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Abstract: Purchase data from retail chains can provide proxy measures of private household

expenditure on items that are the most troublesome to collect in the traditional expenditure

survey. Due to the inevitable coverage and selection errors, bias must exist in these proxy

measures. Moreover, given the sheer amount of data, the bias completely dominates the

variance. To investigate the potential of replacing costly and burdensome surveys by non-

survey big-data sources, we propose an audit sampling inference approach, which does not

require linking the audit sample and the big-data source at the individual level. It turns out

that one is unable to reject a null hypothesis of unbiased big-data estimation at the chosen

size, because the audit sampling variance is too large compared to the bias of the big-data

estimate. For the same reason, audit sampling fails to yield a meaningful mean squared

error estimate. We propose a novel accuracy measure that is generally applicable in such

situations. This can provide a necessary part of the statistical argument for the uptake of

non-survey big-data sources, in replacement of traditional survey sampling. An application

to disaggregated food price indices is used to demonstrate the proposed approach.

Keywords: privacy protection, survey burden and cost, proxy source effect, evaluation

coverage

1 Introduction

The Consumer Price Index (CPI) measures the rate at which the prices of consumption

goods and services change from month to month. It has substantial financial implications

for governments and businesses, as the CPI is often specified in legislation and long-term

contracts for adjusting payments for the effects of inflation. It is also a key statistic for
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socio-economic policy-making, in which context it is of interest to calculate the CPI for

specific subpopulations, such as pensioners, students, households with small children.

In practice, the CPI is calculated as a weighted average of the price changes (or indices)

for a specified set of aggregates of consumer items. The weight of an aggregate is the

share of the relevant consumer items in the household total expenditure, which reflect their

relative importance in household consumption. The price indices for the aggregates and the

weights of the aggregates are based on data obtained from separate sources. In this paper

we focus on the estimation of the expenditure shares, to be referred to as the CPI weights.

The price indices for the aggregates will be treated as given constants, when studying the

statistical properties of the resulting CPI.

The CPI weights are traditionally estimated from the Consumer Expenditure Survey

(CES). Due to the limited sample size, the CPI weights calculated specifically for different

subpopulations have relatively large sampling variances. The CES is extremely burdensome

due to its diary component, where the sample household needs to keep a diary of all

relevant purchases typically over a two-week period. In many western countries, the CES

has currently a high nonresponse rate, and is known to suffer from various misreporting

errors; see e.g. Frickr et al. (2015), Battistin and Padula (2016), and Bee et al. (2012).

After the Norwegian CES was discontinued in 2012, the CPI has been calculated using

proxy weights compiled from retailer turnovers that are available to the System of National

Accounts. Under this supplier-data approach, one cannot connect the items of transaction

to different consumer subpopulations, in order to calculate the CPI weights for any specific

subpopulation. However, provided the connection is feasible, the relevant purchase data

can provide proxy CPI weights for the subpopulations of interest. Unlike the CES-based

weights, these proxy weights can be considered to have virtually zero sampling variance for

practical purposes because of the sheer amount of data that can be made available. But

they are generally biased due to a number of errors that are unavoidable in reality. In

particular, these include coverage errors caused by the discrepancy between the available

purchases and the entire household consumption of the target subpopulation, and selection

errors from the available purchases because, for various technical reasons, one is not able

to code and classify all the items in them.

In such a situation, where bias completely dominates variance, modelling the intrinsic

variability of the proxy weights would be fruitless, as long as it cannot capture the bias.

Additional observations of expenditure are necessary to investigate the extent to which

the proxy weights may be biased. The thrust of this paper is to develop a general audit

sampling inference approach to the following three relevant questions in this context:

I. Under which condition is the price index based on proxy CPI weights unbiased?
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II. How to test the potential bias of index resulting from the proxy CPI weights?

III. How to measure the accuracy of the price index based on proxy CPI weights?

As will be easily made clear later, it is possible for the CPI to be unbiased, even when it is

based on weights that are biased themselves. Question I is nevertheless important, because

it allows one to shift the focus from the bias of proxy weights to that of the resulting CPI,

which is what really matters. We shall refer to the condition for unbiased CPI as the

validity condition for proxy weights. Smith (1983) and Zhang (2019) use the term in the

same sense, whereby the observed data can be used validly for estimation, although they

are not obtained via a known probabilistic design. Whereas Question I can be answered

analytically, additional data are necessary in order to address Questions II and III. The

available CES data will be treated as an audit sample in this respect.

We emphasise the following. Firstly, the audit sampling approach is developed from

the perspective that non-survey big-data (including administrative registers) can possibly

replace survey sampling altogether, in routine production of official statistics. The matter

of using transaction-based proxy weights for the Norwegian CPI provides a case-in-point

that is relevant to other countries as well. Secondly, the proposed approach is generally

applicable, where confidence and accuracy measures for big-data statistics are required to

construct the statistical argument for the transition. The inference of uncertainty is based

on the audit sampling distribution, which is valid whether or not the validity condition

for the big-data statistics is satisfied. Thirdly, in case the transition to big-data statistics

does take place, audit sampling inference can be applied from time to time to assess their

performance. How frequent and how accurate the auditing inference needs to be depends

chiefly on the user demands and the available resource in a given context.

It is important to notice that audit sampling serves a fundamentally different purpose

to that of survey sampling. Wherever the goal of survey sampling is to produce a point

estimate of some target parameter of a given finite population, audit sampling aims not

to estimate the target parameter itself, but some chosen accuracy measure of any given

estimator of the target parameter, which may be potentially biased due to failure of the

underlying assumptions or other favourable conditions that are necessary.

Mean squared error (MSE) is a common choice of accuracy measure. However, as will be

demonstrated later, MSE estimation can easily produce negative (hence unusable) results,

unless the audit sampling variance is small compared to the bias of the big-data statistic.

It is unattractive to simply increase the audit sample size in such situations, which means

audit sampling would be relatively more costly in a relatively favourable setting where the

big-data statistic has only a small bias. Instead, we propose and develop a novel accuracy

measure for big-data statistics, where bias completely dominates variance, which is generally
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applicable based on audit sampling and overcomes the problem of limited audit sample size.

To the best of our knowledge the proposal is brand new to the literature.

Notice that there is a long tradition in survey sampling, where auxiliary information

including non-survey proxy measures can be used to improve the efficiency, by appropriate

weighting adjustment or prediction modelling; see e.g. Särndal et al. (1992) and Valliant

et al. (2000), respectively. One can approach the CES from such a perspective, where the

target parameters are the yearly expenditure shares of a given household population, and the

purchase data that yield the proxy CPI weights are relevant auxiliary data. Nevertheless,

we are not aware of any existing practice where the two sources are combined in this way.

A major obstacle is privacy concern, against linking individual observations in the CES

to the purchase data from the retailers. Another is the extra cost and burden required to

collect the required auxiliary data from the businesses.

The proposed audit sampling approach has also very different characteristics to the

traditional application of statistical techniques for auditing. Audit sampling techniques

for Accounting (e.g. Neter, 2011) can be relevant, if one treats the expenditure measures

derived from purchase data as the book (proxy) amounts, and use sampling from them to

obtain a sample of audited (correct) amounts, e.g. in order to estimate the accounting

error of total book amount and to analyse the individual book amount errors. But this

approach is ineffective for assessing the under-coverage error of the total book amount.

Moreover, in the present context, it would require taking a sample from the purchase data

directly, which may not be feasible due to the same objections above against privacy, cost

and burden. In contrast, under our approach, the CES constitutes a separate sample from

the target universe, which is not linked to the purchase data at the individual level, but

allows one to assess the combined effect of all the errors in the purchase data.

The rest of paper is organised as follows. In Section 2, we introduce the data for this

study and the objective of age-group specific food price indices motivated by the available

data. In Section 3 we clarify the validity condition for unbiased CPI based on biased

purchase data proxy weights, and develop tests for the bias of the resulting CPI when the

validity condition is not fully satisfied. In Section 4, we start by showing that the estimation

of MSE runs into troubles, because the CES audit sample size is not sufficiently large. We

then propose and develop a novel accuracy measure for big-data statistics, and demonstrate

the approach by applying it to the age-group food price indices. A summary of some final

remarks are given in Section 5.
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2 Data and target index

We describe below the data for this study, the choice of target index and some relevant

overall considerations. The available purchase data are obtained from some of the largest

supermarket chains in Norway. These pertain to the 11 COICOP groups 111 - 119, 121

and 122, according to the classification of individual consumption by purpose (COICOP),

developed by the United Nations Statistics Division and adopted by the Eurostat. Together

these 11 commodity groups at the 3-digit level constitute the first 2-digit category Food

and non-alcoholic drinks in Table 1, henceforth simply referred to as food.

Table 1: Household expenditure, total in NOK. (Source: ssb.no)
1998 - 2000 2012
Total % Total %

Consumption in all 280078 100 435507 100
01 Food, non-alcoholic drinks 33499 12,0 51429 11,8
02 Alcohol, tobacco 8114 2,9 11717 2,7
03 Clothing, shoes 16278 5,8 23618 5,4
04 Housing, household energy 71278 25,4 135982 31,2
05 Furniture, household articles 17321 6,2 24495 5,6
06 Health 7717 2,8 11421 2,6
07 Transport 56832 20,3 81574 18,7
08 Post, telecommunication 5610 2,0 8253 1,9
09 Culture, recreation 33634 12,0 43347 10,0
10 Education 869 0,3 985 0,2
11 Restaurant, hotel, etc. 11379 4,1 15557 3,6
12 Other goods or services 17547 6,3 27129 6,2

As the target index we shall consider age-group specific food price indices, as examples

of disaggregated CPIs. To compute these target indices, we treat the 11 commodity groups

at the 3-digit level as the aggregates of consumption items, for which we need the associated

price indices and CPI weights. The audit sampling inference approach to be developed later

will be applied to these age-group food price indices.

Aggregate price indices Figure 1 shows the price indices for the chosen 11 aggregates

published by Statistics Norway, over the 36 months of 2015 - 2017, denoted by T = 36.

They are based on prices in the scanner data collected directly from all the major super-

market chains, which arise from scanning the bar codes for individual products at electronic

points of sale in retail outlets, including detailed information about quantities and values

of goods sold as well as their prices. In this study we use these 11 × 36 price indices as

possible food aggregate price indices one is likely to encounter in practice, and treat them
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as given constants. Scanner data constitute a rapidly expanding source of price data for

CPI purposes. For information regarding index methodology based on scanner data, we

refer to the website of Ottawa Group (http://www.ottawagroup.org).
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Figure 1: Price indices for 11 food aggregates over 36 months (Source: Statistics Norway)

Aggregate CPI weights The CPI weights for the aggregates are traditionally estimated

based on the expenditure data collected in the CES. Food items are the most burdensome

CES diary component in this respect. Throughout the first decade of this millennium,

the sample size of the Norwegian CES is about 7000 households, and the response rate is

about 50%. The diary data are collected over a period of two weeks for each respondent

household. For this study, we shall ignore the nonresponse effects, as if the respondent

households were a simple random sample by design, treat the CES-based CPI weights as

unbiased estimators of the true CPI weights, and only calculate their sampling variances
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as the associated uncertainty of estimation.

For disaggregation of the food price index, we consider four groups by the age of house-

hold head: up to 25, 26 - 40, 41 - 67, 68 and above, denoted by g = 1, ..., 4. As can be seen

in Table 1, the total expenditure share of the 11 food aggregates decreased by only 0.2%

over the decade, which on average is less than 0.02% each year. The weights based on the

CES in 2012 further breaks down the 11 yearly food aggregate weights by age groups. These

are given in Table 2, for all ages as well as for each age group. Clearly, these CES-based

age-group specific weights are associated with large relative standard errors.

Table 2: Weights of food aggregates based on CES and transaction data (proxy).
COICOP All Up to 25 26 - 40 41 - 67 68 and above
(3-digit) CES Proxy CES Proxy CES Proxy CES Proxy CES Proxy

111 .136 .150 .152 .166 .147 .157 .136 .147 .123 .124
112 .195 .138 .177 .118 .181 .135 .200 .146 .172 .126
113 .059 .041 .035 .023 .044 .035 .060 .045 .090 .067
114 .161 .168 .161 .148 .162 .169 .154 .169 .178 .181
115 .017 .020 .015 .012 .016 .017 .020 .022 .031 .032
116 .076 .084 .055 .067 .067 .083 .073 .085 .092 .100
117 .102 .104 .100 .092 .097 .100 .099 .107 .101 .113
118 .093 .090 .107 .106 .111 .088 .097 .088 .078 .085
119 .059 .079 .073 .086 .063 .088 .055 .073 .050 .072
121 .025 .030 .020 .026 .024 .024 .027 .031 .038 .043
122 .076 .096 .103 .156 .089 .103 .079 .087 .046 .056

For proxy weights of the food aggregates from transaction data, one possibility is via

the retailer loyalty members, whose membership IDs are registered together with the pur-

chases. Some obvious issues of this option include a relatively large under-coverage error

of loyalty members and their registered purchases, confidentiality restrictions and burden

on the businesses for data extraction. An alternative is via the card transactions, since

almost all purchases are paid by card (or other digital means) in Norway, and a handful

payment services account for most of the transactions. The separate data of purchases and

card transactions can be linked to each other based on non-personal features such as time,

outlet and amount, connecting thus the cardholder to the linked purchases. Standard dis-

closure control methods are applied to preserve data confidentiality, whereby expenditure

data by age groups can be extracted from the linked data, without revealing the cardholder

identity or the time, place and other details of individual purchases.

For this study, we have fully anonymised expenditure data based on extractions pro-

vided by the largest card payment service and some of the largest supermarket chains in

Norway. The data pertain to a single weekday in September of 2016, consisting of 0.8
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million transactions, broken down according to the age of the cardholder. These proxy

weights are given in Table 2. More data can be acquired if the proxy weights are to be used

in routine production. Thus, for this study we shall consider the proxy weights to have

practically zero variance compared to the sampling variance of the CES weights.

Regarding the set-up For audit sampling inference we shall use the CES in 2012 as an

audit sample, and treat the CES-based weights as unbiased estimates of the corresponding

true CPI weights for 2012. Setting aside the coverage and selection errors of the available

transaction data with respect to all household purchases, the proxy CPI weights do not

refer to exactly the same subpopulations as those identified in the CES for two reasons.

First, the available transaction data refer to a different time point than the CES. Second,

the proxy weights are broken down by the age of the card holder, instead of the age of

the household head in the CES. Thus, these proxy weights are necessarily biased for the

true CPI weights in 2012. Should the proxy weights nevertheless found to be advantageous

compared to the CES-based weights, it would only strengthen the plausibility of adopting

concurrent proxy weights in the routine production of CPI.

3 Testing proxy source effect

3.1 Proxy source effect and validity condition

Let pit be the price index for aggregate i in month t, where i = 1, ...,m and m = 11, and

t = 1, ..., T and T = 36, as shown in Figure 1. Let wg = (w1g, ..., wmg)
> be the true weights

of the aggregates for age-group g, where
∑m

i=1wig = 1 for g = 1, ..., 4. The target food price

index for age group g in month t is given as

Pgt =
m∑
i=1

wigpit = p>t wg

where pt = (p1t, ..., pmt)
>. Denote by w∗g = (w∗1g, ..., w

∗
mg)
> the big-data proxy weights,

where
∑m

i=1w
∗
ig = 1 for g = 1, ..., 4, which are given in Table 2. Denote by P ∗gt = p>t w

∗
g the

age-group food index based on the proxy weights. The bias of P ∗gt, or proxy source effect,

due to the proxy weights is given by

∆gt = P ∗gt − Pgt = p>t (w∗g −wg) (1)

It is clear from the expression (1) that one does not need to have w∗ = w, in order to

avoid the proxy source effect for Pgt that is the target of estimation. Of course, the bias of
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P ∗gt would most likely be small, if w∗ is close to w. More specifically, the validity condition

can be stated as follows. Now that
∑m

i=1(w
∗
ig−wig) ≡ 0 by definition, for any (g, t), one can

consider ∆gt as the empirical covariance between pit and w∗ig −wig, over i = 1, ...,m. Thus,

the proxy weights are valid, i.e. yielding unbiased index P ∗gt, provided pit is empirically

uncorrelated with the bias of the proxy weights w∗ig − wig across the aggregates. That is,

whether or not an aggregate has a higher than average price index is not related to whether

or not its proxy weight is higher than the corresponding true weight.

3.2 Tests for bias

We have ∆gt = 0 in (1) for a particular month t, if the proxy weights are valid for Pgt.

Since price indices are used to measure how prices change over time, it is helpful to make

greater use of p = {pt : t = 1, ..., T} when testing the bias of proxy weights. Given any g,

one can postulate a simple structural relationship

Pgt = γg + βgP
∗
gt

between {P ∗gt : t = 1, ..., T} and {Pgt : t = 1, ..., T} over time. Next, let ŵg = (ŵ1g, ..., ŵmg)
>

be the CES-based weights, for g = 1, ..., 4. Given unbiased ŵg over repeated sampling, we

can write P̂gt = p>t ŵg = Pgt + egt, where E(egt) = 0 and V (egt) = pTV (ŵg)p
T
t is the

sampling variance of P̂gt. Combing the two equations, we have

P̂gt = γg + βgP
∗
gt + egt . (2)

Using the model (2), we consider below three tests for the null hypothesis

H0 : ∆gt = 0 for given g and all t = 1, ..., T .

In each case, we choose a target parameter θ, possibly vector-valued, for which an unbiased

estimator θ̂ can be given based on the CES, and use the Wald test statistic

X(g, g) = (θ̂ − θ)>V̂ (θ̂)−1(θ̂ − θ) ∼ χ2
κ

with suitable degree of freedom κ. Moreover, to explore the sensitivity of the test, we

combine P̂gt and P ∗ht for different age groups, where g 6= h, to define another test statistic,

denoted by X(g, h), which should result in rejection of the null hypothesis. The test is

shown to be lacking power, if X(g, h) fails to reject in such a set-up.

First, assuming βg ≡ 1, the model (2) reduces to P̂gt = γg + P ∗gt + egt. Let H0 : γg = 0
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under the reduced model, and θ = γg = 0, and regress P̂gt on P ∗gt to yield

θ̂ = γ̂g = ̂̄P g − P̄ ∗g =
T∑
t=1

P̂gt/T −
T∑
t=1

P ∗gt/T = p̄>ŵg − p̄>w∗g

where p̄ =
∑T

t=1 pt/T , and V (θ̂) = p̄>V (ŵg)p̄, and κ = 1. To check the sensitivity of the

test, one can regress P̂gt on P ∗ht for g 6= h, and define X(g, h) = V ( ˆ̄Pg)
−1( ˆ̄Pg − P̄ ∗h )2. Since

ˆ̄Pg − P̄ ∗h is a biased estimator of θ, unless P̄g = γh + P̄ ∗h happens to be the case under H0

here, X(g, h) should lead one to reject H0 if the test does not lack power.

Next, as long as βg = 1, it may be worthwhile to explore P ∗gt in practice, even if γg 6= 0

and ∆gt 6= 0 over time. Let H0 : βg = 1, and θ = βg = 1, and

θ̂ = β̂g =

∑T
t=1(P

∗
gt − P̄ ∗g )(P̂gt − ̂̄P g)∑T
t=1(P

∗
gt − P̄ ∗g )2

= d>g ŵg

where κ = 1, and V (θ̂) = d>g V (ŵg)dg, and

dg =
T∑
t=1

(P ∗gt − P̄ ∗g )(pt − p̄)/
T∑
t=1

(P ∗gt − P̄ ∗g )2 .

To check the sensitivity, one can regress P̂gt on P ∗ht for g 6= h, giving θ̂′ = d>h ŵg, and

X(g, h) =
(
d>h V (ŵg)dh

)−1
(θ̂′ − 1)2 .

Finally, let H0 : (γg, βg) = (0, 1) under (2), and θ = (γg, βg)
>, where β̂g = d>g ŵg, and

γ̂g = ̂̄P g − β̂gP̄ ∗g = `>g ŵg and `g = p̄− P̄ ∗g dg .

We have κ = 2, and V (γ̂g) = `>g V (ŵg)`g, and Cov(γ̂g, β̂g) = `>g V (ŵg)dg. Again, to check

the sensitivity, one can regress P̂gt on P ∗ht for g 6= h, giving

X(g, h) = (γ̂′, β̂′ − 1)V (θ̂′)−1(γ̂′, β̂′ − 1)>

where θ̂′ = (γ̂′, β̂′)>, and γ̂′ = `>h ŵg with `h = p̄ − P̄ ∗hdh and β̂′ = d>h ŵg, and V (γ̂′) =

`>h V (ŵg)`h and V (β̂′) = d>h V (ŵg)dh and Cov(γ̂′, β̂′) = `>h V (ŵg)dh.

Figure 2 shows four scatter plots of P̂gt vs. P ∗ht, where (g, h) = (4,4), (4,1), (1,1) and

(1,4). As can be seen, P̂4t and P ∗4t for the fourth age group (top-left in the figure) appear

to be scattered around the unity slope (dashed line), as well as P̂1t and P ∗1t for the first age
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Figure 2: Scatter plots of age-group (Gr) food indices, CES-based vs. proxy weights.

group (bottom-left). In contrast, the points (P ∗1t, P̂4t) appear to scatter around a different

slope to the unity (top-right). Similarly for P̂1t vs. P ∗4t (bottom-right).

Table 3: Testing H0 : γg = 0 assuming βg ≡ 1, for g = 1, 4.
Age group g = 1 Age group g = 4

Statistic Test statistic P-value Statistic Test statistic P-value
X(1, 1) 0.0000744 0.993 X(4, 4) 0.03803 0.970
X(1, 4) 0.0000643 0.994 X(4, 1) 0.03666 0.971

Table 3 gives the test results for H0 : γg = 0 assuming βg ≡ 1, for g = 1, 4. For example,

in the case of X(4, 4), we are testing the bias of using the proxy weights that ideally should

be close to the true weights for that age group. The p-value is close to 1, so the observed

mean difference ̂̄P 4 − P̄ ∗4 is very small compared to the sampling variance of ŵ4. But the

test lacks sensitivity, since one cannot reject based on X(4, 1) either, where the p-value is

about the same, although one can observe in Figure 2 that the source effect is larger in this

case. Similarly with the results for age group g = 1 based on X(1, 1) and X(1, 4).
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Table 4: Testing unity slope H0 : βg = 1, for g = 1, 4.
Age group g = 1 Age group g = 4

Statistic Test statistic P-value Statistic Test statistic P-value
X(1, 1) 0.0318 0.859 X(4, 4) 0.045 0.832
X(1, 4) 2.62 0.106 X(4, 1) 6.82 0.009

Table 4 gives the test results for unity slope H0 : βg = 1 alone. In the case of X(4, 4),

the p-value is 0.832, and β̂4 deviates little to unity relatively to the uncertainty of ŵ4.

Similarly with X(1, 1). This test is more sensitive, because the p-value is 0.009 based on

X(4, 1) and 0.106 based on X(1, 4), where the former is significant at the 5% level.

Table 5: Testing H0 : (γg, βg) = (0, 1), for g = 1, 4.
Age group g = 1 Age group g = 4

Statistic Test statistic P-value Statistic Test statistic P-value
X(1, 1) 1.63 0.442 X(4, 4) 0.45 0.799
X(1, 4) 122 0.000 X(4, 1) 110 0.000

Table 5 gives the test results for H0 : (γg, βg) = (0, 1), where the two coefficients are

tested jointly. The p-value is 0.799 based on X(4, 4) for g = 4, and 0.442 based on X(1, 1)

for g = 1, such that H0 cannot be rejected for either age group. Moreover, the power of

this test is high and the results provide stronger corroboration to the proxy CPI weights,

where the p-value is 0.000 either based on X(4, 1) or X(1, 4).

The tests above are used to investigate each age group on its own. It is possible to test

the biases for all the indices jointly, e.g. H0 : (γg, βg) = (0, 1) for all g = 1, ..., 4. Moreover,

if there are many subpopulations at the same time instead of the 4 age groups here, one

may also consider extending separate linear regression models to a single random-effects

model, and develop tests under it. In reality though, the source effect is unlikely to be

zero, as long as the proxy weights w∗g are not exactly equal to the true wg, such that it is

sensible to treat any non-rejection result as an intermediate step in the investigation.

4 Accuracy of proxy weights food index

To address Question III in Section 1, we will treat P̂gt as an unbiased audit sample estimator

of Pgt. Let V̂ (P̂gt) be an unbiased estimator of the variance of P̂gt. Given zero variance of

P ∗gt, an unbiased estimator of the MSE of P ∗gt is

mse(P ∗gt) = (P ∗gt − P̂gt)2 − V̂ (P̂gt) . (3)
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However, for the data of this study, the MSE estimate is negative in all the 36 months,

due to the relatively large sampling variance of P̂gt, as indicated by the test results based

on ̂̄P g − P̄ ∗g reported earlier. This reveals an important drawback of using MSE as the

uncertainty measure in the present setting: unless the audit sample is sufficiently large,

indeed much larger than the actual CES, unbiased MSE estimation may fail to yield any

meaningful accuracy measure, when P ∗gt has a relatively small bias.

Below we propose a new accuracy measure, discuss its properties, and demonstrate

empirically the advantages of this novel proposal for big-data statistics.

4.1 Evaluation coverage

The concept of evaluation coverage as an accuracy measure is as follows. Let θ0 be a target

scalar parameter value. Let Aα be an imaginary autonomous evaluation confidence interval,

which is centred at θ0 and covers it with a probability α of choice, say α = 0.95. Let θ∗

be a constant value in the parameter space. In the application later, we will let θ0 = Pgt

be the true food index for age group g in month t, and θ∗ = P ∗gt the corresponding proxy

weights index, given any combination (g, t). To assess how good θ∗ is as an estimator of θ0,

we now calculate the probability that θ∗ is covered by Aα. We shall call this probability

c(θ∗) = Pr(θ∗ ∈ Aα) the evaluation coverage of θ∗ by Aα.

Notice that c(θ∗) does not depend on audit sampling; it is a measure with respect to

the joint distribution of the estimator θ∗ to be assessed and the hypothetical evaluation

confidence interval Aα, where the distribution of Aα depends on the true parameter θ0. In

this respect, it is simply an alternative accuracy measure to MSE(θ∗) = E[(θ∗−θ0)2], which

is based on the distribution of θ∗ and the true parameter θ0.

Suppose c(θ0) = 0.95 and c(θ∗) = 0.93, which means the confidence interval Aα that

covers θ0 in 95% of the times would cover the estimate θ∗ in 93% of the times. In other

words, if one treats θ∗ as the true value, then the 95% confidence interval Aα would fail

to cover it only 2% more often than when one correctly holds θ0 to be the truth. As will

be shown later, the evaluation coverage of a constant θ∗ by Aα reaches its maximum value

α if θ∗ = θ0, otherwise it decreases as |θ∗ − θ0| increases. In this way, the evaluation

coverage can provide a measure of the accuracy of θ∗, which achieves its maximum value

when θ∗ = θ0, and decreases monotonously towards 0 as the bias of θ∗ increases to infinity.

This is appropriate when θ∗ is based on big data, and it is associated with an unavoidable

bias but only a negligible variance for all practical purposes.

Moreover, let θ̃ be an unbiased estimator of θ0 based on a probability sample of size n,

such that its variance decreases as n increases. One can compare the big-data estimator θ∗

and the finite-sample estimator θ̃ according to their respective evaluation coverages, where

13



c(θ̃) = Pr(θ̃ ∈ Aα), and the probability is evaluated with respect to the joint distribution of

θ̃ and Aα. One may consider θ∗ to be better than θ̃ if c(θ∗) > c(θ̃), and vice versa. Indeed,

the sample size n at which c(θ∗) = c(θ̃) can be considered the break-even point, which

indicates the cost that is required if one opts to estimate θ0 based on a designed probability

sample, instead of based on the available big data.

Of course, one can make the comparison between θ∗ and θ̃ based on their respective

MSEs. In practice, though, one needs to estimate the MSE, which can be difficult if

it requires a very large (hence costly) probability audit sample, as noticed previously in

connection with (3). In contrast, as we will explain and demonstrate below, one can estimate

c(θ∗) based on an audit sample and obtain a meaningful comparison between θ∗ and θ̃, even

when the same sample fails to yield a positive estimate of MSE(θ∗). This is an important

advantage of evaluation coverage over MSE.

Definition Below we define the evaluation coverage and describe its properties formally.

Let Aα be a 100α% autonomous normal evaluation confidence interval of θ0, given by

Aα = (ZA − ω, ZA + ω) , (4)

which is of the width 2ω, where

ZA ∼ N(θ0, σ
2
α,ω) and σα,ω =

ω

κα
and κα = Φ−1(

1 + α

2
)

and Φ denotes the cumulative distribution function of the standard normal distribution.

The interval Aα is said to be autonomous, because it is an imaginary confidence interval,

independent of any actual observations available or collected to estimate θ0. Let θ̃ be an

estimator of θ0. The evaluation coverage of θ̃ is the probability

c(θ̃) = Pr(θ̃ ∈ Aα) (5)

which is evaluated with respect to the joint distribution of (θ̃, ZA), where the two are

independent of each other by definition. Instead of the target parameter θ0 itself, audit

sampling aims ultimately is to estimate c(θ̃), which is an accuracy measure of θ̃.

We have c(θ0) = α by definition, i.e., the evaluation coverage of the true parameter value

θ0 is α. Otherwise, the evaluation coverage of a given estimator θ̃ generally varies with the

choice of ω, which determines the width of Aα. The choice of ω affects the stringency of

evaluation. For instance, in the context of price index, if one chooses ω = 0.01, then the

interval Aα will correspond to an evaluation precision of ±1% on either side of the true

index. As will be illustrated in Section 4.2, one can also relate the choice to the sampling
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variance of the CES, in which case the accuracy of the proxy weights will be measured

against a ‘yardstick’ that can be related to the tangible precision of the CES.

Some properties of the evaluation coverage as an accuracy measure are given below as

Results 1 - 3, the proofs of which are given in Appendix A.

Result 1 For any constant θ∗ in the parameter space, we have 0 < c(θ∗) ≤ α, where the

maximum is attained iff θ∗ = θ0.

Indeed, the further away from θ0 is a zero-variance (big-data) point estimate, the lower

is its evaluation coverage, for any choice of (α, ω). For any two θ∗ 6= θ′ in the parameter

space, if |θ′ − θ0| > |θ∗ − θ0|, then c(θ′) < c(θ∗).

Result 2 If θ̃∗ ∼ N(θ∗, τ 2) where θ∗ ∈ (θ0 − ω, θ0 + ω), then c(θ̃∗) < c(θ∗).

In other words, extra variance reduces the evaluation coverage, as long as the absolute

bias is less than ω, i.e., θ∗ is not too far away from θ0. Moreover, if θ∗ ∈ (θ0 − ω, θ0 + ω),

θ̃∗1 ∼ N(θ∗, τ 21 ) and θ̃∗2 ∼ N(θ∗, τ 22 ) where τ 21 < τ 22 , then c(θ̃∗1) > c(θ̃∗2). However, extra

variance could increase the evaluation coverage if the bias is sufficiently large. To see why,

let θ∗ be so far away from θ0 that its evaluation coverage is virtually zero, then an estimator

that is centred on θ∗ but has a large variance can actually be much closer to θ0 from time

to time, which increases its chance of being covered by Aα. In contrast, using MSE as the

criterion, the estimator with variance would always be worse due to the extra variance.

This is an example of the difference between the two accuracy measures.

Result 3 If θ̃∗ ∼ N(θ∗, τ 2) and θ̃′ ∼ N(θ′, τ 2), then c(θ̃′) < c(θ̃∗) if |θ′ − θ0| > |θ∗ − θ0|.

Result 3 is complementary to Result 2, that is, given two estimators with the same

variance, the one with less absolute bias has a higher evaluation coverage.

Estimation The evaluation coverage can communicate in an intuitive and meaningful way

the accuracy of any estimator, including a zero-variance big-data estimate. To estimate the

evaluation coverage of θ∗ that is a constant in the parameter space, we observe firstly

c(θ∗) = Φ
(θ∗ − θ0
σα,ω

+ κα
)
− Φ

(θ∗ − θ0
σα,ω

− κα
)

(6)

by (5), where only θ0 is unknown. Given an unbiased estimate θ̂0, we obtain

ĉ(θ∗) = Φ
(θ∗ − θ̂0
σα,ω

+ κα
)
− Φ

(θ∗ − θ̂0
σα,ω

− κα
)
.
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It is thus clear that one only needs the point estimate θ̂0 derived from an audit sample to

calculate ĉ(θ∗). The audit sampling variance of θ̂0 affects only the variance of ĉ(θ∗). This

means the estimation of c(θ∗) is not as critically constrained by the audit sampling variance

as when estimating MSE(θ∗).

Meanwhile, let θ̃ be an estimator (of θ0) with expectation θ′ and variance τ 2. Due to

the independence between θ̃ and ZA by definition, where ZA is given in (4), we have

θ̃ − ZA ∼ N(θ′ − θ0, ν2) where ν2 = σ2
α,ω + τ 2 ,

as long as θ̃ can be assumed to have the normal distribution N(θ′, τ 2). It follows that the

evaluation coverage of θ̃ by (5) is given as

c(θ̃) = Φ(
ω

ν
+
θ′ − θ0
ν

)− Φ(−ω
ν

+
θ′ − θ0
ν

) . (7)

In cases θ̃ is a hypothetical unbiased estimator, one only needs to stipulate its variance τ 2,

in order to calculate c(θ̃). In cases θ̃ is an existing estimator that can be considered as

unbiased for θ0, one only needs to estimate τ (and ν), in order to estimate c(θ̃). In either

case, audit sampling is not needed to estimate c(θ̃). In cases where it is too optimistic to

assume unbiased θ̃, e.g. when it is based on an estimated working model instead of some

known distribution, one may use the realised value of θ̃ as θ′ in (7), instead of ignoring its

potential bias, which would yield a lower estimated value of c(θ̃) by Result 3 above. Audit

sampling is needed to obtain θ̂0 in such situations.

4.2 Application to age-group food index

Let us now estimate the evaluation coverage of the age-group food price indices based on

proxy weights. We have one set of proxy weights w∗g and one set of CES-based weights ŵg,

for each g = 1, ..., 4. Applying these to pt for any given month t, we obtain P ∗gt and P̂gt,

respectively. Let θ0 = Pgt and θ∗ = P ∗gt. The evaluation coverage of P ∗gt is given by (6),

c∗ := c(P ∗gt) = Φ
(P ∗gt − Pgt

σα,ω
+ κα

)
− Φ

(P ∗gt − Pgt
σα,ω

− κα
)
.

Using the CES as an audit sample, we obtain θ̂0 = P̂gt and the estimator

ĉ∗ = Φ
(P ∗gt − P̂gt

σα,ω
+ κα

)
− Φ

(P ∗gt − P̂gt
σα,ω

− κα
)
.
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The variance of ĉ∗ can be approximated as follows:

ĉ∗ ≈ c∗ + σ−1α,ω

(
φ
(P ∗gt − Pgt

σα,ω
+ κα

)
− φ
(P ∗gt − Pgt

σα,ω
− κα

))
(P̂gt − Pgt)

V (ĉ∗) ≈ V (P̂gt)

σ2
α,ω

(
φ
(P ∗gt − Pgt

σα,ω
+ κα

)
− φ
(P ∗gt − Pgt

σα,ω
− κα

))2
(8)

where V (P̂gt) = ptV (ŵg)p
>
t , and φ denotes the probability density function of the standard

normal distribution. Only the audit-sample point estimate θ̂0 = P̂gt is needed to estimate

c(P ∗gt), whereas its variance V (P̂gt) affects only the variance of ĉ(P ∗gt). Based on the CES,

the estimate of MSE(P ∗gt) by (3) is negative and unusable for any of the 36 months, whereas

the same audit sample is able to provide meaningful estimates when evaluation coverage

c(P ∗gt) is adopted as the accuracy measure of P ∗gt.

Fixing α at 0.95, one can vary the stringency of evaluation in terms of ω. The average

estimated standard error of the CES-based index P̂4t is 0.029 over the 36 months, for age

group g = 4. As the first choice we set ω = 2 · 0.029, in which case A0.95 can be considered

as a 95% confidence interval of the true index P4t, which has the same width as that

based on the traditional CES. The corresponding estimated ĉ(P ∗4t) tells us how often the

proxy weights index P ∗4t is covered by this A0.95. For comparison, we calculate by (7) the

evaluation coverage of a hypothetical unbiased index P̃4t that is of the same precision as

the CES-based index. The results are shown in the top panel of Figure 3 and summarised

in Table 6. The estimated evaluation coverages of P ∗gt and P̃gt for the other age groups are

also summarised in the upper part of Table 6.

Take first age group g = 4. With ω = 0.058, the evaluation coverage of P ∗4t varies from

0.948 to 0.950 over the 36 months, which is very close to c(P4t) = 0.95 for the true index.

It compares favourably to the hypothetical unbiased index P̃4t, whose evaluation coverage

varies from 0.828 to 0.849. The confidence interval of c(P ∗4t) are marked by vertical lines in

Figure 3, which is seen to fluctuate in width before reaching a different level towards to the

end. Still, the evaluation coverage of P̃4t is out of these confidence intervals throughout the

whole period. The results suggest that the bias of P ∗4t is small enough for it to outperform

the hypothetical unbiased index P̃4t. Indeed, the standard error of P̃4t needs to be reduced

to about 1/9 of that stipulated here, in order to achieve about the same median and mean

evaluation coverages as P ∗4t over the 36 months. But such an increase of the sample size is

unthinkable in reality due to the associated cost.

The results are similarly in favour of the proxy weights index P ∗gt for the other age

groups, g = 1, 2, 3. The hypothetical unbiased index has the lowest evaluation coverage for

age group g = 1, due to the small subsample size of this age group in the CES.
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Figure 3: Evaluation coverage by A0.95 of food index for age group g = 4 over 36 months:

ĉ(P ∗4t) of proxy weights index (circle), 95% confidence interval of c(P ∗4t) marked by vertical

line, c(P̃4t) of hypothetical unbiased index of same precision as CES-based index (solid),

c(P4t) ≡ 0.95 of true index (horizontal dashed line). Top: ω = 0.058; bottom: ω = 0.02.
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Table 6: Evaluation coverage by A0.95 of food index for age group g = 1, ..., 4 over 36
months: proxy weights index P ∗gt or hypothetical unbiased P̃gt of same precision as CES.

ω = 0.058

Summary P ∗1t P̃1t P ∗2t P̃2t P ∗3t P̃3t P ∗4t P̃4t

Minimum 0.948 0.563 0.949 0.900 0.949 0.925 0.948 0.828
Median 0.950 0.579 0.950 0.904 0.950 0.927 0.950 0.839
Mean 0.950 0.580 0.950 0.904 0.950 0.927 0.950 0.839
Maximum 0.950 0.597 0.950 0.908 0.950 0.929 0.950 0.849

ω = 0.02

Summary P ∗1t P̃1t P ∗2t P̃2t P ∗3t P̃3t P ∗4t P̃4t

Minimum 0.937 0.227 0.945 0.643 0.944 0.759 0.937 0.466
Median 0.949 0.236 0.949 0.658 0.949 0.772 0.949 0.486
Mean 0.949 0.237 0.949 0.659 0.949 0.773 0.947 0.486
Maximum 0.950 0.247 0.950 0.674 0.950 0.785 0.950 0.504

Next, the results are given in Figure 3 and Table 6, where ω is reduced to 0.02, i.e.,

the width of A0.95 is reduced to about 1/3 of that used above. The same bias of P ∗4t leads

then to a lower evaluation coverage for the same level α = 0.95, which varies now from

0.937 to 0.950 over the 36 months. However, the reduction of evaluation coverage is much

greater for the hypothetical unbiased P̃4t, which varies from 0.466 to 0.504. In other words,

subjected to the increased stringency of evaluation, the proxy index P ∗4t compares even

more favourably to the CES-based index. The results are similarly in favour of the proxy

weights index P ∗gt for the other age groups g = 1, 2, 3, as ω is reduced.

Finally, Figure 3 shows that the width of the confidence interval of c(P ∗4t) increases quite

fast as ω is reduced from 0.058 to 0.02. The reason is clear from (8). While the variance

V (P̂4t) due to audit sampling remains the same, the other two terms are affected by the

change in ω: in the denominator σα,ω = ω/κα is reduced proportionally with ω; in the

numerator the squared φ
(P ∗4t−P̂4t

σα,ω
+κα

)
−φ
(P ∗4t−P̂4t

σα,ω
−κα

)
is increased, because the reduction

of σα,ω increases the asymmetry of
P ∗4t−P̂4t

σα,ω
± κα around 0. The two effects amplify each

other, increasing
√
V (ĉ∗) more quickly than a rate proportional to 0.058/0.02.

The audit sample size does affect the variance of the estimator of evaluation coverage. To

improve its precision, one may need to use a larger audit sample, although in the context

of CPI it will be hard to obtain approval for an audit sample size that is considerably

larger than the traditional CES. Meanwhile, it seems more reasonable to place relatively

higher confidence in the comparison results between the proxy weights index P ∗gt and the

hypothetical index P̃gt, where one has ignored the potential bias of the latter. In any case,

this is clearly an important issue for future research and application.
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5 Summary remarks

We have developed an audit sampling inference approach for big-data statistics, which

is privacy-preserving as it does not require linking the audit sample and big data at the

individual level. It consists of three elements: (I) clarification of the validity condition by

which a big-data estimator can be unbiased, (II) testing of the bias in case the validity

condition does not hold exactly, and (III) accuracy measure of a biased big-data estimator.

The inference is valid with respect to the auditing sampling distribution, regardless of the

method and condition by which the big-data estimator is produced. The proposed approach

is applied to age-group food price indices. Based on the data of this study, one can conclude

that proxy CPI weights derived from the transaction data can replace the relevant diary

component that is the most burdensome part of the traditional CES.

A difficult challenge arises, when the audit sampling variance is relatively large compared

to the bias of big-data estimate, which results in non-rejection of the bias as well as negative

(hence unusable) MSE estimate. We develop the evaluation coverage as a novel accuracy

measure, which is not severely constrained by the audit sample size. This provides the

means to assess the big-data bias against the costs of alternative and possibly unbiased

estimation methods. The evaluation coverage is flexible to apply, where one can either use

an existing survey on the same topic or, if such a survey does not exist, undertake separate

agile audit sampling with a relatively small sample size and low cost.
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A Proof of Result 1, 2 and 3

Let θ0 be the true scalar parameter value. Let Z ∼ N(θ0, σ
2) be a normally distributed

random variable. The shortest 100α% confidence interval of θ0 is Aα,ω = Z ± ω with

ω = κασ, where σ is a short-hand for σα,ω, and c(θ0) = Pr(θ0 ∈ Aα,ω) = α, and κα is the

(1 + α)/2 quantile of N(0, 1). Results 1 - 3 are given Proof-1 to 3 below, respectively.
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Proof-1 Let Φ be the CDF of N(0, 1). Write c∗ = α(θ∗). We have

c∗ = Pr
(
θ∗ − κασ ≤ Z ≤ θ∗ + κασ

)
= Pr

(θ∗ − θ0
σ

− κα ≤
Z − θ0
σ

≤ θ∗ − θ0
σ

+ κα
)

c∗ − α = Φ(κα +
θ∗ − θ0
σ

)− Φ(−κα +
θ∗ − θ0
σ

)− Φ(κα) + Φ(−κα)

=


(
Φ(κα + θ∗−θ0

σ
)− Φ(κα)

)
−
(
Φ(−κα + θ∗−θ0

σ
)− Φ(−κα)

)
< 0 if θ∗ > θ0

0 if θ∗ = θ0

−
(
Φ(κα)− Φ(κα + θ∗−θ0

σ
)
)

+
(
Φ(−κα)− Φ(−κα + θ∗−θ0

σ
)
)
< 0 if θ∗ < θ0

�

Proof-2 Let ν2 = σ2 + τ 2. Without loss of generality, suppose θ∗ ∈ [θ0, θ0 + κασ). We have

c(θ̃∗) = Pr
(
− κασ ≤ Z − θ̃∗ ≤ κασ

)
= Pr

(
−κασ

ν
+
θ∗ − θ0
ν

≤ Z − θ̃∗

ν
+
θ∗ − θ0
ν

≤ κασ

ν
+
θ∗ − θ0
ν

)
= Φ(

κασ

ν
+
θ∗ − θ0
ν

)− Φ(−κασ
ν

+
θ∗ − θ0
ν

)

< Φ(κα +
θ∗ − θ0
σ

)− Φ(−κα +
θ∗ − θ0
σ

) = c(θ∗)

since κασ + (θ∗ − θ0) ≥ 0 and −κασ + (θ∗ − θ0) ≤ 0. �

Proof-3 Let ν2 = σ2 + τ 2. We have

c(θ̃′)− c(θ̃∗) =
[
Φ(
κασ

ν
+
θ′ − θ0
ν

)− Φ(
κασ

ν
+
θ∗ − θ0
ν

)
]

−
[
Φ(−κασ

ν
+
θ′ − θ0
ν

)− Φ(−κασ
ν

+
θ∗ − θ0
ν

)
]

Due to symmetry c(θ̃∗) = c
(
θ̃∗ + (2θ0 − θ∗)

)
, we only need to consider the situation of

θ′ > θ∗ > θ0. Then, the interval (−κασ
ν

+ θ∗−θ0
ν
,−κασ

ν
+ θ′−θ0

ν
) is closer to 0 than (κασ

ν
+

θ∗−θ0
ν
, κασ

ν
+ θ′−θ0

ν
), where the two have the same length. The result follows from

Φ(−κασ
ν

+
θ′ − θ0
ν

)− Φ(−κασ
ν

+
θ∗ − θ0
ν

) > Φ(
κασ

ν
+
θ′ − θ0
ν

)− Φ(
κασ

ν
+
θ∗ − θ0
ν

) > 0.�
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