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Abstract

Event-B is a formal method that utilizes a stepwise development approach for

system-level modeling and analysis. We are interested in reasoning about real-

time deadlines and delays between trigger and response events. There is existing

work on treating these properties in Event-B but it lacks a semantic treatment

in terms of trace behaviors. Because timing properties require fairness assump-

tions, we use infinite traces and develop conditions under which all infinite traces

of a machine satisfy trigger-response and timing properties. We present refine-

ment semantics of models whose behavior traces are infinite. In addition, we

generalize our previous work by allowing a relation between concrete states and

abstract states to simulate infinite state traces. Forward simulation, which is a

proof technique for refinement, has been used to verify the consistency between

different refinement levels regarding finite traces. Based on forward simulation,

fairness assumptions, relative deadlock freedom, and conditional convergence

are adopted as additional conditions that guarantee infinite trace refinement of

timed models. The bounded retransmission protocol is used to illustrate the

required proof obligations for timed traces.

Keywords: Event-B, Trace Semantics, Refinement Semantics, Discrete Time

Modeling, Hiding Operator

1. Introduction

In recent years, reducing the cost of software development and improving

software quality have received considerable critical attention. Formal methods
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are one of the solutions to improving software quality that provide formal mod-

eling, reasoning, and verification in software and hardware development cycles5

such as requirement specification, system design, and code validation. Event-B

is usually used for system-level modeling and analysis with a stepwise develop-

ment approach to manage the complexity in system design [1]. However, it lacks

explicit support for the timed systems in terms of infinite behavioral traces.

Formal modeling is used to manage the precision of specifications, but real10

systems are difficult to specify and verify without abstractions [2]. Abstraction

and refinement can help to master the complexity of requirements and design [3].

Abstraction makes it easier to model and reason about a system with a high-

level goal. Each refinement step requires that the behavior of a refined model

should be consistent with the behavior of the model being refined. However,15

the existing refinement framework in Event-B models lacks a proper treatment

of infinite behavioral traces, namely the divergence of new events in the refined

machine and infeasible occurrence of events without fairness assumptions. For-

ward simulation is used as a proof technique to verify the consistency between

different refinement levels regarding finite traces. Based on the assumption that20

the relation between concrete states and abstract states is functional rather

than the more general relational form, our previous work in [4] explored suffi-

cient conditions under which the refinement is valid in terms of infinite traces.

Fairness assumptions, relative deadlock freedom, and conditional convergence

are adopted to refine the discrete timed models.25

However, the functional relation assumption does not suit many real-world

refinement cases as the concrete states might correspond to one or more abstract

states. Thus the current work generalizes our previous work by allowing a

relation between concrete states and abstract states to simulate infinite state

traces. In this paper, we present infinite state trace refinement with gluing30

relations between abstract and concrete state traces. Then the definition of

generic refinement that allows relabelling and stuttering events is presented

with event trace inclusion. We summarize infinite trace properties as well as

sufficient conditions under which timing properties are preserved by refinement.
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A Bounded Retransmission Protocol (BRP) case study is used to present the35

refinement conditions for discrete timed systems.

The paper is structured as follows: Section 2 provides definitions for trace

semantics and trace properties. Section 3 introduces a bounded retransmission

protocol as a case study to illustrate the timed trigger-response properties and

presents the corresponding Event-B model. Section 4 applies the infinite event40

trace refinement to verify the refinement of models without relabelling and stut-

tering events. Section 5 then shows the generic version of refinement semantics

in terms of infinite behavioral traces. Section 6 describes some related work

regarding refinement with forward simulation as well as refinement of timed

systems. Section 7 summarizes the work and outlines future work.45

2. Trace Semantics and Properties

2.1. Event-B

Event-B [1] is a formal modeling method based on set theory, which is usually

used for system-level modeling and analysis for discrete systems. Event-B, an

evolution of B-Method developed by Abrial [5], is greatly inspired by the notion50

of action systems [6] and guarded commands [7]. A discrete model is made of

contexts and machines. A context describes the static part of the model, which

is specified with carrier sets s and constants c. Constants are defined with their

properties and relationships by axioms and theorems [1]. A machine describes

the dynamic behavior of the discrete model, which is specified with variables55

v and events. An event is described using guards and actions. The guards

define the enabling condition under which the event can occur and the actions

denote the way that the variables are modified by the event. The variables of

a machine are defined by invariants I (s, c, v) and theorems. Machines may see

one or more contexts [1].60

In general, an event evt can be represented by the form:

evt , where Gevt(v) then Sevt(v , v
′) (1)
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The normal Event-B notion of convergence requires convergent events to

become disabled eventually without any fairness assumptions. Our previous

work extended the notion of convergence to conditional convergence to define a

set of events are converging under certain condition Q(v) in Definition 2.1 [4].

The notion of conditional convergence is a generalized version of convergence65

as it only requires the events to be convergent under some specific condition. If

the condition is not satisfied, then the events do not need to converge.

Definition 2.1 (Conditional Convergence [4]). A group of events A is defined

to be conditional convergent under the condition Q when

• A variant V (v) is defined as a natural number70

• When the group of events is enabled, the variant V (v) is a natural number.

I (v)∧GA(v)⇒V (v) ∈ N

• An execution of each event e ∈ A decreases V (v) provided Q(v) holds.

I (v)∧Ge(v)∧Se(v , v ′)∧Q(v)⇒V (v ′) < V (v)

2.2. Trace Semantics of Event-B Machine

Event-B is a modeling approach for formalizing discrete transition systems.

In this paper, we abstract away from the concrete syntax of Event-B and treat a

machine as a form of labeled transition system (Definition 2.2). In the definition,

the machine consists of state set S and initial states init ⊆ S . The set of events75

is defined as E , which relates a pair of states with a transition relation K .

Definition 2.2 (Machine [4]). A machine M is a tuple < S , init ,E ,K > con-

sisting of

• S: a set of states, each state s is a mapping of variables of M to their

values;80

• init: a set of initial states init ⊆ S, which correspond to initial configura-

tions;
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• E: a set of event labels of the machine M ;

• K : a transition relation K ∈ E → (S ↔ S ) that relates pairs of states;

Given the definition of a machine, we define traces(M ) of machine M to85

describe the infinite behavior of the system in terms of a set of infinite sequences

of alternating states and events of the form < us(0), ue(0), us(1), ue(1), ... > in

Definition 2.3 [4].

Definition 2.3 (Infinite Trace of a Machine [4]). The set of infinite traces

traces(M ) of a machine M is defined as:

traces(M ) ,{(us , ue) | us ∈ N→ S ∧ ue ∈ N→ E ∧ us(0) ∈ init

∧∀i ·i ≥ 0⇒ us(i) 7→ us(i + 1) ∈ K (ue(i))}

The event traces (Definition 2.4) and state traces (Definition 2.5) of a ma-

chine are defined below; their properties are studied in the next section.90

Definition 2.4 (The Set of Event Traces of M ). A set of event traces of M is

defined as:

e traces(M ) = {ue | ∃us ·(us , ue) ∈ traces(M )}

Definition 2.5 (The Set of State Traces of M ). A set of state traces of M for

the event trace ue ∈ e traces(M ) is defined as:

s traces(M , ue) = {us | (us , ue) ∈ traces(M )}

Lemma 2.6 shows that the state trace set of an event trace in machine M is

not empty.

Lemma 2.6.

ue ∈ e traces(M )⇔ s traces(M , ue) 6= ∅

2.3. Trace Properties

In this paper, we adopt weak fairness assumptions on infinite traces to ex-

clude traces with Zeno behaviors, whereby an infinite number of events occur95
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within a finite period. In Definition 2.7, we extend the machine definition in

Definition 2.2 with a set of events F ⊆ E . The traces of a machine that is

weakly fair on the event set F satisfy the property that if F is continuously

enabled from some point, then f ∈ F will eventually occur on the trace.

Definition 2.7 (Machine Traces with Weak Fairness). A machine M with weak

fairness is a tuple < S , init ,E ,K ,F > consisting of a machine < S , init ,E ,K >

and a set of weakly fair events F ⊆ E. The trace (us , ue) ∈ traces(M ) is defined

as weakly fair on F as WFair((us , ue),F ), formally:

WFair((us , ue),F ) ,

∀i ·i ≥ 0∧ us(i) ∈ dom(K (F ))⇒∃j ·j ≥ i ∧(ue(j ) ∈ F ∨ us(j ) /∈ dom(K (F )))

Based on Definition 2.1, we provide the conditional convergence trace prop-100

erty in Definition 2.8 such that event set A must not be executed forever under

the condition Q .

Definition 2.8 (Conditional Convergence Property). Trace (us , ue) ∈ traces(M )

is defined to be convergent as (us , ue) |= cov(A,Q), formally:

(us , ue) |= cov(A,Q) , ∀i ·(∃j ·j ≥ i ⇒ (us(j ) /∈ dom(K (A))∨¬Q))

2.4. Trigger-Response Pattern

Abid et al. proposed a set of specification patterns that can be used to

express real-time requirements in the design of reactive systems [8], namely ex-105

istence patterns, absence patterns, and response patterns. Existence patterns

are used to express that certain events must occur in every trace of the system;

absence patterns require that certain events should never occur in every trace of

the system. A trigger-response pair in Event-B models can represent these pat-

terns. In the trigger-response pair, the trigger event is followed by its possible110

response events eventually. Given a machine with events E , a trigger-response

pair has the form (T ,R) where T ⊆ E ∧R ⊆ E ∧T ∩ R = ∅. We define when

an event trace of a machine satisfies the trigger-response property TR(T ,R) as
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Definition 2.9. An event trace ue satisfies TR(T ,R) provided that any occur-

rence of a trigger event t ∈ T is followed eventually by a response event r ∈ R115

and the trigger event does not recur within the trigger-response pair to avoid

the recurring delay of response event.

Definition 2.9 (Trigger-Response Property). Trace ue ∈ N → E is defined to

satisfy the trigger-response property TR(T ,R) as:

ue |= TR(T ,R) ,

∀i ·i ≥ 0∧ ue(i) ∈ T ⇒ (∃j ·j > i ∧ ue(j ) ∈ R ∧∀k ·i < k < j ⇒ ue(k) /∈ T )

In a trigger-response pair, the response event is not necessarily enabled after

the execution of a trigger event. Instead, there may be a group of intermediate

events H that is enabled by a trigger event t ∈ T and whose execution leads to120

a response event r ∈ R being enabled. Work in [9] explored sufficient conditions

under which a behavioral trace satisfies the trigger-response property. For each

trigger and response pair (T ,R), a set of intermediate events H ⊂ E s.t. T ∩

H = ∅ and R∩H = ∅ is assumed. This set is chosen by the modeler and consists

of events that are initiated by a trigger event and whose execution is intended125

to lead to a response being enabled. The intermediate events should converge

towards a response event being enabled and should not be disabled unless the

response event is enabled. Weak fairness assumptions on the intermediate events

guarantee that the intermediate events get executed sufficiently often to lead to

the response event being enabled. We require that if a response event is enabled,130

it cannot be disabled by any event other than a response event. Weak fairness

assumptions on the response events guarantee that an enabled response event

eventually gets executed. To avoid the scenario that intermediate events and

response events are enabled alternatively but never get executed under the weak

fairness assumption, we require that only response events can disable themselves.135

To model real-time systems, we introduce a special event Tick in event traces

to represent the progress of time. In a real-time system, one essential property

requires that time should always progress. The event traces of real-time systems

should always be infinite traces with infinitely many Tick events. Definition 2.10
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provides the timed property of a timed trace, which guarantees that there is an140

infinite number of Tick events occurring in the event trace. Moreover, only a

finite number of non − Tick events could occur between any two Tick events.

Definition 2.10 (Timed Trace). Event trace ue is defined to be a timed trace

as

timed(ue) , ∀i ·i ∈ N⇒ (∃j ·j ≥ i ∧ u(j ) = Tick)

Given a trigger-response pair (T ,R), we use the number of Tick events

between the trigger event T and response event R to denote the corresponding

timing property for the trigger-response pair. Definition 2.11 shows the bounded145

real-time property for the trigger-response pair (T ,R). The number of Tick

events between trigger and response events is restricted by a lower bound w

and an upper bound d . The response event R must occur within time d of

trigger event T occurring and can only occur if the delay period w has passed.

Given the event trace ue , the projection ue � A is the event trace restricted to150

only those events in A. The length operator #(ue) defines the length of the

event trace. The sub-trace function ue [i , j ] defines the sub-trace between index

i and j as < ue(i), ue(i + 1), ..., ue(j ) >. The event trace that satisfies the

bounded real-time property should satisfy the trigger-response property as well

as the timed property.155

Definition 2.11 (Bounded Timing Property). An infinite event trace ue is

said to satisfy the bounded timing property ue |= TP(T ,R,w , d) provided the

following conditions hold:

ue |= TP(T ,R,w , d) ,timed(ue)∧∀i ·i ≥ 0∧ ue(i) ∈ T⇒

∃j ·j > i ∧ ue(j ) ∈ R ∧(w ≤ #(ue [i , j ] � Tick) ≤ d)

We define the traces of Event-B models with bounded timing properties as

traces(M ∧TP) in Definition 2.12. Here we use M ∧TP to present a machine

M that is constrained to satisfy timing properties TP .

Definition 2.12 (Machine with Bounded Timing Property).

traces(M ∧TP) , {(us , ue) | (us , ue) ∈ traces(M )∧ ue |= TP}
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3. Example

In this paper, we take the BRP as an example to illustrate the refinement160

patterns for real-time properties in Event-B models. The BRP is a file trans-

fer protocol that deals with the fault tolerance of the system under unreliable

network communications [10]. The schematic view of the transmission protocol

is shown in Figure 1. The transmitter sends the file to the receiver packet by

packet through the data channel. As soon as the receiver receives the packet, it165

sends back an acknowledgment to the transmitter through an acknowledgment

channel. When the transmitter receives the acknowledgment, it confirms that

the packet is sent out successfully and sends out the next packet. As the data

channel and the acknowledgment channel are not reliable, the packet might be

lost, or the transmitter might not receive the acknowledgment. The transmitter170

will resend the packet to the receiver if it has not received confirmation of the

same packet within some deadline. In the case of successive losses of messages,

the process of packet re-transmission can be repeated several times with a retry

counter. When the counter reaches a specific limit, the transmitter and the

receiver decides to abort.175

snd_start

Sender

s+1<N
Yes

No

Receiver

r+1<N

Yes

No

Data Channel

rcv_current_data

Data Channel

rcv_current_ack

f∈ 1..N →D

snd_success rcv_success

Figure 1: Scheme View of the Bounded Retransmission Protocol

The machine given in Figure 2 abstractly specifies the BRP protocol with

real-time properties. The variable s presents the file pointer in the transmit-

ter. The transmitter, receiver and channel have three states, namely working ,
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success, and failure. Success denotes the state that a file has been transmit-

ted successfully, and the next file is ready to transmit. Working represents

the state that the transmitter and receiver are transmitting the file packet by

packet. Failure means that there is something wrong with the data channel

or the acknowledgment channel, and the system has to abort. To start with

the snd start event, the transmitter state s st and receiver state r st are set

to working . Also, the channel state c st is set to working or failure nondeter-

ministically. In the case the channel is working (rcv current ack event), the

file pointer is increased to show that the transmitter transfers the last packet

and receives the corresponding acknowledgment successfully. The channel is

set to either working or failure to transfer the next packet. In the case that

the packet or acknowledgment is lost during transmission, the receiver aborts

the transmission with event rcv abt . We use (2) to present the trigger-response

property that once a packet is transmitted from the transmitter, either it is

transmitted successfully, or the receiver abort. In the model, rcv current ack

enables rcv current ack or rcv abt events. (2) is a valid trigger-response pair

when we assume weak fairness on rcv current ack and rcv abt events.

TR(rcv current ack , {rcv current ack , rcv abt}) (2)

The trigger-response property is then extended with the pkt ddl deadline.

A new clock variable is added to represent the current time. And we set the

timestamps of rcv current ack , rcv abt as pkt tp, pkt tc and abt t respectively.

pkt tp denotes the timestamp of receiving the acknowledgment from previous

packet, pkt tc presents the timestamp of current acknowledgment. @inv1 2 and

@inv1 4 show the timing property (3). @inv1 1 and @inv1 3 serve as auxiliary

invariants to support @inv1 2 and @inv1 4. Some infinite event trace of machine

M 0 is shown in (4). In later sections we will gradually refine the machine with

intermediate events with real-time properties. Also, refinement strategies and

additional proof obligations will be presented.

TP(rcv current ack , {rcv current ack , rcv abt}, 0, pkt ddl) (3)
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(snd start , rcv abt , tick , tick , ...)

(snd start , rcv current ack , rcv abt , tick , tick , ...)

(snd start , rcv current ack , tick , rcv abt , tick , tick , ...)

(snd start , rcv current ack , tick , rcv current ack , tick , tick , ...)

(4)

@inv1 1 s st=working ∧c st=working ⇒clk−pkt tc≤ pkt ddl

@inv1 2 pkt tp≤ pkt tc ⇒pkt tc−pkt tp≤ pkt ddl

@inv1 3 r st=working ∧c st=failure ⇒clk−pkt tc≤ pkt ddl

@inv1 4 pkt tc≤ abt t ⇒abt t− pkt tc≤ pkt ddl

event snd start

where

@grd1 s st=success

@grd2 s=0

then

@act1 s st:= working

@act2 r st:= working

@act3 c st:∈ {working, failure}

@act4 pkt tc:= clk

@act5 pkt tp:= clk

end

event rcv abt

where

@grd1 r st=working

@grd2 c st=failure

then

@act1 r st:= failure

@act2 abt t:= clk

end

event rcv current ack

where

@grd1 s st=working

@grd2 c st=working

@grd3 s+1<N

then

@act1 s:= s+1

@act2 c st:∈ {working, failure}

@act3 pkt tc:= clk

@act4 pkt tp:= pkt tc

end

event tick

where

@grd1 1 s st=working ∧c st=working =>clk+1−

pkt tc≤ pkt ddl

@grd1 2 r st=working ∧c st=failure =>clk+1−

pkt tc≤ pkt ddl

then

@act1 1 clk:= clk+1

end

Figure 2: Machine M0 that Specifies the Abstract BRP Protocol
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4. Trace Refinement Semantics

Abstraction and refinement are usually essential to manage the complexity

of modeling and reasoning about a system. Refinement of a system usually

involves changing the variables of the system [11]. Data refinement is used to

add more details to the data structure in the model, either by replacing existing180

variables or adding new variables to the model. In Event-B machines, gluing

invariants are used to link the variables in the refined model to the variables in

the abstract model.

In this paper, we use M =< S ,S0,E ,K > to denote the abstract machine,

which is data-refined to the concrete machine M ′ =< S ′,S ′0,F ,K ′ >. Syntac-185

tically the abstract and concrete state spaces are represented by the possible

values of the variables v and w respectively. S ′0 is defined by a predicate L(w).

The transition relation K ′ of an event e ∈ F is defined by its guard He(w) and

action predicate Re(w). In general, gluing invariants define a relational map-

ping between concrete and abstract states. In this paper, instead of assuming190

a mapping function that maps states s ∈ S ′ to states s ′ ∈ S in our previous

work [4], we assume J ∈ S ↔ S ′ as a gluing relation that relates the states of M

and M ′. Syntactically, J is represented by a predicate J (v ,w). Event mapping

function g ∈ F → E ∪ {skip} is a total function from refined event labels to

abstract event labels and skip. The skip events are mapped from concrete new195

events in M ′. The infinite trace model allows us to give a proper treatment of

timed traces. In the following section we use event trace inclusion to define the

refinement semantics between different machines.

We first present the most straight-forward refinement semantics, which as-

sumes that the concrete model does not introduce new events and there is no200

relabelling of the events. Then we generalize the result to allow for relabelling

and new events. We treat traces for machines as compound traces of states

and events. We first prove state trace refinement with forward simulation and

Zorn’s Lemma, which then can be used to prove the event trace refinement.
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4.1. Forward Simulation and Infinite State Trace Refinement205

Forward simulation is a sufficient condition for refinement of systems with

finite traces [1]. In this paper, we show that forward simulation using a relational

abstraction relation is sufficient for infinite trace refinement as well. Formally,

forward simulation is defined in Definition 4.1. Figure 3 illustrates that the

concrete machine M ′ simulates abstract M provided for each transition in M ′
210

that may lead from an set of states S ′i to a set of states S ′i+1, there exists a

corresponding transition on the abstract machine M from an abstract state set

Si to a set of states Si+1. The states S and S ′ are gluing related by J .

Si 

Si
′
 

Si+1 

Si+1
′
 

J J 

K(g(e)) 

K’(e) 

Si 

Si
′
 Si+1

′
 

J J 

K’(e) 

∀e·e ∈ F ∧ g(e) ≠ skip ∀e·e ∈ F ∧g(e) = skip

Figure 3: Forward Simulation

Definition 4.1 (Forward Simulation). Let M =< S ,S0,E ,K > and machine

M ′ =< S ′,S ′0,F ,K ′ >. Let the event mapping function be g ∈ F → E ∪ {skip}.

Let J ∈ S ↔ S ′ be the gluing relation that relates the states of M and M ′, M

is forward simulated by M ′ under K and K ′ provided:
S ′0 ⊆ J [S0]

∀e ·e ∈ F ∧ g(e) 6= skip⇒ J ; K ′(e) ⊆ K (g(e)); J

∀e ·e ∈ F ∧ g(e) = skip⇒ J ; K ′(e) ⊆ J

In general, gluing invariants define a relational mapping between concrete

and abstract states. We first define relational gluing traces in Definition 4.2 to

link the states on the behavioral traces. J (us , vs) is used to relate the corre-

sponding states in abstract and concrete traces. The notation J [ts] is used to
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define the relational gluing trace image of state trace set ts, formally presented

as (5).

J [ts] = {vs | us ∈ ts ∧ J (us , vs)} (5)

Definition 4.2 (Relational Gluing Traces). The infinite state trace us is defined

to be gluing related to infinite state trace vs as J (us , vs), formally:

J (us , vs) , ∀i ·i ∈ N⇒ us(i) 7→ vs(i) ∈ J

Given that there are no relabelling and stuttering events in the refinement

step, then for any abstract event trace ue ∈ e traces(M ), the corresponding215

concrete state trace set is the subset of the relational gluing image of the cor-

responding abstract state trace set. In other words, for each concrete state

trace vs ∈ s traces(M ′, ue), there exists an abstract state trace us that is glu-

ing related with vs and it is an abstract trace. For the case where there is

no relabelling and stuttering in the refinement step, Theorem 4.4 states that220

infinite state trace refinement could be proved with forward simulation. Based

on the infinite state trace refinement, we provide the refinement semantics of

event traces without relabelling and new events in Definition 4.3. The behavior

of refined machine must be consistent with the behavior of the machine being

refined during refinement [12]. Thus we use the event traces to define the re-225

finement between machines. For machine M ′ to refine machine M , the concrete

event trace set e traces(M ′) must be the subset of the abstract event trace set

e traces(M ) provided no relabelling or new events in the refinement step.

Definition 4.3 (Event Trace Refinement Without Relabelling and New Events).

M v M ′ is defined as e traces(M ′) ⊆ e traces(M ).230

Theorem 4.4. Assume the event mapping between machine M ′ and M does

not relabel events nor does it introduce new events. Then the state trace set of

M ′ is a subset of the relational gluing image of the state trace set of M when

M is forward simulated by M ′, formally:

∀ve ·ve ∈ e traces(M ′)⇒ s traces(M ′, ve) ⊆ J [s traces(M , ve)] (6)

14



Proof Outline. For ve ∈ e traces(M ′) we have:

s traces(M ′, ve) ⊆ J [s traces(M , ve)]

≡∀vs ∈ s traces(M ′, ve)⇒∃us ·J (us , vs)∧ us ∈ s traces(M , ve)

To prove the above, we outline the proof steps as follows:

• We first construct a set U that contains the infinite abstract state traces

or one of its prefixes related to each vs by gluing invariant J in (7).

• Based on S ′0 ⊆ J [S0] in Definition 4.1, S0 6= ∅. s ∈ S0 is one of the

elements in U . Thus the set U is not empty.235

• Lemma 4.5 is constructed to show that infinite state traces in U are in

traces(M , ue).

• We then show that any totally ordered set Q ⊆ U has an upper bound in

Lemma 4.7. That is, the main hypothesis of Zorn’s lemma is satisfied.

• We use Zorn’s Lemma to prove the existence of an infinite abstract state240

trace as a maximal element uM ∈ U in a set of finite or infinite state

traces that matches the given infinite concrete trace in Lemma 4.8. Thus

uM is an infinite trace and uM ∈ U , which shows that uM is an infinite

abstract state trace. Then we use uM as a witness for the existence of us

to prove the theorem.245

U =

{us | ∀i ·i ≥ 0⇒ us(0) ∈ S0 ∧ us(i) 7→ vs(i) ∈ J ∧ us(i) 7→ us(i + 1) ∈ K (ue(i))}

∪ {ws | ∀i ·i ≥ 0⇒ ws ∈ (0..k − 1)→ S ∧ws(0) ∈ S0 ∧ws(i) 7→ vs(i) ∈ J

∧ws(i) 7→ ws(i + 1) ∈ K (ue(i))}

(7)

We now proceed with the proof steps just outlined. In the first step, a set

U that contains the infinite abstract traces and their prefixes related to vs by

gluing invariant J , formally presented as (7). We write � for the (standard)
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prefix order on U; that is, u � v when either u and v are both infinite and

coincide, or u is a finite prefix of v . Based on Definition 2.3, we show that the250

infinite traces in U are the state traces of the abstract machine M .

Lemma 4.5. The set U is partially ordered and the infinite traces of U are in

traces(M , ue).

Proof. The infinite traces us satisfy the trace properties defined in Definition 2.3,

thus any u ∈ {us | ∀i ·i ≥ 0 ⇒ us(0) ∈ S0 ∧ us(i) 7→ vs(i) ∈ J ∧ us(i) 7→255

us(i + 1) ∈ K (ue(i))} is in traces(M , ue).

Lemma 4.7 states that any totally ordered chain Q ⊆ U has an upper bound.

There are two cases for the totally ordered set Q . One case is when the chain

stabilizes from some point, that is, all partial traces in the chain have size at

most i for some i ∈ N. In this case, the upper bound of Q are the traces of size260

i . The other case is when the chain does not stabilize, that is, for each i ∈ N,

there exists a partial trace in the set Q that has size no less than i . To help

prove the second case, Lemma 4.6 proves that if any two state traces in a totally

ordered set Q are defined on index i ∈ N, then the states at index i in the two

traces are the same. The proofs for Lemma 4.6 and 4.7 are given in Appendix265

A.

Lemma 4.6. Given a totally ordered set Q of traces u ∈ N→ S, if i ∈ dom(u)

and i ∈ dom(u ′) where u ∈ Q and u ′ ∈ Q, then u(i) = u ′(i).

Lemma 4.7. Given U in (7), any totally ordered set Q ⊆ U has an upper

bound.270

Given that the set U is a nonempty partially ordered set and every totally

ordered set Q ⊆ U has an upper bound, then there is a maximal element in

U based on Zorn’s Lemma [13]. Forward simulation is used to prove that the

maximal element is an infinite trace in Lemma 4.8, which can be used to choose

us ∈ traces(M , ue).275

Lemma 4.8. Assume M is forward simulated by M ′. The set U in Formula (7)

has a maximal element and that maximal element is an infinite trace.
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Proof. Based on Zorn’s Lemma, then U has a maximal element uM ∈ U . As-

sume uM is a finite trace with length k , then uM(k − 1) /∈ dom(K (ue(k − 1))).

Given the infinite state trace vs and the forward simulation condition, we can280

prove that uM(k − 1) ∈ dom(K (ue(k − 1))) with the following proof, which

derives a contradiction. Thus uM is an infinite trace.

{uM ∈ U and vs is infinite}

⇒ uM(k − 1) 7→ vs(k − 1) ∈ J ∧ vs(k − 1) 7→ vs(k) ∈ K ′(ve(k − 1))

{Definition 4.1 and g(ve(k − 1)) = ue(k − 1)}

⇒ ∃s ·s 7→ vs(k) ∈ J ∧ uM(k − 1) 7→ s ∈ K (ue(k − 1))

≡ uM(k − 1) ∈ dom(K (ue(k − 1)))

Proof of Lemma 4.8 means that the proof of Theorem 4.4 is now complete.

Then we use Theorem 4.9 to prove that forward simulation is enough to prove285

a valid refinement between abstract and concrete machines. The proof for The-

orem 4.9 is provided in Appendix A.

Theorem 4.9. M v M ′ given M ′ is forward simulated by M and there are no

relabelling and new events in the refinement step.

4.2. Hiding Operator290

In the previous section, we assume that there are no new events introduced

in the refined machine. In practice, adding new events in the refined model

would make the behavior steps more fine grained. Besides, relabelling also

exists in generic Event-B refinements where an abstract event may be refined

by multiple refined events. Figure 4 shows two cases where the concrete trace295

does not simulate the abstract trace. In the first case, the concrete trace comes

to a deadlock. In our definition of timed systems, time should always progress.

So the traces of the refined model should also be infinite traces. Based on our

setting, additional conditions are required to exclude the behaviors that would
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Figure 4: State Trace Refinement with Deadlock and Infinite New Events

cause deadlocks in the refined machine. In the second case, the introduced new300

events occur infinitely often from some point n in the concrete trace, which can

only be mapped to the prefix of the abstract trace. Thus we want to show that

the event traces that hide the stuttering skip events do correspond to abstract

traces. He [14] defines a hiding operator on labeled transition systems and

develops simulations that allow the concrete model to have hidden transitions.305

Butler shows that in CSP, hiding an infinite behavior causes the process to

diverge [15]. Inspired by their work, we define a hiding operator on infinite event

traces by using a hiding function hD on an infinite set D ⊆ N in Definition 4.10.

The hiding function hD defines a bijection function from natural numbers to

the infinite subset D . We define the function recursively. We map hD(0) to the310

minimal number in D since D is well-ordered. And hD(n + 1) is mapped to the

minimal number in the set {x | x ∈ D ∧ x > hD(n)}. If D is finite, then hD is

not well-defined.

Definition 4.10 (Hiding Function). Given an infinite set D ⊆ N, the hiding
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function hD ∈ N��D is formally defined as:hD(n) = min(D), n = 0

hD(n + 1) = min({x | x ∈ D ∧ x > hD(n)}), ∀n ·n ∈ N

Firstly we want to prove that the hiding function is order isomorphic. Based

on the order isomorphic function Definition 4.11 defined in [16], it is clear that315

the hiding function is order isomorphic when D is infinite. Here well-ordered

sets are totally ordered sets whose non-empty subsets have a least element in

the ordering [16]. Since D and N are well-ordered sets, then hD is unique based

on the unique order isomorphism theorem between well-ordered sets provided

in Theorem 4.12.320

Definition 4.11 (Order Isomorphic Function [16]). Let P, Q be well-ordered

sets. A function f ∈ P ��Q is defined as order isomorphism as P ∼= Q iff

P ∼= Q , ∀x , y ·x ∈ P ∧ y ∈ P ∧ x < y ⇒ f (x ) < f (y)

Theorem 4.12 (Unique Order Isomorphism between Well-ordered Sets [16]).

Let P, Q be well-ordered sets. If P ∼= Q, there is exactly one order-isomorphism

f ∈ P ��Q.

Then we define the hiding operator in infinite event traces in Definition 4.13

by using the hiding function to define the event trace ue \ A with all events325

in A removed in ue . The hiding operation is the backward composition of a

range subtraction and the hiding function. The range subtraction removes the

indexes together with the events in A. The hiding function hD remaps the

natural numbers to the remaining events. We use Lemma 4.14 to show that

ve \ A is a well defined infinite trace provided that ve does not end with an330

infinite suffix of events in A.

Definition 4.13 (Hiding Operator for Infinite Event Traces). Given an event

trace ue ∈ N→ E and a set of events A. Let D = dom(ueB−A), then the infinite

event trace ue \A is formally defined as:

ue \A , (ue B−A) ◦ hD (8)
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Lemma 4.14. Given the infinite event trace ve ∈ N→ E, then ve \A ∈ N→ E

if ve does not have an infinite suffix of events in A.

Proof. Assume ve has an infinite suffix of events in A, formally:∃j ∈ N⇒∀i ·i >

j ∧ ve(i) ∈ A. Then it is clear that ∀k ·k ∈ dom(ve B− A)⇒ k ≤ j . Given that335

hD(n) = j , then {x | x ∈ dom(ve B− A)∧ x > hD(n)} = ∅. Then hD(n + 1) is

not well-defined, which derives a contradiction.

4.3. Generic Refinement Semantics

In Section 4, we assume that the concrete model does not introduce new

events and there is no relabelling of the events. In this section, we extend the340

refinement semantics 4.3 with the more generic Definition 4.15 by using the

event mapping function g ∈ F → E ∪ {skip}. In the extended definition, we

show that M v M ′ only if for any concrete event trace ve ∈ e traces(M ′), there

exists an abstract trace ue ∈ e traces(M ), and g(ve) \ skip = ue .

Definition 4.15 (Generic Event Trace Refinement).

M v M ′ ≡ ∀ve ∈ e traces(M ′)⇒ (g(ve) \ skip) ∈ e traces(M )

In timed systems, the behavioral traces are infinite and time should always345

progress. There are two properties to be preserved during the refinement step for

timed models. Firstly, the refined behavioral trace should be infinite, provided

the abstract trace is infinite. Secondly, introducing new events in the refine-

ment step should not lead to divergence. Besides forward simulation, additional

conditions are required to preserve these two properties. To simplify the proof,350

we construct intermediate traces traces∗(M ) with stuttering events skip in Def-

inition 4.16. The set of intermediate event or state traces of M is defined in

Definition 4.17. The property that all traces in M ′ are convergent with respect

to new events requires that an intermediate event trace v̂e ∈ e traces∗(M ) does

not have an infinite suffix of skip events under the condition that the abstract355

machine M is not deadlocked. Based on Lemma 4.14, if v̂e has an infinite suffix

of skip events, then v̂e \ skip is a finite trace, which cannot be a trace of an

abstract machine that is not deadlocked.
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Definition 4.16 (Intermediate Traces with Stuttering Events). The set of infi-

nite traces traces∗(M ) of a machine M that include stuttering events is defined

as:

traces∗(M ) ,{(v̂s , v̂e) | v̂s ∈ N→ S ∧ v̂e ∈ N→ (E ∪ {skip})

∧ v̂s(0) ∈ init

∧∀i ·i ≥ 0∧ v̂e(i) 6= skip⇒ v̂s(i) 7→ v̂s(i + 1) ∈ K (v̂e(i))

∧∀i ·i ≥ 0∧ v̂e(i) = skip⇒ v̂s(i) = v̂s(i + 1)}

Definition 4.17 (The Set of Intermediate Event/State traces of M ). A set of

intermediate event traces of M is defined as:

e traces∗(M ) = prj 2[traces∗(M )]

A set of intermediate state traces of M for the event trace ue ∈ e traces∗(M )

is defined as:

s traces∗(M , ue) = {us | (us , ue) ∈ traces∗(M )}

The intermediate event trace maps concrete event labels F to abstract labels

E and skip. We use Lemma 4.18 to show that the concrete event trace set360

preserves the behavior of intermediate event trace set if M ′ is forward simulated

by M . The proof for Lemma 4.18 is provided in Appendix A.

Lemma 4.18. Given machine M and M ′ with relabelling function g that al-

lows new events, then g [e traces(M ′)] ⊆ e traces∗(M ) provided M ′ is forward

simulated by M .365

Theorem 4.19 is used to show additional rules required to prove M v M ′

and the traces in M ′ are convergent with respect to new events N . Forward

simulation is used to prove trace inclusion of concrete event traces and the

intermediate event traces with stuttering events. v̂e \ skip is one of the abstract

events only if it is an infinite trace. Based on Lemma 4.14, v̂e \ skip is an370

infinite trace if v̂e does not have an infinite suffix of skip events. Conditional

convergence and weak fairness conditions are required to prove the infiniteness

of the behavioral trace.
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Theorem 4.19. Given M with transition relation K and M ′ with transition

relation K ′. Let F be the set of event labels in M and N be the introduced new375

events in M ′. M v M ′ provided the following conditions hold:

• M forward simulated by M ′.

• M ′ is deadlock free relative to M : J [dom(K )] ⊆ dom(K ′).

• M ′ is weakly (F \ N )-fair.

• Events N in machine M ′ are conditional convergent under the condition380

that events F \ N are disabled;

Proof Outline. We outline the proof with the following steps:

• We first prove that g [e traces(M ′)] ⊆ e traces∗(M ) provided M ′ is forward

simulated by M with Lemma 4.18. Then we prove ∀v̂e ·v̂e ∈ e traces∗(M )⇒

v̂e \ skip ∈ e traces(M ).385

• Since M ′ is deadlock free relative to M , we show that traces in e traces(M ′)

are infinite traces when M is not deadlocked. Assume that there exists one

trace v ∈ traces(M ′) that is deadlocked at index l , formally presented as

vs(l) /∈ dom(K ′).

vs(l) /∈ dom(K ′)

⇒ {J [dom(K )] ⊆ dom(K ′)}

vs(l) /∈ J [dom(K )]

≡ {us(l) 7→ vs(l) ∈ J}

us(l) /∈ dom(K )

As M is not deadlocked so ∀i ·i ∈ N⇒ us(i) ∈ dom(K ), which contradicts

the result that us(l) /∈ dom(K ). Thus all traces in traces(M ′) are infinite

traces.

• We then prove that the intermediate event trace v̂e ∈ e traces∗(M ) does

not end with an infinite suffix of skip events by contradiction. Assume390
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that v̂e end with an infinite suffix of skip events. As g(ve) = v̂e , then

the concrete trace ve ends with an infinite suffix of new events N . In

the case that (F \ N ) is disabled infinite many times in the suffix, based

on the conditional convergence property, the new events will eventually

be disabled and there cannot be an infinite suffix of new events. In the395

case that (F \ N ) is continuously enabled in the suffix, based on the weak

fairness assumption some event e ∈ (F \N ) will eventually occur. Thus v̂e

does not end with an infinite suffix of skip events. Based on Lemma 4.14,

the intermediate event trace v̂e \ skip is one of the abstract traces.

New variables and events are introduced to Event-B models in data re-400

finements. Based on the invariants I (v) of machine M and gluing invariants

J (v ,w) that relate the abstract and concrete variables between M and N , Abrial

demonstrates how the translation of the forward simulation rule yields to various

proof obligations, such as invariant preservation (INV), feasibility (FIS), guard

strengthening (GRD) and so on, that are used by the Rodin [17] platform [1].405

In this paper, we explore the refinement rules in terms of timed systems with

infinite traces and infinitely many Tick events. Besides the forward simulation

rule, the relative deadlock freedom rule, the conditional convergence rule, and

weak fairness assumptions are required to prove that the refinement of a timed

system still preserves the property that time can always proceed. The relative410

deadlock freeness rule guarantees that the refinement of a machine with infinite

behavioral traces is always a machine with infinite traces. Conditional conver-

gence and weak fairness assumptions are required to prevent new events from

keeping occurring while the global clock can never proceed.

5. Refinement of Timing Properties in Event-B models415

5.1. Trace Semantics of Real-time Properties

Based on Definition 2.12, machines with timing properties could be described

with infinite traces. In this section, we use Definition 5.1 to define the refine-

ment semantics of machines with real-time properties. The timed behavior of
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a concrete timed model should also be included in the abstract model. In our420

refinement strategies for timed systems with Event-B models, the abstract ma-

chine is extended with real-time trigger-response properties with no intermediate

events between trigger and response events. Intermediate events are introduced

in refinement steps.

Definition 5.1 (Refinement Semantics of Machines with Real-time Properties).

M ∧TP(T ,R,w , d) v M ′ ∧TP(T ′,R′,w ′, d ′) is defined as (9).

∀ve ·ve ∈ e traces(M ′)∧ ve |= TP(T ′,R′,w ′, d ′)

⇒∃ue ∈ e traces(M )∧ ue = (g(ve) \ skip)∧ ue |= TP(T ,R,w , d)
(9)

To treat the infinite behavioral of timed traces, we use Lemma 5.2 to show425

convergence conditions and fairness assumptions under which M v M ′. Based

on M v M ′, we also prove that the traces of the refined machine with interme-

diate events satisfy the trigger-response property in Lemma 5.2. Lemma 5.3 is

used to show that given M v M ′, the timed property (that time should always

progress) is preserved in the refinement step. The proofs for Lemma 5.2, 5.3430

and 5.4 are provided in Appendix B.

Lemma 5.2. Let M be an Event-B machine with trigger-response pair (T ,R)

and R is enabled immediately after execution of T . Let g [T ′] = T and g [R′] =

R. We define H ′ ⊆ F as intermediate events between T ′ and R′ in M ′ and

g [H ′] = {skip}. Assume M is weakly fair with respect to R and M ′ is weakly435

fair with respect to H ′∪R′. If M ′ simulates M under J , H ′ is convergent under

the condition of ¬en(R′) and J [en(R)] ⊆ en(H ′ ∪ R′), then M v M ′ and M ′

satisfies TR(T ′,R′).

Lemma 5.3. Given M v M ′ and ∀ue ·ue ∈ e traces(M )⇒ timed(ue), then

∀ve ·ve ∈ e traces(M ′)⇒ timed(ve).440

Lemma 5.4 proves that all traces of M ′ that satisfy the timing property

TP(T ′,R′,w ′, d ′) correspond to traces of M that satisfy the original timing

property TP(g [T ′], g [R′],w , d) when M v M ′.

24



Lemma 5.4. Given M v M ′, then M ∧TP(g [T ′], g [R′],w , d) v M ′ ∧TP(T ′,R′,w ′, d ′)

if w ≤ w ′ ∧ d ′ ≤ d.445

5.2. Refinement Strategy Applied to the Case Study

Event-B has a strong and flexible refinement strategy described in [18, 19].

Based on the monotonicity of timing properties in Event-B models, we design

the two-step refinement strategy to refine timed systems. In the first step,

we introduce intermediate events to the abstract model while preserving the450

abstract timing properties with a strategy that has the following restrictions on

the machines in the refinement chain M0 v M1 v ... v Mn :

1. Each event of Mi is refined by at least one event of Mi+1;

2. Given Mi , intermediate events are introduced as new events in Mi+1;

3. Mi+1 is deadlock free relative to Mi ;455

4. Mi+1 is forward simulated by Mi ;

5. The new events introduced in Mi+1 are either anticipated or conditional

convergent under the condition that the refined response events are dis-

abled, Mi+1 is weakly fair on these new events;

6. All anticipated events should be refined to conditional convergent events,460

no anticipated events remain in the final machine;

7. All refinement steps Mi , 0 ≤ i ≤ n are weakly fair on the response events

and Tick events;

In condition 5), new events introduced in the refined step are either anticipated

or conditional convergent so that these events are never executed forever. A465

variant V (v), that has to be decreased by every convergent event and must

not be increased by anticipated events, needs to be introduced from new proof

obligations to prevent the forever execution of new events. The details that

refine anticipated events to conditional convergent events could be deferred to

later refinement steps. Nevertheless, these anticipated events should be even-470

tually refined to convergent events in the refinement chain. Detailed examples

are provided in the BRP case study. Based on Theorem 4.19 and Lemma 5.2,
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conditions 3)-7) can be used to guarantee that for all i ∈ 0..n − 1, Mi v Mi+1

and Mi+1 satisfies the trigger-response property. Then in the second step, the

abstract timing properties could be refined to sequential or alternative timing475

properties between trigger, intermediate and response events.

The two-step refinement strategy could be used to resolve different levels

of nondeterminism of intermediate events. Take the BRP case study as an

example, the abstract machine with timing property (3) could be refined with

several intermediate events. Figure 5 shows the time diagram of BRP in different480

refinement levels. In the first refinement, we introduce rcv current pkt and

snd retry as intermediate events to present that the packet could either be

received by the receiver or resent by the transmitter. The nondeterminism

choice of intermediate events leads to alternative responses. Then we refine

the abstract timing properties into several sub-timing properties. In the second485

refinement, we use TR(rcv current pkt , rcv abt) as the trigger-response pair and

introduce snd retry as the intermediate event. Moreover, the timing property

is refined to sequential sub-timing properties in the second step.

M0

M1

M2 

rcv_current_ack {rcv_current_ack,rcv_abt}

rcv_current_ack rcv_current_ackrcv_current_pkt

snd_retry rcv_abt

rcv_current_pkt

rcv_current_ack

rcv_current_ack snd_retry snd_retry rcv_abt
…retry_num

[0,pkt_ddl]

[0,c_ddl] [0,c_ddl]

rcv_current_pkt [0,pkt_abt_duration]

[c_dly,rty_ddl]
[c_dly*retry_num,rty_ddl*retry_num]

M1

M3

M5 

Figure 5: Time Diagram of BRP in Different Refinement Levels

The machine M 1, given in Figure 6, introduces variables r and rcv file to

denote the transmitted file is denoted by rcv file of length r in the receiver

part. In the case that the channel is working and the receiver receives the

packet (rcv current pkt event), the file pointer r in the receiver is increased by
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one. In the case that the channel is broken and the transmitter resends the

packet (snd retry event), the file pointer r is reset to s. By using the two-step

refinement strategy, we first use the Rodin tool to verify that M 1 refines M 0 and

M 1 is deadlock-free. In M 1, rcv current pkt and snd retry are set to anticipated

status to show that they might become convergent in later refinements. We also

assume weak fairness on all the events in the machine to prove the infiniteness

of the behavioral trace. In the second step, we refine the timing property (3)

into three sub-timing properties in (11). Specifically, (3) is refined to (11a) and

(11b) in the case that channel is working properly, and (11c) in the case that

the channel is broken. We assume that the transmission delay and deadline for

the channel are c dly and c ddl , respectively. Once the receiver received the

packet, it should abort within pkt abt duration if the channel is broken. The

relations between these timing properties are shown in (10).
c ddl > c dly > 0

pkt ddl > 2 ∗ c ddl

pkt abt duration + c ddl < pkt ddl

(10)

We use @grd2 1 and @grd2 2 of tick event in M 1 to replace @grd1 1 of tick

event in M 0. @inv2 5 and @inv2 7 are used to show that (11a) and (11b) are

satisfied in M 1. @inv2 4 and @inv2 6 serve as auxiliary invariants to support

@inv1 5 and @inv1 7. In the case that the channel is broken, we use @grd2 3

and @grd2 4 of tick event in M 1 to replace @grd1 2 of tick event in M 0. @inv2 9

is used to present timing property (11c).

TP(rcv current ack , rcv current pkt , 0, c ddl) (11a)

TP(rcv current pkt , rcv current ack , 0, c ddl) (11b)

TP(rcv current pkt , rcv abt , 0, pkt abt duration) (11c)

Timing is important to synchronize the status of transmitter and receiver490

in BRP. In M 2, we want to guarantee that the receiver will abort based on the
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@inv2 4 s st=working ∧c st=working ∧r=s ⇒clk−pkt tc≤ c ddl

@inv2 5 pkt tc≤ pkt rcv t ⇒pkt rcv t − pkt tc≤ c ddl

@inv2 6 s st=working ∧c st=working ∧r=s+1 ⇒clk−pkt rcv t≤ c ddl

@inv2 7 pkt rcv t≤ pkt tc ∧s6=0 ⇒pkt tc − pkt rcv t≤ c ddl

@inv2 8 r st=working ∧c st=failure ∧r=s+1 ⇒clk−pkt rcv t≤ pkt abt duration

@inv2 9 pkt rcv t≤ abt t ⇒abt t− pkt rcv t≤ pkt abt duration

anticipated event rcv current pkt

where

@grd2 1 r st=working

@grd2 2 c st=working

@grd2 3 s st=working

@grd2 4 r+1<N

@grd2 5 r=s

then

@act2 1 r:= r+1

@act2 2 rcv file:= rcv file ∪{r+1 7→ file(

s+1)}

@act2 3 pkt rcv t:= clk

end

anticipated event snd retry

where

@grd2 2 c st=failure

@grd2 3 r+1<N

then

@act2 1 r:= s

@act2 2 rcv file:= 1..s C file

end

event rcv current ack extends

rcv current ack

where

@grd2 1 r=s+1

end

event rcv abt extends rcv abt

where

@grd2 1 r=s+1

end

event tick refines tick

where

@grd2 1 s st=working ∧c st=working ∧r

=s ⇒clk+1−pkt tc≤ c ddl

@grd2 2 s st=working ∧c st=working ∧r

=s+1 ⇒clk+1−pkt rcv t≤ c ddl

@grd2 3 r st=working ∧c st=failure ∧r=

s ⇒clk+1−pkt tc≤ c ddl

@grd2 4 r st=working ∧c st=failure ∧r=

s+1 ⇒clk+1−pkt rcv t≤

pkt abt duration

then

@act1 1 clk:= clk+1

end

Figure 6: Machine M1 that Introduces rcv current pkt and snd retry as Intermediate Events
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timing information on its end. In this refinement, we first refine the anticipated

event snd retry to convergent event by introducing variable rty cnt to denote

a retry counter. The transmitter will decide to abort if rty cnt reaches the

constant rty num. We use retry num−rty cnt as the variant and the convergent495

event snd retry always decreases the variant.

Then in the second step, we refine timing property (11c) to timing prop-

erty (12a) and (12b). It takes the receiver at least 2 ∗ c dly time units but at

most retry ddl time units before knowing that the transmitter has not sent the

new packet. And after all re-send attempts the receiver guarantees that the

transmitter has aborted. Then it aborts after 2 ∗ c dly ∗ rty num time units

and within retry ddl ∗ rty num time units. In the model, we replace @grd2 4

of tick event in M 1 with @grd3 1 of tick event in M 2 with the assumption

that rty ddl > 2 ∗ c ddl and pkt abt duration ≥ retry num ∗ rty ddl . @inv3 2

and @inv3 3 are used to present timing property (12a) and (12b) respectively.

@inv3 1 serves as the auxiliary invariant for @inv3 2.

TP(rcv current pkt , snd retry , 2 ∗ c dly ∗ rty cnt , retry ddl ∗ rty cnt) (12a)

TP(rcv current pkt , rcv abt , 2 ∗ c dly ∗ rty num, retry ddl ∗ rty num) (12b)

In the last step, we refine the anticipated event rcv current pkt to convergent

event with the variant N −r . Then the convergent event rcv current pkt always

decreases the variant.500

6. Related Work

Timing issues are critical in real-time systems such as medical devices and

high precision control systems. Timing properties should be reasoned about

together with the system to guarantee the safety and responsiveness of the

whole system. Xie et al. extended the TiMo, a process algebra for mobile505

distributed systems, with the deadline time constraints on actions [20]. Sheng et

al. presented the algebraic semantics for multithreaded discrete event simulation
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invariants

@rty cnt type rty cnt∈ N

@inv3 1 r st=working ∧c st=failure ∧r=s+1 ⇒clk−pkt rcv t≤ rty ddl ∗ rty cnt

@inv3 2 pkt rcv t≤ snd rty t ∧r=s+1 ⇒snd rty t− pkt rcv t≤ rty ddl ∗ rty cnt

@inv3 3 pkt rcv t≤ abt t ⇒abt t− pkt rcv t≤ rty ddl ∗ retry num

variant

retry num−rty cnt

convergent event snd retry extends

snd retry

where

@grd3 1 rty cnt<retry num

@grd3 2 clk≥ pkt rcv t+ c dly

@grd3 3 snd rty t>pkt rcv t⇒clk≥

snd rty t +2∗c dly

then

@act3 1 rty cnt:= rty cnt+1

@act3 2 snd rty t:= clk

end

event rcv abt extends rcv abt

where

@grd3 1 rty cnt=retry num

end

event rcv current ack extends rcv current ack

then

@act4 1 rty cnt:= 0

end

event tick refines tick

where

@grd2 1 s st=working ∧c st=working ∧r=s ⇒

clk+1−pkt tc≤ c ddl

@grd2 2 s st=working ∧c st=working ∧r=s+1

⇒clk+1−pkt rcv t≤ c ddl

@grd2 3 r st=working ∧c st=failure ∧r=s ⇒

clk+1−pkt tc≤ c ddl

@grd3 1 r st=working ∧c st=failure ∧r=s+1

⇒clk+1−pkt rcv t≤ rty ddl ∗ rty cnt

then

@act1 1 clk:= clk+1

end

Figure 7: Machine M2 that Uses snd retry as Intermediate Events between rcv current pkt

and rcv abt
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language, where time is used as a delay component to suspend the execution

of the program [21]. Alur developed the formalism of timed automata, which

integrate global clocks into the state transition systems, to model and analyze510

the timing behavior of real-time systems [22]. Henzinger et al. propose the

idea of Timed Transition Systems (TTS), which put quantitative lower-bound

and upper-bound timing constraints on transitions [23]. Based on the idea of

TTS, Ostroff summarizes composition rules, and refinement rules that can be

used to model discrete real-time systems with the support of model checking515

tools[24]. These approaches are used to verify timing properties on individual

transitions of the system, while our approach verifies timing properties between

different transitions in a system, which could be used as high-level requirement

specification.

Event-B is a modeling language that supports modeling refinement but lacks520

explicit support for expressing and verifying timing constraints [25]. Abadi and

Lamport specified and reasoned about real-time systems by representing time

as an ordinary variable [26]. Influenced by their work, Butler and Falampin

proposed an approach to model and refine timing properties in classical B [5],

which adds a clock variable representing the current time and an operation525

that advances the clock [27]. Additional constraints are added to the clock

so that the global clock can not advance to a point where deadlines would be

violated. Based on this approach, work has been done to extend Event-B models

with timing properties and refinement patterns [28, 25]. Sarshogh and Butler

developed a trigger-response pattern to extend Event-B models with discrete530

timing properties such as deadline, delay, and expiry [28]. Their approach sets

timestamps for trigger and response events and uses a Tick event to prevent the

global clock from proceeding to a point where time constraints between trigger

and response events would be violated. Sulskus et al. presented the notion

and Event-B semantics for the interval timing properties by using an interrupt535

event between trigger and response events [25]. However, neither Sarshogh

nor Sulskus resolves the issue of Zeno behavior in timed systems. On top of

their contribution, we add fairness assumptions and relative deadlock freedom

31



to eliminate Zeno behavior in Event-B models with real-time trigger-response

properties.540

Refinement mappings have been used to prove that one specification imple-

ments another [29]. To address the problem that a refinement mapping does not

exist because the concrete specification hides the history or future details of the

abstract specification, Abadi and Lamport proposed to use auxiliary variables

such as history variables or prophecy variables with stuttering to create a valid545

refinement mapping [30]. Based on timed automata, Lynch defined a formal

timed transition system and used it to develop several simulation proof tech-

niques such as forward and backward simulations, hybrid forward-backward,

and backward-forward simulations [31]. Back and Xu investigated refinement

calculus for fair action systems [32]. Forward and backward simulations are550

extended for verifying termination and correctness of fair action systems. Our

work extends the refinement semantics of Event-B models in terms of infinite

behavioral traces with forward simulation and additional conditions.

7. Conclusion

To summarize, our work with refinement semantics and trace semantics of555

timing properties has yielded two main contributions. First, additional condi-

tions are provided to verify refinement in Event-B models in terms of infinite

behavioral traces. Zorn’s Lemma is used together with forward simulation to

prove infinite state/event trace refinement in refinement steps. Second, we use

real-time trigger-response properties to formalize high-level timing properties560

between different transitions in a discrete system. Our work applies conditional

convergence, deadlock freedom and weak fairness assumptions to exclude the

Zeno behavior in timed systems. Additional conditions related to the time con-

straints are also provided to preserve the consistency of timing properties in

different refinement levels. Also, we develop a two-step refinement strategy to565

refine real-time systems. Based on the refinement semantics and refinement

strategy, we use the bounded retransmission protocol case study to illustrate
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the refinement conditions.

We impose weak fairness assumptions on intermediate events, response events,

and the Tick event to ensure that they do get executed sufficiently often when570

enabled. However, our approach does not rule out several rounds of trigger-

response events occurring within one clock tick. One solution to rule out these

behaviors is to force the lower bound of real-time trigger-response property

w > 0. In the cases that there is no lower bound of delay time for trigger-

response properties, some more substantial fairness restrictions such as finitary575

fairness [33] or bounded fairness [34] could be used to guarantee that the Tick

event gets the chance to proceed. Also, our previous work introduces a nonde-

terministic queue-based scheduling policy with some additional gluing invariants

to refine real-time properties in concurrent systems [35].

This paper introduced additional proof obligations required to model dis-580

crete timing properties, which are not supported natively by the Rodin plat-

form. A plugin could be built to extend the Rodin platform to support discrete-

time modeling with trigger-response properties as well as conditional convergent

event modeling in Event-B.
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Appendix A. Proofs for Section 4 (Trace Refinement Semantics)690

Lemma 4.6. Given a totally ordered set Q of traces u ∈ N→ S, if i ∈ dom(u)

and i ∈ dom(u ′) where u ∈ Q and u ′ ∈ Q, then u(i) = u ′(i).

Proof.

∀i , u, u ′ ·i ∈ dom(u)∧ i ∈ dom(u ′)∧ u ∈ Q ∧ u ′ ∈ Q

≡ {Fix i ∈ dom(u)∧ i ∈ dom(u ′)}

∀u, u ′ ·u ∈ Q ∧ u ′ ∈ Q

⇒ {Q is totally ordered set}

u � u ′ ∨ u ′ � u

⇒

u(i) = u ′(i) where u � u ′ ∧ i ∈ dom(u)

u(i) = u ′(i) where u ′ � u ∧ i ∈ dom(u ′)

≡u(i) = u ′(i)

Lemma 4.7. Given U in (7), any totally ordered set Q ⊆ U has an upper

bound.695

Proof. Case 1: The chain stabilizes from some point. That is, all partial traces

in the chain have size at most i , formally:

∃i ∈ N⇒ (∀u ∈ Q ⇒#(u) ≤ i)∧(∃u ∈ Q ⇒#(u) = i)

In this case, the upper bound of the chain is the partial trace whose size is with

length i . As the set Q is totally ordered, so ∀u, u ′ ∈ Q ⇒ u � u ′ ∨ u ′ � u.

If the size of a trace is larger than i , then it contradicts the assumption that

∀u ∈ Q ⇒#(u) ≤ i .

Case 2: The chain does not stabilize. For each i ∈ N, there exists a partial

trace in the chain that has size no less than i , formally:

∀i ·i ∈ N,∃u ∈ Q ∧#(u) ≥ i (A.1)
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In this case we define a uω as ∀i , u ·i ∈ N∧#(u) ≥ i ⇒ uω(i) = u(i). uω is well

defined based on Lemma 4.6 as for all traces that are defined in index i , the

state in index i is the same. First we prove that uω ∈ U .

∀i ·i ∈ N,∃u ∈ Q ∧#(u) ≥ i

≡ {Definition for U in (7)}

∀i ·i ∈ N,∃u ∧ u(i) 7→ vs(i) ∈ J ∧ u(i) 7→ u(i + 1) ∈ K (ue(i))

≡ {let uω(i) = u(i) and uω(i + 1) = u(i + 1) where #(u) ≥ i + 1}

∀i ·i ≥ 0⇒ uω(i) 7→ vs(i) ∈ J ∧ uω(i) 7→ uω(i + 1) ∈ K (ue(i))

Based on the Definition of uω, ∀u ∈ Q ⇒ u � uω. Thus uω is the upper bound700

for the totally order set Q .

Theorem 4.9. M v M ′ given M ′ is forward simulated by M and there are no

relabelling and new events in the refinement step.

Proof.

∀v ·v ∈ e traces(M ′)

≡ {Fix v ∈ e traces(M ′)and Lemma 2.6}

s traces(M ′, v) 6= ∅

⇒ {Infinite State Trace Refinement: Theorem 4.4}

s traces(M , v) 6= ∅

⇒ {Lemma 2.6}

e traces(M ) 6= ∅

≡ ∃u ∈ e traces(M )∧ u = v

Lemma 4.18. Given machine M and M ′ with relabelling function g that al-705

lows new events, then g [e traces(M ′)] ⊆ e traces∗(M ) provided M ′ is forward

simulated by M .
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Proof.

∀ve ∈ e traces(M ′)

⇒ {Fix ve ∈ e traces(M ′) and Lemma 2.6}

s traces(M ′, ve) 6= ∅

⇒ {Infinite State Trace Refinement: Theorem 4.4}

s traces∗(M , g(ve)) 6= ∅

⇒ {Lemma 2.6}

∃ue ∈ e traces∗(M )∧ ue = g(ve)

Appendix B. Proofs for Section 5 (Refinement of Timing Properties

in Event-B models)710

Lemma 5.2. Let M be an Event-B machine with trigger-response pair (T ,R)

and R is enabled immediately after execution of T . Let g [T ′] = T and g [R′] =

R. We define H ′ ⊆ F as intermediate events between T ′ and R′ in M ′ and

g [H ′] = {skip}. Assume M is weakly fair with respect to R and M ′ is weakly

fair with respect to H ′∪R′. If M ′ simulates M under J , H ′ is convergent under715

the condition of ¬en(R′) and J [en(R)] ⊆ en(H ′ ∪ R′), then M v M ′ and M ′

satisfies TR(T ′,R′).

Proof. H ′ are new events introduced to M ′. Based on Theorem 4.19, M v M ′.

{M v M ′}

≡ ∀ve ·ve ∈ e traces(M ′)⇒∃ue ·ue ∈ e traces(M )∧ ue = g(ve \ H′)∧ ue |= TR(T ,R)

≡ { Fix ve ∈ e traces(M ′) and Definition 2.9}

∀i ·i ≥ 0∧ ue(i) ∈ T ⇒ (∃j ·j > i ∧ ue(j ) ∈ R ∧∀k ·i < k < j ⇒ ue(k) /∈ T )

⇒ {ue = g(ve \ H′) , let D = dom(ve B−H ′)}

∀i ·i ≥ 0∧ ue(i) ∈ T ∧ ve(hD(i)) ∈ g−1[T ]⇒ (∃j ·j > i ∧ ue(j ) ∈ R ∧ ue(hD(j )) ∈ g−1[R]

∧∀k ·hD(i) < k < hD(j )⇒ ue(k) /∈ g−1[T ])

≡ve |= TR(T ′,R′)
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Lemma 5.3. Given M v M ′ and ∀ue ·ue ∈ e traces(M )⇒ timed(ue), then

∀ve ·ve ∈ e traces(M ′)⇒ timed(ve).720

Proof.

{M v M ′}

≡ ∀ve ·ve ∈ e traces(M ′)⇒∃ue ·ue ∈ e traces(M )∧ ue = g(ve \ H′)∧ timed(ue)

≡ { Fix ve ∈ e traces(M ′) and Definition 2.10}

∀i ·i ∈ N⇒ (∃j ·j ≥ i ∧ ue(j ) = Tick)

⇒{ue = g(ve \ H′) , let D = dom(ve B−H ′)}

∀i ·i ∈ N⇒ (∃j ·j ≥ i ∧ ue(j ) = Tick ∧ ve(hD(j )) = Tick)

≡timed(ve)

Lemma 5.4. Given M v M ′, then M ∧TP(g [T ′], g [R′],w , d) v M ′ ∧TP(T ′,R′,w ′, d ′)

if w ≤ w ′ ∧ d ′ ≤ d.
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Proof.

∀ve ·ve ∈ e traces(M ′)∧ ve |= TP(T ′,R′,w ′, d ′)

≡ {Fix ve ∈ e traces(M ′)∧ ve |= TP(T ′,R′,w ′, d ′)}

∀i ·i ≥ 0∧ ve(i) ∈ T ′⇒

∃j ·j > i ∧ ve(j ) ∈ R′ ∧(w ′ ≤ #(ve [i , j ] � Tick) ≤ d ′)

⇒ {M v M ′}

∃ue ·ue ∈ e traces(M )∧ ue = g(ve \ H′)

⇒ {ue = g(ve \ H′) , let D = dom(ve B−H ′)}

∀i ·i ≥ 0∧ ve(i) ∈ T ′ ∧ ue(h−1
D (i)) ∈ g [T ′]⇒

∃j ·j > i ∧ ve(j ) ∈ R′ ∧ ue(h−1
D (j )) ∈ g [R′]∧(w ′ ≤ #(ue [h−1

D (i), h−1
D (j )] � Tick) ≤ d ′)

⇒ {w ≤ w ′ ∧ d ′ ≤ d}

∀i ·i ≥ 0∧ ve(i) ∈ T ′ ∧ ue(h−1
D (i)) ∈ g [T ′]⇒

∃j ·j > i ∧ ve(j ) ∈ R′ ∧ ue(h−1
D (j )) ∈ g [R′]∧(w ≤ #(ue [h−1

D (i), h−1
D (j )] � Tick) ≤ d)

≡ {Lemma 5.3 and Definition 2.11}

ue |= TP(g [T ′], g [R′],w , d)
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