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Enhanced silicate rock weathering (ERW) deployable via croplands is a prime candidate to 
be evaluated for atmospheric Carbon Dioxide Removal (CDR), a backstop for human-caused 
climate change1. ERW has potential co-benefits for improved food and soil security and 
reduced ocean acidification2-4.  We use an integrated performance modelling approach for 
an initial techno-economic assessment for 2050, quantifying how CDR potential and costs 
vary among nations in relation to business-as-usual energy policies and policies consistent 
with limiting future warming to 2 °C5.  China, India, the United States and Brazil have large 
potential to help achieve average global CDR targets of 0.5 to 2 Gt CO2 yr-1 with extraction 
costs of ~$80-180 t-1 CO2.  These targets and costs are robust regardless of future energy 
policies.  Deployment with existing croplands offers opportunities to align agriculture and 
climate policy.  However, success will depend upon overcoming political and social inertia 
to develop regulatory and incentive frameworks.  We discuss the challenges and 
opportunities of ERW deployment, including the potential for excess industrial silicate 
materials (basalt mine overburden, concrete, and iron and steel slag) to obviate the need 
for new mining, as well as uncertainties in soil weathering rates and land-ocean transfer of 
weathered products. 

Failure of the world to curb fossil fuel CO2 emissions6, and the inadequacy of planned 
mitigation measures7, has been greeted with growing public consternation8, consistent with the 
clear intergenerational injustice of human-caused climate change9.  Even the most ambitious 
emission phase-outs9,10 fail to achieve the United Nations Framework Convention on Climate 
Change Paris Agreement targets for limiting global warming without the help of massive 
atmospheric Carbon Dioxide Removal (CDR).  Extraction goals1,7,9,10 later this century in most 
studies are on the order of at least 10 Gt CO2 yr-1, although projections of rapid technological 
change5 suggest a lower requirement of 2-2.5 Gt CO2 yr-1.  This formidable challenge has led 
to international calls for urgent research into a portfolio of CDR options to understand their 
feasibility, scope, costs and challenges11,12. 

Our focus is terrestrial enhanced rock weathering (ERW), a CDR strategy based on 
amending soils with crushed calcium- and magnesium-rich silicate rocks to accelerate CO2 
sequestration2-4,13-17.  Basalt, an abundant fast-weathering rock with the required mineral 
chemistry, is a prime target for implementing land-based ERW because of its potential co-
benefits for crop production18 and soil health2-4.  ERW liberates base cations, generating 
alkalinity such that atmospheric CO2 is converted into dissolved inorganic carbon (principally 
hydrogen carbonate ions; HCO3-) that is removed via soil drainage waters.  These weathering 
products are transported via land surface runoff to the oceans with a storage lifetime exceeding 
100,000 years19.  Depending on soil type, atmospheric CO2-derived dissolved inorganic carbon 
may also be sequestered through the formation of soil carbonate minerals, which reduces the 
efficiency of carbon sequestration by ~50%19.  Logistical infrastructure to apply basaltic rock 
dust to managed croplands already exists due to the common need to apply crushed limestone 
to reverse soil acidification from intensive cropping2-4.  Thus, rapid deployment at large scale 
appears feasible within decades, with important ancillary benefits including mitigation of ocean 
acidification15-18.  Carbon sequestration by ERW on croplands, a biogeochemical CDR option 
supporting multiple United Nations sustainable development goals and ecosystem services4,20, 
and a pragmatic land-use choice to maximise scalability and co-benefits, thus warrants detailed 
examination. 

We constructed a performance model with sub-national level of detail to assess 
quantitatively the CDR capacity and costs for land-based ERW implementation in major 
economies, constrained by available agricultural land area and energy production (including 
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USA, India, China, Brazil, and Europe) (Extended Data Fig. 1).  For rock weathering within 
the soil profile, we developed a 1-D vertical reactive transport model with steady-state flow, 
and a source term representing rock grain dissolution (Methods; SI figs. S1-S12; SI tables S1-
S5).  Our work builds on advances made in prior ERW research largely on tropical forested 
ecosystems15-17,21,22, with the practical aims of understanding the capacity of agriculture to 
capture carbon via soil amendment with milled basalt.  For this initial nation-by-nation 
assessment, we examine the sensitivity of net CDR with current croplands to projected national 
energy production for 2050 under a business-as-usual energy (BAU) scenario based on ongoing 
energy transitions5.  This is compared with a 2°C scenario, which includes a wide range of 
policy measures designed to respect the 2°C target with 75% probability5 (SI tables S6-S12). 

 
Carbon removal potential via ERW 

Our geospatial analyses define a new technical potential CDR range for those nations with high 
capacity for ERW deployment on cropland (Figure 1; SI figs. S13-S15).  For each nation, we 
generate CO2 capture curves by ranking CDR potential from the highest to the lowest grid cells 
with increasing ERW deployment.  National median CO2 removal curves typically show CDR 
capacity rising with increasing cropland area, with carbon removal by silicate soil amendment 
reaching a plateau or declining in the case of Canada (Figure 1).  These patterns reflect 
expansion of ERW into climatically unfavourable agricultural land, causing CDR potential to 
slow relative to the carbon penalty of logistical operations, and the 3% limit in national energy 
available for grinding (Extended Data Fig. 2).  Overall trends in national CDR curves are 
relatively insensitive to the choice of energy scenario.  China is the exception because its large 
increase in low carbon energy usage projected under the 2°C scenario5 allows net CDR to rise 
by substantially reducing secondary CO2 emissions from logistical operations (Figure 1). This 
contrasts with results for India, whose total energy production falls by ~40% with a transition 
to low carbon energy production in the 2oC scenario, lowering energy available for grinding 
basalt, and thus the potential for increased CDR by ERW. Reductions in energy production for 
other nations in the 2°C scenario compared with the BAU scenario similarly lower their 
potential for increased CDR with the transition to low carbon energy. 

Recognising the urgent need to assess large-scale options for meeting near-term CO2 
removal goals10, we determine the potential contribution of nations to achieve CDR targets 
across the 0.5-2 Gt CO2 yr-1 range (Table 1; Extended Data Fig. 3).  Overall, we find the three 
top ranked countries with the highest CDR potential are coincidentally the highest fossil fuel 
CO2 emitters (China, USA and India)6 (Figure 1).  Indonesia and Brazil, with CO2 emissions 
10-20 times lower than the USA and China, have relatively high CDR potential due to 
extensive agricultural lands and climates suitable for high silicate rock weathering efficiency.  
European countries have an order-of-magnitude lower CDR potential than China, USA, and 
India, mainly because of lower agricultural land area.  The top five European nations with the 
highest net CDR potential could offset 30% of the EU27’s current emissions and the top three 
European countries with highest CDR potential are also the largest European emitters of CO2 
from fossil fuels (Germany, Spain and Poland)6.  Our ERW scenarios (Table 1) correspond to 
an aggregate CDR of 25-100 Gt CO2 if sustained over 5 decades. This would save up to 10% 
of the remaining cumulative carbon emission budget (~900 Gt CO2) that gives a likely chance 
of limiting global warming to less than 2°C above the pre-industrial average surface 
temperature10. 
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In the context of our CDR targets, ERW has a similar potential to that of other CDR 
strategies23 estimated for 2050, including bio-energy with carbon capture and storage 
(BECCS), widely adopted in IPCC future scenarios (0.5-5 Gt CO2 yr-1), direct air carbon 
capture and storage (DAC) (0.5-5 Gt CO2 yr-1), biochar (0.5 to 2 Gt CO2 yr-1), soil organic 
carbon (SOC) sequestration (0.5-5 Gt CO2 yr-1), and afforestation/reforestation (0.5-3.6 Gt CO2 
yr-1).  One benefit of country level analysis for CDR is the scope for comparative assessments 
with other technologies and opportunities for co-deployment.  For example, our ERW CDR 
range is comparable with large-scale implementation of BECCS in USA by 2040 (0.3-0.6 Gt 
CO2 yr-1), as constrained by biomass productivity, location and capacity of CO2 storage sites24.  
ERW avoids competition for land used in food production, and related increased demands of 
BECCS for freshwater and polluting fertilizers25, with CO2 being treated as a resource for 
mineral weathering. Co-deployment of ERW with feedstock crops for BECCS and biochar 
could enhance the feasibility and carbon sequestration potential of these strategies4,26. 

Inorganic carbon sequestration by ERW appears comparable to SOC sequestration, 
another proposed CDR strategy (~2.5 Gt CO2 yr-1 by 2100)27 using agricultural land, but with 
potentially greater long-term security of C-storage.  Co-deployment of ERW and SOC 
sequestration at large-scale might, therefore, contribute substantially to the 5 Gt CO2 yr-1 
carbon removal target suggested in decarbonization scenarios10 for 2050.  Compatibility of 
ERW and SOC sequestration may be realistic given that amendment of acidic organic-rich soils 
with silicate minerals, and resultant pH increase, had no effect on respiratory CO2 fluxes28,29, 
contrary to concerns that increased soil pH may accelerate organic matter decomposition30.  
However, efficacy of CO2 removal, sink saturation, and permanency of storage with these 
approaches, separately and interactively, are uncertain11,23.  Abatement of soil N2O emissions 
by basalt application to conventionally managed arable and perennial crops31, and of N2O and 
CH4 emissions by application of artificial silicates to rice agriculture32, is possible.  Such effects 
would further lower adverse impacts of agriculture on climate per unit yield, amplifying the 
climate mitigation potential of ERW. 

Greenhouse gas emissions reductions aimed at limiting future warming are defined under 
the Paris Agreement by Nationally Determined Contributions (NDCs)33.  As yet, most of the 
top 10 fossil carbon emitting nations are failing to meet their 2030 NDC pledges which, even 
if met, imply a median warming (2.6–3.1 °C) exceeding the Paris agreement33.  Warming of 
this magnitude could allow the Earth system to cross thresholds for irreversible planetary 
heating and long-term multi-metre sea-level rise, with potentially disastrous consequences for 
coastal cities34.  NDC pledged carbon emission reductions undergo periodic revision in 
response to trends in greenhouse gas emissions, uptake of low-carbon energy technology, and 
climate33 and hence are not set for 2050.  We therefore illustrate the potential for undertaking 
ERW with agricultural lands to strengthen near-term national 2030 NDCs (Figure 2). 

Results show that China may be able to augment its pledged 2030 NDCs by ~5-10%, 
with similar gains for the USA, which has opted-out of the Paris agreement.  For India, the gain 
rises to 40% of its current pledged emissions, and Brazil may be able to offset 100% of its 
pledged 2030 CO2 emissions plus some fraction of those from other countries (Figure 2).  
Other countries outside Europe considered in our analysis (Indonesia, Canada, Mexico) may 
be able to augment their NDCs by up to 30% (Figure 2).  In Europe, ERW could aid significant 
decarbonisation of France and Spain (up to approximately 40%), and to a lesser extent Poland, 
Italy and Germany (all ~10%) (Figure 2).  ERW, therefore, has a role to play in compensating 
for residual carbon emissions from sectors recognized as being difficult to decarbonize, e.g., 
transportation by aviation, shipping, and agriculture1,11. 
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Costs of carbon removal via ERW 

Cost assessment is needed to evaluate commercial feasibility of ERW and to put a price on 
climate mitigation actions (Extended Data Fig. 4).  Our cost estimates based on current prices 
fall within the range of prior ERW assessments ($75-250 tCO2-1)21-23 while resolving 
differences among nations (Figure 3; Table 1; SI figs. S16-S25; SI tables S13-S14).  Average 
costs in USA ($160-180 t-1 CO2), Canada and European nations ($160-190 t-1 CO2) are almost 
50% higher than those in China, India, Mexico, Indonesia, and Brazil ($55-120 t-1 CO2).  The 
difference largely reflects labour, diesel and electricity costs.   

Defined as the cost of CO2 removal and storage, the price of carbon is a proposed 
economic enabler for bringing CDR strategies to market11.  Carbon price is forecast by the 
World Bank11 to reach $100-150 t-1 CO2 by 2050.  Costs per t CO2 removed are generally 
within this projected carbon price range in all nations, but unit costs increase when cropland 
area exceeds the optimal fraction, because the efficiency of weathering and CDR falls (Figure 
3; Table 1).  A carbon price of $100-150 t-1 CO2 would cover most of the ERW costs for the 
key nations reported here.  It would make ERW an economically attractive option for fast-
growing nations, such as India, China, Indonesia, Brazil and Mexico given their estimated CO2 
extraction costs of ~ $75-100 t-1 CO2 (Figure 3).   

Our estimated ERW costs of carbon removal for nations are comparable to estimates 
summarized for BECCS ($100 to 200 t-1 CO2), DAC ($100-300 t-1 CO2), and biochar ($30–
$120 t-1 CO2), but higher than estimates for SOC sequestration ($0-10 t-1 CO2)23.  
Afforestation/reforestation and practices that increase soil carbon in natural ecosystems, 
including wetland restoration, have lower estimated costs (<$100 t-1 CO2)23.  These options, 
like ERW, require assessment of possible indirect unintended positive climate feedbacks. 

Per capita metrics help conceptualize the matter of costs in terms relevant to citizens.  
Current fossil fuel emissions per person per year6 are 16.5 t CO2 (USA), 15.1 t CO2 (Canada), 
7.5 t CO2 (China), 7.3 t CO2 (EU28), 2.6 t CO2 (Brazil), 1.8 t CO2 (Indonesia) and 1.7 t CO2 
(India).  ERW cannot offset all fossil fuel emissions, but using its cost as a guide, the per capita 
annual cost of achieving zero net emissions, a goal for decarbonisation, would be highest for 
Canada ($3004), the USA ($2780), China ($832) and EU28 nations ($1288).  Costs fall 
substantially for citizens in Brazil ($300), Indonesia ($103) and India ($135) (Table 1). 

At this early stage of research and development, costs are uncertain and in need of 
demonstration projects7,11,12.  Costs will likely decline as the market expands and technologies 
develop.  This includes emergence of more energy-efficient, low-carbon technologies for rock 
grinding.  Costs may also decline via co-deployment with afforestation/reforestation projects 
or agroforestry as part of worldwide carbon-offset trading schemes7.  Net cost of ERW may be 
lower if rock dust is used as a fertilizer in organic agriculture, which currently occupies 57.8 
million hectares, because it adds economic value by improving soil health, fertility and 
ecosystem services35. 

 

Implementation challenges and opportunities 

Our analysis of the techno-economic potential for CDR via ERW strengthens the case for 
evaluating all aspects of practical deployment in developed and developing economies.  This 
includes meeting rock demand through alternative sources that avoid mining expansion, 
widening to more complete economic valuation, through to public perception and social 
acceptance.   
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National demand for crushed silicate rock is contingent on extent of ERW deployment 
(Extended Data Fig. 5).  Within our scenarios, the demand for basalt required for ERW rises 
with an increasing CDR target and scales with agricultural land area (Table 1).  Safeguarding 
against substantial increased mining and possible adverse impacts on livelihoods36, requires 
exploiting underutilized stockpiles of crushed basalt produced as a by-product of the aggregate 
industry.  Mining generates a continuous but usually discarded finely powered silicate by-
product utilizable for ERW without embodied CO2 emissions that reduce CDR efficiency 
(Extended Data Fig. 6)21-23, and which has been accumulating worldwide for decades.  
However, national inventories of the location, availability and extent of this resource are 
required to assess the potential contribution of this resource to carbon removal. 

Requirement for mining may be further reduced by utilizing artificial silicate by-products 
from industrial processes37,38, including calcium-rich silicates produced by iron and steel 
manufacturing (slags) with a long history of agricultural usage4,39.  This material is recycled as 
low value aggregate (~<$5 t-1), and often stockpiled at production sites or disposed of in 
landfills, whereas it could become a valuable commodity for CDR.  The largest amounts of by-
products from the construction and demolition industry are cement, sand, and masonry.  
Following separation from other materials (e.g., metals and plastics), the cement comprises 
relatively ‘clean’ calcium-rich silicates and may be suitable for application to soils, but this 
suggestion requires field trials to assess suitability.  Cement contributes ~6% to global CO2 
emissions6 and ERW may represent a land management option for valorising by-products to 
capture carbon and improve the sustainability of this worldwide industry.  

We forecast production of artificial calcium-rich cements for construction and by-
product slag from steel manufacturing for Brazil, China, India, and the USA, to understand 
their potential role in meeting silicate demand for ERW (Figure 4).  Differences between 
national production estimates are driven by forecast population increases over the coming 
century, and per capita consumption trends for the material under the middle-of-the-road 
Shared Socioeconomic Pathway (Methods).  Bulk silicate production, linked to the 
construction and demolition sector, is modelled to increase substantially in all four nations, 
with China and India having combined production by 2060 of ~13 Gt yr-1 (Figure 4).  China 
and India dominate with above-average per capita cement consumption compared to the global 
average, and substantially larger populations than the USA and Brazil38.  Thus, bulk silicate 
production of these two nations could meet the demand for ERW with large CDR potential 
(Table 1).  Although chemically similar to basalt, these artificial calcium-rich silicates contain 
minerals that dissolve several orders of magnitude faster, react rapidly with CO2 in soils under 
ambient conditions40, and are produced in fine particle sizes that facilitate accelerated 
weathering41. 

Agricultural production can benefit substantially from increased resource use efficiency, 
reducing consumption of raw materials and recovering mineral nutrients from silicate by-
products32,42,43, and overburden legacy reserves44.  However, application of any silicate 
material to agricultural soils requires careful assessment of the risks including potential release 
of metals and persistent organic compounds (SI table S15).  Undertaking ERW practices with 
these materials addresses a critical need to fertilise soils with silica and other nutrients lost by 
harvesting that gradually depletes plant-available pools39.  Intensification of food production 
across 24 million hectares of productive agricultural land in South Asia and China, for example, 
is creating acidified, desilicated soils exhausted in plant nutrients (potassium, zinc and 
available phosphorus) that limit yields45.  Yet these negative effects may be reversible with 
ERW treatments given fertilization of irrigated rice using either natural and/or artificial 
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silicates (e.g., recycled steel slags) replenishing plant available silica pools, increasing yields 
and soil pH, and decreasing the mobility of potentially toxic trace elements (e.g., arsenic)46.  
ERW may therefore also have a role in remediation of toxic metal contaminated soils and 
sediments across 20 million hectares of cultivated land in southern China and elsewhere47. 

More broadly, innovative ERW practices via soil amendments with targeted silicate 
minerals could help rebuild rapidly deteriorating agricultural soils on which over six billion 
people depend directly for food48.  Such practices may complement other approaches to soil 
improvement, including conservation tillage and nitrogen-fixing cover crops.  The current 
substantial rate of agricultural top-soil depletion requires urgent remedial action, with 
significant economic costs apparent already in China where degradation of soils supporting 
wheat, maize and rice production costs an estimated $12 billion annually48.  Targeted 
amendment of agricultural soils for CO2 removal may have a role in slowing rates of soil loss 
by up to 45%, with the accelerated weathering of added minerals replacing inorganic nutrients 
and resultant formation of clays and mineral organic aggregates increasing the cation exchange 
capacity and water storage capacity of rebuilt soils4,20.  Addition of trace amounts of zinc and 
iron could also improve public health by reversing the effect of rising CO2 levels on the 
declining nutritional value of food crops49. 

Feasibility of mobilizing millions of smallholder communities to adopt ERW practices 
in China and India will depend on demonstrating soil improvements can reverse yield declines, 
and on government subsidies.  Farming practices adopted for increasing sustainable 
productivity, for example, have transformed agriculture across 37 million hectares in China, 
increasing profits by $12.2 billion over a decade50.  With 2.5 billion smallholders farming 60% 
of the world’s arable land, a similar outreach programme could be used throughout Asia, with 
farmers earning more profits from higher yields while sequestering CO2.  Involving local 
scientists in conducting research into its effectiveness and safety to build trust and engagement 
with smallholder farmers is key, alongside involvement with policymakers and stakeholders.  
This increases the potential to bring smallholders out of extreme poverty and, in the regions 
with climates suitable for non-irrigated agriculture, restore highly degraded soils not suitable 
currently for food production. 

Realizing the potential of ERW as a biogeochemical approach to sequester CO2 by 
altering land management practices will depend on the commitment of farmers and 
governments, implementation of the right policy frameworks, and wider public acceptance.  
Understanding the balance between positive and negative outcomes in terms of public 
acceptance of the inevitable trade-offs between local mining activities versus global 
sequestered carbon, requires empirical testing with stakeholders and the wider public.  
Crucially, such testing needs to understand the conditions that society might place upon the 
development and large-scale deployment of ERW technologies, as part of a wider responsible 
research and innovation programme51. 
 

Uncertainties 

Our analysis of the techno-economic potential of CDR by ERW is subject to several 
uncertainties, particularly variation in our baseline application rate and basalt mineralogy. It 
also identifies priority areas benefitting from more research of ERW under field conditions. 

Extrapolation of laboratory weathering rates to the field scale is a recognized potential 
source of uncertainty in calculated CDR rates by ERW2-4,22-24. We addressed this by Monte 
Carlo analysis of the fractal dimension accounting for uncertainty in the apparent reacting 
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surface area of grains for ERW conducted at large geographical scales.  Together with the 
chemical affinity effects accounted for in our model, we constrain some of the systematic errors 
embedded in prior ERW assessments15-17,21,22.   

Surface passivation, a component of chemical inhibition, occurs as weathering proceeds, 
creating leached layers and relatively stable secondary minerals, which potentially inhibit the 
mass transfer kinetics of elements from the dissolving surfaces of primary minerals.  Current 
state-of-knowledge52 precludes a detailed treatment of the role of surface passivation by 
formation of amorphous silica-rich surfaces for basalt grains added to agricultural soils. ERW 
analysis will benefit from future research to improve mechanistic insight and formulation of 
kinetic equations. 

It remains to be determined if our theoretical analyses of the techno-economic potential 
for this CDR approach are consistent with findings from long-term field-scale ERW trials. Such 
trials are urgently required to assess weathering and CO2 removal efficiency of freshly crushed 
rock grains with highly reactive surfaces added to agricultural soils subject to periodic wet-dry 
cycles during the growing seaon3.  The potential for trapping of weathered cations on ion 
exchange surfaces or within secondary minerals other than carbonates delaying, or even 
preventing, land-ocean transfer will depend on soil type, climate, hydrological conditions, 
application rate and management practices.  Duration of carbon sequestration rate, and 
possibility for CO2 sink saturation with ERW on croplands, are both poorly constrained by 
data, in common with other land-based CDR strategies11,23, and affect cumulative CDR 
potential in coming decades.  Other areas for further research include quantification of 
biogeochemical transformations of carbon and nitrogen associated with organic and inorganic 
fertilization practices, atmospheric deposition, and the role of rhizosphere biology. 
 

Conclusions 

Techno-economic assessment of ERW’s potential to contribute large-scale CDR requires 
further integration of nation-by-nation quantitative analysis together with large-scale pilot 
demonstrators supported by fundamental process studies and public engagement.  Our analysis 
identifies engineering challenges if ERW were to be scaled-up to help meet ambitious CDR 
targets as part of a wider portfolio of options1,7,11,12.  ERW estimated costs are comparable to 
current estimates for the intensive carbon removal technologies, BECCS and DAC, and with 
potential for ancillary benefits by limiting coastal zone acidification and improving food and 
soil security.  Nations that may have large ERW potential, including China, the United States 
and India, are all vulnerable to climate change and resultant sea-level rise34.  Their high risks 
of economic damage53 and social disruption provide impetus for creative co-design of 
agricultural and climate policies.  Success requires incentives and regulatory frameworks that 
overcome social and political inertia.  Silicate demand of nations must also be met in a way 
that facilitates social acceptance51,54 and preservation of biodiversity4,20. 

Deployment of any CDR strategy is inhibited by concern that it may erode society’s 
perception of the climate threat and the urgency of mitigation measures54.  The ancillary 
benefits of ERW may aid its early use and relieve such concern.  Innovative ‘climate-smart’ 
farming practices can be designed with ERW to draw down CO2 and other greenhouse gases 
while recycling nutrients, aiding soil water storage, and supporting crop production4,18,20.  Such 
practices can help restore deteriorating top-soils that underpin food security for billions of 
people while maximizing societal co-benefits needed to incentivise deployment20.  Financial, 
industrial and policy road-mapping that links short-term and long-term goals is needed, 
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including a broader analysis of risks23 and co-benefits2-4,18,20, to determine the role that ERW 
might play in climate risk mitigation. 
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Methods Summary 

Carbon removal simulation framework 

Our analysis is based on a 1-D vertical reactive transport model for rock weathering with 
steady-state flow55,56, and a source term representing rock grain dissolution within the soil 
profile (SI Methods).  The model accounts for changing dissolution rates with soil depth and 
time as grains dissolve, and chemical inhibition of dissolution as pore fluids approach 
equilibrium with respect to the reacting basaltic mineral phases, and the formation of pedogenic 
calcium carbonate mineral in equilibrium with pore fluids.  Simulations consider basalts 
exhibiting relatively slow- versus fast-dissolution rates due to differing mineralogy (SI tables 
S1-S3).  Basaltic minerals undergo dissolution at different rates, with some minerals continuing 
to undergo dissolution and capture CO2 after the first year of application.  Thus calculating 
representative annual CO2 removal rates requires computing average rates derived from 
repeated basaltic rock dust applications (Extended Data Fig. 7). 

 
Transport equation.  The calculated state variable in the transport equation is the dissolved 
molar equivalents of elements released by stoichiometric dissolution of mineral i, in units of 
mole L-1.  ϕ is volumetric water content, Ci is dissolved concentration (mole L-1) of mineral i 
transferred to solution, t is time (y), q is vertical water flux (m y-1), z is distance along vertical 
flow path (m), Ri is the weathering rate of basalt mineral i (mole per litre of bulk soil per year) 
and 𝐶#$% is the solution concentration of weathering product at equilibrium with the mineral 
phase i (Equation 1). 

 
 
Mineral mass balance. The change in mass of basalt mineral i, Bi, is defined by the rate of 
stoichiometric mass transfer of mineral i elements to solution. Equation 2 is required because 
we are considering a finite mass of weathering rock, which over time can react to completion, 
as opposed to in situ weathering of the lithosphere, e.g. when considering weathering and 
geomorphology56. 

 
 

Removal of weathering products. The total mass balance over time for basalt mineral 
weathering allows calculation of the products transported from the soil profile. The total mass 
of weathering basalt is defined as follows where m is the total number of weathering minerals 
in the rock, tf is the duration of weathering (year) and L is the total depth of the soil profile (m). 

 
We define q as the net annual sum of water gained through precipitation57 and irrigation58, 
minus crop evapotranspiration59, as calculated with high spatial resolution gridded datasets 
(Extended Data Figs. 8 and 9; SI Table S14). 
 

𝜙 𝜕𝐶𝑖
𝜕𝑡
= −𝑞 𝜕𝐶𝑖

𝜕𝑧
+ 𝑅𝑖 ,1 −

𝐶𝑖
𝐶𝑒𝑞 𝑖

/ (1) 

𝜕𝐵𝑖
𝜕𝑡
= −	𝑅𝑖 )1 −

𝐶𝑖
𝐶𝑒𝑞𝑖

. (2) 

Total	weathered	Basalt = 	∑ 	𝜙 ∫ 𝐶𝑖(𝑡, 𝑧)	d𝑧
𝐿
𝑧=0 + 𝑞 ∫ 𝐶𝑖(𝑡, 𝐿)	d𝑡

𝑡𝑓
𝑡=0

𝑚
𝑖=1  (3) 
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Rate law.  We modelled application of a crushed fast- or slow-weathering basalt, with specified 
mineral weight fractions and physical-chemical characteristics (SI Tables S1-S3).  Rates of 
basalt grain weathering define the source term for weathering products and are calculated as a 
function of soil pH, soil temperature, soil hydrology and crop net primary productivity (NPP) 
using the linear transition state theory rate law60-62.  Plant-enhanced basalt weathering is 
modelled empirically for annual and woody crops with power functions fitted to data (SI fig. 
S4; SI Table S4).  These functions represent the effects of a range of rhizosphere processes that 
accelerate the physical breakdown and chemical dissolution of minerals, including the 
activities of nutrient scavenging mycorrhizal fungi that physically disrupt and chemically etch 
mineral surfaces, and bio-production of low molecular weight organic compounds and 
chelating agents63,64.   

Soil pH of each grid cell is dynamically calculated from the alkalinity mass and flux 
balance for an adaptive time-step, controlled by mineral dissolution rates on mineral 
dissolution, following initialization with a top soil (0-15 cm) pH value based on field data from 
global soil databases (SI Table S14); soil pH buffering capacity is accounted for with an 
empirical soil pH buffer function65.  The soil pCO2 depth profile of a grid cell is generated with 
the standard gas diffusion equation66, scaled by crop NPP × 1.5 to account for combined 
autotrophic and heterotrophic respiration67.  The alkalinity balance considers net acidity input 
during crop growth for biomass-cations removed from the field68, and secondary mineral 
precipitation of calcite18. 
 

Model advances 
We incorporate three further significant advances into the above 1-D vertical steady-state flow 
model.  First, we provide a numerical basis for calculating weathering rates using log-normal 
particle size distributions of basalt grains produced by mechanical crushing and grinding for 
soil amendment22,69,70.  This conceptualisation improves on the simplified case of a single mean 
particle diameter, previously used in ERW calculations16-18,22,23.  Second, we apply the fractal 
dimension for surface roughness to relate reacting surface area to basalt mass across physical 
scales of weathering from the laboratory at which weathering kinetic parameter values are 
empirically determined to the field at which model results reflect CDR operations71.  The fractal 
dimension effectively provides a means of consolidating measurements taken at different scales 
and accounts for uncertainties in grain topography and porosity72, and mass transfer rates from 
rock grains to flowing soil water.  Finally, we calculate mean rates of rock dust weathering and 
CO2 removal following annual applications by tracking cohorts of particles applied over a 10-
year time horizon and their mineral composition (Extended Data Fig. 7). 

 
Base-line simulations 
Using this modelling framework, we analysed a baseline application rate of 40 t ha-1 yr-1 
(equivalent to a <2 mm layer of rock powder distributed on croplands), which falls within the 
range of basalt amendments shown to improve crop production in field trials4.  Net CDR is 
defined as the difference between CO2 capture by ERW as dissolved inorganic carbon and soil 
(pedogenic) carbonate and the sum of CO2 emissions for logistical operations.  Carbon 
emissions per unit mass of ground rock depend on particle size (Extended Data Fig. 10), the 
CO2 emissions per kilowatt-hour of electricity generated from component energy sources 
(fossil fuels, nuclear and renewables), as well as the carbon costs of sourcing and transporting 
the silicate materials.  Rock grinding to reduce particle size and maximise CDR is the primary 
energy consuming operation in ERW22,23,73. 
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Assessment of basalt transport from source regions to croplands is based on road and rail 
network analyses to calculate distances, costs, and carbon emissions for each scenario (SI 
Methods Section 2.3).  Our approach improves on prior analyses, which assumed a fixed radius 
between rock dust source and site of application73.  We go beyond global cost estimates23 by 
using national fuel (diesel), labour and infrastructure costs to undertake logistical operations, 
and the price of energy inputs to grind rocks.  Our analysis thus represents the first techno-
economic assessment in which detailed ERW carbon and economic costs vary within and 
between nations and account for socio-technical uncertainties in energy production. 
 

Carbon dioxide removal 
We calculate carbon dioxide removal (CDR) by ERW of crushed basalt applied to soils via two 
pathways: 1) the transfer of weathered base cations (Ca2+, Mg2+, Na+ and K+) from soil drainage 
waters to surface waters that are charge balanced by the formation of HCO3- ions and 
transported to the ocean (Equation 4), and 2) formation of pedogenic carbonates (Equation 5).   
Pathway 1 for calcium ions: 

CaSiO3 + 2CO2 + 3H2O à Ca2+ + 2HCO3- + H4SiO4 (4) 

Pathway 2 for calcium carbonate formation: 

Ca2+ + 2HCO3- à CaCO3 + CO2 + H2O (5) 

Monovalent and divalent base cations are released from basaltic minerals by dissolution based 
on stoichiometry (SI Table S2).  CDR, via pathway 1, potentially sequesters two moles of CO2 
from the atmosphere per mole of divalent cation.  However, ocean carbonate chemistry reduces 
the efficiency of CO2 removal (ƞ) to an extent depending on ocean temperature, salinity and 
the surface ocean dissolved CO2 concentration.  We calculate ƞ for average ocean temperature 
(17 °C), salinity (35%) and an RCP8.5 2050 dissolved pCO2 of 600 µatm, giving ƞ = 0.86, i.e., 
0.86 mole of CO2 removal per mole of monovalent cation and 1.72 mol of CO2 removed per 
mol of divalent cation added to the oceans20.  For Pathway 1, the efficiency of CDR = ƞ × 
∑(mol monovalent cations)+2ƞ × ∑ (mol divalent cations).   

CDR via pathway 2 can occur if dissolved inorganic carbon derived from atmospheric 
CO2 precipitates as pedogenic carbonate, and sequesters 1 mol of CO2 per mole of Ca2+ instead 
of 1.72 mol of CO2 via pathway 2 and is therefore less efficient.  Thus for any given grid cell, 
we compute CO2 removal by ERW as the alkalinity flux in soil drainage and pedogenic calcite 
precipitation. Possible CO2 degassing due to changes in surface water chemistry during 
transport in large river systems74 is not considered. 

 
Cost assessment modelling 
An overview of the environmental costs model and its linkages with the performance model is 
presented in Extended Data Fig. 4.  We include contributions to total cost of 1) mining, 2) 
processing75,76, 3) distribution and transport and 4) spreading on agricultural land.  We 
considered how the cost of energy and the carbon emissions varied with grinding to different 
particle size distributions (Extended Data Fig. 10).  Grinding to finer particles requires greater 
energy and results in higher carbon emissions.  We defined the particle size distribution by the 
p80 value; i.e. 80% of the particle mass with less than or equal to a specified particle size.  We 
calculated the optimized p80 that results in maximum net CDR for each grid cell and this was 
conducted for different fractions of a country’s crop area (0.1 to 1.0 at 0.1 increments), ordered 
according to weathering potential.  For a given p80 value, we calculate the weathering rate for 
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each grid cell, sort them in descending order and find the grid cells that comprise the cumulative 
area fraction for each increment.  

Optimization is conducted for each combination of the two types of basalt and the two 
quasi-log-normal particle size distributions for each country (SI Tables S1-S3).  Country-
specific electricity production and the forecast fractional contributions to electricity production 
by different energy sources (coal, natural gas, oil, solar PV, concentrated solar power, 
hydropower, wind, marine) for 2050 are based on business-as-usual (BAU), i.e., currently 
implemented energy polices, and energy projections consistent with a 2°C (2°C) warming 
scenario (Extended Data Fig. 9)5.  National CO2 emissions for electricity generation consistent 
with both scenarios were based on results reported in Ref5 (SI Tables S6-S9).  Industrialized 
nations (e.g., Canada) consume up to ~2% of their total energy production on rock 
comminution (crushing and grinding) processes77.  We assume a future maximum upper limit 
of 3% energy consumption for all nations, based on the rationale that current rates for 
developed nations grow from around 2% today in-line with national projected energy 
production5 in 2050 (Extended Data Fig. 2). 

Distribution costs and emissions were calculated by performing spatial analysis with 
ArcGIS software. Basalt rock sources were identified from the GLiM rock database78, 
excluding those in protected areas79.  We then performed a global transport (rail and road) 
network analysis by modelling a logistic ERW supply by creating an Origin-Destination Cost 
Matrix using GIS80,81.  For larger datasets, the Origin-Destination cost matrix searches and 
measures the least-cost paths along the network from multiple origins to multiple destinations 
to identify the most cost-effective or shortest route between a source and destination.  Transport 
analyses used the lowest emission option between rail and road network to calculate 
distribution costs and CO2 emissions (SI Tables S10-S12).  Freight-rail emissions were 
obtained from 2050 projections of reduced carbon emissions following improvements in 
energy efficiency82.  Rail CO2 emissions were the same for both the business-as-usual (BAU) 
and 2°C scenarios.  For road transport, we considered estimated energy consumption of 
currently/shortly available heavy electric trucks 1.38 (kWh/km)83 and projected carbon 
emissions in the electricity sector of each country for BAU or the 2°C scenario5.   

 

Forecasting bulk silicate waste production 

We developed a model that relates global per capita material production (for cement) or 
consumption (steel) P to per capita gross world product (GWP)84,85 through historical global 
data using nonlinear least squares (Equation 6).  

𝑃 = 𝑎𝑒-./012 (6) 

where a and b are regression constants.  The derived saturation value, a, was used in a further 
regression through national data normalised to 2014 production and GDP (Equation 7).  

𝑃 = 𝑃345 × (1 + 9(𝑚 + 𝑟) × ∆𝐺𝐷𝑃? × 𝑒(@×9A-#B(C×∆DEF)?)-(G	×∆0I2) (7) 

where PREF is the global per capita consumption in a given reference year (2014), ΔGDP is the 
deviation of the per capita gross domestic product from the reference year, and m and r are 
regression constants.  These results were used together with averaged projections of future 
GDP (SI Table S14) from the ‘middle-of-the-road’ Shared Socioeconomic Pathway (SSP2) to 
derive nationally resolved projections of future per capita consumption/production85.  SSP2 
potentially represents the largest material production pathway, as other SSPs forecast lower 
consumption or economic growth producing 30-50% less material globally.  We have not 
considered the penetration of recycling into steel production beyond its current rate.  Cement 
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and cement kiln dust have no capacity to be recycled as cement. The total 
production/consumption at a given time, T(t), was calculated by multiplying the population, 
Pop(t), by production or consumption (P).  We assume 115 kg of cement kiln dust is produced 
as a by-product in kilns for every tonne of clinker, and have modelled the production of 
demolition waste following an average 50-year service life (normally distributed with a 
standard deviation of 10 years)86.  The ratio of pig iron to steel production (0.72) was obtained 
using linear regression of 1960-2014 data, negating the need to explicitly model pig iron 
displacement from scrap recycling, and assuming the scrap ratio remains unchanged.  All steel 
and blast furnace slag was considered available for reaction with CO2. Between 2006–2014, 
185 kg of blast furnace slag and 117 kg of steel slag was produced for every tonne of crude 
steel87. 

 
Data availability 

Datasets on global crop production and yield are available at: http://www.earthstat.org/, accessed on 
18/12/2019 

Datasets on global crop evapotranspiration are available at: https://www.uni-
frankfurt.de/45217988/Global_Crop_Water_Model__GCWM, accessed on 18/12/2019 

Datasets on global crop irrigation are available at: https://zenodo.org/record/1209296, accessed on 
accessed 18/12/2019 

Datasets on global precipitation are available at: http://www.climatologylab.org/terraclimate.html, 
accessed on 18/12/2019 

Datasets on global soil surface pH are available at: https://daac.ornl.gov/SOILS/guides/HWSD.html, 
accessed on 18/12/2019 

Datasets on global soil temperature are available at: https://esgf-node.llnl.gov/search/cmip5/, accessed 
on 18/12/2019 

Datasets on diesel prices are available at https://data.worldbank.org/indicator/EP.PMP.DESL.CD 

Datasets on mining costs are available at http://www.infomine.com/ 

Datasets on gross national income per capita are available at 
https://data.worldbank.org/indicator/ny.gnp.pcap.pp.cd  

Datasets for projections of future GDP linked to Shared Socioeconomic Pathways are available at: 
https://tntcat.iiasa.ac.at/SspDb 

 

Source data 

Source Data for figures 1 to 4 are available from nature.com [please insert web location of the uploaded 
datasets]. 

Code availability 

The Matlab codes developed for this study belong to the Leverhulme Centre for Climate Change 
Mitigation.  We will make them available upon reasonable request. 
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Figure legends 

 

Fig. 1 | Carbon removal via enhanced rock weathering with croplands.  Net carbon dioxide 
removal (CDR) curves for nations with the highest CDR potential worldwide (a-g) and in 
Europe (h-l) as a function of increasing enhanced rock weathering deployment across existing 
croplands.  Note y-axis scale changes.  Results are shown for the business-as-usual (BAU) and 
the 2°C energy policy scenarios.  Grey shaded area for each nation represents the 90% 
confidence interval calculated for basalts with relatively slow- versus fast-weathering rates for 
the BAU scenario; short green dashed lines indicate the 90% confidence limits of the 
corresponding 2°C scenario simulations.  Uncertainty in net CDR increases as ERW deploys 
onto croplands occupying a wider range of environmental conditions. 

 
Fig. 2 | Augmentation of pledged CO2 emissions reduction by enhanced rock weathering.  
Fraction of 2030 national determined carbon (NDC) emissions reductions by enhanced 
weathering for nations with the highest CDR potential worldwide (a-g) and in Europe (h-l), as 
a function of increasing enhanced rock weathering deployment across croplands. Note y-axis 
scale changes.  Results are shown for the business-as-usual (BAU) energy policy and the 2°C 
energy policy scenarios.  Grey shaded area for each nation represents the 90% confidence 
interval calculated for basalts with relatively slow- versus fast-weathering rates for the BAU 
scenario; short green dashed lines indicate the 90% confidence limits of the corresponding 2°C 
scenario simulations.   
 
Fig. 3 | Costs of carbon extraction via enhanced rock weathering with croplands.  Costs 
of CO2 extraction from air by ERW for nations with the highest CDR potential worldwide (a-
g) and in Europe (h-l), as a function of increasing enhanced rock weathering deployment across 
croplands. Results are shown for the business-as-usual (BAU) and the 2°C energy policy 
scenarios.  Grey shaded area for each nation represents the 90% confidence interval calculated 
for basalts with relatively slow- versus fast-weathering rates for the BAU scenario; short green 
dashed lines indicate the 90% confidence limits of the corresponding 2°C scenario simulations.   
 
Fig. 4 | Forecast increases in national bulk silicate production over the next century.  
Simulated future increases in bulk artificial silicate by products (slag, cement, kiln dust, and 
cementitious demolition waste) production during the 21st Century are given for (a) China, (b) 
India, (c) USA and (d) Brazil.  Based on the middle-of-the-road Shared Socioeconomic 
Pathway (Methods). 
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Extended Data Figure legends 

 
Extended Data Fig. 1 | Performance model schematic.  Detailed methods are provided in SI 
Methods, Sections 1-2.  Spatially resolved key drivers are mapped in Extended Data Fig. 8; 
sources given in SI Table S14.   

 
Extended Data Fig. 2 | Cumulative energy demand for rock grinding by nation.  Results 
are shown for the top seven nations of the world (a) to (g), and the top five European nations 
(h) to (l), as ranked by net CO2 removal capacity, with increasing fractional cropland area of 
enhanced rock weathering deployment.  Curves depict simulations for the business as usual 
(BAU) and 2°C energy policy scenarios.  Grey shaded area for each nation represents the 90% 
confidence interval calculated for basalts with relatively slow- versus fast-weathering rates for 
the BAU scenario; short green dashed lines indicate the 90% confidence limits of the 
corresponding 2°C scenario simulations.   
 
Extended Data Fig. 3 | Simulated net CO2 removal with croplands via enhanced rock 
weathering.  Net rates of CO2 sequestration on croplands (annual and perennial combined) for 
the four target global CO2 removal rates, 0.5, 1.0, 1.5 and 2.0 Gt CO2 yr-1 (Table 1) for the 
business-as-usual (BAU) (a) to (d) and the 2°C (e) to (h) energy policy scenarios.  

 
Extended Data Fig. 4 | Schematic overview of the environmental economics model.  
Interactions are shown between the performance model, calculating net CO2 removal, and the 
major components of the environmental economic model.  Spatially resolved key drivers are 
mapped in Extended Data Fig. 9; sources given in SI Table S14.  
 
Extended Data Fig. 5 | Cumulative silicate demand by nation.  Results are shown for the 
top seven nations of the world (a) to (g), and the top five European nations (h) to (l), as ranked 
by net CO2 removal capacity, with increasing fractional cropland area deployment of enhanced 
rock weathering.  Note y-axis scale changes for European countries.  Curves are the same 
irrespective of energy policy scenario. 
 
Extended Data Fig. 6 | Secondary CO2 emissions from logistical enhanced rock 
weathering operations in 2050.  Results are shown for (a) the top seven nations of the world 
and (b) the top five European nations for the business-as-usual (BAU) and for the same 
groupings in (c) and (d) for the 2 °C energy policy scenarios.  For each country, bars from left 
to right, are for a 0.25, 0.5, 0.75 and 1.0 fraction of ERW deployment on croplands.  Under the 
BAU scenario, CO2 emissions from grinding dominate secondary emissions associated with 
ERW, except for France where low carbon nuclear power dominates.  Under the 2°C energy 
policy scenario, (c) and (d), secondary CO2 emisssion generally drop for most nations as they 
transition to low carbon energy sources in 2050 and implement negative emissions. 
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Extended Data Fig. 7 | Multi-year performance model simulations of weathering.  
Illustrative multi-year simulations of annual basalt application with the performance model 
showing the effects on soil pH, average efficiency of CO2 removal (RCO2), and soil mineral 
masses over a 10-year time horizon.  (a) - (c) denote pH, RCO2 and mineral mass results for 
the tholeiitic basalt, respectively and (d) to (f) results of the same quantities for the alkali basalt 
(SI Tables S1-S3).  All simulations used the same p80 particle size (100 µm) and were 
undertaken at 20 °C.  Multi-year simulations capture the effect of basaltic minerals undergoing 
dissolution at different rates, with some minerals continuing to undergo dissolution and capture 
CO2 after the first year of application.  It allows computing average rates of weathering and 
CO2 removal from repeated basaltic rock dust applications.  Our extended theory underpinning 
our simulation framework tracks cohorts of particles applied each year and their mineral 
composition over time to account for cumulative effects (SI Methods). 
 
Extended Data Fig. 8 | Spatially resolved drivers of the performance model.  (a) soil 
temperature from the HadGEM RCP8.5 simulation for 2050, (b) HYDE harmonized soil pH 
database, (c) annual cropland soil water infiltration (irrigation water + precipitation minus 
evapotranspiration), (d) and (e) net primary production index for annual and perennial crops as 
derived from FAO datasets, respectively.  Data sources and spatial resolution are specified in 
SI Table S14. 

 
Extended Data Fig. 9 | Spatially resolved drivers for environmental economics modelling.  
(a) Industrial diesel prices (US dollar, USD), CO2 emissions intensity for (b) the business-as-
usual scenario (BAU), and (c) the 2 °C scenario, (d) gross national income per capita and (e) 
industrial electricity prices (US dollar, USD).  Data sources and spatial resolution are specified 
in SI Table S14. 

 
Extended Data Fig. 10 | Relationship between particle size, surface area and grinding 
energy.  (a) Relationship between particle size and surface area, (b) surface area and grinding 
energy and (c) particle size and grinding energy, where p80 is defined as 80% of the particles 
having a diameter less than or equal to the specified size.  Derived from data in Ref73. 
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Table 1.  Carbon dioxide removal (CDR) targets for enhanced weathering with croplands in 
2050.  Relative contribution of each nation is determined by their peak CDR capacity*.  Values are 
means of both energy scenarios; see main text for details. 
Target 
0.5 Gt CO2 yr-1 Cropland area National CDR  Silicate demand Cost 
 (%) (Gt CO2 yr-1) (Gt yr-1) (US$ t CO2-1 yr-1) 
World China 10 0.13 0.77 102.1 
 USA 11 0.11 0.63 160.3 
 India 11 0.15 0.84 78.4 
 Brazil 10 0.041 0.22 123.8 
 Indonesia 10 0.017 0.091 54.3 
 Canada 10 0.022 0.13 177.6 
 Mexico 10 0.013 0.073 97.5 
Europe France 10 0.017 0.085 158.1 
 Germany 11 0.012 0.066 167.8 
 Italy 11 0.0070 0.039 181.9 
 Spain 10 0.012 0.066 192.8 
 Poland 10 0.0085 0.050 171.6 

1.0 Gt CO2 yr-1 
World China 23 0.26 1.59 109.3 
 USA 24 0.21 1.26 168.5 
 India 23 0.24 1.50 79.9 
 Brazil 23 0.083 0.45 116.4 
 Indonesia 25 0.033 0.18 57.5 
 Canada 16 0.030 0.20 191.7 
 Mexico 23 0.025 0.15 103.1 
Europe France 24 0.034 0.17 160.4 
 Germany 25 0.025 0.14 171.7 
 Italy 23 0.014 0.083 191.0 
 Spain 17 0.018 0.10 190.9 
 Poland 17 0.012 0.081 170.9 

1.5 Gt CO2 yr-1 
World China 38 0.40 2.48 114.5 
 USA 39 0.32 1.99 173.1 
 India 36 0.37 2.35 80.2 
 Brazil 36 0.13 0.71 110.5 
 Indonesia 41 0.050 0.28 58.6 
 Canada 25 0.045 0.35 207.3 
 Mexico 37 0.038 0.23 105.6 
Europe France 38 0.050 0.26 159.5 
 Germany 39 0.037 0.20 173.6 
 Italy 37 0.021 0.13 194.1 
 Spain 28 0.026 0.17 189.3 
 Poland 27 0.019 0.13 171.3 

2.0 Gt CO2 yr-1 
World China 55 0.53 3.46 120.7 
 USA 55 0.42 2.72 176.7 
 India 51 0.49 3.30 80.9 
 Brazil 51 0.17 0.98 106.2 
 Indonesia 59 0.067 0.38 59.4 
 Canada 35 0.060 0.51 220.3 
 Mexico 52 0.050 0.33 106.8 
Europe France 54 0.067 0.36 157.1 
 Germany 57 0.050 0.28 175.9 
 Italy 55 0.029 0.18 193.3 
 Spain 41 0.035 0.25 190.7 
 Poland 38 0.025 0.19 175.4 

*For each country 𝑖, we assigned its contribution to a CDR target as below; 𝐶𝐷𝑅LMN is the maximum CDR value 
attainable by a country: 	𝐶𝐷𝑅OPQRS(𝑖) = 𝐶𝐷𝑅T@SU#R

OI3VWX(%)
∑ OI3VWX(Y)Z[\]^_`ab
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1. Methods.  

1.0 Conceptual model. The conceptual model underpinning our simulations is application of an 
annual load of crushed basalt of known particle size distribution and mineralogy to agricultural land.  
Carbon dioxide removal (CDR) results from the mass transport of enhanced weathering products 
liberated from the primary minerals, which are assumed to subsequently reach the surface ocean via 
continental runoff, or can be precipitated as secondary carbonate minerals in the terrestrial 
environment.  The dissolution products result from the reaction of infiltrating water with the mass of 
basalt that is incorporated in the surface soil layer by spreading. The resulting dissolution products 
associated with CO2 removal are the base cations (Ca2+, Mg2+, Na+ and K+) in soil drainage waters, and 
calcite precipitated within the soil profile.  Simulations consider basalts exhibiting relatively slow- 
versus fast-dissolution rates due to differing mineralogy with different particle size distributions (Figs. 
S1-S2; Tables S1-S3).  Basaltic minerals undergo dissolution at different rates, with some minerals 
continuing to undergo dissolution and capture CO2 after the first year of application.  Thus calculating 
representative annual CO2 removal rates requires computing average rates derived from repeated 
basaltic rock dust applications.  Therefore, we extended the theory underpinning our simulation 
framework by tracking cohorts of particles applied each year and their mineral composition over time 
to account for cumulative effects and report average CO2 removal rates for 10-year simulations. 

Mathematical representation of the conceptual model includes the reactive transport equation 
for solute advection with vertical 1-D transport model with steady-state flow (equations 1-6).  
Laboratory-determined rate laws for stoichiometric dissolution of each mineral define source terms 
for the liberated base cations in the 1-D transport equation (Tables S2, S3).  Kinetic inhibition and 
affinity effects on mineral dissolution rates are included as a solubility limit for dissolved products of 
each primary mineral with pore fluids also in equilibrium with secondary minerals (calcite, amorphous 
silica, goethite, gibbsite).  The conceptual model includes ion exchange equilibria between the pore 
fluids and a generic ion exchange surface with a cation exchange capacity representing agricultural 
soils (Table S4).  The product of infiltration rate, land surface infiltration area over which the 1-D 
vertical transport applies, and the calculated dissolved concentrations at the base of the soil profile 
yield the enhanced weathering flux in drainage waters that contributes to CO2 removal, along with 
calcium carbonate precipitation in the soil.  We account for the mass depletion of dissolving minerals 
in the basalt and the effect of associated distribution of shrinking particle sizes and their resulting 
reactive surface areas.  This model is represented by the following equations and coefficients. 

 

1.1 Transport equation. The calculated state variable in the transport equation is the dissolved molar 
equivalents of elements released by stoichiometric dissolution of mineral i, in units of mole L-1.  ϕ is 
volumetric water content, Ci is dissolved concentration (mole L-1) of mineral i transferred to solution, 
t is time (y), q is vertical water flux (m y-1), z is distance along vertical flow path (m), Ri is the weathering 
rate of basalt mineral i (mole per litre of bulk soil per year) and 𝐶𝑒𝑞𝑖

 is the solution concentration of 

weathering product at equilibrium with the mineral phase i1,2. 

𝜙
𝜕𝐶𝑖

𝜕𝑡
= −𝑞

𝜕𝐶𝑖

𝜕𝑧
+ 𝑅𝑖 (1 −

𝐶𝑖

𝐶𝑒𝑞𝑖

) (1) 

1.2 Mineral mass balance. The change in mass of basalt mineral i, Bi, is defined by the rate of 
stoichiometric mass transfer of mineral i elements to solution. Equation 2 is required because we are 
considering a finite mass of weathering rock, which over time can react to completion, as opposed to 
in situ weathering of the lithosphere, e.g. when considering weathering and geomorphology2. 
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𝜕𝐵𝑖

𝜕𝑡
= − 𝑅𝑖 (1 −

𝐶𝑖

𝐶𝑒𝑞𝑖

) (2) 

An additional transport equation for Ca ion (mol L-1) is included for secondary mineral formation of 
the calcium carbonate phase calcite, 

𝜕𝐶𝑎

𝜕𝑡
= −𝑞

𝜕𝐶𝑎𝑠𝑜𝑙

𝜕𝑧
+ ∑ 𝑅(𝐵𝑖) 𝐵𝑐𝑎𝑖

𝑛𝑚𝑖𝑛
𝑖=1  (3) 

where nmin is the number of minerals, 𝐶𝑎𝑠𝑜𝑙 = min (𝐶𝑎, 𝐶𝑎𝑠𝑎𝑡) and Csat is the concentration of Ca 
ion in pore fluids calculated to be in equilibrium with the carbonate mineral phase.  We also define 
𝐶𝑎𝑝𝑟𝑒𝑐𝑖𝑝 = 𝐶𝑎 − 𝐶𝑎𝑠𝑜𝑙.  𝐵𝑐𝑎𝑖

 is the mass fraction of calcium within each mineral, Casol is the 

concentration of calcium in solution and Caprecip the calcium precipitate with units of concentration; 
all variables have units of mole/L. 

Equations 1-3 form a coupled system of partial differential equations for all mineral 
components of the basalt and calcite, solved numerically with a Crank-Nicholson finite different 
scheme with discretised depth and time.  Two additional equations are required to solve the system: 
a Dirichlet boundary condition at the soil surface C = 0 at z = 0, and a Neumann boundary condition 
at the bottom of the soil profile where the concentration gradient is set to zero.  An initial condition 
is specified as a concentration field of zero mole L-1 at t = 0, and a specified initial basalt mass 
uniformly distributed vertically over the top 15 cm of soil. 

We determined the values for Ceq for each of the mineral phases in the basalt grains by 
calibrating the results of the performance model against those of a 1-D reactive transport model 
(RTM) (Section 2.5).  Calibration was undertaken against the time evolution of mass transfer for each 
mineral with minimisation of residual errors between the two sets of model results.  The RTM 
incorporated the same kinetic reaction equations and full geochemical speciation equilibria for 
solutes and minerals including equilibria that describes cation exchange on soil exchange surfaces 
and the formation of secondary minerals.  The RTM determines the ion activity product for dissolved 
species related to the solubility constant for each primary mineral and calculates from these a kinetic 
inhibition term that accounts for chemical affinity effects.  Values for Ceq were calibrated for each 
basaltic mineral for a range of infiltration rates.  We demonstrate with this approach that the 
simplified mass transfer inhibition term in equations 1-3 successfully described the same kinetic 
behaviour calculated by the RTM (Figs. S10-S12).  For the basalts we considered, and under the soil 
conditions simulated, labradorite was the only mineral constituent that exhibited notable chemical 
inhibition. 

1.3 The weathering source term.  The mass transfer rate of each mineral phase to solution Ri depends 
on Bi and is a function of the weathering rate wi for each mineral i normalised to reactive surface 
area, multiplied by the reactive surface area of each mineral SAi which also changes as total mineral 
mass is depleted by dissolution.  Parameter values for SAi for each mineral in our model depend on 
geometric surface areas scaled by a roughness factor, which is modelled with a fractal dimension of 
0.33 to account for the physical differences in laboratory and field weathering environments and 
differences between particle sizes3 (Sections 1.6-1.7).  

𝑅𝑖 = 𝑤𝑖(𝑝𝐻) 𝑆𝐴𝑖 (4) 

Soil pH of each grid cell is dynamically calculated from the alkalinity mass and flux balance for an 
adaptive time-step, controlled by mineral dissolution rates on mineral dissolution, following 
initialization with a topsoil (0-15 cm) pH value based on field data from global soil databases (Table 
S14); soil pH buffering capacity is accounted for with an empirical soil pH buffer function4.  The soil 
pCO2 depth profile of a grid cell is generated with the standard gas diffusion equation5, scaled by crop 
NPP × 1.5 to account for combined autotrophic and heterotrophic respiration6.  The alkalinity balance 
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considers net acidity input during crop growth for biomass-cations removed from the field7, and 
secondary mineral precipitation of calcite, as described in Ref8. 

1.4 Removal of weathering products. The total mass balance over time for basalt mineral weathering 
allows calculation of the products transported from the soil profile. 

∫ 𝐵(𝑡, 𝑧) d𝑧
𝐿

0
= ∫ 𝐵(0, 𝑧) d𝑧

𝐿

0
− 𝜙 ∫ 𝐶(𝑡, 𝑧) d𝑧

𝐿

0
− 𝑞 ∫ 𝐶(𝑡, 𝐿) d𝑡

𝑡

0
 (5) 

The total mass of weathering basalt is defined as follows, where m is the total number of 
weathering minerals in the rock, tf is the duration of weathering (year) and L is the total depth of the 
soil profile. 

Total weathered Basalt =  ∑  𝜙 ∫ 𝐶𝑖(𝑡, 𝑧) d𝑧
𝐿

𝑧=0
+ 𝑞 ∫ 𝐶𝑖(𝑡, 𝐿) d𝑡

𝑡𝑓
𝑡=0

𝑚
𝑖=1  (6) 

We define q as the net annual sum of water gained through precipitation9 and irrigation10, minus crop 
evapotranspiration11, as calculated with high spatial resolution gridded datasets (Table S14). 

1.5 Rate law.  We modelled application of a crushed fast- or slow-weathering continental flood basalt, 
with specified mineral weight fractions and physical characteristics (Tables S1-S3).  Rates of basalt 
grain weathering define the source term for weathering products and are calculated as a function of 
soil pH, soil temperature, soil hydrology and crop net primary productivity (NPP).  The inorganic 
general rate law for each mineral, using the linear transition state theory rate law12,13, is given as: 

w = ∑ 𝑘𝑖exp[
−𝐸𝑖

𝑅
(
1

𝑇
−

1

298.15
)]𝑎𝑗

𝑛𝑖
𝑖  (7) 

where i is the individual weathering agent, e.g. [H+], [H2O], [OH-], ki is the rate constant (mol m−2 s−1), 
Ei is the apparent activation energy (kJ mol−1), R is the gas constant (kJ mol−1 K−1), T is temperature 
(K), aj is the molar activity of weathering agent j (mol l−1), ni is the reaction order.  To account for 
chemical affinity effects, the term w is multiplied by a chemical affinity term (1-C/Ceq) in the reactive 
transport equation (equations 1-2). Parameters ki, Ei and ni for all basaltic minerals modelled are listed 
in Table S3.  This version of the model (equation 7) is well-validated against flask-dissolution 
experiments (Fig. S3). 

In equation (7), T equals soil surface temperature of a grid cell, defined as the mean value at 5 
cm depth of the 8 warmest months for 2050 (Table S14).  This value is taken to represent conditions 
during the main growth period of most crop types found outside the tropics.  In the tropics and sub-
tropics, where perennial crops dominate, annual temperature variation is relatively low. 

1.6 Reactive mineral surface area.  The reaction rate of a mineral undergoing dissolution in soil is 
governed by the law of kinetic mass action and is proportional to the moles of reactive sites on the 
mineral surface in contact with the reacting aqueous solution14.  The general kinetic rate law includes 
the term for total reacting surface area (SAi, m2) (equation 6) and the reactivity of the specific mineral 
surface is reflected in the kinetic rate constant (ki, mol m-2 s-1) (equation 7).  The reactive surface area 
of the mineral usually scales by amount of mineral.  Thus a useful parameter to use when calculating 
the surface area of a mineral is the specific surface area (SSA), which is the reactive surface area (SAi) 
normalised to mass of mineral i (mi). 

1.7 Surface roughness.  The measured SSA of a granular material is typically much higher than 
estimates of the surface area by geometric models of particle shapes, due to surface topography and 
porosity effects15.  Discrepancies between measured surface area and that calculated from particle 
geometry are accounted for using a surface area multiplier, defined as the surface roughness factor, 
λ, which accounts for topography and porosity effects. 

We adopt a methodology that treats basalt reactive surface as a fractal3.  The fractal dimension 
provides a means of consolidating measurements taken at different scales.  At the particle scale we 
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model the surface area geometrically and relate it to the radius of individual particles. Using this 
methodology, the resultant scaling for the roughness factor is given by equation 8. 

𝜆 =  (
𝛽

𝑎
)
𝑑

 (8) 

where a is the spatial constant related to the scale of measurement of BET surface area (10-10m), β is 
the scale at which the rates are being determined (particle radius) and d is the fractal dimension.  The 
fractal dimension and its uncertainty are determined from a linear regression analysis performed on 
measurements from a range of spatial scales3 (10-10-103m).   

The weathering rate of the mineral i is proportional to the product of the surface roughness, 
the specific surface area in situ (SSAi) and the mass of the mineral (mi). 

𝑅𝑖 = 𝑤𝑖 𝜆 SSA𝑖 𝑚𝑖 (9)  

1.8 Particle size distribution weathering. Standard calculations of rate of mineral dissolution ignore 
size differences in reacting particles and simulate the mineral with a surface area that corresponds to 
the mean diameter of a particle size distribution (psd).  However, mechanical comminution produces 
an approximately log-normal psd16 that varies with different grinding and milling technologies.  We 
therefore use two different log-normal psd17,18 which arise from two different grinding technologies 
and average the simulation results from using the different distributions. 

We use a shrinking grain model to simulate a continuous range of weathering particle sizes.  To 
introduce the level of “grinding” into the model, we assume that grinding scales the particle diameter 
so that the normalised mass distribution is given by a shape and a scale value.  The scale value used 
here is a “px” value, which is defined to be the diameter for which x% of the mass is made up from 
particles with smaller diameters: p80 values are often used as a scalar description of a distribution. 

We derive the unique SA-mass relationship for a given psd to calculate weathering in equation 
(4) as follows.  A psd can be fully described by a mass density function.  We denote this as the initial 
condition to the general time-varying psd, 𝑓(𝑡, 𝑟), where r is particle radius for 𝑡 = 0, such that the 
mass of particles having radius greater than 𝑟1 and less than 𝑟2 at time t is given by: 

𝑀(𝑡) =  ∫ 𝑓(𝑡, 𝑟) d𝑟 (10)
𝑟2

𝑟1

 

and the total mass of the particles at time t is given by: 

𝑀(𝑡) =  ∫ 𝑓(𝑡, 𝑟) d𝑟
∞

0

 (11). 

The surface area of particles of radius, r, and mass, 𝑚, is given by: 

SA =
3 𝑚

𝜌 𝑟
 (12) 

and the surface area of particles described by a psd is given by: 

SA(t) =  
3

𝜌
∫

𝑓(𝑡, 𝑟)

𝑟

∞

0

d𝑟 (13). 

The weathering model generally has the form: 

d𝑀

d𝑡
=  −𝑤 𝜆 SA (14). 
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where SA is the geometric surface area, 𝜆 is roughness and 𝑤 is the weathering rate (determined by 
kinetic parameters, soil temperature and pH and NPP).  As particles are assumed to be spherical, we 
reformulate equation 14 in terms radius rather than mass to give: 

d𝑟

d𝑡
=  −

𝑤 𝜆(𝑟)

𝜌
 (15) 

Given our fractal assumption of roughness: 

𝜆(𝑟) = 𝛾𝑟𝑑 (16) 

where 𝛾 = (1010)𝑑.  Equations 15 and 16 can be combined and solved analytically, and given the 
initial condition 𝑟 = 𝑟0 at 𝑡 = 0, then. 

𝑟(𝑡) = (𝑟(0)1−𝑑 − [1 − 𝑑]
𝜔𝛾

𝜌
𝑡)

1

1−𝑑
 (17) 

The reactive surface area, accounting for roughness is given by: 

SA(t) =  
3

𝜌
∫

𝜆(𝑟) 𝑓(𝑡, 𝑟)

𝑟(𝑡)

∞

0

d𝑟 (18). 

Using the above framework, we derive a pair of parametric equations for SA and describe 
mass in terms of time: 𝑅(𝐵).  To do this we consider an infinitesimal range of particles within the psd 
𝑟(0) < 𝑟 < 𝑟(0) + 𝛿𝑟(0) having mass density 𝑓(0, 𝑟(0)). After weathering for a time 𝑡, r(0) is 
mapped to 𝑟(𝑡)∗ with corresponding mass density 𝑓(𝑡, 𝑟(𝑡)) and range 𝛿𝑟(𝑡). 

The mass density of the weathered particle can be determined by mass balance. The ratio of 
the mass of the weathered and un-weathered particles is equal to the cube of the ratio of the 
respective radii, giving. 

𝑚(𝑡)

𝑚(0)
=  

𝑓(𝑡, 𝑟(𝑡)) 𝛿𝑟(𝑡)

𝑓(0, 𝑟(0)) 𝛿𝑟(0)
= (

𝑟(𝑡)

𝑟(0)
)
3

 (19) 

In the limit, and using equation (15), we can obtain the following expression for the weathered mass 
density function in terms of the initial PSD and time. 

𝑓(𝑡, 𝑟(𝑡)) = 𝑓(0, 𝑟(0)) (
𝑟(𝑡)

𝑟(0)
)
3 d𝑟(0)

d𝑟(𝑡)
= 𝑓(0, 𝑟(0)) (

𝑟(𝑡)

𝑟(0)
)

3

 

d𝑟(0)
d𝑡

d𝑟(𝑡)
d𝑡

⁄

= 𝑓(0, 𝑟(0)) (
𝑟(𝑡)

𝑟(0)
)

3 𝜆(𝑟(0))

𝜆(𝑟(𝑡))
  (20) 

Substituting into equation 13 gives an expression for the geometric surface area: 

SA(t) =  
3

𝜌
∫ 𝑓(0, 𝑟(0)) (

𝑟(𝑡)

𝑟(0)
)
3 𝜆(𝑟(0))

𝜆(𝑟(𝑡))

∞

0

d𝑟 (21) 

Whilst the reactive surface area, equation 18, is given by the first parametric equation: 

SA(t) =  
3

𝜌
∫ 𝑓(0, 𝑟(0)) (

𝑟(𝑡)

𝑟(0)
)
3

𝜆(𝑟(0))
∞

0

d𝑟 (22) 

The mass corresponding to the psd is given by the second parametric equation: 

M(t) =  
4𝜋𝜌

3
∫ 𝑟(𝑡)3

∞

0

d𝑟 (23) 
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1.9 Multi-year basalt applications. To model repeated basalt applications, the psd of the existing 
basalt (f1) is combined with the psd of the new application (f2).  As the existing psds at each soil level 
are at different stages of weathering, calculating the combined psd requires the psds at each level 
and each mineral to be calculated.  Given the existing mineral mass, these can be calculated prior to 
the application using the equation (20).  The new psd is given by the sum of the existing (f1) and 
application (f2) psds, such that the basalt mass distribution after application is given by equation (24), 
as shown by psd definition (equation 10). 

𝑀(𝑡) =  ∫ 𝑓1(𝑡, 𝑟) + 𝑓2(𝑡, 𝑟) 𝑑𝑟
𝑟2

𝑟1

(24) 

2.0 Plant-assisted weathering. Plant-enhanced basalt weathering is modelled empirically for annual 
and woody crops with power functions fitted to data (Fig. S4; Table S5).  These functions represent 
the effects of a range of rhizosphere processes that accelerate the physical breakdown and chemical 
dissolution of minerals, including the activities of nutrient scavenging mycorrhizal fungi that physically 
disrupt and chemically etch mineral surfaces, and bio-production of low molecular weight organic 
compounds and chelating agents19,20.  The power functions relate normalised NPP (NPPnorm), and the 
NPP multiplier of the rate equation, f(NPPa,w), for annual and woody crops as follows: 

𝑓(𝑁𝑃𝑃𝑎,𝑤) = 𝑁𝑃𝑃𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 = 𝑎(𝑥𝑛𝑜𝑟𝑚𝑁𝑃𝑃𝑛𝑜𝑟𝑚)𝑏 + 1 (24)  

where a, xnorm and b are fitted parameters for annual and woody crops (Table S5).   

Incorporating the plant weathering functions yields: 

𝑅𝑎𝑡𝑒𝑚 = 𝑆𝐴𝑚 ∑ [𝑘𝑖,𝑚exp[
−𝐸𝑖,𝑚

𝑅
(
1

𝑇
−

1

298.15
)]𝑎𝑖

𝑛𝑖,𝑚]𝑖 𝑓(𝑁𝑃𝑃𝑎,𝑤) (25) 

We used gridded data for 175 crops (yield and harvested area)21,22 (Table S14) with yield converted 
to NPP using standard procedures22 and linearly scaled to a 0-1 range and NPP values capped at the 
99% percentile. 

2.1 Carbon dioxide removal.  We calculate carbon dioxide removal (CDR) by ERW of crushed basalt 
applied to soils via two pathways: 1) the transfer of weathered base cations (Ca2+, Mg2+, Na+ and K+) 
from soil drainage waters to surface waters that are charge balanced by the formation of HCO3

- ions, 
which are transported to the ocean and 2) formation of pedogenic carbonates.  A generalised version 
of calcium silicate mineral dissolution representative of Pathway 1 is given by equation 26. If some of 
the resulting HCO3

- is precipitated as calcium carbonate, CDR follows Pathway 2 (equation 27). 

Pathway 1 for calcium ions: 

CaSiO3 + 2CO2 + 3H2O  Ca2+ + 2HCO3
- + H4SiO4 (26) 

Pathway 2 for calcium carbonate formation: 

Ca2+ + 2HCO3
-  CaCO3 + CO2 + H2O (27) 

Monovalent and divalent base cations are released from basaltic minerals by dissolution based 
on stoichiometry (Table S2).  CDR, via pathway 1, potentially sequesters two moles of CO2 from the 
atmosphere per mole of divalent cation.  However, ocean carbonate chemistry reduces the efficiency 
of CO2 removal (ƞ) to an extent depending on ocean temperature, salinity and the surface ocean 
dissolved CO2 concentration.  We calculate ƞ for average ocean temperature (17 °C), salinity (35%) 
and an RCP8.5 2050 dissolved pCO2 of 600 µatm, giving ƞ = 0.86, i.e., 0.86 mole of CO2 removal per 
mole of monovalent cation and 1.72 mol of CO2 removed per mol of divalent cation added to the 
oceans23.  For Pathway 1, the efficiency of CDR = ƞ × ∑(mol monovalent cations)+2ƞ × 
∑ (mol divalent cations).   
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CDR via pathway 2 occurs if dissolved inorganic CO2 precipitates as pedogenic carbonate, and 
sequesters 1 mol of CO2 per mole of Ca2+ instead of 1.72 mol of CO2 via pathway 1 and is therefore 
less efficient.  Thus for any given grid cell, we compute CO2 removal by ERW as the alkalinity flux in 
soil drainage and pedogenic calcite precipitation. Possible CO2 degassing due to changes in surface 
water chemistry during transport in large river systems24 is not considered.  We assume land 
management practices for annual crops return cations released during dissolution, and taken up by 
crops back to soils via biomass decomposition. This is in addition to elements removed in harvest, 
which are returned via element cycling through the animal and human food chains.  This assumption 
reflects practices of removing primarily grain biomass from fields and returning the shredded fast-
decomposing organic residues back to soil.  For perennials, e.g., palm oil plantations, cations 
accumulated in living biomass is accounted for by the stoichiometry of NPP. 

2.2 Cost assessment modelling.  A breakdown of mining costs was obtained using a three-step 
engineer-based itemized approach25.  Step 1 involves determining the design of a mine to the 
maximum extent possible, step 2 considers the labour, equipment fleet and consumables required to 
establish and operate the mine, and step 3 involves the use of specialized, commercially available 
databases26 holding unit costs for labour, equipment and consumables.   

We adopt a prior detailed analysis based on this methodology with reference to an open pit 
mine located in USA, which extracts 10,000 tonnes of ore per day at a 1:1 strip ratio, typical for basalt 
mines25.  The cost breakdown allows us to convert these costs to country-specific values using diesel 
prices and gross national income as normalization factors.  To achieve this we assign to each 
component cost C(i) three weights that sum up to 1; wf is the fraction of the particular cost due to 
fuel, wl due to labour and ws the fraction of the cost independent of fuel and labour, signifying here 
the cost of specialized equipment. Each component cost for a particular country k now becomes: 

𝐶(𝑖)[𝑘] = 𝐶(𝑖)[𝑈𝑆𝐴] (𝑤𝑓
𝐷𝑖𝑒𝑠𝑒𝑙[𝑘]

𝐷𝑖𝑒𝑠𝑒𝑙𝑈𝑆𝐴
+ 𝑤𝑙

𝐼𝑛𝑐𝑜𝑚𝑒[𝑘]

𝐼𝑛𝑐𝑜𝑚𝑒𝑈𝑆𝐴
+ 𝑤𝑠) (28) 

where Diesel[k] and Income[k] are the diesel price and gross national income, respectively. The 
component costs and relevant weights, the latter of which are based on assumptions regarding the 
nature of each cost, are given in Supplementary Information. For the USA, mining cost is 6.99 $ t-1 as 
obtained from prior analysis22.  Mining costs for China, India, Indonesia, Mexico, Canada and Brazil 
calculated using the method were 5.33, 4.44, 3.97, 4.88, 6.79 and 5.42 $ t-1, respectively and for 
France, Germany, Poland, Italy and Spain 7.90, 8.26, 6.76, 8.30 and 7.31 $ t-1, respectively. The lower 
price for China, India and Brazil reflects low labour costs while the higher price for France and 
Germany reflects higher diesel costs. 

Distribution costs and emissions were calculated by performing spatial analysis with ArcGIS 
software. Basalt rock sources were identified from the GLiM rock database27, excluding those in 
protected areas28.  We then performed a global transport (rail and road) network analysis by 
modelling a logistic ERW supply by creating an Origin-Destination Cost Matrix using GIS29,30.  For larger 
datasets, the Origin-Destination cost matrix searches and measures the least-cost paths along the 
network from multiple origins to multiple destinations to identify the most cost-effective or shortest 
route between a source and destination.   

Transport analyses used the lowest emission option between rail and road network to 
calculate distribution costs and CO2 emissions (summarized in Tables S10-S12).  Freight-rail emissions 
were obtained from 2050 projections of reduced carbon emissions following improvements in energy 
efficiency31. Rail CO2 emissions were thus the same for both the business-as-usual (BAU) and 2°C 
scenarios.  For road transport, we considered estimated energy consumption of currently/shortly 
available heavy electric trucks 1.38 (kWh/km)32 and projected carbon emissions in the electricity 
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sector of each country for BAU or the 2°C scenario33.  Finally, the cost of both transport systems is 
based on current diesel (litres per km) and electricity prices (Kwh per km) in each country34.  

Cost of spreading rock with farming machinery was considered equivalent to that of spreading 
lime ($15.18/t).  We assigned 50% of the spreading costs to fuel consumption and 50% to labour, 
investment and other costs.  Spreading costs, CS[k], in $/t for a country k were then calculated as the 
weighted sum of diesel fuel prices and labour costs, both normalized to UK values 

𝐶𝑆[𝑘] = (0.5
𝐷𝑖𝑒𝑠𝑒𝑙[𝑘]

𝐷𝑖𝑒𝑠𝑒𝑙𝑈𝐾
+ 0.5

𝐼𝑛𝑐𝑜𝑚𝑒[𝑘]

𝐼𝑛𝑐𝑜𝑚𝑒𝑈𝐾
) 15.18 (29) 

Total costs were calculated for each country k as 

𝐶𝑇𝑜𝑡[𝑘] = (𝐶𝑀[𝑘]+𝐶𝑇[𝑘] + 𝐶𝑆[𝑘])𝐴𝑝𝑝𝑅𝑜𝑐𝑘[𝑘] (30) 

where AppRock is the total rock applied.  Our cost are indicative of key features of an ERW supply chain 
and consistent with previous global approaches.  Variation in these costs are expected and supply 
chains may be designed to optimise regional or national price variability.  No account is taken of wider 
impact of ERW supply chains on other markets. 

2.3 Optimization.  We formulated the relationship between particle size diameter (μm) and surface 
area (m2/g), as well as surface area (m2/g) and grinding energy per unit mass (MJ/t) using prior 
results35 combined to derive an expression for the relationship between particle size p80 (μm) and 
the grinding energy GEN required to grind a unit mass (MJ/t). 

𝐺𝐸𝑁(𝑝80) = 𝑎3[𝑒
𝑎4𝑙𝑜𝑔10(𝑎1𝑝80+𝑎2)] (31) 

with a1=-4.46, a2 = 11.57, a3 = 49.47 and a4 = 0.26. 

We used country-specific electricity production (PGrid) and the forecast fractional contributions 
to electricity production by different energy sources (coal, natural gas, oil, solar PV, concentrated 
solar power, hydropower, wind, marine) for 2050 based on business-as-usual (BAU) energy polices 
and energy projections consistent with a 2°C (2°C) warming scenario33.  National CO2 emissions (C_EG) 
for electricity generation consistent with both scenarios were based on results reported in Ref33 
(Tables S6-S9). Industrialized nations (e.g., Canada) consume up to ~2% of their total energy 
production on rock comminution (crushing and grinding) processes36.  We assume a future limit of 
3% for all nations, based on the rationale that current rates for developed nations grow from around 
2% today in-line with future energy scenarios33.   

For a grid cell i where rock is applied, the net emissions ENET (mass CO2) for a particle size 
distribution defined by p80, are given by 

𝐸𝑁𝐸𝑇(𝑝80|𝑖) = 𝐸𝐺(𝑝80|𝑖) + 𝐸𝑤(𝑝80|𝑖) (32) 

where EG is grinding emissions and EW  is gross CO2 sequestration, considered here as a negative flux.  

Grinding and weathering CO2 emissions were calculated as: 

𝐸𝐺(𝑝80|𝑖) = 𝐴𝑝𝑝𝑅𝑎𝑡𝑒𝐴𝑝𝑝𝐴𝑟𝑒𝑎(𝑖)𝐶_𝐸𝐺(𝑖)𝐺𝐸𝑁(𝑝80) (33) 

𝐸𝑤(𝑝80|𝑖) = −𝑄𝐶𝑂2(𝑝80|𝑝𝐻(𝑖), 𝑡𝑒𝑚𝑝(𝑖),𝑁𝑃𝑃(𝑖))𝐴𝑝𝑝𝑅𝑎𝑡𝑒𝐴𝑝𝑝𝐴𝑟𝑒𝑎(𝑖) (34) 

where AppRate is the rock application rate (mass rock/area), AppArea is the cropland area of the grid 
cell where the rock is applied (Area), C_EG is emissions of the electricity grid for the grid cell (Mass 
CO2/Energy) and GEN the energy required to grind a unit mass of rock at a particular p80 (Energy/Mass 
Rock) obtained from equation 30.  QCO2 is the mass ratio of CO2 sequestered to rock applied (unit-
less) calculated as a function of p80 and grid cell pH, temperature (temp) and scaled NPP. 
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For a country comprised of k grid cells we minimize the k-element vector 𝑝80⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

𝐼(𝑝80)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∑ 𝐸𝑁𝐸𝑇(𝑝80𝑖|𝑖)
[𝑘]
𝑖  (35) 

with the additional non-linear constraint that the grinding energy cannot exceed a certain fraction a, 
in this case 0.03, of the country’s projected grid electricity production PGrid (Energy) for the year 2030 

∑ 𝐴𝑝𝑝𝑅𝑎𝑡𝑒𝐴𝑝𝑝𝐴𝑟𝑒𝑎(𝑖)(𝑝80(𝑖))
[𝑘]
𝑖 ≤ 𝑎𝑃𝐺𝑟𝑖𝑑 (36) 

Secondary emissions from mining (M), transporting (T) and spreading (S) rock were not considered 
during optimization, as they are independent of particle size.  They are taken into account as: 

∑ 𝑄𝐶𝑂2(𝑖)𝐴𝑝𝑝𝑅𝑎𝑡𝑒𝐴𝑝𝑝𝐴𝑟𝑒𝑎
[𝑀,𝑇,𝑆]
𝑖  (37) 

QCO2 values for transporting and spreading rock were obtained from our GIS analyses (Supplementary 
Information).  For the optimization, we used MATLAB’s pattern search algorithm37. 

The high-resolution driving data sets means there are on the order of 10,000-100,000 k grid 
cells for each country’s crop area, making a constrained, non-linear optimization unfeasible in terms 
of computational resources.  To overcome this, and prior to optimization, we perform a k-means 
clustering (classification) for each country’s k grid cells creating 60-75 classes; each one has a 
temperature, pH and NPP enhancement factor assigned as the centroid of each cluster and an area 
as the sum of areas of the grid cells that belong to the specific class. We use these 60-75 classes for 
optimization and the resulting p80 for each class is then assigned to all the grid cells in it. Although 
the number of grid cells to be optimized is reduced by orders of magnitude during the classification, 
the approximation proved robust with small error and bias when tested at low resolution due to small 
intra-class variability. 

The above process calculates the optimized p80 grid cell vector and was conducted for different 
fractions of a country’s crop area (0.1 to 1.0 at 0.1 increments), ordered according to weathering 
potential.  For a given p80 value, we calculate the weathering rate for each grid cell, sort them in 
descending order and find the grid cells that comprise the cumulative area fraction for each 
increment. Optimization is conducted for each combinations of the two types of basalt and the two 
quasi-log-normal particle size distributions for each country.  Uncertainty in the fractal dimension 
affects weathering rate and consequently, through the optimization, the p80 grid cell vector.  We 
used Monte Carlo sampling (n ≈ 100) to approximate the resulting distribution of p80 for each grid 
cell.  Results are shown for the median p80 value for each grid cell when the Monte Carlo distributions 
for the combinations of basalts and particle size distributions are pooled.  

2.4 Forecasting bulk silicate waste production.  A model that relates global per capita material 
production (for cement) or consumption (steel) P to per capita gross world product (GWP)38,39 was 
regressed through historical global data using nonlinear least squares (equation 38).  

𝑃 = 𝑎𝑒−𝑏/𝐺𝑊𝑃 (38) 

where a and b are regression constants.  The derived saturation value, a, was used in a further 
regression through national data normalised to 2014 production and GDP (equation 39).  

𝑃 = 𝑃𝑅𝐸𝐹 × (1 + ((𝑚 + 𝑟) × ∆𝐺𝐷𝑃) × 𝑒(𝑎×(1−𝑒−(𝑚×∆𝐺𝐷𝑃)))−(𝑚 ×∆𝐺𝐷𝑃) (39) 

where PREF is the global per capita consumption in a given reference year (2014) and ΔGDP is the 
deviation of the per capita gross domestic product from the reference year. Here, m and r are 
regression constants.  These were used together with averaged projections of future GDP (Table S14) 
from the ‘middle-of-the-road’ Shared Socioeconomic Pathway (SSP2) to derive nationally resolved 
projections of future per capita consumption/production40.  SSP2 potentially represents the largest 
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material production pathway, as other SSPs forecast lower consumption or economic growth 
producing 30-50% less material globally.  We have not considered the penetration of recycling into 
steel production beyond its current rate.  Cement and cement kiln dust have no capacity to be 
recycled as cement. The total production/consumption at a given time, T(t), was calculated by 
multiplying the population, Pop(t), by production or consumption (P) (equation 40): 

𝑇(𝑡) = 𝑃(∆𝐺𝐷𝑃)  × 𝑃𝑜𝑝(𝑡) (40) 

We assume 115 kg of cement kiln dust is produced as a by-product in kilns for every tonne of clinker, 
and have modelled the production of demolition waste following an average 50-year service life 
(normally distributed with a standard deviation of 10 years)41.  The ratio of pig iron to steel production 
(0.72) was obtained using linear regression of 1960-2014 data, negating the need to explicitly model 
pig iron displacement from scrap recycling, and assuming the scrap ratio remains unchanged.  All steel 
and blast furnace slag was considered available for reaction with CO2. Between 2006–2014, 185 kg of 
blast furnace slag and 117 kg of steel slag was produced for every tonne of crude steel42. 

2.5 1-D reactive transport modelling(RTM) 

We constructed a 1D-RTM to assess the effect of the chemical affinity term on mineral weathering 
from basalt rock particles in soil with the PHREEQC modelling code and a widely adopted 
thermodynamic database43.  The structure of the porous medium for flow and transport is specified 
with a flow porosity of 25%44.  The RTM simulates the top 150 mm layer of the soil column, i.e., the 
depth to which powdered basalt is added in the simulations (application rate of 40 t ha-1), and 
calculated on a numerical grid of 15 × 10 mm thick cells, with a defined constant water flux.  Basaltic 
minerals are distributed evenly over the simulated depth and weather according to their respective 
kinetic mass action laws for the mineral dissolution reactions (Tables S1-S3).  Chemical affinity effects 
were accounted for with a chemical inhibition term which slows the dissolution rate as the chemical 
state of the fluid approached equilibrium with the respective mineral phases.  Interstitial waters are 
calculated to be in equilibrium with the dissolved weathering products, inorganic and organic soil 
cation exchange surfaces and secondary minerals.  These were calculated to form and dissolve 
instantaneously to maintain thermodynamic equilibrium between the fluid and mineral phases. 

Initial exchangeable concentrations on the inorganic exchange surfaces were determined by 
equilibrating a characteristic soil pore water chemistry with a representative cation exchange capacity 

(Table S4)  The soil solution was equilibrated with dissolved O2 and CO2; assuming equilibrium with 
atmospheric pO2(g) (atm).  Soil CO2 gas phase concentration varied with depth with the diffusion 
equations5,6 as for the performance model.  

The mass and surface area of reacting minerals were based on their relative concentration in 
the initially applied basalt, and modelled using a shrinking core model.  Reactive surface area was 
based on a uniform particle size characteristic of rock flour17 with a diameter of 12 µm, a basalt density 
of 3.0 g/cm3 and accounting for the fractal dependence of surface properties on the physical scale of 
the weathering system (see Sections 1.6-1.7).  These basalt characteristics are shared with our 
performance model.  Potential secondary mineral phases consistent with early stages of basalt 
weathering45 were determined to be those exhibiting oversaturation with respect to the evolving pore 
water chemistry and that are known to react reversibly on the relatively short residence times of the 
soil fluids14.  From this rationale, we included secondary mineral formation of calcite, amorphous 
silica, gibbsite and goethite.  Formation of these secondary minerals respectively creates sinks for 
dissolved calcium, silicon, aluminium and iron.  An additional sink for cations released by basalt 
weathering considered in the RTM simulations was cation exchange on soil clay minerals.  
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Results of sensitivity analysis undertaken for three infiltration rates (200 mm yr-1, 600 mm yr-1 
and 1,200 mm yr-1) with and without the chemical affinity term at 25 °C are presented in Fig. S6 with 
corresponding secondary mineral precipitates in Fig. S7.  The baseline analysis considered the possible 
precipitation of calcite, gibbsite, amorphous silica (SiO2) and goethite over a range of infiltration rates 
of 200-1200 mm/y (desert to wet tropics).  This baseline comparison is compared with simulations in 
which we considered 1) the formation of cation-retaining smectite in addition to the gibbsite, calcite, 
goethite and SiO2, and 2) kaolinite as the most stable clay mineral end-product of weathering over 
longer time periods8. Allowing formation of either secondary clay mineral accelerated dissolution of 
basaltic minerals through suppression of Al ion activity in solution resulting in less kinetic inhibition 
of the dissolution reactions (Fig. S8, S9).  These results suggest that our approach, which does not 
explicitly account for the effects of secondary clay minerals on acceleration of primary mineral 
dissolution, is conservative with respect to calculating basalt dissolution.   

We show close correspondence between the results of the RTM with full chemical speciation 
and our simplified performance model for the weathering of either type of basalt (tholeiitic and 
alkaline) being considered (Figs S10, S11).  Agreement between modelling approaches holds across a 
wide range of flows.  Weathering inhibition appears negligible over the 1 year duration of soil 
weathering, other than for laboradorite, with the performance model realistically capturing the 
effects of chemical affinity.  In summary, our calibrated performance model explicitly calculates 
pedogenic calcium carbonate formation and implicitly accounts for the effects of amorphous silica, 
goethite and gibbsite formation. As a result, the two approaches (RTM and performance model), give 
similar patterns of alkalinity release, pedogenic carbonate formation and CO2 removal (Fig. S12) to 
underpin our modelling approach. 
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 (a) (b) 

 

 

Figure S1. Mass distribution profiles of ground rock. Percentage of samples by mass of particles of 

ground basaltic rock as a function of diameter in (a) Renforth17 and (b) Cepurtis et al.18. 
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 (a) (b) 

 

 (c) (d) 

 

 

Figure S2.  Particle size distributions of ground rock profiles.  (a) Plot of percentage of mass contained 
in ground basalt particles below a given diameter (Renforth profile)17, (b) The associated normalised 
mass distribution function of particle diameter. (c) and (d) are corresponding plots derived from the 
Cepurtis18 profile. 
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(a) 

 

(b) 

 

 

Figure S3.  Model validation.  Plots show predicted weathering rate (WR, log10 scale) with our 
performance model rate equation (Si-release) validated against observations of flask-based 
weathering rates, based on an extensive data compilation14, for (a) the alkali basalt (fast weathering) 
and (b) tholeiitic basalt (slow weathering).  Weathering rates between the two types of basalt differ 
by a factor of 2; about 0.3 on the log10 scale of the plots.  Slopes are not significantly different from 1 
(F-test, P < 0.001 for both plots). 
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(a) 

 

(b) 

 

 

Figure S4.  Normalized functions for biotic weathering enhancment (NPPenhancement) by crops.  
Functions are fitted to mesocosm data for (a) three speies of agricultural crops (maize, rice and 
soybean)46,47, and (b) four species of mycorrhizal tree saplings48,49.  Table S5 gives parameter values 
for (a) and (b).  These functions represent the lumped effects of rhizosphere biological processes 
accelerating weathering (Section 1.9). 
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 (a) 

 

(b) 

 

 

Figure S5.  Fractal dimension uncertainty and roughness factor scaling.  (a) Probability density 
function (PDF) of the fractal dimension (d) and (b) calculated relationship between roughness factor 
(lambda) and particle diameter.  For comparison, basaltic glass powder with a diameter of 40 - 120µm 
has a lambda50 of ~92.  The PDF for the slope of the regression was calculated51 using standard 
regression analysis for the slope (β) of the regression (using the data from Ref3): 𝛽 ~ 0.0163 𝑡20 +
0.33, where 𝑡20 denotes a t-distribution with 20 degrees of freedom. 
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Figure S6. Reactive transport model (RTM) sensitivity analyses of the affinity term during basalt 

weathering in agricultural soil.  Weathering depletion of initial basaltic mineral masses (expressed in 

moles of remaining basaltic mineral in contact with litres of soil pore-water) are shown for tholeiitic 

basalt (left hand panels) and alkaline basalt (right hand panels). Results are shown for three 

infiltrations rates of 200 mm yr-1, 600 mm yr-1 and 1200 mm yr-1.  Results are plotted for a period of 

one year with (solid line) and without (dashed line) implementing the chemical affinity term to 

account for kinetic inhibition of dissolution.  Only labradorite (green line) in these basalts exhibits 

noticeable effects. This is greatest during the first 100 days, especially under a low flow rate (200 mm 

yr-1 top panels) because there is little dilution of the weathered products, resulting in higher pore 

water concentrations exerting a stronger affinity effect.  At the two higher flow rates, shorter 

residence times result in less solute accumulation within the soil profile and a weaker chemical affinity 

effect.  Consequently, labradorite dissolves to completion after 365 days, and the results of the 

simulations that include and neglect affinity effects converge.  Kfeldspar also exerts a minor affinity 

effect but is present in such low concentrations that its influence on the basalt-porewater system can 

be considered to be negligible.  All simulations used the same single particle size (10 µm diameter) 

and were run at 25 °C.  
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Figure S7. Reactive Transport Model (RTM) simulated precipitation of secondary mineral phases 
during basalt weathering.  Simulated mass of the secondary mineral phases of calcite, amorphous 
silica (SiO2(a)), gibbsite and geothite, precipitating during basalt weathering.  Results are expressed 
in terms of moles of mineral precipitated per litre of soil pore waters, for the same set of RTM 
simulations as given in Fig. S6.  Results are shown for with (solid line) and without (dashed line) 
including the chemical affinity term for dissolution inhibition of the primary minerals (see Methods 
Section 2.4).  These results show that when affinity effects for primary minerals are neglected, that 
secondary mineral accumulation is more rapid. All simulations used the same single particle size (10 
µm diameter) and were run at 25 °C.   
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Figure S8. Reactive transport model (RTM) sensitivity analyses to kaolinite formation during basalt 

weathering in agricultural soil.  Effect of clay (kaolinite) formation on weathering depletion of initial 

basaltic mineral masses (expressed in moles of remaining basaltic mineral in contact with litres of soil 

pore-water) are shown for tholeiitic basalt (left hand panels) and alkaline basalt (right hand panels). 

Results are shown for three infiltrations rates of 200 mm yr-1, 600 mm yr-1 and 1200 mm yr-1.  Results 

are plotted for a period of one year with (dashed line) and without (solid line) kaolinite formation.  

Results indicate allowing kaolinite formation accelerates dissolution of labradorite (dashed vs solid 

green lines) and augite (dashed vs solid red lines) through suppression of Al ion activity in solution 

resulting in less kinetic inhibition of the dissolution reactions. 
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Figure S9. Reactive transport model (RTM) sensitivity analyses to smectite (montmorillonite) 

formation during basalt weathering in agricultural soil.  Effect of smectite clay montmorillonite 

formation on weathering depletion of initial basaltic mineral masses (expressed in moles of remaining 

basaltic mineral in contact with litres of soil pore-water) are shown for tholeiitic basalt (left hand 

panels) and alkaline basalt (right hand panels). Results are shown for three infiltrations rates of 200 

mm yr-1, 600 mm yr-1 and 1200 mm yr-1.  Results are plotted for a period of one year with (dashed 

line) and without (solid line) montmorillonite formation.  Results indicate allowing montmorillonite 

formation accelerates dissolution of labradorite (dashed vs solid green lines) and augite (dashed vs 

solid red lines) through suppression of Al ion activity in solution resulting in less kinetic inhibition of 

the dissolution reactions. 
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Figure S10.  Comparison of RTM and performance model results for rates of mineral weathering for 

alkali basalt.  Results for the reactive transport model (RTM) with the full rate equation and 

geochemical speciation including calculation of the effects of chemical affinity (left hand plots) and 

the calibrated performance (‘simple’) model that includes affinity effects with a simplified mass 

transfer inhibition term for weathering of individual minerals (right hand plots). The results show 

close correspondence between models across all three flow regimes. All simulations used the same 

single particle size (10 µm diameter) and were run at 25 °C.   
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Figure S11.  Comparison of RTM and performance model results for rates of mineral weathering for 

tholetiic basalt.  Results for the reactive transport model (RTM) with the full rate equation and 

geochemical speciation including calculation of the effects of chemical affinity (left hand plots) and 

the calibrated performance model (‘simple’) that includes affinity effects with a simplified mass 

transfer inhibition term for weathering of individual minerals (right hand plots). The results show 

close correspondence between models across all three flow regimes. All simulations used the same 

single particle size (10 µm diameter) and were run at 25 °C.   
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Figure S12 Comparison of pH and carbon removal systems in the RTM and peformance model. 
Comparison shows the close similarities between the simulated changes in pH, alkalinity flux (Ca2++ 

Mg2+ + Na+ + K+), formation of pedogenic carbonate (CaCO3) and efficiency of CO2 removal (RCO2) for 

the reactive transport model (‘RTM’) and the performance model (‘simple’).  Left-hand plots for the 

tholeiitic basalt, right-hand plots for the alkali basalt.  All simulations used the same p80 particle size 

(100 µm diameter) and were run at 20 °C; RTM simulations conducted without cation exchanges to 

account for saturation following multi-year basalt applications. 
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Figure S13.  Optimal particle size distributions for croplands. Values of particle size are p80s; i.e., 80% 
of particles are less than or equal to this diameter (µm).  Illustrative maps for the simulated particle 
size p80s for China (top maps), USA (middle maps) and Indonesia (lower maps). Left hand maps are 
for the business-as-usual energy policy (BAU) scenario simulations and right hand maps for the 2°C 
energy polciy scenario simulations.  Under the 2°C scenario, low carbon energy production used for 
rock ginding allows a simulated reduction in p80s for the same cropland fractional area. 
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Figure S14.  Frequency histograms for national initial soil surface (0-30cm) pH.  Histograms show the 
distribution of initial top soil pH for 50% (red bars only), and 100 % of crop grid cells (red and blue 
bars). Datasets are shown for the 12 nations considered in our analysis, see Tabel S15 for sources of 
global soil pH database and cropland distributions. 
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Figure S15.  Soil grid cell pH response to enhanced weathering with basalt rock dust.  Results are 
shown for the 12 nations considered in our analysis with 50% cropland deployment.  Results are 
expressed as the simulated change in initial soil pH after 10 years of basalt application for the 
business-usual energy policy senario. Results for the 2°C energy policy scenario are very similar. The 
extent to which simulated pH increases promote or adversely affect crop production depends on the 
initial topsoil pH, crop functional traits, weathering rates, climate, flushing rates and fertiliser 
treatments. 
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Figure S16.  Distribution of basalt source regions 

and croplands.  Top left-hand panel show data for 

Brazil (a, b), China (c, d), India (e, f) and the USA 

(g, h). Right-hand panels for France (a, b), 

Germany (c, d), Spain (e, f) and Poland (g, h).  

Lower left-hand panels show data for Italy (a, b), 

Canada (c, d), Mexico (e, f) and Indonesia (g, h).  

Basalt distributions in red, croplands in green.  See 

Methods for databases. 
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Figure S17. Calculated basalt source-to-field rail distances, costs and CO2 emissions, part 1.  Maps 

show data for Brazil (a-c), China (d-f), India (g-i) and the USA (j-l).  Table S10 provides summary 

statistics for distances, costs and emissions of nations. 
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Figure S18. Calculated basalt source-to-field rail distances, costs and CO2 emissions, part 2. Maps 

show data for France (a-c), Germany (d-f), Spain (g-i) and Poland (j-l).  Table S10 provides summary 

statistics for distances, costs and emissions of nations. 
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Figure S19.  Calculated basalt source-to-field rail distances, costs and CO2 emissions, part 3. Maps 

show data for Italy (a-c), Canada (d-f), Mexico (g-i) and Indonesia (j-l).  Table S10 provides summary 

statistics for distances, costs and emissions of nations. 
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Figure S20.  Calculated basalt source-to-field road distances, costs and CO2 emissions for the business-

as-usual scenario, part 1.  Maps show data for Brazil (a-c), China (d-f), India (g-i) and the USA (j-l).  

Table S11 provides summary statistics for distances, costs and emissions of nations. 
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Figure S21.  Calculated basalt source-to-field road distances, costs and CO2 emissions for the business-

as-usual scenario, part 2.  Maps show data for France (a-c), Germany (d-f), Spain (g-i) and Poland (j-

l).  Table S11 provides summary statistics for distances, costs and emissions of nations. 
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Figure S22.  Calculated basalt source-to-field road distances, costs and CO2 emissions for the business-

as-usual scenario, part 3.  Maps show data for Italy (a-c), Canada (d-f), Mexico (g-i) and Indonesia (j-

l).  Table S11 provides summary statistics for distances, costs and emissions of nations. 
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Figure S23. Calculated basalt source-to-field road distances, costs and CO2 emissions for the 2°C 

scenario, part 1.  Maps show data for Brazil (a-c), China (d-f), India (g-i) and the USA (j-l).  Table S12 

provides summary statistics for distances, costs and emissions of nations. 
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Figure S24.  Calculated basalt source-to-field road distances, costs and CO2 emissions for 2°C scenario, 

part 2.  Maps show data for France (a-c), Germany (d-f), Spain (g-i) and Poland (j-l).  Table S12 provides 

summary statistics for distances, costs and emissions of nations. 
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Figure S25.  Calculated basalt source-to-field road distances, costs and CO2 emissions for the 2°C 

scenario, part 3.  Maps show data for Italy (a-c), Canada (d-f), Mexico (g-i) and Indonesia (j-l).  Table 

S12 provides summary statistics for distances, costs and emissions of nations. 

 

  



40 

 

 

 

Table S1. Mineral weight fractions of the basalt formulations.  Relatively unreactive mineral 
components, e.g., quartz, are not included8,52. 

 

Basalt formulation Mineral 
Weight-
fractions 

Normal Alkali-Basalt  Labradorite 0.43 

(faster weathering) Augite 0.21 

 Forsterite 0.12 

 Kfeldspar 0.06 

 Fayalite 0.05 

 Ilmenite 0.05 

 Total 0.91 

Normal Tholeiitic basalt Augite 0.34 

(slower weathering) Enstatite 0.03 

 Kfeldspar 0.05 

 Labradorite 0.45 

 Ilmenite 0.04 

 Total 0.91 

 

 

Table S2.  Mineral chemical characteristics. 

 

Basalt Formulation Mineral Chemical Formula Molecular Mass (g/mol) 

Normal-Alkali-Basalt  Labradorite Ca0.6Na0.4Al1.6Si2.4O8  271.937 

(faster-weathering) Augite Ca0.9Mg0.9Na0.1Al0.4Fe0.2Si1.9O6  236.371 

 Forsterite Mg2SiO4  140.708 

 Kfeldspar KAlSi3O8 278.35 

 Fayalite Fe2SiO4 203.777 

 Ilmenite FeTiO3  151.73 

Normal-Tholeiite  Augite Ca0.9Mg0.9Na0.1Al0.4Fe0.2Si1.9O6  236.371 

(slower-weathering) Enstatite MgSiO3  100.4 

 Kfeldspar KAlSi3O8 278.35 

 Labradorite Ca0.6Na0.4Al1.6Si2.4O8  271.937 

 Ilmenite FeTiO3  151.73 
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Table S3.  Kinetic parameters of basaltic minerals. logK is the log of the effective rate constant (mol 
m−2 s−1), Eapp is the apparent activation energy (kJ mol−1), n is the reaction order of the weathering 
agents H+, H2O or OH-, corresponding to acid, neutral and base kinetic parameters8,52. 

 

Basalt Formulation Mineral 

Acid kinetic 
parameters 

Neutral 
kinetic 
parameters 

Base kinetic 
parameters 

logK Eapp n     logK     Eapp      logK   Eapp   n 
Normal-Alkali-Basalt 
(faster weathering) 

Labradorite -7.87 42.1 0.63 -10.91 45.2 -15.57 71 -0.57 

Augite -6.82 78 0.7 -11.97 78  - - 

Forsterite -6.85 67.2 0.47 -10.64 79    

Kfeldspar 
-

10.06 51.7 0.5 -12.41 38 -21.2 94.1 -0.82 

Fayalite - - - - - - - - 

Ilmenite -8.35 37.9 0.42 -11.16 37.9    

Normal-Tholeiite  Augite -6.82 78 0.7 -11.97 78 - - - 

(slower weathering) Enstatite -9.02 80 0.6 -12.72 80 - - - 

 Kfeldspar 
-

10.06 51.7 0.5 -12.41 38 -21.2 94.1 -0.82 

 Labradorite -7.87 42.1 0.63 -10.91 45.2 -15.57 71 -0.57 

 Ilmenite -8.35 37.9 0.42 -11.16 37.9 - - - 
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Table S4.  Characteristics of agricultural soil solution used for initializing PhreeqC simulations.  

Cation and anion values from a compilation of acid surface soil solutions53, and the cation exchange 

capacity determined from a compilation of agricultural soils for Europe54,55, USA56 and China57,58. 

 

Pore water pH 4.8 

Mean cation exchange 
capacity (cmolc/kg) 

16.2 

Mean ion conc.  

Ca2+ (μM 590 

Mg2+ (μM) 420 

K+ (μM) 230 

Na+ (μM) 660 

NH4
+ (μM) 870 

Al3+ (μM) 56 

NO3 (μM) 1100 

SO4 (μM) 310 

Cl (μM) 1600 

PO4 (μM) 8.8 

Si (μM) 580 

 

Table S5. Function parameters for NPP enhanced weathering by annual and perennial crops 

 

Parameter Annual Perennial 

a 0.140386 0.065906 

xnorm 3 18 

b 3.54559 1.48934 
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Table S6.  Projected national emissions of CO2 by different energy sources for 2050 (thousands of tonnes C yr-1) for the business-as-usual scenario.  

Results from simulations in Ref33. 

Source China India USA Brazil Indonesia Canada Mexico France Italy Germany Spain Poland 

1 Power & transport 2458882 1002226 799232 25678 94193 20157 60927 1657 16698 38162 4598 1017 

2 O. energy own use & tra 147552 79871 25185 8164 5942 9871 10952 3352 5352 10703 3236 1413 

3 Hydrogen production 0 0 0 0 0 0 0 0 0 0 0 0 

4 Iron & steel 226819 32709 9465 8773 988 2523 4029 2754 1009 2451 799 749 

5 Non-ferrous metals 13917 6071 5051 12320 263 246 17 207 128 35 204 267 

6 Chemicals 956 6559 36659 7688 738 3571 2978 2299 408 0 805 2695 

7 Non-metallics nes 458685 16577 33972 3845 2891 120 14930 2537 2687 9119 4364 1733 

8 Ore-extra.(non-energy) 40 484 0 3639 1184 8013 703 182 87 256 117 37 

9 Food, drink & tob. 1248 449 19798 6553 582 0 336 1230 269 22 333 383 

10 Tex., cloth. & footw. 1338 1363 2579 558 698 0 0 26 217 241 106 28 

11 Paper & pulp 15 1233 6202 4239 1440 579 627 463 517 1.8 251 91 

12 Engineering etc 268 676 5123 0 104 0 97 1547 2413 4103 1332 643 

13 Other industry 1617 412794 732 4434 45426 12113 2976 370 239 1647 1637 203 

14 Construction 1555 0 80 0 245 338 7 575 24 1724 169 71 

15 Rail transport 771 3196 122 746 0 3040 273 51 40 109 32 24 

16 Road transport 96798 333024 119150 111516 75796 19010 49010 6266 15583 17952 14059 10364 

17 Air transport 8720 15177 65697 7314 4163 7477 4064 1638 736 666 1349 60 

18 Other transp. serv. 1671 260 2343 2059 231 2326 0.064 949 1485 955 718 557 

19 Households 7917 11014 82175 3633 4603 8893 388 2605 1883 9901 701 4192 

20 Agriculture, forestry 3900 71980 511 9614 2033 679 915 2304 1654 1226 2665 1365 

21 Fishing 0 0 0 0 0 0 0 213 164 0 0 1.9 

22 Other final use 19250 19589 48972 1045 1094 17541 263 4235 3969 6852 839 1318 

23 Non-energy use 0 0 0 0 0 0 0 3087 2691 6115 2123 3771 
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Table S7.  Projected national emissions of CO2 by different energy sources for 2050 (thousands of tonnes C yr-1) for the 2°C scenario.  Results from 

simulations in Ref33. Negative values indicate carbon removal by negative emissions technology. 

Source China India USA Brazil Indonesia Canada Mexico France Italy Germany Spain Poland 

1 Power own use & trans. 297226 72263 47554 -5175 19701 -713.494 17756 -2097 2243 33061 4494 -6829 

2 O. energy own use & tr 105840 1824 10025 3947 2910 3929 5766 1737 1910 3119 1410 1118 

3 Hydrogen production 0 0 0 0 0 0 0 0 0 0 0 0 

4 Iron & steel 19891 14868 3882 5576 961 654 3066 1962 568 1342 151 186 

5 Non-ferrous metals 4933 1033 2869 12004 47 134 9.6 80.5 83 35 126 257 

6 Chemicals 35 2816 19384 6407 617 1171 2136 1903.6 291 0 403 2524 

7 Non-metallics nes 188432 6605 21170 3461 1730 120 12814 2329 1846 57 2624 1493 

8 Ore-extra.(non-energy) 18 871 0 3421 904 3728 522 171 76 173 41 30 

9 Food, drink & tob. 118 246 13700 1712 461 0 228 1007 140 22 61 302 

10 Tex., cloth. & footw. 191 924 1371 481 392 0 0 21.5 65 191 19 22 

11 Paper & pulp 1.5 168 2312 3373 583 14.4 362 223 194 1.8 107 69 

12 Engineering etc 77.6 448 1921 0 66.5 0 74 1225 897 185 776 551 

13 Other industry 2177 0 268 3192 18133 1068 2964 279 229 201 1186 131 

14 Construction 358 0 52 0 195 178 4.6 324 28 21 116 50 

15 Rail transport 381 2133 56 723 0 1250 137 49 39 93 32 22 

16 Road transport 24881 194905 37147 54054 2169 7066 10189 3990 9264 8797 6760 6194 

17 Air transport 8139 11996 26363 5609 3410 3922 2423 1573 669 666 1251 60 

18 Other transp. serv. 924 141 2039 1925 165 1826 0.001 757 711 357 540 0.4 

19 Households 6104 92330 50821 3633 4482 5069 107 917 972 1135 201 2711 

20 Agriculture, forestry 974 51906 292 9236 1253 299 699 1978 1537 473 1714 1155 

21 Fishing 0 0 0 0 0 0 0 190 145 0 0 0.1 

22 Other final use 1294 17241 37677 988 911 21.8 239 1756 2453 3303 77 681 

23 Non-energy use 0 0 0 0 0 0 0 3208 2734 6515 2126 3807 
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Table S8.  Projected national electricity generation by different energy sources for 2050 (GWh yr-1) for the business-as-usual (bau) scenario.  Results 

from simulations in Ref33.  CCS, carbon capture and storage; CC, combined cycle; IGCC, integrated gasification CC; CCGT, CC gas turbine; BIGCC, 

biomass IGCC, PV, photovoltaic; CSP, concentrated solar power; CNG, compressed natural gas 

Power source China India USA Brazil Indonesia Canada Mexico France Italy Germany Spain Poland 

1 Nuclear 125160 77114 432248 18102 0 38779 7812 434313 0 5131 29348 0 

2 Oil 11955 93308 42327 28541 54323 4841 71993 3118 17529 24533 17444 5538 

3 Coal 10227320 3941654 2506522 76324 276494 80264 93416 5130 7253 9734 4021 4343 

4 Coal + CCS 40171 19801 11989 310 1551 245 362 290 626 24928 190 21470 

5 IGCC 173284 131612 162095 382 18775 303 6080 97 200 3674 96 416 

6 IGCC + CCS 145337 102677 91382 315 10986 242 2681 978 6916 167158 602 51920 

7 CCGT 88710 256829 1607133 23844 156321 2856 246915 6311 126187 254831 9251 11027 

8 CCGT + CCS 1121 3015 8187 428 1104 38 835 454 17674 33863 426 3043 

9 Solid Biomass 2.8 63 1004 1417 2.1 11 10 986 883 33141 4812 406 

10 S Biomass CCS 1552 1430 564 387 3.0 14 3.5 429 384 6293 736 2155 

11 BIGCC 1921 1874 1202 450 3.9 15 5.1 327 507 8695 697 379 

12 BIGCC + CCS 1670 1645 1002 378 3.5 12 3.9 2608 6125 11533 743 15806 

13 Biogas 0 141587 110230 1808 0 1337 23220 4786 10966 21771 1183 1873 

14 Biogas + CCS 0 443 246.1 7 0 5.0 11.034 88 167 256 15 33 

15 Tidal 10 0 0 0 0 7.8 0 318 0 0 0 0 

16 Large Hydro 2665707 535008 406894 1003336 22350 564936 85883 171183 107326 82020 65882 19264 

17 Onshore 55845 15246 979293 109463 3.7 238208 138314 13641 10459 48208 1933 4949 

18 Offshore 732 1362 684 178 0.004 35 19 2178 304 1545 415 205 

19 Solar PV 60935 64802 79157 0 49 119 3687 106391 80379 268704 194386 99714 

20 CSP 3.6 0 246 0 0 0 0 0 0 0 3547 0 

21 Geothermal 877 0 38957 0 28974 0 33436 0 12795 1604 0 0 

22 Wave 0.16 0 0 0 0 0.01 0 21 0 0 0 0 

23 Fuel Cells 0 0 24 0 0 0 0 17 3.2 1.7 0 0.002 

24 CHP 0 0 10 0 0 0 0 2.7 1.7 3.9 0 0.018 

TOTAL 13602314 5389470 6481396 1265670 570943.2 932267.8 714686.5 753666.7 406684.9 1007628 335727 242541 
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Table S9.  Projected national electricity generation by different energy sources for 2050 (GWh yr-1) for the 2°C scenario.  Results from simulations in 

Ref33. CCS, carbon capture and storage; CC, combined cycle; IGCC, integrated gasification CC; CCGT, CC gas turbine; BIGCC, biomass IGCC, PV, 

photovoltaic; CSP, concentrated solar power; CNG, compressed natural gas 

Power Source China India USA Brazil Indonesia Canada Mexico France Italy Germany Spain Poland 

1 Nuclear 418781 166230 950479 33078 0 29626 23815 448225 0 10335 39875 0 

2 Oil 19793 45544 18998 11272 15910 792 25227 2137 14097 14017 13696 2654 

3 Coal 1362105 357516 140047 7126 6821 850 3792 5150 3331 17126 4976 258 

4 Coal + CCS 166127 46799 18151 293 16038 51 740 202 540 8098 247 7938 

5 IGCC 60936 7787 3322 58 158 6.3 52 104 82 4365 146 43 

6 IGCC + CCS 1552557 268333 85500 272 50820 44 6553 504 3266 44142 688 42498 

7 CCGT 1264876 437008 904446 10160 136005 175 123693 5594 78527 241824 15954 2075 

8 CCGT + CCS 696260 190977 172568 1017 76197 27 62429 454 23097 23869 927 18559 

9 Solid Biomass 300452 56115 12204 8566 131 106 92 1609 2133 26942 5395 1091 

10 S Bio.+ CCS 75897 21519 9598 18259 400 1989 109 1453 944 6356 841 9716 

11 BIGCC 66647 1657 11612 1219 39 14 114 502 1783 6646 772 2249 

12 BIGCC + CCS 947314 264486 268057 18976 2960 1844 3403 13072 34621 10471 829 22985 

13 Biogas 0 3695 93375 4454 0 1111 44831 7693 18597 31773 3184 3310 

14 Biogas + CCS 0 4694 95260 103 0 261 171 3459 464 610 2960 3376 

15 Tidal 22 0 0 0 0 5.7 0 394 0 0 0 0 

16 Large Hydro 2454544 265623 680421 1168908 31638 491740 120922 151917 107478 61823 64878 17118 

17 Onshore 595116 210065 1736840 192445 2357 176572 198160 16455 12218 62826 4820 11766 

18 Offshore 37664 40476 32179 1568 35 35 1262 2133 867 4170 1055 13725 

19 Solar PV 3760883 686159 136105 0 41745 380 3887 94725 74434 189110 197508 85561 

20 CSP 609 0 859 0 0 0 0 0 0 0 4296 0 

21 Geothermal 1818 0 48864 0 208366 0 42324 0 11833 1156 0 0 

22 Wave 12 0 0 0 0 0.015 0 30 0 0 0 0 

23 Fuel Cells 0 0 24 0 0 0 0 21 4.8 12 0 0 

24 CHP 0 0 11 0 0 0 0 2.2 2.0 4.9 0 0.006 

TOTAL 13782413 3074683 5418920 1477774 589620 705629 661576 755835.2 388318.8 765675.9 363047 244922 
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Table S10.  Summary of national rail logistical operations for 2050.  Analysis assumes 3000 t payload. 

 

 Origin-Destination (km) Full trip (km) Cost in US dollars    CO2 Emissions   

Country Mean StdD Mean StdD Mean StdD $/KM $/t/km Mean StdD kgCO2/t/km g/t/km 

Brazil 53.0 104.5 106.1 209.1 875 1724.0 16.5 0.00550 2416.6 4763.0 0.0152 15.2 

Canada 476.8 388.3 953.6 776.5 8187 6666.4 17.2 0.00572 21723.7 17689.2 0.0152 15.2 

China 65.1 112.5 130.2 224.9 618 1066.7 9.5 0.00316 1622.5 2802.7 0.0083 8.3 

France 178.1 156.6 356.2 313.1 2156 1895.0 12.1 0.00403 3246.0 2853.2 0.0061 6.1 

Germany 180.7 162.3 361.4 324.7 1855 1666.9 10.3 0.00342 3292.7 2958.4 0.0061 6.1 

India 207.4 201.0 414.7 402.0 4399 4264.1 21.2 0.00707 11336.5 10988.2 0.0182 18.2 

Indonesia 44.0 72.9 88.0 145.7 591 978.6 13.4 0.00448 2004.3 3319.8 0.0152 15.2 

Italy 210.5 154.9 421.0 309.7 2534 1863.9 12.0 0.00401 3836.4 2822.1 0.0061 6.1 

Mexico 35.0 84.7 70.0 169.3 452 1093.9 12.9 0.00431 1594.7 3857.6 0.0152 15.2 

Poland 506.4 258.3 1012.8 516.7 4717 2406.8 9.3 0.00311 9228.3 4708.1 0.0061 6.1 

Spain 319.1 216.1 638.2 432.2 3211 2174.7 10.1 0.00335 5815.1 3938.1 0.0061 6.1 

USA 473.2 438.7 946.4 877.3 5599 5190.1 11.8 0.00394 17247.7 15988.0 0.0121 12.1 
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Table S11.  Summary of national road logistical operations for 2050 in the business-as-usual scenario.  Analysis assumes 40 t HGV electric payload. 

 

 Cost in US dollars CO2 Emissions 

Country Max Mean StdD $/KM $/t/km Max Mean StdD Kg CO2/t/km g/t/km 

Brazil 439 42.1 51.0 0.23 0.00584 223 21.4 26.0 0.0030 2.97 

Canada 319 80.8 59.4 0.14 0.00360 281 71.2 52.3 0.0032 3.17 

China 213 25.2 23.6 0.15 0.00380 1486 176.2 164.9 0.0265 26.51 

France 141 32.5 26.6 0.21 0.00520 9 2.0 1.7 0.0003 0.32 

Germany 229 56.0 51.6 0.34 0.00840 151 37.1 34.1 0.0056 5.56 

India 125 28.0 21.3 0.13 0.00320 1066 238.8 181.8 0.0273 27.27 

Indonesia 240 22.8 51.2 0.12 0.00296 1959 186.7 418.6 0.0242 24.20 

Italy 191 61.2 40.9 0.35 0.00864 133 42.6 28.5 0.0060 6.02 

Mexico 292 35.2 56.7 0.27 0.00680 538 64.9 104.2 0.0125 12.55 

Poland 238 114.3 56.5 0.23 0.00576 25 12.2 6.0 0.0006 0.61 

Spain 209 66.5 44.8 0.23 0.00572 74 23.4 15.8 0.0020 2.01 

USA 264 69.4 62.4 0.18 0.00456 1049 275.2 247.5 0.0181 18.09 

 

  



49 

Table S12.  Summary of national road logistical operations for 2050 in the 2°C scenario.  Analysis assumes 40 t HGV electric payload. 

 

 Cost in US dollars    CO2 Emissions    

Country Max Mean StdD $/KM $/ton/km Max Mean StdD kgCO2/t/km g/t/km 

Brazil 439 42.0 51.0 0.233 0.0058 0 -3.68 4.49 -0.00051 -0.510 

Canada 319 80.8 59.4 0.143 0.0036 0 -3.29 2.46 -0.00015 -0.146 

China 213 25.2 23.6 0.151 0.0038 177 21.03 19.68 0.00316 3.165 

France 141 32.5 26.5 0.207 0.0051 0 -2.53 2.11 -0.00041 -0.405 

Germany 229 56.0 51.6 0.335 0.0083 172 42.25 38.91 0.00633 6.333 

India 125 28.0 21.3 0.127 0.0032 134 30.05 22.87 0.00343 3.432 

Indonesia 240 22.8 51.2 0.118 0.0029 397 37.81 84.77 0.00499 4.900 

Italy 191 61.1 40.8 0.345 0.0086 19 6.00 4.02 0.00084 0.847 

Mexico 292 35.2 56.6 0.272 0.0068 169 20.35 32.79 0.00393 3.932 

Poland 238 114.3 56.4 0.230 0.0057 0 -81.11 40.07 -0.00409 -4.087 

Spain 209 66.5 44.8 0.228 0.0057 66 21.07 14.21 0.00181 1.812 

USA 264 69.3 62.40 0.182 0.0045 75 19.58 17.62 0.00128 1.287 
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Table S13.  Summary of mining component costs and relevant weights as used in our analysis. 
Mine Characteristics: 10,000 t ore/day, open-pit, 1:1 strip ratio, 365 days a year, located in USA, based on 

analyses in Ref25 with additional data from Ref26. 

 
  

Capital Costs ($) 
 

Labour Factor 
(wl) 

Fuel Factor 
(wf) 

Independent Factor 
(ws) 

Equipment 13,956,400 0.0 0.0 1.0 

Haul Roads/site work 2,183,300 0.1 0.7 0.2 

Preproduction Shipping 824,200 0.0 0.0 1.0 

Buildings 3,217,500 0.3 0.3 0.4 

Electrical System 179,200 0.3 0.3 0.4 

Working Capital 1,631,900 1.0 0.0 0.0 

Engineering and Management 2,105,500 1.0 0.0 0.0 

Contingency 2,246,600 0.0 0.0 1.0 

Total Capital Costs ($) 26,344,600 
   

     

Total Capital Costs ($/t) 
(Assuming a 10 year mine 
lifespan, operating 365 days a 
year at 10,000 t day-1)                           

0.72 
 

Operating Costs ($/t ore) 
 

Labour Factor 
(wl) 

Fuel Factor 
(wf) 

Independent Factor 
(ws) 

Fuel 0.81 0.0 1.0 0.0 

Supplies and Materials (excl. 
fuel) 

0.88 0.0 0.0 1.0 

Labor 1.91 1.0 0.0 0.0 

Equipment Operation 1.44 0.0 0.8 0.2 

Administration 0.69 1.0 0.0 0.0 

Sundry Items 0.57 0.0 0.0 1.0 

Total Operating Costs ($/t) 6.30 
   

     

Total Costs ($/t) 7.02 
   

  

 

 

 

 

 

 

 



51 

Table S14.  Summary of global datasets, resolution and sources.  All gridded datasets were 

resampled to 1/6° resolution with the nearest neighbour method37.  We minimized data gaps 

resulting from spatially overlaying grids, using image dilation from the Matlab Image Processing 

Toolbox63.  This procedure morphologically expands the data boundaries of an image thus 

reducing the background/no-value pixels and achieving a better overlap between gridded data. 

 

Variable Resolution Year Reference 

Crop net primary production 1/12° 2000 21,22 
 

Soil pH (0-30 cm) 1/20° 2012 64 

Soil temperature (0-5 cm) 1.25° × 1.875° 2050 65 

Diesel Price Country Level 2010-2017 66 

Gross National Income per Capita Country Level 2010-2017 67 

Industrial electricity tariffs Country Level Various 68-70 
 

Mining Costs Country Level 2010-2017 25,26 
 

Crop evapotranspiration 1/12° 1998-2002 11 

Crop irrigation 1/2° 1998-2002 10 

Precipitation 1/24° 1998-2002 9 

GDP projections for SSPs - 2000-2100 40 
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Table S15.  Chemical data from a column leach experiment on construction and demolition 

waste compared with typical water quality standard ranges.  Even without separating out 

cement waste from other materials59, very little of the leachate contained elemental 

concentrations above typical water quality standard ranges60-62. The exceptions are Sb and Se. 

However, these are less concentrated in the unmixed cement waste59. 

C&D leached element48 Mean 

Typical Range for 
Water Quality 
Standards60-61 

Aluminium (mg l-1) 1.6 0.2 

Calcium (mg l-1) 395 250 

Iron (mg l-1) 0.085 0.2 to 1 

Potassium (mg l-1) 125 10 to 12 

Sodium (mg l-1) 90 170 to 200 

Magnesium (mg l-1) 0.0485 50 

S as sulphate (mg l-1) 75 250 to 400 

Arsenic (μg l-1) 16 10 to 50 

Barium (μg l-1) 800 700 to 1000 

Cadmium (μg l-1) 1 2.5 to 5 

Chloride (μg l-1) 55000 250000 

Cobalt (μg l-1) 9.5 3 to 100 (ref60) 

Chromium (μg l-1) 55 5 to 250 

Copper (μg l-1) 50 1 to 2000 

Lithium (μg l-1) 190 700 (Ref61) 

Manganese (μg l-1) 6 50 to 500 

Molybdenum (μg l-1) 15 70 

Nickel (μg l-1) 35.5 20 to 200 

Phosphorous (μg l-1) 60 400 to 5000 

Lead (μg l-1) 9.5 4 to 250 

Antimony (μg l-1) 36 5 

Selenium (μg l-1) 32 10 

Vanadium (μg l-1) 18.5 20 to 100 

Zinc (μg l-1) 130 8 to 5000 
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