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A B S T R A C T

Local-scale climate change adaptation is receiving more attention to reduce the adverse effects of climate change.
The process of developing adaptation measures at local-scale (e.g., river basins) requires high-quality climate in-
formation with higher resolution. Climate projections are available at a coarser spatial resolution from Global Cli-
mate Models (GCMs) and require spatial downscaling and bias correction to drive hydrological models. We used
the hybrid multiple linear regression and stochastic weather generator model (Statistical Down-Scaling Model,
SDSM) to develop a location-based climate projection, equivalent to future station data, from GCMs. Meteorolog-
ical data from 24 ground stations and the most accurate satellite and reanalysis products identified for the region,
such as Climate Hazards Group InfraRed Precipitation with Station Data were used. The Soil Water Assessment
Tool (SWAT) was used to assess the impacts of the projected climate on hydrology. Both SDSM and SWAT were
calibrated and validated using the observed climate and streamflow data, respectively. Climate projection based
on SDSM, in one of the large and agricultural intensive basins in Ethiopia (i.e., Awash), show high variability in
precipitation but an increase in maximum (Tmax) and minimum (Tmin) temperature, which agrees with global
warming. On average, the projection shows an increase in annual precipitation (>10%), Tmax (>0.4 °C), Tmin
(>0.2 °C) and streamflow (>34%) in the 2020s (2011–2040), 2050s (2041–2070), and 2080s (2071–2100) un-
der RCP2.6-RCP8.5. Although no significant trend in precipitation is found, streamflow during March–May and
June–September is projected to increase throughout the 21 century by an average of more than 1.1% and 24%,
respectively. However, streamflow is projected to decrease during January–February and October–November by
more than 6%. Overall, considering the projected warming and changes in seasonal flow, local-scale adaptation
measures to limit the impact on agriculture, water and energy sectors are required.

© 2020

1. Introduction

Local-scale climate change adaptation is receiving more attention to
reduce the adverse effects of climate change on sectors such as agricul-
ture and water resources. Globally, climate change is becoming one of
the major challenges for achieving food, energy and water security and
the impact is high in developing countries due to their limited adap-
tive capacity and poor management of environmental resources (Ad-
hikari et al., 2015; Niang et al., 2014). As a result of variability and
change in climate, extreme events are becoming more frequent with a
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significant impact on different sectors such as agriculture, energy and
food systems (Brown and Funk, 2008; IPCC, 2013). Under global
warming, the hydrological cycle is expected to intensify which will re-
sult in frequent floods and droughts affecting the ecosystem services and
water resources (Haile et al., 2020; Wu et al., 2013). According to
Wang et al. (2019), the direct impact of climate change on the hy-
drological cycle is due to an increase in temperature and high variabil-
ity, particularly inter-annual variability, and shift in rainfall at different
scales.

During the last few decades, globally and in Africa temperature has
increased by about 0.72 °C (IPCC, 2013) and more than 0.5 °C, respec-
tively and it was significant during the last three decades (Adhikari
et al., 2015). In East Africa, maximum and minimum temperature ob-
served after 1990 and 2000, respectively are warmer than the mean
of the period from 1979 to 2012. Temperature extremes, which cause
a significant impact on the environment, showed an increase in warm

https://doi.org/10.1016/j.scitotenv.2020.140504
0048-9697/© 2020.
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(e.g., warm days and summer days) and decrease in cold (cold nights
and cold spell duration) indices (Camberlin, 2017; Cattani et al.,
2018; Gebrechorkos et al., 2018a). Climate projections in East Africa
and globally also show an increase in temperature and high variabil-
ity in rainfall, which might cause a significant impact on the hydro-
logical cycle and lead to extreme events (e.g, heavy rainstorms, floods,
hurricanes and droughts) will be more frequent (Gebrechorkos et al.,
2019b; Girvetz et al., 2019; IPCC, 2013). Hence, considering the cur-
rent and future changes in climate development of adaptation measures
is urgently needed to minimize the impact on agriculture, on which
more than 80% of the people in East Africa depend (FAO, 2014), but
also on water resources and energy sectors.

Hydrological impacts of climate change on a basin and water-
shed-scale are typically assessed using climate projections based on dif-
ferent climate change scenarios (e.g., Guo et al., 2020; Luo et al.,
2013; Schnorbus and Cannon, 2014). The typical approach is to use
climate change projections from Global Climate Models (GCMs) driven
by defined emission scenarios identifying paths of radiative forcings or
greenhouse gas emissions. Climate projections from GCMs provide the
best possible information to assess changes and variability in climate on
a global scale (IPCC, 2007, 2013). However, the output from GCMs
is spatially too coarse (>100 km) to be used in hydrological models
to assess climate change impacts at a local and regional scale (e.g.,
watershed) and it is associated with large uncertainties (Luo et al.,
2013). Therefore, climate projections from GCMs require spatial down-
scaling before application in sector models such as hydrological model-
ling (Gutmann et al., 2012; Tavakol-Davani et al., 2012). Appli-
cation of GCMs, in addition to the coarse resolution, in impact assess-
ment studies is limited due to large biases, errors, and uncertainties in
representing future and current climate, particularly the accuracy is low
at a local and regional scales (Gebrechorkos et al., 2019b; Joetzjer
et al., 2013; Lutz et al., 2016). However, impact assessment mod-
els (e.g., hydrological models) require high-resolution climate data prod-
ucts, equivalent to future station data, downscaled from GCMs based
on field-based ground observations (Wilby and Dawson, 2013). To
develop a high-resolution climate projection from GCMs, downscaling
methods have been introduced (Coulibaly et al., 2005; Wilby and
Dawson, 2004).

Downscaling techniques classified as dynamical (regional climate
modelling) and statistical methods are used to bridge the resolution gaps
between GCMs and impact models by transferring change in large-scale
climate variables (e.g., mean sea level pressure) to local-scale variables
(e.g., precipitation). According to Fowler and Wilby (2007), statisti-
cal downscaling methods identify a potential source of bias in climate
models and improve the reliability of simulated changes in climate. Sta-
tistical methods, compared to dynamical models, are more appropriate
when station data for impact assessment or extreme events are required
and resources are limited (Goodess et al., 2012). In East Africa, the
accuracy of dynamically downscaled data (compared to station data) is
very low (e.g., low correlation and high errors and biases) while statis-
tically downscaled data showed lower biases when compared to dynam-
ical models and GCMs (Gebrechorkos et al., 2018b, 2019b; Mejia
et al., 2012). Mejia et al. (2012) concluded that GCMs cannot be ex-
pected to accurately represent future climate changes at a local scale as
they are designed for assessing climate variability and climate changes
impacts on a global scale.

Statistical downscaling models, on the other hand, produce daily
weather series which are more appropriate for impact assessment mod-
els such as hydrological models (Brown and Funk, 2008; Khan and
Coulibaly, 2009). The application of statistically downscaled climate
projections in hydrological models is considered as the most reliable
method to assess the impact of climate change in hydrology and for
projecting a future change in climate on a regional and local scale
(Schnorbus and Cannon, 2014). Considering the reliability and suit

ability of the statistical downscaling models in hydrological modelling,
in this study, the Statistical DownScaling Model (SDSM) (Wilby and
Dawson, 2004) was used to downscale projections from a GCM and
three Representative Concentration Pathways (RCPs; RCP2.6, RCP4.5,
and RCP8.5). SDSM is a hybrid of a stochastic weather generator and
transfer functions (Wilby and Dawson, 2004) because large scale vari-
ables (circulation patterns and atmospheric moisture) are used to condi-
tion predictands (local climate variables) and artificially inflate the vari-
ance and improve the downscaled data (Wilby and Dawson, 2013).
SDSM is one of the most widely used downscaling models for precipita-
tion and temperature and its performance is higher than other weather
generators (Hashmi et al., 2011; Hassan et al., 2013). Moreover,
SDSM possesses higher skills in generating daily rainfall characteristics
(e.g., wet and dry days), maximum and minimum temperature and in-
ter-annual climate variability compared to other statistical downscaling
methods such as weather generators (Wilby and Dawson, 2004; Has-
san et al., 2013; Liu et al., 2015; Tryhorn and DeGaetano, 2011;
Liu et al., 2011; Behera et al., 2016). We focused on the Awash River
basin as one of the most agricultural intensive and economically impor-
tant basins in Ethiopia. Due to the limited availability of ground obser-
vation from field-based meteorological stations, we used additional cli-
mate data products (i.e., based remote sensing and reanalysis data) rec-
ommended for the region after a comprehensive data evaluation in East
Africa (Gebrechorkos et al., 2018b) and sub-basins of Ethiopia and
Kenya (Ayugi et al., 2019; Basheer and Elagib, 2019).

In order to assess the added values of the additional climate data
products in hydrological modelling, the hydrological model Soil Water
Assessment Tool (SWAT) was used. The model is calibrated and vali-
dated with and without the additional datasets. In addition to providing
a detailed analysis of the hydrological changes, the result will help effec-
tive management and planning of water resources and to accurately as-
sess the timing and volume of future streamflow in the basin, which has
hitherto not been assessed in a detailed manner. Limited studies inside
and around the basin (Berhe et al., 2013; Tadese et al., 2019) argued
that the current and future climate change might worsen the water avail-
ability for irrigation with an increasing frequency of dry spells. Hence, it
is recommended to develop adaptation and management strategies and
methods to improve water allocation systems, particularly during dry
seasons. The result will help in designing hydrological structures such
as dams and river diversions and develop sustainable and site-specific
adaptation measures to reduce the impact of climate change on agricul-
ture, energy and other sectors.

2. Material and methods

2.1. Study area

The study was conducted in the Awash basin located in the north-
eastern part of Ethiopia between longitudes 37.8°E and 41.3°E and lat-
itudes 7.89°N and 11.87°N (Fig. 1). The Awash basin is one of the 12
largest river basins in Ethiopia with a total area of about 110,000 km2

of which 61,032.58 km2 are considered in this study due to the lim-
ited availability of climate and hydrological data for model calibra-
tion and validation. According to Ayenew et al. (2008), the origin
of the basin is from the Shewa highlands with an altitude of about
3000 m.a.s.l. Awash is one of the most economically important river
basins in Ethiopia with an irrigation area of about 70% of the region's
agricultural land (Hirpa et al., 2009). This is one of the most utilized
and early developed basins in terms of applications of modern agricul-
ture systems (Berhe et al., 2013). The basin hosts more than 18 mil-
lion people, mostly smallholder farmers (Taye et al., 2018), depen-
dent on the agriculture sector which makes water management, particu-
larly during the dry season, very important. The drier and wetter (main
rainy seasons) months are January–February (JF) and October–Decem
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Fig. 1. Location map of the Awash river basin and ground stations; the polygons are hydrological basins.

ber (OND) and March–May (MAM) and June–September (JJAS), respec-
tively. OND and MAM are also known as the short and long rainy season
(Taye et al., 2018).

Due to the diverse topography, with elevation ranging from
3600 m.a.s.l in the western part to 250 m.a.s.l in the eastern part, the
climate, particularly seasonal rainfall, is highly variable. In addition,
seasonal rainfall distribution in the basin is highly influenced by the
movement of large scale climate variables such as the Inter-Tropical
Convergence Zone (ITCZ). The area is characterized mainly by two wet
seasons starting from March to May (spring) and July–September (sum-
mer) (Berhe et al., 2013). The average annual temperatures of the
basin range from 16.7 °C in the upper part of the basin around Addis
Ababa to 29 °C in the eastern part around Djibouti. Moreover, the av-
erage annual rainfall ranges from 200 to 1600 mm in the eastern parts
around Afar depression and the highlands in the western part of the
basin, respectively (Ayenew et al., 2008).

2.2. Datasets

In this study, multiple datasets, climate and hydrological data, from
different sources were used. Observed daily rainfall and maximum and
minimum temperature (Tmax and Tmin) from 24 field-based meteoro-
logical stations obtained from the National Meteorological Agency of
Ethiopia and daily and monthly streamflow data from Ethiopian Min-
istry of Agriculture were used. Compared to the basin size and complex
topography, the number of stations is very limited to develop a repre-
sentative hydrological model and we used 31 additional data, equiva-
lent to station data, extracted from satellite- and reanalysis based cli-
mate data products (precipitation, Tmax, and Tmin). For East Africa,
we have evaluated multiple climate data products on daily-monthly
time scales for application in hydro-climate studies in areas where
ground station data is limited (Gebrechorkos et al., 2018b). From
the evaluation, two datasets, the Climate Hazards Group InfraRed Pre-
cipitation with Station data (CHIRPS (Funk et al., 2015)) and Ob-
servational-Reanalysis Hybrid (ORH (Sheffield et al., 2006)), were
found the most accurate datasets for precipitation and Tmax and Tmin,

respectively. Moreover, wind, solar radiation, and relative humidity
were used from the National Centers for Environmental Prediction Cli-
mate Forecast System Reanalysis (NCEP-CFSR, https://rda.ucar.edu/
pub/cfsr.html).

CHIRPS is a quasi-global satellite-based precipitation product devel-
oped for managing and monitoring of extreme events (e.g., droughts)
and trend analysis (Funk et al., 2015). The product is available at a
high spatial resolution (0.05°) and multiple time scales (daily-monthly)
from 1981-present. CHIRPS is freely available at the Climate Hazards
Center University of California, Santa Barbara (CHG; ftp://ftp.chg.ucsb.
edu/pub/org/chg/products/CHIRPS-2.0). The product is developed
from a 0.05° satellite imagery, Climate Hazards Center's Precipitation
Climatology version 1 (CHPclim), and ground station data. In East
Africa, CHIRPS is used as input in hydrological modelling and climate
projection to assess current and future hydro-climate changes and cli-
mate change trend analysis (Fenta et al., 2017; Funk et al., 2015;
Gebrechorkos et al., 2019b).

ORH also called Princeton Global Forcings (PGF), is a widely used
global climate dataset developed by spatial and temporal downscaling
of the most widely used reanalysis, National Centers for Environmen-
tal Prediction–National Center for Atmospheric Research (NCEP–NCAR),
data into different spatial (up to 0.1°) and temporal resolution (up
to 3-hourly). Multiple products are included in the development of
ORH such as Tropical Rainfall Measuring Mission (TRMM), Global Pre-
cipitation Climatology Project (GPCP) and ground observations. The
data is corrected for biases and random errors and temporal in-homo-
geneities are removed using gap-filled and quality controlled ground
stations data (Chaney et al., 2014; Sheffield et al., 2006). The
data is available at multiple time scales and spatial resolution from
the Terrestrial Hydrology Research Group, Princeton University (http://
hydrology.princeton.edu/data.pgf.php). In addition to the climate data,
observed daily streamflow data from five stations, for model calibra-
tion and validation, were obtained from the Global Runoff Database
(GRDC)–Bfg (Global Runoff Data Centre, 2019) for the period
1990–2009. GRDC is an international hydrological data archive (https:
//www.bafg.de/

https://rda.ucar.edu/pub/cfsr.html
https://rda.ucar.edu/pub/cfsr.html
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0
http://hydrology.princeton.edu/data.pgf.php
http://hydrology.princeton.edu/data.pgf.php
https://www.bafg.de/GRDC/EN/01_GRDC/
https://www.bafg.de/GRDC/EN/01_GRDC/
https://www.bafg.de/GRDC/EN/01_GRDC/
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GRDC/EN/01_GRDC/) designed to support scientists assess global
changes in climate and its risks and impacts on the environment.

The NCEP-CSFR is the third generation high resolution (~38 km) re-
analysis dataset available from 1979 to 2014 in SWAT file format at the
Global Weather Data for SWAT (https://globalweather.tamu.edu). The
product is based on a coupled atmosphere-ocean-land surface-sea ice
system designed to provide the best estimate of the global domain and it
was found to be a very good, as good as and better than models forced
by station data, product for hydrological modelling in data-sparse and
different hydroclimate regions such as in Ethiopia and USA (Dile and
Srinivasan, 2014; Fuka et al., 2014). Due to the availability of the
data at a high spatial and temporal resolution, it provides an opportu-
nity to develop representative hydrological modells in un-gauged basins
and to advance real-time hydrological forecasting (Fuka et al., 2014).
In this study, therefore, 130 data points covering the basin are extracted
from the NCEP-CSFR for wind speed, solar radiation, and relative hu-
midity, which is unavailable in the study area.

Further, we used high resolution (20-m) land use map developed
by the European Space Agency (ESA, http://2016africalandcover20m.
esrin.esa.int/) based on Sentinel-2A satellite observations. The land-use
map shows that a large part of the basin is used for agriculture. Besides,
the 30-meter Shuttle Radar Topography Mission (SRTM, http://srtm.
csi.cgiar.org/srtmdata/) elevation data (DEM) from the CGIAR - Con-
sortium for Spatial Information (CGIAR-CSI) and the 30 arc-second soil
data (Fischer et al., 2008) from the Food and Agriculture Organization
(FAO) Harmonised world soil database (http://www.fao.org/fileadmin/
user_upload/soils/HWSD%20Viewer/HWSD.mdb) were used. The DEM
shows an elevation from 394 m.a.s.l (around the outlet) to 4201 m.a.s.l
in the western part of the basin. Moreover, the soil and land use maps of
the basin show 17 types of soil and 9 land use classes, respectively.

2.3. Statistical downscaling of global climate projection

To develop a station based climate projection and assess the possi-
ble impacts of future climate on the hydrology, the most widely used
Statistical Down-Scaling Models (SDSM) (Wilby and Dawson, 2004),
was used. SDSM, also known as a hybrid of transfer function and sto-
chastic weather generators, enables the synthesis of daily weather se-
ries in places where ground observation is available for model calibra-
tion and validation. The weather generator in SDSM allows to produce
up to 100 ensembles of daily series of climate variables for the his-
torical (e.g., 1961–2005) and future (e.g., 2006–2100) climate depend-
ing on the length of input variables. In this study, we used the mean
of 20 ensembles. Downscaling in SDSM is done by developing a statis-
tical relationship between large-scale (predictors) and local-scale (pre-
dictand) climate variables. Predictors are variables that have a predic-
tive skill for a given predictand (Wilby and Dawson, 2004). In this
study, we used all the 26 predictors developed based on the NCEP (Na-
tional Centers for Environmental Prediction) reanalysis data for histor-
ical (1961–2005) and second-generation Canadian Earth System Model
(CanESM2) for the historical and future (2006–2100) climate. For fu-
ture climate, the predictors are available under three RCPs (RCP2.6,
RCP4.5, and RCP8.5). The predictors were obtained from the Cana-
dian Climate Data and Scenarios (http://climate-scenarios.canada.ca/
?page=statistical-downscaling), which are available at a spatial resolu-
tion of about 2.81°. The predictor values approximately correspond to
the centre of the GCM grid-box and the study area lies in four GCM grid
boxes. The NCEP and CanESM2 predictors were used for model calibra-
tion (1961–1990) and validation (1991–2005) and future projection, re-
spectively. A list of the predictors is provided in the supplement (ST. 1).

In SDSM the observed data is used to screen the predictors for a par-
ticular predictand (e.g., precipitation) at a give location. The predictors

are selected based on the correlation and partial correlation matrix and
probability value (P-value, which is lower than 0.05 indicating the rela-
tionship is significant). Finally, selected predictors are used to calibrate
the model at monthly, seasonal and annual time-scale depending on the
length of the observed data. The performance of SDSM in synthesizing
the current climate was evaluated against the observed data using differ-
ent statistical methods such as correlation and bias analysis. The down-
scaled data, for East Africa, is freely available from 1961 to 2005 (cur-
rent climate) and 2006–2100 (future climate) under RCP2.6, RCP4.5,
and RCP8.5 (Gebrechorkos et al. (2019c), https://doi.org/10.6084/
m9.figshare.c.4282226) and it is used for climate change and impact as-
sessment studies in basins of East Africa (Gebrechorkos et al., 2019a,
2019b).

2.4. Hydrological model setup

The Soil Water Assessment Tool (SWAT) model, particularly the Ar-
cGIS extension of SWAT (ArcSWAT), was used to assess the current and
future streamflow changes in the Awash basin. SWAT is a spatially dis-
tributed, process- and physically-based, and a continuous-time model
designed to simulate quantity and quality of surface and sub-surface wa-
ter on a daily time scale and predict the environmental impacts of cli-
mate change and land use and management practices (Neitsch et al.,
2011). The model can be used in very large basins with different man-
agement practices in a very efficient manner (both time and cost) and its
efficiency (e.g., running time) allows assessing long term impacts with-
out spanning over several decades (Neitsch et al., 2011). In a given
watershed, SWAT uses HRU's (hydrological response units) classified by
a specific soil type, land cover, and slope class, which describes the spa-
tial heterogeneity within the catchment area. According to Bosch et al.
(2011), the model is effective in predicting hydrological variables and
sediment yield in a range of watersheds and different characteristics.
The hydrological variables simulated by SWAT include streamflow, sed-
iment yield, evapotranspiration, groundwater recharge, and soil-water
for each HRU based on the water balance equation (Eq. (1)).

(1)

For a given time (e.g., day), SW0 and SWt are the initial and final
soil water content (mm), Rday is daily precipitation (mm), Qsurf is surface
runoff (mm), Ea is Evapotranspiration (mm), wseep is seepage loss (mm)
and Qgw is groundwater flow (mm) (Neitsch et al., 2011).

2.5. Model calibration and evaluation

In data-sparse regions, such as countries of East Africa, developing
a representative hydrological model (e.g., in generating the observed
streamflow) is very challenging but it is a prerequisite to accurately as-
sess the possible impacts of future climate. In this study, therefore, we
used a combination of datasets to calibrate and validate the hydrolog-
ical model. As explained in Section 2.1, in addition to the field-based
ground stations, we added 31 data points, equivalent to station data,
for precipitation (from CHIRPS) and Tmax and Tmin (from ORH) to im-
prove the hydrological model accuracy during both calibration and val-
idation. The data points were extracted based on the method described
by Gebrechorkos et al. (2018b), i.e., area average instead of pixel
value, which showed a higher correlation and lower bias and errors
when compared to station data.

For model calibration and validation, the observed daily and
monthly streamflow data were dived into two periods; 1990–2000 and
2001–2009, respectively. To assess the added values of the additional
climate datasets and evaluate the model performance, the most widely

https://www.bafg.de/GRDC/EN/01_GRDC/
https://globalweather.tamu.edu/
http://2016africalandcover20m.esrin.esa.int/
http://2016africalandcover20m.esrin.esa.int/
http://srtm.csi.cgiar.org/srtmdata/
http://srtm.csi.cgiar.org/srtmdata/
http://www.fao.org/fileadmin/user_upload/soils/HWSD%20Viewer/HWSD.mdb
http://www.fao.org/fileadmin/user_upload/soils/HWSD%20Viewer/HWSD.mdb
http://climate-scenarios.canada.ca/?page=statistical-downscaling
http://climate-scenarios.canada.ca/?page=statistical-downscaling
https://doi.org/10.6084/m9.figshare.c.4282226
https://doi.org/10.6084/m9.figshare.c.4282226
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used statistical methods such as the Nash-Sutcliffe efficiency (NSE), coef-
ficient of determination (R2) and percent of bias (Pbias) were used. NSE
(Eq. (2)) is a normalised statistics, ranges from −∞ to 1, used to indicate
the relative value of residual variance compared to the variance of the
observed data and values close to one shows a perfect match of the mod-
elled with the observed data (Nash and Sutcliffe, 1970). R2 (Eq. (3))
is the square of the correlation coefficient between the observed and
modelled data and values close to one shows the ability of the model to
accurately predict the observed values. The Pbias (Eq. (4)), on the other
hand, measures the tendency of the model values to be smaller (underes-
timation) or larger (overestimation) than the observed values and values
close to zero indicate the most accurate model simulation.

(2)

(3)

(4)

where x and y and and are modelled and observed and mean mod-
elled and observed streamflow, respectively, N is the number of data
pairs. In addition to the SWAT calibration helper, the SWAT Calibration
and Uncertainty Programs (SWAT-CUP) (Abbaspour, 2015) was used
during calibration, validation, and uncertainty analysis.

3. Results

3.1. Statistical downscaling using SDSM

The performance of SDSM in synthesizing the observed data from
24 ground stations and 31 data points extracted from CHIRPS and ORH
was evaluated using the methods included in SDSM and described in
Section 3.3. For the total 55 points, the predictors were screened 4290
times and the model was calibrated and validated 165 times (55 sta

tions * 3 variables). For this basin, zonal wind component and specific
humidity were found as the most common predictors for precipitation,
T-max and T-min. In general, for a single station, we found 2–6 predic-
tors with high correlation and statistically significant (P-value <0.05).
For station Addis-Abeba, for example, the following predictors were
selected: ncepp1_ugl (1000 hPa Zonal wind component), ncepp5_ugl
(500 hPa Zonal wind component), nceps500gl (500 hPa Specific hu-
midity), ncepp1thgl (1000 hPa Wind direction), ncepshumgl (1000 hPa
Specific humidity), and ncepp850gl (850 hPa Geopotential). They were
found to show a correlation of greater than 95% (Fig. 2) for monthly
values. The model captures very well precipitation during March–May
(long-rainy season) and October–December (short rainy season) but
shows under and overestimation during June–September (locally called
Kiremt), respectively (Fig. 2). In general, the selected predictors for all
the stations show a monthly correlation of greater than 87% during the
calibration (1961–1990) and validation (1991–2005) periods. Due to the
complex topography of the study area, selected predictors vary from
place to place. Compared to Tmax and Tmin, the correlation is lower for
precipitation, particularly in stations with fewer number observations
during the calibration and validation periods.

3.2. Added values of satellite and reanalysis based climate datasets in
hydrological modelling

We have used satellite and reanalysis based precipitation and tem-
perature datasets in the data-sparse part of the basin to improve the ac-
curacy of the hydrological model and to develop a location-based cli-
mate projection. To assess the added values on the hydrological model,
we compared the calibration and validation results of using only the ob-
served data from 24 stations and with the additional 31 data points.
The results show an increase in model accuracy with an increase in
R2 and NSE and decrease in Pbias in the five hydrological stations
used (Table 1). For example, at station Melka-Kuntrea the model with-
out and with the additional data showed an R2 (NSE) of 0.67 (0.67)
and 0.86 (0.84), respectively. In addition, the model bias is decreased
from 13.9% to 12.5% when using more information. Moreover, the
mean monthly simulated flows at Melka-Kuntrea (Hombole) improved
from 21 m3/s (27 m3/s) to 24.6 m3/s (47.2) while the observed flow
is 26.8 m3/s (45 m3/s). Even though the model performance decreases,

Fig. 2. Comparison of observed (Obs) and modelled (SDSM) monthly precipitation and monthly average Tmax and Tmin during 1961–2005 for station Addis-Abeba.

Table 1
Evaluation of model performance with and without using additional climate data during calibration and validation.

Stations Area (km 2) Location Average annual flow (m 3/s) Calibration (without) Calibration (with) Validation (with)

lat lon R 2 NSE Pbias R 2 NSE Pbias R 2 NSE Pbias

Melka-Kuntrea 4456 8.7 38.6 390 0.67 0.67 13.9 0.86 0.84 12.5 0.72 0.62 29.1
Hombole 4656 8.4 38.8 420 0.59 0.31 64.8 0.79 0.75 26.3 0.69 0.58 67.1
Metehara 16,416 8.8 39.9 550 0.33 0.28 75.6 0.47 0.42 13.5 0.39 0.33 9.3
Melka-Selki 21,520 9.4 40.1 610 0.21 0.19 69.8 0.49 0.4 28.5 0.38 0.31 23.2
Tendaho 62,088 11.7 41 860 0.19 0.11 79.2 0.39 0.37 55.7 0.38 0.36 66.4
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due to limited hydrological information, with an increase in the
drainage area, it showed an improved R2 and NSE and decrease in Pbias
with additional climate data both during calibration and validation. At
station Tendaho (outlet) both NSE and R2 increased from 0.19 and 0.11
to 0.39 and 0.35, respectively and Pbias decreased from 79.2 to 55.7.
During validation, similar to calibration, the models showed high R2 and
NSE values and lower bias in all the hydrological stations with the ad-
ditional data. Overall, the results show an improved model performance
when additional climate data with high spatial and temporal resolution
and accuracy are used.

3.3. Projected changes in climate and streamflow

To assess the possible changes in climate (precipitation, Tmax, and
Tmin), the period 1961–1990 was used as baseline (reference) period
and anomalies were computed, as a departure from the mean, for each

variable. For analysis, the projection period is divided into the 2020s
(2011–2040), 2050s (2041–2070), and 2080s (2071–2100). The results
show an increase in Tmax and Tmin and precipitation in large parts of
the basin (Figs. 3–6). In the 2020s, the basin Tmax will be warmer
(up to 1.45 °C, particularly in the southwest) and colder (up to −0.3 °C)
than during the baseline period under the RCPs with a higher change
under RCP8.5 compared to RCP2.6 and RCP4.5 (Fig. 3). Similar to the
2020s, Tmax will be warmer (up to 2.7 °C) compared to the baseline
period in the southwestern part of the basin in the 2050s and will con-
tinue to increase (up to 3.7 °C) in the 2080s. Taking the basin average
(Fig. 6), Tmax will be higher than during the baseline period in the
2020s, 2050s, and 2080s. In the 2020s, Tmax is projected to increase by
an average of 0.44 °C, 0.46 °C, and 0.47 °C under RCP2.6, RCP4.5, and
RCP8.5, respectively. In addition, the change in Tmax will be higher in
the 2050s (2080s) by 0.57 °C (0.54 °C), 0.67 °C (0.76 °C), and 0.88 °C
(1.30 °C) compared to the baseline period.

Fig. 3. Projected changes in Tmax (°C) in 2020s (right), 2050s (middle), and 2080s (left) under RCP2.6 (upper), RCP4.5 (middle), and RCP8.5 (lower).
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Fig. 4. Projected changes in Tmin (°C) in the 2020s (left), 2050s (middle) and 2080s (right) under RCP2.6 (upper), RCP4.5 (middle) and RCP8.5 (lower).

Similar to the projected change in Tmax, Tmin will be higher than
the baseline period in large parts of the basin (Fig. 4). In the 2020s,
large parts of the basin will be warmer (up to 0.65 °C) than the baseline
period. Tmin will continue to increase in the 2050s (up to 1.6 °C) and
2080s (up to 2.05 °C). Compared to the 2020s and 2050s, the change
in Tmin is higher in the 2080s, particularly under RCP2.6 and RCP8.5.
Taking the basin average (Fig. 6), Tmin in the 2020s will be warmer
than the baseline period by 0.19 °C, 0.18 °C, and 0.21 °C under RCP2.6,
RCP4.5, and RCP8.5, respectively. Similarly, Tmin in the 2050s and
2080s will increase by more than 0.22 °C, 0.28 °C, and 0.36 °C under
RCP2.6, RCP4.5, and RCP8.5, respectively.

The average annual precipitation show an increase, compared to
the baseline period, in large parts of the basin in the 2020s, 2050s
and 2080s under RCP2.6, RCP4.5, and RCP8.5 (Fig. 5). In the 2020s,
the average annual precipitation will increase up to 310 mm and will
continue to increase in the 2050s (up to 450 mm) and the 2080s (up

810 mm). The projected change in precipitation is higher in the 2080s
compared to 2020s and 2050s, particularly under RCP8.5 around Koka
dam and eastern part of Tendaho reservoir. Taking the basin average
(Fig. 6), annual precipitation will be higher than it was during the
baseline period by 10%, 11.7% and 13.4% under RCP2.6, RCP4.5 and
RCP8.5, respectively. In addition, the average annual precipitation in
the basin will increase by 16%, 18% and 25.8% under RCP2.6, RCP4.5
and RCP8.5, respectively in the 2050s. In the 2080s, the basin will
be much wetter than the baseline period by 14%, 22% and 56% un-
der RCP2.6, RCP4.5 and RCP8.5, respectively, which is higher than the
2020s and 2050s.

In line with the projected increase in precipitation, streamflow is
projected to increase in the 2020s, 2050s, and 2080s under RCP2.6,
RCP4.5, and RCP8.5 (Fig. 6). In the 2020s, streamflow is projected
to increase by 40.7%, 34%, and 44.3% under RCP2.6, RCP4.5, and
RCP8.5, respectively. Compared to the 2020s, the projected change in
streamflow will be higher in the 2050s and 2080s. Compared to the ob
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Fig. 5. Projected changes in precipitation (mm) in the 2020s (left), 2050s (middle) and 2080s (right) under RCP2.6 (upper), RCP4.5 (middle) and RCP8.5 (lower).

served flow (1990–2009), the projected flow will be higher by 50%,
57%, and 82% under RCP2.6, RCP4.5, and RCP8.5, respectively. Sim-
ilarly, streamflow in the 2080s will be higher than the observed flow
by 45%, 66%, and 191.6% under RCP2.6, RCP4.5, and RCP8.5, respec-
tively.

On a seasonal time scale, streamflow is projected to increase dur-
ing MAM and JJAS but decrease during JF and OND (Table 2). During
MAM, streamflow will increase by more than 1.4%, 58%, and 42.4% in
the 2020s, 2050s, and 2080s, respectively under the RCPs. Moreover,
streamflow is projected to increase during JJAS by more than 23.7%,
51.6%, and 61.2% in the 2020s, 2050s, and 2080s, respectively. How-
ever, it is projected to decrease during OND and JF by more than 12.7%
and 6.3% and 43.6% and 25.4% in the 2020s and 2050s, respectively. In
the 2080s, streamflow will increase by 26.7% and 85% s during JF and
OND, respectively under RCP8.5 but decrease under RCP2.6 and RCP4.5
by more than 24%.

4. Discussion

To tackle the possible impact of future climate change, particularly
the change in precipitation, on sectors such as agriculture and water
resources, observed and projected climate data with high spatial and
temporal (e.g., daily) resolution are required to develop and drive im-
pact assessment models. However, observed data from field-based me-
teorological stations, particularly in developing countries of East Africa
are limited in terms of density, quality and accessibility, which hin-
ders detailed impact assessment studies and development of site-specific
adaptation measures. According to Wilby and Yu (2013), areas with
limited ground information are the most vulnerable to climate change
threats and it is recommended to use high-quality satellite and reanaly-
sis based climate data products (Chaney et al., 2014; Gebrechorkos
et al., 2019a; Jiang and Wang, 2019; Ma et al., 2018). Hydrolog-
ical modelling using satellite-based climate data products can support
mitigating the impacts of climate extremes and provide a better under
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Fig. 6. Projected changes in basin average annual precipitation (mm, top left), Tmax (°C, top middle), Tmin (°C, top right) and streamflow (m3/s, lower panel) for the period 2010–2100
under RCP2.6, RCP4.5, and RCP8.5.

Table 2
Projected changes in average seasonal flow (%) in the 2020s, 2050s, and 2080s under
RCP2.6, RCP4.5, and RCP8.5.

Climate periods RCP JF MAM JJAS OND

2020s RCP2.6 −43.60 1.14 32.73 −13.12
RCP4.5 −47.56 14.88 23.72 −18.11
RCP8.5 −44.78 22.92 34.56 −12.73

2050s RCP2.6 −45.35 58.10 51.58 −20.44
RCP4.5 −52.24 79.60 59.20 −17.54
RCP8.5 −25.40 141.26 78.51 −6.34

2080s RCP2.6 −53.40 42.38 61.22 −31.09
RCP4.5 −44.43 115.94 78.62 −23.84
RCP8.5 26.68 401.67 162.80 84.71

standing in catchment water balance and management of water re-
sources (Ma et al., 2018) and runoff predictions in large-scale catch-
ments (Jiang and Wang, 2019).

In hydrological modelling, precipitation, compared to the other vari-
ables, is the most important component of the hydrological cycle and
poor observations significantly affect the modelling process (Jiang and
Wang, 2019). Moreover, poor rainfall products such as satellite-based
rainfall estimations can lead to large uncertainties and biases in stream-
flow modelling. These limitations can be reduced by using high-qual-
ity products, blended with ground stations, and spatial downscaling
for model calibration (Tan et al., 2014). Hence, all available cli-
mate data products can not directly be used in hydrological model-
ling and require a comprehensive evaluation with ground observation
before being used in hydrological modelling to reduce biases and un-
certainties. In Awash Basin, due to the limited availability of ground
stations, studies were limited to sub-basins, particularly around the
vicinity of meteorological stations (Gebrechorkos et al., 2019a; Mu-
lugeta et al., 2019), but the application of high-quality climate

datasets allow covering large basins. Considering the above recommen-
dations, we used ground station data and the most accurate precipita-
tion and temperature products recommended for East Africa (Basheer
and Elagib, 2019; Gebrechorkos et al., 2018b) as it has been simi-
larly practised with other data products in the basin (Mulugeta et al.,
2019). In addition to the hydrological modelling, the selected rainfall
and temperature products are used to statistically downscale climate
projection from a GCM in data-sparse areas of the basin and this is con-
sidered as the best option to bridge the data gap (Wilby and Yu, 2013)
and show a high correlation with observed data (Gebrechorkos et al.,
2019c).

Using the statistically downscaled climate data, the results show an
increase in annual average Tmax, Tmin, and precipitation in the 2020s,
2050s, and 2080s under RCP26-RCP8.5. The projected warming is in
line with the most recent studies covering large parts of the basin (En-
gelbrecht et al., 2015; Osima et al., 2018; Pachauri et al., 2014)
and with the observed warming of the region (Mulugeta et al., 2019).
Moreover, precipitation is projected to increase by more than 10%, 16%
and 14% in the 2020s, 2050s, and 2080s, respectively and this agrees
with Tadese et al. (2019), which showed an increase, based on GCMs,
in precipitation in 2050s and 2070s under RCP4.5 and high variabil-
ity throughout the 21 century. Looking at the projected Tmax, Tmin,
and precipitation, the change is higher in the 2050s and continues to
increase, particularly under RCP8.5 and this is linked to the expected
increase in the concentration of greenhouse gases after 2050s (IPCC,
2013).

Considering the hydrological modelling, our results confirm that the
use of high-quality climate data products significantly improves the hy-
drological model accuracy (increase in correlation and reduce errors) by
more than 25% (Table 2). For example, at station Melka-Kuntrea, the
R2 and NSE have increased from 0.67 and 0.67 to 0.86 and 0.84, respec-
tively and the percentage of bias has decreased from 13.9% to 12.5%.
Water management in this basin is very poor and the amount of wa-
ter abstraction for irrigation and other purpose is not registered. Due
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to the limited available information, such as water used for irrigation
and for other sectors, required to accurately calibrate the model, most
studies focus on the upper part of the basin (Chan et al., 2020; Gebre-
chorkos et al., 2019a; Mersha et al., 2018). Thus, the model accu-
racy decreases with an increase in drainage area (e.g., from Melka-Kun-
trea to Tendaho) due to a large amount of water abstracted (e.g. for ir-
rigation) and not included during the calibration and validation of the
hydrological model. In data-limited basins, however, calibrated parame-
ters from gauged areas of a similar region (e.g., with regard to hydrology
and topography) can be transferred, which is also called regionalization
of model parameters, to ungauged areas (Bárdossy, 2007; Blöschl,
2006). Therefore, even though the model shows a satisfactory perfor-
mance at the downstream part of the basin, the calibrated model with
a very good performance at the upper-part should represent the down-
stream part of the basin as well. Overall, according to other studies in
this field (Almeida et al., 2018; Fernandez et al., 2005; Gessesse
et al., 2019; Motovilov et al., 1999; Yanto et al., 2017), the cal-
ibrated and validated model is classified as satisfactory (e.g., station
Melka-Selki) to very-good (e.g., station Melka-Kuntrea). Alazzy et al.
(2017) concluded that application of high-quality rainfall products in
hydrological models produces comparable results to data from ground
stations.

In line with the projected change in precipitation, the average an-
nual streamflow is projected to increase by more than 34%, 50.4%, and
45.1% in the 2020s, 2050s and 2080s, respectively. The projected in-
crease in average annual streamflow is in line with previous studies in
sub-basins of the Awash River basin, which showed an increase up to
150% (Gebrechorkos et al., 2019a; Tadese et al., 2019). On a sea-
sonal time scale, streamflow will increase by more than 2 m3/s and 200
m3/s during March–May (MAM) and June–September (JJAS), respec-
tively but decrease during January–February (JF) and October–Decem-
ber (OND) seasons. In line to this study, hydrological projection in the
Awash basin shows an increase in streamflow by more than 10–51%
during JJAS by 2080s (Hirpa et al., 2019). Even though projections
are showing an increase in streamflow, temperature and evapotranspi-
ration are projected to increase in basins of East Africa (Berhe et al.,
2013; Gebrechorkos et al., 2019a). In the Awash basin, the amount
of water loss by evapotranspiration is greater than 72% of the total wa-
ter is used for irrigation (Berhe et al., 2013).

Water stress, particularly during dry seasons, lead to an increase in
food insecurity as a result of a significant reduction in crop productivity
and death of livestock (Murendo et al., 2011; Taye et al., 2018). In
general, a decrease in rainfall (e.g. 5%) strongly affects the Growth Do-
mestic Product (GDP) and agricultural productivity of the basin by 5%
and 10%, respectively (Borgomeo et al., 2018). Based on GCMs pro-
jection, it is also concluded that water availability (precipitation - poten-
tial evapotranspiration) in this basin is projected to decrease under the
high emission scenario (RCP 8.5) during the 2020s–2080s (Taye et al.,
2018). Hence, considering the projected warming in temperature (in-
crease in Tmax and Tmin), variability in rainfall, and decrease in stream-
flow during JF and OND seasons it is required to develop management
and adaptation measures (e.g., construction of dams), water allocation
system, and watershed management practices to reduce the negative im-
pact of climate change on the agriculture and other sectors.

5. Conclusions

The plausible hydrological impact of climate change was assessed in
one of the largest, agricultural intensive and economically important,
but data-scarce areas of Ethiopia during the period from the 2020s to
2080s under three different climate change scenarios (RCPs). We used
observed and satellite and reanalysis based climate datasets, identified
after a comprehensive evaluation, available at higher spatial and tem-
poral resolution and for longer periods. A location-based climate pro-
jection, equivalent to future station data, was developed by statistical

downscaling using SDSM from a GCM and fed to a hydrological model,
for the first time in the basin, to assess the possible impact of climate
change, particularly changes Tmax, Tmin, and precipitation on the hy-
drology of the basin. Both the climate (SDSM) and hydrological (SWAT)
models were calibrated and validated using observed climate and hydro-
logical data. The application of additional climate datasets, in addition
to an increase in the study area where station data is unavailable, im-
proved the accuracy of the hydrological modelling by more than 25%.

The results show an increase in average annual Tmax, Tmin, and
precipitation in the 2020s, 2050s, and 2080s. The projected change is
higher under RCP8.5 and after 2050 due to the expected increase in
greenhouse gases concentration. In line with the projected increase in
precipitation, annual streamflow will increase by an average of more
than 10% in the 2020s, 2050s and 2080s under the RCPs (RCP2.6,
RCP4.5, and RCP8.5). On the seasonal scale, streamflow is projected
to decrease during the dry (JF) and short-rainy (OND) seasons in the
2020s–2080s. However, it is projected to increase during the long-rainy
(MAM) and June–September (JJAS) seasons throughout the 21 century
under the three RCPs. In general, streamflow will increase during wet
and decrease during dry months and seasons. Overall, the projected de-
crease in streamflow during the dry seasons and increase in tempera-
ture signals the increase in water stress, which might affect the regions
food and water security and reduce irrigation related investment in the
basin. Therefore, it is important to advance the knowledge and capacity
of the local farmers by providing training on water management and wa-
ter allocation systems and farming systems (e.g., cropping pattern), and
strengthen the farmers and regional meteorological office relationship
in a way to get up-to-date seasonal forecasting information to prepare
to the changes in advance. Overall, considering projected hydro-climate
changes and increase in population and related demand for water, food,
and energy, it is crucial to act now to develop climate change adaptation
measures in the region to minimize the impacts.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2020.140504.
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