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Abstract—Spectrally efficient frequency division multiplexing
(SEFDM) relying on index modulation (IM) has emerged as a
promising multicarrier technique. In this paper, we develop a
joint channel estimation and equalization method based on factor
graphs for SEFDM-IM signaling over frequency-selective fading
channels. By approximating the interference in the frequency
domain, we reformulate the problem to obey a linear state-space
model and construct a multi-layer factor graph. To support
a reconfigurable architecture, non-orthogonal demodulation is
adopted and the colored noise encountered is approximated
by a complex auto-regressive (CAR) model. For deriving a
low-complexity parametric Gaussian message passing (GMP)-
based method, we exploit an expectation propagation (EP)-based
technique for approximating the discrete a posteriori distributions
of the transmitted symbols in a Gaussian form. To further
simplify the result, variational message passing (VMP) is applied
to an equivalent soft node to obtain a Gaussian form. Moreover,
we also derive the Cramér–Rao lower bound (CRLB) in closed-
form. The overall complexity only grows linearly with the number
of subcarriers and logarithmically with the length of the channel’s
memory. Compared to its Nyquist signaling based counterpart,
SEFDM-IM signaling relying on the proposed algorithm exhibits
up to 25% higher bandwidth efficiency without any bit error rate
(BER) performance degradation.

Index Terms—Spectrally efficient frequency division multi-
plexing, index modulation, channel estimation, complex-valued
colored noise, variational message passing.

I. INTRODUCTION

Non-orthogonal transmission schemes having high spectral
efficiency have been conceived for next generation wireless
communication systems [1]–[9]. The spectrally efficient fre-
quency division multiplexing (SEFDM) scheme of [10], [11]
also belongs to the family of non-orthogonal multicarrier tech-
niques, which has been investigated in optical communications
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[12], visible-light communication (VLC) [13], and in satellite
systems [14]. By allowing the overlapping of the originally
orthogonal subcarriers, SEFDM signaling becomes capable of
significantly improving the spectral efficiency, at the cost of
deliberately introducing intercarrier interference (ICI).

Unfortunately, its optimal maximum likelihood sequence
(MLS) detection suffers from an excessive computational
complexity [15]. To reduce the complexity, whilst still per-
forming close to the optimal detector, numerous contributions
have been focused on receiver design for SEFDM signaling
[16]–[22]. The fixed-complexity sphere decoding (FSD) based
equalizer combined with truncated singular value decompo-
sition (TSVD) [16] and the iterative detector (ID) of [17]
have been shown to be applicable to systems having a low
number of subcarriers. By contrast, the fast Fourier transform
(FFT)-based successive interference canceller (SIC) of [18]
was conceived for SEFDM systems having a large number
of subcarriers. However, soft information exchanging between
the time- and frequency-domains still results in prohibitively
high computational complexity. For effectively mitigating the
ICI imposed by the non-orthogonality of SEFDM signaling, a
separate frequency-domain zero-forcing (ZF)-based equalizer
and a maximum a posteriori (MAP) sequential decoders
were developed in [19] for zero-padding (ZP)-aided SEFDM
systems. The above SEFDM receivers have assumed the avail-
ability of perfectly known channel state information (CSI).
Due to the effect of strong inherent interference and owing
to the ill-conditioning nature of SEFDM systems, only a few
contributions have proposed channel estimators for SEFDM
signaling over dispersive fading channels. In [20], a time-
domain full channel estimator (FCE) based on zero-forcing
(ZF) was proposed for SEFDM systems, which suffers from an
ill-conditioning problem imposed by compressing the spacing
of subcarriers. To eliminate this problem, a time-domain
partial channel estimator (PCE) was developed in [21], which
transmits pilots only on mutually orthogonal subcarriers. By
contrast, in [22] three pilot-based frequency-domain channel
estimation methods were designed for SEFDM systems at
the cost of an additional interpolation operation or at the
expense of introducing extra pilot symbol periods. However,
the aforementioned channel estimators cannot obtain an ac-
ceptable performance.

To further improve spectral efficiency and energy efficiency,
non-orthogonal transmission techniques have also been com-
bined with index modulation (IM), e.g., [23]–[30]. Owing to
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the inevitable interference imposed by non-orthogonal sig-
naling combined with IM, the complexity of the optimal
maximum likelihood (ML) receiver increases exponentially
both with the number of IM subblocks and with that of
the transmitted bits per subblock. In [28], a block-based ML
(BML) detector was proposed for mitigating the interferences,
which relied on constructing a block diagonal equivalent
channel matrix. Nevertheless, its complexity still grows expo-
nentially with the length of the channel information response
(CIR). To reduce the complexity of the receiver, the solutions
in [29], [30] separated the interference mitigation relying
on equalization from the IM detection. A minimum mean
square error (MMSE)-based frequency-domain equalizer was
employed in [29] for mitigating the interferences imposed by
non-orthogonal signaling and then an ML detector was used
for detecting the information bits. For SEFDM-IM signaling,
the classical additional Gram–Schmidt orthonormalization was
invoked for mitigating the effects of colored noise. Then, an
MMSE-based equalizer and a log-likelihood ratio (LLR)-based
IM detector having an expanded search space were invoked
for eliminating the ICI and for detecting the transmitted bits,
respectively. However, the aforementioned receivers have not
exploited the potential performance gain of joint interference
mitigation and IM detection. Moreover, the receivers con-
ceived for non-orthogonal IM have typically assumed perfectly
known CSI, which are not applicable to systems with unknown
CSI.

Against this background, we propose a new joint channel
estimation and equalization algorithm for SEFDM-IM systems
communicating over frequency-selective fading channels. The
main contributions of this paper are summarized as follows:

• To maintain compatible with typical multicarrier sys-
tems, we design a reconfigurable non-orthogonal demod-
ulation architecture and then employ a complex auto-
regressive (CAR) model to deal with the resultant colored
noise. Taking into account the dependencies between
the SEFDM-IM subcarriers, we introduce an extended
constellation including the deactivated symbols of zeros
to explore the potential performance gain of joint ICI
mitigation and IM detection. By ignoring the rather
insignificant interference contributions, a Forney-style
factor graph (FFG) having two subgraphs with scalar
input is constructed based on the linear state-space model
of SEFDM-IM equalization. Accordingly, a series of
parametric message updating expressions constructed our
FFGs are derived according to Gaussian message passing
(GMP) rules, where the discrete distribution of the trans-
mitted symbols can be approximated by a Gaussian form
using expectation propagation (EP) rules by minimizing
the Kullback-Leibler divergence (KLD) [31].

• We propose a low-complexity frequency-domain joint
channel estimation and equalization algorithm for
SEFDM-IM systems communicating over frequency-
selective fading channels. To alleviate the potential error
propagations imposed by channel estimation due to the
deactivated subcarriers of zeros and improve the accuracy
of channel estimates, we construct a multi-layer factor

graph connected via channel variables on the subcarriers
having the same indices between the different SEFDM-
IM symbols. Since applying belief propagation (BP) to
the inner product node of channel estimation and equal-
ization leads to excessive computational complexity, we
resort to variational message passing (VMP) rules defined
on an equivalent soft node to simplify the message
updating expressions between the channel estimator and
the equalizer into a Gaussian form. Combined with other
diagonalized approximations and fast Fourier transform
(FFT) operations, a parametric algorithm can be derived
on FFG. Moreover, we also derive the Cramér–Rao lower
bound (CRLB) for the proposed channel estimator in
closed-form.

The rest of this paper is organized as follows. The system
model of SEFDM-IM signaling over frequency-selective fad-
ing channels is given in Section II. In Section III, GMP-EP
equalization is developed for SEFDM-IM systems under the
assumption of having perfectly known CSI. In Section IV, the
proposed GMP-EP-VMP joint channel estimation and equal-
ization is derived. The performance of the proposed algorithms
is evaluated by Monte Carlo simulations in Section V. Finally,
our conclusions are drawn in Section VI.

Notations: Boldface capital and lowercase letters denote
matrices and vectors, respectively. The operations (·)∗, (·)T ,
(·)H , (·)−1, and tr(·) denote the complex conjugate, trans-
pose, conjugate transpose, matrix inverse, and trace operator,
respectively. The operator ⊙ denotes element-wise product.
IL and 0L are the identity matrix and all-zeros matrix with
size L × L, respectively. D(x) represents a diagonal matrix
constructed from the vector x. CN (mx, Vx) denotes a complex
Gaussian distribution of variable x with mean mx and variance
Vx, the probability density function of which is represented
as gC(mx, Vx;x). The operator ∝ denotes equality up to a
constant normalization factor. E{·} denotes expectation oper-
ation. N is the field of natural number. sinc(·) represents the
sinc function, i.e., sinc(x) = sin(πx)/(πx), and tanh(·) is
the tangent function.

(
N
K

)
denotes the binomial coefficient and

⌊·⌋ is the floor function.

II. SYSTEM MODEL

The block diagram of our low-density parity-check (LDPC)-
coded SEFDM-IM transceiver is depicted in Fig. 1. At the
transmitter side, Nb information bits b = [b0, · · · , bNb−1]

T

are encoded and then Nc coded bits c = [c0, · · · , cNc−1]
T are

equally partitioned into G groups, each containing P = Nc/G
bits, i.e., cg = [cg,0, · · · , cg,p, · · · , cg,P−1]

T , where cg,p is
equal to the [(g − 1)P + p]-th element of c. Each group
of P coded bits is mapped to an SEFDM-IM subblock of
length N , where N = Ns/G and Ns is the number of
SEFDM-IM subcarriers. For each SEFDM-IM subblock, only
K out of N subcarriers are activated to transmit M -ary
symbols, where the first P1 = log2⌊

(
N
K

)
⌋ of P bits are

used for determining K indices of the activated subcarri-
ers, while the remaining P2 = K log2 M bits are mapped
onto the constellation points S. The activated indices and
modulated M -ary symbols of the g-th subblock are de-
noted as Ig = {Ig,1, Ig,2, . . . , Ig,K}, Ig,k ∈ {1, . . . , N} and
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Fig. 1. Block diagram of an LDPC-coded SEFDM-IM system.

ag = [ag,1, ag,2, . . . , ag,K ]T , ag,k ∈ S. The power of the
signal constellation is normalized to unit average power,
i.e., E{aHg ag} = K. The vector of the modulated SEFDM
symbols in the g-th subblock is xg = [xg,1, · · · , xg,N ]T , where
xg,n = ag,k for n = Ig,k ∈ Ig and xg,n = 0 for n /∈ Ig . Then,
G subblocks are concatenated to generate the Ns transmitted
SEFDM-IM symbols, i.e., x = [xT

1 , · · · ,xT
G]

T . To enhance the
spectral efficiency, the complex-valued symbols x are mapped
to Ns non-orthogonal subcarriers relying on the bandwidth
packing factor of α = ∆fsTs, where ∆fs is the spacing of
subcarriers and Ts is the SEFDM-IM signal duration. The
inverse discrete Fourier transform (IDFT) can be used for
modulation in our SEFDM-IM systems [32]. Consequently,
the equivalent baseband signal is expressed as

x(t) =

√
N

KTs

Ns−1∑
n=0

xne
j2παnt

Ts , (1)

where xn is the n-th modulated symbol, and
√
N/K is the

signal power normalization factor.

Without loss of generality, we assume that the length of
cyclic prefix is sufficiently for intersymbol interference (ISI)-
free transmission over an L-tap frequency-selective fading
channel. The received SEFDM-IM signal is given by

y(t) =

L−1∑
l=0

h̄lx(t− τl) + ω(t), (2)

where h̄l and τl are the CIR and the delay of the l-th path,
respectively, and ω(t) is the additive white Gaussian noise
(AWGN) process with zero mean and variance σ2

ω .

To support reconfigurable architectures and facilitate com-
patibility with the receivers of the existing systems, instead of
introducing additional orthonormalization operation, we adopt
a non-orthogonal matched filtering [33]. The k-th output of

the non-orthogonal matched filter is

rk =

√
K

NTs

∫ Ts

0

y(t)e−
j2παkt

Ts dt

=
1

Ts

Ns−1∑
n=0

xn

L−1∑
l=0

h̄le
− j2παnτl

Ts

∫ Ts

0

e−
j2πα(k−n)t

Ts dt+ ωk

=

Ns−1∑
n=0

ϕk,nhnxn + ωk, (3)

where hn =
∑L−1

l=0 h̄le
− j2παnτl

Ts is the n-th channel tap in the
frequency domain, ωk =

√
K

NTs

∫ Ts

0
ω(t) e−

j2παkt
Ts dt is the

inherent colored noise having the complex-valued autocorre-
lation matrix E{ωωH} = Kσ2

ω/NΦ, ω = [ω0, · · · , ωN−1]
T ,

and Φ denotes the interference matrix with elements ϕk,n =
e−jπα(k−n)sinc[α(k − n)].

III. GMP-EP EQUALIZATION WITH KNOWN CSI

In this section, we focus our attention on the joint in-
terference mitigation and detection of SEFDM-IM systems
under the assumption of perfectly known CSI. By introducing
the extended constellation containing deactivated subcarriers
and reformulating the SEFDM-IM equalization design via a
linear state-space model, we construct the factor graph having
two subgraphs corresponding to the symbol-based interference
mitigation and the colored noise approximation. Besides,
discrete input messages are parameterized by a Gaussian
form based on EP, hence all messages on factor graph are
derived using GMP rules. This work independently solves
the known interference elimination problem of SEFDM-IM
systems, whilst additionally providing a valuable research
basis for joint channel estimation and equalization techniques
for SEFDM-IM signaling in Section IV.

A. Factor Graph Model for SEFDM-IM Systems Having
Known CSI

Due to the inter-dependence of the SEFDM-IM subcarriers
in a subblock, conventional receivers typically rely on a
multistage demodulation strategy [30], i.e., the interferences
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are eliminated in the first stage and then ML detection is
employed for recovering the index bits and the symbol bits
in the second stage. To develop a low-complexity joint inter-
ference mitigation and IM detection algorithm for SEFDM-IM
signaling, we intentionally introduce an extended constellation
for incorporating the deactivated subcarriers of zeros. Accord-
ingly, activated pattern constraints can be included as the a
priori probability distribution of each transmitted symbol.

Owing to the fact that the ICI introduced by packing the
non-orthogonal subcarriers decreases as the subcarrier spacing
increases, only the interferences from the immediately adja-
cent subcarriers are considered for reducing the complexity.
Accordingly, the received signal in (3) is rewritten as

rk = ϕT
k sk + ωk, (4)

where ϕk = [ϕk,k−Lt
, . . . , ϕk,k, . . . , ϕk,k+Lt

]T , sk =
[sk−Lt

, . . . , sk, . . . , sk+Lt
]T with sk = hkxk, xk belongs to

the extended constellation {0,S} and Lt is the length of the
truncated interferences. The variables sk−1 and sk satisfy the
following linear state transition model of

sk = Ξ1sk−1 + ζ1sk+Lt , (5)

where Ξ1 = [0T
Ls−1, ILs−1;0Ls

], ζ1 = [0Ls−1, 1]
T with Ls =

2Lt + 1.
In contrast to the colored noise in the time domain (TD), the

autocorrelation matrix of the frequency-domain (FD) colored
noise is a complex-valued Toeplitz matrix. We employ the P̄ -
th order CAR model [34] for characterizing the colored noise
as

ξk =

P̄∑
p̄=1

λp̄ξk−p̄ + ξ̃k = λT ξk−1 + ξ̃k, (6)

where λ = [λ1, · · · , λP̄ ]
T is the complex-valued coefficient

vector, ξk−1 = [ξk−1, · · · , ξk−P̄ ]
T is defined as the state

vector, while ξ̃k is a complex-valued AWGN sample with
zero mean and variance σ2

ξ̃
= ϕ0,0 − ϕ̄Hλ. By minimizing

the mean squared error, i.e., E{|ξ̃k|2}, the optimal CAR
coefficients are given by λ = R−1(P̄ )ϕ̄, where R(P̄ ) =
Kσ2

ω

N · [ϕ0,0, ϕ0,1, . . . , ϕ0,P̄−1; · · · ;ϕP̄−1,0, ϕP̄−1,1, . . . , ϕ0,0]
and ϕ̄ = [ϕ0,1, . . . , ϕ0,P̄ ]

T . Then (4) can be rewritten as

rk = ϕT
k sk + ξk, (7)

where ξk = ζT
2 ξk with ζ2 = [1,0T

P̄−1
]T . The linear transition

constraint between ξk and ξk−1 is

ξk = Ξ2ξk−1 + ζ2ξ̃k, (8)

where Ξ2 = [λT ; IP̄−1,0P̄−1].
Based on (5)-(8), we construct the factor graph of our

SEFDM-IM system with known CSI, as shown in Fig. 2.
Subgraph 1 and Subgraph 2 correspond to the symbol-wise
interference mitigation and the colored noise approximation,
respectively. The edges denote variables and the factor nodes
represent local functions. The natural schedule for the message
computations on factor graph consists of two independent
recursions, namely, forward message passing along the direc-
tion of the arrow and backward message passing opposite the
direction of the arrow. In the following, we will derive the
messages on the factor graph in details.
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Fig. 2. Factor graph for equalization of SEFDM-IM signaling with known
CSI.

B. Hybrid GMP-EP Equalization

We employ GMP to update messages on FFG [35], [36] in
Fig. 2. The forward and backward messages are characterized
by the mean vector −→m and the covariance matrix

−→
V or the

transformed mean vector
←−
W←−m and the weight matrix

←−
W =−→

V−1, respectively.
• Gaussian Message Updating for Interference Mitigation
Assuming that the mean vector −→m(it)

sk−1 and covariance
matrix

−→
V

(it)
sk−1 at the it-th inner iteration are available, the

forward messages of the variables s′′k−1 are given by

−→m(it)
s′′k−1

=−→m(it)
sk−1

+

−→
V

(it)
sk−1

(
ϕT

k−1

)H(
rk−1−ϕT

k−1
−→m(it)

sk−1

)
−→
V

(it−1)
ξk−1

+ϕT
k−1

−→
V

(it)
sk−1

(
ϕT

k−1

)H , (9)

−→
V

(it)
s′′k−1

=
−→
V(it)

sk−1
−
−→
V

(it)
sk−1

(
ϕT

k−1

)H
ϕT

k−1

−→
V

(it)
sk−1

−→
V

(it−1)
ξk−1

+ϕT
k−1

−→
V

(it)
sk−1

(
ϕT

k−1

)H , (10)

where rk−1 is the k-th sample of the received SEFDM-IM
signal and

−→
V

(it−1)
ξk−1

is the forward variance of the approximate
noise ξk−1 in the (it − 1)-th inner iteration. Based on the
forward updating rules of the matrix multiplication node,
the forward mean vector and covariance matrix of s̃k−1 are
obtained, respectively, as

−→m(it)
s̃k−1

= Ξ1
−→m(it)

s′′k−1
, (11)

−→
V

(it)
s̃k−1

= Ξ1
−→
V

(it)
s′′k−1

ΞH
1 . (12)

Based on (9)-(12), the forward messages of sk can be updated
as

−→m(it)
sk

= −→m(it)
s̃k−1

+ hk+Lt

−→m(it−1)
xk+Lt

ζ1, (13)
−→
V(it)

sk
=
−→
V

(it)
s̃k−1

+
∣∣hk+Lt

∣∣2−→V (it−1)
xk+Lt

ζ1ζ
H
1 , (14)
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where hk+Lt
is the known channel state information on the

(k + Lt)-th subcarrier, −→m(it−1)
xk+Lt

and
−→
V

(it−1)
xk+Lt

are the a priori
mean and variance of the (k + Lt)-th transmitted symbol,
which will be elaborated on later.

Similar to the derivations of forward messages, assuming
that the weight matrix

←−
W

(it)
sk and the transformed mean

vector
←−
W

(it)
sk
←−m(it)

sk are available, we are able to calculate the
backward messages of s̃k−1 as

←−
W

(it)
s̃k−1

=
←−
W(it)

sk
−
∣∣hk+Lt

∣∣2−→V (it−1)
xk+Lt

←−
W

(it)
sk ζ1ζ

H
1

←−
W

(it)
sk

1+
∣∣hk+Lt

∣∣2−→V (it−1)
xk+Lt

ζH
1

←−
W

(it)
sk ζ1

,

(15)

←−
W

(it)
s̃k−1

←−m(it)
s̃k−1

=

(
I−

∣∣hk+Lt

∣∣2−→V (it−1)
xk+Lt

←−
W

(it)
sk ζ1ζ

H
1

1+
∣∣hk+Lt

∣∣2−→V (it−1)
xk+Lt

ζH
1

←−
W

(it)
sk ζ1

)
(16)

×
(
←−
W(it)

sk
←−m(it)

sk
− hk+Lt

−→m(it−1)
xk+Lt

←−
W(it)

sk
ζ1

)
.

Then, the backward messages of s′′k−1 are given by
←−
W

(it)
s′′k−1

= ΞH
1

←−
W

(it)
s̃k−1

Ξ1, (17)
←−
W

(it)
s′′k−1

←−m(it)
s′′k−1

= ΞH
1

←−
W

(it)
s̃k−1

←−m(it)
s̃k−1

. (18)

Based on (15)-(18), the backward messages of the state
variables sk−1 can be updated as

←−
W(it)

sk−1
=
←−
W

(it)
s′′k−1

+

(
ϕT

k−1

)H
ϕT

k−1
−→
V

(it−1)
ξk−1

, (19)

←−
W(it)

sk−1

←−m(it)
sk−1

=
←−
W

(it)
s′′k−1

←−m(it)
s′′k−1

+

(
ϕT

k−1

)H
rk−1

−→
V

(it−1)
ξk−1

, (20)

where
−→
V

(it−1)
ξk−1

is updated on Subgraph 2 in the previous
iteration. From (14) and (20), we have the a posteriori variance
of the state vector sk as

V(it)
sk

=

((−→
V(it)

sk

)−1
+
←−
W(it)

sk

)−1

. (21)

In our turbo receiver, soft extrinsic information is exchanged
between the channel decoder and the SEFDM-IM equalizer,
as shown in Fig. 1. Hence, the a priori messages of the
transmitted symbols x = [x0, · · · , xN−1]

T in (13)-(16) are
obtained using the extrinsic LLRs gleaned from the output
of the channel decoder in the outer iterations. Note that
the inner iterations within the equalizer are embedded into
the outer iterations between the equalizer and the channel
decoder. For the io-th outer iteration, the extrinsic LLRs
of the channel decoder are fixed when the inner iterations
are performed. Assuming that the p-th extrinsic LLR of the
channel decoder output in the g-th SEFDM-IM subblock is
L

e,(io)
dec

(
cg,p

)
, the a priori probability of the coded bit is

P (io)
(
cg,p

)
= 1

2

[
1 + (−1)cg,p tanh

(
1
2L

e,(io)
dec

(
cg,p

))]
, where

cg,p ∈ {0, 1}, p = 0, · · · , P − 1.
As mentioned before, each transmitted SEFDM-IM symbol

belongs to the extended constellation {S1, · · · ,SM , 0}. The a
priori distribution of the n-th transmitted symbol has to be
calculated based on the specific subcarrier activation pattern
constraints and on the classic M -ary mapping rules using

the a priori probabilities of the whole coded bits in the
subblock. Let us assume that K indices of the m1-th activated
pattern Im1 = {Im1,1, . . . , Im1,K} correspond to the coded
index modulation bits cm1

= [cm1,1, · · · , cm1,P1
]T ,m1 =

1, · · · , 2P1 and the m2-th constellation candidate am2
=

[am2,1, . . . , am2,K ] corresponds to the coded modulated sym-
bol bits cṁ2

= [cm2,1, · · · , cm2,P2
]T ,m2 = 1, · · · , 2P2 . The

a priori probability of the n-th modulated symbol in the g-th
subblock is expressed as

P
(io)
g,n,0=

∑
m1,n/∈Im1

[ P1∏
p1=1

P (io)
(
cg,p1

=cm1,p1

)]
, (22)

P (io)
g,n,m=

∑
m1,n∈Im1

[ P1∏
p1=1

P (io)
(
cg,p1=cm1,p1

) P∏
p2=P1+1

P (io)
(
cg,p2=cm2,p2−P1

)]
,

(23)

where cg,p1 denotes the index bits, while cg,p2 represents the
classic modulated symbol bits.

Nevertheless, the discrete distribution of the incoming mes-
sage imposes exponentially increased complexity. To circum-
vent this, we resort to approximating the distribution by a
Gaussian form. Second-order moment matching is a fairly
straightforward method, but suffers from an excessive approx-
imation error. By contrast, EP is an efficient technique of ap-
proximating a posteriori beliefs that belong to the exponential
distribution families [37], [38]. The approximated Gaussian
distribution is derived via minimizing the KLD between the
true marginal distribution b(it)

(
xk

)
and the trial distribution

b
(it)
G

(
xk

)
, i.e.,

b
(it)
G

(
xk

)
=arg min

b
(it)
G (xk)

DKL

(
b(it)

(
xk

)∣∣∣∣b(it)G

(
xk

))
, (24)

where the a priori probability of the transmitted symbol xk

depends on both Pg,n,0 and on Pg,n,m for k = (g−1)N+n−1.
The projection of a univariate distribution onto the Gaussian
distribution in (24) is equivalent to matching the moments
of the discrete a posteriori distribution and the Gaussian
distribution [39]. Having the a priori distributions and the
outgoing Gaussian messages at the it-th inner iteration, the
first-order and second-order moment of the a posteriori dis-
tribution b(it)

(
xk

)
are given by

m(it)
xk

=
1

ε0π
←−
V

(it)
xk

M∑
m2=1

χm2
P (io)
g,n,m2

exp

(
−|χm2−←−m

(it)
xk |2

←−
V

(it−1)
xk

)
, (25)

V (it)
xk

=
|m(it)

xk |2P
(io)
g,n,0

ε0π
←−
V

(it)
xk

exp

(
−|
←−m(it)

xk |2
←−
V

(it)
xk

)
+

∑M
m2=1|χm2−m

(it)
xk |2

ε0π
←−
V

(it)
xk

×P (io)
g,n,m2

exp

(
−|χm2

−←−m(it)
xk |2

←−
V

(it)
xk

)
−|m(it)

xk
|2, (26)

where ←−m(it)
xk and

←−
V

(it)
xk are the mean and variance of the

outgoing message, while ε0 is the normalization factor of the
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a posteriori distribution. Based on (25) and (26), the forward
messages arriving from the channel decoder are

−→m(it)
xk

=
m

(it)
xk

←−
V

(it)
xk −←−m

(it)
xk V

(it)
xk

←−
V

(it)
xk − V

(it)
xk

, (27)

−→
V (it)

xk
=

←−
V

(it)
xk V

(it)
xk

←−
V

(it)
xk − V

(it)
xk

. (28)

For expressing the extrinsic LLR gleaned from the equalizer
for the processing of the channel decoder, we introduce the
auxiliary quantity [35] of the state sk as

W̃(it)
sk

=
(−→
V(it)

sk
+
←−
V(it)

sk

)−1
. (29)

Thus, given the CSI, the backward mean and variance of the
transmitted symbol at the it-th inner iteration are formulated
as

←−
V (it)

xk+Lt
=

1−
−→
V

(it−1)
sk+Lt∣∣Hk+Lt

∣∣2ζH
1 W̃

(it)
sk ζ1

, (30)

←−m(it)
xk+Lt

=
H∗

k+Lt
ζH
1 W̃

(it)
sk

(←−m(it)
sk −←−m

(it)
s̃k

)∣∣Hk+Lt

∣∣2ζH
1 W̃

(it)
sk ζ1

. (31)

Then, the extrinsic LLR output by the equalizer per subblock
can be calculated by the corresponding expressions in [40],
[41].
• Gaussian Message Updating for Colored Noise Approxi-

mation
The forward and backward messages on Subgraph 2 are

calculated based on GMP rules. Assuming that the covariance
matrix

−→
V

(it)
ξk−1

is available, the forward variance vector of ξ′′k−1

is expressed as

−→
V

(it)
ξ′′
k−1

=
−→
V

(it)
ξk−1

−
−→
V

(it)
ξk−1

(
ζT
2

)H
ζT
2

−→
V

(it)
ξk−1

←−
V ξk + ζT

2

−→
Vξk−1

(
ζT
2

)H . (32)

Similar to (12) and (14), the forward covariance matrix
−→
V

(it)
ξk

is represented as
−→
V

(it)
ξk

= Ξ2
−→
V

(it)
ξ′′
k−1

ΞH
2 +Nξ̃ζ2ζ

H
2 . (33)

Assuming that the weight matrix
←−
W

(it)
ξk

is available, we
have

←−
W

(it)

ξ̃k−1
=
←−
W

(it)
ξk
−

σ2
ξ̃

←−
W

(it)
ξk

ζ2ζ
H
2

←−
W

(it)
ξk

1 + σ2
ξ̃
ζH
2

←−
W

(it)
ξk

ζ2
. (34)

Then, the backward weight matrix
←−
W

(it)
ξk−1

is updated as

←−
W

(it)
ξk−1

= ΞH
2

←−
W

(it)

ξ̃k−1
Ξ2 +

ζH
2 ζ2

←−
V

(it−1)
ξk

, (35)

where
←−
V

(it)
ξk

is obtained from Subgraph 1.
Having obtained V

(it)
sk in (21), the a posteriori variance of

the approximated noise ξk is given by

V
(it)
ξk

= ϕT
k−1V

(it)
sk

(
ϕT

k−1

)H
. (36)

It is noted that the mean of the noise is zero and only the
covariance has to be exchanged between Subgraph 1 and

Subgraph 2. According to (36) and the forward message−→
V

(it−1)
ξk

, the backward message
←−
V

(it)
ξk

from Subgraph 1 to
Subgraph 2 is derived as

←−
V

(it)
ξk

=
V

(it)
ξk

−→
V

(it−1)
ξk−→

V
(it−1)
ξk

− V
(it)
ξk

. (37)

Based on (33) and (35), we can compute the a posteriori
variance of the state vector ξk as

V
(it)
ξk

=

((−→
V

(it)
ξk

)−1
+
←−
W

(it)
ξk

)−1

. (38)

Then, we can derive the forward message of the k-th element
of vector ξk from Subgraph 2 to Subgraph 1 as

−→
V

(it)
ξk

=

←−
V

(it)
ξk

ζ2V
(it)
ξk

ζH
2

←−
V

(it)
ξk
− ζ2V

(it)
ξk

ζH
2

. (39)

The proposed hybrid GMP-EP equalization algorithm for
SEFDM-IM systems with known CSI is summarized in Algo-
rithm 1, where Iin and Iout are the number of the inner and
outer iterations, respectively.

Algorithm 1 Hybrid GMP-EP Equalization of SEFDM-IM
Signaling with Known CSI

1: Initialization: The extrinsic LLR of the channel decoder
is initialized as L

e,(0)
dec

(
cg,p

)
= 0, g = 1, · · · , G, p =

1, · · · , P . Then the a priori mean and variance of trans-
mitted symbols are −→m(0)

xk = 0 and
−→
V

(0)
xk = +∞, k =

0, · · · , Ns − 1. The forward and backward messages are
initialized as −→m(it)

s0 = 0,
−→
V

(it)
s0 = I,

−→
V

(it)
ξ0

= I,
←−
W

(it)
s0 = I,

←−
W

(it)
s0
←−m(it)

s0 = 0, and
←−
W

(it)
ξ0

= I.
2: for io = 1 to Iout do
3: for it = 1 to Iin do
4: Compute the backward messages of variable ξk, k =

0, · · · , Ns − 1 from Subgraph 1 to Subgraph 2
according to (36) and (37);

5: Compute the forward and backward mean vector
as well as the covariance matrix on Subgraph 2
according to (32)-(33) and (34)-(35);

6: Compute the forward covariance matrix of variable
ξk, k = 0, · · · , Ns−1, from Subgraph 2 to Subgraph
1 according to (38) and (39);

7: Compute the outgoing messages ←−m(it)
xk and

←−
V

(it)
xk

according to (29)-(31);
8: Compute the approximated Gaussian incoming mes-

sages based on the a priori possibilities and the
outgoing Gaussian messages according to (25)-(28).

9: end for
10: Compute the extrinsic LLRs of the equalizer based on

the outgoing messages and feed them to the channel
decoder;

11: Perform BCJR channel decoding and compute the dis-
crete a priori possibilities of the transmitted symbols
based on the extrinsic LLRs of the channel decoder
using (22)-(23).

12: end for
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IV. GMP-EP-VMP JOINT CHANNEL ESTIMATION AND
EQUALIZATION

In contrast to OFDM-based systems, a typical linear MMSE
channel estimator designed for SEFDM-IM signaling suffers
from an excessive computational complexity due to the matrix
inversion of the inherent interference matrix. In this section,
we develop a low-complexity joint FD channel estimation
and equalization method for SEFDM-IM systems. By ap-
propriately grouping the elements of the channel’s frequency
responses, we reformulate the channel estimator via a linear
state-space model and connect it with the equalizer described
in Section III via an inner product node. To tackle error
propagation during channel estimation on the deactivated sub-
carriers, we exploit the channel characteristics for constructing
a multi-layer factor graph. Moreover, we derive the CRLB for
the proposed channel estimator in closed-form.

A. Factor Graph Model for SEFDM-IM Systems Having Un-
known CSI

Consider a L-tap frequency-selective fading channel, where
the number of subcarriers is Ns = QL, where Q is a positive
integer. By grouping the elements of the FD channel response,
we obtain Q vectors h̆q = [hq, hQ+q, · · · , h(L−1)Q+q]

T , q =

0, · · · , Q − 1. Each vector h̆q consists of L FD channel
response samples and can be obtained via non-orthogonal
transformation of the CIR as h̆q = ΓL(Λ

H)qh̄, where ΓL is a
non-orthogonal transformation matrix with Γm,n = e−

j2παmn
L

and Λ = D
(
[1, e

j2πα
Ns , · · · , e

j2πα(L−1)
Ns ]T

)
. Thus, the state

transition equation is given by

h̆q−1 = ΓLΛΓ−1
L h̆q. (40)

Assuming that the CSI remains unchanged during L̃
SEFDM-IM symbols, the corresponding q-th transmitted sym-
bol vector of the l̃-th SEFDM-IM symbol is denoted as
s̆l̃q = [sl̃q, s

l̃
Q+q, · · · , sl̃(L−1)Q+q]

T . The transmitted SEFDM-
IM symbols and the frequency-domain channel response sat-
isfy s̆l̃q = h̆l̃

q ⊙ x̆l̃
q . Each element of s̆l̃q is represented as

sl̃l = υT
l s̆

l̃
q , where υl is an indicator vector with the l-th

element being one.
With the assumption of an unknown CSI, channel factor

node in Fig. 2 is replaced by the FD channel estimator feeding
the equalizer. For quasi-static channels, different layers are
connected via channel variable nodes on the same subcarrier
positions of different symbols. Based on the above model, the
L̃-sublayer factor graph representation of our joint channel
estimation and SEFDM-IM equalization relying on unknown
CSI is depicted in Fig. 3. The multiplier node � represents
the inner product constraint δ(s̆l̃q − h̆l̃

q ⊙ x̆l̃
q).

B. VMP-based Channel Estimation

The a priori information gleaned from channel decoder is
computed as (25)-(28). We express the approximated Gaussian
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Fig. 3. Factor graph for joint channel estimation and equalization of SEFDM-
IM signaling with unknown CSI. The equalizer contains Subgraph 1 and
Subgraph 2 in Fig. 2.

messages passed from the channel estimator to the equalizer
as
−→m(it)

sl̃k
=υT

l

(−→m(it)

x̆l̃
q

⊙−→m(it)

h̆l̃
q

)
, (41)

−→
V

(it)

sl̃k
=υT

l

[
D
(−→m(it)

x̆l̃
q

⊙−→m(it)

x̆l̃
q

)
+
−→
V

(it)

x̆l̃
q

]
(42)

×
[
D
(−→m(it)

h̆l̃
q

⊙−→m(it)

h̆l̃
q

)
+
−→
V

(it)

h̆l̃
q

](
υT
l

)H−(−→m(it)

sl̃k

)2
,

where the forward messages −→m(it)

h̆l̃
q

and
−→
V

(it)

h̆l̃
q

depend on the

channel estimates at the (it − 1)-st iteration. The detailed
derivations of (41) and (42) are given in Appendix A.

The backward messages of variables s̆l̃q consist of the
corresponding outgoing messages of the equalizer. For the
inner product node, message updating using classical BP is
intractable. To derive approximated Gaussian expressions, the
backward message of h̆l̃

q from the inner product node is
updated according to the VMP rules of [42], [43] as

←−µ
(
h̆l̃
q

)
∝exp

(∫
ln δ

(
s̆l̃q−D

(
x̆l̃
q

)
h̆l̃
q

)
b
(
x̆l̃
q

)
b
(
s̆l̃q
)
dx̆l̃

qds̆
l̃
q

)
, (43)

where b
(
x̆l̃
q

)
and b

(
s̆l̃q
)

are the beliefs of the variables x̆l̃
q and

s̆l̃q , respectively.
It is noted that the logarithm of the delta function in-

volved in the integration of (43) is pathological [40]. To this
end, the multiplier node � is grouped with the edge s̆l̃q as
an equivalent soft node f l̃

q

(
x̆l̃
q, h̆

l̃
q

)
∝ exp

[
−
(
D
(
x̆l̃
q

)
h̆l̃
q −

←−m(it)

s̆l̃q

)H(←−
V

(it)

s̆l̃q

)−1(D(x̆l̃
q

)
h̆l̃
q −
←−m(it)

s̆l̃q

)]
. Then, the backward
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messages of the variables h̆l̃
q are derived in Appendix B. The

backward mean vector and covariance matrix of variables h̆l̃
q

are given by

←−m(it)

h̆l̃
q

=D
((
m

(it)

x̆l̃
q

)H⊙←−m(it)

s̆l̃q

)[
V

(it)

x̆l̃
q

+D
((

m
(it)

x̆l̃
q

)H⊙m(it)

x̆l̃
q

)]−1

,

(44)

←−
V

(it)

h̆l̃
q

=
←−
V

(it)

s̆l̃q

[
V

(it)

x̆l̃
q

+D
((

m
(it)

x̆l̃
q

)H⊙m(it)

x̆l̃
q

)]−1

, (45)

where both V
(it)

x̆l̃
q

and
←−
V

(it)

s̆l̃q
are diagonal matrices. The a pos-

teriori mean vector and covariance matrix of x̆l̃
q are formulated

as

m
(it)

x̆l̃
q

=
−→
V

(it)

x̆l̃
q

((−→
V

(it)

x̆l̃
q

)−1−→m(it)

x̆l̃
q

+
(←−
V

(it)

x̆l̃
q

)−1←−m(it)

x̆l̃
q

)
, (46)

V
(it)

x̆l̃
q

=

((−→
V

(it)

x̆l̃
q

)−1
+
(←−
V

(it)

x̆l̃
q

)−1
)−1

. (47)

Since the inner product constraint can also be represented as
δ(s̆l̃q −D

(
h̆l̃
q

)
x̆l̃
q), similar to the derivations of (44) and (45),

the backward mean vector and covariance matrix of variables
x̆l̃
q are derived as

←−m(it)

x̆l̃
q

=D
((

m
(it−1)

h̆l̃
q

)H⊙←−m(it)

s̆l̃q

)
×
[
V

(it−1)

h̆l̃
q

+D
((

m
(it−1)

h̆l̃
q

)H⊙m(it−1)

h̆l̃
q

)]−1

, (48)

←−
V

(it)

x̆l̃
q

=
←−
V

(it)

s̆l̃q

[
V

(it−1)

h̆l̃
q

+D
((

m
(it−1)

h̆l̃
q

)H⊙m(it−1)

h̆l̃
q

)]−1

, (49)

where the a posteriori mean vector m(it−1)

h̆l̃
q

and the covariance

matrix V
(it−1)

h̆l̃
q

of h̆l̃
q can be obtained similarly to that in (46)-

(47). Therefore, the outgoing messages of xl̃
k are given by

←−m(it)

xl̃
k

=←−m(it)

xl̃
(l1−1)Q+q

= υT
l1
←−m(it)

x̆l̃
q

, (50)

←−
V

(it)

xl̃
k

=
←−
V

(it)

xl̃
(l1−1)Q+q

= υT
l1

←−
V

(it)

x̆l̃
q

υl1 , (51)

where xl̃
k is the l1 element of x̆l̃

q and the subscript k satisfies
k = (l1 − 1)Q+ q.

Based on the backward messages of the variables h̆l̃
q in the

l̃-th sublayer, the GMP rules concerning equality nodes are
employed for determining the messages exchanged between
different sublayers. The backward weight matrices and the
transformed mean vectors related to the same subcarriers are
added together to produce the backward messages of h̆q ,
yielding,

←−
V

(it)

h̆q
=

( L̆∑
l̆=1

←−
W

(it)

h̆l̃
q

)−1

, (52)

←−m(it)

h̆q
=
←−
V

(it)

h̆q

L̆∑
l̆=1

←−
W

(it)

h̆l̃
q

←−m(it)

h̆l̃
q

, (53)

where
←−
W

(it)

h̆l̃
q

=
(←−
V

(it)

h̆l̃
q

)−1
. Then the forward messages of the

state h̆′′
q are also computed as

−→m(it)

h̆′′
q

=
−→
V

(it)

h̆′′
q

((−→
V

(it)

h̆′
q

)−1−→m(it)

h̆′
q

+
(←−
V

(it)

h̆q

)−1←−m(it)

h̆q

)
, (54)

−→
V

(it)

h̆′′
q

=

((−→
V

(it)

h̆′
q

)−1
+

(←−
V

(it)

h̆q

)−1
)−1

. (55)

The initial messages for the edge representing h̆′
Q−1 can be

obtained by using pilots based on the TD channel estimation
method [20]. Hence, the forward messages of the state h̆′

q−1

are expressed as
−→m(it)

h̆′
q−1

= ΓLΛΓ−1
L
−→m(it)

h̆′′
q

, (56)
−→
V

(it)

h̆′
q−1

= ΓLΛΓ−1
L

−→
V

(it)

h̆′′
q

Γ−H
L ΛHΓH

L . (57)

Obviously, the variance matrix
−→
V

(it)

h̆′
q−1

is no longer diagonal
in (57), which substantially increases the complexity of the
proposed algorithm. To reduce the computation complexity,
we approximate the variance matrix as

−→
V

(it)

h̆′
q

=
1

L
tr
(
−→
V

(it)

h̆′′
q

)
IL. (58)

Based on (58), we can express the forward messages of h̆′
0 at

the rightmost side of the factor graph. Upon combining with
the backward messages in (44) and (45), we have

m
(it)

h̆0
= V

(it)

h̆0

((−→
V

(it)

h̆0

)−1−→m(it)

h̆0
+

(←−
V

(it)

h̆0

)−1←−m(it)

h̆0

)
, (59)

V
(it)

h̆0
=

((−→
V

(it)

h̆0

)−1
+
(←−
V

(it)

h̆0

)−1
)−1

. (60)

Since the a posteriori messages are identical on the equation
nodes, the channel estimates at the it-th inner iteration can be
updated as

m
(it)

h̆l̃
q

= m
(it)

h̆q
= ΓLΛ

HΓ−1
L m

(it)

h̆q−1
, (61)

V
(it)

h̆l̃
q

= V
(it)

h̆q
= ΓLΛ

HΓ−1
L V

(it)

h̆q−1
Γ−H
L ΛΓH

L . (62)

Note that the product of ΓL (or ΓH
L ) with a vector in (56)

and (62) can be efficiently implemented using a single (L/α)-
point IDFT, when L/α is an integer or using c parallel L-point
IDFTs with cL complex multiplications when α is a rational
number [32].

In order to illustrate the reliability of the proposed GMP-
EP-VMP method, we derive the Cramer-Rao lower bound
(CRLB) for the proposed channel estimator in Appendix C.
Furthermore, the normalized mean square error (NMSE) of
the proposed channel estimator satisfies

NMSE = E
{
||h̄− ˆ̄h||2

||h̄||2

}
≥ CRLB = tr[I−1(h̄)], (63)

where I(h̄) is the Fisher information matrix in (71) and
||h̄||2 = 1.

The proposed hybrid GMP-EP-VMP joint channel esti-
mation and equalization algorithm for SEFDM-IM systems
communicating over frequency-selective fading channels is
summarized in Algorithm 2, where Iin and Iout are the
number of the inner and outer iterations, respectively.
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Algorithm 2 Hybrid GMP-EP-VMP Joint Channel Estimation
and Equalization of SEFDM-IM Signaling with Unknown CSI

1: Initialization: The extrinsic LLR of the channel decoder
is initialized as L

e,(0)
dec

(
cl̃g,p

)
= 0, g = 1, · · · , G, p =

1, · · · , P . Then the a priori mean and variance of the
transmitted symbols are −→m(0)

xl̃
k

= 0 and
−→
V

(0)

xl̃
k

= +∞, k =

0, · · · , Ns − 1. The forward and backward messages are
initialized as −→m(it)

s0 = 0,
−→
V

(it)
s0 = I,

−→
V

(it)
ξ0

= I,
←−
W

(it)
s0 = I,

←−
W

(it)
s0
←−m(it)

s0 = 0, and
←−
W

(it)
ξ0

= I. The initial
values of channel coefficients are obtained by the pilot-
based ZF method in [20].

2: for io = 1 to Iout do
3: for it = 1 to Iin do
4: Compute the forward mean and variance of variable

sl̃k, k = 0, · · · , Ns−1, from the channel estimator to
the equalizer according to (41) and (42);

5: Execute step 4-7 in the Algorithm 1;
6: Compute the messages related to the inner product

constraint node using (44)-(49);
7: Compute the outgoing messages of variables x̆l̃

q

emerging from the channel estimator to the channel
decoder according to (50)-(51);

8: Execute step 9 in the Algorithm 1.
9: Compute the backward mean vector and covariance

matrix of h̆q using the backward messages of h̆l̃
q from

different SEFDM-IM symbols according to (52)-(53);
10: Compute the forward messages of the channel esti-

mator according to (54)-(58);
11: Compute the a posteriori messages of variables h̆l̃

q

according to (59)-(62);
12: end for
13: Execute step 11-12 in the Algorithm 1.
14: end for

C. Complexity Analysis

The complexity comparison of the proposed GMP-EP and
GMP-EP-VMP algorithms to that of the existing methods
is summarized in Table I and Table II, respectively. Since
the standard soft information calculation and BCJR decoding
are performed in all methods in the following, we only
focus our attention on the complexity of the equalizer and
channel estimator. The optimal MAP equalizer suffers from an
exponentially increased complexity order of O

(
2PG

)
, where

P is the number of coded bits per subblock and G is the
total number of subblocks. The complexity of the BML
method approximately adopted from [28] exploits an ML
detector having a reduced search space and a complexity
order of O

(
2P⌈Lm

N ⌉), where Lm is the truncated length of the
interferences for the exhaustive search and N is the number of
SEFDM-IM subcarriers per subblock. The improved MMSE-
LLR method suitably adopted from [30] consists of the MMSE
equalizer and the LLR-based detector having an extended joint
search space, a complexity order of O(N3

s ) and O(GM2),
respectively, where Ns is the total number of SEFDM-IM sub-
carriers and M represents the M -ary constellation mapping.
When relying on IFFT/FFT-based modulation/demodulation,

TABLE I
COMPLEXITY ANALYSIS OF EQUALIZER

Algorithm Complexity
ML O

(
2PG

)
BML O

(
2P⌈Lm

N
⌉)

MMSE-SBS O(N3
s )

MMSE-LLR O(N3
s ) +O(GM2)

SIC-SBS O(3cNs log2 Ns)
GMP-EP O(NsL2

s), Ls ≪ Ns

TABLE II
COMPLEXITY ANALYSIS OF EQUALIZER AND CHANNEL ESTIMATOR

Algorithm Complexity
Equalizer Channel Estimator

T-FCE/PCE-SIC O(3cNs log2 Ns) O(N3
s )

F-PCE-SIC O(3cNs log2 Ns) O(Ns)
GMP-EP-VMP O(NsL2

s), Ls ≪ Ns O(cNs log2 L) +O(NsL)

the complexity of the SIC-SBS equalizer extended from [18]
and [44] grows logarithmically with the length of FFT. For
the proposed GMP-EP equalizer, the complexity is dominated
by the matrix inversion operation in (29) and (21), having a
complexity order of O(L3

s), where Ls is the total truncated
length of interferences considered for ICI mitigation. Since it
is computed Ns/Ls times per iteration, the total complex-
ity of the proposed GMP-EP equalizer is on the order of
O(NsL

2
s) per iteration. Compared to the existing methods,

the proposed GMP-EP equalizer is preferable for SEFDM-IM
systems having a large number of subcarriers and/or high-order
modulation.

For the channel estimation, the classical time-domain pilot-
based full channel estimator (FCE) [20] and partial channel
estimator (PCE) [21] channel estimators are derived based
on the ZF criterion, having a complexity order of O(N3

s ).
In [22], the FD PCE using SEFDM pilots is derived, which
has a linearly increasing complexity vs the number of subcar-
riers, plus the additional interpolation complexity. The above
channel estimator can be combined with an SIC equalizer for
constructing an SEFDM-IM receiver. The variance matrices
of the proposed hybrid GMP-EP-VMP algorithm are approxi-
mated by diagonal matrices using the trace operation in (57),
which results in trivial complexity for the matrix inversion.
The inversion operation of the non-diagonal matrix ΓL only
has to be calculated once, which can be performed off-line.
As a result, the complexity of the GMP-EP-VMP method
is dominated by the matrix product operation related to ΓL,
which can be implemented by the IFFT/FFT operation. The
complexity of the other matrix product operations depends on
the number of subcarriers and on the length of the channel
memory per iteration. Therefore, the total complexity of the
proposed channel estimator is O(cNs log2 L) + O(NsL) for
α = b

c , b, c ∈ N per iteration, where α is the subcarrier packing
factor, L is the length of channel memory and Ns = QL.

V. SIMULATION RESULTS AND DISCUSSIONS

We now evaluate both the BER and NMSE performance
of the proposed methods by Monte Carlo simulations. In
all simulations, we employ a LDPC code having code rate
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TABLE III
THE NORMALIZED PDP OF THE RICIAN FADING CHANNEL HAVING Kh = 10 dB

Tap 1 2 3 4 5 6 7 8
Normalized Delay 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Normalized Power 0.9000 0.0189 0.0171 0.0155 0.0140 0.0127 0.0115 0.0104
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GMP-EP,  = 0.8
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Fig. 4. BER performance of different equalizers for SEFDM-IM systems with
known CSI, (N,K) = (4, 1).

of r = 3312/4032 and code length of 4032 bits, unless
otherwise specified. In [24], it is demonstrated that subcarrier-
index modulation is beneficial for the scenario of a relatively
low transmission rate below 2 bits/s/Hz. Hence, we only
employ QPSK modulation using Gray mapping in this paper.
Each frame consists of L̃ = 32 SEFDM-IM symbols and
pilots are only transmitted on the first symbol. For notational
simplicity, we refer to the SEFDM-IM scheme with K out of
N subcarriers being active per subblock as the (N,K) scheme.
The order of CAR model is set to P̄ = 1. The truncated
length of interferences is Lt = 5, unless otherwise specified.
A Rician fading channel having L = 8 paths and a Rician
factor of Kh = 10 dB is studied [45]. The coefficient h̄l

of the l-th path is independently generated according to the
distribution h̄l ∝ gC

(
0, σ2

h̄l

)
and σ2

h̄l
= exp(−0.1l)/(

∑
l σ

2
h̄l
).

The normalized power delay profile (PDP) is shown in Table
III. The total number of iterations and inner LDPC decoding
iterations are I = IinIout = 50 and Ic = 50, respectively.
Moreover, the spectral efficiency of SEFDM-IM signaling is
calculated by η = Rc(log2⌊

(
N
K

)
⌋+K log2 M)/(αN) bits/s/Hz

[6].
We first evaluate the BER performance of the proposed

equalizer (I = 1) and compare it to that of other existing
equalizers conceived for SEFDM-IM signaling using known
CSI, as shown in Fig. 4. Due to the high complexity of some of
the existing methods, the number of subcarriers is set to Ns =
16. The BML method (Lm = 4) in [28] and the MMSE-LLR
method in [30] are extended to coded SEFDM-IM systems
by calculating soft information representing the index bits and
symbol bits. The BER performance of OFDM-IM signaling
is also included as a benchmark. It is observed that the
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N
s
 = 256, OFDM-IM

SIC-SBS
GMP-EP

I
in

 = 2, I
out

 = 25

I
in

 = 1, I
out

 = 50

Fig. 5. BER performance of different equalizers for SEFDM-IM systems with
known CSI, (N,K) = (4, 3).

BML equalizer and the MMSE-LLR equalizer do not perform
well. This is because the BML equalizer ignores interferences
from other IM subblocks and the MMSE-LLR equalizer only
reserves two candidate active patterns for K = 1. Compared
to the OFDM-IM signaling, the MMSE-SBS equalizer suffers
from 0.5 dB and 1.0 dB performance loss at BER = 10−5 for
α = 0.9 and α = 0.8, respectively. Due to joint interference
cancellation and IM detection, the proposed hybrid GMP-EP
equalizer attains a comparable BER performance at an 11%
higher transmission rate than its orthogonal subcarrier based
counterpart. When further decreasing the subcarrier packing
factor, SEFDM-IM signaling improves the spectral efficiency
by up to 25% at the cost of only 0.3 dB performance loss at
BER = 10−5.

In Fig. 5, we further evaluate the BER performance of the
proposed equalizer (I = 50) and compare it to the SIC-SBS
equalizer (which becomes the MMSE-SBS equalizer when
I = 1). In the following simulations, the IM parameters are
set to (N,K) = (4, 3). To illustrate the flexibility of the pro-
posed equalizer, we provide simulation results for SEFDM-IM
systems having various number of subcarriers, i.e., Ns = 16
and Ns = 256. It is observed that the BER of SEFDM-IM
signaling only increases slightly upon increasing the number
of subcarriers due to the ill-conditioning problem of SEFDM-
IM signaling. Compared to its OFDM-IM counterpart, for
α = 0.8, SEFDM-IM signaling based on the proposed GMP-
EP equalizer achieves both 25% higher transmission rate and
0.2 dB Eb/N0 gain at BER = 10−5 by judiciously selecting
the values of Iin and Iout. By contrast, the SIC-SBS equalizer
suffers from 1.4 dB performance loss for α = 0.8 due to the
impact of severe equivalent interferences at the first iteration.
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Fig. 6. BER performance of different joint channel estimation and equaliza-
tion algorithms for SEFDM-IM systems.
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Fig. 7. NMSE performance of different joint channel estimation and equal-
ization algorithms for SEFDM-IM systems.

As shown in Fig. 6 and Fig. 7, we evaluate the BER and
NMSE performance of the proposed hybrid GMP-EP-VMP
joint channel estimation and equalization method, respectively.
The number of subcarriers is set to be Ns = 256. The
corresponding curves of the time-domain FCE-SIC and PCE-
SIC algorithms, i.e., T-FCE-SIC and T-PCE-SIC, are also
plotted for comparison. The BER performance of Nyquist
signaling with perfect CSI is also included as a reference.
As seen, the BER and NMSE performance of the T-PCE-
SIC method are superior to those of the T-FCE-SIC method
because the former only transmits pilots on mutually orthog-
onal subcarriers to alleviate the effects of the ill-conditioning
problem of SEFDM signaling. Note that the proposed channel
estimator employs not only the pilots, but also the transmit-
ted symbols recovered in the previous iterations. Hence, the
proposed method relying on the most appropriate activation
order of the receive components outperforms other schemes
in terms of their BER and NMSE performance, especially
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Fig. 8. Impact of the truncated length of interferences and the number of
turbo iterations on BER performance (Iin = 1).

for severe ICIs scenarios. Compared to that of OFDM-IM
signaling, for α = 0.9, the Eb/N0 gain of the proposed GMP-
EP-VMP method using Iin = 2 and Iout = 25 is about
0.4 dB at BER = 10−5. Even if we further reduce the spacing
of subcarriers to say α = 0.8, coded SEFDM-IM signaling
still has about 0.2 dB Eb/N0 gain. However, when the inner
iteration of the equalizer runs only once, an additional 0.6 dB
performance erosion may be encountered for α = 0.8 and
α = 0.9. Hence, designing a judicious activation order is
critical to the proposed methods. In Fig. 7, the CRLBs of
the proposed channel estimator having various packing factors
are included as benchmarks. The CRLB is derived under the
assumption that L̃ transmitted SEFDM-IM symbols in the
whole frame are known. In practice, only the first symbol
contains pilot subcarriers and other symbols convey unknown
transmitted data. Hence, the NMSE values of the proposed
channel estimator are a little higher than the CRLBs.

The complexity of the proposed algorithm depends both on
the length of the truncated interferences and on the number
of turbo iterations. The impact of Lt and I on the BER
performance is illustrated in Fig. 8. For simplicity, the number
of subcarriers is Ns = 16 in the following simulations. It
is seen that the BER performance of SEFDM-IM signaling
with various packing factors improves as the number Lt or
I increases. When Lt or I is higher than a certain value,
the performance gain becomes marginal, especially for dense
subcarrier packing. In Fig. 8(a), significant performance gaps
is observed between Lt = 3 and Lt = 7, which is due
to the underestimation of the interferences induced by non-
orthogonal signaling. By contrast, Lt ≥ 4 is a reasonable
approximation for α = 0.8, α = 0.9 in this case. In Fig. 8(b),
the convergence speed of the proposed algorithm becomes
slower upon reducing α. The result coincides with the fact
that a smaller α imposes stronger interferences. To strike a
performance vs complexity balance, I ≥ 20 is a reasonable
option for α = 0.8, α = 0.9.

The BER performance of the proposed method with differ-
ent combinations of the number of LDPC decoding iterations
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Fig. 9. BER performance of the proposed algorithm with different combina-
tions of Ic and I (Iin = 1).
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Fig. 10. BER performance of the proposed algorithm with different combi-
nations of α and r (Iin = 1).

Ic and turbo iterations I are evaluated in Fig. 9, where
α = 0.9. Since the complexity of LDPC decoding dominates
the complexity of turbo receiver, we keep the total number of
LDPC decoding, i.e., the product of Ic and I , to be constant. It
can be observed that, at the beginning, the BER performance
of the proposed method improves with the increasing of Ic.
Specifically, when Ic = 5, I = 30, the BER performance is
very close to the one with Ic = 50, I = 50. However, when
further increasing Ic, the BER performance degrades. This
may due to the fact that the proposed method cannot coverage
with inadequate turbo iterations. Therefore, message schedul-
ing between LDPC decoding as well as channel estimation
and equalization can be optimized to reduce the computational
complexity.

In Fig. 10, we further evaluate the BER performance
of SEFDM-IM signaling for a fixed spectral efficiency of
η = 1.64 bits/s/Hz at different combinations of the subcarrier
packing factor α and code rate r, where Ic = 50 and I = 50.

In the simulations, we employ four LDPC codes having
different code rates of r = 3312/4032, r = 3024/4032,
r = 2592/4032, r = 2304/4032. The scenario of OFDM-
IM signaling with known CSI is plotted as the benchmark,
where α = 1 and r = 3312/4032. It is observed that the
performance gain is about 0.3 dB for SEFDM-IM signaling
associated with α = 0.913, r = 3024/4032. Upon reducing
the coding rate and the packing factor simultaneously to
α = 0.783, r = 2592/4032, the gain becomes 0.5 dB at the
same bandwidth efficiency. Note that we cannot increase the
performance gain by keep decreasing r for a fixed η. When
further reducing α and r, e.g., α = 0.696, r = 2304/4032, the
BER performance is degraded. This is due to the fact that when
the subcarrier packing factor is much smaller than the Mazo
limit [46], the residual ICI degrades the decoding performance.
Hence, in practical applications of SEFDM-IM systems, we
can strike a compromise between the packing factor and code
rate.

VI. CONCLUSIONS

A low-complexity joint channel estimation and equalization
was conceived for SEFDM-IM signaling over frequency-
selective fading channels. To extract the potential perfor-
mance gain, we jointly performed interference mitigation and
IM detection for the scenario of perfectly known CSI. By
introducing the extended constellation concept and further
reformulating the design problem via a linear state-space
model, we constructed a Forney-style factor graph having two
subgraphs. Based on Gaussian approximations of the discrete
transmitted symbols via the EP method, we derived a low-
complexity parametric message passing algorithm. For the
scenario of unknown CSI, we constructed a multi-layer factor
graph to tackle the problem of error propagation in channel
estimation induced by the deactivated subcarriers of SEFDM-
IM signaling. To obtain Gaussian expressions for message
passing between the channel estimator and equalizer, we built
a soft node and derived the forward and backward messages
according to VMP rules. Our simulation results showed that
for a known CSI scenario, the proposed GMP-EP equalizer
outperformed the extended non-iterative BML, MMSE-LLR,
and MMSE-SBS methods. Furthermore, the performance of
the proposed method was also superior to the iterative SIC-
SBS method, especially for small packing factors. For an
unknown CSI scenario, the proposed GMP-EP-VMP method
performed very close to its known CSI counterpart. The com-
plexity of the proposed GMP-EP equalizer increases linearly
with the number of subcarriers Ns for Ls ≪ Ns, and that
of the proposed GMP-EP-VMP channel estimation algorithm
grows logarithmically with the length of the channel memory
and linearly with the number of subcarriers.

APPENDIX A
DERIVATIONS OF (41) AND (42)

In contrast to the elementary or multiplication nodes, the
extraordinary inner product node lacks explicit Gaussian mes-
sage updating rules on FFG. Note that the inner product
constraint is equivalent to a dot product of the corresponding
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independent vectors h̆q and x̆q , while the inner elements are
also assumed to be independent. According to BP rules [47],
[48], we can compute the forward messages of s̆q element-by-
element as

−→µ
(
sq
)
∝
∫

δ(sq − hqxq)
−→µ

(
xq

)−→µ (
hq

)
dxqdhq (64)

∝ 1

|hq|

∫
gC

(
−→m(it)

xq
,
−→
V (it)

xq
;
sq
hq

)
gC

(
−→m(it)

hq
,
−→
V

(it)
hq

;hq

)
dhq.

However, it is hard to derive an analytical Gaussian ex-
pression for the above equation. To obtain the approximated
Gaussian messages of s̆q , according to the moment matching
method [37], we have to calculate the first-order and second-
order moments of variables s̆q . Based on the Mellin transform
[49], it is easy to derive that the nth-order moment of the
product of two statistically independent random variables
is equal to the product of two nth-order moments of the
corresponding independent random variables, i.e., we have
E{(xqhq)

n} = E{xn
q }E{hn

q }.
Based on the a priori probabilities obtained from the chan-

nel decoder and channel estimator, the approximated forward
mean vector and covariance matrix of variables s̆q are given
by

−→m(it)
s̆q

= −→m(it)
x̆q
⊙−→m(it)

h̆q
, (65)

−→
V

(it)
s̆q

=

[
D
(−→m(it)

x̆q
⊙−→m(it)

x̆q

)
+
−→
V

(it)
x̆q

]
(66)

×
[
D
(−→m(it)

h̆q
⊙−→m(it)

h̆q

)
+
−→
V

(it)

h̆q

]
−D

(−→m(it)
s̆q
⊙−→m(it)

s̆q

)
.

Hence, the forward mean and variance of the variable sk
forwarded from the channel estimator to the equalizer is
represented by (41) and (42).

APPENDIX B
DERIVATIONS OF (44) AND (45)

According to the VMP rules [43], the backward message of
variables h̆l̃

q is rewritten as

←−µ
(
h̆l̃
q

)
∝ exp

(∫
ln f l̃

q

(
x̆l̃
q, h̆

l̃
q

)
b
(
x̆l̃
q

)
dx̆l̃

q

)
, (67)

where the a posteriori belief obeys b
(
x̆l̃
q

)
∝

gC

(
m

(it)

x̆l̃
q

,V
(it)

x̆l̃
q

; x̆l̃
q

)
. Next, the backward message of

variables h̆l̃
q at the (it)-th iteration is derived as
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APPENDIX C
CRLB FOR THE PROPOSED CHANNEL ESTIMATOR

First of all, we should prove that the proposed channel
estimator is unbiased. Assuming that the unknown CIR vector
h̄ = [h̄0, · · · , h̄L−1]

T remains unchanged during L̃ SEFDM-
IM symbols, the l̃-th received SEFDM-IM symbol in (3) can
be rewritten as rl̃ = ΦXl̃Θh̄ + ωl̃, where Θ is a Ns × L
matrix and the element on the n-th row and the l-th column is
θn,l = e−

j2παnτl
Ts . Based on Bayesian rules, the MAP estimator

of the unknown channel parameters is derived as
ˆ̄h=argmax

h̄

∑
l̃

(
ln p(rl̃|h̄,Xl̃)+ln p(Xl̃)+ln p(h̄)

)
, (69)

where p(rl̃|h̄,Xl̃) = gC(ΦXl̃Θh̄,V; rl̃) and V = σ2
ωΦ.

Here, the a priori probability p(h̄) of the CIRs describes the
accuracy of channel initialization. Hence, we assume that the
a priori probability of the CIRs obeys the Gaussian distri-
bution, i.e., p(h̄) = gC(h̄

0,Vh̄0 ; h̄), where the mean vector
is initialized as h̄0 = [(ΦX0Θ)HΦX0Θ]−1(ΦX0Θ)Hr0
using pilot-based ZF method in [20], the covariance matrix
is initialized as Vh̄0 = D(σ0) and the l-th element of σ0

is σ0
l = σ2

h̄l
− |ˆ̄hl|2. The first-order partial derivative of

ln p(h̄|r0, · · · , rL̃−1,X0, · · · , XL̃−1) is

∂ ln p(h̄|r0, · · · , rL̃−1,X0, · · · ,XL̃−1)

∂h̄

=
∑
l̃

∂ ln p(rl̃|h̄,Xl̃)

∂h̄
+

∂ ln p(h̄)

∂h̄
(70)

= −
∑
l̃

(
ΦXl̃Θ

)H
V−1

(
rl̃ −ΦXl̃Θh̄

)
+V−1

h̄0

(
h̄− h̄0

)
,

and setting it to zero yields ˆ̄h = (
∑

l̃(ΦXl̃Θ)HV−1ΦXl̃Θ+
V−1

h̄0 )
−1(

∑
l̃(ΦXl̃Θ)HV−1rl̃ +V−1

h̄0 h̄
0). It is easy to prove
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that E{ˆ̄h} = h̄. Hence, the proposed channel estimator is
unbiased.

According to (70), the expectation of the first-order partial
derivative of the joint probability distribution function (PDF)
equals zero, i.e. the p(r0, · · · , rL̃−1,X0, · · · ,XL̃−1, h̄) satis-
fies the regularity condition. Then, the covariance matrix of
the proposed unbiased estimator ˆ̄h satisfies Ch̄ ≥ I−1(h̄).
According to the derivations in [50], the Fisher information
matrix I(h̄) is

I(h̄) =
∑
l̃

(ΦXl̃Θ)HV−1ΦXl̃Θ. (71)

Therefore, the CRLB for the proposed channel estimator is
CRLB = tr[I−1(h̄)].
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