common practical case, the system matrices Tt, Zt, Ht, and Qt are unknown
and have to be estimated from the available data set. There are two main estimation
methods available, derived from Maximum Likelihood (ML) and from Expectation Max-
imisation (EM) approaches (Durbin and Koopman, 2012). However, the presence of two
sources of disturbances (ηt and εt) complicates the estimation task considerably com-
pared to ‘classical’ dynamic models such as, for example, ARMA models. In addition,
two fundamentally different groups of unknown parameters can be defined - parameters
describing the stochastic properties of the model - the system matrices Tt, Zt, Ht, and
Qt concatenated into a hyperparameter vector θKF and the parameters describing the
time variant drift vectors ct and dt, which deterministically affect the expected values of
the observations and the states.

It is important to note that the state space model described by (2.16) and (2.17) is
not the most general linear model. It is a discrete time model, i.e. it models system
behaviour only at finite number of discrete points in time ti; i = 1, . . . , T, T ∈ N, defin-
ing T − 1 time slices in between them. For the sake of simplicity, in the further text,
the considered point in time t is denoted as ti for any i ∈ 1, . . . , T, and the immedi-
ately preceding point in time t − 1 is denoted ti−1 unless otherwise specified. A more
fundamental generalisation, which allows representation continuous time behaviour can
readily be constructed through conversion of the system of difference equations into a
system of differential equations. However, particular care has to be given to non trivial
conversion of the discrete random processes εt and ηt into their continuous counterparts
(Jazwinski, 1970; Simon, 2006; Kovacević and Djurović, 2008), which require rigorous
usage of generalised functions treated in functional analysis (Arsenović et al., 2012).

In the course of the research presented in this thesis, an adjustment for continuous
time behaviour is needed because of the potentially irregular nature of the studied time
series (as explained in 2.3). Didactically, it is far easier to understand the discrete (c.f.
continuous) time SSM and, hence, the following sections focus only on them. The proper
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treatment of the irregularly sampled systems, which can be reduced to discrete models,
is put forward in 2.2.4.

Estimation of the underlying latent states is one of the central topics in control theory.
In this study, it is used to estimate unobserved portion of the utility. The next section
provides general infrastructure for state estimation based on the KF, as required by
Research Objective 2.

2.2.1 State Estimation and the Kalman Filter

As explained at the beginning of 2.2, the states, inherent in a SSM, are hidden, i.e.
they are not directly observable from outside. Moreover, the exact realisations of the
random disturbance variables are also not known. However, for many purposes, such
as design of advanced control algorithms and statistical signal processing, estimates of
the states are very beneficial and the efforts to develop an algorithm for that purpose
was more than justified. Building on original Gauss ideas for estimating planetary orbits
through recursive least squares and Wiener-Kolmogorov theory of stationary filtering
(Sorenson, 1970; Simon, 2006), Hungarian mathematician and engineer Rudolf Kalman
(orig. Kálmán) endorsed a recursive algorithm for estimation of (dynamically changing)
states at the same time as new values (measurements) of the observed variables become
available. Under the standard assumptions of linearity and normality of the defined
random variables, his algorithm yields the first two moments of the conditional PDF,
both when having the knowledge of all realisations of yi, i = 1, . . . , t − 1 (stacked in a
vector Yt−1 = [y1, y2, . . . , yt−1]

′) - called a-priori estimate, as follows:

α̂t|t−1 = E(αt|Yt−1)

Pt|t−1 = E[(αt − α̂t|t−1)(αt − α̂t|t−1)
′
]

(2.18)

and when having the knowledge of all realisations of yi, i = 1, . . . , t (stacked in a vector
Yt = [y1, y2, . . . , yt]

′) - called a-posteriori estimate, as follows

α̂t|t = E(αt|Yt)

Pt|t = E[(αt − α̂t|t)(αt − α̂t|t)
′
].

(2.19)

The notation α̂t|t−1 represents the estimated value of α at time t based on values known
until and including the time t−1 (a-priori estimate), i.e. the state estimate conditional on
realisations of the variable y until and including the time t−1. Similarly, α̂t represents the
estimated α at time t conditional on the realisations of the variable y until and including
the time t (a-posteriori estimate). In the engineering literature, the typical notation for
a-priori (α̂−

t ) and a-posteriori (α̂+
t ) state values are different because of their merits for

analysis of causality and easier interpretation of the results in non-equidistant discrete
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or continuous time models. Same convention can be applied to the a-posteriori Pt|t and
a-priori Pt|t−1 covariance matrices of the state estimation error.

Furthermore, practical applications of the Kalman filter require that the initial (uncon-
ditional) values for the states α0|0 = α̂0, the state estimate error covariance P0|0 = P0,
and the system matrices are known. For an arbitrary point in time t, assuming that an
estimate of the states at time t− 1 and the matrices Tt, Zt, Ht, and Qt are known and
that (2.16) and (2.17) hold, the optimal a-priori estimator is given by:

α̂t|t−1 = Ttα̂t−1 + ct (2.20)

and the associated covariance matrix of the a-priori estimation error is

Pt|t−1 = TtPt−1Tt
′ +Qt. (2.21)

Equations (2.20) and (2.21) are together called prediction equations. The prediction
equations are based only on the matrices and vectors describing the state evolution, i.e.
Tt (the state transition matrix), ct (the deterministic drift vector), and the state error
covariance matrix Pt|t−1, i.e. they do not directly depend on yt.

Immediately after the newest measurement yt becomes available, an updated estimate
of the states can be made, as follows:

α̂t = α̂t|t−1 + Pt|t−1Z
′
tF

−1
t (yt − Zt

′α̂t|t−1 − dt) (2.22a)

Pt|t = Pt|t−1 − Pt|t−1Z
′
tF

−1
t ZtPt|t−1 (2.22b)

The variables α̂t, α̂t|t−1, Pt|t, Pt|t−1, dt, and yt have the same meaning as in equations
(2.16) to (2.21). Prediction output error (innovation) νt = yt−Ztα̂t|t−1−dt is a measure
of the Kalman filter performance and its convergence. Innovation properties are crucial
for proper understanding of the KF algorithm. First, innovation shows how much infor-
mation can be extracted from the new measurement beyond the conditional information
set known before the new measurement has been made available. Second, statistical
properties derived from the whiteness of the innovation sequence can be used for model
parameter identification (for example in procedures based on ML) and for model va-
lidity testing. In other words, this means that for a model with Gaussian disturbances
and initiation in the infinitely remote past, innovation time series is a zero mean white
noise stochastic process and it can be calculated through a linear transformation of time
series yt (Anderson and Moore, 1979; Simon, 2006). A statistical variable representing
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the output error covariance matrix defined as Ft = E(νν
′
) can be brought in connection

with other SSM matrices, as follows:

Ft = Z
′
tPt|t−1Zt +Ht. (2.23)

The last equation plays a significant role in considerations regarding different practical
implementations of the Kalman filter as it combines the statistical properties of both
process and measurement noise.

Equations (2.22a) and (2.22b) are together called corrector (or updating) equations. The
corrector equations use the known relation between the states and the output (i.e. linear
combination of the states to form the output), dt (output offset), and measurement noise
variance (Ht) to back-calculate the optimal correction of the a-priori states.

As can be seen in (2.22a) and (2.22b), Ft matrix has to be inverted in every step. This can
pose a significant problem for practical implementations of the Kalman Filter algorithm
since ill-conditioning of the matrix and/or error accumulation can cause negative semi-
definiteness of the matrix. In practical implementations, in cases when the inverse F−1

t

does not exist, it is possible to replace it with a Penrose (pseudo) inverse (Jazwinski,
1970; Kovacević and Djurović, 2008) or, alternatively, to use some of the numerically
more robust algorithm formulations, such as the Square Root Filter (Anderson and
Moore, 1979; Simon, 2006). As a practical guideline when using an off-the-shelf Kalman
filter algorithm, it is possible to enforce positive definitness of F−1

t by substituting Pt|t by
a Frobenius-norm-nearest symmetric positive semi-definite matrix (Higham, 1988, 2002).

A further important statistical variable Kt = Pt|t−1Z
′
tF

−1
t is called Kalman Gain, here

given in Joseph‘s stabilised form (Simon, 2006). The Kalman gain plays a crucial role
in understanding the intuition behind the algorithm. As can be seen from (2.22a), the
predicted value of the states α̂t|t−1 is corrected by the product of the Kalman Gain and
the error between the measured and the predicted output (innovation), after the new
measurement arrives. This resembles a simple proportional (P) control algorithm, known
from introductory control engineering theory. Moreover, as it would be expected, after
the new measurement was made available, the uncertainty of the states Pt will become
‘smaller’1 then Pt|t−1 due to the semi positive-definiteness of the state covariance matrix.
For univariate models the following interpretation can be given; for small values of Kt ≈
0, there will be no correction of the predicted states, i.e. α̂t ≈ α̂t|t−1, which means that
the information in the dynamic model is superior to the information contained in the new
measurement and it contributes very little to the state correction and the state estimate
remains approximately the same. On the other hand, for large values of Kt (Kt → ∞),
the correction will be predominantly determined by the new measurement (innovation)
α̂t ≈ Ktνt, which means that the dynamics model is inferior to the informational content

1In a sense of some matrix norm, e.g. Frobenius or Max norm.



Chapter 2 Literature Review 37

contained in the new observation. Algebraically, the magnitude of the Kalman gain
Kt = PtZ

′
tQ

−1
t is directly proportional to the variance Pt and inversely proportional to

the measurement variance Qt. Indeed, Kt can be small for either small Pt, which means
that the model is adequate, or when Ht is large – equivalent to noisy measurement
conditions. In both cases, only marginal corrections of the state estimates, due to the
new measurement will have to be made. On the other hand, large Pt indicates that the
model is rather poor (for fixed Ht) and small Ht characterises high fidelity measurement
with high informational content, i.e. high signal-to-noise (S/N) ratio (Kovacević and
Djurović, 2008, p. 298). Equations (2.22a) and (2.22b) stress the inherently adaptive
nature of the KF. After every time slice, the algorithm calculates the optimal correction
of the state estimates based on the known (albeit possibly time variant) system matrices
and the actual measurement. Consequently, it can be said that the KF ‘learns’ from the
data and automatically adjusts the model states to allow optimal prediction of the states
in the next time slice.

Note that, irrespectively of the statistical properties of the disturbances, the Kalman
Filter is an optimal linear estimator algorithm and it yields the smallest conditional
error covariance matrix (Kailath et al., 2000), which in turn implies Minimum Mean
Square Error (MMSE). This intuition is very useful for interpretation of the model
quality obtained through estimation and the usefulness of Kalman filtering for a given
problem setting.

This section introduced the general equations of the KF algorithm, which can be applied
to linear models of arbitrary order. The next two sections describe two parsimonious
and, at the same time quite powerful, structural time series models (LLM and LLT),
that can be effectively used to study trends of random variables acting as a proxy of
revealed previous choices. Construction of the endogenous trend is a partial requirement
of Research Objective 1.

2.2.2 Local Level Model

One of the simplest and yet extraordinary useful models in time series analysis is the
LLM. It describes a univariate random walk evolutionary time series with a state (level)
µt, which randomly moves up or down at every discrete time sampling point, without
having a steady upward or downward tendency. In other words, at every discrete time
point t, the underlying level (state) of the process is constructed from the previous value
(hence the term Level in the model name) and is shifted by an additive disturbance
(shock) equal to the realisation of ηt:

yt = µt + εt, εt ∼ NID(0, σ2
ε),

µt+1 = µt + ηt, ηt ∼ NID(0, σ2
η)

(2.24)
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Random variables εt and ηt represent measurement and process noise as in (2.16) and
(2.17). Both noise variables are uncorrelated normally distributed variables having zero
mean with known and time invariant variances. Obviously, the disturbances have dif-
ferent effect on the observed variable; whilst εt has only a temporary effect, ηt has a
cumulative (persistent) effect on the observations yt, which makes it the simplest of all
structural models2. They make up a class of models predominantly used in economet-
rics – as opposed to classical Box et al. (2015) models preferred by statisticians and
telecommunication engineers (Stoica et al., 2005).

From the modelling point of view, appealing simplicity of the model is bound to the fact
that only two parameters (σ2

ε and σ2
η) fully characterise the model, under the assumption

that the initial state µ1|0 ∼ N (m1, P1) is known. A much less appealing characteristic
is the non-stationary character3 of the model and the non-separability of εt realisations
from µt, making parameter estimation from a set of given observations y1, . . . , yn non-
trivial due to ill-posed definition of likelihood function (Durbin and Koopman, 2012).
Any practical usage of the model is contingent on the knowledge of the variances, so that
any application of the algorithm will have to address their estimation from the available
data. The concrete estimation procedure used in this study is described in detail in 3.3.3.

Arguably the most important application of the LLM is forecasting (Harvey, 1990). In
case of the model (2.24) the future forecasts of the variable yt for t ≥ T will be equal to
the estimate of µ̂T . Algebraically, the estimate of the mean of the underlying random
walk process is a weighted average of the past observations of yt, with the discounting
factor dependent on the ratio of the disturbance variances q = σ2

η/σ
2
ε . Weighted moving

average, inherent in the LLM model, resembles the classical forecasting workhorse –
EWMA, a procedure proposed in the 1950s. EWMA yields a one-step ahead forecast of
ŷt+1|yt, yt−1, yt−2, . . . based on input values yt with the forgetting factor λ (smoothing
constant)4

ŷt+1 = (1− λ)

n∑
j=1

λjyt−j , 0 < λ < 1, (2.25)

which, if put into recursive form for computational purposes, is equivalent to

ŷt+1 = (1− λ)yt + λŷt = ŷt + (1− λ)(yt − ŷt), t = 2, . . . T. (2.26)
2Univariate structural models are a particular class of econometric models, which are build as additive

models of distinctive, explicit, unobservable components having direct economic interpretation, such as
trend, seasonality, cyclic behaviour, etc.

3For LLM Tt = 1 which means that the eigenvalue of the transition matrix does not meet the
stationarity criteria | eig(Tt)| < 1 and, consequently, indicates the non-stationary character of the output.

4There is a closed non-linear relationship between λ and q, as presented in (Harvey, 1990, p.175).
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Choice of the initial condition ŷ2 = y1 secures that the weights in (2.25) sum to unity,
even for finite sums. Muth (1960) has shown that the recursive procedure (2.26) can be
expanded into the form of (2.24) and that EWMA yields minimum Mean Square Error
(MSE) forecasts, which is in alignment with the KF theory. Indeed, from the second part
of equation (2.26), it can be seen that with the Kalman Gain Kt = 1−λ, EWMA has the
same steady state solution as the KF. It should be noted though, that for short time series
results from EWMA and Kalman filtering can differ considerably due to different initial
conditions. Obviously, since many of the econometric models have short time series,
KF will likely allow more sound statistical inference in such cases. This is not to say
that the KF initialisation is trivial, since, for non-stationary models, the unconditional
distribution of the state mt cannot be inferred from the system matrices and has to be
selected based on some a-priori consideration or applying exact or approximate diffuse
initialisation procedure (Durbin and Koopman, 2012).

2.2.3 Local Linear Trend Model

A slightly more complex model of second order, which aims to take the underlying
linear trend movements into account and use them for future forecasting, is a natural
extension of the LLM. In addition to the previously introduced level state µt, the state
βt implements the random slope, and also follows a random walk process. As before,
yt is a univariate output of the SSM. The name local underlines the difference between
the global linear trend, which is a deterministic function of time (fitted usually using
Ordinary Least Squares (OLS)), and the random trend of the most recent slope (local
trend), which may change direction at any time point.

yt =

µt+1 =

βt+1 =

µt + εt

µt + βt + ηt

βt + ζt

εt ∼ NID(0, σ2
ε)

ηt ∼ NID(0, σ2
η),

ζt ∼ NID(0, σ2
ζ ),

(2.27)

Flexibility provided by three independent Gaussian disturbances (εt, ηt, ζt) have been
criticised by econometricians for the lack of smoothness and, in practice, the parameter
σ2
η is usually set to zero. Similarly to the connection between the EWMA forecasting

procedure and the LLM model, application of the KF with this particular structure
yields steady state results close to classical Holt-Winters (Downing et al., 2011) local
linear trend forecasting procedure (albeit without the seasonal component (Harvey, 1990,
p.38)).

Contrary to classical filtering algorithms, the KF can be easily modified to incorporate
support for irregular and missing observations of a random variable under study. The
next section explains the algorithm modification as required to support the Research
Objective 2.
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2.2.4 Irregular and Missing Observations

Description of the KF algorithm given so far is based on the assumption that observations
for discrete points in time t ∈ 1, . . . , T are available. However, for dynamic choice
model problem setting, a method has to be put forward which would support irregular
observations, i.e. for the case when the time intervals between arriving measurements
are non-uniform, ∃i ̸= j : ti+1 − ti ̸= tj+1 − tj . For the particular case, when irregular
observations have an common divisor in the form of underlying time interval δmin, so that
a uniform grid of time can be generated, the problem of irregularity can be reduced to
much simpler problem of the missing observations. In more formal terms, for univariate
observations ti; i = 1, . . . , T, T ∈ N, a subset of missing observations can be modelled
with yi = NaN,5 for the interval i ∈ (τ, τ∗). A minor modification of the Kalman
filter algorithm, obtained by setting the Kalman gain to zero during the correction steps
when the observations are missing, can be used for both parameter identification and
forecasting. By setting Kt = 0, equations (2.22a) and (2.22b) reduce to

α̂t = α̂t|t−1

Pt|t = Pt|t−1.
(2.28)

This reflects the fact that no additional information can be added to the model when
no new observation is available and, consequently, no state correction will be made. The
same principle can be applied to a multi-step forecast and an arbitrary mix of the missing
and available observations.

Furthermore, simple structural models such as LLM and LLT can be put in a particular
form to account for the irregular sampling without any modification of the (discrete)
KF algorithm, through adjustments of the process covariance matrices. In this partic-
ularly simple case the only difference between the regular LLT and its modification for
the irregular sampling is that the process noise variance depends linearly on the time
difference between successive observations (Durbin and Koopman, 2012, p.65)

yt = µt + εt, εt ∼ NID(0, σ2
ε),

µt+1 = µt + ηt, ηt ∼ NID(0, δiσ
2
η),

δi = ti+1 − ti.

(2.29)

The nomenclature here is the same as in (2.24) with the δi as the time between i-th
and i+1-th observation. Similarly, it can be shown that LLT model (2.27) for irregular

5‘Not a Number’ representation, used in computer engineering for a value which is undefined or
cannot be represented (Committee et al., 2008)
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sampling can be expressed as

yt = µt + εt, εt ∼ NID(0, σ2
ε),[

µt

βt

]
=

[
1 δt

0 1

][
µt−1

βt−1

]
+

[
ηt

ζt

]
,

(2.30)

keeping the same nomenclature as in (2.27), with δi as the time distance between the
successive observations. The covariance matrix of the equivalent discrete time state
disturbances (Harvey, 1990, p.487) becomes

Var

[
ηt

ζt

]
= δt

[
σ2
η +

1
3δ

2
t σ

2
ζ

1
2δtσ

2
ζ

1
2δtσ

2
ζ σ2

ζ

]
(2.31)

Equations (2.29), (2.30), and (2.31) allow the application of the classical discrete time
Kalman filter algorithm on irregularly sampled signals. However, this gain is not without
cost – (1) whilst the state disturbances in the uniformly sampled model (2.30) are inde-
pendent, the disturbances in (2.31) are correlated and (2) a particular care regarding the
indices used for the dynamic part of the model in connection with the calculation of δi
due to slope changes between the forward and backward difference calculation (Harvey,
1990, p.487) is needed.

As explained in the introduction of the KF algorithm, its optimality is given only in
the case when the selected linear model corresponds to the DGP of the random trend
variable. Unfortunately, this is practically never the case. In presence of the model
mismatch, the KF can diverge, resulting in a poor filtering/forecasting performance. The
next section explains how a deliberately suboptimal model can mitigate the divergence
of KF.

2.2.5 Model Error Compensation with Kalman Filter

As pointed out in 2.2.1, the KF is an optimal linear filter in the sense, that it yields
minimum MSE within the class of linear estimators independently of the statistical
properties of the measurement and process noise (Harvey, 1990; Durbin and Koopman,
2012). This property, is, however, given only when the underlying model is exactly
known. In the case when the model is unknown, a degradation of the filter performance
is expected and in the worst case the estimated and the ‘real’ states can significantly
diverge. This is particularly the problem when the assumed noise covariances are small
and the KF ‘learns the wrong state too well’ (Jazwinski, 1970; Simon, 2006; Karvonen and
Särkkä, 2014). Obviously, in the context of endogenous trends studied here, measurement
noise is practically zero since the values are actually calculated based on known integer
values (placement). Traditionally, the standard ways of dealing with divergence are to
artificially increase the noise input to the system or to over-weigh the new data. It should
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be noted that (2.29) also imposes a linear growth of input noise in time. This is, however,
the result of the exact conversion of continuous stochastic differential equations into a
system of stochastic difference equation (discretisation). For the purposes of this study
the state error covariance matrix is engineered based on characteristics of the selected
model.

A natural way of giving more importance to new data is exponential ageweighting of
old data. For LLM (2.29) the output variable yt is equal to the state µt with some
measurement noise. In this case, the measurement noise variance σ2

ε can be equated to
the state covariance matrix Pt|t, i.e.

Pt|t = σ2
ε (2.32)

and for the a-priori state covariance (Pt|t−1):

Pt|t−1 = Pt−1|t−1(exp(αδt)− 1), (2.33)

with α as the ageweighting factor. All other SSM and KF equations remain the same
as in LLM. The same adaptation can be used also for LLT models after the adjustment
for dimensions of the system matrices. It can be shown that this result can be obtained
through minimisation of a quadratic cost function that penalises state errors whilst taking
exponential discounting of the information in the old data (Jazwinski, 1970; Simon, 2006;
Karvonen and Särkkä, 2014). This modification of the classical KF is intended to be
used on variables which certainly do not have the same data generating characteristics
as the modelled stochastic process (Anderson, 1973; Kramer and Kandel, 2011; Murata
et al., 2014; Goff et al., 2015). This is done to avoid the filter divergence and obtain
reasonable forecasting performance.

At this point of the literature review, all components needed to meet the requirements
of the Research Objectives have been identified and discussed. Conceptual overview
(Figure 2.2) shows their logical content and interrelations, with the exception of the
measures of model performance block, which are explained in the Methodology Chapter
(3.3.4), due to their closeness to the empirical testing setup.

The next section develops four research questions from the research objectives in order
to facilitate demonstration that the research objectives are fulfilled. In other words,
answers to the set research questions gathered through analysis of empirical data are the
logical components of the evidence that the Research Objectives are fully met and the
theoretical and methodological aspects of this study effectively close the identified gaps
in the literature.
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Static Decision Models
Conditional Logit (CL)
MultinomialProbit
Ordered Models

Preference Persistence 
(Dynamic Effects)
State Dependence
Habit Persistence
Heterogeneity of DM’s

State Space Modeling
Structural Models

Local Level Model (LLM)
Local Level Trend(LLT)

Kalman Filtering (KF)
Trend Estimation

Two Stage Forecast Model
Weighted Performance Proxy
Lagged Ordered Information
Time between the events
Endogenous Trend Estimation (KF)
Conditional Logit (CL)

Measures of Model Performance
Wald Test of parameter significance
Likelihood Ratio Test
Pseudo-R2 Metric
Application Specific measure 

Figure 2.2: Conceptual Framework of the Research

2.3 Research Questions

Up to this point, this chapter has discussed relevant elements of the body of knowledge
related to DCM and SSM, starting from RUM and IIA as theoretical underpinnings
of the CL model as the basic building block for modelling single decision-level discrete
situations. As a static model, CL is not adequate to model the dynamics of a choice
process. The Research Objective 1 identifies feedback on information relating to ranking
alternatives in previous choice sets, which is one of the major pillars of the modelling
efforts in this study. Academic research contains a considerable number of models which
take into account previous choices made and define several different mechanisms to embed
them in a DCM. Examples include inertia, taste variation between decision-makers and,
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over time, state dependence (current preferences being affected by previous choices), a-
priori information about preferences, and serial correlation in idiosyncratic taste shocks.
In spite of the merits of these approaches, not a single one uses ordered information or
is capable of taking into account choice sets changing over time. Instances of dynamic
models taking ordered information are not very common, and this group of models also
suffers from the same drawbacks. In addition, most of the dynamic models, irrespective
of the availability of ordered data, exploit structural characteristics of panel data but
offer no provision for irregular data collection. Hence, a behaviour model of a net-utility-
maximising DM, who takes into account non-uniform time intervals between decisions,
meets the provisions of the Research Objective 1.

Section 2.2 was dedicated to SSM and KF as a method of estimating latent states. SSM

model structure resembles the fundamental separation of externally observable and non-
observable portions of the RUM. The latent state model form can effectively be used to
track and forecast linear and higher-order trends of different variables. SSM, together
with KF can be easily adapted to account for non-uniform time intervals and missing
observations, which, together with an appropriate method for model parameter fitting,
directly correspond to the aims of the Research Objective 2.

The intrinsic value of such a model without an illustrative application is clearly very lim-
ited. Hence, an application which combines provisions for dynamic modelling, changing
choice sets, and non-uniform times between the availability of alternatives in a choice set
has to be proposed. For the purposes of this study, horse-wagering markets have been
selected as an empirical test setup facilitating analysis of the research questions in order
to meet the research objectives, which are used to guide the demonstration of fulfilment
of the research objectives.

Horse-wagering markets are considered a very convenient test setup (Sauer, 1998) for
many economic theories (e.g. Efficient Matket Hypothesis (EMH) testing), because of
their similarity to conventional financial markets, including a large number of agents,
rule-making and brokering by a market maker, competitive bidding, a vast amount of
public information affecting trading, and the market micro-structure founded on zero-sum
game strategies (Levitt, 2004). Horse race-wagering markets also offer further advantages
derived from: (1) a well-defined, finite time horizon of uncertainty (end of a horse race),
at which point all uncertainties regarding related trading are resolved, financial claims are
settled, and transaction pay-offs are determined without any assumptions regarding the
transaction stopping (Pham, 2009), (2) fixed odds on particular race outcomes, connot-
ing simplified pricing (Sauer, 1998) of trading instruments (bets), and (3) deterministic
short- and long-term rates on investment evaluation for wagered funds (Sung and John-
son, 2007). Consequently, these advantages allow for benchmarking the selected trading
strategies (i.e. decisions made) over a finite time frame (Law and Peel, 2002; Johnson
et al., 2006; Sung and Johnson, 2007).



Chapter 2 Literature Review 45

The conventional approach to forecasting horse-racing outcomes, originally proposed by
Bolton and Chapman (1986), leverages CL regression as a discrete choice modelling
tool. The CL regression, either as a one-step or as a two-step procedure, discriminates
the alternatives through the usage of layered fundamental and market-generated data
(e.g. odds). Several studies have demonstrated that the two-step procedure yields sub-
stantially higher pseudo-R2 values (Sung et al., 2005) – and hence higher predictive
power then single-step approaches. Recently, some studies (Lessmann et al., 2009, 2012;
MacDonald et al., 2013) have endorsed different modifications, borrowed from the con-
temporary expansion of machine learning algorithms, such as Support Vector Machines
(SVM), Random Forests (RF), etc., to the two-step procedure – all with varying levels
of success. In general, these algorithms have sought to estimate a complex non-linear
mapping (regression) of the fundamentals to a variable proxying an absolute, or a rel-
ative runner’s performance through a non-linear discriminant analysis. A fundamental
drawback of this class of algorithm is that all examples are static, i.e. they do not model
parameter changes through time. This is a considerable drawback, since the inclusion
of dynamics may compensate for a number of model mis-specifications intrinsic to static
models, such as improper functional form (e.g. linear vs. non-linear (Crisan and Ro-
zovskii, 2011)), the omission of relevant exogenous or endogenous variables, and wrong
assumptions regarding underlying stochastic characteristics (Raj and Ullah, 2013).

In order to demonstrate the forecasting capabilities of those models resulting from the
presented research objectives, net utility-maximising single (i.e. not aggregate) decision-
level models are designed, that take into account inertia and/or state dependence effects
through linear or non-linear trends (time-varying preferences) starting from the previ-
ous valuation of ranked alternatives. Furthermore, ex-ante forecasted performance (in
the form of winning probabilities used for betting) is used to reach a verdict regard-
ing the merits of the approach. By combining characteristics of the choice process, in
terms of aggregation of previous choices, trends, temporal discounting, and the relative
importance of the decision on hand, the following research question, together with the
associated secondary research question, can be formulated:

Research Question 1. In repeated decision-making events with changing choice sets, do
patterns of previous choices contain a (statistically) significant information set explaining
an additional part of the unobserved portion of the utility?

Research Question 1a. To what level does the additional information set increase the
competitive advantage of a savvy market agent aiming to forecast an outcome of a decision
event over his uninformed counterparts (market)?

These two questions address the simplest form of incorporation of the previous choices
made, namely only their face value without any temporal considerations. In order for
them to be answered, a model (or a set of models) which embed choice ranking infor-
mation, in alignment with the Research Objective 1, has to be developed and evaluated
(c.f. Figure 2.3).
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Research Objective 1

Ordered Information Feedback

Changing choice sets capability

Trend of the proxy of the preference

Research Objective 2

Support for non-uniform sampling 
(‘Forgetting)

Relative importance of decision events

Estimation of trends with Kalman Filter 

RQ1: Statistical significance of the residual information 

RQ1a: Monetary gains from forecasts 
based on the residual information

Figure 2.3: Mapping of Research Objectives to the Research Question 1

The next question, together with its associated secondary research question, evaluate
the improvement of the model if the time dimension is added, corresponding to the
portion of the Research Objective 2 requiring support for the non-uniform sampling (c.f.
Figure 2.4).

Research Question 2. In repeated decision-making events with changing choice sets,
does ‘forgetting’, i.e. temporal distance between successive decision events, in patterns of
previous choices made contain a (statistically) significant information set explaining an
additional part of the unobserved portion of the utility?

Research Question 2a. To what level does the additional information set increase
the competitive advantage of a savvy market agent, aiming to forecast an outcome of a
decision event over his uninformed counterparts (market)?

The third set of questions, also consisting of one main research question and its asso-
ciated secondary research question, introduces an importance weighting to the previous
choices, giving more weight to choices with higher net pay-off. In the case of horse-racing
importance can, for example, be correlated to the race prize. These questions correspond
to the importance weighting part of the Research Objective 2 (c.f. Figure 2.5).

Research Question 3. In repeated decision-making events with changing choice sets,
does importance weighting, i.e. the attribution of higher fidelity scores to decision events
with a larger pay-off, in patterns of previous choices made, contain a (statistically) sig-
nificant information set explaining an additional part of the unobserved portion of the
utility?

Research Question 3a. To what level does the additional information set increase the
competitive advantage of a savvy market agent aiming to forecast an outcome of a decision
event over his uninformed counterparts (market)?
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Research Objective 1

Ordered Information Feedback

Changing choice sets capability

Trend of the proxy of the preference

Research Objective 2

Support for non-uniform sampling 
(‘Forgetting)

Relative importance of decision events

Estimation of trends with Kalman Filter 

RQ2: Statistical significance of the residual information 

RQ2a: Monetary gains from forecasts 
based on the residual information

Figure 2.4: Mapping of Research Objectives to the Research Question 2

Research Objective 1

Ordered Information Feedback

Changing choice sets capability

Trend of the proxy of the preference

Research Objective 2

Support for non-uniform sampling 
(‘Forgetting)

Relative importance of decision events

Estimation of trends with Kalman Filter 

RQ3: Statistical significance of the residual information 

RQ3a: Monetary gains from forecasts 
based on the residual information

Figure 2.5: Mapping of Research Objectives to the Research Question 3

Finally, the fourth set of questions attempts to assess the merits of the complete mod-
elling approach, predicting trends derived from previous choices weighted on both im-
portance and time. They encompass all subcomponents of the Research Objective 2 (c.f.
Figure 2.6).

Research Question 4. In repeated decision-making events with changing choice sets,
does simultaneous inclusion of importance, i.e. the attribution of higher fidelity scores
to decision events with a larger pay-off, and ‘forgetting’, i.e. temporal distance between
successive decision events weightings in patterns of previous choices made, contain a
(statistically) significant information set explaining an additional part of the unobserved
portion of the utility?

Research Question 4a. To what level does the additional information set increase the
competitive advantage of a savvy market agent aiming to forecast an outcome of a decision
event over his uninformed counterparts (market)?
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Research Objective 1

Ordered Information Feedback
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Research Objective 2
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Relative importance of decision events
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Figure 2.6: Mapping of Research Objectives to the Research Question 4

An integrative explanation that provides an overview of the interrelation between the
identified gaps in the literature, the auxiliary information used to construct the outlined
modelling framework, the research questions, and the research objectives is in order here.
The gaps in the literature, as explained in 1.1, are identified as lack of support for chang-
ing choice sets (GAP 1) and different times between availability of alternatives (GAP 2)
in incumbent DCMs. Moreover, inclusion of the ranked ex-post data and information on
relative importance of previous decision events allows construction of dynamic decision
models that have both behavioural-explanatory and economic significance. A schematic
overview of the links between the identified gaps, the research questions, and the research
objectives is depicted in Figure 2.7. The gradual buildup of the models starting with
the simplest one linked to the Research Question 1, which includes only the changing
choice sets and the ranked ex-post data, is expanded through addition of the time infor-
mation (corresponding to Research Question 2) and through addition of the importance
weighting (corresponding to Research Question 3). Integration of all available auxiliary
information beyond the models is linked to the Research Question 4, aiming to cover
both identified gaps.

In summary, a set of models that takes into account the importance and temporal weight-
ing of previous choices made in a setup where a single decision-maker faces choice sets
changing both in size and alternatives is needed, in order to close the identified gaps
in current decision-making theory. These models are derived from the research design,
which connects the research questions and the empirical dataset used for inference and
forecasting evaluations. The logical connection between the research objectives and the
research questions is given through completeness and consistency coverage of the key
characteristics of the models capabilities:

1. Inclusion of feedback on ordered choice information from previous decision events
(Research Questions 1, 2, 3, and 4)
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Gap 1: Changing choice sets in decision events

Research Question 1

Gap 2: Non-uniform time intervals between reoccurrence of alternatives

   Additional Information: Ranked ex-post preference information 

Research Question 4

Research Question 3

Research Question 2

+

+

Research Objective 1

+
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+

Research Objective 2

Importance Weighting of ranked ex-post preference information

+
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+

Figure 2.7: Linking the identified gaps in the literature and the research questions

2. Support for changing choice sets (both in number and the selection of alternatives)
(Research Questions 1, 2, 3, and 4)

3. Inclusion of trends in the alternative-specific proxies (Research Questions 1, 2, 3,
and 4)

4. Support for non-uniform time distances between recurring appearances of the same
alternative in two different choice sets (Research Questions 2 and 4)

5. Inclusion of the KF, together with the associated model parameters identification
procedure, given as a methodology guidance (c.f. Sections 3.2 and 3.3.3.1)

Chapter Summary

The literature review chapter describes the underlying state-of-the-art theory of the
different models and concepts needed to close the identified gaps in the literature and
meet the research objectives set in the introduction. The focus of the chapter is to
conceptualise and critically evaluate two groups of models, the DCM and SSM. These
model groups put together, offer a powerful framework adequate for modelling of dynamic
DCM with irregular times between the subsequent appearance of a particular alternative
as a member of a choice set.
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The chapter begins with a general description of ideas that led to development of static
DCM and the properties of logit and probit models. The strengths, especially the prop-
erty of logit that yields closed analytic solutions for choice probabilities, and the inherent
weaknesses of the models are discussed in depth. As a further development of decision
making concepts, available state dependence and inertia models are critiqued. Here, the
concept of latent states in DCMs is introduced as an elegant model structure to describe
the dynamic behaviour of DMs.

Next, the chapter turns to SSM and the KF as an optimal (under certain conditions)
estimator of the latent model states. Basic theory of linear KF for regularly sampled
models is explained and drawbacks shown. Two fundamental structural models LLM and
LLT are introduced and their role in forecasting presented. Important extensions of the
KF, discrete time adaptation for irregular sampling times and constructed state covari-
ance matrices for model-error compensation, are added in order to allow for appropriate
research design, which is further developed in Chapter 3.

Finally, as specified in 1.2, the identified literature gaps are used to define the objectives of
this particular research. In order to meet the objectives, a conceptual research framework
design, supporting the formulation of research questions is developed and explained.
Results from empirical testing of the models and their analysis will yield definite answers
to research questions, which will close the chain of arguments and evidence needed to
address all aspects of the research objectives. In other words, the modelling framework,
together with the evidence of the achieved modelling performance and answers to research
questions, will show that the declared objectives of the research are met and that the
identified gaps in the literature are effectively closed.



Chapter 3

Methodology

This chapter depicts the research paradigm and the methodology evaluated and selected
to meet the research objectives. The first section of the chapter explains the applied
research philosophy and the rationale for the selected research paradigm. Second, deriva-
tion of a fully operational two-stage model, based on the decomposition of the error term
(Figure 2.1), and CL, SSM, and KF equations is given. Finally, research design, which
includes empirical test setup and planning description, model parameter identification
based on ML principles, statistical and application specific model evaluation criteria, and
the characteristics of the data set used for the empirical analysis, concludes the chapter.

3.1 Research Philosophy

The research objectives of this work, as defined in Chapter 1, are bound to the devel-
opment of a novel dynamic DCM geared to show a computationally efficient way to
account for the effects of ranked choices made in the past. In order to be able to define
the research design in a coherent and consistent way, an appropriate research paradigm
has to be identified and its adequacy defended against alternative approaches.

Decision-making behaviour is inherently a social phenomenon, regardless of the nature of
the decision maker, which may be a person, an animal, an aggregate group of humans or
animal herds or, to the extreme, an abstract, non-living entity. As such, decision-making
behaviour cannot be seen as a context-free, timeless, unconditional, and immutable natu-
ral law, which, once discovered and formalised, perfectly describes the true reality (Guba
et al., 1994). In addition, at least in the case of some research settings (e.g. managers
or agents in studies of decision-making in organisational settings), decision-makers can
modify their behaviour as a result of the interference caused by the research process.
Hence, the study of dynamics in decision-making cannot be seen as reductionist or de-
terministic (Creswell and Creswell, 2017). Moreover, it can be argued that the evolving,
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non-deterministic, and not completely tractable abstract nature of decision-making be-
haviour cannot be comprehended completely, due to basically limited intellectual capacity
and cognition of human researchers (Todd and Gigerenzer, 2000). Consequently, the fo-
cus of the decision-making research should not be the quest to find the perfect, ultimate
and prehensile reality but to find a model or series of models that sufficiently well de-
scribe the reality for the declared purpose, whilst serving the perennial aim of converging
and generalising the results, reflecting what is known as the ‘ontological argument’ put
forward by critical realists (Kemp, 2005). For example, the merit of the proposed models
can be assessed through evaluating predictions of the behaviours based on them. Fur-
thermore, different models (theories) have to be compared based on their performance
and parsimony bound to relevant applications and, over time, withstand scrutiny of the
scientific community, evolve, and adapt (Popper, 1972; Guba et al., 1994), in order to
enhance our understanding of non-deterministic (probability-laden) reality. It should
be noted that critical realism is not reserved purely for social sciences research – even
in physics, which is arguably the flagship of natural and empirical sciences, the field
of quantum mechanics is inherently probabilistic (i.e. non-deterministic), and the pro-
posed models do not necessarily aspire to provide a description of the reality which is
reconcilable with all other branches of physics (Myrvold, 2018; Harrigan and Spekkens,
2010). This reinforces the plausibility of a similar paradigm in the modelling of the most
complex systems of all – social systems. The presented argumentation herein reflects
the author’s ontological stance adopted in this study, which, together with the epistemo-
logical considerations described below, underpins the research process and reflects the
post-positivistic perspective of the work (Crotty, 1998).

The second aspect of the research paradigm, the epistemological stance with respect
to the objectives of this study, cannot be based on objectivist axioms, since, at least
in the case of some decision-maker types (e.g. managers studying decision-making in
organisational settings), decision-makers can modify their behaviour as a result of the
interference caused by the process of research-forming learning/adaptation feedback, es-
pecially in cases when such adaptation offers important incentives. Hence, even in cases
where careful precautions are taken, theories, inferences, and conclusions may end up
being contaminated by the results. An example of this can be observed when increasing
the efficiency of different financial and betting markets in which some heuristics (e.g.
disappearance of the ‘January Effect’ (Szakmary and Kiefer, 2004) or the efficiency of a
bookmaker after introducing betexchanges horse-betting markets (Sung et al., 2016a))
ceased to be relevant. Hence, any decision-making theory of behaviour may face di-
minishing validity over time, thereby calling for the modified dualist/objectivist-driven
selection of research methods.

The adopted post-positivistic research paradigm does not reject the hypotetico-deductive
method per se; rather, it shifts the focus more towards the falsification of the stated
hypotheses, as opposed to their acceptance, since proof of social ‘laws’ remains elusive
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due to the non-deterministic nature of the reality. Note that quantitative and deductive
method selection can perfectly align with the selected research paradigm if no hypothe-
ses are proposed and research questions are used to guide the elimination or reduction
of elements of randomness in existing theories and models. This elimination/reduction
of randomness is intrinsically reductionist, as it aims to break down individual theory
contributors into a small, discrete set of ideas under testing, expressed as statistically
defined random variables (Creswell and Creswell, 2017). Due to the necessity to obtain
a statistical characterisation of the variables, a careful quantitative research design is
needed, which, contrary to classical positivist paradigms, does not have to follow the
classical path theory→test based on the instruments derived from the theory. Moreover,
as emphasised by the post-positivist school of thought, the data needed for the characteri-
sation of the instruments are prone to biases and fallacies, affecting both the perspectives
of researcher’s observations (which are possibly theory-laden) and the a-priori selection
of the relevant theories used for the (quantitative) design of the experimental research.
An experimental design setup has to address the selection of a manipulative methodol-
ogy (controlled experiment) or observation of the instruments by enquiring into natural
settings. Obviously, confounding effects have to be controlled in both setups.

For the purpose of this study, this translates into the fundamental decision as to whether
an Revealed Preference (RP) or an Stated Preference (SP) methodology and exper-
imental design should be pursued. The RP methodology collects and analyses data
obtained by capturing actual choices made by DM in their natural environment and
then made public (i.e. revealed) to an interested researcher/observer. In contrast, SP

data are captured during controlled experiments defining hypothetical situations (socio-
logical simulations), where the DM state their preferences explicitly. A skilful researcher
can leverage the inherent advantages of an SP such as pre-specification of choice sets
presented to the respondents, firm control of the choice attributes and the possibility of
including ‘abstract’, not easily quantified attributes such as measures of environmental
policies or leisure time. This also means that the attributes may be selected in such wise
as to minimise confusion and be measured without error.

On the other hand, the SP research design has to withstand scrutiny regarding the
reliability of the observed data. Data reliability in an SP context has to be assessed
from two standpoints: (1) validity (level of alignment between the stated preference and
the preference that the DM would have in a real decision event (i.e. similar to model
bias in statistics) and (2) stability – an inversely proportional measure of random error
(noise) in preference information. Noise represents uninformative data resulting from
irrelevant considerations not captured by pre-specified attributes. Obviously, stability
depends strongly on the relevance of the experiment setting and the clarity of the ques-
tionnaire used to state the preference (Ben-Akiva et al., 1991). The flexibility of the
hypothetical setup proves to be a double-edged sword, in that subjects under simulated
conditions tend to focus on the most important attribute only (in alignment with the
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‘prominence effect’ (Tversky, 1972; Simmons and Nelson, 2006)), which in addition to
the risks of misinterpretation or even complete ignorance of attributes, if the presented
decision scenarios are deemed unrealistic, may lead to practically useless data. More-
over, such scenarios usually fail to replicate constraints imposed in reality. However, the
most serious drawback of the SP methodology is that the participants do not have a
natural incentive to replicate a behaviour that they would exhibit in a real setting, as
they do not experience any consequences or benefits of their decisions (cf. validity). As
an extreme example, some subjects may even use the questionnaires as a way to express
their stance regarding the broad survey context. Berg et al. (2010) demonstrated that
incentives increase the validity of the captured data, i.e. yield more economically consis-
tent behaviour. From the modelling point of view, the truth-revealing incentives result
in superior statistical and explanatory properties of fitted decision-making models (Berg
et al., 2010).

Discrete choice analyses based on RP data, which describe the actual behaviour of
decision-makers, represent a far more traditional approach to discrete choice modelling
research (Ben-Akiva et al., 1994). As might be expected, these data do not suffer from
validity issues, and they are particularly well-suited to modelling aggregate market be-
haviour based on objectively measured variables (Ben-Akiva et al., 1985). These variables
constitute a selection of observations collected in real life, which may be made in error.
This is not relevant here, however, since the research objectives call for a trend analysis
of the (revealed and hence known) past ranked choices which are known exactly (being
integer ranks). Moreover, the model incorporates some market variables, which are pub-
lic and reflect public opinion regarding the probabilities of choices (in form of prices). In
addition, the relationship with the studied market provides a considerable incentive for
truth-revealing behaviour. Furthermore, research designs, which are bound to decision-
making related to some kind of exchange or contingent market mechanisms (i.e. micro
structure), fail to emulate the numerous constraints and underlying market movements
that decision-makers could take into account. For example, Ziegelmeyer et al. (2004)
conclude their SP-based study with the observation that they found only weak support
for one of the most robust biases (Bruce and Johnson, 2000) observed in studying asset
markets and behaviour – the favourite longshot bias – and that the lack of liquidity
(noise) bettors impedes the replication of actually reported marked dynamics.

In conclusion, for the selected post-positivist research paradigm, the key element driving
the methodology selection is the random error reduction and testing of its significance.
By using the RP data, quantitative characterisation of the random error can be effectively
achieved. In addition, it can be used for discovering and quantifying the effects of selected
cognitive biases through statistical testing (Tversky and Kahneman, 1974). Moreover,
the combination of the changing choice sets and, especially, the time dependence of
decisions favouring large datasets with high validity, are far easier to obtain with RP

data, when the choice sets are a priori known. Taking all of the aspects of SP and
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RP into account, it can be concluded that the RP approach is more adequate to meet
the research objectives, due to the inherent truth-revealing incentives (monetary pay-off
from correct decisions made), the likelihood of better data-fitting results and the validity
of the choice ranking data, and hence it has been selected for the overarching research
paradigm and methodology of the study, in order to guide the research design (see 3.3).

The next section explains the model-building methods that combine elements from the
conceptual framework (cf. Figure 2.2) into one operational modelling landscape. The
relative simplicity of the model structure and parameter identification from empirical
RP datasets, as compared to a previously proposed discrete SSM in the context of
decision-making, makes the new approach conceptually more appealing than incumbent
approaches and provides enhanced flexibility and interpretability in applications where
monetary incentives bound to the correctness of the choices made are paramount.

3.2 Operational State Space Discrete Choice Model

Conceptually, all dynamic DCM are non-linear models, due to the fact that the under-
lying latent utility values are effectively discretised (collapsed) to make a choice in a
certain decision making event. Non-linearity of the models implies that, except for very
special models, such as logit, only numerical methods can be used for model fitting and
inference. Hence, the dynamic DCM are built around different methods leaning on a
Bayesian approach to statistical inference, such as Markov Chain Monte Carlo (MCMC)
or particle filtering (Crisan and Rozovskii, 2011).

On the other hand, particle filtering can be seen as a generalisation of the KF, which,
provided that the assumption of inherent linearity of the model is reasonable, offers
a straight forward approach for statistical inference in dynamic DCMs. Limitations
caused by the linearity assumption is not that severe as it may seem on the first glance.
In the vast majority of engineering applications, dynamic models are routinely linearised
around some kind of equilibrium – a steady state operating point (Goodwin and Sin,
2014), using, for example, Taylor series expansion. A similar idea can be applied on
ordered type of data. In particular, it can be linearised (inflated) by using the following
function (Lessmann et al., 2012)

yci,j = −0.5 +
yi,j −minj(yi,j)

maxj(yi,j)−minj(yi,j)
,∀i ∈ Jj , (3.1)

which represents the continuous equivalent yci,j of the ordered alternative yi in a decision
event j.

This approximation is possibly violating the implicit assumption of equal value distance
between alternatives. However, this is often ignored in practice and many researchers
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treat ordered dependent variables as if they were measured on an interval scale for integer
data coded sequentially (Long, 1997). Consequently, variables approximated in this
way should be used in statistical modelling with due caution. In particular, this arises
because of the questionable reliability of the stated and revealed ordering of lower ranked
alternatives (Fok et al., 2012). A possible explanation for that effect is that some decision
makers only care about the first few alternatives, either because of the lack of ability to
make a distinction amongst the less-preferred alternatives or because the available choice
set is too large for fine differentiation and, hence, ranking. If not accounted for, this
may lead to a substantial bias in the parameter identification (Chapman and Staelin,
1982). Several methods have been put forward to leverage the available information
and increase the reliability of the rankings. For example, Chapman and Staelin (1982)
defined, utilising the Ranking Choice Theorem, an ‘explosion process’, which decomposes
the rank ordered data in several independent data sets. The number of the different data
sets is determined by the explosion ‘depths’ calculated based on testing of statistical
equivalence of the data pooled in a different ways (Bolton and Chapman, 1986). Fok
et al. (2012) introduced a model which grades the decision capabilities of the DM, which
are endogenously identified through a latent ranking quality variable. Lessmann et al.
(2012) adopted the Normalized Discounted Cumulative Gain (NDCG) criterion inspired
by internet search engine benchmarking derived from Edelman (2007a) study, which
(similarly to Lessmann et al. (2009)) endorses the usage of binary classifiers in horse-
betting context because of their higher robustness against low reliability of ordered data.

Intuitively, if a larger pay-off is associated with an outcome of a decision event, the
reliability of the ranking should increase (Sung and Johnson, 2007). Hence, if the inflated
variable is weighted by some a-priori information about the decision event, it would result
in increased reliability. This strategy for increasing the ordered data reliability has been
applied in this thesis (see also 5.1 for wider context).

Instead of using lagged ordered output variables in modelling of the dynamic depen-
dency, as endorsed by Kitamura and Bunch (1990), the following model of utility for an
alternative i in a decision event j can be constructed (c.f. Figure 2.1):

Uij = Vi,j + f(ŷci,j) + ϵi,j (3.2)

where yci,j is the inflated (continuous) ranking of the alternative during the decision event
j and Vi,j and ϵi,j have the same meaning as in (2.1), namely the observed and unobserved
portion of the utility function. Note that this decomposition implies a separation of the
unobserved part (which is traditionally modelled as a purely random variable), in two
parts. The first represents the utility contribution derived from a prediction of the
normalised choice ranking based on the dynamic development of the previous choice
rankings. The second represents the stochastic properties of the decision maker’s utility
function. In alignment with the equation (2.15), the representative utility is a linear
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combination of linearly (through β) regressed exogenous components xi,j and the trend
prediction, i.e. Vi,j = βxi,j and f(ŷci,j) = βyŷ

c
i,j .

Obviously, the endogenous trend variables modelling the dynamics of the previous choice
rankings of the entire choice set, can be specified as an output of J parallel and uncor-
related linear SSM,

yci,j = Zi,jαi,j + εi,j ,E(εi,j) = 0,Var(εj) = σ2
εIJj×Jj , (3.3)

with the aggregated disturbance vector εj = [ε1,j , ε2,j , . . . , εJj ,j ]
′ and Jj separate state

vectors αi,j having the model with the same structure

αi,j = Ti,jαi,j−1 + ηi,j ,E(ηi,j) = 0,Var(ηi,j) = Qi,j , (3.4)

whilst using the same nomenclature as in (2.16) and (2.17).

It should be noted that this model does not directly correspond to the state dependency
model (2.10a), where the complete utility Ui,j is seen as a dynamic state, as opposed
to (3.3) where only the trend portion of the utility is modelled as a latent state vector.
However, the approach presented here can be easily adopted to include state depen-
dency, if the considerations regarding the causality outlined below are considered. A
second characteristic of the model worth mentioning, is that there are three independent
sources of disturbances, two describing the linear dynamic part and one describing the
unmodelled factors of the decision making. For the purposes of this work, standard as-
sumptions regarding stochastic properties of the disturbances are followed. In particular,
SSM disturbance components εi,j and ηi,j are uncorrelated and Gaussian and ϵi,j follows
the Gumbel distribution.

Careful analysis of equations (3.2) to (3.4) reveals a potential causality problem if the
variable yci,j is intended to be used for prediction. The variable yci,j is not known before
the decision j is made, so that the value has to be substituted by an estimate of the
value using the information set that includes all the values known before the decision
event j. Since yci,j is conditional on yci,j−1 under Markov condition, due to the assumed
trend effect, the conditional expected value of the yci,j , E(y

c
i,j |yci,j−1) = ŷci,j represents the

natural choice for the estimate in the context of linear models with normal distribution
of the disturbances. In the further text, the designation ()c will be omitted for simplicity.

The linear functional form of the dependency f(), can be understood as a weighting of
an estimate of the contribution of the residual information derived from the trend (i.e.
inertia). Otherwise, if yci,j were known with certainty, there would be no need for any
other explanatory effects Vi,j .

In the context of linear prediction, KF is an optimal MMSE estimator and an optimal
conditional estimator in the case of independent and normally distributed disturbances.
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Consequently, the conditional expected value of the latent state vector can be expressed
in the form of the a-priori dynamic estimate (see (2.20)), as follows:

α̂i,j|j−1 = Ti,jα̂i,j−1. (3.5)

Combined with the measurement equation

ŷi,j = Zi,jα̂i,j|j−1, (3.6)

this rounds up the general model definition structure.

For practical applications, the order of the state space vector has to be postulated in
advance. Since it cannot be expected that a simple linear model actually constitutes a
DGP of the inflated output of a dynamic decision making process, a-priori specification
of the SSM model structure (order) has to be put forward. This approach resembles
modelling postulation in the spline smoothing problem setting, where order and smooth-
ing parameters have to be chosen as a trade-off between the complexity, smoothness,
and accuracy of the regression function. Moreover, it was shown by Wecker and Ansley
(1983) that LLT can be made equivalent to cubic splines smoothing, stemming from
the fact, that the KF recursion effectively performs incremental Cholesky decomposi-
tion of the state vector variance-covariance matrix (2.22a) (Eubank and Wang, 2002).
The equivalence between the KF algorithm and smoothing splines, can be generalised
to other spline orders from the first order (corresponding to LLM) up to the theoreti-
cally infinite order (Durbin and Koopman, 2012). In a further treatise, Eubank et al.
(2003) endorsed a KF based algorithm for automatic selection of both the order and
the smoothing parameters. This method, whilst effective, is appropriate only for long
time series. In other settings, e.g. for time sequences with heterogeneous durations and
different statistical parameters it would require optimisation for all alternatives in the
alternative pool, so that possibly every alternative would require a separate optimisation
– clearly a large computational burden. What is even more important is the fact the
algorithm fails for time series of short duration since the model parameters cannot be
identified. Hence, a model of the endogenous trend is postulated to be of first or second
order to ensure (1) identifiability of the parameters and (2) that the number of decision
events needed to initialise the model stated does not significantly reduce the number of
available data points for parameter identification and model validation. The first order
model (2.24), is versatile and parsimonious at the same time, since it requires only a
few parameters to be identified. After setting time invariant values for system matrices
Ti,j = 1, Zi,j = 1, Ht = σ2

ε = 1, and Qt = σ2
η in (3.3) and correcting the variance (2.29)

for irregular sampling δt, a parameter vector that has to be identified can be expressed as
θKF = [q σ2

ε ], with signal to noise (S/N parameter) ratio q =
σ2
η

σ2
ε
. Figure 3.1 illustrates

the process of state updating for LLM.
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Figure 3.1: LLM Timing Diagram

A structural second order model (LLT) is only slightly more complicated. Under the
same assumptions as for LLM, equations (2.30) and (2.31) require identifications of
exactly the same number of parameters θKF = [q σ2

ζ ]. It should be noted that the
variance σ2

η is zero, making the level component μt deterministic. Moreover, it can be
shown that cubic splines smoothing and the KF algorithm are equivalent, if controlled
for particular filter initialisation (Wecker and Ansley, 1983; Harvey and Koopman, 2000;
Koopman and Harvey, 2003). After consolidation, the equations of the model of dy-
namic decision making, which incorporate the information on previous ordered choice
and extracts the trend for decision forecasting can be split in two stages, KF stage and
CL stage. Figure 3.2 illustrates the process of state updating for LLT.

 

   

 

 

 
 

 

Figure 3.2: LLT Timing Diagram

The measurement equation is identical for both structural models, LLM and LLT, as
follows:

yci,j = μi,j + εi,j ,E(εi,j) = 0,Var(εj) = σ2
εIJj×Jj (3.7)

The KF stage with the first order structure LLM can be expressed as follows:

μi,j = μi,j−1 + ηi,j ,E(ηi,j) = 0,Var(ηt) = qδi,j,j−1σ2
ε (3.8a)

ŷi,j = μ̂i,j−1 (3.8b)

pi,j|j−1 = pi,j−1 + qδi,j,j−1σ2
ε . (3.8c)

Here, the same notation as in (3.3) and (3.4) is applied with tailoring of the process noise
covariance Var(ηt) = qδi,j,j−1σ2

ε , which encompasses the S/N ratio q as the noise scaling
parameter and δi,j,j−1 as the time distance between the decision events j − 1 and j in
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which the alternative i was available. Alternatively, following model error compensation
approach, (2.33), the adjusted a-priori covariance matrix becomes:

pi,j|j−1 = pi,j−1|j−1(exp(αδi,j,j−1)− 1) + qδi,j,j−1σ
2
ε , (3.9)

with α as the ageweighting factor. In addition, for the first order SSM, somewhat model
error correction simpler algorithm for calculation of the a-posteriori covariance matrix
can be found in literature, (e.g. (Jazwinski, 1970, p.307-311)) for the continuous time
(δi,j,j−1 ̸= 1) can be formulated

Ki,j = pi,j−1(exp(−αδi,j,j−1))/(pi,j−1 + σ2
ε) (3.10a)

pi,j|j = exp(αδi,j,j−1)/(1−Ki,jpi,j−1), (3.10b)

substituting (3.8c).

Second order (LLM) equations become only slightly more complicated through inclusion
of βi,j , as follows:

µi,j =

βi,j =

µi,j−1 + δi,j,j−1βi,j−1 + ηi,j

βi,j−1 + ζi,j
(3.11)

Based on (3.8c) and (2.31) the covariance matrix becomes

Pi,j|j−1 = TtPi,j−1T
′
t + δi,j,j−1

[
σ2
η +

1
3δ

2
i,j,j−1σ

2
ζ

1
2δi,j,j−1σ

2
ζ

1
2δi,j,j−1σ

2
ζ σ2

ζ

]
. (3.12)

In case the model error compensation variant of the covariance matrix is specified (3.12)
is modified as follows:

Pi,j|j−1 = Pi,j−1(exp(αδi,j,j−1)− 1) + δi,j,j−1

[
σ2
η +

1
3δ

2
i,j,j−1σ

2
ζ

1
2δi,j,j−1σ

2
ζ

1
2δi,j,j−1σ

2
ζ σ2

ζ

]
. (3.13)

As before, α as the ageweighting factor.

Equations (3.8) to (3.13) are together called prediction equations.

Immediately after the newest observation of yci,j is available, an updated estimate of the
level state µ̂i,j can be made for LLM (correction equations)

µ̂i,j = µ̂i,j|j−1 +
pi,j|j−1

fi,j
(yci,j − µ̂i,j|j−1) (3.14a)

pi,j = pi,j|j−1 −
p2j|j−1

fi,j
(3.14b)

fi,j = pi,j|j−1 + σ2
ε . (3.14c)

Univariate variables pi,j|j−1 and pi,j are a-priori and a-posteriori state covariance values.
The output error covariance values associated with the model are denoted as fi,j . For
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the model error compensation variant, (2.32) applied to LLM yields a modified state
error covariance matrix:

pi,j = σ2
ε . (3.15)

Similarly, if the discrete time approximation is used (δi,j,j−1 = 1), a discrete error cor-
rection equations can be formulated (Jazwinski, 1970):

Var(ηj) = α−2(j−1)qδi,j,j−1σ
2
ε (3.16a)

Var(εj) = α−2(j−1)δi,j,j−1σ
2
εIJj×Jj , (3.16b)

which superseed the corresponding covariance parameters from (3.8). Note that the
equation (3.10) uses recursive calculations for the Kalman Gain Ki,j , which is beneficial in
terms of algorithm implementation (Simon, 2006). For the LLT model, using Zt =

[
1 0

]
as time invariant output vector, the state correction equations become:

µ̂i,j = µ̂i,j|j−1 +
Pi,j|j−1Z

′
t

fi,j
(yci,j − µ̂i,j|j−1). (3.17a)

Pi,j = Pi,j|j−1 −
Pi,j|j−1Z

′
tZtPi,j|j−1

fi,j
(3.17b)

fi,j = ZtPi,j|j−1Z
′
t + σ2

ε , (3.17c)

having the same notational convention as in (3.14) having Pi,j|j−1 and Pi,j as a-priori and
a-posteriori state covariance matrices. Similarly, in case of model error compensation
approach, (2.32) applied to LLT yields a modified state error covariance matrix:

Pi,j = σ2
εI2×2. (3.18)

For purposes of ordering and easier understanding of the model results in the further
text, abbreviations of trend model names are put forward in Table 3.1, together with the
system of equations defining the recursive algorithm for their implementation. It should
be noted that the abbreviations can be used both as model names and time series results
from forecasting using those models, interchangeably.

Table 3.1: Kalman Filter Model Mapping

Model Description Equations

LLM_XXX_c Continuous time LLM (3.7)(3.8)(3.14)

LLM_XXX_m
Modified continuous time LLM with engineered
state state error covariance matrix KF

(3.7)(3.8a)(3.8b) (3.9)(3.15)

LLT_XXX_c Continuous time LLT (3.7)(3.11)(3.12) (3.17)

LLT_XXX_m
Modified continuous time LLM with engineered
state error covariance matrix KF

(3.7)(3.11)(3.13)(3.17a)(3.17c)(3.18)

LLM_XXX_dm
Modified discrete time LLM with exponentially
weighted state error covariance matrix KF

(3.7)(3.8)(3.14) (3.16)

LLM_XXX_mod1
Modified continuous time LLM with exponentially
weighted state error covariance matrix KF

(3.7)(3.8a)(3.8b) (3.10)

1 _XXX identifies the (measured) trend output variable of the KF model
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The CL stage uses ŷi,j as a known, albeit conditional, variable in the following utility
function Ui,j , together with the vector of exogenous attributes xi,j . This yields an expres-
sion for the utility function used under normal CL assumptions regarding the statistical
properties of the disturbance ϵi,j :

Ui,j = βexxi,j + βyŷi,j + ϵi,j ; ϵi,j ∼ Gumbel(0, 1), (3.19)

with the linear parameters vector β and the endogenous trend coefficient βy defining the
representative utility part, so that the probability to select an alternative becomes:

Pi,j =
exp(βexxi,j + βyŷi,j)∑

k

exp(βexxk,j + βyŷk,j)
. (3.20)

Revealed ranking of choices yi,j after the decision event j is taken into account through
the inflated continuous feedback variable yci,j . Obviously, the choice yci,j is not known
before the decision event j takes place. Consequently, ŷi,j is actually an estimate of the
trend of the revealed ordered preference at the time of the decision event j, based on
the information on revealed preference known at the time of the decision event j − 1.
Moreover, this means that the denominator in (3.20) includes estimates of the trends of
all alternatives in the choice set Ji, which have different previous decision events as a
basis for the estimate of the value ŷk,j .

Careful study of equations (3.7) to (3.19) shows that a two-step calculation procedure
can be applied to simplify the algorithm implementation, since there is no direct feedback
from the CL results (3.20) to the KF stage. In other words, that the KF results feed
directly the CL stage and can be calculated separately, whilst the actual results of the
DM process are treated as known for states correction after the race. This approach
is in alignment with previous studies conducted in similar setups (Sung and Johnson,
2007). The major reason for a two-step approach is the inherent linearity of the KF

step and the inherent non-linearity of the CL step. A single stage strategy based on KF

prediction (i.e. forecast of the inflated ranking) would be clearly inappropriate because
of three reasons. First, the forecasts do not take properties of other runners in a race,
i.e. they do not incorporate competition and (wrongly) assume that the performance of
the runners is independent (Lessmann et al., 2009). Second, there is no good way to
compensate for the variances of the forecasts for the ranking. Finally, the KF does not
provide an estimate of the ranking probabilities needed for formulation of any sensible
betting strategy.

On the other hand, the classical CL naturally models within-race competition and it is
expected that it dominates the single stage KF approach. However, a property of the CL

regression is that if the independent variables of vastly different relative contribution to
prediction (prediction power) are used together, the variables with the smaller prediction
power will be over proportionally diminished compared to the dominating variables. This
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masks the subtle relationships amongst them and effectively reduces the information set
(Sung and Johnson, 2007). In the horse-racing context, the market variables, such as
winning odds, clearly dominate other track variables (e.g. horse and/or jockey related
fundamentals) and in order to counter that, a two-step approach KF/CL is endorsed.

It should be noted, that the model defined in this section represents a definition of a
dynamic discrete choice model which takes the trends of revealed ordered preferences
into account, as required by Research Objective 1. However, the model, as it stands
here, is not operational, since an initialisation procedure for the recursion and a method
of parameter fitting have to be specified for model completeness. Both missing elements
are explained in Section 3.3.

3.3 Research Design

This section provides a link between the model structure defined by equations (3.1) –
(3.20), Research Objectives as defined in Chapter 1, types of data needed to answer the
Research Questions as defined in Section 2.3, and the statistical and empirical testing
of the resulting model performance leveraged to provide answers to Research Questions.
The research design outlines the approach on data collection and data preprocessing
needed for empirical testing of the obtained models and conclusions that can be drawn
from the test results.

3.3.1 Research Design and Horse Racing as Empirical Test Setup

In the context of discrete decision-making model definition and testing, a set of horse
races can be interpreted as a sequence of decision events in which decisions are made by
one abstract decision-maker, namely ‘nature’. In every race, ‘nature’ specifies an order
of runners from the field based on a (externally unobserved) utility. This, in turn, yields
the winner, the runner-up, and the finishing positions of all other runners in a race. In
this constellation, ‘nature’ acts rationally and chooses the ‘best’ horse at the time of the
race (Bolton and Chapman, 1986). Obviously, each race has a different choice set (dif-
ferent runners), and the number of runners (size of the choice set) in a race, which may
vary from two to well above twenty. Moreover, the role of the researcher that observes
the decisions made, as defined in Chapter 1, is given to betting market participants (i.e.
bettors) engaging in transactions based on expectations (forecasts). Obviously, all mar-
ket participants base their predictions regarding the decisions to be made on explicit or
implicit models behind ‘behavioural’ process underlying the selection. The variables of
the mentioned prediction models can be split into two groups: (1) market-based vari-
ables, reflecting ex-ante public opinion about the outcome of the race and (2) physical
variables, reflecting the environmental influences and intrinsic characteristics of the run-
ners. Bettors establish their models by weighting different predictive variables and are
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acting in accordance with the predicted probabilities of particular race results. It should
be noted that every agent freely selects the variables and their weightings to formulate
mathematical tools and/or models relevant to market activities. In order to compare
the usefulness of a particular decision-making tool, which would facilitate the prediction
of the race results, it is assumed that all bettors utilise the same set of variables for
modelling, albeit they may differ in their information extraction skills. In that case, a
particularly well-informed bettor, capable of extracting additional information from the
‘behaviour’ of the ‘nature’ as a decision-maker, would have a decisive advantage over
other market participants. This is equivalent to the ability to refine the statistical prop-
erties of the unobserved portion of the underlying utility, as seen in the model (2.1), and
use it as an additional variable. However, such an advantage is not easy to obtain, and
fairly sophisticated methods are therefore needed to ‘beat’ the market, which underscores
the suitability of the horse-wagering markets as a test setup for different statistical mod-
elling methods. It is therefore obvious, that the DCM described in section 3.2 directly
meets the Research Objective 1, since it considers the ordered preference information
from previous decision events, in order to construct an endogenous trend, and the horse-
racing setting intrinsically contains changing choice sets (i.e. ‘no race is the same’) with
different numbers of runners in each race.

In addition, over a racing career consisting of a number of professional races, a runner
will have a number of involvements with varying time periods between participation in
subsequent races, thus defining a setup appropriate for fulfilling the irregular sampling
portion of the Research Objective 2. Furthermore, if the model involves relatively efficient
market variables (in the sense of prediction power regarding the likelihood of a particular
horse winning) a statistically significant improvement obtained from data processing
publicly available data is challenging. In this case, it can be claimed that the model
extracts ‘residual’ information from publicly available data, which is not incorporated
in the runner’s odds for winning a race. The selected research design is deployed to
demonstrate that the latent state information in SSMs, updated by the KF, can be used
for extracting residual information not fully discounted by market participants, which
directly meets the both proposed research objectives.

Finally, residual information should provide a competitive edge to a savvy bettor and
allow him to make a profit (i.e. to ‘beat’ the market) through the consequent application
of those betting strategies that take into account the additional information.

The outlined research design and methodology indicate the broad types of variables
needed to establish logical conclusions leading to answers to the research questions.
The most important type of data are related to publicly available horse-racing market
information and are split into two groups – race-level data and runner-level data. Race-
level data have to include information regarding the decision event itself (i.e. cross-
sectional data), such as the race date, identification of the runners participating in the
race and, for the ex-post evaluation, the result of the race as an ordered list. In addition,



Chapter 3 Methodology 65

the best single predictor regarding the runner’s probability of winning (betting odds) has
to be available both for comparison of different variables and for evaluation of betting
strategies. As expected, these kinds of data are easily obtainable, since they are in the
public domain and are traditionally of interest to bookmakers, professional bettors, and
the general public alike. The second type of race-level data includes the endogenous
variables (fundamentals), which are seen as predictors of the performance of runners in
the race at hand, such as prize money, race category, type of ground, etc. This type of
data can be used effectively either as fundamental values or as weightings of previous
outcomes. Obviously, all of these variables are common to all runners in the considered
race.

Runner-level data, on the other hand, are bound to current and previous characteris-
tics of a horse, developed and tracked either throughout its career or derived from the
circumstances of a particular race (e.g. weight, draw, gender, sire, jockey rating, beaten
lengths, etc.). All data types identified until now are in principle commercially available,
even if some pre-processing may be necessary before they can be used for modelling.

The last category of data encompasses data generated through the statistical processing
of ex-post data, i.e. ordered data available after a race (placement). Here, race placement
data can be seen as an alternative-specific proxy of the preference. In the context of horse-
racing, the revealed ordered preference can be also seen as a proxy of the performance of
a runner in the previous race. Obviously, the simplest alternative-specific proxy of the
performance is the continuous (inflated) race finish order NFP , c.f. (3.1). This proxy
has a simple interpretation: in every race, independently of the number of runners, the
winning horse has the performance proxy of 0.5 and the last horse has the performance
proxy of −0.5. The performance of all other horses sits between these two values. In
races with odd numbers of runners, the performance 0.0 marks the middle field.

As specified in Research Objective 1, the proxy of the preference has to be fed back
to the model in order to be used to predict the behaviour of a decision-maker, i.e. to
predict the outcome of the next decision event (race). Moreover, the same research
objective requires that a proxy trend has to be constructed and incorporated as an
endogenous prediction variable. An endogenous trend can be generated either through
simple data pre-processing (e.g. Moving Average (MA)) or through the application or
more sophisticated statistical data processing algorithms (e.g. classical linear/non-linear
filtering or KF). Applying these algorithms to the inflated performance proxy, either
individually or in combination with other market- and runner-level data, can potentially
yield predictors of the performance of a runner in the considered race.

In addition, more complex performance proxies are imaginable which may incorporate
other variables into one improved performance proxy. For example, including beaten
lengths information may indicate that a win was possibly after a ‘dead heat’, thus wit-
nessing minimal performance advantage over the runner-up, or it may show that a runner
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outclassed all other runners, thereby witnessing a very high level of racing performance
in that race. Moreover, the monetary prize bound to a particular race may indicate the
relative attractiveness of a race compared to other races. Arguably, races with higher
monetary compensation are more attractive for owners and jockeys, resulting in stronger
competition in the field (participation of better horses/jockeys), and a win in such a high
stakes race is therefore an indicator of better relative performance. This weighting of the
performance proxy is derived from the relative importance of a race as a decision event.
Naturally, the weightings of the NFP can be combined and build a complex proxy. In this
study, prize moneys and beaten length weighting of NFP are combined to build an ‘ul-
timate performance’ ex-post proxy (ULTIPERF , also abbreviated UP) which, together
with other runner- or race-level variables, can be used to generate ex-ante forecasts of
performance proxies.

Trend-building, as specified in the Research Objective 1, takes the time evolution of
performance into account. Translated into a countable number of decision events, the
time is equivalent to (recency) weighting of a performance proxy, i.e. how much time
has passed from the last captured performance, expressed through the time distance
between a runner’s successive races. Intuitively, a recent performance proxy should be
more reliable than a performance proxy from the distant past, simply because of the
greater uncertainty regarding intrinsic form (performance) development over time.

Starting from the simplest performance proxy LAGGED_NFP , the following endogenous
variables are designed in order to provide an infrastructure that will help address all
elements of the research objectives. Combinations and comparisons of the generated
variables allow for inference regarding the performance of different models generating
trends used for predicting discrete decision outcomes. The auxiliary variables are as
follows:

(a) Lagged NFP from the last race in which the runner participated – LAGGED_NFP

(b) Cumulative moving average of NFP of a runner – MA_NFP

(c) The KF produced trend prediction of NFP with or without recency weighting –
KF_NFP_xxx

(d) Lagged UP from the last race in which the runner participated
– LAGGED_UP

(e) Cumulative moving average of UP of a runner – MA_UP

(f) The KF produced trend prediction of ULTIPERF with or without recency weight-
ing – KF_UP_xxx

Note that _xxx stands for a particular KF model structure, as mapped in Table 3.1.
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Combinations of designed proxy variables with the racing odds allow the development of
a range of models for statistical and empirical testing used to answer research questions,
posed for the purpose of the easier demonstration of how the research objectives are met
and that the identified gaps in the literature are closed. These models and the verification
methodology designed to test them are summarised in the next section on empirical test
planning (cf. Table 3.2, Table 3.3, Table 3.4, and Table 3.5).

3.3.2 Empirical Test Planning

A fundamental part of any research design is the methodology, which when applied to
the empirical data yields results, evidence, and finally conclusions, needed to answer the
set research questions. This chapter outlines the methodology used for testing/analysis
and the logic applied to answer primary and secondary research questions.

Research Question 1 called for a statistical evaluation of the informational content em-
bedded in patterns of previous choices, that could explain an additional part of the
unobserved portion of the utility. Starting from a static CL model, using the best single
predictor of a win in a race (i.e. winning odds) as a baseline, the statistical significance
of the contribution of endogenous trend variables will be confirmed or rejected through
the Wald test (i.e. the Z-test) of significance in the univariate case and Likelihood Ratio
(LR) testing in the bivariate case (c.f. 3.3.4). If any of the statistical tests confirms
the statistical significance of any endogenous trend variable, an affirmative answer to
the Research Question 1 can be given. Furthermore, if the tests reject the statistical
significance, a conclusion can be reached that the designed endogenous trend variables
do not extract any additional information on the uninformed portion of the utility. This,
however, does not allow for a conclusion that there are no endogenous trend variables
with the embedded information, but rather that the designed trend variables perform
poorly when extracting embedded information not reflected in the winning odds.

The associated secondary Research Question 1a called for determining the level of the
competitive advantage increase (gain over uninformed bettors) that a savvy market agent,
aiming to forecast an outcome of a decision event, experiences in form of increased
gains from the additional information set, as investigated in the Research Question 1.
To answer this question, the financial performance of the Kelly betting strategy (see
(3.33)) is evaluated, especially in terms of total profit and ROI. If the model including
a (significant) trend variable outperforms the model including only the winning odds,
the difference in the total profit and ROI yields a proxy of the competitive advantage
increase. Obviously, the answer to this question is not a dichotomous yes/no statement,
but a set of continuous values. Table 3.2 summarises the empirical testing with respect
to the Research Question 1 and 1a.
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Table 3.2: Research Design - Summary of variable comparison for RQ1

VUT Base Goal Evidence

Research Question 1 - Normalised Finishing Position Tests

LAGGED_NFP - Significance Testing zTest and p-R2

MA_NFP - Significance Testing zTest and p-R2

LLM_NFP_dm - Significance Testing zTest and p-R2

LAGGED_NFP LOGPRICE Significance Testing LR Test and p-R2

MA_NFP LOGPRICE Significance Testing LR Test and p-R2

LLM_NFP_dm LOGPRICE Significance Testing LR Test and p-R2

LAGGED_NFP LOGPRICE Kelly Betting Strategy ROI and Profit
MA_NFP LOGPRICE Kelly Betting Strategy ROI and Profit
LLM_NFP_dm LOGPRICE Kelly Betting Strategy ROI and Profit

1 Statistical significance is assessed both in- and out-of-sample. Kelly betting
results are assessed only out-of-sample.

Research Question 2 called for a statistical evaluation of the informational content em-
bedded in patterns of previous choices, which additionally take into account the temporal
distance between successive decision events (i.e. a ‘forgetting’ factor) that could explain
an additional part of the unobserved portion of the utility. Starting from a static CL

model, using the best single predictor of a win in a race (i.e. winning odds) as a baseline,
the statistical significance of the contribution of the endogenous trend variables will be
confirmed or rejected through the Wald test (i.e. the Z-test) of significance in the uni-
variate case and LR testing in the bivariate case (c.f. 3.3.4). If any of the tests confirms
the statistical significance of any endogenous trend variable, an affirmative answer to the
Research Question 2 can be given. Furthermore, if the tests reject statistical significance,
a conclusion can be drawn that the designed endogenous trend variables do not extract
any additional information on the uninformed portion of the utility. This does not al-
low for a conclusion that there are no endogenous trend variables with the embedded
information, but rather that the designed trend variables perform poorly in extracting
embedded information not reflected in the winning odds.

The associated secondary Research Question 2a called for determining the level of com-
petitive advantage increase (gain over uninformed bettors) that a savvy market agent
aiming, to forecast an outcome of a decision event, experiences in form of increased gains
from the additional information set, as investigated in Research Question 2. To answer
this question, the financial performance of the Kelly betting strategy (see (3.33)) is eval-
uated, especially in terms of total profit and ROI. If the model including a (significant)
trend variable outperforms the model including only winning odds, the difference in the
total profit and the ROI yields a proxy of competitive advantage increase. Obviously,
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the answer to this question is not a dichotomous yes/no statement but a set of contin-
uous values. Table 3.3 summarises the empirical testing with respect to the Research
Question 2 and 2a.

Table 3.3: Research Design - Summary of variable comparison for RQ2

VUT Base Goal Evidence

Research Question 2 - Recency Weighted Normalised Finishing Position Tests

LLM_NFP_c - Significance Testing zTest and p-R2

LLM_NFP_m - Significance Testing zTest and p-R2

LLT_NFP_c - Significance Testing zTest and p-R2

LLT_NFP_m - Significance Testing zTest and p-R2

LLM_NFP_mod1 - Significance Testing zTest and p-R2

LLM_NFP_c LOGPRICE Significance Testing LR Test and p-R2

LLM_NFP_m LOGPRICE Significance Testing LR Test and p-R2

LLT_NFP_c LOGPRICE Significance Testing LR Test and p-R2

LLT_NFP_m LOGPRICE Significance Testing LR Test and p-R2

LLM_NFP_mod1 LOGPRICE Significance Testing LR Test and p-R2

LLM_NFP_c LOGPRICE Kelly Betting Strategy ROI and Profit
LLM_NFP_m LOGPRICE Kelly Betting Strategy ROI and Profit
LLT_NFP_c LOGPRICE Kelly Betting Strategy ROI and Profit
LLT_NFP_m LOGPRICE Kelly Betting Strategy ROI and Profit
LLM_NFP_mod1 LOGPRICE Kelly Betting Strategy ROI and Profit

1 Statistical significance is assessed both in- and out-of-sample. Kelly betting
results are assessed only out-of-sample.

Research Question 3 called for a statistical evaluation of the informational content embed-
ded in patterns of previous choices and which additionally consider importance weighting,
i.e. the attribution of higher fidelity scores to decision events having larger pay-offs, in
order to explain an additional part of the unobserved portion of the utility. Starting
from a static CL model, using the best single predictor of a win in a race (i.e. win-
ning odds) as a baseline, the statistical significance of the contribution of endogenous
trend variables will be confirmed or rejected through the Wald test (i.e. the Z-test) of
significance in the univariate case and LR testing in the bivariate case (c.f. 3.3.4). If
any of the statistical tests confirms the statistical significance of any endogenous trend
variable, an affirmative answer to the Research Question 3 can be given. Furthermore, if
the statistical tests rejects the statistical significance, a conclusion can be drawn that the
designed endogenous trend variables do not extract any additional information on the
uninformed portion of the utility. This does not allow for a conclusion that there are no
endogenous trend variables with the embedded information, but rather that the designed
trend variables perform poorly in extracting embedded information not reflected in the
winning odds.
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The associated secondary Research Question 3a called for determining the level of com-
petitive advantage increase (gain over uninformed bettors) that a savvy market agent,
aiming to forecast an outcome of a decision event, experiences in form of increased gains
from the additional information set, as investigated in Research Question 3. To answer
this question, the financial performance of the Kelly betting strategy (see (3.33)) is eval-
uated, especially in terms of total profit and ROI. If the model including a (significant)
trend variable outperforms the model including only winning odds, the difference in the
total profit and the ROI yields a proxy of the competitive advantage increase. Obviously,
the answer to this question is not a dichotomous yes/no statement but a set of contin-
uous values. Table 3.4 summarises the empirical testing with respect to the Research
Question 3 and 3a.

Table 3.4: Research Design - Summary of variable comparison for RQ3

VUT Base Goal Evidence

Research Question 3 - Importance Weighted Normalised Finishing Position Tests

LAGGED_UP - Significance Testing zTest and p-R2

MA_UP - Significance Testing zTest and p-R2

LLM_UP_dm - Significance Testing zTest and p-R2

LAGGED_UP LOGPRICE Significance Testing LR Test and p-R2

MA_UP LOGPRICE Significance Testing LR Test and p-R2

LLM_UP_dm LOGPRICE Significance Testing LR Test and p-R2

LAGGED_UP LOGPRICE Kelly Betting Strategy ROI and Profit
MA_UP LOGPRICE Kelly Betting Strategy ROI and Profit
LLM_UP_dm LOGPRICE Kelly Betting Strategy ROI and Profit

1 Statistical significance is assessed both in- and out-of-sample. Kelly betting re-
sults are assessed only out-of-sample.

Research Question 4 called for a statistical evaluation of the informational content em-
bedded in patterns of previous choices, which additionally consider the importance of
weighting and the temporal distance between successive decision events, and which could
explain an additional part of the unobserved portion of the utility. Starting from a static
CL model, using the best single predictor of a win in a race (i.e. winning odds) as a
baseline, the statistical significance of the contribution of endogenous trend variables
will be confirmed or rejected through the Wald test (i.e. the Z-test) of significance in
the univariate case and LR testing in the bivariate case (c.f. 3.3.4). If any of statistical
tests confirms the statistical significance of any endogenous trend variable, an affirma-
tive answer to the Research Question 4 can be given. Furthermore, if the tests reject the
statistical significance, a conclusion can be reached that the designed endogenous trend
variables do not extract any additional information on the uninformed portion of the
utility. This does not allow for a conclusion that there are no endogenous trend variables
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with the embedded information, but rather that the designed trend variables perform
poorly in extracting embedded information not reflected in the winning odds.

The associated secondary Research Question 4a called for determining the level of com-
petitive advantage increase (gain over uninformed bettors) that a savvy market agent,
aiming to forecast an outcome of a decision event, experiences in form of increased gains
from the additional information set, as investigated in Research Question 4. To answer
this question, the financial performance of the Kelly betting strategy (see (3.33)) is eval-
uated, especially in terms of total profit and ROI. If the model including a (significant)
trend variable outperforms the model including only the winning odds, the difference
in the total profit and the ROI yields a proxy of the competitive advantage increase.
Obviously, the answer to this question is not a dichotomous yes/no statement, but a
set of continuous values. Table 3.5 summarises the empirical testing with respect to the
Research Question 4 and 4a.

Table 3.5: Research Design - Summary of variable comparison for RQ4

VUT Base Goal Evidence

Research Question 4 - Recency and Importance Weighted Normalised Finishing Position Tests

LLM_UP_c - Significance Testing zTest and p-R2

LLM_UP_m - Significance Testing zTest and p-R2

LLT_UP_c - Significance Testing zTest and p-R2

LLT_UP_m - Significance Testing zTest and p-R2

LLM_UP_mod1 - Significance Testing zTest and p-R2

LLM_UP_c LOGPRICE Significance Testing LR Test and p-R2

LLM_UP_m LOGPRICE Significance Testing LR Test and p-R2

LLT_UP_c LOGPRICE Significance Testing LR Test and p-R2

LLT_UP_m LOGPRICE Significance Testing LR Test and p-R2

LLM_UP_mod1 LOGPRICE Significance Testing LR Test and p-R2

LLM_UP_c LOGPRICE Kelly Betting Strategy ROI and Profit
LLM_UP_m LOGPRICE Kelly Betting Strategy ROI and Profit
LLT_UP_c LOGPRICE Kelly Betting Strategy ROI and Profit
LLT_UP_m LOGPRICE Kelly Betting Strategy ROI and Profit
LLM_UP_mod1 LOGPRICE Kelly Betting Strategy ROI and Profit

1 Statistical significance is assessed both in- and out-of-sample. Kelly betting results are assessed
only out-of-sample.

It should be noted, that the research design is robust against the non-uniqueness of
how the trend variables are designed, and any designed variable which incorporates
additional information in a statistically significant way is deemed sufficient to answer a
research question in an affirmative way. On the other hand, designed variables which
do not yield an affirmative answer can be discarded without negative conclusion and
alternatives could be sought.

Since all research questions can be answered in full by the research design outlined here
and the research questions cover all aspects of the research objectives and closure of
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the identified gaps in the literature, it can be concluded that the research strategy is
adequate to meet the research objectives.

Figure 3.3 shows step-by-step algorithm of the quantitative data generation, prediction,
test, and analysis, defined as a sequential procedure applicable to every model under
test.

Make time series data for every runner based on the HORSEID and the date of the race (t) over the length of their careers
Estimate ѲKF parameters of all KF defined trend model structures by maximisation of the Log Likelihood over LDS and all 
runners within. (Eq. 3.23 – 3.25)

Aposteriori data for KF used for trend correction are NFP and ULTIPERF 
Set diffuse prior initialisation for every runner and every model 
Calculate KF based prediction (trend) of NFP and ULTIPERF for every runner over FDS using  (Eq. 3.3 – 3.18).
Reorder the time series causal predictions according to races (ordered by RaceID) and dates 

Step 2: Conditional Logit (CL) Stage

Step1: Kalman Filter (KF) Stage

Learn Data Set (LDS)
Burn-In Data Set (BDS)
Validation Data Set (VDS)
All data subsets contain:

Horse ID
RaceID
Date of the race (t)
Log of final odds of the race (LOGODDS)
Starting Price (DECIMALODDS)
Ranked finishing order of runners 
Normalised Finishing Position (NFP) (after the race)
ULTIPERF – Importance weighted NFP (based on Prize money and Beaten Lengths) 

Substitute Kalman Filter trend predictions of the first two races with odds implied winning probabilities (Apendix A)
Estimate ѲCL parameters of all CL models defined in  research design section (Eq. 3.26 - 3.27)

Calculate winning probabilities (Eq. 3.28) for all races in VDS 

Algorithm Input

Model Evaluation

Eliminate tainted (Sec. 3.3.5) races in VDS
Perform statistical tests of significance – Wald and Likehod Ratio tests  (Eq. 3.29-3.32) 
Evaluate Kelly betting strategies on all models using DECIMALODDS variable VDS data set (Eq. 3.33) 

Figure 3.3: Algorithm of the quantitative data prediction and analysis

3.3.2.1 Kalman Filter Initialisation

Until now, all discussed SSM models were defined under the assumption that the initial
distribution of the states is a-priori known or set to some arbitrary values. Indeed, in the
vast majority of engineering applications, due to the fast sampling of the observations,
errors due to the wrong initialisation diminish fast and can typically be neglected. On
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the other hand, a-priori knowledge of the initial distribution of the states, especially for
non-stationary models, is rarely given in econometrics. This led some statisticians to
conclusion, that KF is of less practical value unless a Bayesian approach, which specifies
the proper prior distribution for the initial state α0|0, is applied. For the horse racing
setting it has to be assumed that there is no prior knowledge and that every runner has
its own improper prior, called also a diffuse prior.

Diffuse prior is defined through the assumption that the improper prior α0|0 ∼ N (0, κIn)

is a result of the limit process κ → ∞. In the context of horse-racing, and taking
for example NFP as the univariate observed variable, this prior implies that the horse
imaginary past performance is equal to 0.0 (i.e. middle of the field) and that that there
is infinite uncertainty (variance) regarding the past performance - i.e. complete lack of
information. Moreover, the prior is improper, since its PDF does not integrate to one
(Harvey, 1990). In general, classical KF algorithm cannot be initiated with infinite
variance. An approximation with a large κ, for example κ ≃ 107 may be used, albeit
with caution, as it may lead to considerable numerical problems. Alternatively, the
exact initialisation algorithm described by Durbin and Koopman (2012), which effectively
constructs a proper prior from the initial sequence of observations with the length equal
to the order of the SSM and afterwards switches to the classical algorithm may be used.
Obviously, this sets a limit for the minimum sequence length for initialisation, which is
equal to the order of the SSM. Matlab function dssm implements the diffuse model
(The MathWorks Inc., 2017) and it is used for model initialisations in this study.

3.3.3 Model Parameter Estimation

Estimation of the parameters of the selected CL utility structure, together with the
underlying KF model, is the final step in operationalisation of the DCM model. The
following subsection depicts the Maximum Likelihood Estimation (MLE) approach of
parameters estimation conditional on the observations from Learn Data Set (LDS). In
alignment with the racing context, model parameter estimation is achieved through the
maximisation (hence the name MLE) of the likelihood that the decision maker (‘nature’)
made the observed series of choices, taking into account all races and all runners’ careers.
In the case of DCM, the likelihood function is given as a product of the probabilities
that particular observed outcomes have occurred taking all races into account, i.e. the
likelihood is calculated over all N races in the LDS. The parameter estimates, resulting
from the (numerical) maximisation of the likelihood function is than used in Burn-in
Data Set (BDS) and Validation Data Set (VDS) for out-of-sample model validation.
The fact that mixed discrete and continuous (and conditional) distributions are used is
of no importance for the derivation (Merkle, 2002).
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In mathematical terms, the maximisation with respect to sought parameters θ:

θ = argmax
θ

(ℓ(θ|D1, . . . ,DN , Ŷ 1, Ŷ 2, ..., Ŷ N ,X1, . . . ,XN ) (3.21)

with Ŷj = [ŷ1,j , ŷ2,j , . . . ŷJj ,j ] as vector of predicted endogenous trend variables (3.3) for
each runner i from the choice set of size Jj in race j. The vectorised result of the race
Dj = [d1,j , . . . , di,j , dJj ,j ] is constructed with the convention di,j = 1 if runner i actually
won the race j and zero otherwise. Independent and deterministic exogenous variables
affecting the runner i in the race j Xj

i = [x1,i,j , x2,i,j , . . . xω,i,j ] are encapsulated in
race level exogenous matrices Xj = [Xj

1X
j
2 . . . X

j
Jj
]. The parameter ω denotes the total

number of exogenous variables in the model.

A key element of MLE is the product of probabilities that the observed sample actu-
ally occurs. This is calculated as functional values of the joint PDF f(D,X, Ŷ ;θ) for
the given observation data point, under the assumption that the PDF of the sample
(D,X, Ŷ ) is a member of a family of functions parametrised by θ. In addition, the fact
that the values Ŷ are actually realisations of random variables allows the separation of
the joint density in product of a conditional and a marginal density

f(D,X, Ŷ ;θ) = f(D,X|Ŷ ;θCL)f(Ŷ ;θKF ), (3.22)

where θCL is the subset of the parameter vector θ that parametrise the conditional
density function of the CL stage and θKF is the subset parametrising the marginal
density function bound to KF stage, i.e. θ = [θCL,θKF ], as defined in discussion after
equation (3.6). In addition, under the assumption that there is no functional relationship
between θCL and θKF , MLE of θ is achieved through separate maximisation of the
conditional likelihood built around the product of f(D,X|Ŷ ;θCL) with respect to θCL

and maximisation of the product of marginal likelihoods (Ŷ ;θKF ) with respect to θKF

(Hayashi, 2000). This property follows directly from Fubini’s theorem (Pilipović and
Seleši, 2012).

Furthermore, it should be appreciated that the marginal density function of the KF stage
is conditional on inflated rankings from the previous races. Henceforth, the following
convention is introduced; every random variable ŷji is considered conditional on previous
observations derived from the ex-post rankings Y̌ Ni

i = [yNi
i , yNi−1

i , . . . , y1i ]
′ throughout

the whole racing career of the runner i, i.e. all Ni races before the current race j. Note
that this does not state anything about the actual time passed between two successive
races in the past. In addition, notation y0i does not imply that an actual ‘zero-th’ race
took place, rather it represents unconditional a-priori ranking in a virtual race before
the actual début.
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3.3.3.1 Maximum likelihood estimation of Kalman Filter parameters

Estimation of the parameters of the KF stage follows a logical extension of the classi-
cal prediction error decomposition and is taking into account that, due to the selected
dynamic structure, the samples are not independent, so that the likelihood function for
the runner i, over all Ni career races in the data set can be expressed as

ℓi(y;θKF ) =

Ni∏
k=1

p(yk|Y̌ k−1
i ), (3.23)

where p(yk|Y̌ k−1
i ) is the PDF of yk, conditional on previous realisations known at k− 1,

i.e. Y̌ k−1
i = [yk−1

i , yk−2
i , . . . , y1i ].

Based on the properties of multivariable normal distribution and the Markov property re-
garding the states, the prediction error log likelihood functional form follows immediately
from the KF formulas for the conditional mean and covariance (Harvey, 1990):

log(ℓi) = −Ni − Ω

2
log(2π)− 1

2

Ni∑
k=Ω+1

log fk −
1

2

Ni∑
k=Ω+1

ν2k
fk

, (3.24)

with νk as scalar innovation (prediction output error) equivalent to the term in bracket
in (2.22a) and fk as the output error covariance. Equation (3.24) is derived taking the
diffuse prior initialisation into account. In absence of any prior information, the KF for
(3.7) and (3.11) has to be initialised with a diffuse prior, as explained in Section 3.3.2.1.
Fundamentally, this approach generates exact proper conditional distributions after Ω

observations, with Ω being equal to the system order of the selected non stationary
models. It should be noted that (3.24) is not the only way to specify the likelihood
function. The exact type of the function is dependent on the assumptions regarding the
initial condition. Fortunately, the process of parameter identification is not too sensitive
to the actual form of the likelihood function for large samples, since all specifications
have the same asymptotic properties. Small sample properties can, obviously, differ
considerably.

In order to extract the maximum data content for the parameter estimation, all N

runners have to be included in the following likelihood function

ℓ(θKF ) =

N∑
i=1

log(ℓi). (3.25)

In addition, this expression has to be maximised with respect to the hyper parame-
ters θKF using some appropriate numerical optimisation procedure, capable of imposing
constraints on the parameters and preferably insensitive to relatively ‘flat’ likelihood
functions. Both classical gradient based with numerical approximations for the first and
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second derivatives (e.g. Matlab function fminunc with additional nonlinear transfor-
mations for constraints handling) and modern evolutionary optimisation algorithms (e.g.
Matlab function particleswarm) can be used sensibly.

After the successful parameter identification, KF can be run on all available sequences
of the endogenous trend variables and construct the predictions ŷji , which will be used
for the purpose of the identification of θCL, as a-priori known realisations.

3.3.3.2 Maximum Likelihood Estimation of Conditional Logit parameters

With all ŷji known, the conditional likelihood function f(D,X|Ŷ ;θCL) can be minimised
with respect to θCL considering all data as exogenous. Following the definition of the
likelihood function as a product of probabilities, it yields for N decision events, all with
different choice sets Jj and the corresponding choice variable di,j (equivalent to (2.9)):

ℓ(θCL|D1, . . . ,DN , Ŷ 1, Ŷ 2, ..., Ŷ N ,X1, . . . ,XN ) =
N∏
j=1

Jj∏
i=1

(Pi,j)
di,j , (3.26)

The logarithm of the likelihood function is globally concave for a linear combination of
exogenous variables, which facilitates easier numerical optimisation (Train, 2009):

argmax
θCL

(log ℓ(θCL)) = argmax
θCL

(

N∑
j=1

Jj∑
i=1

di,j logPi,j). (3.27)

In the above equation, Pi,j is the associated conditional probability of runner i to win
the race j and θCL = [β′

ex βy] is the vector of sought parameter, i.e. has the same
meaning as in (3.20). In particular, since all non chosen alternatives are raised to the
power of zero, only the conditional win probability of the runner that actually won the
race remains in the equation, thus accelerating numerical calculations associated with
the likelihood optimisation.

When considering the trends of the proxies as input variables, the equation for prob-
abilities of a logit decision model (3.20) can still be used directly. However, since the
trends of the proxies are random variables, the probability expressions become condi-
tional. For the assumed linear functional form of ω independent exogenous variables
Xj

i = [x1,i,j , x2,i,j , . . . xω,i,j ]
′ and the trend estimate variables ŷji this yields:

Pi,j |ŷji , ŷ
j
2, ..., ŷ

j
Jj
;θCL =

exp(βexX
j
i + βyŷ

j
i )

Jj∑
k=1

exp(βexX
j
k + βyŷ

j
k)

. (3.28)

Even though this equation does not look particularly complex, it should be noted that
every random variable ŷji is conditional on the previous placements in the races ykii ; ki ∈
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[1, Ni] and the KF parameters θKF (i.e. ŷji |y
Ni
i , yNi−1

i , . . . , y1i ;θKF ). This means that
the KF step model parameter identification and subsequent evaluation of endogenous
trend estimates ŷji have to be carried out first.

Actual parameter optimisation can be performed using the same algorithm as in the KF

stage, using conventional gradient-based or evolutionary routines. For the first type of
algorithms, analytic derivations of the associated gradients and Hessians are available
and can be used for acceleration of convergence (Train, 2009).

Parameters obtained following the MLE procedures in this section, can be readily used
on out-of-sample data. This step is described in Chapter 4. Finally, parameter estimation
using MLE in the context of two selected stages is asymptotically efficient and asymp-
totic normal, when sample size increases to infinity (Mladenović, 2005), thus promising
reasonable performance.

3.3.4 Model Evaluation Strategy

In order to provide an objective evaluation of the relative merits of the proposed models, a
metric, a set of measures, of the achieved performance are needed. Selection of summary
metrics of performance of a non-linear DCMs is not a trivial task. Whilst for linear
models some variant of MSE, implying a squared error loss function, is typically sufficient
to provide a quick and robust measure of accuracy, both in-sample and out-of-sample,
for DCM, a different approach is needed.

For example, McFadden (1974) pseudo-R2 measures the improvement in data fit accuracy
between the likelihoods of the null (uninformative or naïve) probability calculation model
in which one or more parameters are set to zero (ℓ(0)) and the full model under evaluation
– ℓ(θ̂) (Amemiya, 1981; Bolton and Chapman, 1986; Sung et al., 2016b, 2019). McFadden
(1974) pseudo-R2 is defined as follows:

R̃2 = 1− ℓ(θ̂)

ℓ(0)
(3.29)

with ℓ defined as the maximised likelihood of the model (3.27) taking all available data
into account. Even though R̃2 somewhat resembles the R2 measure from ordinary re-
gression analysis it has a different interpretation. In the OLS setting, R2 measures how
good the independent variables explain the variance of the observed data around the
mean or, as an alternative interpretation, measures the degree to which the dependent
variable can be predicted by a linear combination of the independent variables (Hoel,
1984). For example, R2 = 0.69 implies that 69% of the variability of the observed variable
is explained by the model, with 31% of the remaining unexplained variance. Similarly,
pseudo-R2 values around zero indicate no improvement over the uninformative model
(i.e. the model where all choice probabilities are equal). In other words, the model has
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no predictive power in that case. Conversely, if the maximised model likelihood ℓ(θ̂)

is much closer to zero than ℓ(0) (note that both likelihoods are always negative, since
the marginal likelihood contribution from each alternative in a race is a value between
zero and one), the fitted model outperforms the uninformative model. In practice, large
values of pseudo R̃2 are usually not to be expected, and “... values of 0.2 to 0.4 for ρ2

represent an excellent fit”1 (McFadden, 1979). Obviously, evaluation of R̃2 in LDS and
VDS will have different interpretation. R̃2

LDS reveals the measure of the model fit, whilst
R̃2

V DS indicates the predictive power in out-of-sample data subset. In spite of the fact
that pseudo-R̃2 are often used in academic studies, they are dependent both on the exact
definition of the measure and on the choice of model. In this study, only the combination
of the pseudo-R̃2 definition (3.29) and CL model structure is considered.

Another statistical test, which complements the pseudo-R̃2 metric, is the LR test (Ney-
man and Pearson, 1928), derived from the principles of ML. The LR test is especially
powerful when an asymmetrical contribution of independent variables is assumed. In its
essence, it compares the likelihoods of two models, for example, Ma with the parameters
θ̂a and Mb with the parameters θ̂b, after created of Ma through augmentation of the Mb

with additional explanatory variables. The test evaluates whether the log-likelihood of
Ma is appreciably greater than the log-likelihood of Mb over the same sample, when con-
trolling for the total number of additional independent variables κ – Degrees of Freedom
(dof). Statistics of the difference of the likelihoods has the asymptotic χ2

κ distribution:

λ = 2[ℓ(θ̂a)− ℓ(θ̂b)] ∼ χ2
κ. (3.30)

The statistical rationale behind this test is that, if the maximum of the log-likelihood
function of the base model does not differ too much from the value of the log-likelihood
function maximised using the augmented model structure, than the contribution of the
additional variables is not statistically significant. In other words, the base model can
be seen as a constrained (restricted) sub-model of Ma (Maddala, 1977; Greene, 2008),
i.e. the models are nested. Finally, the criterion for evaluating the statistical significance
is met if λ ≥ cα0 , where α0 is a constant, dependent on dof κ of the χ2 distribution,
defining the statistical power of the test. Note that the likelihood of the augmented
model on the same sample is always greater, i.e. it will fit at least as well as the base
model, possibly due to overfitting. In the context of horse-racing, the application is
straight forward – the basic model includes the variables which are known to be good
predictors of the runner’s performance (e.g. LOGPRICE ), which are then augmented
with the variables under test.

In cases where univariate models have to be tested for significance, LR testing cannot be
applied and an alternative statistic has to be sought. The Wald test (Dinardo et al., 1997)
has a similar testing power as LR, with the advantage that the evaluation of significance
can be made immediately after parameter fitting and can be applied in situations where

1In the original text ρ is used instead of R
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practically no other statistical test of variable significance can be applied. The Wald
test evaluates the null hypothesis, that a parameter is equal to some specified value,
most frequently zero. The idea behind the test is, that if the test fails to reject the
null hypothesis it indicates that eliminating the tested variable from the model will not
substantially affect the model fit. In other words, if a variable has a weighting parameter
(in this application – βy) which is very small compared to its standard error is practically
an error (noise) and, consequently, does not contribute significantly to prediction of the
dependent variables (Davidson and MacKinnon, 1984).

The Wald test statistic is based on the weighted distance between the unrestricted pa-
rameter estimate (θ̂) and the value specified in the null hypothesis (θ̂0). It can be shown
that if the weighting is selected to be the inverse of the variance of the unrestricted
parameter estimate (Var(θ̂)), the statistic asymptotically follows the χ2 distribution, i.e.

W =
(θ̂ − θ̂0)

2

Var(θ̂)
∼ χ2

1. (3.31)

However, for the single variable case and with θ̂0 = 0, a simpler statistic defined as the
square root of W can be used, becoming an equivalent of the Z-test. Indeed, based on
the fact that the MLE are approximately Gaussian, and that their asymptotic variance
is the Fisher information (Davidson and MacKinnon, 1984), the standard error of the
parameter estimate (se(θ̂)) can be set as a denominator

√
W =

θ̂

se(θ̂)
∼ N (0, 1), (3.32)

which in turn means that the statistic
√
W asymptotically follows the Z distribution

(i.e. the standardised Gauss distribution) (Davidson and MacKinnon, 1993). For the
purposes of significance testing of CL parameters the value of

√
W > 1.96 to confirm

the null hypothesis that the parameter estimate θ̂ is statistically different from zero with
p < 0.05.

It can be shown that the Wald test statistic is greater than the LR test statistic taken
for two nested models, which means that the superior test power resides with the LR

test, even though the tests are asymptotically equivalent (Godfrey, 1991; Kmenta, 1997).
Hence, for the purposes of this study, LR test is favoured in all cases when nested models
can be assessed, i.e. in cases where more than one variable are included in a model, and
when out-of-sample considerations are beneficial. Finally, an application specific metric
of model quality, the Kelly (1956) wagering strategy, is used to ascertain profitability
of the forecasts provided by the model. Moreover, Clements and Hendry (1998) argue
that in cases when the forecasting errors evaluation is strongly non-linear – for example
like in horse betting, where correct forecasts regarding top three placements is far more
important than correct forecasts of horses which are ‘out-of-the-money’– application
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specific forecasting performance measures dominate standard forecasting measures like
MSE. The Kelly betting strategy proposes bet sizes bji for every runner i in terms of the
fraction of wealth before the race j, with the aim to maximise the expected log-payoff
and, consequently, increase of wealth after the race. The following maximisation yields
a set of bet sizes bjh:

max
bjh

Jj∑
h=1

pjh log(1−
Jj∑
i=1

bji + bjhr
j
h), (3.33)

where h denotes a possible winner with the associated return rjh in the case of win (i.e.
decimal odds) and pjh denotes the actual winning probability of the runner h. Increase
of the wealth after the race is equal to the term in the brackets. Consequent application
of the Kelly strategy on a large set of races is optimal in the sense that it maximizes
the asymptotic rate of accumulated wealth growth (Johnson et al., 2006; McDonald,
2012). At the same time, due to the adaptive size of the wagers related to the level of
accumulated wealth before the race, this strategy has zero probability of bankruptcy.

The underlying mechanism of the Kelly wagering strategy is that it compares the dif-
ference between the real pjh and the odds-implied winning probabilities of the runners
and, subsequently, determines the size of the bets in a race through optimisation. Care-
ful study of (3.33) reveals that the Kelly strategy may yield wagers on outcomes with
negative expected returns in order to hedge bets in a given race. Obviously, this can
be seen as a problematic proposition since the real probability of wins are not known in
practice. Instead, they are proxied by estimates provided by the model under investiga-
tion. Hence, a modification of the strategy is implemented instead, in order to mitigate
the inaccuracies in probability estimates (McDonald, 2012). In particular, the actual
bets are calculated under the assumption that the estimated probabilities are correct,
but only the ‘value’ bets, having positive expected returns, are actually placed. Further-
more, in spite of the optimal properties regarding the asymptotic growth of wealth, there
are three possible caveats bound to the applied wagering strategy (MacLean et al., 1992,
2011): (1) the high volatility of the accumulated wealth caused by large bets on horses
with high estimated probability of win (similar to small Sharpe ratio in finance (Sharpe,
1994)), (2) unfortunate loosing streaks of high stake bets can skew the evaluation of the
strategy on short samples, and (3) the presence of tainted races (races in which the odds
implied probability is greater than one), caused by one or more ‘non-runners’ can yield
completely meaningless results. In order to counter these potential problems the stakes
are limited to 10% of the aggregate wealth before the race and all out-of-sample tainted
races are eliminated for the evaluation of the ROI.

For the purpose of the study, all above mentioned evaluation criteria are applied and
compared, taking into account the data fit aspects and the economic importance of the
model predictions.
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3.4 Data Set

Empirical data used to test the validity and the contribution of the endorsed models was
imported from the Betfair database of public UK racetrack information on horse races run
from January 1st, 2007 until December 31st, 2012 on all-weather and turf racing courses.
Betfair data are considered to have higher degree of public information discounted in
the final odds compared to classical bookmaker odds since it reflects settled ‘wisdom of
crowds’, obtained from many informed market participant, such as bookmakers, betting
syndicates, and professional bettors (Sung and Johnson, 2007). They are shown to be
more efficient predictors of the winning probabilities that the bookmaker odds (Smith
and Williams, 2010).

The complete data set (i.e. FDS Data Set (FDS)) covers 42768 races with 43424 runners
with a total of 436681 data points. The model identification and evaluation strategy
leverages three non-overlapping data subsets; (1) LDS: with 21051 races between Jan-
uary 1st, 2007 to December 31st, 2009 for parameter estimation, both of KF and CL

stages, (2) BDS: with 7302 races between January 1st, 2010 to December 31st, 2010 for
data ‘burn-in’, inserted as a middle layer to allow the error of unconditional KF initial-
isations to converge to zero, and (3) VDS: with 14415 races between January 1st, 2011
to December 31st, 2012, for out-of-sample model validations.

The first data subset – LDS – is treated as a training set used to estimate parameters
of the KF and CL stages. The second data subset – BDS – is introduced to allow at
least partial decay of errors in initial conditions of the state machines through effective
extension of the race prehistory before using the trend information for forecasting. Both
subsets are considered as in sample data. Finally, the third data subset – VDS – is
used for out-of-sample evaluation of the forecasting model. For model performance com-
parison, both the McFadden (1974) pseudo-R2 and cumulative profit achieved through
Kelly betting strategy in VDS are evaluated. In order to have unbiased evaluation of the
betting strategy, ‘tainted’ races (races in which the sum of implied winning probabilities
is less than one, thus artificially increasing probability of a profitable wagering strategy)
have to be eliminated from the considerations. Table 3.6 gives an overview of the distri-
bution of valid and ‘tainted’ races in the data subsets, together with the number of data
points.

Data set variables (Table 3.7) are split in two groups – variables known before each
race (ex-ante variables) and the variables realised after the order of the runners is re-
vealed (ex-post variables), corresponding in principle to independent and (stochastically)
dependent variables. The first group consists of three types of variables (1) data iden-
tifiers (e.g. RACEID , NUMBEROFRUNNERS ) used for queries and data aggregation,
(2) fundamental variables, related to runner’s ability and past performance (e.g. trans-
formed beaten lengths, gender, moving average of previous finishing positions, etc.) and
the conditions of the current race (e.g. draw advantage, weight carried) and (3) market
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variables, reflecting market opinion on probability of win (e.g. DECIMALODDS ), upon
which bettors define their strategies and claim pay-offs. Even though the fundamental
variables follow a similar logic to that applied in Bolton and Chapman (1986), the vari-
ables in the data set are selected based on the expectations that their contribution to
the utility varies considerably from runner to runner and from race to race. The first
reason for this, potentially unintuitive selection, is that variables endorsed by Bolton and
Chapman are in the public domain for a long time and it is to be expected that they are
already incorporated in final odds. The second reason is that with the larger variance it
becomes increasingly difficult for a human to recognize an underlying trend of a variable,
as it will appear erratic and noisy. Without any knowledge on statistical properties of the
noisy signal, is virtually impossible to filter them out. Hence, human bettors will likely
fail to correctly discount the utility contribution of the selected fundamental variables.
A stochastic filter, such as the KF, is arguably better suited to extract the residual trend
information from the data than static and/or heuristic methods, and hence should be
able to allow formulation of the strategies which would ‘beat’ the market.

Note that out of four ex-post variables, only the variable FINISHINGPOSITION is
actually captured, being the ordered result of the decision event (race). As explained in
3.3.1, the variable NFP is linearly inflated finishing position calculated using equation
(3.1). In order to account for unreliability of the lower ranking choices the performance
proxy variable ULTIPERF is built as a weighted sum of NFP , BEATENLENGTHS 2,
and prize money. By selecting this approach, more weighting is given to results stemming
from high stakes (importance) races and to the runners with higher relative performance
in the previous race (see discussion in 3.3.1).

Table 3.6: Statistics on Races in Data Subsets

Races Tainted Races Runners Data Points

LDS 21051 108 26923 222847

BDS 7302 53 14121 72741

VDS 14415 103 19440 141093

Analysis of the data set reveals that the informational content in the defined subsets is
quite heterogeneous, in the sense of prehistory (i.e. pedigree) of the runners in the data
set (Table 3.8). The table differentiates between the Newcomers and Newcommers

2Beaten lengths is a measure of time rather than distance (Kerr, 2017)
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Table 3.7: Data Set Variables

Variable Name Explanation

ex-ante variables

DATE date of the race
HORSEID unique horse identifier
RACEID unique race identifier
NUMBEROFRUNNERS number of runners in the race
DECIMALODDS decimal odds for winning
LOGPRICE log(1/DECIMALODDS )

DRAW draw advantage in this race
MA_NFP moving average of past NFP (derived)
BEATENLENGTHS transformed beaten lengths in the previous race

ex-post variables

FINISHINGPOSITION finishing position (observed ranking)
NFP Normalised Finishing Position (derived)
ULTIPERF (UP) Importance Weighted NFP (derived)

MA, based on the inclusion of the information on past beaten lengths. Newcommers
MA are identified based solely on the cumulative moving average calculated before the
time period of LDS. New Appearances are horses appearing for the first time in in
the data set considered. In particular, if considering the initialisation of the SSM, a
large difference between the number of first appearances in LDS is far larger (26923)
than the number of débutantes (i.e. runners having no professional racing records –
Newcomers (17945)), identified through the filtering query BEATENLENGTHS == 0

AND MA_NFP == 0. This means that 8798 horses (33%) have a previous history of
unknown length not taken into consideration during KF initialisations. Moreover, for
the purposes of model parameter estimation, especially for the stability of numerical
optimisation, débutantes need a special treatment. This is explained in Appendix A.

Table 3.8: Data Loss due to initialisation

Data Subset NewApperances Newcomers Newcomers MA

LDS 26923 17945 19156

BDS 5657 5621 6036

VDS 10844 10823 11623
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Table 3.9: Statistics on Races in Data Subsets

Data Subset Time Between Races Races Run Data Loss

avg. max. avg. max. N = 1 N ≤ 2

LDS 41.0 1016 8.28 84 2900 5637

BDS + LDS 43.4 1379 9.07 115 3327 6361

FDS 45.8 2118 10.06 163 4078 7743

Finally, a comment regarding the suitability of the data set for meeting the research
objectives is in order here. The horse racing setup is very well suited for meeting the
research objectives with respect to heterogeneous choice sets regarding size (number of
alternatives) and the actual selection of alternatives. First, there is a large variance in
number of runners in a race (Figure 3.4) going from two to more that 25, whilst the
majority of races have between seven and eleven runners. Moreover, length of runners’
careers (i.e. number of races run in the data set) is variable with less than seven races
for the majority of runners (see Figure 3.5), with a high maximum value (163) and
average career length of around 10 races (see Table 3.9). It is important to note that
the runners with only one (both in KF and CL stages) or two races (KF stage) in the
data set are not useful in the analysis (Data Loss column) due to large state errors
caused by the unknown initial values and provisions have been made in the algorithm to
incorporate those cases. Those instances have been eliminated from the considerations
and the data set has been restructured using the approach described in Appendix A
to obtain consistent race level data. Table 3.9 shows also the irregularity of the time
duration between the races, which varies between one day and 2118 days between two
consecutive races of a runner, with the average value of approximately 45 days.

Chapter Summary

This chapter depicts the research philosophy, operational state space discrete choice
model structure, research design developed for this study, and the empirical data used to
evaluate the merits of the modelling approach and answer the research questions. First,
the post-positivistic research paradigm, embedding the critical realism as the ontologi-
cal argument together with the modified dualist/objectivist driven selection of research
methods has been put forward. The research paradigm was used to provide a scien-
tific rationale for RP methodology and experimental design of the study positioned in
the horse-racing setup. Next, the modelling elements discussed in the literature review
are put together to provide several operational dynamic discrete choice models based
on LLM, LLT, and the Kalman filtering. Research design primarily identifies types
of variables needed to answer the research questions and the statistical and economic
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Figure 3.4: Distribution of Field Size (Number of Runners in a Race)
a.) LDS; b.) BDS; c.) VDS
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Figure 3.5: Distribution of Career Lengths of a Runner
a.) LDS; b.)BDS + LDS; c.) FDS

model evaluation criteria, namely Wald and LR tests of significance and the Kelly bet-
ting strategy evaluation. Furthermore, the research design includes estimation of model
parameters and initialisation of trend dynamics states in the selected test setup. Next,
the research design and the model test setup are presented and the way forward how
to answer the research questions and close the gaps in the literature is given. Finally,
relevant descriptive statistics and the meaning of the used model variables in the horse
wagering context conclude the chapter.





Chapter 4

Empirical Results

This chapter presents the results obtained from the parameter-fitting efforts and model
evaluations based on the model setup and performance criteria described in section 3.3.4.
As explained in the previous chapter, the dataset is split into three subsets, which are
used either cumulatively, on the runner level (for the KF model runs), or separately,
on the race level, for the CL portion. After explaining the empirical results, stemming
from univariate, bivariate, and trivariate models on in-sample data, the statistical and
economic merits of forecasting models on out-of-sample (i.e. holdout) datasets are com-
pared and discussed in detail. To conclude the chapter, out-of-sample results act as the
basis of answers to the research questions.

It should be noted that throughout the chapter and until the end of the thesis, the
symbol A ≻ B is used to express the dominance of model A over the model B , based on
the pseudo-R2 criterion, unless otherwise specified.

4.1 In-Sample Results

Parameters of the stand-alone KF trend models (cf. Table 3.1), obtained through the
MLE procedure, are grouped for comparison and presented in Table 4.1 for the NFP

variable and in Table 4.2 for the UP variable. Parameters α and q minimise the aggre-
gated forecasting log-likelihood of all runs in LDS, as defined in equation (3.25).

A comparison of MSE forecasting performance derived from NFP trends reveals that
classical error-correcting models – both in discrete (3.16) and continuous time (3.10)
versions with exponential weighting of the state error covariance matrix – dominate all
other trend models, including the model LLM_NFP_m with an engineered state error
covariance matrix (2.33) and the model LLM_NFP_c based on a linear extension of
measurement covariance (2.29). Both LLT models yield less than satisfactory results.

87
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Table 4.1: Model Parameters of NFP Kalman Filtering

Model Parameter q Parameter α MSE LL Rank
LLM_NFP_c 1.112e-3 - 17673.94 −82009.85 3
LLM_NFP_m 1.415e-2 1.015e-5 18830.74 −94622.48 4
LLT_NFP_c 4.900e-8 - 20236.41 −236786.45 5
LLT_NFP_m 1.519e-4 1.113e-4 30564.07 −297956.25 6
LLM_NFP_dm 1.619e-6 1.123e+0 2151.46 −76666.08 2
LLM_NFP_mod1 8.916e-4 4.095e-3 2147.91 −76539.58 1
1 Due to the linear property of the implemented KF models maximisation of the likeli-

hood is equivalent to minimisation of the MSE criterion.

Similarly, a comparison of MSE forecasting performance derived from UP trends shows
that the models’ pecking order has been kept. However, it should be noted that the
relative distance between the best and the second best model is much larger, which is an
indication of possible over-fitting.

Table 4.2: Model Parameters of UP Kalman Filtering

Model Parameter q Parameter α MSE LL Rank
LLM_UP_c 1.689e-3 - 334430.09 −654567.38 3
LLM_UP_m 1.505e-2 4.470e-6 365536.87 −942731.66 4
LLT_UP_c 5.100e-8 - 379847.54 −356474.87 5
LLT_UP_m 1.564e-4 1.111e-4 584394.92 −497283.49 6
LLM_UP_dm 1.374e-1 9.720e-1 41606.933 −403423.42 2
LLM_UP_mod1 1.004e-3 4.964e-3 41528.46 −805211.91 1
1 Due to the linear property of the implemented KF models maximisation of the likeli-

hood is equivalent to minimisation of the MSE criterion.

Table 4.3 and Table 4.4 present the results of CL univariate parameter fitting and the
associated statistics on the in-sample data subset LDS. Due to the initialisation effects
bound to KF, a data restructuring algorithm was applied to all races in LDS, after
eliminating every runner’s first two races whilst keeping the pecking order in the race
results (see Appendix A for an explanation). Based on the IIA property of CL, this
restructuring allows for a fair comparison of the fitting results between fundamental
variables without bias, albeit at the cost of a slight reduction in the number of data
points.

In order to compare the predictive powers of the trend variables constructed from per-
formance proxies, models N1 – N8 and U1 – U8 have been fitted and evaluated. In
addition, the reference model R, which is built around the market type predictor vari-
able LOGPRICE , is used as a proxy for the probability (i.e. log of final odds-implied
probability) of selecting an alternative (winner) projected by the general public.

A statistical assessment of the significance of the univariate models N1 – N8 (Table 4.3)
reveals that all models are significant with p < 0.01, which results from the Wald test of
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the hypothesis that the coefficients β (i.e. column Beta) are different from zero (Hayashi,
2000). As expected, the Wald test statistics (column zValue) and the obtained pseudo-
R2 values reveal that the LOGPRICE variable (Model R: zValue = 95.74) has by far
the strongest numerical predictive power pseudo-R2 = 0.14981969; βex = 1.1319).

For models based on NFP trends, the next two predictors are LLM_NFP_dm, with
in-sample pseudo-R2 = 0.063409 and LLM_NFP_mod1 having in-sample pseudo-R2 =

0.061496. Moreover, it can be observed that all LLT models perform rather poorly,
with the pseudo-R2 worse by one order of magnitude compared to LLM models. Sim-
ple non-parametric models N1 (pseudo-R2 = 0.053475; βex = 3.400) and N2 (pseudo-
R2 = 0.0452240; βex = 0.602) are dominated by the LLM models, with the exception
of the model N4 , which, as expected, under-performs in the learning dataset due to the
(deliberately suboptimal) covariance law (see 2.2.5), engineered for model error compen-
sation. The model N4 is expected to show its strength in an out-of-sample (holdout)
dataset. Finally, all models add significant predictive power over the naïve model, in
which all runners have the same probability of winning.

An interesting observation is that N7 ≻ N8, which is contrary to the pecking order of
the stand-alone KF trend variables ranking, caused by the fact that MSE ranking is
based on averaging over different career lengths of the runners and hence smooths out
the differences caused by converging KF from an initial uninformed prior.

Similarly, the models U1 – U8 (Table 4.4) are all significant with p < 0.01, according
to the Wald test of the coefficients βex, and the models add significant predictive power
over the naïve model. The models derived from trends in the importance-weighted
outcomes of previous races (U1 – U9 ) clearly dominate the models N1 – N8 . Two
best predictors of race win probability after the market variable LOGPRICE (model
R) are given through U7 (in-sample pseudo-R2 = 0.087289; βex = 0.866) and U8 (in-
sample pseudo-R2 = 0.085485; βex = 0.8917). Non-parametric models U1 (pseudo-
R2 = 0.071374; βex = 0.842) and U2 (pseudo-R2 = 0.062940; βex = 0.429) are positioned
in the middle of the relative ranking. The model error compensation approach defined
through an engineered covariance law (U4 ) is in alignment with the relative performance
indicated by KF ranking (Table 4.2). LLT models have relatively low predictive power,
because of the imposed linear trend between the races. The linear trend is inadequate
for modelling due to its ‘noisy’ behaviour, observable through the large variance in the
performance proxy variables from one race to the other.

Another distinctive result is that the models that take the time between races explicitly
into account do not clearly dominate the discrete time models, which ignore the times
between the races, due to the over-fitting and uniform weighting of all performance proxy
errors, as opposed to the focus on winners only.

Bivariate models NB1 – NB8 and UB1 – UB8 , which represent the combinations of the
univariate models described until now (i.e. stand-alone trend variables) with the model
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Table 4.3: Model Parameters Conditional Logit (NFP in-sample)

Model Variables Beta zTest pseudo-R2 LogL Rank

Naïve - - - 0 −40184.17 -
R LOGPRICE 1.132 95.74*** 0.149820 −34163.79 1

(0.012)
N1 MA_NFP 3.400 61.51*** 0.053475 −38035.32 5

(0.055)
N2 LAGGED_NFP 0.602 57.80*** 0.045224 −38366.89 7

(0.028)
N3 LLM_NFP_c 3.468 65.41*** 0.060560 −37750.63 4

(0.053)
N4 LLM_NFP_m 2.723 61.02*** 0.051241 −38125.10 6

(0.045)
N5 LLT_NFP_c 0.290 23.51*** 0.007739 −39873.18 8

(0.012)
N6 LLT_NFP_m 0.169 20.82*** 0.005830 −39949.91 9

(0.008)
N7 LLM_NFP_dm 3.432 67.05*** 0.063409 −37636.14 2

(0.051)
N8 LLM_NFP_mod1 3.475 65.83*** 0.061496 −37713.01 3

(0.053)

***p < 0.01, **p < 0.05, *p < 0.1

R, are presented in Table 4.5 and Table 4.6. They are used to evaluate the residual
informational content of the trend variables over the market variable representing the
settled ‘wisdom’ of the market regarding the odds of a particular runner winning. Since
all of the models are nested, the LR test of significance can be effectively applied (3.30).

A study of Table 4.5 reveals that not a single model derived from the NFP trend variables
is significant over LOGPRICE . Moreover, the LR statistics are so far from the borderline
value for p = 0.05 (λ1 = 3.84) that it can be concluded that models NB1 – NB8 do not
extract statistically significant information from the defined trends in-sample.

On the other hand, five bivariate models based on UP trends (Table 4.6) contain statis-
tically significant information over LOGPRICE . Indeed, not only are KF-based models
significant, even the simple cumulative moving average (model UB1 ) is significant with
(p < 0.01) and the model UB2 , based on a simple one-race lag of UP being significant
with (p < 0.1). This indicates far higher reliability of the ordered data models compared
to those derived from NFP trends. Furthermore, it can be observed that the best model
is UB8 (pseudo-R2 = 0.149998), which represents a considerable improvement over the
univariate reference model R (pseudo-R2 = 0.149820). LLT models (UB5 and UB6 )
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Table 4.4: Model Parameters Conditional Logit (UP in-sample)

Model Variables Beta zTest pseudo R2 LogL Rank

Naïve - - - 0 −40184.17 -
R LOGPRICE 1.132 95.74*** 0.149820 −34163.79 1

(0.012)
U1 MA_UP 0.842 69.53*** 0.071374 −37316.09 5

(0.012)
U2 LAGGED_UP 0.429 67.49*** 0.062940 −37654.98 7

(0.006)
U3 LLM_UP_c 0.888 75.01*** 0.084126 −36803.62 4

(0.012)
U4 LLM_UP_m 0.696 69.96*** 0.069966 −37372.64 6

(0.010)
U5 LLT_UP_c 0.083 28.69*** 0.011762 −39711.54 8

(0.003)
U6 LLT_UP_m 0.048 25.10*** 0.008561 −39840.16 9

(0.004)
U7 LLM_UP_dm 0.866 76.69*** 0.087289 −36676.53 2

(0.011)
U8 LLM_UP_mod1 0.8917 75.50*** 0.085485 −36749.03 3

(0.012)

***p < 0.01, **p < 0.05, *p < 0.1

are not as statistically significant as evidenced in NFP trend-derived models. The en-
gineered model error correction model UB4 is statistically significant over LOGPRICE

with only mediocre relative performance (Rank 5), due to the data over-fitting in LDS.

In-sample trivariate model analysis (Table 4.7) confirms the dominance of UP trend-
derived models. Models T1 and T2 have a sign reversal on the LLM_NFP_m whilst
achieving p < 0.01 significance. A group of models which should assess the contribution
of selected KF-generated trend variables (T3 – T6 ) cannot confirm that the recency
weighted variables are significant. The fact that only the model T5 is significant re-
inforces the notion that the in-sample data analysis based on the MLE optimised KF

models is affected by over-fitting and non-discrimination between the data points. To
reiterate, the LLM_UP_dm variable does not include time as a factor at all. Instead,
the weighting (i.e. fidelity) of the values is expected to increase as the career of a runner
progresses, so that early results are treated as being less indicative than the results that
come later in the runner’s career. Obviously, this might be true for short careers, but it
remains questionable for those with long careers, since a reversal to the mean is expected
(Ma et al., 2016). This effect is more pronounced in the parameter-fitting datasets, since
data fitting happens typically at the beginning of the data sets, due to the causality
reasons.
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Table 4.5: Model Parameters Conditional Logit (NFP bivariate in-sample)

Model Variables Beta LR Test pseudo R2 LogL Rank

NB1 LOGPRICE 1.113 0.64 0.149828 −34163.47 2
(0.014)

MA_NFP 0.054
(0.068)

NB2 LOGPRICE 1.129 0.11 0.149821 −34163.74 6
(0.014)

LAGGED_NFP 0.011
(0.033)

NB3 LOGPRICE 1.128 0.20 0.149822 −34163.69 5
(0.014)

LLM_NFP_c 0.299
(0.067)

NB4 LOGPRICE 1.126 0.78 0.149829 −34163.40 1
(0.014)

LLM_NFP_m 0.054
(0.013)

NB5 LOGPRICE 1.131 0.08 0.149821 −34163.75 7
(0.012)

LLT_NFP_c 0.004
(0.013)

NB6 LOGPRICE 1.132 0.01 0.149820 −34163.79 8
(0.012)

LLT_NFP_m 0.001
(0.009)

NB7 LOGPRICE 1.126 0.40 0.149825 −34163.59 3
(0.014)

LLM_NFP_dm 0.042
(0.066)

NB8 LOGPRICE 1.128 0.23 0.149823 −34163.68 4
(0.014)

LLM_UP_mod1 0.032
(0.067)

***p < 0.01, **p < 0.05, *p < 0.1
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Table 4.6: Model Parameters Conditional Logit (UP bivariate in-sample)

Model Variables Beta LR Test pseudo R2 LogL Rank

UB1 LOGPRICE 1.103 11.46*** 0.149962 −34158.06 4
(0.015)

MA_UP 0.054
(0.016)

UB2 LOGPRICE 1.116 3.51* 0.149863 −34162.04 6
(0.014)

LAGGED_UP 0.015
(0.008)

UB3 LOGPRICE 1.096 11.50*** 0.149829 −34158.04 3
(0.016)

LLM_UPc 0.056
(0.008)

UB4 LOGPRICE 1.103 11.37*** 0.149961 −34158.11 5
(0.015)

LLM_UPm 0.043
(0.013)

UB5 LOGPRICE 1.130 0.15 0.149822 −34163.72 7−8
(0.012)

LLT_UPc 0.001
(0.003)

UB6 LOGPRICE 1.130 0.15 0.149822 −34163.72 7−8
(0.012)

LLT_UPm 0.012
(0.002)

UB7 LOGPRICE 1.094 11.63*** 0.149964 −34157.98 2
(0.016)

LLM_UP_dm 0.055
(0.016)

UB8 LOGPRICE 1.092 14.30*** 0.149998 −34156.64 1
(0.016)

LLM_UP_mod1 0.062
(0.016)

***p < 0.01, **p < 0.05, *p < 0.1
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Table 4.7: Model Parameters Conditional Logit (Trivariate in-sample)

Model Variables Beta LR Test pseudo R2 LogL

T1 LOGPRICE 1.103 20.88*** 0.150089 −34152.96
(0.015)

LLM_NFP_m −0.317
(0.094)

LLM_UP_m 0.105
(0.022)

T2 LOGPRICE 1.106 11.51*** 0.149973 −34157.65
(0.015)

LLM_NFP_m −0.057
(0.063)

MA_UP 0.062
(0.018)

T3 LOGPRICE 1.097 2.20 0.149990 −34156.96
(0.015)

MA_UP 0.032
(0.021)

LLM_UP_m 0.025
(0.017)

T4 LOGPRICE 1.093 2.83* 0.149997 −34156.65
(0.016)

MA_UP 0.054
(0.034)

LLM_UP_mod1 0.054
(0.036)

T5 LOGPRICE 1.095 11.51*** 0.149973 −34157.65
(0.078)

MA_UP 0.028
(0.027)

LLM_UP_dm 0.031
(0.031)

T6 LOGPRICE 1.093 1.28 0.149980 −34157.34
(0.016)

LLM_UP_dm 0.039
(0.025)

LLM_UP_m 0.019
(0.020)

***p < 0.01, **p < 0.05, *p < 0.1
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In summary, in-sample results indicate that the importance-weighting of the performance
proxy values improves the reliability of the trend variables. On the other hand, the
question as to whether the inclusion of the time between the races in the models improves
the data fit accuracy remains inconclusive when only in-sample results are considered.

4.2 Out-of-Sample results

Out-of-sample tests of the accuracy of forecasting algorithms are generally considered to
be superior indicators of model performances over goodness-of-fit to past data. There are
two main arguments for this point. First, forecasting errors are likely to be affected by
the method selection and parameter estimation, since they incorporate implicit nuances
about past history which might not persist in the future. Hence, over-fitting to historical
data will fail to maintain reasonable post-sample performance, due to structural changes
inherent in the modelling environment. Second, model structures and the associated
model parameters selected and estimated based on the best in-sample fit do not neces-
sarily yield good post-sample data predictions (Fildes and Makridakis, 1995; Tashman,
2000). Consequently, for the purpose of answering the research questions of this study,
arguments based on the out-of-sample data are postulated as pr̄ımā fac̄ıe evidence of
model performance.

Compared to in-sample considerations, univariate models N1 – N8 (Table 4.8) demon-
strate very similar out-of-sample (i.e. in VDS) pecking orders of performance, with the
only difference that N4 and N1 swap places, with the reference model R (LOGPRICE

variable) retaining the strongest numerical predictive power (pseudo-R2 = 0.158189).
For models based on UP (U1 – U8 Table 4.9), a similar observation can be made, since
the change in the pecking order is reflected only in the models U1 , U2 , and the U4

group. It can be stressed that the models N4 and U4 , engineered for model error com-
pensation, improved the placement as expected. All UP derived models have higher
pseudo-R2 values than NFP derived models. Note that the significance of the models
based on the Wald test is unchanged, since the test evaluates the ratio of the coefficients
to their standard error, which does not change out-of-sample.

Bivariate out-of-sample model results are presented in Table 4.10 and Table 4.11. Both
tables show the LR significance confirmation of trend variables over LOGODDS , rep-
resenting the settled market opinion regarding the winning probability of a particular
runner, which in turn demonstrates the extraction of the residual informational content
inherent in the trend variables. Contrary to in-sample results, where not a single trend
variable derived from the NFP is even close to being significant over LOGPRICE , model
NB4 (pseudo-R2 = 0.158232, λ = 2.73) is significant with p < 0.10 (χ2

1(0.1) = 2.706),
showing that KF can extract residual information from the trend. Furthermore, the
bivariate models UB1 – UB8 demonstrate different levels of significance for five models.
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Indeed, the models UB4 (pseudo-R2 = 0.158379) and UB1 (pseudo-R2 = 0.158301) are
significant with p < 0.01, UB8 (pseudo-R2 = 0.158290) with p < 0.05, and UB7 (pseudo-
R2 = 0.158247) and UB3 (pseudo-R2 = 0.158241) with p < 0.10. It is important to note
that discrete models (UB1 , UB2 , and the UB7 ) do not take the time between races into
account, and their assumed unit (one-day) time distances between the races are capable
of extracting significant residual information over the market. This, however, does not
imply that the models extract the same portion of the residual information. This can
be assessed through a trivariate comparison of the models, combining those using time
information and those not doing so.

Trivariate models (c.f. Table 4.12), constructed to compare models that consider different
types of information (time vs. no time information and importance-weighted vs. non-
weighted), offer the final insights needed for answering the posed research questions.
Selection of the base models for the comparison (taken from the bivariate pool) follows
the following convention. As a first resort, significant out-of-sample bivariate models are
taken as the basis, if they actually exist. If there is no significant model with the desired
characteristics, the next best model is taken for comparison.

The first group of trivariate models compares the informational content of NFP trend-
derived models with the UP trend-derived models. In models T1 and T2 , the best
NFP model (NB4 ) is enhanced with the best recency weighted variable (LLM_UP_m)
and the best non-recency weighted variable (MA_UP) in combination with LOGPRICE

out-of-sample. It is notable that both NFP variables experience a sign reversal, meaning
that the added UP variables override NFP contribution.

The second group of trivariate models compares the contribution of different variables
over discrete UP trend-derived bivariate models to assess the significance of time in-
formation. As illustrated, the variable LLM_UP_m extracts statistically significant
(p < 0.05) information over models UB1 (λ = 5.53) and UB7 (λ = 4.41). On the other
hand, the variables LLM_UP_dm and LLM_UP_mod1 do not contribute significantly
to the discrete models, in spite of their relative in-sample ranking (i.e. the first and the
second after the reference model R). This confirms the dominance of the error correction
model outside of the fitting dataset (LDS) over all other studied models, irrespective of
their nature, i.e. embedding of time and importance-weighting information.

4.3 Economic Significance of Persistence in Preferences

In order to answer the secondary research questions, the economic significance of the
constructed models is evaluated by developing a betting strategy based on out-of-sample
model predictions (forecasts). As explained in 3.3.4, a Kelly (1956) wagering strategy is
employed, based on out-of-sample probabilities. The Kelly strategy aims at the optimal
exponential growth of total wealth in the long run, whilst securing zero probability of
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Table 4.8: Model Parameters Conditional Logit (NFP out-of-sample)

Model Variables Beta pseudo-R2 LogL Rank

R LOGPRICE 1.132 0.158189 −26725.72 1
(0.012)

N1 MA_NFP 3.400 0.077472 −29288.30 6
(0.055)

N2 LAGGED_NFP 0.602 0.073487 −29414.83 7
(0.028)

N3 LLM_NFP_c 3.468 0.084769 −29056.65 4
(0.053)

N4 LLM_NFP_m 2.723 0.082395 −29131.99 5
(0.045)

N5 LLT_NFP_c 0.290 0.048481 −30208.69 8
(0.012)

N6 LLT_NFP_m 0.169 0.046612 −30268.04 9
(0.008)

N7 LLM_NFP_dm 3.432 0.086510 −29001.38 2
(0.051)

N8 LLM_NFP_mod1 3.475 0.086241 −29009.89 3
(0.053)

Table 4.9: Model Parameters Conditional Logit (UP out-of-sample)

Model Variables Beta pseudo-R2 LogL Rank

R LOGPRICE 1.132 0.158189 −26725.72 1
(0.012)

U1 MA_UP 0.842 0.082997 −29112.89 7
(0.012)

U2 LAGGED_UP 0.429 0.087173 −28980.30 6
(0.006)

U3 LLM_UP_c 0.888 0.101170 −28535.93 4
(0.012)

U4 LLM_UP_m 0.696 0.096187 −28694.14 5
(0.010)

U5 LLT_UP_c 0.083 0.052309 −30087.18 8
(0.003)

U6 LLT_UP_m 0.048 0.049082 −30189.64 9
(0.004)

U7 LLM_UP_dm 0.866 0.103508 −28461.71 2
(0.011)

U8 LLM_UP_mod1 0.8917 0.103222 −28470.78 3
(0.012)
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Table 4.10: Model Parameters Conditional Logit (NFP bivariate out-of-sample)

Model Variables Beta LR Test pseudo-R2 LogL Rank

NB1 LOGPRICE 1.113 0.95 0.158204 −26725.24 2
(0.014)

MA_NFP 0.054
(0.068)

NB2 LOGPRICE 1.129 −0.25 0.158185 −26725.84 9
(0.014)

LAGGED_NFP 0.011
(0.033)

NB3 LOGPRICE 1.128 0.12 0.158191 −26725.65 5
(0.014)

LLM_NFPc 0.299
(0.067)

NB4 LOGPRICE 1.126 2.73* 0.158232 −26724.35 1
(0.014)

LLM_NFPm 0.054
(0.013)

NB5 LOGPRICE 1.131 −0.22 0.158185 −26725.83 8
(0.012)

LLT_NFPc 0.004
(0.013)

NB6 LOGPRICE 1.132 −0.06 0.158188 −26725.75 6
(0.012)

LLT_NFPm 0.001
(0.009)

NB7 LOGPRICE 1.126 0.20 0.158192 −26725.75 4
(0.014)

LLM_NFP_dm 0.042
(0.066)

NB8 LOGPRICE 1.128 0.43 0.158196 −26725.50 3
(0.014)

LLM_NFP_mod1 0.032
(0.067)

***p < 0.01, **p < 0.05, *p < 0.1
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Table 4.11: Model Parameters Conditional Logit (UP bivariate out-of-sample)

Model Variables Beta LR Test pseudo R2 LogL Rank

UB1 LOGPRICE 1.103 7.12*** 0.158301 −26722.15 2
(0.015)

MA_UP 0.054
(0.016)

UB2 LOGPRICE 1.116 0.89 0.158203 −26725.27 6
(0.014)

LAGGED_UP 0.015
(0.008)

UB3 LOGPRICE 1.096 3.30* 0.158241 −26724.06 5
(0.016)

LLM_UPc 0.056
(0.008)

UB4 LOGPRICE 1.103 12.06*** 0.158379 −26719.69 1
(0.015)

LLM_UPm 0.043
(0.013)

UB5 LOGPRICE 1.130 −0.01 0.158189 −26725.72 7−8
(0.012)

LLT_UPc 0.001
(0.003)

UB6 LOGPRICE 1.130 −0.01 0.158189 −26725.72 7−8
(0.012)

LLT_UPm 0.012
(0.002)

UB7 LOGPRICE 1.094 3.67* 0.158247 −26723.88 4
(0.016)

LLM_UP_dm 0.055
(0.016)

UB8 LOGPRICE 1.092 6.45** 0.158290 −26722.49 3
(0.016)

LLM_UP_mod1 0.062
(0.016)

***p < 0.01, **p < 0.05, *p < 0.1
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Table 4.12: Model Parameters Conditional Logit (Trivariate out-of-sample)

Model Variables Beta LR Test pseudo R2 LogL

T1 LOGPRICE 1.103 7.36*** 0.158348 −26720.67
(0.015)

LLM_NFP_m −0.317
(0.094)

LLM_UP_m 0.105
(0.022)

T2 LOGPRICE 1.106 1.07 0.158249 −26723.82
(0.015)

LLM_NFP_m −0.057
(0.063)

MA_UP 0.062
(0.018)

T3 LOGPRICE 1.097 5.53** 0.158385 −26719.49
(0.015)

MA_UP 0.032
(0.021)

LLM_UP_m 0.025
(0.017)

T4 LOGPRICE 1.093 −0.23 0.158297 −26722.27
(0.016)

MA_UP 0.054
(0.034)

LLM_UP_mod1 0.054
(0.036)

T5 LOGPRICE 1.095 −0.50 0.158293 −26722.40
(0.078)

MA_UP 0.028
(0.027)

LLM_UP_dm 0.031
(0.031)

T6 LOGPRICE 1.093 4.41** 0.158316 −26721.67
(0.016)

LLM_UP_dm 0.039
(0.025)

LLM_UP_m 0.019
(0.020)

***p < 0.01, **p < 0.05, *p < 0.1

bankruptcy. Note that a non-reinvesting Kelly strategy, limiting the stakes to 10% of
aggregate wealth, is applied, in order to avoid bias that may occur due to a streak of large
wins towards the end of the out-of-sample dataset. Economic significance is assessed by
evaluating the total profit and rates of return obtained by applying a Kelly strategy
for betting on the out-of-sample races. All betting results are presented in Table 4.13,
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Table 4.13: Kelly betting strategy (Univariate NFP Models)

Model Profit ROI Total Bets Winning Bets Bet Capital

R −1080.19 −1.73 651 268 62449.98
N1 −99998.05 −29.47 3597 281 339315.31
N2 −99998.89 −29.94 3579 294 333977.51
N3 −99997.71 −25.77 4090 337 387985.49
N4 −99997.65 −28.14 3713 305 355302.32
N5 −99998.39 −33.51 3129 224 298449.22
N6 −100000.00 −32.59 3205 235 306885.74
N7 −99997.10 −27.28 3899 328 366494.15
N8 −99996.77 −25.77 4118 342 387961.49

Table 4.14, Table 4.15, Table 4.16 and Table 4.17, assuming the same initial capital of
£100000.

As expected, all univariate models (Table 4.13 and Table 4.15) offer very poor economic
performance – with the exception of the reference model (R) with a relatively small total
loss of £1080.19 and ROI of −1.73%. This confirms that LOGPRICE is the best single
predictor of a winning horse (i.e. decision made by ‘nature’), but it does not allow for
positive profit.

Bivariate models build on LOGPRICE , which in combination with a trend variable aim
to extract residual information not discontinued by the market participants, and are
commented next. Since none of the derived discrete NFP is significant, model NB1 is
selected as being representative, due to the highest LR statistic (λ = 0.95), with a total
loss of £1710.11 and ROI of −2.81%, which is below of the yield provided by the reference
model (R). Furthermore, the single statistically significant continuous time model NB5
does not offer any improvement over the reference model with £1911.01 total loss and
ROI of −3.04%, and it is even dominated by the discrete time model NB1 . Note that
other models offer slightly better yield (e.g. model NB5 ); however, without statistical
significance, those results are not relevant.

Contrary to the NFP trend-based models, bivariate models embedding UP trends are
considerably better. Several models yield positive total profits and ROI. Discrete model
UB1 yields £901.84 total profit and ROI of 1.22 with 323 wins out of 766 total bets.
Continuous time bivariate models are even better – UB8 with £3518.24 total profit and
an ROI of 4.21 (a 371/865 wins-to-bets ratio) and UB4 with £1020.61 total profit, an
ROI of 1.25 (a 352/856 wins-to-bets ratio).

Trivariate models provide mixed messages in terms of economic significance. Out of three
statistically significant models (T1 , T3 and T6 ), only T6 yields positive £158.33 total
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Table 4.14: Kelly betting strategy (Bivariate NFP Models)

Model Profit ROI Total Bets Winning Bets Bet Capital

NB1 -1710.11 -2.81 633 258 60873.28
NB2 -1072.68 -1.71 654 269 62729.29
NB3 -1894.88 -3.05 648 263 62074.31
NB4 -1911.01 -3.04 652 264 62797.11
NB5 -875.93 -1.40 648 270 62532.95
NB6 -1141.28 -1.83 648 268 62427.02
NB7 -1817.39 -2.95 644 262 61698.10
NB8 -1984.77 -3.19 651 265 62172.30

Table 4.15: Kelly betting strategy (Univariate UP Models)

Model Profit ROI Total Bets Winning Bets Bet Capital

R −1080.19 −1.73 651 268 62449.98
U1 −99998.09 −34.93 2989 224 286286.97
U2 −99998.72 −28.13 3760 332 355474.86
U3 −99996.87 −26.06 4086 344 383681.33
U4 −99998.10 −26.29 4049 334 380308.02
U5 −99999.99 −32.55 3237 234 307218.32
U6 −100000.00 −32.79 3195 231 304976.98
U7 −99997.56 −21.99 5001 445 454673.48
U8 −99997.16 −26.58 4022 339 376243.36

profit and an ROI of 0.19 (a 358/882 wins-to-bets ratio), which is smaller than the gain
made from a betting strategy built on UB8 .

Time series representations of wealth growth for several selected bivariate and all evalu-
ated trivariate models are presented in Figure 4.1 and Figure 4.2. Bivariate model selec-
tion encompasses the model NB4 , which is the sole significant model derived from the
variable NFP and the models UB1 , UB4 and UB8 , which have the highest out-of-sample
LR statistics of all bivariate models. Betting information based on the non-significant
models is inconclusive, as it results from pure chance and the eventual order of ‘lucky’
wins and/or losses, and hence it should be omitted from scientific considerations.

4.4 Answers to Research Questions

The empirical results presented herein allow for answering the research questions posed
in Chapter 2.3 and seen through the lens of a horse-racing setting. First, the answers to
primary and secondary research questions are explicitly formulated, and then a discussion
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Table 4.16: Kelly betting strategy (Bivariate UP Models)

Model Profit ROI Total Bets Winning Bets Bet Capital

UB1 901.84 1.22 766 323 73955.87
UB2 1413.71 2.04 720 305 69150.37
UB3 −105.75 −0.14 804 334 77569.58
UB4 1020.61 1.25 856 352 81846.69
UB5 −467.58 −0.75 651 274 62416.88
UB6 −894.07 −1.44 649 270 62290.47
UB7 −255.55 −0.33 821 337 78601.89
UB8 3518.24 4.21 865 371 83558.13

Table 4.17: Kelly betting strategy (Trivariate Models)

Model Profit ROI Total Bets Winning Bets Bet Capital

T1 −1514.10 −1.28 1234 485 118367.92
T2 −1827.96 −2.91 652 267 62800.96
T3 −270.07 −0.34 819 341 79082.04
T4 3289.91 3.99 855 368 82406.43
T5 1651.69 2.17 792 332 75944.68
T6 158.33 0.19 882 358 84864.85

on the underlying effects and their connection to market-influencing cognitive biases
follows in Chapter 5.

4.4.1 Discussion on Research Question 1

Research Question 1 sought to answer whether patterns of past performance (race rank-
ing) add statistically significant information to publicly available market data. For the
selected empirical setup, it translates to the interpretation of whether the patterns of
past race rankings are reflected in performance trends, which can be used for forecasting
the future performance of a runner and, ultimately, its placement in future races. Expec-
tations bound to informational content inherent to performance trends, derived solely
from the ordered placement information, have to be modest at best. First, the data are
very noisy from race to race, and the trend alone cannot account for the strength of the
competition from race to race. For example, a higher placement in a race with weaker
competition can be followed by finishing in last place in the next race when facing a
formidable field of competitors. Second, as explained in Section 3.2, the reliability of
the rank-ordered information for lower placements can be quite low, since some of the
runners could be made to deliberately diminish their performance due to tactical (e.g.
sparing of a horse or a jockey for subsequent races) or even fraudulent (e.g. feigning of
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Figure 4.1: Cumulative wealth from Kelly betting strategy (Bivariate Models)

poor performance in low-key races to manipulate odds/handicap in a subsequent high-
stakes race) motives. Third, a horse is a living organism, a physical animal that evolves
over the life cycle of its career, following stages and cycles of the competitive form, which
affects perceived trends in performance.

In order to provide an answer regarding the informational content of the trend derived
from ordered placement information, the statistical significance of additional information
has been assessed by using two types of unobserved utility: with and without market
information containing public opinion on the winning probability of a horse (reflected
in the variable LOGODDS ). In the absence of market information, as evidenced in Ta-
ble 4.3, several discrete trend variables (as captured through models N1 , N2 and N7 ) are
significant, based on the confirmed hypothesis that the βex coefficients statistically differ
from zero, as confirmed through the Wald test. On the other hand, the informational
content of these trend variables does not explain an additional part of the unobserved
utility when market information is included, taken out-of-sample (Table 4.8), based on
an LR test of significance for nested models.

These results indicate that trend information, on the one hand, has some (albeit weak)
explanatory power when viewed in isolation, whilst on the other hand, if viewed within
the market environment, it has no additional explanatory power. In other words, the ev-
idence of the statistical significance yields an affirmative answer to Research Question 1,
in spite of the fact that the betting public properly discounts this information in full.
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Figure 4.2: Cumulative wealth from Kelly betting strategy (Trivariate Models)

The associated secondary Research Question 1a addresses the economic implications of
persistence in preferences through monetary gains, which could potentially be realised
through the application of additional information. Monetary gains from betting, using
the NFP derived trend variables, are presented in Table 4.13 and Table 4.14. Obviously,
betting activities without public odds cause significant losses, and following them is
not advisable. In addition, since no discrete NFP trend-derived variable is significant,
the model with the highest out-of-sample LR statistic has been selected to illustrate
economic significance – the NB1 model. Betting strategy based on the Kelly algorithm
yields in the case of the NB1 model a −2.81% ROI with a £1710.11 loss, compared to
the reference model R with a −1.73% ROI and a £1080.19 loss. This indicates that a
bettor applying the approach from this study would experience additional monetary loss
over a naïve bettor using only the closing odds – which, per definition, yields average
gains. Hence, the answer to the secondary Research Question 1a is that the absence of
statistically significant residual information means that its monetary value is negative,
as it fails to even match the average (negative) profit from betting.

A summary of the supporting evidence to Research Questions 1 and 1a is given in Fig-
ure 4.3. The top part of the figure schematically depicts in- and out-of-sample results of
the ‘best’ models in each category, selected based on the highest pseudo-R2 value. Conse-
quently, the model N7 achieves in-sample statistical significance (zValue = 67.05 > 1.96

for p < 0.05), whilst the bivariate model NB1 fails to achieve out-of-sample statistical
significance over LOGODDS (λ = 0.95 < 3.84 for p < 0.05). Based on the definition
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of the Research Question 1, the associated answer is affirmative, even with only one
statistically significant model category (in this case in-sample). This, in turn, means
that the answer to Research Question 1 directly closes the first identified gap in the
literature – the lack of theoretical and methodological support for changing choice sets
(c.f. Figure 2.7).

The bottom part of Figure 4.3 presents a summary of the economic significance of the
best, albeit in this case not statistically significant, out-of-sample model that includes
ranked ex-post preference information combined with the changing choice sets (NB1 ). In
alignment with the remark on the inconclusiveness of betting results derived from non-
significant models given in section 4.3, it can be seen that the model fails to outperform
the market reflected in LOGODDS variable and yields an additional loss (−1.08% ROI

and a £629.92 loss of capital) over a naïve betting strategy based on market odds. The
answers to Research Questions 1 and 1a fulfil directly the Research Objective 1 (c.f.
Figure 2.3).

Research Question 1

Model N7:
 LLM_NFP_dm  

zStat: 
67.05***

RQ1: Statistical significance of the residual information 

RQ1a: Monetary gains from forecasts based on the residual information

Pseudo-R2  = 0.063409

ROI (%):
 -2.81

Pseudo-R2  = 0.158204
Model NB1: 
LOGPRICE  + MA_NFP 

LR Test: 
0.95

Profit (GBP):-1710.11
Model NB1: 
LOGPRICE  + MA_NFP 

Model R:
 LOGPRICE

ROI (%):
−1.73

Profit (GBP): −1080.19

In sample

Out of sample

Figure 4.3: Research Question 1 Test Evidence Structure

4.4.2 Discussion on Research Question 2

Research Question 2 requires an answer as to whether patterns relating to past perfor-
mance (race ranking) data, combined with information on the temporal distance between
successive decision events in changing choice sets, add statistically significant information
over publicly available market data. In the particular case of empirical testing defined in
this study, information on time passed between decision events (races) should account,
at least partially, for the evolution of a runner regarding its competitive form since the
last race. The most straightforward way to incorporate that evolution is stochastic – the
variance (i.e. uncertainty) of the previous performance grows monotonously over time,
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following a linear or a nonlinear functional form, thus indicating that the informational
content derived from the available performance value diminishes over time. Obviously,
issues with race-to-race noise and the reliability of the trends derived from ranked data
are not likely to be resolved by adding time information.

The reduction of informational content over time can be incorporated into trend build-
ing and forecasting, so that the relative weighting of the information realised during the
last decision event is taken into account. As above, an assessment of the informational
content of trends derived from the available ranking information is carried out, based on
the statistical significance of the additional information explaining a part of the unob-
served utility, constructed with and without market information reflected in the variable
LOGODDS .

In the absence of market information, as evidenced in Table 4.3, all continuous time
variables (embedded in models N3 , N4 , N5 , N6 and N8 ) are significant, based on the
confirmed hypothesis that the βex coefficients statistically differ from zero, as confirmed
by the Wald test). In the bivariate case, the informational content of the trend variable
LLM_NFP_m (model NB4 ) explains an additional part of the unobserved utility out-
of-sample (Table 4.8) when the market information is included, as confirmed by the LR

test of significance (p < 0.1).

Research Question 2

Model N8:
 LLM_UP_mod1  

zStat: 
65.83***

RQ2: Statistical significance of the residual information 

RQ2a: Monetary gains from forecasts based on the residual information

Pseudo-R2  = 0.061496

ROI (%):
 -3.04

Pseudo-R2  = 0.158232
Model NB4: 
LOGPRICE  + LLM_NFP_m 

LR Test: 
2.73*

Profit (GBP):-1911.01
Model NB4: 
LOGPRICE  + LLM_NFP_m 

Model R:
 LOGPRICE

ROI (%):
−1.73

Profit (GBP): −1080.19

In sample

Out of sample

Figure 4.4: Research Question 2 Test Evidence Structure

Hence, the answer to Research Question 2 is affirmative, since the time (‘forgetting’)
factor embedded in time distance between the two successive decision events adds sta-
tistically significant information over the market variable LOGODDS . Furthermore,
this implies that the temporal development of the attributes of an alternative (trend of
performance) contains statistically significant information, which, if omitted, results in
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model bias. This results in the conclusion that in similar DCM applications, feedback
regarding the previous (ordered) preference should be included in any modelling effort.

The economic importance of the persistence of preference effects, reflected in monetary
gains which could potentially be realised through the exploits of additional information,
builds the focus of the secondary Research Question 2a. Monetary gains from betting,
using the NFP -derived continuous trend variables (models N3 , N4 , N5 , N6 and N8 ),
are presented in Table 4.13 and Table 4.14. Obviously, betting activities without public
odds cause significant losses, and following them is not recommended. On the other
hand, the model NB4 , being statistically significant, can be used for betting. Betting
strategy based on a Kelly algorithm yields, in the case of the NB4 model, a −3.04%

ROI and a £1911.01 loss, compared to the reference model R with a −1.73% ROI and a
£1080.19 loss. This indicates, in answer to Research Question 2a, that a bettor applying
the approach from this study would experience below-average monetary gains (i.e. in this
case a loss). Moreover, the cumulative wealth growth for the model NB4 is presented in
Figure 4.1. Hence, the answer to the secondary Research Question 2a is that even though
statistically significant residual information is given, its monetary value is negative, as it
fails to even match the average (negative) profit from betting. It should be noted, though,
that the significance level is less rigorous than the typically defined level (p < 0.05).

A summary of the supporting evidence to Research Questions 2 and 2a is given in Fig-
ure 4.4. The top part of the figure schematically depicts in- and out-of-sample results of
the ‘best’ models in each category, selected based on the highest pseudo-R2 value. Conse-
quently, the model N8 achieves in-sample statistical significance (zValue = 65.83 > 1.96

for p < 0.05), whilst the bivariate model NB4 achieves out-of-sample statistical signif-
icance over LOGODDS (λ = 2.73 > 2.71 for p < 0.10). Based on the definition of
the Research Question 2, the associated answer is affirmative. Note that the answer
to Research Question 2 comprises an intermediate result with respect to the closure of
the identified gaps – it embeds non-uniform time intervals between reoccurrence of al-
ternatives and ranked ex-post preference information in order to assess the incremental
improvement of the model accuracy before a claim for gap closure can be made (c.f.
Figure 2.3). In addition, this particular intermediate step has been selected to enable
an analysis of theoretically important effects of misperceptions (biases) in temporal dis-
counting in decision-making (Ma et al., 2016), discussed in detail in Chapter 5.

The bottom part of Figure 4.4 presents a summary of the economic significance of the best
out-of-sample model that includes ranked ex-post preference information, the changing
choice sets and non-uniform time intervals between reoccurrence of alternatives (NB4 ).
It can be seen that the model fails to outperform the market reflected in LOGODDS

variable and yields an additional loss (−1.31% ROI and a £830.82 loss of capital) over
a naïve betting strategy based on market odds. A rationale for this result is that even
though the inclusion of the time discounting in the model improved the model accu-
racy considerably and reached (weak) statistical significance, the effects bound to the
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reliability of the ranked data impede its economic performance. Theoretical aspects of
reliability of lower ranked alternatives are discussed in the next chapter.

4.4.3 Discussion on Research Question 3

Research Question 3 sought an answer to whether patterns of importance weighted past
performance data can add statistically significant information over publicly available
market data. Importance-weighting is designed to mitigate the effects of low reliability of
non-selected ordered choice data. In the horse-racing context, the importance of the event
is modelled through prize money, which indicates its relative attractiveness compared to
other races and its intrinsic incentive to perform according to the inherent performance
ability of the horse and jockey. In addition, races with higher prize money are correlated
with generally better horses causing stronger in-race competition, which, combined with
the inclusion of information on lagging time behind the winner (BEATENLENGTHS ),
additionally calibrates the relative performance used for trend prediction. This, in turn,
promises the better predictive power of the resulting variable UP .

As with the previous two research questions, statistically testing the significance of in-
formational content of the importance weighted trend variable derived from the ordered
placement information is carried out using two types of unobserved utility – with and
without the market information. For univariate models, i.e. when market information
is not included, all discrete trend variables (as captured through models U1 , U2 , and
U7 ) are significant (p < 0.05), based on the Wald test (see Table 4.4). Furthermore, the
evaluation of bivariate models that include market information reveals noticeable im-
provements in the reliability of trend variables – two discrete models are out-of-sample
statistically significant over LOGODDS (Table 4.11), with p < 0.10 (UB7 ) and p < 0.05

(UB1 ).

These results indicate that weighted trend information, both in univariate and bivari-
ate model settings, contains additional explanatory power, and the betting public has
not properly discounted that information in full. This yields an affirmative answer to
Research Question 3.

The secondary Research Question 3a calls for an evaluation of the economic importance
of preference persistence effects, reflected through monetary gains that could potentially
be realised through the exploits of additional information. Monetary gains from betting,
using the UP -derived discrete trend variables (models U (B)1 , U (B)2 , and U (B)7 ),
are presented in Table 4.15 and Table 4.16. As above, betting activities without market
information yield significant losses and should not be pursued. On the other hand,
with the inclusion of the market variable LOGODDS , the model UB1 allows profitable
betting, i.e. a betting strategy based on Kelly staking yields a 1.22% ROI with a £901.84
profit, compared to the reference model R with a −1.73% ROI and a £1080.19 loss. The
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cumulative wealth growth for model UB1 is included in Figure 4.1. This indicates that,
contrary to the discrete unweighed case, even a simple moving average of the variable UP
can yield a positive profit. In summary, the answer to the secondary Research Question 3a
is that it is possible to achieve above-average profit (i.e. an ROI improvement of 2.95%)
from betting, based on trend information derived from the importance weighted ranked
order information.

A summary of the supporting evidence to Research Questions 3 and 3a is given in Fig-
ure 4.5. The top part of the figure schematically depicts in- and out-of-sample results of
the ‘best’ models in each category, selected based on the highest pseudo-R2 value. Conse-
quently, the model U7 achieves in-sample statistical significance (zValue = 76.69 > 1.96

for p < 0.05), whilst the bivariate model UB1 achieves out-of-sample statistical signif-
icance over LOGODDS (λ = 7.12 > 3.84 for p < 0.05). Based on the definition of
the Research Question 3, the associated answer is affirmative. Note that the answer
to Research Question 3 comprises an intermediate result with respect to the closure of
the identified gaps – it embeds changing choice sets and importance weighting of ranked
ex-post preference information in order to assess the incremental improvement of the
model accuracy before a claim for gap closure can be made (c.f. Figure 2.3). In addition,
this particular intermediate step has been selected to enable an analysis of theoreti-
cally important effects of diminishing reliability of ranked information (Fok et al., 2012),
discussed in detail in Chapter 5.

The bottom part of Figure 4.5 presents a summary of the economic significance of the
best out-of-sample model that includes importance weighted ranked ex-post preference
information, the changing choice sets (UB1 ). It can be seen that the model outper-
forms the market reflected in LOGODDS variable and yields a profit (2.95% ROI and a
£1982.02 capital gain) over a naïve betting strategy based on market odds. Theoretical
aspects of reliability of lower ranked alternatives are discussed in the next chapter.

4.4.4 Discussion on Research Question 4

Research Question 4 integrated both aspects of persistence in preference effects, that is,
importance-weighting and the temporal distance between the successive decision events
in changing choice sets. It sought an answer whether patterns of importance weighted
past performance data, combined with the information of temporal distance between
successive decision events, add statistically significant information to publicly available
market data.

Following the same approach as in the previous three set-ups, statistical testing of the
significance of residual informational content, in the form of trends derived from past
performance data for two cases of unobserved utility (with and without market infor-
mation), is carried out. As expected, models that embed both considered aspects of
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Research Question 3

Model U7:
 LLM_UP_dm  

zStat: 
76.69**

RQ3: Statistical significance of the residual information 

RQ3a: Monetary gains from forecasts based on the residual information

Pseudo-R2  = 0.087289

ROI (%):
 1.22

Pseudo-R2  = 0.158301
Model UB1: 
LOGPRICE  + MA_NFP 

LR Test: 
7.12***

Profit (GBP):901.84
Model UB1: 
LOGPRICE  + MA_NFP 

Model R:
 LOGPRICE

ROI (%):
−1.73

Profit (GBP): −1080.19

In sample

Out of sample

Figure 4.5: Research Question 3 Test Evidence Structure

persistence yield very good results, i.e. the models are statistically significant both in-
and out-of-sample. The Wald test reveals (see Table 4.4) that all univariate continuous
time trend models (as captured in models U3 , U4 , U5 , U6 and U8 ) are significant at
p < 0.05. Furthermore, the evaluation of bivariate models that include market informa-
tion demonstrate out-of-sample significance over LOGODDS (Table 4.11), with p < 0.10

(UB3 ) and p < 0.05 (UB4 and UB8 ).

These results demonstrate that the residual information obtained from the trends of
past performance data, enhanced with importance-weighting and the temporal distance
between the successive decision events in changing choice sets, contains additional ex-
planatory power in both the univariate and the bivariate model settings, and that the
betting public has not properly discounted that information in full. This yields an affir-
mative answer to Research Question 4.

The economic aspects of residual information of the persistence in preference effects
are assessed next, in order to answer the secondary Research Question 4a. Monetary
gains that could potentially be realised through the exploits of additional information
contained in the UP -derived continuous trend variables (models U3 , U4 , U5 , U6 and
U8 ) are presented in Table 4.15 and Table 4.16. As before, betting activities without
market information do not build a successful investment endeavour, as they result in
significant losses. Conversely, the inclusion of the market variable LOGODDS allows
profitable betting for UB4 , which yields a 1.25% ROI with a £1020.61 profit, compared
to the reference model R with a −1.73% ROI and a £1080.19 loss. The cumulative wealth
growth for the model UB4 is included in Figure 4.1. Note that the UB8 has even better
financial performance – a 4.21% ROI with a £3518.61 profit, but a lower out-of-sample
pseudo-R2 value than the model UB4 , and thus it was not used for a representative
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comparison. In summary, the answer to the secondary Research Question 4a is that it is
possible to achieve above-average profit (i.e. a ROI improvement of 2.98%) from betting
based on trend information derived from importance-weighted ranked order information.
Figure 4.1 includes cumulative wealth growth for the models UB4 and UB8 .

Research Question 4

Model U8:
 LLM_UP_mod1  

zStat: 
75.50***

RQ4: Statistical significance of the residual information 

RQ4a: Monetary gains from forecasts based on the residual information

Pseudo-R2  = 0.085485

ROI (%):
 1.25

Pseudo-R2  = 0.158379
Model UB4: 
LOGPRICE  + LLM_UP_m 

LR Test: 
12.06***

Profit (GBP):1020.61
Model UB4: 
LOGPRICE  + LLM_UP_m 

Model R:
 LOGPRICE

ROI (%):
−1.73

Profit (GBP): −1080.19

In sample

Out of sample

Figure 4.6: Research Question 4 Test Evidence Structure

A summary of the supporting evidence to Research Questions 4 and 4a is given in Fig-
ure 4.6. The top part of the figure schematically depicts in- and out-of-sample results of
the ‘best’ models in each category, selected based on the highest pseudo-R2 value. Conse-
quently, the model U8 achieves in-sample statistical significance (zValue = 75.50 > 1.96

for p < 0.05), whilst the bivariate model UB4 achieves out-of-sample statistical signif-
icance over LOGODDS (λ = 12.06 > 3.84 for p < 0.05). Based on the definition of
the Research Question 4, the associated answer is affirmative. This, in turn, means
that the answer to Research Question 4 directly closes both identified gap in the lit-
erature – the lack of theoretical and methodological support for changing choice sets
and non-uniform time intervals between reoccurrence of alternatives, together with the
importance weighted ranked ex-post preference information (c.f. Figure 2.7).

The bottom part of Figure 4.6 presents a summary of the economic significance of the best
out-of-sample model that includes importance weighted ranked ex-post preference infor-
mation and non-uniform time intervals between reoccurrence of alternatives information
(UB4 ). It can be seen that the model outperforms the market reflected in LOGODDS

variable and yields a profit (2.98% ROI and a £2100.79 capital gain) over a naïve bet-
ting strategy based on market odds. The answers to Research Questions 4 and 4a fulfil
directly the Research Objective 2 (c.f. Figure 2.6).
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The next chapter expands on the salient theoretical points regarding persistence in pref-
erences effects, i.e. the effects of the reliability of the ranked data and misperceived
temporal discounting, using the data and the analysis presented in this chapter.

Chapter Summary

The empirical results chapter describes the results obtained following the approach de-
scribed in the research design and the evidence leveraged to answer the research questions.

The chapter started with results from the KF stage parameter fitting and the observa-
tion that the pecking order in terms of model quality obtained in this stage does not
necessarily correspond to the expected informational contribution in the CL stage. Next,
the chapter turned to CL stage results by evaluating the in-sample univariate, bivari-
ate, and trivariate models. The most important results from this evaluation are that
importance-weighting considerably improves the reliability of the trend variables and
that the improvement in residual information, resulting from including data on times
between the decision events, remains inconclusive.

Out-of-sample results evaluation revealed that the univariate models’ pecking order does
not change too much, with the notable exception that those models designed for model
error compensation models improved their placement due to their robustness against
over-fitting. Bivariate models, however, witnessed a significant change – the inclusion of
time information yielded evidence of the statistical significance of several models (even
on one NFP -based model). In order to confirm that time information actually contains
residual information, a set of trivariate models was generated to compare the statistical
significance of trend models, including temporal- and importance-weighting over the
models based on importance weighted trends only. The trivariate comparison confirmed
the significance of the time information.

Analysis of the economic implications of persistence in preference effects showed that,
albeit far from trivial, it is possible to achieve above-average profits in combination
with the market variable LOGPRICE for models that include importance and tempo-
ral weighting, which proved that the market did not completely discount the available
information.

Evidence collected during empirical testing, analysed in-sample and out-of-sample, pro-
vides sufficient information to answer all four research questions posed in Section 2.3 and
discussed in the final portion of this chapter. Answers to all four research questions meet
the research objectives (1.2) and close the identified gaps in literature in full.





Chapter 5

Discussion

The main findings from the previous two chapters are that the effects of persistence in
preferences explain part of the unobserved utility in a repeated decision-making setup.
In particular, the research questions posed herein allowed for a gradual model build-
up where combinations of importance weighting and temporal discounting effects were
assessed in an naturalistic empirical test setup. In this study, importance weighting
has been introduced to mitigate the effects of the low reliability of ranked choice data
as set out in Research Objective 2. Similarly, the modelling approach for non-uniform
sampling has been included in the same research objective to account for ‘forgetting’
or the evolution of preferences over time, which are logically bound to the ageing of
available information and the cognitive biases of DM related to the perception of time.

This chapter discusses the findings obtained in this study in a broader context of previous
research on these effects.

5.1 Reliability of ordered data

One of the fundamental results of research efforts on decision-making modelling is that
the inclusion of ranked alternatives yields more efficient estimations of the preferences of a
subject or a set of subjects compared to when a DM reveals or states their most preferred
option only (Fok et al., 2012; Beresteanu and Zincenko, 2018). One of the earliest models
is Rank-Ordered Logit (ROL) (Beggs et al., 1981), used to analyse the preferences of
individuals over multi-alternative choice sets, provided that either the revealed or the
stated rank data is available. Empirical use of this model has been demonstrated in many
fields, such as accident research (Bogue et al., 2017), transportation studies (Zhang et al.,
2005) and automotive marketing (Zheng, 2010), to mention but a few.

However, the ROL model is based on the assumption that a DM under study consis-
tently assigns a utility value to each alternative independently, and subsequently it ranks
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the alternatives based on (perceived) utility values. This is, however, quite a strong as-
sumption and, as it turns out, not very realistic, since, in practice, respondents may be
unable and/or unwilling to perform the ranking task or a part thereof, due to numerous
reasons. First, the DM may face limitations in terms of the cognitive capabilities needed
to perform this task, such as an inability to perform the ranking due to too many, and
possibly overly complex, alternatives in the choice set or a lack of distinctive differences
between the less-preferred alternatives. Of course, a partial fulfilment of the ranking
task is also possible – a DM may find it easier and more worthwhile to choose the most
preferable alternative first than assign ranks to less desirable alternatives. Moreover,
it should be noted that the task of ranking multiple alternatives simultaneously is not
necessarily equivalent to the sequential task of repeated preference choices from a choice
set, such as the most preferred, the next most preferred, etc., until the last remaining
pair of alternatives is resolved (Louviere et al., 2008). Furthermore, the DM may be less
careful in ranking inferior alternatives (since the impact of false reasoning is lower) or
even suffer from a ‘response bias’, and it can be reasonably concluded that the reliabil-
ity of ranking information deteriorates in line with decreasing rank. This obviously may
produce empirically unreliable data, which, if not corrected for, may lead to a substantial
modelling bias (Chapman and Staelin, 1982).

Decision-making researchers have put forward numerous more or less successful ways to
overcome reliability bias. The first and the simplest approach was to use only the first
few ranks, which immediately begs the question how to determine the appropriate num-
ber of ranks to be used for the given application. Chapman and Staelin (1982) proposed
a method based on the LR test statistic which evaluates the statistical equivalence of
parameters of data pooled over several ‘explosion levels’. Their procedure allows for the
decomposition of alternative rankings into a series of conventional (i.e. unranked) and
statistically independent choice observations (cf. IIA), in order to meet the precondi-
tions for applying conventional CL modelling. In spite of the mathematical appeal of
the procedure, Hausman and Ruud (1987) observed that noise in information, i.e. levels
of uncertainty, increases in line with growth in the number of included levels, and the
authors tried to model the increase in uncertainty with a rank-heteroscedeastic unob-
served utility function. Both approaches, however, assume that the ranking capabilities
are the the same for every participating DM or that the capabilities do not change from
one to the next decision event, in the case of repeated decision-making (Louviere et al.,
2008). This is obviously not the case when different decision protocols govern the rank-
ing process at different depths, which is typically the case for horse-racing placements
(Sung and Johnson, 2007). Furthermore, and this is an even more limiting assumption,
is that identical choice sets are postulated for each decision event, which may lead to a
considerable loss of model efficiency.

In a further development, Fok et al. (2012) proposed a model capable of incorporating
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the fact that lower rankings may not completely reflect the true preferences of an ob-
served DM. The approach introduces a latent variable that endogenously identifies the
unobserved ranking capabilities of the heterogeneous (or evolving) DM, which may be
used to design more efficient SP ranking surveys, proven to be of interest in marketing
research applications. Whilst they could demonstrate a clear efficiency gain compared
to standard CL models, and non-bias in spite of ranking inabilities of some of the DM,
their model does not provide support for changing choice sets.

The problem of unreliable ranking appears naturally in the horse-racing context and
is particularly pronounced amongst those runners finishing in the minor placings. It
has been observed that the lower rankings do not necessarily carry informational value,
and rank order finish data beyond the winner and the runner-up are of questionable
value and cannot be relied upon (Sung and Johnson, 2007). Even though the racing
protocol calls for sportsmanship and requires jockeys to continue riding to the best
achievable performance standard, there is little incentive to follow it if a profitable win
or a placement is out of reach. Moreover, as described in 4.4, there are (fraudulent and/or
tactical) incentives to secure a finishing position under the actual placement potential,
such as promoting the lengthening of betting odds or reducing the weight handicap in
the next race, aimed at increasing betting gains or the probability of a win.

Lessmann et al. (2012), whilst investigating a two-step forecasting approach (SVM/CL)
of horse race outcomes, came to the conclusion that the MSE criterion applied in the first
step (SVM) leads to over-fitting and generally suboptimal performance, since prediction
errors in the finishing order of the two last places have far smaller monetary importance
than prediction errors in the finishing order of the winner and the runner-up, albeit they
can have the same MSE. The authors pointed out also that a similar problem setting for
ranked information has been studied extensively in machine learning-based optimisation
of internet search engines, with the aim of maximising accuracy within those results
ranked highest (Cao et al., 2006; Le and Smola, 2007).

The conclusion regarding potential inadequacy of the MSE criterion is confirmed in this
study, following two main rationales – first, the pecking order of the trend models in-
sample is completely turned over when compared to predictions of out-of-sample results,
and second, even though the KF trend modelling was invoked, it should yield a the-
oretically minimum MSE, and only the error compensating model including the time
information (c.f. NB4 ) can provide statistically significant out-of-sample results. A way
to mitigate unreliability in the ranking data through importance weighting has been
demonstrated in this thesis. Based on a priori information regarding the importance of
the decision event at hand, and a proxy of relative distance between the revealed choices,
an improved continuous ranking variable was created to compensate for reliability issues.
The improvement is so high over the non-weighted models that even those models without
time information outperform non-weighted models with time information. Importance
weighting, as applied in this thesis, has several benefits over the modelling approaches
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discussed above: (1) simplicity of calculation, since variable conditioning for reliability is
done exclusively during preprocessing, which, in turn, eliminates the need for multilay-
ered model fitting (Fok et al., 2012), defining assumptions regarding the distributional
properties of ‘latent segments’ (e.g. Mixed Logit) for reliability estimation (Train, 2009)
or learning postulated scoring functions with desirable properties (Cao et al., 2006),
(2) supports ‘non-designed’ changing choice sets and (3) can be used both in SP and
RP problem settings. In the context of horse-racing, the results presented in this thesis
confirm that the questionable reliability of the ranking information, in combination with
the MSE criterion of fit, does not provide the desired out-of-sample performance. The
methodology presented herein mitigates the effects of the unreliability of lower ranks
through importance weighting associated with the particular race and, at the same time,
reduces the the susceptibility of the models to in-sample over-fitting noise. This example
of domain-based heuristics in using a priori data can be replicated in decision-making
problem settings in other sciences. It should be noted that the presented approach, even
though it mimics the general idea of weighted distance-based models for ranking data
(Alvo and Philip, 2014), is far more flexible, as it does not require any formal considera-
tion of the rationality levels of the DM. However, this discussion still begs the question
about underlying rationality, which is addressed next.

5.2 Rationality

In the last three decades, the assumption of rationality postulated in the vast majority
of decision-making models has been increasingly challenged. One of the reasons for this
increased scrutiny is the dissimilarity of objectives exhibited by researchers from different
sciences. For example, psychologists are mostly interested in replicating the individual
behaviour of decision-makers as human subjects, whilst economists and transportation
researchers tend to concentrate on demand and policy effectiveness forecasts. Notably,
there is a large body of evidence of departures from rationality, observed in practically
all fields of human decision-making (Cherchi, 2012). Attempts to explain the sources
of (temporary) departure from the rationality principle are typically based on dedicated
structural components added to a base rationality-based model, such as state depen-
dence, habit persistence, and taste heterogeneity, as explained in Chapter 1. However,
all of these approaches face the problem of unequivocal differentiation between the contri-
butions of different components, i.e. effects are mutually confounded, and only a careful
research design can help separate these effects and allow for conclusions regarding their
relative contribution to the decision process.

In this study, namely a decision-making modelling approach, which aimed to fill the
identified gap in the literature with respect to changing choice sets, support for irregular
durations between the recurring availability of alternatives in a choice set, and feedback
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on the relative preferences for alternatives in previous decision events, has been devel-
oped. Moreover, the selected setup of empirical testing allows for the effective separation
of confounding effects that may otherwise introduce model bias.

Horse-wagering markets used for empirical test setup effectively eliminate some of the
confounding effects. As explained previously, the outcomes of horse races are modelled
as decisions made by an abstract DM ‘nature’ based on rational evaluations of utility
function bound to the virtues of a runner and idiosyncratic race attributes (Bolton and
Chapman, 1986). In addition, it is postulated that the principle of causality applies, i.e.
‘nature’ faces repeated decisions, as time linearly progresses from race to race. First,
state dependence effects are excluded as dynamic components by virtue of the changing
choice sets, since choosing a winner in a race does not alter the preferences, prices and/or
constraints (Hsiao, 2014) affecting the next immediate race, because, as a rule, they do
not contain a single runner from the previous race. In other words, the choice made in
the previous race does not increase the probability of experiencing the same choice in
the next race.

Second, the effect of the heterogeneity which captures differences between different
decision-makers and variety-seeking is equally not applicable in this setting. Repeated
choices made by a single DM do not exhibit static differences between decision-makers.
Moreover, an implied autocorrelation in the unobserved characteristics of the DM is
suppressed through the random order of the races on any given day, which involves dif-
ferent racing tracks and a large number of races for consideration, which averages out
variety-seeking behaviour.

Consequently, the remaining effect is habit persistence, which aims to capture the tempo-
ral persistence of the unobserved attributes of the available alternatives. The empirical
setup based on the horse-racing betting markets is adequate to assess the results of the
revealed preference as a proxy of the desirability of an alternative, and it considers its
temporal persistence, i.e. forgetting in time, to isolate the effects of habit persistence.
Furthermore, a comparison with the market-level variable LOGPRICE , revealing the
market assessment of the probability of selecting an alternative, demonstrates the signif-
icance of the approach.

Ironically, as Gowdy (2008) pointed out, ‘homo economicus’, who follows the axiomatic
rational choice model, negates the idea of human individuals who act with highly devel-
oped intelligence and understanding of social behaviour. He also concludes that “First,
social animals, such as primates, also have a sense of fairness and a tendency to cooperate,
even at a cost to themselves. Second, ‘lower’ animals do appear to behave in accordance
with the rational actor model”, which leads to the conclusion that an ‘abstract’, non-
living DM tends to achieve higher levels of rationality than humans. Furthermore, the
main goal of the traditional decision-making modelling for a given application is typ-
ically focused on improving the representative utility, in order to explain as much as
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possible the variance of the behaviour and to minimise the variance attributed to the
unobserved utility (error term). In this study, model improvements are geared towards
a particular decomposition of the error term, postulating the statistical properties of the
error term components, in order to achieve better forecasting performance. Hence, this
approach does not consider representative utility as a confirmation of the neoclassical
economic theory; however, in alignment with the post-positivistic paradigm, it aims at
reducing uncertainty and improving prediction of behaviours, which can no longer be
seen as irrational (Ariely, 2008; Cherchi, 2012).

5.3 Time duration bias

One of the less explored heuristics that DM use to balance between inherently limited
cognitive capabilities, time pressure, and the ever-growing complexity of the modern
world is duration neglect, whereby the human brain abstracts time information and fo-
cuses its perception of experience on ‘peak-and-end’ events whilst neglecting both the
total duration of the experience and the duration of different phases thereof (Kahneman
and Frederick, 2002). However, ignorance or misestimation of the duration may lead to
a cognitive bias generating systematic errors that affect the correctness of any decisions
made. Duration neglect has been investigated in several controlled experimental studies
mimicking organisational and business problem settings, e.g. the inventory management
setting ‘Beer Distribution Game’. Sterman (1989) found that scheduling tasks, especially
involving long-lead tasks affecting each other, are regularly biased towards underestimat-
ing time delays between them. This is analogue to one of the fundamental results from
dynamic system control theory, indicating that a time delay in a linear feedback system
reduces stability margins and may lead to system oscillations (Franklin et al., 2014). A
related study by Sterman and Diehl (1993), in a somewhat more complex simulation
of an inventory management problem setting, investigated the effects of closed feedback
loops, confirming that humans generally adopt a linearly causal (e.g. open loop) view
of system behaviour, which in combination with time delay misperceptions leads to the
poor performance of all subjects participating in the simulation.

Furthermore, several studies have demonstrated that the general population faces great
difficulties in differentiating between stock (measured at a particular point of time, e.g.
voltage) and flow variables (measured over a defined period of time, e.g. frequency), and
they find relationships between them confusing (Kainz and Ossimitz, 2002). Sweeney
and Sterman (2000) reported that even subjects from the population of arguably numer-
ically well-calibrated decision-makers (a cohort of MBA students) do not anticipate bias
caused by difficulties in recognising delays and understanding their impact; rather, they
rely on pattern-matching heuristics which yield catastrophic performance in scenarios in-
volving long delays, further aggravated when irrelevant information is included (Lafond
et al., 2012). All of the cognitive difficulties bound to time delays, feedback, and dynamic
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behaviour in the observed decision scenarios beg the question, whether and to what ex-
tent do DMs fail to account fully for information inherent in (discrete or continuous)
times between observed events or variables. Ma et al. (2016) investigated whether indi-
viduals engaging in a naturalistic decision making environment (horse-wagering market)
are subject to biases resulting from duration misperception. The authors identified that
(1) market odds do not fully discount temporal information in spite of the well-known
fact that form cycles of runners and jockeys affect winning probabilities and (2) cogni-
tive bias bound to misperception of the time-period (duration) since the last ‘significant’
event related to a horse (i.e. since its last win) creates betting market inefficiencies of
more than 20% when controlled for using the same information set, including the age
and gender of runners, the last distance run, together with prize money and previous
winning odds market variables. The modelling approach put forward in their study was
based on an adaptation of an Survival Analysis (SA) interval model (Prentice et al.,
1981; Harrell Jr, 2015), which predicts the conditional event probabilities in progressive
time intervals since the last ‘significant’ event considered (i.e. win) for every horse in
the dataset. Obviously, the selected time intervals are selected as being identical with
the time between actual races. Obtained conditional probabilities are then used as an
input into a CL model to account for within-race competition. The results indicate the
presence of time duration bias, even in settings where significant monetary rewards for
accurate judgements are available.

However, events based on which the temporal misperception is measured are in fact
quite rare relative to the total number of runners participating in the races. Indeed, the
mean number of wins in one season (2005), with those horses with at least one win in
their previous career at 2.81, with the standard deviation of 2.45, indicates that a very
large dataset of runners covering their careers before the out-of-sample season is needed.
Moreover, no additional information can be gained for runners without previous wins.

While the results presented in this thesis also confirm the existence of a significant time
duration bias amongst bettors, the presented methodology allows for the evaluation
of temporal effects on every horse with more than two runs without limitation bound
to at least one win in the previous career. This, in turn, means that the temporal
discounting method put forward in this thesis allows for a broader adoption of proposed
methodologies in other fields residing within operational research. The method developed
herein, for instance, may effectively be used in political science and project management,
where either only a few political parties have ever won elections or only a limited amount
of work packages of similar scope are long-lasting, thus having the largest impact in a
case of misperception.
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Chapter Summary

The discussion chapter builds on the empirical results from the previous chapter and
closes the circle of the theoretical framework presented in the introduction and litera-
ture review. The structure allows for a better understanding of two sources of biases
which occur in dynamic discrete decision-making contexts, together with the modelling
framework on how to overcome them in practical settings. In particular, the effects of
the studied biases in a naturalistic decision-making environment demonstrate that even
a well-calibrated and incentivised DM is prone to bias, resulting in suboptimal decisions.

The problem of the unreliability of the rankings in a dynamic setting where the DM faces
changing choice sets in every subsequent decision event was discussed in light of previous
approaches presented in the literature. Since unreliability is particularly strong for lower
ranks, most of the incumbent approaches are geared towards identifying ‘acceptable’
rank levels, either through breaking down datasets into reliable and unreliable parts or
through a latent variable determining the threshold of reliability. The approach presented
herein uses a-priori knowledge of the monetary importance of the decision event on hand
to assign relative importance weighting, and it could be demonstrated that importance
weighting contains statistically significant residual information on the general betting
market. In addition, assumptions regarding the rationality of the DM in the selected
setting, and its implications, were discussed.

Finally, temporal bias affecting persistence in preferences or, in general, any decision-
making setup, which includes dynamic system behaviour, is addressed. Previous research
focused on time duration bias mostly in SP research settings, concluding that misper-
ceptions of time duration are prevalent even for mathematically competent subjects. A
notable exception to SP research was the study conducted by Ma et al. (2016), based
on a two-step modelling approach (SA/CL). The main drawback of that approach was
that the time interval bias considered therein was evaluated by taking the last win of
every single runner as the time baseline for conditional probability calculation, which
eliminates the vast majority of runners in the dataset and requires rather large datasets
extending over many competitive seasons. The modelling framework introduced in this
thesis avoids this limitation, since the time duration between all successive races is taken
into account directly. This engenders a significant advantage in applications where re-
peated choices are rare, but nevertheless reoccurring, and it is important for predicting
outcomes.
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Summary and Conclusions

6.1 Introduction

The final chapter of the thesis summarises the research endeavours undertaken in this
study. The thesis started with a preliminary review of the discrete choice modelling
literature with a focus on behavioural dynamics effects in discrete choice settings, namely
state dependence, habit persistence, and heterogeneity. Next, a common characteristic
of incumbent dynamic models with lagged effects of previous choices was identified, i.e.
reliance on balanced panel-type data, equidistant in time, under an (implicit) assumption
that the DM faces the same choice set in every decision event. Furthermore, a potential
increase in model fitting efficiency, if the ranked ex-post event data are included, was
discussed. These considerations, which emerged from the limitations of the incumbent
approaches and identified gaps in the literature, yielded a research problem statement
(1.1) with clearly delineated research objectives (1.2).

These research objectives postulated a definition of discrete decision-making models
which could be used for predicting the behaviour of a DM facing changing choice sets and
irregular but known times between decision events. Endogenous trends of alternative-
specific proxies of the preferences, constructed from ranked data are seen as input to a
SSM model with latent states capturing dynamic effects. Dynamics of the trends evolu-
tion is estimated through the KF algorithm. These trends are interpreted as conditional
random variables partially explaining an unobserved utility in CL-based RUM models.
An estimation of the model parameters completed the conceptual modelling framework
outlined in the research objectives.

An extensive literature review of static and dynamic DCM approaches founded on RUM,
including an analysis of unobserved properties of the utility functions, and the interplay
between dynamic latent variable modelling of learning, habit persistence, consumption
inertia, and state dependence effects, was given in Chapter 2. This was then followed
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by an introduction to a linear SSM as an appropriate model structure for estimating
latent states (variables), proxying the dynamic effects listed above. For the conditional
estimation of the latent states, the optimal linear filter, namely the KF algorithm, was
put forward, and its properties and the intuition behind it were explained. Two parsi-
monious and simultaneously versatile dynamic models (LLM and LLT) were presented
next, together with the measurement noise covariance adjustments for non-equidistant
sampling. A discussion on their adequacy for modelling the unobserved portion of the
utility function followed, with the conclusion that because of the unknown DGP under-
lying the random portion of utility, ageweighting model error-correcting algorithms are
more likely to provide better out-of-sample results than the standard KF algorithm.

The research objectives and the proposed modelling structure allowed for the devel-
opment of research questions, which, when analysed and answered based on empirical
data, provide the basis for evidence that the research objectives are met and the identi-
fied gaps in the literature are closed. The formulation of four broad research questions
in an empirical setup (horse-wagering markets) which combines provisions for dynamic
modelling, changing choice sets, and non-uniform times between the availability of al-
ternatives in a choice set delineates the boundaries of the research. Organisation of the
research questions was implicitly based on two cognitive biases, observable as (1) the un-
reliability of ordered data for less preferred alternatives and (2) misperceptions of time
duration. In the research questions, controls and mitigating measures for the two biases
are progressively introduced for easier results analysis. For each of the four primary
research questions, a secondary research question, addressing the economic significance
of the residual information obtained from bias control and mitigation measures, assessed
through monetary gain that could be achieved through betting activities utilising that
information, was posed. The first research question was concerned with the informa-
tional content of patterns of previous ordered choices and its statistical significance over
publicly available market data whilst ignoring the time duration between decision events
(races). The second research question queried the informational content of patterns of
previous ordered choices and its statistical significance over publicly available market
data whilst controlling for temporal bias. The third research question addressed the
effectiveness, i.e. statistical significance gain over publicly available market data, of con-
trols for the unreliability of lower ranked ordered choices in the same context. Finally,
the fourth research question integrated proposed controls for both biases and sought to
evaluate the statistical significance of the residual information content derived from pre-
vious choices weighted on both importance (unreliability bias) and time (time duration
bias).

The methodology chapter (3) started by endorsing the ontological stance founded on
critical realism, with the target to define a model or series of models that sufficiently
well describe the reality within the framework required in the research objectives. This,
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in combination with the epistemological view of the research, rooted in modified du-
alism/objectivism, positioned the study within the post-positivistic research paradigm.
Moreover, the quantitative and deductive methodologies required the careful selection
of data capture and analysis methods. In this study, an RP was selected in order to
avoid biased decision-making, inherent in SP research designs, where no monetary in-
centives for correct decisions are present. On the other hand, the selected empirical setup
framed for assessing the research questions, namely horse-wagering markets, consisted of
well-calibrated decision-makers with considerable monetary incentives for selecting alter-
natives to the best of their knowledge. Next, the mathematical foundation of state space
discrete choice models geared towards persistence in preference effects was derived, and
key details of the practical implementation of the algorithms, such as initialisation with
diffuse priors, were given. Finally, a research design description, encompassing (1) empir-
ical test planning, (2) model parameter fitting procedure, (3) statistical and application
relevant model evaluation criteria, and (4) the used dataset explicitly closed the circle
of the conceptual modelling framework, explicitly or implicitly needed for every orderly
academic study (Trafford and Leshem, 2008).

The last section of the methodology chapter describes the dataset used – 42,768 races
with 43,424 runners imported from the Betfair UK horse-racing database covering the
time frame from January 1st, 2007, until December 31st, 2012, including both all-weather
and turf racing courses. For the purposes of understanding variances in the choice of set
sizes, distribution of time durations between the races and an evaluation of models, the
dataset has been split into three non-overlapping datasets: LDS, BDS, and VDS. All
data types, i.e. runner-level, race-level, and market variables, used and the associated
relevant descriptive statistics have been presented and discussed.

Empirical results for the study were captured in Chapter 4. The results include all of
the main and intermediate results of the steps captured in the overarching quantitative
algorithm integrating data generation, prediction and analysis (cf. Figure 3.3). In par-
ticular, the results, divided into two groups (in-sample and out-of-sample), underscored
the analysis, based on which all four primary research questions could be discussed and
answered in full. Finally, the economic significance of the residual information extracted
from the trends of performance proxies was evaluated, in order to provide answers to all
four research questions.

Chapter 5 picked up a broader context of two biases bound to the unreliability of the
lower ranked alternatives, if ordered preference data are available, and the time duration
bias and framed the research results in the context of their influence. The biases are
particularly relevant in dynamic decision-making settings, in that a successful modelling
approach which would allow convergence and generalisation of the results in adjacent
disciplines builds a considerable contribution to knowledge. Finally, the modelling frame-
work, which was one of the outcomes of this research, was linked to the understanding
of the biases and the ways of mitigating them in an empirical setting.



126 Chapter 6 Summary and Conclusions

The remainder of this chapter highlights the theoretical and methodological contribution
of the research (6.2), signposts the limitations (6.3), suggestions for future research (6.4),
and potential impact of the research (6.5) related to dynamic discrete decision models.
Finally, an accomplishment summary (6.6) wraps up the thesis in a form of summary of
the major findings realised during the research endeavour.

6.2 Contribution of the Research

This section reiterates and discusses the contributions made by the thesis to knowledge
and our understanding of dynamic decision-making and modelling of persistence in pref-
erences. Overall, this thesis makes a significant contribution to understanding the effects
and underlying elements of choice persistence effects, i.e. the effects of inertia, which
influence the probability of repeated choice, if the same choice was already made in the
past, and how they can be used for predicting the behaviour of a DM. In order to un-
derscore the extent of the contribution to knowledge, two aspects of the research are
discussed – the theoretical and methodological contributions to academic knowledge.

6.2.1 Theoretical Contributions

The foremost aspect of the theory of dynamic decision-making addressed in this thesis
was the identification of different effects and their modelling proxies, and how these may
be combined to explain and predict persistence in preferences. A detailed study of the
existing literature revealed that the incumbent models lack provisions for evolving choice
sets and irregular duration times between decision events. Furthermore, it was concluded
that including ranked data allows for the extraction of additional information that may
improve the efficiency of estimators of the probabilities bound to particular alternatives.

The first theoretical contribution involved the construction of a model that estimates
(non-linear) trends in the ‘attractiveness’ of the alternatives, to allow arbitrary combi-
nations of alternatives in every decision event and hence overcome the problem relating
to changing choice sets. A direct consequence of the new proposed structure is the
elimination of effect-confounding problems, inherent in incumbent models – the second
theoretical contribution. The thesis presents a convenient mathematical interpretation
of the prediction of the ‘attractiveness’ of alternatives as random variables conditional
on trend information, which constitute a part of the unobserved portion of the utility
in the RUM structure underlying the CL. The interpretation is closely coupled with
the postulated post-positivistic research paradigm, which supports the incremental re-
duction of elements of randomness in existing models – in this case founded on RUM.
This post-positivistic reflection on interpretation defines the third significant theoretical
contribution, which can readily be used in all dynamic decision-making problem settings
based on RUM, such as CL, probit or GEV models.



Chapter 6 Summary and Conclusions 127

Furthermore, the post-positivistic research paradigm dictates the prudent selection of an
empirical methodology that can mitigate biases and fallacies, both from the researcher’s
observations and the a-priori selection of the relevant underlying theories. Selecting
the RP research design in a naturalistic environment (UK horse-wagering markets), in
which participants have a vested interest in correct (optimal) decisions, allows for cap-
turing and analysing datasets related both to behavioural (decision-maker related) and
economic (betting market-related) information. It should be noted that this study is cer-
tainly not the first to utilise betting markets to illustrate discrete decision-making model
performance. However, it is the first one in which persistence in preferences and asso-
ciated biases, time duration bias, and the unreliability of lower ranked preferences have
been taken into account in combination – the fourth contribution. The results presented
in this thesis demonstrate that the biases affect modelling performance and that it is
possible to obtain above-average financial returns if controls for the mentioned biases are
implemented. These results demonstrate evidence of two economically relevant biases in
decision-making and that trends in horse performances contain residual information over
the market, thus marking the fifth significant contribution to the literature.

6.2.2 Methodological Contributions

The methodological contribution of the thesis effectively complements the theoretical
contributions outlined above. Including dynamic effects in discrete decision-making set-
tings in the traditional literature is typically achieved through the inclusion of lagged
(and dummy) outcome variables (Keane, 2015), continuous latent states that model
previous (unknown) utility functions (Lee, 2014) or autoregressive processes explaining
the autocorrelation of the unobserved parts of the utility, with each of the mechanisms
targeting one of the fundamental effects of decision-making – state dependence, habit
persistence, and spurious dependence (cf. Figure 1.1, Figure 1.2, and Figure 1.3). In
this thesis, a new modelling strategy was applied, which simultaneously includes several
methodological contributions.

The first major methodological contribution lies in the model structure, which introduces
the latent states that track revealed preferences for a certain alternative in the form
of (nonlinear) trends (evolution) of attractiveness (performance) proxies, and these are
combined in a CL structure during any decision event in which the alternative is available.
The modelling approach offers support for changing choice sets automatically. Moreover,
the estimation of the latent states is accomplished with the KF, which was used only
in very few DM studies (Edelman, 2007b; Guhl, 2014) in which the KF was used in a
different context of the adaptive estimation of (static) model parameters.

The second major methodological contribution is closely related to the two-step model
approach. As explained in the section on assumptions on KF, cascading KF and CL
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invalidates the fundamental assumption regarding the linearity of dynamic system be-
haviour. In other words, parameter estimation of the KF, based on MLE, cannot be
carried out, due to the inherent non-linearity of a CL alternative selection. Section 3.3.3
resolves the problem of parameter estimation and establishes how the model parame-
ters of both KF and CL can be obtained through the separate maximisation of the
conditional likelihood built around the CL whilst using KF predicted trends and the
maximisation of the product of marginal likelihoods.

The third major contribution is bound to the actual KF algorithm. Standard, linear KF

equations were originally developed under the assumption that the stochastic model of
underlying dynamics is fully known. This is, unfortunately, practically never the case,
and filters can exhibit unacceptable performance caused by filter divergence. In this
study, a novel error-correction filtering structure was derived, which outperforms both
standard linear and known error-correcting algorithms used in aerospace navigation and
robotics applications (Jazwinski, 1970; Skelton and Likins, 2012). In fact, it has been
shown that the new model yields by far the best out-of-sample predictions of winning
probabilities in spite of rather mediocre in-sample ranking, thus highlighting effective
mitigation against over-fitting.

The contributions of the study outline opportunities to expand the theoretical under-
pinnings and associated methodologies in other academic and industrial decision-making
applications. However, some limitations which might impede the generalisation of the
results have to be highlighted and explained. These are discussed in the next section.

6.3 Limitations of the Study

Every research is based on a set of explicit and implicit assumptions which reinforce
and delineate both the main strengths and the main limitations of a study. The new
modelling structure, whilst powerful and versatile, contains assumptions regarding the
random nature of unobserved utility functions, model uncertainty, and measurement
noise. Postulation of the Gumbel distribution for the CL model stage, and the normal
distribution for the KF stage, corresponds to the standard assumptions typically used
with these models because of their ‘convenient’ numerical or interpretational properties.
However, no proof is available that this is actually true for the given empirical application,
in spite of the good performance achieved.

The next limitation is bound to the selected empirical setup – horse-wagering markets
with an abstract decision-maker. The advantages of an RP empirical setup are obvious
(see 3.1), albeit the inherent narrowness of the research scope has to be pointed out.
Furthermore, the assumption of rationality of a DM in a decision-making context has
been increasingly scrutinised in the literature. Even though the approach presented in
this thesis is considered to be robust against (temporary) departures from rationality
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(see 5.2), transferability of the conclusions made on other empirical settings has to be
validated and checked for consistency in the new settings.

Finally, two methodological limitations bound to the KF can be identified: (1) the in-
ability to predict the performance of runners, with only one or two races in their career,
due to the initialisation of the filter and (2) the deterministic linear and exponential
growth of the state and measurement noise covariances in time to account for irregular
time durations between decision events. These methodological limitations are similar to
those related to the modelling structure, in that they are functionally effective but with-
out a formal proof of truth – exclusion of the runners with short careers slightly reduces
the available datasets for both model fitting and evaluation purposes and the covariance
time growth law, whilst a reasonable assumption remains only an approximation of an
unknown growth law.

6.4 Suggestion for Future Research

The models and the methodology put forward in this research could be easily adopted in
a variety of research studies in decision-making and operational research. The presented
approach should prove to have a particular appeal in marketing and political science set-
tings, where time between events, competition, i.e. relative attractiveness of choices, and
ranking information are of interest. In particular, all research positioned in a naturalistic
setting could assess the transferability and consistency of the methods used to predict
the choices made by different types of DM having potentially different rationality levels.
Furthermore, the inclusion of some other cognitive biases, such as anchoring (Furnham
and Boo, 2011) or preference reversal (Tversky et al., 1990), should offer interesting
results.

From the methodological point of view, further interesting research topics may be found
in researching hypotheses and investigating characteristics of the underlying stochastic
properties of the models, which could possibly improve forecasting performance, as a con-
tinuation of the model improvements inherent in the post-positivistic research paradigm.
Finally, the linear and exponential laws defining the covariances of the state and mea-
surement noise may be abandoned in favour of more sophisticated stochastic volatility
modelling, known from financial econometrics (Andersen and Benzoni, 2014).

6.5 Potential Impact of the Research

As expected, multidisciplinary research which embraces problem settings and methods
from different social sciences, statistics, econometrics, and control systems theory is likely
to create methodology that might benefit other domains. This section outlines how the
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results of this thesis may be used in other domains/applications and which potential
academic impact they may have. Obviously, the domains, facing either irregular sampling
times in the context of changing choice sets in a dynamic discrete decision model or
challenges, similar to ones explained in 1.3, may find opportunities to improve modelling
results.

The first domain that faces changing choice sets can be found in political sciences, in
particular, in modelling of electoral results. Classical forecasts of electoral results are
built around the expectation that the parties participating in elections should converge
to the electoral mean (Gallego et al., 2014). However, the recent research rarely confirms
such convergence, especially in geographically large countries with different regional,
transregional, and national parties competing in the elections, which may be irregular and
offset in time. As a result of such electoral setting, voters face different choices of parties
in different regions and the choice set may vary from one elections to another. Similarly,
multi-candidate and multi-party elections settings can be used to investigate regional
heterogeneity in voter behaviour (Glasgow, 2001). In terms of modelling, methodology
put forward in this thesis could be replicated to yield a logit relationship between party
position, i.e. the probability of win in the considered election event, and the KF trend
estimation of voter positions in the policy space. Obviously, additional idiosyncratic
variables, such as competence and socio-demographic valence, could be added to the CL

part for further model improvement. Due to the dynamic characteristics of the model it
is expected that the gain in modelling accuracy would be the greatest in countries with
unstable party systems, i.e. with regular appearing of new parties and loose coalitions,
that changes from election to election. Finally the results of electoral modelling could be
used either for calibration of probabilities in prediction market for election results (Berg
et al., 2008) or for electoral campaign planning.

The next domain that may profit from the methodology presented herein are behavioural
change management studies, particularly of adoption of new technologies or products.
As easily recognised, resistance to change is reflected in failure of a user to switch from an
incumbent technology or product to a newly introduced one. Psychologists relate the in-
ertia, or persistence in preferences, to behavioural, cognitive, and affective effects (Polites
and Karahanna, 2012). All these effects have different psychological explanations, for
example continuous repetition of old patterns of behaviour without much consideration
for new technology, product, or information (behavioural effects), deliberate ignorance
of new information that challenges ‘old’ beliefs (cognitive/mental inertia), and change
avoidance because of the expected stress bound to change or the emotional attachment to
the incumbent technology/product (affective-based inertia) (Barnes et al., 2004; Rumelt,
1995; Kim, 2009). Whilst the methodology presented in this thesis does not differentiate
amongst these effects but rather focuses on the statistical decomposition of the error
term, any methodology attempting to provide prediction of change behaviour may use
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the methodology proposed here as a application specific benchmark of the model quality
(c.f. general forecasting performance criteria).

Traditionally, exploration of travel habits has been one of the most widespread applica-
tion domains of decision making theories (Neoh et al., 2018). Numerous studies of travel
habits confirmed that rational static and quasi-static day-to-day models of route choices
have a very limited prediction power. Indeed, habit, the related reinforcement learning,
and risk attitude of the travellers are important components of their decision making
process. Moreover, travellers take readily available information regarding the en-route
traffic conditions (e.g. expected travel time, congestion, delay, etc.) into account (Bogers
et al., 2005). Similarly to the methodology presented in this thesis, ex-post information
on previous individual trips contains the information that allows adaptation of the per-
sistence of preferences, and its incorporation will likely improve the model performance.
In the same time, it should offer a way to define policies that may lead to more efficient
traffic planning and control. Finally, travellers differentiate themselves in their attitude
towards uncertainty, either in ex-ante or ex-post en-route traffic conditions and travel
durations. As presented in the methodology section, KF trend estimation can easily be
adapted to account for the variance of the available information and hence mitigate the
effects of uncertain (noisy) information on traffic conditions. Finally, eventual non-linear
risk averseness, e.g. strong dislike for being late, could be modelled through moderate
modifications of the KF which can incorporate non-linear functional forms in the trends
estimation – Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) (Si-
mon, 2006).

Another large application area, that may readily incorporate the methodology presented
in this thesis, are general speculation markets. Candelon et al. (2014) endorsed dynamics
considerations in predictions of currency crises in form of Early Warning System (EWS),
as opposed to more traditional static panel logit (Bussiere and Fratzscher, 2006) and pro-
bit (Berg and Pattillo, 1999) models based on the reference utility as linearly weighting of
concurrently implemented economic and monetary policies captured in form of macroe-
conomic variables, with moderate success. As an ex-post proxy of performance, either
the probability of crisis (for binary models) or ranking of probabilities can be effectively
constructed. The idea of the residual information decomposition, endorsed in this thesis,
shows a way to increase efficiency of estimation through importance weighting based,
for example, on the size of a country (e.g. USA has much higher monetary base than
Greece) and economic relationships between the countries. Furthermore, (Emekter et al.,
2012) studied the time duration bias in terms of persistence of the over-valuation periods
in which rational agents remain and fuel the growth of the speculative bubbles in 28
commodity markets. His model assesses the probability of bubble bursts in terms of the
hazard function representing the probability of hazard rate is defined as the probabil-
ity of obtaining a negative excess return after a streak of prior positive above average
returns captured as a logarithm of number of time periods with strictly above average
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returns. These probabilities can be enhanced with volumes of trading in order to assess
the public time duration bias and the estimated trends following the methodology pre-
sented here, which in turn, may propel commodity future market regulators to aim to
reduce informational asymmetries in order to inhibit speculative financial bubbles.

Further implications of the presented findings are that, in financial and other prediction
markets, trading rules may be imposed to minimise the impact of irregularly spaced or
event-driven information updates on transient pricing, in order to allow sufficient time
for the market to discount the updated information and reach desired efficiency levels
after a market disturbance (Berg et al., 2008)

6.6 Accomplishment Summary

This section summarises the major findings stemming from the results of this study.
Starting from two research objectives, cascaded down to four primary and four secondary
research questions, driving the generation of the conceptual research framework and the
empirical test setting and tied together by the postulated research paradigm, empirical
results were collected and analysed in order to answer the set research questions. Based
on the empirical findings, all research questions have been answered. The results of
the analysis – the empirical findings – together with the development of the modelling
framework and the detailed methodology, provide evidence that the research objectives
have been met and that the identified gaps in the literature have been closed in full.

Findings presented in this thesis contribute new knowledge on dynamic discrete choice
models designed to predict the effects of temporal persistence in preferences. The pro-
posed research setup, aiming to eliminate confounding effects bound to different dynamic
model components, allows for the proper separation of the possible causes of persistence
in preferences, through extended support for changing choice sets, irregular durations
between the recurring availability of alternatives in a choice set and feedback on the rel-
ative preferences for alternatives revealed in previous decision events. It has been found
that incorporation of the irregular durations between the availability of alternatives in
decision events, in the form of endogenous trends forecasts, adds statistically relevant
information to the market data information set, which may be used by informed bet-
tors to achieve above-average profits from betting. In addition, it has been shown that
the standard KF algorithm is dominated by the error-compensating implementation, in
which the covariance matrix was specially engineered for model stability (i.e. mitigation
of filter divergence). This indicates that the standard structural LLM model is not an
appropriate data-generating model underlying persistence state variables. This is not
surprising, since the decision behaviour of an abstract DM (‘nature’), whose absolute
rationality has been postulated, has been tested. Degrees of rationality of DM are not
known a-priori, since the agents do not have algorithmic (i.e. consistent or immutable)
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preferences. That is to say that even objectively irrelevant contextual factors, such as a
preference for a blue over a red public transportation vehicle (Train, 2009), can (and do)
affect individual decision-making behaviour in systematic ways (Cherchi, 2012). How-
ever, if the main goal of decision-making modelling efforts is forecasting, these factors
have to be taken into account, to avoid possible model bias. In other words, contex-
tual factors leading to persistence in preferences explain a portion of unobserved utility,
interpreted as an additive random variable (i.e. noise) to observed reference utilities. Dis-
covering systematic preference regularities in the form of endogenous trends can be used
to obtain better models for different applied problem settings, such as transportation
planning or marketing, etc. (Brailsford et al., 2014).

Based on the summary of research accomplishments given above, this thesis has made
significant contributions to the existing literature on biased decision-making in an natu-
ralistic empirical setting, and it has shown a number of ways for the interpretation and
expansion of models on other academic and industrial decision-making applications.





Appendix A

Conditional Logit variable filtering

In horse racing context, probabilities in CL models may be affected by numerical dif-
ficulties when some runners have variables and some do not. This is a standard case
for débutant races and for some lagged variables early in runner’s career. In such cases,
following filtering procedure is applied under the assumption that all runners in all races
have LOGPRICE .

1. Estimate a model containing only LOGPRICE as exogenous variable over all horses
and races in LDS - denominated as M1. As a guidance regarding the validation β

should be around 1.15.

2. Select all horses that have all relevant parameter available. Estimate a model
containing only selected runners over all races - denominated as M2. Parameter β
for LOGPRICE should be slightly lower than in Model 1.

3. For out-of-sample probability calculation, each race is considered separately. Some
horses will have variables (selected - s), some won’t (non-selected - ns).

4. Over every runner, probabilities according to M1 are calculated (pM1
i,j ). Probabil-

ities will sum to 1, i.e.
∑

pM1
i,j = 1.

5. Sum of the probabilities over non-selected runners will be less than one (x =∑
ns p

M1
i,j ≤ 1).

6. Over all selected runners Model 2 is applied resulting in sum of probabilities equal
1.

7. To merge the probabilities different weighting of the calculated probabilities is
applied

(a) if runner is non-selected, pi,j = pM1
i,j

(b) if runner is selected, pi,j = (1− x)pM2
i,j
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Final (weighted) probabilities will sum to 1 since∑
ns

pM1
i,j +

∑
s

(1− x)pM2
i,j = x+ (1− x) = 1. (A.1)
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