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Epigmenio González 500 Fracc. San Pablo, Querétaro, México 76130
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Abstract

Lattices in woodpile arrangement are of interest in many applications such as tis-
sue engineering scaffolds, elastic metamaterials and lightweight structures: the choice
in lattice arrangement and stacking parameters facilitate innovative material design.
Additive manufacturing has enabled fabrication of such structured materials with tun-
able properties. Here, the elastic response of woodpile lattices is studied analytically,
numerically, and experimentally when they are compressed in the stacking direction,
with struts staggered in alternating layers. Expressions for the apparent Young’s mod-
ulus, and its dependence on porosity, are derived from the analysis of a periodically-
supported, periodically-loaded, elastic filament. A fifth power law relating the apparent
Young’s modulus with the volume fraction is obtained in the asymptotic limit of high
porosity, which is consistent with scaling arguments presented here. When the stack-
ing is asymmetric, the apparent stiffness is presented in terms of an analytically known
function of the skewness parameter α. For dense lattices, departure from the proposed
power law is observed in computational simulations, as well as laboratory experiments
on polylactic acid (PLA) 3D-printed woodpiles. Variations from power law can be
attributed to unaccounted for effects in the micromechanics of the filaments, e.g. fil-
ament shear and diametrical compression. The experimentally obtained relationship,
between the apparent modulus and porosity, is in excellent agreement with our analysis
and numerical results.

Keywords: Lattice material, apparent elastic modulus, woodpile structure,
3D-printing

1. Introduction
Recent advances in additive manufacturing have enabled the fabrication of struc-

tured materials with properties that are usually not afforded by most naturally occur-
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ring homogeneous matter. Several promising lattice geometries are currently being
explored, all with the aim to engineer designer materials with tunable properties [1, 2].
Of these, perhaps the simplest, yet easiest to fabricate by a filament extrusion based ad-
ditive manufacturing process, is the so-called woodpile structure. Materials with struc-
tural hierarchy, in order to tailor their properties, have been proposed for a while [3];
their physical realisation has been helped by the advances in modern additive manufac-
turing. In this paper, we are concerned with elastic lattices composed of orthogonally
stacked filaments in a woodpile arrangement. Such lattice structures are commonly
used in biomedical scaffolds [4–7], electromagnetic bandgap structures [8–12], and
other lightweight structural applications [13, 14]. Just as bandgap structures in electro-
magnetism and optics have led to a flurry of research activities, acoustic meta-materials
with hierarchical lattice geometry appear promising for tailoring vibro-acoustic trans-
mission of mechanical waves [15] . In the area of tissue engineering, woodpile scaf-
folds provide structural support for cell attachment and proliferation [16]. These scaf-
folds require a certain degree of interconnected porosity to enable cellular processes,
whereas their mechanical properties are of great interest as they should be capable to
withstand mechanical loading [17, 18]. Here we are interested in the elasticity of such
lattice materials.

Significant simplification in the analysis of remotely loaded lattice structures can be
made, thanks to the translational symmetry, as exploited previously by several authors
in various contexts. Planar [19] and spatial [20] tensile networks have been analysed
to determine the effective elastic moduli. Unusual properties such as negative apparent
Poisson’s ratio have been reported [21]. The classical result for 2D honeycombs was
presented by Gibson and Ashby [22–24], who made use of the periodicity in hexag-
onal honeycombs to obtain analytical expressions for the in-plane stiffness. Bonfanti
and Bhaskar [25–27] carried out non-linear elasto-plastic analysis of hexagonal honey-
combs and other complex lattices in closed form and also presented a scaling argument
for non-linear response of such lattices made with elastic-perfectly plastic material.
Christensen [28] obtained elastic moduli of transversely isotropic solids in the limit
of low density. They considered cellular geometry with pentagonal dodecahedra as
the repetitive unit. Warner and Edwards [29] presented a scaling argument for the
effective elastic modulus of cellular solids. The arguments in Ashby and Warner &
Edwards can be summarised as follows. For honeycombs of cell wall thickness t and
characteristic cell length λ, the apparent density scales as ρ ∼ (t/λ), whereas apparent
modulus scales according to 〈E〉 ∼ (t/λ)3 following simple flexural mechanics of cell
walls combined with scaling of the apparent strain and the remote stress, resulting the
a modulus-apparent density scaling as 〈E〉 ∼ ρ3. These scaling relationships change
for 3D open-cell lattices and foams as ρ ∼ (t/λ)2 and 〈E〉 ∼ (t/λ)4 respectively, giving
rise to 〈E〉 ∼ ρ2. The precise constants of proportionality involved in these scaling
laws have to be determined by detailed mechanics. As opposed to these, the wood-
pile lattice has characteristic length scale in the stacking direction as the diameter of
the cylindrical struts, whereas that in each stacking layer is λ, the spacing between the
struts. These differences result in very different modulus-porosity relationship, which
is the subject of this work.

Despite a huge experimental interest in woodpile structures, review of the literature
reveals that most studies are limited to computations or experimentation on structures
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with specific lattice and material parameters; a general theoretical treatment of the me-
chanics of such elastic lattices is missing. Here, we systematically investigate the me-
chanical behaviour of woodpile structures under compression analytically, numerically
and experimentally. Compressive stiffness, when alternate layers are stacked symmet-
rically or asymmetrically, is presented as a function of key architectural parameters.
Analytical expressions for the apparent stiffness are valuable for material design, since
the sensitivity to the parameters of the micro-structural architecture is then available.

The mechanics of such elastic lattices along the filament direction and when such
slender lattice structures are in flexure have been recently studied [13, 30]. The dom-
inant micromechanics in both these cases is the stretch of the filaments. Materials
with micro-structure are frequently described by the apparent properties, which may
be anisotropic depending on the lattice symmetry. Woodpile lattices are orthotropic
because of the material symmetry about three orthogonal planes. Properties along the
two filament axes are identical, which would be different from those along the stack-
ing direction. Experimentally measured stiffness and strength in the stacking direction
are significantly different from those in other two directions for 3D-printed lattice struc-
tures [31]. Review of the properties, structure, and processes for extrusion-based meth-
ods presented in [32]. Design methods for structures fabricated using extrusion based
3D-printing have been surveyed in [33]. Hutmacher et al. [34] reported the cellular re-
sponse as well as compressive properties in the stacking direction of polycaprolactone
(PCL) scaffolds fabricated using fused deposition modeling (FDM), when the alterna-
tive layers are not orthogonal. Zein et al. [35] characterised the stiffness and strength
of PCL scaffolds under compression for various filament orientations. Miranda et al.
[36, 37] studied calcium tissue engineering scaffolds using Finite Element (FE) simula-
tions and laboratory experiments for various filament orientations. Naghieh et al. [38],
studied the elastic response of FDM fabricated PLA specimens using FE simulations.
The discrepancy, between numerical and experimental results observed in [38], was at-
tributed to the effect of layer penetration between adjacent filaments. Norato et al. [39]
proposed an analytical model to predict the apparent Young’s modulus in the stacking
direction. The dominant deformation considered in [39] is diametrical compression,
which is valid for woodpiles with alternate layers aligned, as opposed to the staggered
arrangement considered here.

In the field of tissue engineering, porous structures as well as architectured mate-
rial have been used to provide interconnected internal structure for cells to grow [40].
Initially foam were used for such application [16], however with the advent of additive
manufacturing, the use of structured material with controlled porosity is gaining pop-
ularity [41]. The effect of the relative position of the filament with respect to adjacent
layers on the apparent properties of woodpile scaffolds was first studied experimentally
by Sobral et al. [42]. Arrangements that possessed staggered placement of filaments
showed superior results for cell growth. Staggered arrangement of filaments inhibit
the cells falling straight to the bottom of the scaffold, which is facilitated by aligned
stacking of filaments [43]. Yeo et al. [43] reported that changing the relative po-
sition of the filaments produces different pore sizes, which results in scaffolds more
suitable for bone tissue regeneration. Afshar et al. [44] fabricated porous scaffolds
using stereolithography based on triply periodic minimal surface, and characterised the
mechanical properties by laboratory and computational experiments. Too et al. [45]
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studied the strength of woodpile structures fabricated using FDM and observed a rapid
reduction in strength when porosity is increased. Serra et al. [46] studied the role
of microstructure on the mechanical properties and cell response therein, for various
woodpile arrangements. Wu et al. [47] experimentally characterised the strength as
a function of filament orientation in woodpile lattices of PEEK fabricated using FDM
method. Martinez-Vazquez et al. [48] performed four-point bending of ceramic scaf-
folds and FE simulations to study the maximum stress within the filaments. In all these
experimental, computational and theoretical studies, there appears to be no attempt to
systematically bring out the apparent modulus vs. porosity relationship, despite their
continued use in a range of practical contexts.

The review of the existing literature suggests that there is very little work on the
modulus-porosity relationship for staggered woodpile lattices, when they are com-
pressed in the stacking direction. The present work is inspired by this need. Here
we consider the compression of such lattices in the stacking direction and present a
simple analytical solution for apparent Young’s modulus that can be associated pri-
marily with filament bending. This simple theory is then refined by accounting for
filament shear, which is more suitable for dense lattices. These very different mecha-
nisms of filament deformation lead to completely different power law dependence of
the apparent modulus with the porosity, as reported here. Besides, the possibility of
stacking the alternate layers of filaments that are supported asymmetrically leads to the
prospect of tailoring the stiffness by a significant factor, which depends on an asymme-
try parameter α, as introduced here. The analysis of such lattices requires considering
a periodically-supported, periodically-loaded elastic filament. The subsequent sections
are arranged as follows. In Section 2, analytical models for the two arrangements are
developed: first when the woodpile architecture is staggered in one direction, and sec-
ond when it is staggered in both directions perpendicular to the direction of stacking.
An analytical expression for apparent Young’s modulus of asymmetrical arrangement
in terms of skewness parameter α is also presented in this section. Predictions for the
apparent stiffness are compared with FE simulations as well as experimental results on
FDM 3D-printed specimens for a range of relative density are presented in Section 3.
Discussions, including limitations of the high porosity limit formula, followed by scal-
ing arguments, are provided in Section 4. Finally, conclusions are presented in Section
5.

2. Compressive stiffness of staggered woodpile lattices

The lattice structure, analysed here under compression, is shown in figure 1. The
filaments (or struts) run parallel within a layer, but they are orthogonal across adjacent
layers. The filaments within alternate layers do not overlap looking in the z-direction,
therefore, we will refer to the configuration as staggered (see figure 1). An aligned
arrangement of filaments with alternating layers has been studied elsewhere [38, 39].
When lattices in either staggered or aligned arrangements are remotely loaded along the
x-axis or the y-axis, the elastic response is given by the elongation or compression of
the filaments parallel to the loading direction. For a given volume fraction ρ̄ = πr/2λ,
the apparent Young’s modulus is identical for both arrangements along either x-, or
y-directions, and is given by the rule of mixture [13, 30]. Here r is the radius of the
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filament and λ is their lateral spacing. While the apparent Young’s modulus along the
stacking direction of the aligned arrangement has been previously studied [38, 39], the
response of staggered lattices when compressed in the z-direction as shown in figure
1a has not been studied before. When the filaments are stacked in a staggered manner,
the response is dominated by filament bending; whereas when the stacking is aligned,
diametrical compression of the filaments is the main mechanism of deformation. Here,
the stiffness in diametrical compression is assumed to be much greater than the flexural
stiffness of the filaments, hence the flexibility of the supporting filaments is ignored
throughout.

(a) (b)

(c)

!
" #

!
"

!
#

Unit cell

Figure 1: (a) Schematic diagram of the staggered woodpile arrangement.(b) Front view of the structure in
the x − z plane; blue shaded filaments are staggered in alternating layers, (c) side view of the structure in the
y − z plane; gray filaments in alternate layers are aligned.

2.1. Symmetrical unidirectional stacking

A unit cell within the elastic lattice is shown in figure 2a. Filaments within a layer
act as supports for those in the layer above. Filaments propped this way, in turn, are
loaded centrally by filaments in a layer above that are staggered relative to the filaments
in a layer below (figure 1b). Under a compressive remote stress σ∞ in the z-direction,
the filaments that are parallel to the x-axis bend because of the constraints imposed by
the filaments that are parallel to the y-axis. Filaments parallel to the y-axis do not bend.
The diametrical compression is ignored in all struts. The bending of the four half-
cylinders that appear parallel to the x-axis in figure 2a is shown in figure 2b. Because
of the periodicity and the symmetry of the structure, the filaments can be treated as
fixed-fixed beams under a transverse force F acting at the mid-point of its span λ (see
figure 2c). The maximum transverse displacement, under the force F, is given by
δ = Fλ3/192EI, where E the Young’s modulus and I the second moment of area of the
filament cross-section.

The unit cell in figure 2b consists of a filament of diameter 2r at the centre, one
above and one below, in addition to two halves—one at the top one at the bottom,
adding up to a length 8r in the z-direction. The apparent compressive strain in the
loading direction is given by the ratio 〈ε〉 = 2δ/8r. The number of squares of size λ×λ
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Figure 2: (a) An oblique drawing of the unit cell of a periodic woodpile lattice, (b) schematic diagram of
an undeformed and a deformed unit cell—view along the y-direction, and (c) fixed-fixed beam model for
a filament within a symmetrically staggered lattice. Supporting filaments running across are assumed to be
stiff.

over which the force spreads, is half the number of filament pieces of length λ within a
square grid, as N2 squares are associates with 2N2 segments of length λ. Alternatively,
each edge of length λ within a square grid contributes to two adjacent squares and
since there are four edges per square, there must be twice the number of edges than
the number of square. Combine this with the woodpile geometry that is exposed to
loading over filaments that run within each layer, i.e. only one of the two orthogonal
directions, the number of segments of length λ equals the number of λ × λ squares.
Hence, the remote stress is given by σ∞ = F/λ2. Apparent quantities and properties
will be indicated by angular brackets. Making use of the relationship 〈E〉 = σ∞/〈ε〉,
the apparent Young’s modulus is given by

〈E〉1 = (768EIr)/λ5. (1)

The subscript 1 after the angular bracket reminds us that the lattice is unidirectionally
staggered. Substituting I = πr4/4 into (1), we have 〈E〉1 = 192Er5/λ5, i.e. 〈E〉1 ∼
(r/λ)5. The apparent Young’s modulus can be expressed as function of the volume
fraction ρ̄ = πr/2λ as

〈E〉1 = CE(ρ̄)5, (2)

where C = 6144/π4 ≈ 63.07 is a non-dimensional constant. The expression in equation
(2) is valid for lattices with low relative density, as it is based on filaments modelled as
slender beams in transverse deflection.

We further extend the applicability of equation (2) by taking into account the
shear deformation in the bent filaments, when the spacing is small. Using Timo-
shenko correction, the traverse displacement of a beam shown in figure 2c is given
by δ = (Fλ3)/(192EI) + (Fλ/8S ) [49], where S is the shear stiffness of filaments given
by S = κGA f . Here G is the shear modulus of the material, κ is the shear correction fac-
tor, and A f is the cross-sectional area of the filament. The expression for the apparent
Young’s modulus is thus refined as,

〈E〉1−T =
CE (ρ̄)5

1 + 48π−2κ−1(1 + ν) (ρ̄)2 . (3)
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The subscript T refers to the apparent modulus when Timoshenko shear correction is
included in filament bending. For materials with large porosity, i.e. ρ̄ � 1, the two
expressions coincide. This confirms that, for low relative densities i.e. high porosity,
Euler-Bernoulli micromechanics are adequate to predict the apparent Young’s modulus
of the lattice material. Taking ν = 0.36 for PLA [50], and shear coefficient for circular
cross-sections κ = 0.9 [51], we have

〈E〉1−T ≈ 〈E〉1
[
1 − 7.35 (ρ̄)2

]
+ O

(
(ρ̄)4

)
. (4)

For r/λ = 1/10, ρ̄ = π/20, which gives 〈E〉1−T ≈ 0.82〈E〉1, indicating a correction of
18% for lattices with ρ̄ < 0.15. By contrast, doubling the spacing with respect to the
filament diameter, i.e. for r/λ = 1/20, we get a correction of 4.53%; i.e. doubling the
porosity approximately quarters the correction, which is consistent with the quadratic
scaling in the correction term 7.35 (ρ̄)2 above.

Analysis for lattices with staggered filaments in both x- and y-axes is taken up next.
The alternate layers are still staggered symmetrically, i.e. the layer above is positioned
in manner that λ-long struts are loaded centrally.

2.2. Symmetric bidirectional staggered stacking

Consider the lattice arrangement shown in figure 3. Filaments can be seen to be
staggered across alternate layers in both x- and y-direction. Under the action of a re-
mote stress σ∞ in the z-direction, all the filaments in the lattice arrangement respond in
bending, as opposed to the configuration analysed in the previous sections. A repetitive
unit is shown in figure 3b. An analysis on the lines of that from equations (1) and (2)
results in the expression for the apparent Young’s modulus 〈E〉2 = (384EIr)/λ5, where
the subscript 2 refers to the bidirectional arrangement. Comparing this with equation
(1), we note that the bidirectionally staggered structure is softer by a factor of two.
Therefore, the apparent modulus related to the apparent volume fraction as per

〈E〉2 =
1
2

CE (ρ̄)5 . (5)

(a) (b)
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𝑦 𝑥

𝜎∞
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𝜆

𝜆

Figure 3: (a) Schematic sketch of the doubly staggered woodpile structure, (b) a repeating unit of the struc-
ture.
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Models presented in Sections 2.1 and 2.2 are restricted to symmetrical staggered
configurations, where the filaments lie at the midpoint of the overhang between the
supports. The possibility of designing architectures with bespoke stiffness by position-
ing the staggered layers at an arbitrary offset affords interesting design opportunities to
tailor the apparent stiffness. This general case is considered next.

2.3. Asymmetric unidirectional arrangement

Consider the lattice geometry shown in figure 4a, where filaments supported over
two orthogonally placed filament are asymmetrically loaded. The elastic response of
this lattice under a remote stress σ∞ is expected to be primarily due to the bending
of the filaments; all other deformations including shear and diametrical compression
of filaments are ignored. A filament with periodic support and symmetric staggered
arrangement (either unidirectional, or bidirectional), as discussed in the previous sec-
tions, has zero displacement and slope at the two ends —thus equivalent to fixed-fixed
end conditions for a repetitive unit. For periodically supported filaments in asymmet-
ric lattice (figure 4b), the zero deflection condition continues to be valid, provided the
flexibility of the support filaments diametrically is ignored, which is a fair assumption
for filament bending dominated well spaced lattices. However, the zero slope condition
is not applicable now, which turns the analysis a little more involved. Therefore, the
textbook case of asymmetrically loaded beam of finite length λ, with either fixed or
supported conditions, is different from the periodically-supported, periodically-loaded
problem considered here. So we now need a new analysis, accounting for appropriate
translational symmetry present within infinite lattices.

Except at the point of loading and supports that we consider as rigid, filaments are
free of external loading. So their deflection can be calculated by splitting the domain
of analysis into two parts (figure 4c). The left side is modelled as a beam and has a
length of αλ, while the length of the remaining right side is (1 − α)λ. Here α serves as
the skewness parameter, 0 < α < 1.

We define a coordinate system with origin at ζ = 0 to be at the left support of the
left part of the span, so that the transverse load is applied at ζ = αλ. For the right
portion of the span, the load is applied at ξ = 0, the origin of the second coordinate
system, so that the support at the right end is at ξ = (1 − α)λ. The displacements for
the left and right beams, described by the variables w1(ζ) and w2(ξ) respectively, are
governed by the following two fourth order differential equations that are valid in the
two different spatial domains

EIw1,ζζζζ = 0, 0 ≤ ζ ≤ αλ; and EIw2,ξξξξ = 0, 0 ≤ ξ ≤ (1 − α)λ. (6)

Here each subscript after a comma represents differentiation with respect to that
variable. As there is no external force between the supports and the location of load-
ing, the right side of the above two equations is zero. The solution of the fourth order
homogeneous differential equations immediate and is given by the two cubic expres-
sions in the terms of the local coordinates ζ and ξ:

w1(ζ) = a0 + a1ζ + a2ζ
2 + a3ζ

3, and w2(ξ) = b0 + b1ξ + b2ξ
2 + b3ξ

3. (7)
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Figure 4: (a) Schematic diagram of the periodically-loaded, periodically-supported asymmetric staggered
arrangement, (b) a single filament loaded and supported periodically, (c) a repetitive unit with asymmetrically
placed point force, (d) Free body diagram of an infinitesimal element showing the shear force continuity at
the point where the force F is applied.

These two solutions contain eight unknown constants a0 to a3 and b0 to b3. So we
require eight boundary or periodicity conditions, accordingly. Note that the slope at
the supports is not zero any more. Also, filaments at the supports are not curvature-
free either, despite them being free from external moment. Kinematically consistent
conditions at the supports, therefore, require invoking periodicity.

Firstly, displacement at the supports must be zero i.e. (i) w1(0) = 0 and (ii) w2((1−
α)λ) = 0. Due to the periodicity, there is slope continuity at the supports. Therefore,
the slope ∂w1/∂ζ coming from the left ζ = 0− must be equal to the slope ∂w1/∂ζ
approaching from the right ζ = 0+. Because of translational symmetry, the slope
and the moment at the left support ζ = 0 must be equal those at the right support
ξ = (1 − α)λ. The same argument holds for the curvature continuity, so that (iii)
w1,ζ(0) = w2,ξ((1 − α)λ), and (iv) w1,ζζ(0) = w2,ξξ((1 − α)λ).

Substituting these four boundary conditions into the solutions (7), we obtain a set
of four linear algebraic equations. We require four further conditions to close the
problem, as taken up next.
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The continuity of displacement, slope, moment and the shear force at the point of
application of the force F needs asserting. Displacement, slope and curvatures conti-
nuity are expressed respectively by the following three equations (v) w1(αλ) = w2(0),
(vi) w1,ζ(αλ) = w2,ξ(0), and (vii) w1,ζζ(a) = w2,ξξ(0). The last of these is equivalent
to moment continuity, but the term EI cancels out as there is no jump in the cross-
sectional properties across the point of application of the force F. Finally, continuity
of the shear force is imposed by considering a free body diagram of infinitesimal length
along the beam centred at the point of application of F as shown in figure 4d, which
results in (viii) EIw1,ζζζ(αλ) = EIw2,ξξξ(0) + F. Note that the derivatives in the above
expression are with respect to the local coordinates ζ or ξ as appropriate. Substituting
the four conditions within (v), (vi), (vii), (viii) into (7), we obtain four further algebraic
equations that are linear in the eight unknowns.

Thus we have eight linear equations for the eight unknowns a0, ..., a3 and b0, ..., b3,
arranged in the matrix form Kq = f, where q = {a0, · · · , a3, b0, · · · , b3}

T ,
f = {0, 0, 0, 0, 0, 0, 0, F/(6EI)}T . The coefficient matrix in the above set of equations
is given in Appendix equation (A1). The eight simultaneous equations can fortunately
be obtained by manually solving eight simultaneous linear equations, consistent with
that from symbolic algebra using Mathematica R© used as a check (the final solution for
eight unknown are given in appendix equations (A2a)-(A2h)), which results in the final
profile of the span given by

w1 =
F

12EI
[
(α − α2)(2α − 1)λ2ζ − 3α(1 − α)λζ2 + 2(1 − α)ζ3], 0 < ζ ≤ αλ, (8a)

w2 = −
F

12EI
[
α2(1 − α)2λ3 − (α − α2)(2α − 1)λ2ζ − 3(α − α2)λζ2 + 2αζ3], αλ < ζ ≤ λ.

(8b)

Compare these with the expressions for profiles, obtained using kinematically incon-
sistent support conditions, that are presented in the Appendix equations (A4) and (A3).
Profiles of the deflected shape between two consecutive support points are shown in
figure 5. In all these sub-figures, the point of application of force from filaments
above are indicated by a red dot. Figure 5a shows profiles for periodically-supported
periodically-loaded filament along with results from clamped and simply supported
finite-length beams for α = 0.8 (see equations (A4) and (A4)). Simple support grossly
over-estimates deflections (exactly by a factor of 4 under the load), whereas clamped
supports under-estimates it. The effect of the location of loading, as dictated by the
skewness parameter α is brought out by figure 5b. Similar trends for clamped and sim-
ply supported finite beams are presented in figures 5c and 5d. Clamped conditions,
although incorrect, provide a reasonable estimate for deflection under periodic load,
especially for slight asymmetry (i.e. α ≈ 0.5), unlike simple support.

The deflection δ under the force F, arising from interaction with filaments above
and below running across, is given by

δ =

(
Fλ3

3EI

)
×
α2(1 − α)2

4
. (9)

Compare the above expression for the deflection under a periodically supported peri-
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Figure 5: Non-dimensional displacement profiles. (a) comparisons between infinite periodic beam, finite
clamped, and finite simply supported beam for α=0.8, (b) infinite periodic beam for range of values of α, (c)
finite clamped beam for a range of values of α, and (d) finite simply supported beam for a range of values of
α. Red dots on each plot shows the point of application of load.

odically loaded beam with those for an asymmetrically loaded finite beam

δ′ =

(
Fλ3

3EI

)
× α3(1 − α)3, (10a)

δ′′ =

(
Fλ3

3EI

)
× α2(1 − α)2 = 4 × δ, (10b)

where δ′ and δ′′ refer to the deflection under asymmetrically placed load on a clamped
and simply supported beams, respectively. Clearly δ′′ is always incorrect by a factor
of 4, but its functional dependence with the skewness parameter α is the same as that
of the periodic beam solution δ, whereas the finite beam expression δ′ has a different
functional dependence on α and it always underestimates the deflection, except for
α = 0.5 when δ = δ′.

The two extreme cases of simplification (i.e. a span of fixed length λ that is either
simply supported, or clamped at both ends) provide upper and lower bounds of the
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estimates of the lattice deflection in compression, δ′ < δ < δ′′.
Displacement at the point of the application of F, δ = w1(αλ) = w2(0), enables

us to calculate the apparent lattice strain. The apparent Young’s modulus of the lattice
material in compression along the stacking direction 〈E〉1,Asym can then be calculated
using the apparent strain and the remote stress. Substituting equation (9) into 〈ε〉 =

2δ/8r and 〈E〉 = σ∞/〈ε〉, the expression for the apparent Young’s modulus is obtained
as

〈E〉1,Asym =
48EIr

α2(1 − α)2λ5 , where 0 < α < 1. (11)

The denominator in the above equation vanishes if α = 0 or α = 1 implying high
stiffness if the filaments are close to becoming aligned in the stacking direction. Equa-
tion (11) can be further simplified by separating the volume fraction dependence of the
apparent stiffness from the dependence upon the skewness parameter α, which can be
captured by a function φ(α). Thus the expression for the apparent modulus takes the
following form:

〈E〉1,Asym = CE(ρ̄)5φ(α), where φ(α) =
1
16

(α)−2(1 − α)−2. (12)

The expression for φ(α) contains the dependence of 〈E〉1,Asym on the relative posi-
tion of the filaments via the non-dimensional geometric parameter α, which is plotted
in figure 6. As α < 1, φ(α) is always greater than 1, which means asymmetry within
staggered woodpile lattices increases stiffness i.e. 〈E〉1,Asym > 〈E〉1, for the same level
of porosity. The variation of φ in the interval 0.3 < α < 0.7 is fairly gentle. When
this parameter is close to 0 or 1, representing a very asymmetric placement of the alter-
nating layers, φ(α) increases steeply. For symmetrically staggered filaments, α = 0.5,
for which φ(0.5) = 1, so that equations (11) and (12) coincide with equations (1) and
(2), respectively. This is further taken up in Section 3.1, where the importance of the
correct slope continuity at the supports is brought out with FE simulations. Equation
(10b) refers to an asymmetrical force F applied on a simply supported finite beam is
also plotted with dotted line in figure 6. Stiffness obtained from this is incorrect by a
factor of four for all values of α.

The increment in stiffness is caused by the reduction in length on one sides of
the filament, increasing its resistance to bend. The model developed here is limited
to positions in which the parameter α is such that it still gives enough length for the
filament to bend. When α approaches 0 or 1, the prediction of 〈E〉 becomes far more
complex, because the diametrical compression becomes a significant part of the total
lattice compression. We do not cover this extreme case here. But, in the limit of α = 1,
the equation (11) becomes singular.

3. Departure from high porosity asymptotic behaviour: computations and mea-
surements

Analytical expressions for the apparent lattice stiffness derived in the previous sec-
tion are now reconciled against FE calculations using the commercial code
Abaqus/CAE/Standard 6.13 R© (Simulia, Dassault Systemes, Providence, RI, USA)
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Figure 6: The function φ(α), when kinematically consistent periodic boundary conditions are used (solid
line), and when an approximation of finite length clamped and simply-supported is used (thinner, and dotted
lines, respectively).

[52]. Filaments that constitute the lattice were modelled as elastic cylinders and meshed
using ten-noded tetrahedral C3D10 solid elements that use quadratic interpolation.
Bonding between the filaments was modelled using a small overlap in the volume
of the adjacent cylinders (4% of radius). The radius of the cylinders was taken as
r = 0.25, 0.3, and 0.4 mm (this choice is based on the size for the available noz-
zles for FDM 3D-printers in the market). The rest of the geometric parameters such
as the separation between the filaments λ, were changed systematically to study their
influence on the apparent elastic modulus. By varying r and λ systematically, porous
lattices of varying relative density ρ̄ were simulated. The material properties for PLA
are taken from the literature, i.e. E = 2290 MPa (data measured from tensile tests on
single FDM-filaments [53]), and the Poisson’s ratio ν = 0.36 [50].

3.1. Symmetrically staggered lattices: computations

We modeled repetitive units of unidirectionally and bidirectionally lattices that are
staggered symmetrically. Analysis of unit cells with appropriate translational symme-
try conditions provide computational economy. Various unit cells, such as those shown
in figure 7a for unidirectional and figure 7b for bidirectional lattices, were subjected to
compressive forces within FE simulation. In each simulation, a rigid plate was tied to
the nodes at the top surface. A uniform compressive pressure was applied to this plate
at the top. The nodes on the bottom surface were constrained in all degrees of freedom,
while due to periodicity of the structure, all the nodes lying on the vertical surfaces
were constrained to remain in their plane, allowing displacements within those planes.
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The deformed shape and von Mises stress distribution under a constant compressive
strain in z-direction for symmetrically unidirectional and bidirectional staggered lattice
structure as obtained from the FE simulations are presented in figure 7. Note the pre-
dominantly bending deformation of the filaments in bidirectionally staggered lattice,
whereas for the unidirectionally staggered structure, only filaments running parallel to
the y-direction contribute to the deformation of the unit cell. The von Mises stresses
for unidirectionally staggered lattice are higher than those for the bidirectionally stag-
gered structure for the same level of remote stress, which indicate the unidirectional
staggered is stiffer that bidirectional staggered and is consistence with equations (2)
and (5).
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Figure 7: Deformed shapes and von Mises stress distributions within a repeating unit under constant com-
pressive strain obtained from the computational experiments on (a) unidirectionally staggered lattice (b)
bidirectionally staggered lattice. The deformed shapes have been scaled up for better visualization.

The apparent Young’s modulus was calculated by spreading the force over the pro-
jected area and accounting for the different lengths in the z-direction for the two lattice
configuration. The apparent Young’s modulus calculated from simulations is plotted
as a function of the relative density in figure 8. The values for unidirectional stag-
gered arrangement are presented using square markers. The trend is above that for the
bidirectional staggered arrangement shown using circles by a constant factor, which
reflects a constant separation between the two trends on a log-log graph. The apparent
Young’s modulus scales 〈E〉 ∼ (ρ̄)5 for both arrangements, as predicted by our analysis
(see, equations (2) and (5)). Theoretical straight lines with slope 5 on a log-log plot in
figure 8 confirm this. The apparent Young’s modulus obtained with shear correction
does not follow a simple power law (see equations (3) and (4)). The same is true of
FE simulations that show a slight departure from the fifth power law as a falling slope
on the log-log plot is observed. When the tangent for low relative density is drawn to
FE data, they correspond to 〈E〉 ∼ (ρ̄)4.8 for unidirectional staggered, and according
to 〈E〉 ∼ (ρ̄)4.7 for doubly staggered lattices, in the asymptotic limit of high porosity
(figure 8). As ρ̄ increases, the ratio r/λ increases resulting in short and thick filaments,
where the beam theories are not applicable. Inclusion of shear significantly improves
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the agreement between numerically obtained results and analysis.
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Figure 8: Comparison of modulus vs porosity as predicted using analyses and the FE simulations. Results
obtained using Euler-Bernoulli (solid lines) and Timoshenko (broken lines) models for the filament flexure
are presented for unidirectional (thin-black) and bidirectional (thick-blue) staggered arrangements.

3.2. Asymmetrically staggered lattices: computations

We carry out FE simulations of a periodically supported periodically loaded beams
for different skewness parameter α. The complete displacement profile of an asymmet-
rically loaded, periodically supported, filament is shown in figure 9 compared with the
theoretical analysis obtained in equation (12). The geometric properties are: overhang
λ = 6 mm, cross-sectional radius r = 0.3, and it is subjected to periodic comb of point
force of magnitude F = 1 N for α = 0.8. Due to shear, the deflection profile obtained
from FE is slightly different from theoretical solution.

Woodpile structures in figure 10 show the deflection profile, obtained from FE sim-
ulations, when the lattice structure is subjected to compressive loading. Von Mises
stress distribution of symmetrical a asymmetrical staggered arrangements are com-
pared for a similar in-plain compressive strain. The filament radius is r = 0.3 mm. The
overhang between filaments is equal to λ = 6 mm. Filaments do not lie at the mid-
point of the overhang to produce asymmetric configuration, the degree of asymmetry
being controlled by the parameter α. The deformed shape in figure 10 corresponds to
α = 0.7. The non-zero slope at the support filaments is observed in the inset of figure
10b; compare this with the inset of figure 10a for symmetrically staggered lattice that
shows zero slope at the supports.
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Figure 9: Comparison of deflection curves obtained from (a) FE simulations of periodically loaded beam
and (b) theoretical models. Skewness parameter α = 0.8.

The apparent Young’s modulus obtained from the FE simulations for a finite lattice
was compared against the predicted trends calculated using equation (12), as shown in
figure 11. Results from FE calculations are compared with those from the analytical
model consistent with periodic boundary conditions, along with those from pinned and
clamped supports conditions that are inconsistent with the translational symmetry, yet
they provide bounds via a simple analysis (figure 11). The top line corresponds to the
apparent modulus obtained from an analysis of the filaments with zero slope at the
supports. The bottom dotted line corresponds to results from an analysis with pinned
supports at the ends. The solid line corresponds to the model based on the periodic
beam, developed in Section 2.3. The agreement between the periodic beam model and
the FE simulations is excellent, which validates the analysis. The dotted lines in figure
11 are the upper and the lower bounds for the apparent Young’s modulus. The correct
response lies between these two, and thus correctly predicted with the model developed
in Section 2.3. The lowest value for 〈E〉 in figure 11 corresponds to the symmetric
staggered configuration corresponding to α = 0.5. As expected 〈E〉 increases as the
ratio α approaches 1, where equation (11) has singularity at α = 1. The periodic beam
theory presented here has two omissions that are attributed to the difference between
the FE computations and the analysis.

3.3. Fabrication of woodpile lattices and measurement of their apparent modulus

Following the analysis and computations presented in the previous sections, we
carried out an experimental programme to establish the modulus-porosity relationship.
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Figure 11: Relationship between the apparent Young’s modulus and the relative position of the filaments in
the staggered configuration.
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Lattice structures with controlled spacing λ and varying nozzle diameter d were fab-
ricated, which provided a range of porosity and enabled us to measure the apparent
stiffness of such structures as a function of the volume fraction. Fused deposition
modelling using polylactic acid (PLA) was employed for fabrication because of the
affordability and control on the geometry of the process that it offers. Besides these,
many practical structures such as those for tissue engineering are actually produced
using this manufacturing process.

Woodpile lattices were fabricated by driving the print head by a bespoke G-code de-
veloped by us that allowed lattice spacing to be changed at will. Additionally, change-
able nozzles were used to vary the filament diameter. Ultimaker2 Extended+ 3D-printer
was used to fabricate the test specimens. All specimens were fabricated at 205 ◦C with
speed of 1000 mm/min and fan speed of 80%. Overlap between layers was set at
4% of the diameter for all specimens. SEM micrograph of cross-section of woodpile
structures printed with 0.4 mm and 0.6 mm nozzle are shown in figure 12. There is
a deviation of the diameter of the extruded filaments from the nominal nozzle diam-
eter, which is less than 9%. As expected, there is flattening of the extrusion so that
the diameter is slightly wider horizontally and slightly shorter vertically, resulting in
ellipticity of a small degree. Our measurements for printed samples using 0.4 mm noz-
zles show horizontal and vertical diameter of the fabricated extrusions as (434± 7) µm
and (380± 7) µm, respectively. These measurements for the 0.6 mm nominal diameter
nozzles are (623 ± 8) µm and (587 ± 7) µm, respectively. The variance is due to in-
evitable variability in the fabrication process, whereas difference in the mean vertical
dimensions vs that in the horizontal direction is due to flattening of the molten mate-
rial during solidification, which is a systematic deviation from the intended structures.
The relative density of specimens are calculated by using the total weight, the material
density and the total external volume of the printed cubic samples. The length and
width of cuboid test specimens were chosen according to the ASTM standard D1621
to be 50 mm × 50 mm and their height was approximately 25 mm. Instron 5569 testing
machine was used to perform uniaxial compression tests with strain rate of 3 × 10−4

s−1. Dino-lite microscope was used to capture images during the tests.

3.4. Experimental determination of modulus-porosity relationship

Two typical stress-strain curves obtained from experiments are presented in figure
13. The standard deviation is shown used the shaded band around the mean curves. The
response is non-linear when the strain is finite. There are four stages of deformation
that can be identified: (1) bending of filament segments supported by neighbouring
rods, (2) yielding of these segments followed by non-linear response, (3) plastic de-
formation of these filaments under bending, (4) contact and densification of layers.
These phases are shown in the figure using four key points, as labelled. The apparent
Young’s modulus was assessed by considering the linear response at the initial phase of
the deformation. For each specimen, the apparent density was calculated by weighting
sample before test and dividing by its volume based on its external shape and material
density. Thus, from samples of different lattice spacing λ and filament diameter d, the
relationship between the volume fraction and the apparent modulus can be experimen-
tally determined.
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Figure 12: SEM micrograph of a FDM fabricated staggered woodpile structures with (a) 0.4 mm and (b)-(c)
0.6 mm nozzles. The measurements shows a deviation less than 9% of the diameter of the extruded filaments
from the nominal nozzle diameter.
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Figure 13: Average stress strain curve for 3D-printed samples under compression (a) nozzle diameter d = 0.4
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the tests. The standard deviation is within the shaded area.
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Figure 14 shows a comparison between theoretically predicted power law relation-
ship, FE simulations, and the experimentally obtained measured modulus vs apparent
density relationship. Experimental data for two different nozzle diameter are overlaid
on to a single graph. For small values of apparent density, the results fall closely along
a line of slope 5 on a log-log plot, as predicted by the analysis. Deviations from the
theoretical asymptotic fifth-power law are observed for larger values of the apparent
density. The experimental results diverge from the theoretical trend, showing an in-
creasingly softening. However, the experimental data points (dots with experimental
error bars) match well with FE calculations (dotted line). The difference between the
measurements and FE simulations are potentially due to fabrication errors as well as
measurement errors - both have a random character. On the other hand, the difference
between the theoretical power law and the computations/measurements is systematic
softening, and can be attributed to a number of simplifications in the analysis e.g. (i)
ignoring shear in the filaments, (ii) diametrical compression being assumed to be neg-
ligible, (iii) unaccounted for 3D effects in super-dense lattices, (iv) a small degree of
inevitable ellipticity of the profile of the extrusion—our models assume circular cross-
section, by contrast.

It is often possible to carry out simple relationships using scaling arguments—often
used by physicists very effectively (see for example, Gibson and Ashby [22], Warner
& Edwards [29] in the context of solid foams). Unlike the well known cases of planar
honeycombs and open cell 3D foams that show 〈E〉 ∼ ρ3 and scaling respectively, our
detailed analysis shows a fifth power law. This suggests that the existence of simple
power law relations between the apparent modulus and the porosity for woodpile lat-
tices, without the recourse to detailed analysis. Arguments in this spirit are presented
in the following section.

4. Scaling arguments and discussions

Equation (12) highlights that the apparent modulus scales with porosity according
to 〈E〉 ∼ (ρ̄)5, for a fixed αλ, i.e. a fixed asymmetry of stacking. This power law
dependence of the apparent modulus upon porosity was also observed previously for
symmetric stacking in one direction as well as both directions (equations (2) and (3),
respectively).

Expressions from these specific analyses suggest that the underlying modulus-
porosity scaling leading to equations (2), (5), and (12) may be much more general.
The flexural stiffness of filaments scales according to EI/λ3. The transverse deflec-
tions scales as δ ∼ Fλ3/(Er4). So, the apparent transverse strain in scales according
to 〈ε〉 ∼ δ/r, so that 〈ε〉 ∼ Fλ3/(Er5); transverse force scales as per F ∼ σ∞ × λ

2.
Combining this with ρ ∼ (r/λ), we obtain a power law relating the apparent modulus
of elasticity with the volume fraction as

〈E〉 ∼ E (ρ)5 . (13)

The constant of proportionality cannot be determined from scaling arguments alone
and requires detailed analysis, computations, or experimentation.
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Figure 14: Comparison of the modulus-porosity relationships: (i) as predicted by analysis (solid line), (ii)
with FE calculations (dotted line), and (iii) experimental results obtained from compression test of several
3D-printed samples (each marker refers to a sample of specified porosity), fabricated using different filament
diameter and lattice spacing.
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When alternate layers are staggered asymmetrically, displacement under the force,
at a distance a = αλ from one end, can be expressed as δ = δ(F, EI, λ, a), the problem
having n = 5 parameters. Since EI appear together in bending mechanics, they are
combined. Carrying out dimensional analysis [54], choosing “force-length-time” as the
fundamental variables (instead of “mass-length-time”), the five dimensional variables
can be expressed in terms of just m = 2 dimensions (force and length). Invoking
Buckingham’s Π-theorem [55, 56], the relationship between all the variables of the
problem can be expressed in terms of n − m = 3 dimensionless groups. Choosing
EI and λ as scales, with unknown exponents assigned to them, the remaining three
dimensioned variables can, in turn, be multiplied to form the Π-groups. This results
in the three non-dimensional numbers as Π1 = Fλ2/(EI) = F∗, Π2 = δ/λ = δ∗, and
Π3 = a/λ = α. Thus the force-response relationship could then be written as

δ∗ = f (F∗, α) . (14)

Since we are interested only in small lattice strain to define the apparent modulus in a
meaningful way, the proportionality δ ∼ F must hold. For this to be true, the function
f must factorise with a term involving F factored out. This means that the functional
dependence δ ∼ (Fλ3)/(Er4) × φ (α) must hold. Using arguments leading to equa-
tion (13), we obtain a general power law for the dependence of the apparent Young’s
modulus with the volume fraction

〈E〉 ∼ E (ρ̄)5 φ (α) . (15)

Neither the constant of proportionality in the above scaling relation, nor the functional
form of φ can be determined without detailed analysis. Note that the function φ above
is the same as that presented previously within equation (12), where its functional form
was analytically derived.

The above scaling result is consistent with detailed analyses presented in the pre-
vious sections for various geometries—i.e. unidirectionally staggered symmetrical,
bidirectionally staggered, or asymmetric lattices. The constants of proportionality for
the three cases are C = 63.07, C/2 = 31.54, and Cφ (α) = 63.07 × φ(α), respectively.
Let us contrast the power law dependence observed here with other well known scaling
laws in the mechanics of porous and cellular media. For hexagonal honeycombs, the
power law is known to be cubic, i.e. 〈E〉 ∼ E(ρ̄)3 [23]. For foams, this dependence
is quadratic, i.e. 〈E〉 ∼ E(ρ̄)2, indicating that the rate at which the transverse stiffness
diminishes with increasing porosity is much more rapid than that for honeycombs and
foams [24]. The constants of proportionality are quite different for each case, of course.
The micro-mechanics in all these three cases, i.e. honeycombs, foams and woodpile
lattice is bending-dominated; the difference in the power laws is attributed to the di-
mensionality and the differences in the architecture. Note that a power law scaling of
the apparent properties is not always guaranteed —such simple scaling relationships,
when they exist, are therefore of great practical interest due to their simplicity and ease
of use.
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5. Conclusions

The relationship between the apparent modulus of elasticity along the stacking di-
rection, and the structural parameters of a lattice of elastic filaments in a woodpile
form, is studied analytically, computationally, and experimentally. Symmetric as well
as asymmetric staggered configurations are considered. Expressions for the apparent
structure-property relationship are developed on the basis of the micro-mechanics of
bending.

The dependence of the apparent Young’s modulus on the extent of the staggered
position of the filaments is brought out. This is described by an analytical function
that shows largest flexibility of the lattice when it is symmetric. The expression for
the apparent Young’s modulus shows a scaling relation with the volume fraction given
by 〈E〉 ∼ (ρ̄)5, showing a very high sensitivity to volume fraction, unlike some other
previously known modulus-porosity relationships. This simple expression is then mod-
ified to include correction due to shear in the filaments. The leading correction term
shows reduction in the modulus for a given volume fraction, which is associated with
filament shear. The asymmetrically staggered lattice is then analysed using a model
of periodically-supported periodically-loaded filament. Expressions for the apparent
modulus are obtained as a function of the porosity and a skewness parameter. Two sim-
ple expressions for the apparent modulus provide upper and the lower bounds. Results
from the analytical models were developed as function results were validated against
FE computations, showing excellent agreement.

Finally, woodpile structures of a range of porosity values were fabricated using 3D-
printing. This was achieved by controlling the lattice spacing and the using different
nozzles to produce filament of different diameter. Experimental characterisation of the
lattice stiffness using compressive testing on several samples produced a power law
trend of the apparent Young’s modulus as a function of the porosity, which is found to
be consistent with the theory presented here. For dense samples, the deviations from
the power law are attributed to unaccounted for deformations e.g. filament shear and
diametrical compression. The experimental modulus-porosity relationship agrees well
with detailed FE simulation.

As a general conclusion, analytical expressions for the apparent stiffness along the
stacking direction of the woodpile lattice material were provided for various arrange-
ments of the woodpile. Excellent agreement with finite element calculations and ex-
periments were found. The results are consistent with scaling arguments presented for
a power law dependence between the apparent modulus and the relative density of the
porous lattice.
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Appendix

The eight algebraic equations resulting from the application of the boundary con-
ditions are organised in the matrix form Kx = f, the coefficient matrix is given by

K =



1 0 0 0 0 0 0 0
0 0 0 0 1 (1 − α)λ (1 − α)2λ2 (1 − α)3λ3

0 1 0 0 0 −1 −2(1 − α)λ −3(1 − α)2λ2

0 0 1 0 0 0 −1 −3(1 − α)λ
1 αλ α2λ2 α3λ3 −1 0 0 0
0 1 2αλ 3α2λ2 0 −1 0 0
0 0 1 3αλ 0 0 −1 0
0 0 0 1 0 0 0 −1


. (A1)

The eight unknowns are obtained as follow by applying boundary condition.

a0 = 0, (A2a)

a1 = −
Fλ2

12EI

(
2α3 − 3α2 + α

)
, (A2b)

a2 =
Fλ
4EI

(
α2 − α

)
, (A2c)

a3 =
F

6EI
(1 − α) , (A2d)

b0 = −
Fλ3

12EI

(
α2(1 − α)2

)
, (A2e)

b1 = −
Fλ2

12EI

(
2α3 − 3α2 + α

)
, (A2f)

b2 = −
Fλ
4EI

(
α2 − α

)
, (A2g)

b3 = −
F

6EI
α. (A2h)
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Displacement profile of a simply supported beam with length x.

w1,S = −
F

6EI
[
(1 − α)(αλ(2 − α) − x2)

]
0 < x ≤ αλ (A3a)

w2,S = −
F

6EI

[
(1 − α)

(
αλ(2 − α) − x2)x + (x − αλ)3

]
αλ ≤ x < λ (A3b)

Displacement profile of a clamped beam with length x.

w1,C = −
F

6EI

[
x2(1 − α)

(
2α(λ − x) + αλ − x

)]
0 < x ≤ αλ (A4a)

w2,C = −
F

6EI

[
α2(λ − x)2(2(1 − α)(2αλ + x) + x − αλ

)]
αλ ≤ x < λ (A4b)
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