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ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Luis Jairo Montesdeoca Bermidez

Data from the financial markets are a source of challenging inference problems. Machine
learning tools are increasingly used for the analysis of financial data. They are observed
to provide more accurate models than classical analytical models that depend on specific
assumptions. In this work, we ask if the inclusion of external (exogenous) macro-economic
information into a model fitting procedure may be useful to improve the quality of
analysis and predictions of financial time series. This dissertation explores this case by
addressing several problems in empirical finance which are tackled by using a range of

machine learning methods with exogenous macro-economic data.

First, we study a non-parametric approach to mapping the price of traded option con-
tracts to the value of the underlying asset and the time to maturity. We explore if
additional information would be helpful in improving this mapping. We show that this
is the case, and further we show that there is a relationship between volume traded and
volatility of an asset that is not apparent in the raw data, but it is seen through their
influence on the prices of options. Then, we consider the non-negative matrix factoriza-
tion (NMF) method and extend it with eXogenous information to specify a new model
(XNMF). We present a learning algorithm for it and illustrate its better performance
than NMF using equity prices and underlying macroeconomic variables. We show how
residual signals arising in time series analysis can be explained by a sparse regression
taken over related macroeconomic variables (the Kalman LaglLasso model) to help in fi-
nancial analysis. A comparison between stock index values and Bitcoin using this model

illustrates clear underlying differences between them.

Finally, we study a powerful representation learning framework popular in machine
learning (VAE) and extend it with inductive exogenous variable. Thus, we created a
probabilistic XNMF (PAE-XNMF) that is able to generate financial data, with lower
reconstruction error than a probabilistic NMF; and Recurrent Neural Networks, specifi-
cally, the Long Short Term Memory model (LSTM). We show that LSTM captures time
series dynamics. Then we combined LSTM with attention mechanism to gain more in-

terpretability of the influence of macro-economic data on predicting financial time series.
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Chapter 1

Introduction

1.1 Finance and Financial Markets

Financial markets are places where assets are traded. Over the recent decades, they
have become highly complex systems with very complex products as instruments. From
a computational perspective, what is of interest are the prices at which assets are traded
and the underlying determinants of these prices. Complexity in financial markets arises
from a range of factors such as fundamental knowledge about an asset (e.g. the prof-
itability of a company), macroeconomic policy set by governments and how that may
affect a particular asset (e.g. central bank interest rates), past values of an asset and
trader sentiments and how different players in a market react to new information and

uncertainty.

Financial instruments come in three broad classes: Bonds, Stocks and Derivatives. Bonds
are issued by governments and large companies to raise capital from the markets, that
may be used for investment, such as constructing roads in the case of governments,
or purchase of new equipment, in the case of a manufacturing company. A bond is a
relatively safe asset in which the issuer guarantees a fixed rate of payment periodically
to the holder (purchaser). Stocks are shares issued by a company on its ownership. The
holder of a share in a company owns a fraction of that company and this ownership is a
tradable asset. Additionally, should the company periodically pay dividends or its profits
to shareholders, the holder of this class of assets benefits proportionally.

Derivatives are instruments designed as contracts on the predicted future performance
of an asset. For example, a futures contract is a legal agreement between two parties
that mandates the sale or purchase of a financial product at a predetermined value on
a future date. The other type, options, are contracts that will permit the holder to buy
or sell an asset at a particular price at, or during, a fixed time in the future. Over the
decades, very sophisticated instruments such as exotic options and interest rate swaps

have been created, driving up the complexity of markets.

1



2 Chapter 1 Introduction

Despite the bad publicity they attract, financial markets and the instruments and the
instruments traded in them have an important role in the capitalist system. Firms that
operate in such a system need the financial markets to raise capital against some promise
of future reward for the investor. Firms trading across different currencies, and whose
business is characterised by a time lag between delivery of goods or services and the
settlement of payments, may want to guard against adverse exchange rate movements
by securing forward contracts. Large pension funds and similar fund managers routinely
purchase options contracts to mitigate adverse price movements by hedging. Such pur-
suits of stability and raising capital is balanced by the profit making desire of those
investors, small and big, who wish to reap good rewards from the capital they hold by
taking a risk in the financial markets. From the perspective of these investors a high
return is expected, for example by a company in which they hold shares becoming highly
profitable and paying out large dividends, comes at a risk, for example that company
making a loss. But the holder of capital is willing to take that risk, hoping for a high
reward. Thus the financial markets may be seen as offering a field for these two types
of players, one driven by the need for capital and stability and the other driven by

profiteering and risk averseness.

1.2 Research Objective

Computational problems in the financial markets arise primarily from sources of uncer-
tainty in how prices are modelled. Our attention in this dissertation is in data-driven
models that largely fall under the topic of machine learning. Machine learning methods
are based on statistical approaches, using linear and non-linear functions approximations
as opposed to mechanistic models that start from assumptions about the underlying vari-
ables and relationships among them, leading to deterministic or stochastic differential

equations.

Machine learning tools are considered to be more accurate models than classical ana-
lytical models that are relying on assumptions and weak correlations. Many researchers
are finding ways for improving the accuracy of machine learning. One way for this aim
is getting more data. However, in many circumstances it is difficult to get more data
that is directly involved. For that reason, we bring the hypothesis that the inclusion
of exogenous financial data may help to improve the performance of machine learning

methods and to extract useful information on financial time series.

We explore this idea by addressing three types of problems that arise in financial data
analysis: (a) analysing time series; (b) pricing derivatives; and (c) extracting the influence
of exogenous information. Amongst other things, the research will seek to answer the

following questions:
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e Can external (exogenous) macro-economic information improve the quality of ma-

chine learning techniques in financial time series analysis and predictions?

e Can machine learning techniques gain more interpretability by the inclusion of

exogenous data?

1.3 Computational Problems in Finance

Time series analysis and forecasting is the most widely studied data analysis problem
in finance. The objective here is to forecast the future value of a time series based on
regularity that can be captured from its past behaviour. We will give a brief overview of
different linear and non-linear time series models later in the Section 2.1l We will also

specify models of Kalman filtering and Recurrent Neural Networks in this work (Section

and Section [2.3.2.2)).

A particular focus of attention in our work is about understanding the residual signal
arising from fitting a time series model. Starting from the work of Mahler| (2009), we ask if
exogenous macroeconomic variables may explain, or to what extent they might explain,
the residual signal. An example of this is in Section [5.3.2] a difference in behaviour
between the value of Bitcoin (cryptocurrencies) and stock index is observed when we

ask.

Recurrent neural networks, particularly a class of them known as Long Short Term
Memory (LSTM), are popular in the literature because they can potentially capture
information over long time windows. This is of particular interest for financial time
series modelling because markets are known to be non-stationary; i.e. the statistical
properties of the variables of interest changed over time. This in part follows from the
efficient market hypothesis that arbitrage opportunities arising from any regularity in
the market will be spotted by participants and will be cancelled out, and partly from
interventions and policy decision arising from the political environment in which markets
operate. We explore the LSTM, in which a balance between the effects of distance and
recent past can be automatically learnt via its hidden state as a method for capturing
such non-stationary behaviour. A review of LSTM is given in Section 2.3:2.3|and Section
presents empirical work on options and stock index prices.

Derivative pricing, arising as the price of contracts drawn for future execution, basically
depends on how one might model the uncertainty between the present and the time of
execution. There is literature on using stochastic differential equation-based approaches
to pricing derivatives. Under very restrictive assumptions, the celebrated Black-Scholes
model leads to a closed form solution. Where these assumptions are not applicable,
simulation-based models are used to arrive at a probability distribution over the payoff

of the contract at its execution. We review the approaches in Section [2.2.1
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A question for the data-driven researcher is what is the mapping between the traded price
of an option contracted and the underlying parameters that relate to it. Pioneering work
by Hutchinson et al.| (1994) showed that an efficient approximation between them can be
learned from data using a class of non-parametric models called radial basis functions.
We devote a chapter in this thesis to a follow-up work building on this approach and
ask if additional variables could be included to make this mapping more accurate. An
intriguing outcome of this study is the empirical relationship between volume traded of
an asset and its volatility. Are these correlated? Our empirical results show that even
when explicit correlation between these two is absent, their effect on pricing of derivatives

shows significant correlations.

Market prices of assets are determined by several factors. Past behaviour of a time series,
taken in isolation, is insufficient to predict its future value. A question for the data
analyst is what might be the influence of exogenous information such as macroeconomic
variables on our ability to predict time series, or explain the prediction residual when

fitting a time series model?

In this thesis, we work with frameworks to address this issue, devoting a substantial part
of the thesis to this aspect of modelling financial data. First, we develop a model of matrix
factorization that includes known exogenous variables. Sparsity constraints arising from
non-negativity automatically suppress irrelevant variables in this setting (Chapter [4).
We also include this use of exogenous variables into a more modern machine learning
method of learning subspace representation, the Variational Autoencoder (Chapter @
Thirdly, we use a sparse linear regression (Lasso) to approximate the residual signal of
an AR process. We compare the resulting variable selection for modelling on stock index

time series and a cryptocurrency time series.

1.4 Organization of the Dissertation and Contributions
We make the following contributions:

e We expand the feature set of Hutchinson et al. (1994) to improve the accuracy,
including additional variables relating to the underlying asset. We go beyond state-
of-the-art work on the subject and demonstrate how additional variables can be
used in more accurate estimations in the work on approximating option prices. A
surprising contribution from this work is a statement we are able to make about
the relationship between volume traded and volatility, a topic that has attracted
controversy in the literature; while the correlation between them is modest, in

terms of their contribution to pricing derivatives they are highly related.

e We propose a matrix factorization method that includes known exogenous variables

as additional components of subspace modelling. We expect such factorizations
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to potentially uncover sector-specific drivers from among a very wide range of
macroeconomic variables available. Specifically, our model represents the variation
in any asset as consisting of having contributions from sector-specific components

and selected macroeconomic variables.

e We construct a simple linear time series model that attempts to explain the varia-
tion in the residual signal by means of exogenous variables. We use Kalman filter
to estimate the autoregressive model and a sparsity inducing linear regression with
Laglasso to select relevant subsets of influencing variables to compare. We also il-
lustrate that the influencing variables are vastly different for cryptocurrencies from
stock indices (S&P 500).

e We extend the probabilistic NMF using a Variational Autoencoder (PAE-NMF)
model to include exogenous variables (PAE-XNMF), we illustrate its effect on fi-
nancial data of FTSE100 constituents and a set of relevant macroeconomic vari-
ables. Besides we attempted to relate the gating signals to regime switching in
time series. Some encouraging preliminary results have been obtained and current

work is ongoing through applying attention mechanism.

1.4.1 Publications

The work so far has resulted in publications in four peer-reviewed conference proceed-

ings:

[1] Luis Montesdeoca and Mahesan Niranjan. Extending the feature set of a data-driven
artificial neural network model of pricing financial options. In IEEE Symposium
Series on Computational Intelligence (SSCI), pages 1-6, Dec 2016

[2] Steven Squires, Luis Montesdeoca, Adam Priigel-Bennett, and Mahesan Niranjan.
Non-negative matrix factorization with exogenous inputs for modeling financial data.
In International Conference on Neural Information Processing, pages 873-881. Springer,
2017a

[3] Luis Montesdeoca and Mahesan Niranjan. On comparing the influences of exogenous
information on Bitcoin prices and stock index values. In st International Conference

on Mathematical Research for Blockchain Economy. Springer, 2019

[4] Luis Montesdeoca, Steven Squires, and Mahesan Niranjan. Variational autoencoder
for non-negative matrix factorization with exogenous inputs applied to financial data
modelling. In 11th International Symposium on Image and Signal Processing and
Analysis. IEEE, 2019

A journal manuscript building on [2] is under review, submitted to Journal of Expert
Systems with Applications. Also a NMF review paper is under review, submitted to

Journal of of IEEE Transactions on Neural Networks and Learning Systems.
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1.4.2 Report Organization

The structure of this report is:

[a]

[b]

[f]

In Chapter [2[ we review the key concepts from where our techniques were applied and

other related techniques.

In Chapter |3| we expand the model of Hutchinson et al.| (1994) and we explain the

correlations between features founded.

In Chapter 4 we introduce our matrix factorization method with exogenous informa-

tion as additional components for modelling financial data.

In Chapter [5| we compare two approaches to quantifying the role of exogenous vari-

ables.

In Chapter |§| we apply two deep learning models. First, we explain the method
that we introduce for performing a probabilistic NMF by Variational Autoencoders
with exogenous variables. And second, we analyse if the use of a Recurrent Neural
Network can respond to changes in regime, and also is performance by applying dual

attention mechanism.

In Chapter |7| we state conclusions and directions for future works.



Chapter 2
Review of Analytical Tools

This chapter is a review of financial concepts and various related work that use ma-
chine learning models for modelling financial data. It covers characterization of markets,

financial derivatives and time series. Dimensionality reduction is also reviewed

2.1 Time Series Analytical Tools

2.1.1 Time Series Models

A signal measured in regular time steps is a ‘time series’ which is a sequence of time-
ordered values in uniform intervals. It is useful to see changes over time on underlying
assets, security or economic variables, or for comparing how it changes with other vari-
ables over the same time interval. There are various linear models for fitting time series
with different stochastic processes. In the level of process, there are models that capture
the correlation structure, such as: the autoregressive models (AR), the moving average
models (MA), the integrated models (I), ARMA and ARIMA. They depend linearly on
past data points.

2.1.1.1 ARMA Models
Autoregressive moving Average (ARMA) model is applied for predictions of future move-
ments (Choi, 2012)). It gives a description of a stationary stochastic process. Its first

term is auto-regression (AR) and the second is moving average (MA). The AR(p) (au-
toregressive of order p) can be written as Equation

p
Bo=Y djtn;. (2.1)
=1

7



8 Chapter 2 Review of Analytical Tools

We can write it as vector notation: #; = ¢”1y;. Where the past values of the time series

are in y; and the regression coefficients in ¢.

The second part MA, in which observations of a random variable are modelled by the
shock at and also before time ¢. The MA(p) (moving average of order q) model can be
written as Equation

q
T =€+ Z Oi€r_;. (2.2)
=1

It means that if we observe a negative shock to the economy. It not only affects the time
that it happens, it may also affect the near future. With the combination of the two
models, we get the ARMA(p,q) model in Equation

p q
Ty =€ + Z Gir—i + Z Oier—; (2.3)
i=1 i=1

Therefore we can think that, ARMA tells how dependent a signal is on the previous
values and errors. This model is used for predictions of future movements and gives a
description of a stationary stochastic process. The ARMA models have some limitations
like they can be applied only for stationary time series data, and this makes it unusable
for financial data that has non-stationary behaviour. Also time series with trend and

seasonality are non-stationary (Faraway and Chatfield, 1998)).

2.1.1.2 Autoregressive Integrated Moving Average (ARIMA)

A solution for non-stationarity cases is the ARIMA model (Box et al.;|1970) which is a
generalization of an ARMA model to add non-stationarity. Likewise ARMA its parts
are the auto-regression (AR) and the moving average (MA), but it has included (I)
that refers to Integrated. In ARIMA a non-stationary time series is made stationary by
differencing of raw observations. The ARIMA(p,d,q) is defined as follows: (p), are the

number of lags, (d) is the degree of differencing, and (q) the size of moving average.

I—Zallf J(1-L ZQL e, (2.4)

where d is the differencing level in which most of the cases is equal to 1 and L is the lag
operator. When d is equal to 0, the ARIMA model is reduced to an ARMA (p,q) model.
Similarly with ARIMA(p,0,0) is just a (AR)model and ARIMA(0,0,q) is the MA model.
But when it is ARIMA(0,1,0), it becomes a Random Walk.
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2.1.2 Estimating AR - Least Squares, Kalman Filter
2.1.2.1 Least Squares Estimation

Least squares considers that the curve with minimal sum of deviations is the best fit
curve, e.g. least square error from a given set of data. A mathematical relationship
is found between the time factor and the data points, (z1,y1),...,(Zn,yn), Where z
as independent variable and y; the dependent variable, the expected values. The least
squares estimator has the form f(z,3) where the overall solution is held in the vector 3

that minimizes the fitting curve f(x) with deviation (error) r; = y; — f(zi, B):

n

D=2 i~ @)’ (2.5)

i=1

Least squares problems have two types: linear or ordinary least squares (OLS) (Equation
and non-linear least squares. It depends on the residuals if they are linear for each
unknown. The OLS occurs in regression analysis with a closed-form solution. The non-
linear type is by interaction, in which each iteration the system is approximated by a

linear one.

n
f(@,8) = Bicilw), (2:6)
i=1
where «; is a function of x allowing to X;; = c;(x;). The 3 is given by:

B=(XTX)"'xTy. (2.7)

2.1.2.2 The Simple Kalman Filter (KF)

Kalman Filter is used for filtering out noise from data and as predictors. They are
applied to noisy signals like in finance. The Kalman filter, introduced by Kalman| (1960),
is a variance minimizing algorithm which updates the state estimate when information
arrives, which enables processing in real-time. KF is widely applicable to applications

that make linearity assumptions.

Let Z; be the observations of the model at time ¢ and let 8 be a hidden random vector
(unobserved variables). Thus we can use the equation and

iy =yl 0 + vy, (2.8)

where vy, is known and vy is zero-mean Gaussian white noise with covariance R. 6, is

given by:
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015 = 0t—1 + Wi (29)

where wy is zero-mean Gaussian white noise with covariance Q, w; ~ N (0, Q).

The Kalman filter is a process that recursively estimates the coefficients of the model
represented by a vector € based on the values of the previous days coefficients, an un-
certainty matrix adjusted every time step, and some tuning parameters that model the

error.

The Kalman filter equations are given by:

Prediction step:

Oi—1 = 611111 (2.10)
Py 1=P_1;1+Q (2.11)
Correction step:
T =Tt — ytTet|t—1 (2.12)
ki = Pyyyi(y/ Py1y: + R); (2.13)
Ot = Opp—1 + Kyt (2.14)
Py = (I— k! )Pyiy (2.15)

where the signal modelled is 7¢, from the vector of past values y;. 6, and P;;_; are
predictions of the parameters and error covariances in them respectively. I is the identity

matrix. R and @ tune the entire Kalman filter.

The Kalman algorithm makes a prediction of the signal and calculates its residual error
¢ by predicting 0y;_; and Py;_y from 6;_1;_; and P;_;;_;. Then we use this residual
with the term Kalman gain (k;) in the posterior updates. We perform some empirical
studies, applying the Kalman filter in Section

2.1.3 Non-linear Models
2.1.3.1 Extended Kalman Filters (EKF)
The extended Kalman filter is a non-linear version of Kalman filter. The state transition

and observations models are not required to be linear functions of the state. However,

they need to be differentiable functions.

xr = f(T—1,us) + Wy, (2.16)
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Zt = h(mt) + vy, (217)

where u; is the control vector, w; and v; are zero-mean multivariate Gaussian noises
with covariance matrices Q; and R; respectively. The function f predicts the state from
the previous estimate and h predicts the measurement from the predicted state. The

functions f and h compute a matrix of partial derivatives.

EKF is a set of equations that takes the underlying process model for making the esti-
mation on the current state and after that corrects this estimation. It linearises a model
about a working point by a first-order Taylor Series. In other words, the EKF transforms
the non-linear models at each time step into linearized systems of equations. Then the
linearized equations apply the standard Kalman filter. Therefore the update equations
are the same but with the difference of Equation [2.18}

Correction step:

T = B — h(Oy—1) (2.18)

The performances of a modified KF depend on the considered system. Poor state esti-
mation is a result of high non-linearity. Particle filter (PF) is more suitable for non-linear
system or with non-Gaussian noise because PF neither requires the system to be linear

nor assumes that the noise is Gaussian (De Bernardis et al., 2016).

2.1.3.2 Particle Filters (PF)

Particle filters are a Monte Carlo technique for the solution of the state estimating
problem (Arulampalam et al., |2002)). PF is an useful tool for a variety of problems. Its
aim is to represent the required posterior density function by a set of random samples
(particles) and its associated weights. These samples and its weights are used to compute
the estimates of internal states in dynamical system. When the number of samples
increases, this Monte Carlo representation becomes an equivalent representation of the
posterior probability function, and the solution approaches the optimal Bayesian estimate
(De Bernardis et al., |2016).

2.2 Derivatives Pricing Methods

A derivative in finance is a contract or security between two parties, in which its price is
a result of the performance or fluctuations of the underlying assets. The most popular
financial derivative is an option, a contract between two parties to sell or buy a financial
instrument such as stock, index, futures or currency at an agreed price. The prices
accorded between the parties is called the strike price and it can be exercised at specified

time (time to maturity). There are two agreements in option contracts, one is Call and
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another Put. Those give the right but not an obligation of buy or sell stocks, during
the time in which their values increase or decrease. In the market, there are several
kind of options such as the American options, the European options and Exotic options.
European options are different from American options because they can be exercised at
their time of maturity (the time when they expire). These options tend to be sold for

less than their nominal or part value comparing with American options.

There several options pricing techniques but the world’s most well-know options pricing
model is the Black—Scholes.

2.2.1 Black—Scholes Model (BS)

Black and Scholes (1973) published a formula for calculating the theoretical price of
option contracts. Their conceptual idea focused on creating a portfolio without risk,

taking positions in bonds, underlying stock and options.

This model makes the following assumptions:

There are no transaction costs for purchasing or selling.

It can only be exercised at the time of maturity.

Effects of dividends are not considered when is paid out at the time of the life of

the option.

Volatility of the underlying assets and its risk-free rate are constant and known

No restriction on short selling and no taxes.

The option contract in this model depends on the following variables:

SV o1 4 562V %
S22 S — 2.1
&—1-205652—1—7“555 rV, (2.19)

where the asset price is S. The volatility of underlying asset is ¢ and the risk-free interest

rate is r.

This formula for pricing Call Cy and for Put options P; is (Hull, 2011):
Cy = SiN(d1) — N(dy)Ke " (2.20)

P, = —StN( — dl) — N(—dg)Ke_rtm, (221)

where the strike price desired is K and the cumulative normal distribution function is

N(). The time to maturity is ¢,,, when it expires it is expressed as percent of a year. C
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and P are the Call and Put price of the option respectively. The values of d; and dy are
given by Equation and respectively:

i — In(S;/X) : \Zj o2 /2)tm (2.22)

dy = ln(St/X):\Z——UQ/Q)tm (2.23)

where o is the volatility.

So far, we have seen the most basic type of options which are European Call and Put
options. They have simple features and payoffs. However, Korn et al. (2001) describe
that in the financial markets we can find more complicated payoff, such as: Barrier,
American and Asian options (know as exotic options). Thus for these cases, the only

way to price these options are by numerical methods.

2.2.2 Binomial Tree Method

This method introduced by |Cox et al.| (1979)) is widely used by market professionals as
an options valuation method. It assumes a high number of small binomial movements
in the stock price movements. This model separates the time of life of an option to
subintervals of time with a specified magnitude and stock price at the beginning. Then
this model will assume with a probability value that the movements of the price will go
up or it will decrease at the end of each period with a probability value. The value of
the risk-free interest rate will be the expected return for all traded options due to the
principle of risk-neutral validation. Thus discounting the expected values of interest rate

with risk-neutral, we can value future cash flows.

2.3 Machine Learning Models

Machine learning methods usually fall into two groups: supervised and unsupervised
learning. Most problems we consider in this work, fall under the category of supervised
learning, where a target signal is available (e.g. linear/non-linear regression). Hence
we review several supervised learning methods in this section and briefly mention the
unsupervised learning method of K-means clustering at the end. We also consider matrix
methods for dimensionality reduction which form the major part of this work. More
elaborate methods such as semi-supervised learning, where part of the data has targets

associated with it and parts do not, are not considered here.
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2.3.1 Basic Machine Learning Models

We first mention some of the basic machine learning model that are widely used from

the financial practitioners (SVR, Decision Trees and Random Forest).

2.3.1.1 Support Vector Machine for Regression (SVR)

Support Vector Machine is a powerful non-linear model that is known for its high perfor-
mance in several studies. Not only it can be used for classification, but also for regression.
It projects the data in higher dimension where data can be linearly separable. Some stud-
ies have applied SVR to financial data, such as |Cecchini et al.| (2010) who use SVRs to
detect corporate management fraud. Besides Société Générale, a French bank, indicate
that SVMs help to make better equity investment decisions in the long and short term.
Also, [Hardle et al.| (2007) employ SVR to get the default risk of some companies. A last
example is |Hardle et al| (2011) that use SVMs extract the necessary information from

financial balance sheets for predicting the company solvency.

2.3.1.2 Decision Trees and Random Forests

Decision Trees have a logic that is simpler to understand due to their binary tree struc-
ture. It divides the data into two nodes to ask a binary if/else question. It is used for
example to analyse how financially healthy is the company, in which after training, a
single node contains the healthy companies and the another the high risk ones. Thus it

helps to trace many question of the company features.

Breiman| (2001) introduced the Random Forest technique. It is composed of decision
trees. Random Forest has been applied for forecasting. It also helps in the importance
classification of a variable when a decision tree is been constructed. Some studies state
that Random forest is a robust method that permits noise and outliers in the training
set (Yeh et al.,2014). Several financial studies have used it such as (Medeiros et al., [2019)),
who established that Random Forest is better to indicate a degree of non-linearity in the
dynamic inflation. Another area that Random Forest has been applied is in banking, for

prediction of bankruptcy (Barboza et al.l 2017]).

2.3.1.3 K-Means Clustering

Clustering has been applied in finance, which helps to define which kind of returns and
trends are in a time series. K-means, an example that partitions a dataset into an user
specified number of clusters (Wu et al,2008). Given a set of data points and an integer k,

the k-means algorithm randomly selects k centroids and seeks to minimize an objective
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function between each data point and its nearest centroid producing k clusters. The
advantages of k-means include its simplicity, ease of implementation and applicability to a
wide range of problems (Xu and Wunsch), |2005)). The disadvantages include: its inability
to detect outliers or the appropriate number of clusters, and inefficiently selecting initial

centroids.

2.3.2 Neural Networks Models

Neural Networks are very useful tools to find the relationship between inputs and outputs.
Most of the Neural Networks are trained by Backpropagation which tunes the weights
for better prediction accuracy. It is a form of learning where you learn the correct answer
by getting feedback every time. In other words, a recursive method for calculating the
weights that trains the network until it is capable of performing the task with better

accuracy.

2.3.2.1 Radial Basis Function Networks

Radial basis function is a learning network which evaluates the length of the data with

their centers ¢ that are also called cluster.

The formulation for Radial Basis Functions is:

k
f@) =" ci x hi([|@ — z||) + p(a) (2.24)
=1
where:
e x is the vector with d inputs x1,x9,...,2q

z are the d-centers.

|- || is the vector norm

e p() is a polynomial function

¢; are the coefficients and

h; are weights to be determined

RBF Networks have a different approach from other neural networks like Multi-Layer

Perceptron, which learns to approximate functions with a hidden layer of sigmoid units.

The characteristics of the RBF networks are:
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They are feed-forward networks with two layers.

In the hidden nodes, the radial basis functions are implemented, such as Gaussian

functions

In the output, linear summation functions are implemented

The training is fast because it first determines the weights that connect input layer
to the hidden layer and after that determines the weights from hidden to output

layer.

2.3.2.2 Recurrent Neural Network (RNN)

A RNN is a normal neural network that includes a feedback again into the input (self-
connected hidden layer which spans time points). It is also considered as deep learning

where its depth on time steps.

RNN keeps the signals of the previous input and feeds it into the current calculations
unlike feedforward networks. They were introduced by Hopfield (1982) and has been
applied to financial data (e.g. (Hsieh et al) 2011 and (Giles et al., 1997)).

RNNs are trained by backpropagation through time (Werbos,|1990), with some limitations
for long time steps because the gradient tends to exploit or vanish (Bengio et al., [1994]).
Another popular type of RNN that was introduced to overcome that limitation is the
Long Short Term Memory (LSTM) network.

2.3.2.3 Long Short Term Memory (LSTM)

LSTM was introduced by Hochreiter and Schmidhuber| (1997). They can learn long-
term dependencies, overcoming the problem of vanishing or exploiting the gradient (Sak
et al., 2014)). LSTM networks are composed of a hidden layer called a memory cell. Each
memory cell has three gates which maintain and adjust its cell state Cy, and feeds into
itself across time steps. These gates are: a forget gate f, an input gate 4;, and an output

gate 0;. This structure is shown in Figure [2.1

The main part of the LSTM is the cell state ¢, which is the red line in Figure 2]
It passes information through all the chain with minor linear interactions and without
changes. The LSTM is formed by three gates that are composed out of a sigmoid neural

net layer.

The first gate in the LSTM is the forget gate which decides by a sigmoid layer what
information will not be taken account from the cell state. It receives y;_1 and x;, the

Equation [2.25] correspond to this gate.
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et —1) { } e(t)

tanh

®

LSTM
—— —
x(t) y (1)

FIGURE 2.1: The LSTM structure. Here is illustrated the gating mechanism that

LSTM has to get longer memory. The vector ¢ represents the memory cell that is fed

into itself across time steps t. The vector x is the input and y the output of the unit.

This graph was made by Prof. Adam Prugel-Bennett from our machine learning journal
club at University of Southampton

.ft = O'(Wf . [ht_l,a:t] =+ bf) (225)
The next part is the input gate, which is composed of two parts. First, it determines

what information will be updated. The next part is a hyperbolic tangent layer that
creates a vector that has the new candidate values (Equation [2.27)).

1 = U(WZ' . [ht—h :Bt] + bz) (2.26)
¢ = tanh (W - [hy—1, @] + be) (2.27)

The new memory cell state ¢; is calculated by multiplying ¢;_1 with the value from the

forget gate, f:, and it creates the new candidate values.

Cc = .ft ¥ Ci_1 + 1 % ¢ (228)

In the last part indicates which part of the cell state will be shared and multiplied with

the values from the sigmoid layer to create the hidden state values.

or =0 (Wo - [hi—1, 2] + bo) (2.29)
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h; = o; x tanh (ct) (2.30)

LSTM has various successful applications such as: handwriting recognition, in which it
generates sequences with long-range structure by predicting one data point at a time
(Graves et all |2013)). A further example is in translation, in which LSTM achieves a
high Bilingual Evaluation Understudy (BLEU) score task translating from English to
French (Sutskever et al.| [2014]).

2.3.2.4 Gated Recurrent Unit (GRU)

The idea of gated recurrent unit (GRU) layer was proposed by (Cho et al.| (2014), and
it is quite similar to the long short term memory (LSTM) layer which also has gating
units but without including a separate memory cell. GRU is composed by two gates,
one called "reset gate r" which determines the combination between the new input and
the previous memory. And the "update gate z" which defines the quantity of previous
memory to be shared. As previously mentioned, it does not include an internal memory
¢; that LSTM has in its structure.

The update gate is:

z=o0(xU+ 811X) (2.31)
=o(xU" + 51 X") (2.32)

= tanh (x;U + (841 x )W) (2.33)
st=(1—2)xh+zxs_1 (2.34)

Unlike LSTM, the GRU unit does not control the flow of information by using a memory
unit. It uses all hidden states directly without any control. GRUs are slightly faster to
train for having fewer parameters than LSTM. But, with large data, the LSTMs with
more expressiveness may get better performance. Regularization technique penalize the

loss function of the weights vector w by adding a L or a Lo norm.

A common problem for machine learning models is overfitting, which means that the
model performs well in training data but not in test data. Hence regularization is a
strategy useful for reducing the test error in which many studies have been working on,
see e.g. (Goodfellow et al.| (2016).

2.4 Dimensionality Reduction

Dimension reduction helps to project the whole data into a lower dimensional space,

however it gets more difficult when there are more features.
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2.4.1 Principal Component Analysis (PCA) and Independent Compo-
nent Analysis (ICA)

A popular method for dimensionality reduction is Principal Component Analysis. PCA
is sensitive to the scaling of each variable. Initially, PCA was introduced as an ana-
logue of the principal axis theorem in mechanics by [Pearson| (1901) and then know as
PCA by |Hotelling (1933)). PCA uses an orthogonal transformation in which a set of
observations of possibly correlated variables are converted into a set that is not linearly
correlated. The new features obtained by PCA are linear combinations of the original
features, through the projection of the data to the first few principal directions. The
first principal component gives the direction in which the variability is the highest in
the observations. Then the second components are found by the linear combination of
predictors uncorrelated with the first principal component. One noticeable drawback of
PCA is that a clear financial interpretation of the feature space might be lost; each new
feature after PCA is a linear projection of many features (e.g. financial ratios). Despite
of this disadvantage, PCA has been applied in many studies using financial data. For
example, [Yu et al.|(2014) introduced a method that brings PCA into the support vector
machine (SVM), which improves the training accuracy for construction of a stock selec-
tion model, by extracting the low-dimensional and efficient feature information. |Li and
Khashanah (2015) used PCA to confirm the volatility day pattern, and to use eigenvec-
tors as weight in distance metric in the clustering step, for generating and forecasting

volatility.

Another method that has been used is Independent Component Analysis (ICA), in which
a multivariate signal is separated into independent components under the assumption
that the components are statistically independent in non-Gaussian distribution. Initially,
with financial data, ICA was applied in tick-by-tick foreign exchange (FX) price series
to get the true price by separating the observational noise (Moody and Wu, (1997)).
Also it has been applied for bankruptcy prediction (Chen and Vieira, [2009), time series
analysis (Coli et al., 2005)) and clustering (Guo et al., [2008)).

2.4.2 Non-Negative Matrix Factorization (NMF)

NMF was invented by Paatero and Tapper| (1994) under the name positive matrix factor-
ization (PMF), who states that PMF produces better fit to the data than the customary
factor analysis (principal component analysis (PCA)). However it started to be popular
and called Non-negative matrix factorization (NMF) when Lee and Seung (1999) pub-
lished useful algorithms and demonstrated that NMF is able to learn parts of faces from
an image and semantic features of text. NMF is a model able to learn a parts-based
representation by imposing non-negativity constraints that allow only non-subtractive

combinations.
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A range of areas have applied NMF, for example, bioinformatics (Tjioe et al. 2008)),
pattern discovery (Brunet et al.l [2004)), chemometrics (Gao et all |2005), computer vi-
sion (Shashua and Hazan, [2005), music (Smaragdis and Brown, [2003), text mining (Pauca
et al., 2004), pattern recognition (Liu et al., 2006)), document clustering (Xu et al., 2003]),
etc. An important area that NMF has been applied is financial market where it is used
for understanding the hidden components which drive the system. Stock market and
individual stock prices are determined by fluctuations in underlying factors (signals),
which are unknowns. Academics and practitioners of assets management have studied
NMF in financial data to learn the components which drive the stock market. The aim
is to avoid huge investment losses, due to the obstacle in stock modelling and forecasting
lies in our inability to discover the true data generating process (Allen and Morzuch,
2006)).

In standard NMF the aim is to find a lower-dimensional representation of the data.

Given V with non-negative elements, with m observations and dimension n, let data

be V = [vi,va,...,vy] € RIF™, NMF seeks decompose V into a non-negative m x r
basis matrix W = [wy, wa,...,w;] € RZ" and non-negative r x n coefficient matrix

H = [hy, hy, ..., h,] € R, such that
V ~ WH (2.35)

Where RZ;" stands for the set of m x n element-wise non-negative matrices. Thus NMF

creates a new representation of the data in a significantly reduced subspace (r).

The classic and more practical approach for finding efficient and effective solutions to
NMF for non-negativity constraint is to perform alternating minimization of a suitable
cost function as the similarity measures between V and the product WH. Where a
similarity measure of D(V||WH) can be defined. We can use distances or divergences

to quantify the difference between the original data V and the approximation WH.

NMEF is not convex, and its objective function can be a sole cost function or a set of cost
functions with same global minima to be minimized sequentially or simultaneously. The
most used objective functions are Square of Euclidean Distance (SED) and Generalized
Kullback-Leibler Divergence (GKLD). Most of the NMF algorithms use a two-block
coordinate descent scheme with different block sizes and various optimization approaches
for each block. They optimize W or H, while keeping the other fixed. This is mainly
because the subproblem in one factor is convex. In other words it is a non-negative
least squares problem (NNLS). Given the Square Euclidean Distance function of two
factor matrices, these procedures perform a constrained minimization with respect to
one matrix while holding the other matrix fixed; and then the minimization is performed

again with the roles of the matrices reversed as follows:
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1
in D H)=min =||V-WH]|? 2.
Ioin (VIWH) Toin 5[V = WH[E,, (2.36)

. . 1 9
ng%D(VHWH)_%lz% S|V - WHI[L,,, (2.37)

The Frobenius norm where ||V — WH]|2 _ is minimised. There are many of algorithms
for finding the matrices W and H. An early version called multiplicative updates was
introduced by Lee and Seung| (1999)), which effectively minimises an objective function.
It is described in Equation [2.38}

[HV']

WeWo -
© ®[WHHT]’

(2.38)

where ® and % are the element-wise multiplication and element-wise division respectively.

Lee and Seung| (2001) claimed that the multiplicative update rules converge to a local
minimum and to accelerate the convergence rate, one popular method is to apply gradient

descent algorithms with additive update rules.

In NMF the selection of rank r is tricky. Many approaches try different values of r and
pick the one performing best for the application at hand; more can be found in |[Kanagal
and Sindhwani| (2010). This 7 is the size of the new subspace, which selects how many
features will be extracted from the data. A mechanism for selecting the subspace size
by using a minimum description length technique is proposed by Squires et al.| (2017b]).
They also demonstrate that this technique provides plausible estimates of the FTSE 100
dataset r-value, which gives a value of 8, which can be consider the underlying trends,
and this value is close to the 10 sectors of which the FTSE 100 is composed.

2.4.3 Variational Autoencoder (VAE)

The Variational Autoencoder (VAE) (Kingma and Welling, 2013; Reed et al.,[2014) learns
the marginal likelihood of the data in a generative process, for a dataset x of samples
from a distribution. This can be compressed as Equation in order to understand

the underlying causal relations.

H;)%XE%(Z|X) [log pp(x|z)] (2.39)
where z are the ground truth generative factors, ¢ and 6 parametrise the distributions
of the VAE encoder and the decoder respectively. VAE models the conditional pg(x|z)

as a function approximator and uses a variational approximation ¢(z|x) of the posterior.
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log pg(x|2z) = Dk (q(z\x)Hp(z)) + L(0, p;%x,2) (2.40)

where D r.(]|) stands for the non-negative Kullback—Leibler divergence between the true
and the approximate posterior. Hence, maximising £(0, ¢; X, z) is equivalent to maximis-
ing the lower bound to the true objective in Equation [2.41]

10gpg(X|Z) > E(ea QS; X, Z) = qub(z\x) [10gpg(X|Z)] — Dkr (QQﬁ(Z’X)Hp(Z)) (241)

The prior p(z) and posterior gy(z|x) distributions are parametrised as Gaussians with
diagonal covariance matrices. And the prior is set to the isotropic unit Gaussian N(0, 1).
This way of parametrising the distributions allows to use the reparametrisation trick to
estimate gradients of the lower bound with respect to the parameters ¢, where each ran-
dom variable z; ~ gg(zi|x) = N (i, 0;) is parametrised as a differentiable transformation

of a noise variable € ~ N(0,1).

2.5 Review of NMF Applied to Financial Data Problems

2.5.1 Banking

Currently, in the banking industry loans have a fundamental role, where the financial
institutions need to validate the credit rate before granting loans. If customer validation
is not properly monitored and controlled, resources will be wasted (loans will not be
paid). Thus, with better validation, the number of bad loans will drop, granting loans
will be faster and bank costs will be significantly reduced. There are many data mining

techniques to predict and validate bank customers.

2.5.1.1 Credit Scoring

Credit Risk Analysis aims to identify the risk level when a customer is granted a loan (Wah
and Ibrahim, [2010). Currently, practitioners are applying models based on statistical or
operation research methods. These models are built with historical payments informa-
tion from thousands of current clients. These models have the objective to assign to
applicants either good credit class or bad credit class. The first class (good credit) cor-
responds to those that are likely to pay back their financial obligations and the second
class are those that have high probability of defaulting, hence their credits should be

denied.

Nevertheless, credit assessments have high dimensional data, which brings a problem for

classification training. The models for credit scoring take the relationship between the
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historical information and future credit performance. Hence it brings the need of using a
dimensionality reduction model to solve this problem. For example, NMF was used via a
projected gradient method for credit risk assessment of financial intermediaries before a
Support Vector Machine (SVM) classifier is trained (Chen et al., [2013)). Thus the SVM
classifier then predicts on the new data. The output is the decision value of each instance.
They used a dataset of private credit card operation from Brazilian retail chain with
50000 instances. Each credit card is labelled as good and bad, and contains 132 features.
They showed that this method, successfully transformed the data and it improved the
SVM classification accuracy (85.27%). It was compared to several benchmark model on
dimensionality reduction, such as PCA (74.440%), ICA (77.44%) and LDA (81.44%). It
also found direction where the classes are better separated. However, they did not give
details of the NMF structure to identify the most relevant features, neither how many of

them were.

Two years after, [Sun et al.|(2015) found similar results by adding sparsity. Their aim is
to increase the selection of relevant features that contribute to the performance of credit
risk classification. They labelled the data in positive and negative, which consist of
private label credit card from the American retail chain with 560 000 instances that have
300 features each one. They used accuracy, precision, and Type I error rate as measures.
This method successfully transformed this data and improved the SVM classification
accuracy (88.789%), compared with some benchmark methods, such as PCA (74.240%),
ICA (77.430%), LDA (82.44%). However, they did not explain if the applied sparsity in

both matrices or only in H, neither the amount of sparseness applied.

2.5.1.2 Financial Distress Data

Corporate bankruptcy prediction models have been growing on interest due to important
cases of banks defaulting from the last financial crisis. Ribeiro et al. (2009)) showed that
NMF learnt local features from firms that were label in distress and was able to encode
factors that can be used for bankruptcy prediction. It extracted discriminative features
and then combined them with learning classifiers for distress or bankruptcy detection,
to encode the most useful factors. They highlighted the fact that NMF as feature ex-
traction includes interactions and correlations between features which are omitted in
others selection methods. Their data contains financial statements of 60000 industrial
French companies and financial ratios spanning from 2002 to 2006. In this database,
around 3000 were distressed companies (declared bankrupted), and it included infor-
mation about 30 financial ratios, with 90 features. They made the initialization by
K-means because it gives slightly better results compared to random, with an optimal
rank of 25. They used a KNN classifier in which the performance improves by around
5% with K-Means initialization of W and with SVM with slightly better by around 1%.
Furthermore, Ribeiro and Chen! (2011)) extended this work by introducing a weighted
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graph subspace learning method. They aimed to get compact representation of data and
to make subsequent processing. The Graph regularized Non-Negative Matrix Factoriza-
tion (GNMF') model (Cai et al., 2011) was used to create a weight graph matrix and for
learning the subspace models that ease bankruptcy prediction. Their dataset consists
of financial statements of 12000 French companies, in which 600 declared bankruptcy
and the remainder are healthy. Thus, this model predicts if the company is healthy or
bankrupt with higher accuracy.

2.5.2 Stock Market

In the stock market, underlying forces determine stock prices, but they are unknown
factors. NMF has been used to help to find those underlying factors, such as|Liu, Tang
(2009). They decomposed a matrix formed of 40 daily closing prices of stocks from
Shenzhen component index with a length of 19 years. They applied the multiplicative
update (MU) rules algorithm and created clusters with the center of the underlying
forces by Kmeans. Those values considered the trends of the stock market and drove
the classification of all the stocks in different clusters. Additionally, they analysed how
k (dimensions) affects the classification and found that in every k, there is a number
of stocks that are allocated in the same cluster which have similar performance. These

findings are similar to an early work in|de Fréin et al.| (2008b) that will be explained in

Section 2.5.2.11

Finding correlations between the stock market and news is another interest. Some studies
consider that returns have correlation with newspaper content (Campbell and Hentschel,
1992; [Yermack, [1997; |Atkins et al.| 2018 |Gidofalvi and Elkan| 2001} |Chanl 2003} [Tetlockl,
2007). Matrix factorization methods have been applied to help to find this correlation.
For instance, Ming et al.| (2014)) states that an unified latent factor model can characterize
a joint correlation between stock prices and newspaper content. This model uses a
sparse matrix factorization (SMF) based on news stories from the Wall Street Journal
(WSJ) for making predictions on the direction of individual stock price movements. To
solve the model learning that was formulated as a SMF problem, Alternating Direction
Method of Multipliers (ADMM) was applied. ADMM is an algorithm that breaks convex
optimization problems into smaller pieces which are then easier to handle for solving
them (Boyd et al., |2011)). Their technique is defined by a non-negative feature vector,
which is a latent factor model that describes a stock (for example, it belongs to energy
sector), with the daily average investor mood and the stock price. They used daily
trading data from 1/1/2008 to 9/30,/2013 that is fixed to 10 latent factors for predicting
about 553 stocks from the S&P 500, DJIA and Nasdaq indexes. They quantify the stock
news from a document by counting daily mentions of the top 1000 words with highest
frequency and the name of the companies from the all 553 stock. They worked with 1354
words. Their method is R = UWY, where R is the return, U are the latent variables
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and WY are the latent variables for the daily news. They got an accuracy of 55.7%,
which performs better than all baselines (Previous price 46.9%, previous return 49.1%,
Autoregressive (AR) models with 10 lags of previous price 49.5%, AR with lags 10 of
returns 50.9% and regression on the previous day’s price 51.4 and regression on return

50.8%) in terms of directional accuracy.

Furthermore, Sun et al. (2016]) extended Ming et al.| (2014) work to use with textual
information from user-generated microblogs, with the aim of finding correlations of the
stock price direction and social media content. They did not consider news articles,
instead they adopted the market information that is contained in high volume social
media from Stock-Twits streams, which are high quantity but low quality sources of
text information. This model was tested on 4 years of information with 40 features
content of 420 stocks from S&P 500. As a result, it outperforms by a percentage point in
all years a baseline regression (Previous return/price, Autoregressive (AR) models and
Random). It supports the idea of [Ming et al. (2014), that SMF methods can be used for
predicting the stock market using text mining. They were able to get market indicators
from StockTwits streams to predict the stock price movements and showed a negative

correlation between the word count and price.

2.5.2.1 Underlying trends and Clustering

Researchers working with financial data are trying to identify the underlying trends from
the stock market. The stock prices have fluctuations that no behave independently of
each other, they are driven by latent factors. For instance, de Fréin et al.| (2008b) applied
NMF to identify underlying trends in the stock market data. By their equation y =
AX+V, They determined the clustering by examining the rows of A and deciding which
rows have the dominant coefficients at the same positions in the columns, and then group
them by K-means. However, the clusters did not depend on the NMF parameters and
they have not compared the effect of clustering with other models. The main statement in
their work is that diversified portfolios are recommended to not be based on the sectors
where the stocks belongs, instead it should be considered by their underlying trends.
Their experiments were on 30 stocks of the Dow Jones Industrial Index from the past
20 years. As a result, the clusters created with the NMF did not consist of stocks that

belong to the same sector. It can be potentially used to guide on portfolio diversification.

Creating and managing portfolios of financial assets that can match investments to ob-
jectives is a complicated work. A suggested solution for this is by the development of
low risk portfolios, which can be led by diversification theory. Markowitz introduced
the principle of attempting to maximize expected return, subject to a risk value or for
minimizing the risk depending on the return value given (Markowitz, [1952). The objec-
tive is to group data into subgroups with similar behaviour. It could be considered as

a clustering problem, and it obtains ratios of low risk-reward. NMF has been analysed
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on how it may help for better diversification. For instance, Wang in 2012 organised the
stocks in groups which were based on their association with the underlying trends that
were extracted by applying NMF (Wang, [2012). They added two properties to derive a
variant of NMF, which are: the smoothness of trend matrix W and the rowwise sum-
to-one of weight matrix H. With the aim of finding patterns between parameters and
trends. This work was run on US blue chip historical stocks prices. Furthermore, they
extracted two trends which displayed opposite oscillations. Thus, it may be possible to
create portfolios of stocks that behave differently to market changes. Another observa-
tion is that the smoothness of the trend matrix had weaker influence than the sum-to-one
constrain enforcer on the weight matrix. From the factorization was gotten a clustering
in which can be allocated assets to create a diversified portfolio with a well balanced

risk.

K-means can not establish the effectiveness and coherence of cluster when is applied
with stock data (Cai et al., 2016|). It does not handle the noise because tends to find
spherical clusters. A way to overcome this issue is matrix decomposition strategies, that
produces more clean data to get better interpretation of the results. In 2016, Pazienza
et al. studied how clustering approaches are applied for finding a trend-based portfolio
diversification which is more consistent than sector-based portfolio (Pazienza et al.,[2016)).
Their model was applied on the past 10 years closing prices of 28 stocks from NASDAQ
Stock index and it considered only 8 market sectors overall, even thought they worked
with rank values of 3 to 8. NMF was applied to find the clusters of stocks (subgroups)
that have similar trends. Here the W represents clusters centroids, and H represent
clusters membership (the largest values in the row). They compared NMF with Convex
NMR (C-NMF) and Convex-Hull NMF (CH-HNM) which are two of its variants, which
had convexity constraints for getting a better identification of similar stock trends. As
a result, CH-NMF improved the interpretation of cluster properties, it converged in
only one iteration, and it was fast and scalable for reconstruction quality. Additionally,
they showed that NMF was better at identifying clustering properties, with yield low
frobenius norm error (13.54) and more efficient in time of convergence, comparing to
C-NMF (32.17) and CH-NMF (46.25). However, this work had a lack of clarity on how

the trends were conformed.

2.5.2.2 Anomalies detection

Finding potential risk in the stock market is another important area for financial practi-
tioners, because the fluctuations of the stock market affect the operations of the financial
market. Some works have tried to detect anomaly fluctuations by analysing the data of
the stock market. In 2016, Chen et al. proposed a method by using NMF to acquire
the weight coefficient set that denotes the characteristics of date perfectly, to then de-

compose them by wavelet transform, to obtain the abnormal fluctuations from all of
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decomposition hierarchy - where the anomaly fluctuations are positioned out by means
of weighted fusion (Chen et al., 2016|). They used the weighted approach to judge the
abnormal waveforms which are identified as those that are beyond the interval range,
and are considered as normal fluctuations. Their data set consists of 3851 daily values of
42 stocks from the Shanghai stock market, between January 2000 to December 2015. As
a result, NMF was effective for extracting a weight coefficient matrix, which contains the
most characteristic expression from a range of stock index data. They found 107 abnor-
mal fluctuations but there are not further details and comparisons about this approach

which can be applicable for fraud detection.

2.5.2.3 Portfolio Optimization

Investing in a variety of assets to create a diversified portfolio for reducing the exposure to
risk is a complicated practice. Dimensionality reduction methods are useful for enabling
the implementation of more robust models on smaller datasets. These methods achieve
an interpretable description of complex data, and help to tackle the complexity on con-
struction of large-scale portfolios. The optimal allocation rate of a weighted combination
of assets in a portfolio is enabled by the mean-variance (MV) model. This optimization
process minimizes the portfolio variance given an expected rate of return (Markowitz,
1952). It uses standard deviation of asset returns to quantify uncertainty. Thus a port-

folio is considered optimal when its yield led to minimum risk at an expected return.

The set where each optimal portfolio lies at a defined risk and expected return is the
efficient portfolio frontier. Some works have analysed the use of positive dimensionality
reduction on portfolio optimization. For example, [Tayali and Tolun| (2018)) examined
mean-variance (MV) portfolio optimization model. Their dataset consists of daily ob-
servations on closing prices of the three major Istanbul Stock market indices (XU030,
XU050, and XU100). It captures the long-term market pattern by reducing on a lower
time dimension their dataset. They computed 20 optimal portfolios for each dataset.
Their results show that it improved the efficiency with a higher performance (0.48%)
more than benchmark back-testing results (0.28%) which were constructed from unre-
duced data.

In addition, the Sparse-semi-NMF technique was introduced by de Fréin et al. (2008a)),
to cluster stocks based on latent trends. Their dataset consists of 353 synthetic de-
trended stock market returns. Their aim was to cluster the stocks by the underlying
trends. They compared with the benchmark model, which is the de-trended diffusion
model that was derived from the Black-Scholes model. They found that Sparse-semi-
NMF outperforms with 25% the benchmark, and it was able to identify clusters in the
diversification of a portfolio. Also, they show that sparse-semi-NMF can decompose
stock data into a meaningful assignment matrix and latent trends matrix by combining

intuitive factorization advantages with sparse assignments.
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2.5.3 Term Structure of Interest Rates

The term structure of Interest rates or yield curve is the relationship between interest
rates and different maturities. It is very important in economics and finances for pointing
out what the market participants are expecting about coming changes in the interest
rates. Level, steepness and curvature are the three factors for the structure of interest
rates that were defined by Litterman and Scheinkman| (1991). The yield curve data
is non-negative by nature; for that reason NMF was applied. Models for yield curve
alm to obtain insights of the current expectation of the future analysis on economy
and finance, hence it is desired to ease the interpretation. Some studies have been
working on it such as Takada and Stern| (2015]), that considered three factors for the
models under comparison with PCA which does not minimize the approximation error.
Their dataset consists of the Brazilian term structure of interest rates obtained from
future contracts traded at BM&F Bovespa (stock exchange located in Sao Paulo), from
05/13/2003 to 10/09/2013, and with 3, 6, 12, 24 and 60 months vertices time spans. They
also compared with the Nelson-Siegel (NS) model which presents some fitting problems.
NMF was applied to find factors for yield curves. As a result, the data adjustment
with NMF (0.018% error) is far better than that obtained from usual techniques such
as PCA (5.973% error) or NS (16.46% error). Hence, NMF was found to be a suitable
factorization model for yield curves and useful for investment strategies to analyse future

behaviours of yield curves.

2.5.4 Intraday Trading Volume of a Security

The total amount of traded contracts of a security over the trading period of a day
is called intraday trading volume. The intraday trading volume captures part of the
intraday trading activity and represents a proxy for the intraday liquidity of a security.
This has been reported to possess an intraday U-shaped pattern, e.g. heavy trading
volume when the trading day begins and at the end; light volume traded in the middle
of the trading day (Jain and Joh, [1988)). In Takada and Stern| (2016, NMF was for the
first time applied to capture the intraday trading volume patterns. They investigated the
statistical factors behind the intraday trading volume. Their dataset contains securities
selected from the Brazilian stock exchange (BM&F Bovespa) for the period from April
2013 until September 2013. Statistical factors are unobserved variables used to describe
observed data. NMF was applied with only one factor to identify the well-known U-
shaped intraday trading volume pattern. The U-shaped pattern is very important for
execution strategies, it is based on an important benchmark for execution strategies.
Additionally, they also identified interpretable factors when considering NMF with two
factors. One factor represents the level of volume for the beginning of a trading day and
another factor when the trading day finishes. They also compared that NMF has a higher
percentage of explained variance (72.35%) than 34.09% of PCA and lower residual sum
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of squares (RSS) 3.15¢!® than PCA that has 2.04¢'6 for the joint estimation of selected

equities.

2.6 Research Design

We aim to quantify the role of exogenous macro-economic information in machine learn-
ing for modelling financial data. We use quantitative approach on historical financial
data.

2.6.1 Data Collection

To start, we searched for financial data providers that we have available. One is DataS-
tream Thomson Reuters that provides historical data with a minimum of daily frequency
values. DataStream contains a range of financial instruments worldwide. The second in-
formation supplier is the Bloomberg terminal. It allows to get financial data at real-time.
The advantage of Bloomberg terminal compared with DataStream is the time frequency.
In Bloomberg you can get hourly, minutely and tick data. Both financial information

suppliers were located at University of Southampton.

From DataStream, we collected hundreds of historical call and put options that already
expired with same time-scale (daily values). To explore the mapping of the price of
traded option contracts and the underlying asset. We also collected the FTSE100 con-
stituents and several macroeconomic variables with different time-scale. And finally, from
DataStream, we collected the more macro-economic variables from Japan, UK and USA
for comparison of models; and from Bloomberg terminal we collected several derivative

options with higher time frequency (every minute).

2.6.2 Research Tools

We run several of our experiments in Iridis, the University’s High Performance Comput-
ing Facility, and associated support services at the University of Southampton. Iridis
has 464 compute nodes with dual 2.0 GHz Intel Skylake processors. Each compute node
has 40 CPUs per node with 192 GB of DDR4 memory. A drawback of those finan-
cial sources when you want to compare global information is the low number of shared

variables between countries.

Our code was compiled and run using Matlab and Python. Matlab is a proprietary
programming language with multi-paradigm numerical computing environment. It eases
the manipulation of matrices, plots the data and incorporates programs of others pro-
gramming languages. Matlab has a machine learning built-in function that simplifies

implementations.
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Python is an interpreted high-level programming language. It provides an automatic
memory management with multiple programming paradigms. It has many comprehen-
sive standard libraries. In python can be used OpenMP for shared-memory multi-core
systems and CUDA for many-core graphics processors. Two popular libraries were ap-
plied in python: Keras (Chollet} 2015a)) and Pytorch (Paszke et al., 2017)). Keras enables
faster experimentation with deep neural networks, and run on top of TensorFlow (Abadi
et al.l 2016). Keras focuses on being user-friendly with simplicity for fast development.
On the other hand, Pytorch is lower-level that works on array expressions. It is more

complex but with better debugging capabilities compared with Keras.

2.6.3 Metrics

In the evaluation of machine learning models is very important to choose the appropriate

metric for comparing the performance of models.

2.6.3.1 Mean Squared Error (MSE), Root Mean Squared Error (RMSE)
and Mean Absolute Error (MAE)

Mean squared error is widely used in regression. It is applied to find the average squared
error between the true values and the values from the prediction. Equation describe
how MSE is calculated.

N
1 N
MSE = — Z(yi — 0i)° (2.42)
=1
The weakness of using MSE is that a single very bad prediction when is squared, it may
skew the metric, by making the error worse or the opposite effect when the error is small.

It could led to overestimate or underestimate the model performance.

Root mean squared error is the square root of MSE, which allows scaling the errors to
the scale of the targets. Unlike MSE, RMSE penalizes large errors that can be suitable

in several cases.

1 "
RMSE = N Z(yi — 9i)? (2.43)

On the other hand, mean absolute error is determined by averaging the absolute differ-
ences between true values and the predicted values. Unlike RMSE, the single predictions

are weighted equally in the average when MAE is used.
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N
1 .
MAE = N z; | vi — Ui | (2.44)
Z:

Another difference with the metrics mentioned previously it that MAE is not differen-

tiable. However, MAE is considered to be less sensitive to outliers than MSE.

2.6.3.2 Pearson Correlation and R-Squared (R?)

Pearson Correlation (Benesty et al., 2009) is a correlation measurement that indicates

the relationship between two continues variables. Its value is between +1 and -1, with

+1 means a strong positive correlation, -1 a strong negative correlation and zero mean

no correlation. The coefficient is calculated by placing the two variables on a scatter plot

(as X and Y), if some linearity of the scatter plot is found, the higher is the relationship.
cov(X,Y)

p=——0) (2.45)
0x,0Yy

Where the Person coefficient p is the covariance cov of a pair of variables X and Y,
divided by the multiplication of their standard deviation ox and oy.

The Person coefficient has been used in finance to measure the diversity of a portfolio.

It is good to mention that correlation is not causation.

On the other hand, R-Squared, also known as the coefficient of determination, measures

the strength of the relationship between independent and dependent variables.

ExplainedV ariation

R? = (2.46)

TotalV ariation

When R-squared values are close to 1, it means that movements of a dependent variable
can be explained from the movements of the independent variable. Values below 0.6

indicate a weak correlation.

R-squared needs to be adjusted when it works with several independent variables because
every predictor increments the value and never reduces it. Thus, it can compensate for

this effect and only add then when they improve the model.

2.6.3.3 Euclidean Distance and Frobenius Norm

The Euclidean Norm (Danielsson, [1980)) is the distance between a couple of samples p
and ¢ applied to an n-dimensional feature space. It is the square root of the sum of

squares distances in each dimension that measures the length of the vector.
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Z(Ch —p1)? (2.47)

The Frobenius norm is an extension of the Euclidean norm to matrices instead of vectors.
It comes from the Frobenius inner product (A, B)pro that is a component-wise inner

product of two matrices and returns a number

(2.48)

2.6.3.4 Akaike Information Criterion (AIC)

Akaike Information Criterion (Akaike, 1974)) is an estimator based on training data that
provides an estimation of information lost on future values by the given model. The AIC
is very popular for statistical inference. Its name came from its creator Hirotugu Akaike.
The AIC selects the model that provides the lowest disparity with the true distribution.
It helps to deal with the risk of overfitting and underfitting. When AIC value is lower,

it means a better fit.

AIC = =2 xIn(L) + 2 x k, (2.49)

where the value of the likelihood is L and the quantity of estimated parameters is k.

2.6.3.5 Kullback—Leibler divergence (KL)

The Kullback-Leibler divergence (Kullback and Leibler, 1951) measures the difference
between two probability distributions of data, original and the approximated. It some-
times is known as relative entropy. When the KL divergence value is zero, it means that
the two distributions are identical. Thus, we obtain the amount of information that is

lost when we approximate one distribution with the original.

p(z)
q(x)’

Drr(pllg) = _ p(x)log (2.50)

where p is the posterior probability distribution of data, ¢ is the prior probability distri-
bution. KL divergence is combined with neural networks to learn complex approximation
distribution. For example VAE, described in Section [2:4.3] can generate optimal approx-
imation distribution by using KL divergence. Despite the fact that KL divergence gives

the distance between distributions, it is not considered as a distance measure.
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2.7 Summary

In this chapter, we described several classical analytical models that depend on specific
assumptions. Then, we outline a range of machine learning models that are considered
to provide more accuracy than classical analytical models. We reviewed one of them
(NMF) for a better understanding of how it enhances the performance and the analysis
of financial data. By this review, we can get an idea of the impact of improving the
performance of dimensionality reduction by inclusion of exogenous information in the
financial sector. Starting with stock market analysis, where NMF achieved the stock
index fluctuation detection, NMF was substantially better than a number of portfolio
building strategies, also for clustering stocks based on latent trends and not by sectors
in which some stocks have performed differently as their sectors that they behave. NMF
was applied for portfolio optimization in which NMF is worthy of consideration in the
diversification for increasing portfolio efficiency. Also, to address the credit risk analysis
problem, which is a crucial task in finance and management. In the review of NMF, we
found that exogenous macro-economic variables have not being considered for improving
this dimensionality reduction. Therefore, we can notice that a lack of experiments with
respect of this effect can support the need of our research. In this chapter, we also
described our research experimentation in which we mentioned the data source, the tools

that we used and the metrics that we apply.






Chapter 3

Extending The Feature Set Of A
Data-Driven Artificial Neural
Network Model Of Pricing Financial
Options

In this chapter, we explore if additional information may be helpful to enhance a non-
parametric approach that maps the price of trade option contracts to the value of the
underlying asset and the time to maturity. We consider volume traded, historic volatility,
observed interest rates and combinations of these as additional features. In addition to
giving empirical results on how the inclusion of these variables improve performance,
we show that there is an interesting correlation between volume traded and volatility
through their influence on the price of a derivative option, which is not evident in the

raw data.

3.1 Introduction

Pricing derivative contracts is a challenging problem in financial engineering because
contracts mature at some point in the future and there are multiple sources of uncertainty
between the current time at which a fair price for the contract needs to be determined and
the point at which it may be exercised. The celebrated Black—Scholes model of options
pricing makes specific assumptions about a stochastic process model of the underlying
asset price and other factors relating to it (Hull, 2011). These assumptions lead to
a solvable differential equation and result in a closed-form pricing formula for certain
simple derivative instruments. For more complex contracts, where analytical solutions

are not possible, Monte Carlo simulation and numerical analysis based methods have

35
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been developed. There is significant interest in the research literature and wide practical

applications of these topics (Brandimartel 2013 Trgnnes, 2018]).

In this context, the work of Hutchinson et al. (1994)), could be seen as an elegant devel-
opment from a machine learning or data-driven modelling point of view. The authors
showed that a non-parametric artificial neural network, specifically a Radial Basis Func-
tions (RBF) model, can be trained to approximate the complex relationship between the
prices of an options contract and the underlying asset. In particular, they used only
the normalized asset price and the time to maturity of the contract as inputs to the
network and further showed that the derivatives of the mapping learned by the network
faithfully reproduced the hedge ratio (A, Delta), a widely used parameter in balancing
portfolio risk. Neural networks are powerful non-linear approximators, and the RBF
architecture itself has found a wide range of applications including speech classification
(Niranjan and Fallside, 1990)), time series prediction (Kadirkamanathan and Niranjan,
1993) and financial engineering (Golbabai et al.l 2012) among others. RBF is easily
deployed in problems that require sequential learning and adaptive model complexity as
demonstrated in the resource allocating network (Platt, [1991; |Kadirkamanathan et al.
1991; Molina and Niranjan) 1996), and their generalization properties have been analysed
in (Holden and Niranjan, 1995, [1997)).

In addition to the demonstration that options prices may be well-approximated, the work
of [Hutchinson et al.| (1994)), which forms the basis of the present study, is notable for a
second reason that is of interest in financial engineering. Their work showed that the
derivatives of the learned model, which is easily computed for the RBF model analyti-
cally, turned out to be good approximations to the hedge ratio. This ratio determines the
construction of a risk-neutral portfolio in which the uncertainty induced by a stochastic
process model of asset price changes may be cancelled out. In later development, based
on the work of |[Hutchinson et al.| (1994)), |[Niranjan (1997) showed that the RBF model
has been used in this context and the Black—Scholes model itself, may be cast as dy-
namical systems, and the unknowns in the model inferred in a sequential setting using
the Extended Kalman Filter (EKF) algorithm. A broader review of the uses of neural

networks, with currency options as example, is given in |(Chen and Sutcliffe| (2012]).

A further topic of interest in empirical finance is the relationship between the traded vol-
ume of an asset and its volatility. Do assets that have more trading volume show greater
price fluctuations, and hence greater uncertainty? While it is tempting to expect such
a relationship, there may be no theoretical grounds to reach such a conclusion. An un-
derlying theoretical premise, known as the Mixture of Distribution Hypothesis (MDH),
introduced by (Clark| (1973), suggests that daily trading volume and price changes are
driven by the same flow of information. Starting from this, there are empirical studies
that have attempted to explore this relationship. For example, a study of the Istanbul
Stock Exchange data using Granger causality suggests a bidirectional relationship be-

tween the two (Celik, |2013). However, |Karpoff] (1987)) reports an asymmetry relationship,
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which is also supported by other studies (Jain and Joh, [1988; |Andersen, 1996|). Similar
explorations have been carried out on the Korean and New York Stock Exchange data
(Chot et al., 2012 Darrat et al., |2007). Similarly, on intra-day trading data of the S&P
500 index, a negative correlation is reported (Amatyakul, 2010)).

In this work, we extend the work of Hutchinson et al.| (1994) by asking the question if
expanding the feature set to include additional variables of interest can help in improving
their data-driven model of options pricing. Specifically, we include combinations of his-
toric volatility, volume traded and interest rates as inputs in addition to the normalized
asset price and time to maturity, as illustrated in Figure [3.1] Empirical work we carried
out, on a range of data with a much wider scope than the original work, shows this to
be the case. We compare the performance by using the mean square error (MSE). We
follow this up with an analysis of how much the volume traded and volatility of asset
help in predicting options prices and demonstrate an intriguing correlation between their

relative contributions.

This chapter is structured as follows: in Section [3.2] we present our model including the
data that we used; in Section [3.4] we display our results; and in Section [3.5] we conclude

and discuss future research directions.

3.2 Model

We implement our Radial Basis Functions (RBF) following the work of Hutchinson et al.
(1994), in which they restricted their analysis on options drawn on the S&P 500 Index
only. We use more input data, and the inputs and outputs are shown in Figure 3.1 In
our own work, we tested the effect of the choice of the number of basis functions, hence
the model complexity, and found the value of four. We also confirmed this by running
the RBF model with the Akaike information criterion (AIC) (Akaike| 1974), an estimator
of information loss, as the method of model selection (Figure [3.2)).

Let the input data vector to the RBF model be given by the vector

S T
r=|— T-—-1t| , 3.1
5 T (3.)
where S denotes the underlying asset price, X the strike price of the contract and T'—¢
is the time to maturity (the difference between the time of maturity, 7', of the contract
and the present time t). With this vector of features as input, each of the basis functions

in the RBF model for predicting options prices is written as:

o= [le-ma” £ e-mo o) 32
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Hutchinson’s Model Enhanced Model
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F1GURE 3.1: The data-driven neural network scheme of approximating options prices.

Left: [Hutchinson et al| (1994) model with two inputs; Right: Our proposed extension

with the two initial inputs and the inclusion of additional variables. The symbol (&)
indicates that both data inputs are included.

0-02 T T T T T

0.018
0.016

Information Lost

50.014
5

0.012

0.01F

0 2 4 6 8 10
Number of Gaussian Distributions

AIC Estimati

FIGURE 3.2: AIC estimation of information lost of the number of Gaussian distributions
used on a small subset of the data. Consistent with Hutchinson et al.| (1994)), a small
number of basis functions was considered sufficient.

where ¢ denotes the response of a nonlinear basis function which is parameterized by

local mean my, and covariance matrix X and by, a local bias term.

Basis function locations and local covariance matrices are estimated by fitting a Gaussian
Mixture Model (GMM) to the distribution of input data, making the model sensitive to
its local density. For simplicity, in our implementations, we set the bias terms by to zero.
In addition to these nonlinear terms, the model includes a linear part as well. Thus, the

least squares problem to solve is shown by the simultaneous equations:
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The number of observations is n and ¢j,j = 1,...,n are the output call option prices
T
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is estimated by linear least squares. A pseudo-inverse solution to the problem is often
used:
w=(PTP)"'PT®, (3.4)

where P is the so called design matrix and ®, the vector of outputs. Often, for reasons
of numerical ill-conditioning and to avoid over-fitting by the model, a regularization term

in the form of a diagonal matrix is added before the inversion of PT P:
w= (PTP+~1)"'P"®, (3.5)

where v controls how much regularization is applied. Regularisation is one way to im-

prove generalisation performance.

Once the model is trained, the resulting output is given by,

c=®\+wlx +w (3.6)

3.3 Data

For empirical evaluation, we collected daily prices of 21 call and 11 put options written
on the Financial Times Stock Exchange (FTSE) 100 index and nine call and seven
put options on the popular software companies Apple and Microsoft. Additionally, we
considered minute-by-minute intra-day call and put options prices on a contract on Apple
with a strike price of 95 and 100, maturing in September 2015 and June 2016 respectively.
All those derivative options were collected from DataStream Thomson Reuters. Table
lists the range of options considered and includes their strike prices (the number in
the name of the call(C) or the put (P) option), dates of maturity and the number of

days that the options were issued until they expired.

In Figure [3.3] we normalised the call options by strike price and plotted versus stock
price and time to expiration. The black points represent daily prices. This graph shows

the density of the majority of those values is close to the time to maturity because the
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Opt. ‘ Exp. Days H‘ Opt. ‘ Exp. Days
C6600 09-13 171 C6600 12-14 397
C6700 09-13 290 C6700 12-14 359
C6800 09-13 171 C6800 12-14 397
C6700 06-14 352 C6900 12-14 299
C6750 06-14 85 C7000 12-14 387
C6800 06-14 525 P6000 09-13 462
C6900 06-14 291 P6300 09-13 525
C7000 06-14 288 P6400 09-13 525
C7100 06-14 171 P6500 09-13 250
C6600 09-14 462 P6600 09-13 513
C6400 09-14 462 P6700 09-13 171
C6800 09-14 462 P6800 09-13 525
C6900 09-14 299 P6600 06-14 513
C7000 09-14 387 P6700 06-14 352
C7200 09-14 462 P6750 06-14 85
C7400 09-14 342 P6800 06-14 525

CAPL50 | 07-15 239 CMSF39 | 07-15 236
CAPLS85 | 07-15 239 PAPL120 | 07-15 239
CAPL90O | 07-15 239 PAPL130 | 07-15 238
CAPL95 | 07-15 239 PAPL135 | 07-15 238
CAPL105 | 07-15 236 PAPL140 | 07-15 238
CAPL110 | 07-15 236 PAPL150 | 07-15 236
CAPL115 | 07-15 236 PMSF45 | 07-15 236
CAPL120 | 07-15 236 PMSF47 | 07-15 236

TABLE 3.1: (Call and put options with daily prices, used in this study with different

time to maturity and numbers of trading days. The strike prices and an indication

whether the option is a call or put is in the name of the contract (e.g. C6600 - Call

option with a strike price of 6600). This data was collected from DataStream Thomson
Reauter.

market exchange strategy keeps having options that are expiring in the current time or

near future.

For the selection of training data, for any of the options, we took a temporal window
of 40% of the data as the training set and evaluated the model performance on the
next point in time, as it is illustrated in Figure We moved this window one sample
at a time and repeated the training and testing, in order to base our model on single
sample unseen data. The reason for this choice of window, rather than a randomized
training/test partition as often used in machine learning is that the financial data is
expected to have temporal structure and in any practical application, one is likely to
apply a trained model in the next point in time. We computed volatility over a window

of 25% of the data immediately preceding a point of analysis, following [Hull (2011)).
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FiGure 3.3: Call option prices normalized by strike price and plotted versus stock

price and time to expiration. The black points represent daily prices. Here we can see

that these values are more dense in the time that is close time to maturity. It is a fact

that the market exchange strategy is to have options that are expiring in the current
time or next month.

Training set 4 Test set 4 J ete.
< >
‘ Training set 3 Test set 3
Training set 2 l Test set 2 ‘
< >
Training set 1 Test set 1
< > >
Input ‘ >
Time

F1cURE 3.4: Sliding windows for dividing data in the training and testing set. We take
the first set for training and we test over the next value. Then moving the training set
and testing set to their next values and continue successively.

3.4 Results

3.4.1 Pricing Derivative options

After evaluating the derivative options listed in Table we demonstrate that the model
of Hutchinson et al. (1994) with additional inputs relevant to the pricing of options,

enhance the accuracy of approximation.
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3.4.1.1 Equity Derivative Options

In Figure [3.5] we show an example of the improvement from adding additional variables
to the RBF model, where we can appreciate the values with dot points are much closer to
the target values. Evaluation with all the call options on the FTSE-100 index comparing

by the mean square error is shown in Figure 3.6

0.12 T
—— Target Value

——-Hutchinson RBF Model

Hutchinson RBF Model including |
Volume and Interest Rate

0.04

Option Price / Strike Price
5
@]

0.02

(0]
200 150 100 50 (0]
Time to Maturity

FIGURE 3.5: Price of an option on the FTSE-100 index (strike price 6800, expiring
Sept. 2013) and its approximations from Hutchinson et al.’s model and a model that
includes interest rate and trading volume as additional inputs.

Furthermore, in Table [3.2) we describe the averages of mean squared modelling errors for
each for the additional variables that we consider in our experiment for approximating
the call and put options. This table probes that enhancement by additional variables

was the case.

- || Hutch. Vol. Sig Sig & Vol ILR. IR & Vol
C 5.19 4.27 5.51 4.79 4.70 4.21
P 9.13 8.78 9.31 9.74 8.38 8.93

TABLE 3.2: Averages of mean squared modelling errors of the various models on the

different option contracts. The distribution of mean squared errors is shown in Figure

Here we can see the effect of additional inputs enhancing RBF performance. Each
value in the table should be scaled by 1076.

3.4.1.2 Single Derivative Options

We explored the effect of additional variables in the RBF model applied to single deriva-
tive options that correspond to the companies Apple and Microsoft, listed in Table [3.1}
We illustrate in Figure that the performance of the models with all the additional
data cases was better than the original Hutchinson model. Here, with volatility as addi-
tional input, we see only a marginal improvement, whereas all others gave a significant

reduction of error when compared with the model of Hutchinson.
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FIGURE 3.6: Prediction performance on call options on the FTSE-100 index for the
various models considered. Overall, the largest improvement in prediction accuracies is
obtained when volume traded and interest rates are included as additional covariates.
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F1GURE 3.7: Prediction performance on single equity options that correspond to Apple
and Microsoft. Here, we can see the improvements approximating option price with the
additional variables considered.

An interesting evidence here, despite additional inputs enhance the performance of the

model, they were not in similar level from both cases (equity options and single options).

For example, in equity options, interest rate as an additional variable was the highest

contributor for reducing the mean square error. However, in single options, it was not

the case.

3.4.1.3 Derivative Options with higher frequency Data

With the aim of analysing the effect of additional variables not only with daily obser-

vations. We went further and we explore it on minute-by-minute intra-day call and put

equity options. Table [3:3] shows the performance of RBF predictors, in which important
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improvement when volume and volatility with volume is seen. The additional variables

help to enhance the model with lower error MSE than Hutchinson model.

- || Hutchinson Volume Sigma Sigma & Volume
C 2.97 2.19 2.64 2.76
P 2.72 2.57 2.83 2.29

TABLE 3.3: Average prediction performances of RBF model with volume and volatility
as additional inputs, compared with Hutchinson model on minute-by-minute intra-day
call and put equity options. Each value in the table should be scaled by 107°.

3.4.2 Volume Traded and Volatility

After finding evidence of model enhanced by the inclusion of additional variables. We
decided to explore the relationship between volatility and trading volume. The measure-
ment of this correlation is made by the mean squared errors of the predictive models

with volume traded and volatility as additional inputs.

Figure (left boxplot) shows the distribution of correlations in mean squared errors of
model fitting with volume traded and volatility as additional inputs on 48 options which
is 0.675. The right boxplot in Figure [3:8 shows the correlation between the raw values

of volume trading and volatility.
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FIGURE 3.8: The comparison of the Pearson correlation between trading volume and

volatility. The left side boxplot shows the correlation on both inputs data from the

mean square errors of the RBF models in all the options tested. Here we can see that

the mean on the correlation of each option analysed is over 0.67 giving a substantial

correlation. However, the right side boxplot shows the actual values of the trading
volume and volatility do not have a correlation.
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In Figure 3.9) we show a scattered plot of the errors of the RBF model with volume
as a additional variable and the errors with volatility as other input. With the aim of

appreciate a correlation between them on predicting the single options prices.

0.008} . - 1
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-0.01 L L |
-0.01 -0.005 0 0.005 0.01

Error with Volatility as additional input

F1cURE 3.9: The errors of RBF model with volume with additional variable, with the
errors of the model with volatility as additional input.

Then, we evaluate this appreciation by finding the Person coefficient value between the
Mean Square Errors on the RBF with volume and volatility as additional inputs on
all the call single options. We found that in effect, there is a considerable correlation
between those variables with a Pearson coefficient value of 0.6818. Similarly, we explored
the Pearson coefficient value for put single options, and we got the value of 0.6985. This
is shown in figure [3.10]
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F1GURE 3.10: Correlation between Mean Square Error values of the RBF models that
include trading volume and volatility on put(a) and call(b) equity options.

On the other hand, we also reviewed this evidence on the minute-by-minute intra-day call
equity option. And we found an important Pearson correlation of 0.7199. It is clearly

shown in Figure [3.11
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F1GUrE 3.11: Contribution to prediction error from volatility and volume traded on
minute-by-minute intra-day data on equity call option, showing a high correlation of
0.72.

The empirical work reported here is on static data, mapping instantaneous values of
covariates to the response variable. We have found an important improvement in the RBF
performance by the inclusion of additional variables. Besides, an interesting correlation

between volume and volatility which is not visible in their raw values.

Apart from the selection of training and test data, we have not explicitly modelled the
temporal dynamics. However, with financial time series, these dynamics are impor-
tant. For this particular model, a state-space formulation and inference using Extended
Kalman filter (Section has been shown to be possible Niranjan| (1997)). However,
the performance of this model depends on the considered system. We encourage to do
further work on applying other state-space models including exogenous variables that

are seen enhancing the predicting model.

3.5 Summary

In this chapter, we study a non-parametric neural network model that quantifies the
complex relationship between a class of financial instruments known as options and
that of the underlying asset on which the contract is drawn. Whereas previous work
introducing this model uses the asset price and the time to maturity of the contract as
its only inputs, we have demonstrated that the inclusion of additional features relating
to the contract, namely the volatility, volume of the underlying asset traded and the
risk-free interest rate help in improving the accuracy with which the market value of the
contract may be predicted. Thus, our empirical results carried out on index options,

equity options and an intra-day contract helped to probe our initial hypothesis.
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The results led to the exploration of an intriguing relationship between the volatility of
an asset and the amount of volume traded, a topic that has attracted healthy discussion
in empirical finance. Our model makes an interesting contribution to this discussion in
that we demonstrate that while the volume and volatility of an asset do not correlate
significantly, their contributions to modelling the price of an options contract drawn on
the asset do show significant correlation. This has also been demonstrated on the FTSE

index, individual equities and intra-day datasets.






Chapter 4

Non-Negative Matrix Factorization
with Exogenous Inputs for Modeling

Financial Data

In this chapter we propose a model suitable for the analysis of multivariate financial
time series data in which the variation in data is explained by latent subspace factors
and contributions from a set of observed macro-economic variables. The macroeconomic
variables being external inputs, the model is termed XNMF (eXogenous inputs NMF).
We illustrate that the proposed model gives a lower reconstruction error than the NMF by
the inclusion of the exogenous inputs. We show that XNMF can be effective in clustering

stocks in similar trading sectors together via the latent representations learned.

4.1 Introduction

Non-negative matrix factorization (NMF) has been shown to be an useful decomposition
for multivariate data. Unsupervised learning algorithms such as principal components
analysis can be understood as factorizing a data matrix subject to different constraints.
Non-negativity is an useful constraint for matrix factorization that can learn parts-based
representation of the data (Lee and Seung, 2001)). The non-negative basis vectors that
are learned are used in distributed, sparse combinations to generate expressiveness in the
reconstructions (Turk and Pentland, (1991)).

In standard NMF we consider an input matrix with m dimensions and n samples: V &€
R™*™  The aim is to find a lower-dimensional representation of the data by factorising
V into two matrices W and H such that V =~ WH, where W € R™*" and H € R™*".
Generally r < m and r < n so that NMF creates a new representation of the data in a

significantly reduced subspace.

49



Chapter 4 Non-Negative Matrix Factorization with Exogenous Inputs for Modeling
50 Financial Data

An example where NMF methods have been applied to financial data is|de Fréin et al.
(2008b). They apply it to identify underlying trends in stock market data. Also, de Fréin
et al.| (2008a) introduced an approach to portfolio diversification with a sparse-semi-NMF
technique to minimize the risk when selecting a portfolio of holdings. Wang (2012) ap-
plied matrix factorization to extract underlying trends and group stocks into families
based on their association with these trends, to diversify stock portfolio for reducing
investment losses in the stock market. The appeal of NMF in this context is that returns
on assets, expressed as ratios of their market prices, are positive. Factorizing multivariate
asset return data into low rank factors can potentially discover low dimensional repre-
sentations that are determined by sectors of assets (e.g. banking, blue chip companies,

etc.) that are likely to show similar responses.

Financial time series data arise from a highly complex system driven by trader be-
haviour, a range of macro-economic variables and the arrival of new information. Pure
time series analysis, univariate and multivariate, have been applied extensively to asset
returns (Weigend et all [1990; [Tamiz et al (1996 (Omran| [1997)), exchange rates (Babu
and Reddyl 2015) and derivatives (Niranjan, (1997; Montesdeoca and Niranjan, 2016).
However, statistical signal analysis methods usually do not take into account exogenous
information from macroeconomic variables that may have significant contributions to

market movements.

In this chapter, we propose a matrix factorization method that includes known exogenous
variables as additional components of subspace modelling. We expect such factorizations
to potentially have a lower reconstruction error, in Frobenius norm distance, compared
with the NMF. We empirically demonstrate the effective performance of our approach
on share price data from FTSE100 companies that also helps to answer our research

question.

This chapter is structured as follows: in Section we present our model including the
underlying mathematics; in Section [£.4] we display our results; and in Section we

conclude and discuss future research directions.

4.2 Model and learning algorithm

Our aim is to find a combined representation of the share price data using the share
price itself with the inclusion of exogenous information. Standard NMF method finds
a representation such that V.~ W1H;, where W and H; are matrices to be found.
Considering an additional matrix Wy which contains the macro-variables and applying
standard NMF we will have a separate representation V =~ WsHs, where Hy will be a
matrix to be found. XNMF is a combination of those 2 separated representation into
one model such that:

V~W;H; + WyH, (4.1)
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where W1 € R™*" H; € R™*™ and Hy € R™*" are the matrices that NMF will find.
The matrix Wy € R™*"2 has the macro-economic variables fixed. The time points are
represented by m, the subspace to select is 71, the number of exogenous variables is 19

and the number of stocks is n.

Lee and Seung (1999) introduced an effective method to find those matrices separately
and they called the multiplicative update technique. This solution which comes from a

coordinate gradient descent gives updates to W and H

wewe VT (12)
[(WHHT)’ '
(WIV]

where ® and % are the element-wise multiplication and element-wise division respectively.
These updates push the matrices towards a minimization of the objective function ||V —
WHI,.

To find a solution to Equation [4.1] we seek a set of matrices which minimise

f=1V-WH - WyHy|%,. (4.4)

As minimising Equation with respect to W1, H; and H; together is non-convex,
we hold two of the matrices constant whilst updating the third using multiplicative
updates, following |Gillis (2014). Each individual problem is then convex, although the
overall problem remains non-convex and there is no guarantee of reaching an optimal
solution. As multiplicative updates are a type of scaled gradient descent therefore we
multiply out Equation and get:

f=tr[(V-WiH; - WoHy)"(V - WH; - WyH,)]
—tr [VTV ~VIW,H, - VIW,H,—
H{W{V +H{W{ W H; + H W] WyH,—
HIWIV + HIWIW, H, + HQTWQTWQHQ] : (4.5)

We then differentiate Equation with respect to W1, H; and Hs respectively to give

three equations:
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Vw, f =2(WHHT + WoH,HT — VHT), (4.6)
Vu, f = 2(WIW H, + WI'W,H, - WiV) (4.7)
and
Vi, f = 2(WiWyHy + WIW, H; - WIV). (4.8)

Rather than two sets of multiplicative updates our solution has three, but the principles
are the same. We do not have four because Wy is a fixed matrix with the macro-variables.

We apply multiplicative updates to W1, H; and Hy by:

VHT
W1 — W1 & [T 1] T1° (49)
(W HH] + W,H,H] |
T
Hy + Hi ® — Wi V]T (4.10)
(WIW. H; + W] W,H,|
and .
H, + Hy ® (W2 V] (4.11)

(W3 W,H,; + W] W Hj|
where ® is the Hadamard product and % indicates element-wise division. We will discuss
how changes to W reduce the objective function noting that the same argument also
applies to changes in H; and Hs. As we want to follow the gradient down towards a
minimum, if Vw, f < 0 then we want to increase W;. This is equivalent to VHF{ >
W1H1H1T + WgHngT, and, as shown in Equation , W is increased. Conversely if
Vw, f > 0 then we need W1 to decrease, which the multiplicative update does because
W H HT + WoH,HT > VHY. The final eventuality, that Vw, f = 0, implies we have
found a minimum of W7 and so do not want to change W1, which the multiplicative
update does. We should note that if Vy, f = 0 we are not necessarily at a minimum
of the objective function as the other two matrices may still change which might change
the situation of Wy such that Vwy, f is no longer zero. The same arguments apply to
H; and Hy. The objective function should be moved monotonically towards a minimum

by the multiplicative updates.

To deal with non-stationarity that may exist over such a long period in time, we split
the data into four equal sections in time and show results on all four separately. The
stocks returns are estimated by daily positions and investors hold or trade according
to the circumstances (positive or negative) each following day. The daily returns are
calculated arithmetically and are estimated through Equation , in which the price
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level is p1,p2,...,ps. The return at time t is formed by:

_ bt — Pt—1
Pt—1

ry (4.12)

4.3 Data

We explain the effectiveness of our XNMF model and learning algorithm empirically using
daily data from FTSE100 constituents taken over twenty years period (August 1996 to
May 2017) from DataStream Thomson Reuters. Those values are the constituents stock
market prices at each available point, basically week days except for public holidays. The
choice of which macro-variables to use is somewhat arbitrary, there are many potential
macro-variables, and they can be changed. The list of macro-variables in Table is not
in appropriate format as it is a mixture of frequencies. The best way of tally up these dif-
ferent time-scales is not straightforward. We compensate for the differences in frequency
between the share data (recorded on work days) and the macro-variable data we have
linearly interpolated between all the macro-variable data so that the dimensionality (the
number of time points) are equal. The dates are converted into MatLab’s standard dates
to achieve the interpolation. We did not consider macro-variables that have negative
values, such as inflation rate and balance of payments. We split the dataset into four
equal sections in time to deal with non-stationarity that my exist over such a long period

in time.

TABLE 4.1: Macro-economic variables used in this study

H Macro-variables ‘ Frequency ‘ Units H
GDP (Market Prices) Quarterly 10° GBP
Unemployment Monthly %
Interest Rate Monthly %
Imports Goods&Services Quarterly 103 GBP

Exports Monthly 10 GBP
Oil Imports Monthly 103 metric tons
Gross National Income Quarterly 10 GBP
M1 Money Supply Monthly 10° GBP
Productivity Quarterly %
British Pounds/ US Dolar Daily index
Contribution to CPI Monthly %
Oil price daily GBP /barrel
Oil Invest Daily 10° GBP
Government Gross Reserve Monthly 105 GBP
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4.4 Results

We first confirm empirically that our algorithm achieves the desired goal, the reduction in
the error until it reaches a minimum. In Figure [5.9| we show how the error changes with
iteration for different values of r for the three different algorithms. We will use the same
terminology throughout: NMF results are from the algorithm which minimised ||V —
WiH, |2, XNMF (exogenous inputs NMF) is for the minimisation of ||V — W1H; —
WyH, |2, and EX (exogenous inputs alone) is for the minimisation of ||V — WoHa| |3,
The blue lines are for different values of r for NMF and the red lines for different values
of 1 for XNMF'.

The EX algorithm produces a poor approximation as it contains no information from
the actual stocks themselves. The results of particular note are those of the XNMF
algorithm which works as we expect it to. We see a fall in the objective function with
each iteration until it reaches a minimum where the error plateaus. The XNMF algorithm
is much slower than the NMF algorithm at reaching a minimum which should not be a
surprise as we have three matrices to optimise rather than two. In addition, the third
matrix may make the objective function more non-convex than with just two matrices

to optimise.

We now consider the effect of adding macro-variable data into our representation. In
principle, we would expect the additional information to reduce the error somewhat.
In Figure we show the errors from performing normal NMF (black line) and the
XNMF (red line) for different sizes of the subspace, r. At low values of r the model does
not have enough subspace dimensions (columns of W1) to effectively fit the data and so
the errors are high. The additional macro-variables here make a significant difference to
the quality of the fit. As r increases the benefit of the additional information decreases
as the increased capacity of the W1H; part of the model means that a good fit to the
data is possible without any additional information. As 7 increases, it is likely that the
model is overfitting the data, so any use of NMF requires a sensible choice of r to be

made.

A particular appeal of NMF is noise suppression, by reducing the noise we might expect
to be able to extract more real features from the data. A key result demonstrated with
gene expression data is that the reduction in noise achieved by matrix factorization leads
to stable clustering and biologically relevant inference about genes, as shown in |Brunet
et al. (2004) and |Devarajan| (2008). In financial data we are often interested in how
stocks and shares move together through time; a balanced portfolio would not contain
lots of shares which are likely to fall in the same period. If we can effectively cluster the

shares we can then build a more resilient portfolio.

We can easily cluster stock data into groups using a range of techniques, K-means clus-

tering being a popular method. We are then interested in how the clustering works into
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FIGURE 4.1: (a) The extended multiplicative update algorithm reduces the error mono-
tonically with iteration until a plateau is reached. The multiple blue (NMF algorithm)
and red (XNMF algorithm) lines are for different sizes of the subspace, r. Generally,
the XNMF algorithm requires more iterations to reach a minimum than the NMF algo-
rithm, but reaches a lower minimum. Here, we demonstrate that the algorithm reduces
the error with iteration by the inclusion of exogenous variables. Then (b) shows the
final errors for different sizes of the subspace, r, for NMF and XNMF. At all values of
r that were implemented, XNMF produces smaller errors than NMF. As r increases
the difference between the error produced by the algorithms reduces as the capacity of
the NMF model increases. Hence XNMF clearly produces a lower error than standard
NMEF.

the future. If the clustering has been successful then we might expect the clusters to stay
together through time. NMF itself is not a clustering technique, although variants with
a high level of sparsity imposed on the columns of H can turn NMF into a clustering
technique. NMF is a dimensionality reduction technique that creates a new sub-space in

which we can apply clustering.

We have performed; K-means clustering on three versions of the data: a) no dimen-
sionality reduction; b) dimensionality reduction using NMF; ¢) dimensionality reduction

using XNMF. A measure of the similarity of a cluster is the average distance to the
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cluster centre using the non-dimensionality reduced data. What we are interested in is
the change in the average distance to the cluster centre as this gives us a measure of how
similar the cluster is at different time points. In general, we would expect an increase
in distance as clusters will tend to diverge with time. If we see a smaller increase using
the dimensionality reduced versions, it shows that the NMF techniques are allowing us

to produce clusters which generalise better than a standard method.

We illustrate in Figure [£.2] the results of this forward prediction of clustering. We split
the data in half into a “training" set, the first half of the data in time, and a “testing"
set, the second half of the data. The training data was then clustered into seven cluster
centres using, respectively: raw data, H; from NMF and H; from XNMF. The y-axis
shows the ratio of the average distances from each data-point to its cluster centre between
the testing data and the training data. A smaller value means the cluster stayed closer
together. We see a clear trend; the raw data performs the worst with the highest change
whilst the XNMF gives the best performance, and NMF gives a result in between the

other two. The results of this forward prediction of clustering is illustrated in Figure [4.2]

It is reasonable to assume that stocks that are part of the same market do not behave
independently of each other, but are rather driven by some underlying forces, normally
significantly fewer than the number of stocks themselves. In this way, groups of stocks
exhibit correlated behaviour, and these groups may or may not coincide with the sectors.
We analyse it with a group of FTSE100 stocks constituents with the ten sectors that
they belong to. Figure 3] shows the groups inferred using XNMF did not coincide with
the known sector structure. It could mean that some stocks are more sensitive to the
underlying factors from XNMF. We analyse the underlying factors that result from the
matrix Wy of the XNMF model. The interval of time was including an important event
in the UK, Brexit in June of 2016. In Figure [£.4] it is observable in a sharp transition
which is not seen in any of the individual stocks. This would imply that the asset classes

modelled by these factors are more sensitive to this political reality.

Thus, it can support our initial hypothesis considering that XNMF got better perfor-
mance than NMF due to the inclusion of exogenous information. On the other hand, we

analyse if it can help with interpretability in the next chapter.
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FIGURE 4.2: A representation of how much clusters diverge with time. K-means clus-

tering was applied to non-dimensionality reduced data (dark blue bars), dimensional

reduction using NMF (light blue bars) and dimensional reduction using XNMF (yellow

bars) for four times periods and for a combination of the four periods. The clusters

produced from data with no dimensional reduction diverge the most, with the applica-

tion of NMF the divergence is reduced and with XNMF we see the smallest divergence,
the clusters tend to hold together better through time.
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FIGURE 4.3: The confusion matrix shows that the 10 (rank dimension) groups that
we got from XNMF do not coincide with the sector industries that the 94 FTSE100
stocks belong to. It means that some stocks are more sensible to the representative
NMEF factor than to their corresponding sectors (Where FIN-Finance, BM-Basic Ma-
terials, TEC-Technology, IND-Industrial, CG-Consumer Goods, HC-Health Care, OG-
0il&Gas, TEL-Telecomunication, UTI-Utilities, CS-Consumer Service)
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FIGURE 4.4: The weights of the matrix W;. This shows an example of an interpretable
output from XNMF modelling. Close to the Brexit event, it has a sharp transition,
which is not seen in any of the individual stocks. This would imply that the asset
classes modelled by these underlying factors are more sensitive to this political reality.
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4.5 Summary

In this chapter we introduced a novel matrix factorization model suitable for multivariate
financial time series that includes known exogenous macroeconomic variables. We report
an empirical study that XNMF produces a lower reconstruction error than standard NMF
for different sizes of the subspace by the inclusion of exogenous variable. However, this
effect is more visible when the subspace is lower. We assume it is reasonable because in
higher dimension the models consider much more information is included. We showed
that the groups of stocks by underlying factors from XNMF did not coincide with the
known sector structure, which may be help for portfolio diversification strategy. We
use real FTSE100 stock data to show that stock clusters formed with the addition of
exogenous data stay tighter bound through time. Hence, these empirical results may

help to prove that the inclusion of exogenous information enhance performance.






Chapter 5

On Quantifying the Role of
Exogenous Macro-Economic
Information in Financial Time

Series Analysis

We compare two approaches to quantifying the roles of exogenous financial information
which are taken to be proxies of the underlying macro-economic environment in which
trading on assets takes place and thus prices set. We start from a state-spaces dynami-
cal systems formulation and model the innovation signal by means of a sparse regression
taken over a set of exogenous variables. The second, Non Negative Matrix Factorization
with exogenous inputs (XNMF) works by dimensionality reduction, in which the fac-
torization is enhanced by the incorporation of the macro-economic signals. We extend
this model by including additional sparsity constraints using the Hoyer’s Algorithm with
adaptation to additional information. We consider time series analysis on cryptocurren-
cies such as Bitcoin and data from three different market indices with their constituent
stocks to identify the common macro-economic variables that are most influential in price

movements.

5.1 Introduction

Machine learning techniques are widely used for modelling multivariate time series (Tkacz,
2001; Cook and Hall, 2017). For example, Mahler| (2009) introduced a method that uses
the Kalman filter and the LagLasso to predict upward and downward monthly variations
of the S&P 500 index by using a group of 7 macro-economic and financial explanatory
variables (explained in Section . Prediction with Laglasso can be done by the

61



Chapter 5 On Quantifying the Role of Exogenous Macro-Economic Information in
62 Financial Time Series Analysis

selection of the most important variables and lags. This is an interactive method that
requires the management of a set of covariates. It helps to shrink and select variables
for linear regression by minimising the sum of squared errors, subject to a bound on the
sum of the coefficients absolute values. Thus Kalman LaglLasso assumes that a small
subset of macro-economic and financial factors can efficiently represent the exogenous
influence on the financial indices previously mentioned, where the influence of each of

these factors can change over time and can be lagged.

We start our chapter by using Kalman Lagl.asso on time series of cryptocurrencies and
stock indices. The hypothesis would be that the differing nature of these two market
instruments would mean that the Laglasso method should find very different macroe-
conomic variables as explanatory variables. The difference arises from the fact that the
stock index is driven by its constituent assets whose values are determined largely by their
performance such as profitability, market capture and dividend payments. Our hypoth-
esis is, cryptocurrencies do not have any such underlying fundamentals that influence
them. Their values would be dominated largely by speculative behaviour of investors

and traders.

Then we apply Kalman LagLasso on three different markets (USA, UK and Japan) to
make predictions about the variations of the S&P 500, FTSE100 and Nikkei indices
over the next month, with an important pool of 15 exogenous financial variables. And
finally, we extend our XNMF work explained in Section by adding sparseness in
order to analyse the sectors that are influenced by those variables. Also, we compare our
XNMF model with the Kalman LaglLasso model to find an overlap between the exogenous
variables that influenced the three countries market information that we chose (Japan,
USA and UK).

This chapter is structured as follows: in Section [5.2] we present our model including the
data that we used; in Section [5.4| we display our results; and in Section [5.5| we conclude

and discuss future research directions.

5.2 Model Implementation and Data

We start by using the autoregressive model (AR), which is expressed in Equation
and to then fit using the Kalman filtering that is described in Section [5.2.1

p
Bo=Y_ Oy, (5.1)
=1

we can write it as vector notation: #; = @7 y;. here the past values of the time series are

in y; and the regression coefficients in 6.
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5.2.1 Kalman Filtering

Financial stock indices are sensitive to the variations of macro-economic and financial
predictors around their own trend rather than to the variations themselves. For that
reason, filtering the predictors is needed, which is possible by computing the Kalman
algorithm (Kalman, 1960). Let Z; be the observations and let € be a hidden random
vector (unobserved variables). Thus we can use the equation and :

[,A[jt = yg—‘et + Vi, (52)

where y; is known and v; is Gaussian white noise, v ~ N (0, R) and R is the observation

covariance matrix. 6y is given by:

0,5 = 0,5_1 + Wy (53)

where w; is Gaussian white noise, w; ~ AN (0,Q) and @ is the evolution covariance

matrix.

The Kalman filter is a process that recursively estimates the coefficients of the model
represented by a vector @ based on the values of the previous days coefficients, an un-

certainty matrix adjusted every day, and some tuning parameters that model the error.

The Kalman filter equations based on |Mahler| (2009) are given by:

Oit—1 = 61111
Pjp1=Piap1+Q

Tt =Tt — YtT9t|t—1

ki = Py1yi(y/ Py1y: + R);
Oyt = Oyt—1 + kury

P, = (I- ktytT)Pt|t—1

where the signal modelled is 7¢, from the vector of past values y;. 0;_; and P;_; are
predictions of the parameters and error covariances in them respectively. R and @ tune

the entire Kalman filter.

The Kalman algorithm makes a prediction of the signal and calculates its residual error
¢ by predicting 0y;_1 and Py;_y from 6;_1;_; and P;_y;_;. Then we use this residual

with the term Kalman gain (k;) in the posterior updates.
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5.2.2 LagLasso

LagLasso is a linear model that explains the residual r, from applying Kalman filtering,

by taking into account exogenous variables as is described in Equation

K J
Ty = Z ijkUj(t - k‘), (55)

k=1 j=1

where we need to estimate the unknown parameters w;j, by the variables u;(t); 7 = 1,...,J
and the number of lags k depends on the application. Here we chose the same value

number of lags for all the exogenous variables for convenience.

The application of the L; penalty to regression is usually applied to select a subset of
variables by searching all possible combinations (Tibshirani, 1996} Takeda et al., 2013}

Weston et al.l 2003)). The resulting minimisation problem is:

minr — Xwl|3 + Afwlls, (5.6)

where the residual signal is r, the design matrix is X consisting of the exogenous time
series u;(t); 7 = 1,...,J, the parameter that controls the level of sparsity is A and the

unknown parameters to be estimated are w.

We describe the computations of Laglasso in pseudo-code format in Algorithm

Algorithm 1 LaglLasso Algorithm

Input: M € R™*" < Independent financial variables

Initialize z := {}

Initialize r with Residual values from applying Kalman filtering, with dimension m

Initialize k € Rsg <= Number of lags desired

Choose the desired L penalty value A € Ry

Set X € RP*? with values from M considering k lags {p = m — k and ¢ = n x k}

Apply Lasso to get w with value A; constraint

min{|r — Xw|3 + Allw|}

Set z with the non-zero values from the weight vector w

9: return z
Above, m is the number of observations and n is the number of macro-economic
variables.

%

5.2.3 Sparse XNMF

NMF tends to be sparse (Lee and Seung, [1999) and it has been suggested to control its
sparsity by more direct means. However, several studies have introduced various exten-

sion in NMF that can incorporate sparseness constraint. Those extension with sparsity
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are scheme in which a large population is represented with only few units. Sparse cod-
ing concept is used to effectively represent typical data vector (Field, 1994). Some of
the spareness measures proposed are (Peharz and Pernkopf, [2012; |Karvonen), 2008) that
quantify the amount of energy that a vector packs in order to get only a few components.
However, the most common sparsity measurement is by the Li-norm. Hoyer| (2002) de-
scribed how to apply sparseness for non-negative matrix factorization to minimize the
objective function:

IV - WHI2+ A JHyl, (5.7)

ij

where V is the original matrix to be factorized in two matrices W and H with a Li-norm

penalty value of A.

Further, Hoyer| (2004)) introduced a variation of sparseness measurement for NMF that
take account the relationship between the Li-norm (Hoerl and Kennard, 1970 and the
Lo-norm (Tibshirani, [1996) in any sparseness degree desired. It finds the nearest, eu-

clidean distance, non-negative vector s = sparseness(x)

V=0 ||

sparseness(x) = , (5.8)
(vi—1)y/5x

where x can be any vector of n dimensionality.

The algorithm of [Hoyer| (2004) is a projected gradient descent that allows to apply
sparsity to either the basis vectors W or the coefficients H (from Equation . A
step in this algorithm follows the direction of the negative gradient, then it is projected
to the constraint space to assure the taken step is smaller than the objective function
f = |V — WH]|2, which is shortened at each step.

We extended Hoyer[s algorithm to implement the sparseness constraint in our XNMF
model (Algorithm . The unique difference is that we modified the objective function
to f = HV — W1H1 — W2H2H2.

With the aim of enforcing sparseness to the matrices is required to apply [Hoyer/s new
projection operator. This operator is defined in Algorithm [3] The operator projects
the given vector onto the hypersphere ) s; = Lj, where the nearest point is projected
on the intersection of the sum and the Ls-norm constraint. The point where all the
components have same values is the center of the sphere, and from the center it moves
radially outward. It converges (arrive to destination), when the result is fully non-
negative. Otherwise, the components take a value of zero and a new point follows same

path with additional constraints.
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Algorithm 2 Sparse XNMF Algorithm

1:

Input: V € R™*"™ < m is the observations number and n the constituents numbers
{Matrix with the FTSE 100 constituents daily prices}

2: Initialize random positive matrices W1 € R™*™ H; € R"*"™ and Hy € R"2*"
3: Input: Wy € R™*"2 «+ Exogenous macro-economic information
4: Set the desired sparseness Syy,, Sy, and Sy, desired for W1, H; and Hy respectively
5: if sparseness constraints on W; then
6:  project each column of W1 to be non-negative, have unchanged Lo-norm, and set
Li-norm to get desired sparseness Sy, by Algorithm
7. end if
8: if sparseness constraints on H; then
9:  project each row of H; to be non-negative, have unit Le-norm, and set Lj-norm
to get desired sparseness Sy, by Algorithm
10: end if
11: if sparseness constraints on Hs then
12:  project each row of Hs to be non-negative, have unit Ls-norm, and set Lj-norm
to get desired sparseness Sy, by Algorithm
13: end if
14: while Number of iterations do
15:  if sparseness constraints on Wi then
16: Set W1 : =W, — U,y (W1H1 + WoH, — V)H{
17: project each column of W1 to be non-negative, have unchanged Lo-norm, and
set L1-norm to get desired sparseness Sy, by Algorithm
18: else
19: take standard multiplicative step:
Wi+ W; ® [VH]] © [WHH] + W,H,HT |
20:  end if
21:  if sparseness constraints on H; then
22: Set Hy := Hy — puy, WH (W H; + WyH, — V)
23: project each row of Hy to be non-negative, have unit Lo-norm, and set Li-norm
to get desired sparseness Sy, by Algorithm
24:  else
25: take standard multiplicative step:
H, «+ H, ® [W] V] 0 [WIW,H; + W] W,H,]
26: end if
27:  if sparseness constraints on Hy then
28: Set Hy := Hy — pz, WS (W H; + WyHy — V)
29: project each row of Hs to be non-negative, have unit Ls-norm, and set Li-norm
to get desired sparseness Sy, by Algorithm
30: else
31: take standard multiplicative step:
H, + Hy ® [W3V] 0 [WIW,H, + W W, Hy|
32:  end if
33: end while
34: return non-negative matrices W1, H; and Hp

Above, ® and @ are element-wise multiplication and division respectively. uw,, pr,
and pp, are the step-sizes of W1,H; and Hy respectively. The subpace dimension
is r1 and the number of exogenous variables is 75.
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Algorithm 3 Projection operator from Hoyer| (2004)

10:
11:
12:
13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

Initialize z := {}

Input: An arbitrary vector x

Input: L;-norm and Le-norm constraints

Start by projecting the point to the sum constraint hyperplane
si=a; + (L — ) x;)/dim(x), V;

while Iterate do

Set midpoint m; := Ly /(dim(x) — size(z))
if ¢ € z then
Set midpoint m; := 0
end if
Set w:=s—m
Set a := > w?
Set b:=2x w! x s
Set with Lo-norm constraint
c:i=>.58%— 1Ly
Set a:=(=b+ /(B> —4 xaxc)/(2xa)
Set s :=m + a(s —m)
if All components of s are non-negative then
return s
else
Set z := z U {i;s; <0}
Set s;:=0, Vi € z
Set r:= (D>_s; — L1)/(dim(x) — size(z))
Set s :=s; —1,Vi ¢ z
end if

24: end while
25: return A closest non-negative vector s to x

Above, z; € x, s; € s and m; € m.

5.3 Data

5.3.1 Japan, USA and UK Market Data

We aim to compare the effect of macro-economic variables in three countries (Japan,

USA and UK). For that reason, we chose the macro-variables that are available for those

three countries with the same time frequency (monthly) and period of time (from July

1996 to July 2018). We wanted to consider China as well that has the second biggest

economy in the world, but the available Chinese macro-economic variables differ from the

initial three countries. We found fifteen macro-economic variables that are available for

each of three countries. We discarded several macro-variables that contains information

for USA and UK but not of Japan, as the aim is to compare all three together. We

did not include macro-economic variables that are with lower time frequency to avoid

linearly interpolation to compensate the differences in frequency as we did in the previous

chapter, for example GDP. Our dataset, collected from DataStream Thomson Reuters, is

formed of macro-economic variables with some of the most popular commodities (Gold,
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TABLE 5.1: Macro-economic variables available for each of the three countries (Japan,
USA and UK) with monthly values

H Macro-Economic Variables H

Consumer Confidence index WTTI Oil USD /barrel
10Y Bonds % 20Y Bonds %

Gold USD/oz Unemployment %

Exports CURN 10 GBP Imports CURN 10 GBP
Foreign Currency Reserves | 10° ¥.$.£ Government Budget 106 ¥.$,£
Copper USD/MT Gas USD/m?
Target Rate % Production USD
Exchange Rate index

Copper, Gas and Oil) which have been analysed for their effect in the stock market by
for example Kilian and Park| (2009). They are listed in Table Besides, we collected
several cryptocurrency variables to compare with macro-economic variables from USA,
using the Kalman Laglasso. This data is composed of daily values from August 2011 to
March 2019 and similarly we only considered those that have same time frequency to

avoid linearly interpolation.

5.3.2 Cryptocurrency Data

We have collected Blockchain data and financial information from August 2011 to Febru-
ary 2019. It consists of 34 exogenous variables information that contains macroeconomic
variables of USA market, others countries stock market index, currencies exchange rate
and Blockchain information related to Bitcoin. Table [6.1] shows this data that was ac-
quired from Thomson Reuters Datastream Platform at the University of Southampton
with daily and monthly values. In addition to Blockchain information and USA market,
we consider the commodities: oil, gas and gold price because some works analyze the
effect of those on stocks and currencies (Sujit and Kumar] 2011 Pukthuanthong and
Roll, [2011)).
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TABLE 5.2: Macro-economic and Cryptocurrency variables

H Macro-economic Data [ Units [ Macro-economic Data [ Units H
USA Amount Market 10° USD | Government Budget 10° USD
Equity Risk Premium % Oil WTI USD/Barrel
Production USD Gas USD/m?
Market Issues 102 Global Investors 10 USD
Trade Balance USD 10Y Bonds %

EUR/USD Ratio GBP/USD Ratio
Personal Incomes 10° USD | Yen/USD Ratio
Yuan/USD Ratio Nikkei 225 Yen

DAX 30 EUR Policy Uncertainity Index
Infl-LKD 10Y BId USD Gold USD/T Ounce
FTSE100 GBP

H Crypto Data [ Units [ Crypto Data [ Units H
CPTRA: Cost/Trans. USD ETRAV: Estimated Trans. Vol. | 10°
TOUTV: BTC Total Output Vol. | 10° MIREV - Miners Revenue 10* USD
NADDU: Num. Unique Addresses | 10° NTRBL: Num. Trans/Block 10°
NTREP: Trans. Exc. Popular | 10° TRFEE: BTC Total Trans. Fees | USD
Addr.

TRVOU: Exch. Trade Vol. 10° NTRAT-Total Num Trans. 10°
Virtual Crypto Technologies USD MKTCP-BTC Market Cap. 108
HRATE: BTC Hash Rate 10 /sec

5.4 Results

5.4.1 Kalman LaglLasso on three different countries

We started including all the macro-economic variables and let the algorithm determine
which one pops out as relevant, without considering the government budget variable in
our XNMF due to this variable having negative value. This model demonstrates that
the combination of filtering method with a selection method can achieve encouraging
results on multi-variate financial data taking into account exogenous information. Fig-
ure [5.1] shows the time series being modelled and the corresponding residuals when an

autoregressive model of order three is applied.

Figure shows how the number of macro-economic variables getting non-zero values at
increasing levels of the regularization parameter. There is a monotonic decrease in the
number of parameters, as expected. Reviewing from this graph we chose 10 variables for
the S&P 500 data and 14 for the FTSE100 data where in both of them there is a ’knee’
in the graph, and 7 variables for the Nikkei data where there is a flat region.

This selection is indeed a matter of convenience and in a practical situation of applying
such a technique some higher level consideration needs to be brought in. Here, it suffices

to say that the prominent explanatory variables is what we seek.

Figure [5.3| shows the LagLasso influence of the different macro-economic variables on the
Nikkei, S&P500, FTSE100 index time series, separated by the three lags used. Unem-
ployment and Gold prices are seen as two macro-economic variables that have influence

in any index for any lag used. Otherwise, Production, WTI oil and 20Y bonds rate are
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FIGURE 5.1: The time series targets (Nikkei, S& P 500 and FTSE100 values) and the
corresponding residuals after Kalman filtering. For convenience the x-axis starts after
converging to better illustration.
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FIGURE 5.2: The number of macro-economic variables (and lags) getting non-zero

values at increasing levels of the regularization parameter. Here there is a monotonic
decrease where a plateau or knee in the graph help us to select a convenient subset.

the most influential macro-economic variables in all 3 indices. An important effect that
is shown in Figure [5.3]is that of oil price has a low influence in Japanese data compared
with USA and UK. It has been consistent with the claim of|Zhu et al.| (2014) that provides

evidence of a weak dependence of Asian-Pacific stock market returns with the crude oil

prices. Furthermore, Lee et al.|(2012)) analysed the influence of oil on the G7 countries

(where Japan, USA and UK are part of this group), they found that oil price changes
were led by stock price changes in Germany, the UK and the US. Another support of this

observation is Degiannakis et al.| (2014) that found an influence of oil on the European

market. This influence on Oil prices linked to index time series has been widely analysed

and is supported by several works [Sujit and Kumar| (2011); Degiannakis et al.| (2013));
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|Chang et al| (2013); Broadstock and Filis (2014). And finally, the negative influence of

oil price is also found in [Filis et al. (2011) who show that oil prices exercise a negative

impact in all stocks markets that were used with lagged correlation, disregarding the

origin of the oil price shock.

Japan USA UK
0.3 0.2 0.2

F1GURE 5.3: The LaglLasso weights on macro-variables from three different countries.

Here we show the influence of the different macro-economic variables on the Nikkei, S&

P500, FTSE100 index time series, separated by the three lags used. Unemployment

and Gold prices are seen as two macro-economic variables that have not influenced in

any index for any lag used. Otherwise, Production, WTT oil and 20Y bonds rate are
the most influential macro-economic variables in all 3 indices.

Figure[5.4] shows the exogenous information variables that influence each country market
by using the Kalman Laglasso model to monthly variations of the S&P 500, FTSE100
and Nikkei indices. It illustrates that some variables influence either one, two or all the
three countries markets. Here we consider even those macro-economic variables that

have low influence.

5.4.2 Comparing with Cryptocurrency

Figure [5.5] shows the time series being modelled and the corresponding residuals when
an autoregressive model of order three is applied. We note a clear reduction in the
variance of the residual which also appears to be zero mean, as expected. Figure [5.6
shows the number of macroeconomic variables getting non-zero values when we increase
the levels of regularization, A, for the daily time-scale (similar effect was found for the
monthly values). There is a monotonic decrease in the number of parameters, again
as expected. Inspecting this graph we chose 23 variables for the Bitcoin data and 28
variables for the S&P 500 data (where there is a flat region in the graph). This selection

is indeed a matter of convenience and in a practical situation of applying such a technique
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some higher level consideration needs to be brought in. Here, it suffices to say that the

prominent explanatory variables are what we seek.

Figure [5.7] shows the influence of the variables as given by the corresponding weights
of the regression solution, separated by the three lags used on daily values, similar to
Figure [5.§ where monthly values were analysed. Finally we also found clear difference in
the type of variables that influence Ethereum (another popular cryptocurrency) and Dow
Jones, which support our analysis of cryptocurrencies do not have any such underlying

fundamentals that influence them, unlike the stock market indices.

Unlike stock indices, cryptocurrencies do not have any underlying assets of economic
performance to modulate their values. Therefore we can show that cryptocurrency val-
ues respond primarily to trader sentiments and objectives. Related to this we identify
the work of Phillips and Gorse (2018) who found that there is a relationships between
cryptocurrency price changes and topic discussion on social media. They show several
examples where topics precede positive and negative price movements on Ethereum and

Bitcoin.
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FIGURE 5.5: The target time series (Bitcoin values (a) and S&P 500 index (b)) and
the corresponding residuals after Kalman filtering. Initial X axis values are from the
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coeflicients, and we look for a plateau or knee in the graph to select a covenient subset.

5.4.3 Convergence of XNMF Estimation

We show empirically that our XNMF algorithm achieves the desired goal for reducing

the error until it reaches a minimum which is illustrated in Figure [5.9] It illustrates the

errors of the NMF and XNMF; in every iteration the error is reduced, and the subspace

dimension r is also changed. XNMF reaches the minimum error plateaus, despite the

its convergence is slower than the NMF algorithm. Additionally, we show the error for
different sizes of subspace r to compare NMF (dash line) and the XNMF (solid line). In

principle, we would expect the additional information to reduce the error somewhat.

5.4.4 XNMF with sparseness constraint



Chapter 5 On Quantifying the Role of Exogenous Macro-Economic Information in
74 Financial Time Series Analysis

Bitcoin SP500
0.8 0.4

0.6 0.3

FIGURE 5.7: The LagLasso weights on Bitcoin and S&P 500. Here we show the

influence of the different macroeconomic variables on the cryptocurrency and stock

index time series with daily values, separated by the three lags used. The financial
factors that affected Bitcoin, are not same that influenced S&P 500.

We applied sparseness as we explained in Section [5.2.3] to our XNMF model to get an
effective representational scheme of the selected macro-economic variables, with lower
number of units. The sparseness applied was 0.7 on Hj, (levels 0 to 1), where high levels
of sparseness mean few elements are approximately active and at low levels otherwise.
Thus most coefficients are zero while only few take significant values. We applied sparse-
ness constraint to identify the stocks that were influential from each macro-economic
variables. Then, we group the constituents by the industrial sector that they belong,
to analyse which industrial sectors were the most impacted from those exogenous infor-
mation variables. These results are shown in Table [5.3] Besides, we show these values
in a bar graph in Figure .10, where the y-axis values represent the number of stocks
that were influenced by each one of the exogenous financial variables grouped by each

industry which they belong to. Thus, we can see which industries were most influenced.

5.4.5 Kalman LagLasso and XNMF

After getting the most relevant macro-economic variables from Kalman Laglasso, we

compare with those obtained by our XNMF model and we found that three of them are
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0.5 Bitcoin 0.3 SP500

0.2

FiGUre 5.8: The Laglasso weights on Bitcoin and S&P 500. Here we show the

influence of monthly macroeconomic variables values. There is clear difference similar

to Figure where the type of variables that influence Bitcoin and S&P 500 are not
same.

- - NMFrank4 ===NMFrank8 mmaNMF rank 30
—— XNMF rank 4 ====XNMF rank 8 == XNMF rank 30

0 200 400 600 800

FIGURE 5.9: Performance of XNMF compared to NMF at various ranks. The difference
between the two models is more pronounced at low ranks. Generally the XNMF require
more iterations to converge.
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Number of Exogenous Influence

Financial Industrial Sectors

F1GURE 5.10: The UK industries sectors that were influenced by the exogenous vari-

ables. The y-axis values represent the number of FTSE100 constituents that correspond

to each industrial sector specified in x-axis. The stocks that belong to Financial and
Consumer Services sectors are the most influenced.
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FIGURE 5.11: The most relevant macro-economic variables that were found by using
Kalman LagLasso in Figure [5.4) and our XNMF model in the UK market. Here we
can see that three exogenous variables were common in both models and those macro-
economic variables were applied to make the comparison that is shown in Figure [5.12]

reselected in both models and they are shown in Figure [5.11] The left side group are the
financial variables that have been selected by Kalman Laglasso and the right side are
those selected by the XNMF model.
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5.4.6 Comparing with random selection

Getting these results, we started to analyse the errors found by adding the five most
relevant exogenous variables from the XNMF model, comparing with 8 random selections
of five exogenous variables. In Figure (a) we show that including those five more
influential exogenous variables, our XNMF model gets the lowest error compared with
a random selection of variables. Besides, we can see that the errors converge for all
sets of exogenous variables chosen and the set of inputs with the most relevant financial
variables converges with lower errors than the others with random selection. A better
representation of these observations is made by Figure (b) where it shows all the
errors of these comparisons are demonstrating that the selection of the most relevant

variables has the lowest the error.

84 | Random Selection
== == Most Influential Variables

Errors

Epochs %104

(a) Models

Errors

More influential
7.55 I exogenous inputs

!
*

(b) Dataset

FI1GURE 5.12: How influential are exogenous macro-economic variables selected in a

data-driven way? In (a) we show the variation in approximation error by selecting five

random macro-economic variables comparing with the most influential variables. In (b)

shows that XNMF with the five more influential exogenous variables (the cross) finds
the lowest error compared with the others random set of variables as inputs.
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5.5 Summary

In this chapter, we report an empirical study comparing two methods for quantifying or
identifying the influence of macro-economic variables in financial time series: the dynami-
cal systems model using a Kalman filter followed by a sparsity inducing linear regression
on the innovation signal (Kalman Laglasso), and a matrix factorization method that
factors in exogenous information as additional terms in its reconstruction. By applying
the models to data from stock indices and the prices of their constituent markets in three
different geographical areas (UK, USA and Japan), we identify the common variables
that have a dominant influence at a macro-economic level. Some of the relationships
we identify via these models are confirmed in independent reports of previous authors.
By extending our XNMF model with sparseness constraints, we show the influence of
exogenous information in the industrial sectors. It helps to prove our second hypothesis
that exogenous information help to improve interpretability. We undertake a similar
exploration using Kalman Laglasso on cryptocurrency values where one would expect
fundamental differences due to the lack of an underlying production activity worthy of
any value or merit. We illustrate a fundamental difference between the traded values
of cryptocurrencies (such as Bitcoin) and other financial assets (such as stock indices),
in that explanatory exogenous variables of relevance are not the same between them in
the two time-scales analysed (daily and monthly values). We postulate that this is be-
cause cryptocurrency values respond primarily to trader sentiments and objectives. This
is shown by the technique of sparsity inducing regularized linear regression modelling

residual signals of an autoregressive process applied to Bitcoin and S&P 500 data.






Chapter 6
Deep Learning for Financial Data

We explore the use of two deep learning models for problems with financial data. Deep
learning may be able to detect and exploit interactions in the data that are not easy
to see in an existing financial economic theory. Multi-variate time series that arise in
financial data, for example, are likely to be driven by underlying lower dimensional latent
variables. Extracting such latent spaces can be useful in representing the data efficiently
and as a means of explaining aspects of the system from which they are generated. Here,
we first study an extension to the Variational Autoencoder model specifically cast in a
probabilistic setting to deal with positive valued data to extract a mon-negative matrix
factorization model (NMF) in a probabilistic setting (PAE-NMF'). To model financial
data, where information about some underlying macroeconomic system may be observed,
we extend the PAE-NMF model to include exogenous variables (PAE-XNMF). We present
the learning algorithm for this model and illustrate its operation on financial data of
constituents of the FTSE100 index and a set of relevant macroeconomic variables. We
show an example of the latent space detecting a sharp transition around the Brezit event
that is not readily apparent on any of the individual time series. Secondly, we implement
the Long Short Term Memory (LSTM) model that is a class of RNN for one step ahead
time series prediction on derivative option from its past values. And we aim to analyse
the LSTM gating signals in its response to changes in the underlying interest rate. And
finally we applied the dual attention mechanism to the LSTM to see if it can explains the
residual v from by exogenous variables.

6.1 Introduction

Predicting stock prices is difficult work. Many studies are trying to find an alternative
to improve the selection of input variables to achieve good performance when forecasting
with multivariate time series. Machine learning techniques for modelling multivariate
time series have been widely applied (Tkacz, 2001; |Cook and Hall, 2017; [Mahler, 2009)),

81
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including Variational Autoencoders (VAEs) (Kingma and Welling, 2013). VAEs have
become a popular generative model for dimensionality reduction. VAEs work with diverse
types of data, sequential, non-sequential (Hsu et al.,2017)), continuous, discrete
2018)), labelled and unlabelled data (Kawachi et al., 2018}, Xu et al. 2018), making them
highly powerful generative tools. Promising results have been shown in different research
domains, such as handwritten digits (Kingma and Welling}, 2013} |Salimans et al., 2015]),
CIFAR images (Gregor et al., [2015), physical models of scenes (Kulkarni et al., 2015),
segmentation (Sohn et all [2015) and predicting the future events that might happen
from static images (Walker et al., 2016]).

We adopt the VAE framework and combine it with our XNMF method by transforming
the input data with exogenous inputs. This model we call probabilistic non-negative ma-
trix factorization with exogenous information (PAE-XNMF). As XNMF is an extension
of the NMF technique, PAE-XNMF is an extension of PAE-NMF (Squires et al., 2019)
which performs NMF using an Autoencoder framework. Unlike XNMF, PAE-XNMF is

a probabilistic technique that helps to generate new financial data taking into account

exogenous information. Probabilistic methods are widely applied for analysis of financial

data, for instance using a Bayesian approach (Kim and Nelson, 1999; |Jacquier et al.,
2002 |Smets and Wouters, |2007; Kim and Nelson, [1999)). Using generative models with

deep learning to learn a representation has gained attention recently. To the best of our

knowledge, this approaches mainly use generative adversarial networks (GANs) (Good-|
fellow et al. 2014) with financial data (Jang and Lee, 2019} |Zhou et al.,|2018; Takahashil

ot ] 2010).

On the other hand, an emerging interest in the financial area is the regime-switching

model, which are reflected changes in the financial market (Assafl [2017; |Chatziantoniou|
let al., 2017; |Zhang and Chanl 2016; [Hu and Wang, 2017; [Bazzi et al., 2017). A change

in the market can be a trend in the general market because underlying movements of

an individual stock. The Market regime can be modelled by a finite-state Markov chain
which modulates the rate of return and volatility. In a regime-switching (RS) model,
the stock parameters are considered on the regimes which are limited number of states.

These regime points up states on the underlying asset, behaviours of traders, the mood

of the sharecholders and any additional economic aspect (Hamilton) 1989)). An example

of the modelling regime switching is the work of |Goutte et al. (2017) who introduced

a homogeneous continuous time Markov chain on a finite space, which represents the

regime state of volatility.

A powerful tool for capturing/modelling statistically significant properties underlying
time varying data is the Recurrent Neural Network (RNN), which are neural networks
with feedback in them. The first work to compute back-propagation for such networks
is . RNNs have formed a range of applications including Speech recogni-
tion (Robinson and Fallside, 1991)), low bit rate coding (Wu et al., [1994), EKF training
of RNN (Puskorius and Feldkamp, [1994)), stock data and expected returns
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1998) and to predict stock return with a hybrid model between ARMA model, an ex-
ponential smoothing model and RNNs (Rather et al., |2015). A particular version of
RNN introduced by Hochreiter and Schmidhuber (1997) is the Long Short Term Mem-
ory (LSTM) model. It has gating signals (input gate, output gate and forget gate) which
are introduced into the network through a memory cell that allows the neuron to choose
when to forget and when to remember things. Each memory cell is associated with every
gate that feeds into itself across time steps. This neural network is popular for sequential
data processing such as translations, sound, time series, written natural language and

handwriting recognition.

Finally, we apply attention mechanism that was created in order to make neural networks
more interpretable (Vaswani et al., 2017). Attention mechanism allows RNNs to focus
on relevant parts of series for prediction. This has been applied to sales prediction.
Chen et al| (2018]) applied dual attention to ensure sales prediction by compensating
the unknown states of influential factors in the future sales volume values and align
the upcoming trend with the most relevant one from the past. Here we extend the
application of the the DA-RNN (Qin et al.,[2017). A dual attention mechanism with two
stages that are integrated within a LSTM. The first one extracts relevant input features
and the second stage uses a temporal attention mechanism to get the most relevant
hidden states from all the time steps. In their work related to financial data, they used
the constituents of the NASDAQ index at ¢ — 1 to predict the NASDAQ index value
at time t. Their inputs NASDAQ constituents are highly correlated to the values of
the index price that they try to predict and it can not be a good example of the effect
of the attention mechanism. For that reason, we extended their work with a different
set of inputs to make predictions on the residual that was obtained by Kalman filtering
(Section , in order to improve interpretability in the model.

This chapter is organised as follows. In Section [6.2] is the explanation of the method-
ologies. In Section [6.2.3] the list of data used in our work. In Section [6.2.4] are the
experiments we have run and the results we achieved. Section has the implementa-
tion of the attention mechanism, Section [6.3.2.1 has the illustration of applying attention
mechanism with LSTM. Finally, the conclusion are stated in Section [6.4]

6.2 Implementation of PAE-XNMF

6.2.1 XNMF and AE-XNMF

The aim of XNMF (Squires et al., [2017a) is to produce the approximation V ~ W1 H; +
Ws5H, where V. € R™*" ig our input matrix with m dimensions and n data-points,
W, € R™*"™ ig a matrix with constant elements produced from some external data-

source, and W1 € R™*" H; € R"™*" and Hy € R™*" are all factorised matrices to be
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found by the algorithm. The external dimension ro depends on the choice of exogenous
data while 71, the chosen subspace size for the data, should be picked either with domain
knowledge or using some form of automated method (Squires et al.,[2017b). The external
data is expected to act as a driver to force an improved representation of the data because

we are adding prior knowledge into the NMF formulation.

The original XNMF work in Section[d]used an extended form of the multiplicative updates
of Lee and Seung (Lee and Seung, [1999) to find the factorised matrices but this method
does not allow for the use of Variational Autoencoder methods. However, it has been
shown that XNMF can be performed using an Autoencoder (Squires et al. 2019) by
imposing additional constraints onto the Autoencoder framework. We show the structure
of an Autoencoder designed to perform XNMF in Figure

Encoder ) Decoder

Input layer Hidden layer(s) Ovutput layer

FIGURE 6.1: A standard Variational Autoencoder for performing XNMF (adapted
from |Squires et al. (2019)) with one hidden layer that is a low dimensional compres-
sion of inputs variables into latent factors, which can be expressed as weighted linear
combinations of input variables. The red nodes represent the exogenous information.

A major downside of XNMF (and NMF) is that they are deterministic which means
we get no uncertainties on the lower dimensional representation, are not able to sample
new data-points from the distributions and do not have a principled method to decide
on the level of regularisation. However there are some studies that have worked with a
Bayesian treatment of non-negative matrix factorization (NMF) (Févotte and Cemgil,
2009; Schmidt et al) 2009; Mohammadiha et al., 2013, [2012). But to the best of our
knowledge, they have not been applied to financial data.

In this section we address these drawbacks by producing a probabilistic form of XNMF
using a modified Variational Autoencoder called PAE-XNMF.
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F1GURE 6.2: PAE-XNMF with stochasticity provided by the input vectors ¢; and es.
6.2.2 PAE-XNMF

The structure of the PAE-XNMF is displayed in Figure Here, we need to learn the
Encoder Networks 1 and 2 and the Decoder Network 1. The Decoder Network 2 is the
external data and remains constant throughout the training process. We do not specify
the exact nature of the encoding and decoding networks because variations are possible,

for example including multiple layers before the construction.

A VAE uses the encoding network to find the parameters of a distribution, usually a
Gaussian. However, for XNMF we need a distribution which does not contain negative
values so we utilise the Weibull distribution, as it is used in [Squires et al.| (2019). This

distribution is parametrised by k and A with a probability density function given by:

(2)" exp(—(x/A)F) it x>0
ifx<0

flz) = (6.1)

S >

We choose the Weibull distribution for the same reason as the PAE-NMF authors, namely
that it is a non-negative distribution and has a simple inverse cumulative function, which
is given by C~1(e) = A(—In(e))'/*, which is important for sampling from the distribu-

tions, as will be discussed later.

The structure of the network shown in Figure is very general we will now discuss the
specific version of this network we have used. Once the network has been trained the
flow through the network starts with an input vector v;. This input is then fed through
the encoding networks which produces four vectors ki, A1, ko and Asg; which contain

the parameters of the distributions. From k; and 1; we want to draw samples that form
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h; and equivalently for hy but we cannot do so because if we sample directly from the
distributions we cannot differentiate through the network. To get around this problem we
utilise the reparameterisation trick (Kingma and Welling, [2013)) which involves injecting
stochasticity into the network from at input node, denoted by €; and €5 in Figure [6.2
As we do not need to do backpropagation through these input nodes we have a fully
differentiable network. The two vectors h; and hs are now passed through their respective

decoder networks which produce the output, v.

When we perform backpropagation we do not update the weights of the second decoder
network as this is the external data we are inserting into the network. For the first
decoder network we set any negative values back to zero after the backwards pass as
this first decoder network is the equivalent to W1 in XNMF. The network designed in
this chapter has two matrices for each encoder network. For Encoder Network 1 we take
in an input vector, v, and perform: k; = J(ng)v) and A\; = U(W](L/\)v). Equivalently
for Encoder Network 2: kg = J(ng)v) and Ay = J(Wg‘)v). The activation function,
o, for all of these is the rectified linear unit (ReLU) which acts element-wise. The next
step is to sample from the distributions to get h; and hy which we do by performing
h; = C~(e1) = A (—In(e1))/* and hy = C~1(€2) = Aa(— In(e3))'/*2. In the decoding
layer we have two matrices for Decoder Network 1 and 2 respectively which perform:

ki = U(ng)v). The objective function we are minimising is given by:

0jb = Eq, (h; holv) (—10g(pe(vIh1, h)) + Dic (g4 (hi|v)[[p(h1)) + Dic 1 (g4 (ha|v)|[p(hz))

= gV = 917 o+ Dicr (ao(01 V) p(11)) + Dicr (a0 (o ¥) [p(h2))  (6.2)

Our implementation of PAE-XNMF using the pytorch library (Paszke et al., 2017) is
described in pseudocode in Algorithm

6.2.3 Data

We have collected financial information from December 2014 to April 2019. It consists of
the FTSE100 constituents and 16 arbitrary exogenous information that contains macro-
economic variables of UK market, others countries stock market index and currencies
exchange rate. Table shows the variables with daily values that were acquired from
Thomson Reuters Datastream Platform. The initialisation of the parameters of the
network is likely to be important. As we effectively have two networks which are merged
at the end we do not want one of the two networks to come to dominate the solution just
because of the parameter initialisation. To counter this effect we initialise the network
such that the matrices are similar in size as each other and add up to a similar result to

the average of V.
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Algorithm 4 PAE-XNMF Algorithm
Input: A matrix V € R"™*" < m observations and n constituents numbers
Initialize W1 € R™*" to random positive values
Input: A matrix Wy € R"*"2 + Exogenous macro-economic information
while epochs do

Encoding Network 1 k; = J(ng)v), Al = U(Wg)‘)v)

Encoding Network 2 kg = J(ng)v) and Ag = U(Wg)‘)v)

Sampling from the distributions using the inverse cumulative function.

h; = Ay (—1In(e1))* and hy = Ay(— In(ey))/*2

reconstruct data V = Wi(h;) + Wy(hs)
. Get e, the reconstruction error by MSE
10:  Get KLD; and KLD,, KL-divergences which perform regularisation
11:  Back-propagate loss= e, + KLD; + KLD»
12:  Update: ki A1, ko, Ao, Wy
13: end while
14: return kl,)\l,kz,)\Q, Wi, hl, h2,\7

Above, r1 and ro are the dimension reduction and number of exogenous respectively.

© ®

TABLE 6.1: The exogenous macro-economic variables

H Variables ‘ Units ‘ Variables ‘ Units H
ASR Equity Risk Premium % TR Gvt BMK BID YLD 20Y %

TR GVT BMK BID YLD 10Y % Eco Policy Uncertainty index
10 Year DS Govt. Index 1M FX Volatility GBP
GBP/USD ratio Eur/GBP ratio
YUAN/GBP ratio Yen/GBP ratio
S&P 500 USD Hang Seng HKD

Shanghai SE Yuan Gold USD/T oz
OIL USD/barrel NIKKEI 225 Yen

6.2.4 Results PAE-XNMF

We first analyse if the data generated from our PAE-XNMF model is close to the real
data. Figure shows the reconstruction of four FTSE100 constituents that were se-
lected randomly from different UK industrial sectors. It shows that PAE-XNMF method
can generate new data fairly close to the real values with the respective uncertainty
(standard deviation). Figure shows the original matrix V that is composed by all the
FTSE100 constituents and the reconstruction V by using our PAE-XNMF model. For
that reason we can state that exogenous information enhance the model for generation

of new financial data in order to prove our first hypothesis.

Table [6.2] shows the values of the matrix Hs of our model. These values are the influence
of each exogenous variables to each one of the FTSE100 constituents (the largest UK
conmpanies). Every of those stock belongs to a specific industrial sector that have been
grouped for getting the total of the number of exogenous influence. It helps to understand
the effect of the exogenous variable for the new generation. Thus, it can contribute in

the second hypothesis of improving interpretability.
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FIGURE 6.3: Reconstruction of four FTSE100 constituents. Blue lines correspond to
the real values of those constituents, the black dashed line is the reconstructed values
with the uncertainty (standard deviation) as the shaded outline with colour green. We
can see that our PAE-XNMF method can generate new data fairly close to the real

values.
Original Matrix Reconstructed Matrix
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FIGURE 6.4: Reconstruction of the matrix that is composed by all the FTSE100 con-
stituents using our PAE-XNMF model by V ~ W;H; + W)H,
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FIGURE 6.5: Nine dimensional latent space representation of the 96 FTSE100 Data

(matrix W1 in the model). The zoomed version around time samples 350 to 450 shows

a sharp discontinuity in June 2016 when the Brexit referendum took place. Such sharp
change, seen in the latent representation, is not seen elsewhere in the original data.

Figure [6.5] shows the lower dimension representation of the FTSE100 constituents ex-

tracted from Matrix W1. It can be interpreted as the underlying components that forces

the FTSE100 constituents according to |Liu, Tang| (2009). For convenience we chose the

rank value of r = 9 where r < n and n = 96 is the number of constituents. Here we
can see different effects of the Brexit referendum results announcement that happened
on day 398 (23/06/2016), where it influences some of the underlying components. In the
zoomed part shows a sharp discontinuity when this event happen. We can extract which
are those constituents that are forced for each underlying component by analysing the
matrix Hy. It can be used in the analysis of the Brexit impact, which is another topic of
research that has gained attention in the last three years. Some studies are finding a way
to avoid a negative impact and also analyse the effect of this uncertainity in the stock
market (Dhingra et al., 2016b; Ebell and Warren, 2016; Dhingra et al, 2016a; McGrattan|
land Waddle, 2017)).

Finally we compare our PAE-XNMF model with the probabilistic NMF to find if adding
exogenous information can contribute in the reconstruction of the financial data that we
want to generate after training our model. Figure shows our model getting lower
reconstruction error than the Probabilistic NMF in all the ranks values that we tested.
For clarity of illustration, we have included the learning curves taken only two values of

the ranks.
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FI1GURE 6.6: Comparison between PAE-XNMF and Probabilistic NMF. We compared
the models at two different ranks of nine (in colours blue and black, also shown expanded

in inset) and twelve (in colours green and orange). The use of exogenous information
gives a marginally lower reconstruction error in both cases.

6.3 Implementation of Recurrent Neural Network LSTM

We implement the Long Short Term Memory (LSTM) model that is a class of RNN for
one step ahead time series prediction on derivative option from its past values. And we
aim to analyse the LSTM gating signals in its response to changes in the underlying

interest rate.

We use Python framework for fast computation of mathematical expressions (Theanol

Development Team)| [2016), because it gives more freedom to compute our models. Pro-

graming this architecture was done using the library Keras (Chollet, 2015b]) with Google
TensorFlow (Abadi et al., [2016) which has many advantages such as it supports recur-

rent networks and it runs seamlessly on CPU and GPU. The training of our model is by

gradient descent using Adam (Kingma and Ba, [2014)), with a learning rate of 0.001.

6.3.1 Gating Signals Analysis

We focus on understanding the dynamic system inside of the gating signal of the LSTM.
We started asking if LSTM can detect any underlying patterns in the financial data.
For this, we decide to work with regime switching in the European and American stock
market. We are considering historical data from the European financial crisis in 2007-
2009, because the interest rate values were changing frequently, and it is our target for
the regime switching analysis. Our data is the FTSE-100 index value from that crisis

period time.

We initially analyse if a recognized model in regime detection called Markov Regime
Switching model (MRSM) can detect regime or variation on the FT'SE100. This model

was implemented using matlab toolbox Ms_Regress from (2015)). In Figure
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FI1GURE 6.7: The Markov Regime Switching model result. The colours in the back-

ground represent changes in the interest rate of the UK. In Figure are the two

states from the Markov model and in Figure are the Log-return of the FTSE100

to compare if any pattern on it is detected as well. It shows that Markov Switching

model can barely detect any variation or regimes on the FTSE100 values and can hardly
detect the changes on interest rate.

in which the different colours in the background represent changes in the interest rate
of the UK, it shows that MRSM fails to detect changes in the interest rate of the UK.
Also, it hardly detect variations in the the Log-return of the FTSE100.

LSTM gating signals also is not capable to detect the regime switching, but it in some
parts detected the changes in the interest rate. Figure [6.8] shows the the gating signals
which we analyse for this propose. Furthermore, we see that the gating signals get

significant changes on the log-return of the FTSE-100 index value.

Thus, understanding the LSTM signal may help in our second research question of getting

interpretability.

6.3.2 Dual-Stage Attention

In this section we implement the dual stage attention mechanism introduced from

(2017)). Figure shows the structure of this, which is composed of two stages of
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FI1GURE 6.8: The gating signals of the LSTM estimating the FTSE-100 index from the
financial crisis in 2007-2009. The gating signals are slightly detecting the change on
interest rate in UK which are represented in different colours in the background. Also,
the forget gate signal (colour blue) is storing in memory when the log return values are
keeping steady, meanwhile it starts to spike when big changes in log-return, which can
indicates an increase on volatility at that moment that lead to a bear market regime.
The input gates signal (colour red) is accepting or rejecting the new states values.

the dual attention recurrent neural network. First stage generates the input attention
weights a for multiple time series that are the inputs & and returns a new computed &
that was multiplied with the activations weight a.. Second stage, the temporal attention,
that represents the weight of the input information of the encoder hidden states across
all the time steps. Finally the output ¢ is the input to the decoder LSTM and y is the
output from the decoder. (This figure is taken from |Qin et al. (2017)).

The first part is an encoder, formed of a RNN, that learns to map from the input sequence

x to a feature representation
ht = f(ht_l,(lit) (63)
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FIGURE 6.9: The two stages of the dual attention recurrent neural network. (a) gen-
erates the input attention weights a for multiple time series that are the inputs « and
returns a new computed & that was multiplied with the activation weights c. (b) is the
temporal attention that represents the weight of the input information of the encoder
hidden states across all the time steps. Finally the output c is the input to the decoder
LSTM and y is the output from the decoder. (This figure is taken from

(2017))

where f is the LSTM. Then the input attention is built by referring the previous value
of the hidden state h;—_; and the cell state s.

ef = VZ tanh(Welhi_1;8:-1] + Ueack) (6.4)

where v, W and U are the parameters that are going to be learnt. And to get the

values between 0 to 1, we apply a softmax function to ef. Thus we address to output
k
& = (ajz},...,alz))T, where of = % that will update the hidden state in
=1 t

Equation [6.3]

Similarly, the decoder with temporal attention is based on LSTM, which decodes the

new input information.

li = vg tanh(Wyld;—1; si—1] + Ugh;) (6.5)
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Here also v, W and U are the parameters that are going to be learnt. The 3 represents the
relevance of the hidden encoder state h;. As it is mapped to the temporal component form
exp(l}) .

the inputs, we can compute the context vector ¢ = ZT_I Bih;, where i = — e
J= >oj=1exp(ly)

Thus we can combine the weighted context vectors with the targets as Equation [6.0]

N AT .

Ji—1 =W [g—15¢1—1]. (6.6)
Then ¢, is applied to update the decoder states:

di = fo(di—1,0t—1) (6.7)

Here f5 is the LSTM unit to then update d; as:

fr=0(Wyldi14,.,]) (6.8)

6.3.2.1 Experiment of Dual Attention on UK market data

We choose the dataset from Section [6.2.3] but adding 3 more financial indices to the input
sequence. We aim to test the dual attention mechanism on predicting the residual r of
the FTSE100 from Section Our input is composed of 19 financial time series from
the UK market with 5 time steps. We show in Figure [6.10] the prediction of the residual
by the Dual Attention mechanism. As it is explained in the work of (Qin et al.| (2017)),
Dual Attention outperforms many baselines for this work. For this work we compared
with the ARIMA model and Dual Attention got better mean square error (0.62 vs 0.76).

Thus, from this result we can consider the importance of working with multivariate time
series and how machine learning is outperforming by the inclusion of macro-economic

variables. It also contributes to answer our first research question.
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FIGURE 6.10: Prediction of the residual signal. Here we show that dual attention
mechanism is generalizing the prediction closely to the ground truth values

6.4 Summary

In this chapter, we introduced a novel method of applying probabilistic NMF on financial
data using a Variational Autoencoder with exogenous information. This model is an
extension from PAE-NMF in which the Gaussian prior of standard VAE is replaced
with the Weibull distribution to enforce non-negative values. The advantage over a
VAE is that we should see improved interpretability due to the parts based nature of
the representation formed and the inclusion of exogenous financial information. We
illustrated that our model can generate financial data by considering macroeconomic
variables and the influence of them in the UK industrial sectors. Thus, it can help to
prove the contribution of exogenous information to enhance the model, which is the aim
of our research. Also we show an example of nine latent representation in which our
model detected a sharp discontinuity around the Brexit event, which can help to extract

useful information in financial analysis. Further, we explore the use of Long Short Term
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Memory recurrent neural networks for modelling the temporal dynamics of financial
time series. A special feature of LSTM is that architecture has special circuitry to
enable forgetting the influence of distant past. This is particularly important in financial
time series which are often characterized by non-stationary behaviour. The LSTM often
responds to changes in the underlying interest rate which are important determinants of

the financial market.






Chapter 7

Conclusion and future work

7.1 Conclusion

This dissertation considered several problems in empirical finance to show how addi-
tional variables may help in improving predictions, and some insights could be drawn
from them. We addressed these problems by pricing derivatives, learning a subspace
using matrix factorization and exogenous variables, time series prediction followed by
explaining the residual using exogenous data, and designing a Variational Autoencoder,
again with side information. We also include a study of a dynamic neural network and

attempt to explain how its gating signal behaves.

In Chapter[3] we reported how additional information might help improve a non-parametric
mapping between option prices and underlying price of an asset (on which the option
contract is based). This work published by Hutchinson et al. (1994) showed a good
approximation could be derived using a radial basis function model whose inputs were
the asset price and the time to maturity only. We showed in this work that additional
data such as asset volatility, traded volume and interest rate can be included to improve
the prediction accuracy. While Hutchinson et al.’s work was on a single underlying asset
(S&P 500 index options) and simulated data, we showed here that their results hold for
a wide range of data (other indices and equity options). An interesting outcome of this
study is the relationship between the volume of an asset traded and its volatility. There
is a debate in empirical finance literature if these are correlated. In the study here, we
show that while the correlation between these is not observable directly, their influence

in pricing derivatives is significant.

In Chapter 4] we developed a matrix factorization method. We extend the method of
non-negative matrix factorization (NMF) to include known eXogenous information to
specify the XNMF model. We derive a multiplicative update algorithm for this model

and show that the resulting factors are tightly clustered as a result of using external

99
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information. This tight clustering is maintained over time. We also showed that XNMF
achieved lower reconstruction error than NMF as a result of the inclusion of exogenous

information. The factors formed deviated from the sector structure.

In Chapter [5 we studied the effect of external information on explaining the residual
in time series analysis. We model time series data using a simple autoregressive model,
estimated using a Kalman filter, and apply Lasso regression using external macroeco-
nomic variables to explain the residual signal. This identifies a small number of variables,
some of which are intuitive, that are relevant in explaining the residual. By comparing
the effect of such modelling on stock index time series and Bitcoin, we demonstrate the
fundamental difference between them, one based on underlying economic activity and
the other simply of trading behaviour. Thus, we showed that the inclusion of exogenous
macro-economic information helped to gain more interpretability for financial time series
analysis. Then we compare those selected variables with the XNMF and we found that

some of them overlap.

In Chapter [6] we introduced a probabilistic XNMF (PAE-XNMF). We extended a Vari-
ational Autoencoder (VAE) with inductive exogenous variables, replacing the Gaussian
prior with the Weibull distribution to enforce positive values. Many studies are modify-
ing the structure of the VAEs to get disentanglement. We address it by inducting the
exogenous financial information. We showed that PAE-XNMF can detect sharp changes
from the latent representation generated and a lower reconstruction error than PAE-
NMF. After this, we explored the use of recurrent neural networks, specifically LSTM,
for modelling the temporal dynamics of financial time series. We show how it often cap-
tures dynamics of the time series by analysing the states of the gating signals. The LSTM
often responds to changes in the underlying interest rate which can be an indicator for
financial use. Finally, to increase the interpretability of the LSTM on multivariate time

series, we applied the dual attention mechanism.

This our work showed that exogenous information improved performance and in some
cases helped to extract useful information when they were added into a model fitting
procedure. Thus the interpretability of machine learning models in their role on financial
time series analysis can have a better approach. We answered the research question by
the analysis of different financial problems with a range of different machine learning
models. We expect that this work carried out can be followed for new researchers to

increase the understanding of the role of machine learning in finance.

7.2 Future Work

A potential future path could be to explore the use of more machine learning methods

with others financial instruments such as bonds. This idea is jointly carrying out with
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a colleague that is also interested in the use of machine learning for financial data. We

are aiming to compare different models for these matters.

A particular interesting future work could be the analysis of PAE-XNMF (Chapter @ in
its role for anomaly detection in financial data. Anomalies are patterns with a clear devi-
ation from the normal data. They can be detected by finding the probability distribution
from the data. Then, comparing that probability distribution with a specified thresh-
old when new observation arrives. If the probability value is lower than the threshold,
we could consider as an anomaly. Normal observations tend to have a large probabil-
ity, higher than the threshold. Thus, PAE-XNMF may be used to get a new anomaly
threshold on financial data. PAE-XNMF can generate new data points, and whenever
new observations veer too far away from the bounds from the generated patterns, we can
consider that something unusual is happening, which could be an anomaly. PAE-XNMF
can be useful specially that several works with VAE in anomaly detection have prob-
lems in separating noise and real anomalies (Suh et al. 2016; [Wang et al., [2018)). Thus,
we believe PAE-XNMF' could overcome this issue thanks to the inclusion of exogenous

information.

Additionally, we recommend an extensive and very challenging work that address the
inclusion of exogenous macro-economic information in Reinforcement Learning (RL).
In RL the learning is based on trajectory samples from the Markov decision process,
state-space and transition probabilities that are not directly expressed. Reinforcement
learning is increasingly used in finance, and some of the areas applied include portfolio
optimization, optimal trade execution and market-making. In portfolio optimization,
the aim of reinforcement learning is to create an optimal portfolio when the model
receives specific factors that should be maximized (e.g. expected return) or minimized
(e.g. financial risk). In optimal trade execution the aim of RL is to create strategies
for trading (buy or sell) a financial instrument (e.g. share of stock) that maximize (e.g.
revenues) or minimize (e.g. capital used) in a fixed time period. In market-making,
RL aims to create a price setting strategy that maximizes the profit from buying or
selling stock; and minimizes the inventory risk. For example, |Grassl (2010)) has applied
reinforcement learning techniques for pricing options to write the derivatives pricing as
a Markov decision process. The pricing model can learn directly from data, and it does
not need to assume that a specific price process is followed by the underlying’s price.

Thus, we may extract a fair price, estimated from random samples generated.

In order to achieve better results, we recommend variations to the base of the standard
reinforcement learning approach. For example, by adapting regime changes via a new
researched method that keep updating the trading strategy continually through new
observations that include exogenous macro-economic information. We think that linking

the selection of relevant factors using our XNMF method may improve the performance

of RL.
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Besides, we propose a variation of reinforcement learning with a recurrent convolutional
neural network agent that evaluate an asset’s past prices, similar to |[Zhang et al.| (2017)),
for predicting time series. In that work, they formulated a RCNN agent trained with RL
for tracking videos that learn to predict bounding box locations. There is a potential in
the use of recurrent convolutional reinforcement learning that accounts for current and
previous inputs in order to get temporal correlations of the past share prices. Dynamic
decision making compared with conventional learning task, is more challenging due to
the lack of supervised information from human experts. Thus, it requires the agent to
explore an unknown environment all by itself and to make correct decisions in an online
manner simultaneously. Our agent for sequential pricing would take a sequence of the
underlying asset value of some macro-economic variables as input, and the price of an
option as the target input. Thus, at each point in time, the agent extracts representative
features from macro-economic variables, underlying assets and integrates information

over time.

In the work carried out until now we have modelled continuous variables. However,
a much finer time scale trading happen at discrete points in time. Multiple bids and
asks are available between ticks at which some equilibrium is reached, a price agreed
and a transaction occurs at that agreed price. When the market is volatile and liquid,
the rate at which trading happens will be high and at low volatility periods inter-trade
intervals may be long. The underlying market volatility, macroeconomic variables, and
sentiments may influence different assets differently, yet they may be related in behaviour.
An appropriate modelling paradigm suitable to capture the above scenario is state space
models with point process observations. Such a model consists of a slowly changing
dynamical system which is continuous in time, driving point process which are discrete
events in time. [Smith and Brown| (2003) developed a maximum likelihood approach
to estimate parameters. It avoids the somewhat artificial change to inter-event times
and handles the discrete events directly. This model assumes a first-order autoregressive
process driven by an exogenous stimulus as state dynamic and an approximate Bernoulli
process with a parameterised intensity function as its observation model. Therefore,
we recommend developing state spaces point process models for financial data. We
postulate that slowly varying underlying information, be it market sentiments or other
macroeconomic variables will drive several parallel points process during times of high
volatility trading will be frequent. We expect that an univariate state space model may

be inadequate to capture underlying state dynamics.

As we showed that exogenous macro-economic variables improved the performance of
machine learning methods and the extraction of useful information. We consider that
our work can help to clear many doubts of the influence of machine learning in financial

data and its enhancement by the inclusion of macro-variables.



Appendix A

Libraries and Tools

A.1 Programming Languages For NMF Implementations

Many publications focused on improving, adapting, extending and re-designing algo-

rithms for computing NMF. Most of them are written in Matlab.

A.1.1 Matlab

MathWorks developed Matrix Laboratory known as Matlab, which is a proprietary pro-
gramming language with multi-paradigm numerical computing environment. It eases the
manipulation of matrices, plot the data and incorporate programs of others programming
languages. Matlab has a simple implementation of divergence-reducing NMF, which is
the built-in function nnmf. It uses the multiplicative update rules (MU) |Lee and Seung
(1999) for a beta-divergence cost (including Kullback Leibler divergence |Kullback and
Leibler| (1951) and Froebenius distance) and alternating least squares (ALS) [Paatero and
Tapper| (1994). This function receives n x m matrix V and factorizes into 2 matrices
W and H. This algorithm converges to r lower rank solution. [W,H] = nnmf(V, k)
is the in-built function provides in Matlab. In Cemgil (2009) is shared a variational
Bayes implementation on Matlab, It works for Kullback-Leibler divergence. Further-
more in [Cichocki et al| (2006) is introduced a toolboxes to implement NMF with with
image data and signal processing. It provides Multiplicative update, projected gradient,
conjugate gradient, exponentiated gradient, and quasi-Newton implementations. Addi-
tionally, |Hoyer| (2004) contributes with a Matlab package which can perform a projected
gradient algorithm with sparseness. There are other packages that provides Matlab codes
of fast Newton-type NMF methods Kim et al.|(2007), that gives two projected gradient
methods for NMF [Lin (2007)), and finally code of Bayesian NMF and sparse NMF with
least squares in [Schmidt and Laurberg| (2008).
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Al1l2 R

A free alternative similar to Matlab is R programming language. It provides environment
for statistical computing and graphics, which has increased in popularity in recent year.
Implementation of a framework for NMF algorithms in R package is found in |Gaujoux
and Seoighe| (2010). Which contains standard algorithms and it ease the implementation
of new methods into a common framework. The last updated version is from March [Gau-
joux and Seoighe (2018). R provides the function nmf to run NMF algorithms, which
requires 4 parameters: nmf (x,rank,method,seed, ...). Where x correspond to the tar-
get matrix, rank is the factorization rank, method the algorithm to be used for the

factorization, and seed is the method for computing the starting point.

A.1.3 Python

NMF can be implemented on an interpreted high-level programming language, which
is Python. It provides an automatic memory management with multiple programming
paradigms. It has many comprehensive standard libraries. The code in Python to
compute NMF can be found in the library provides in [Janecek et al. (2012), and also
in |Lin| (2007). On the other hand, in Battenberg and Wessel (2009) was analysed the
performance of parallel NMF in Python. Also in this programming language can used
OpenMP for shared-memory multi-core systems and CUDA for many-core graphics pro-
cessors. A highly used library in python is Scikit-Learn Pedregosa et al. (2011)), also can
compute NMF on Python. This library use sklearn.decomposition. NMFE' to find the two

non-negative matrices (W,H) which approximates the non-negative matrix V.

A.1l4 C/C++

C is an imperative computer programming language where NMF can be implemented.
This language supports structured programming, recursion and lexical variable scope.
For implementation of NMF, C provides a high performance library called libNMF,
which is computationally efficient |Janecek et al.| (2012)). It consists of external routines
from Basic Linear Algebra Subprograms (BLAS), Linear Algebra package (LAPack) and
ARPack. It can perform central vector and matrix operations by efficient building block
provides. Furthermore, Another C++ library that provides NMF algorithms and can ex-
ploit the perfomance gains is introduced in |Sra and Dhillon| (2006). The algorithms from
this library comprise the basic MU algorithm, ALS and MY in a hybrid form, variants of
ALS algorithm, and 2 algorithms that consists on Bregman divergence. Also in [Greene
et al.| (2008) is the implementation of more NMF algorithms that can be applied for hi-
erarchical clustering. Lastly, in Wang et al.| (2006)) is shared a code in C++ to compute

least squares non-negative matrix factorization (LS-NMF).
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