Supporting information

Electrodeposition of MoS₂ from Dichloromethane

Shibin Thomas¹, Danielle E. Smith¹, Victoria K. Greenacre¹, Yasir J. Noori², Andrew L. Hector¹, C. H. (Kees) de Groot², Gillian Reid¹ and Philip N. Bartlett^{1,z}

^zE-mail: P.N.Bartlett@soton.ac.uk

Precursor synthesis

Tetrabutylammonium chloride (Sigma-Aldrich) and ammonium tetrathiomolybdate (Acros Organics) were used as received. Following reported literature,(1) ammonium tetrathiomolybdate (367 mg, 1.41 mmol) was dissolved in deionised water (10 mL) to form a red solution. A solution of tetrabutylammonium chloride (0.784 mg, 2.82 mmol) was slowly added dropwise; a red solid immediately precipitated. The red solid was isolated and washed with water (1x 2 mL) and isopropyl alcohol (1 x 2 mL) before being dried under vacuum and stored under N_2 . Yield: 728 mg, 90%. Required for $C_{32}H_{72}MoN_2S_4$: C: 54.20, H: 10.23, N: 3.95%. Found: C: 53.92, H: 10.14, N: 4.05%. IR spectrum (N_{ujol}/cm^{-1}): 468sh (Mo=S). ¹H NMR ($CDCl_3$): δ 0.99 (t, [3H], J_{HH} = 7.3 Hz), 1.46 (m, [2H], J_{HH} = 1.0 Hz), 1.6 – 1.7 (m, [2H]), 3.34 (m, [2H], J_{HH} = 16.9 Hz). ⁹⁵Mo NMR (CD_2Cl_2): δ = 2213 (s).

¹School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK

²School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK

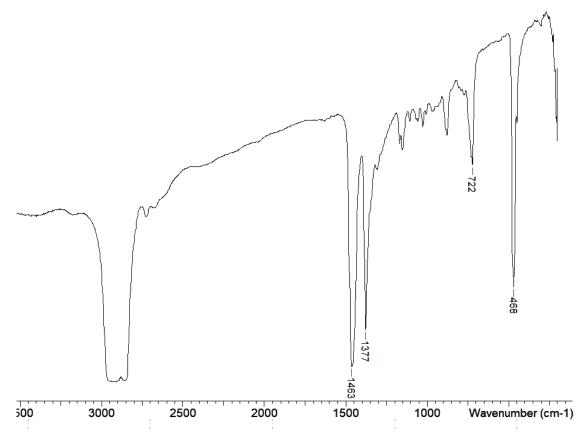


Figure S1: IR spectrum of $[N^nBu_4]_2[MoS_4]$.

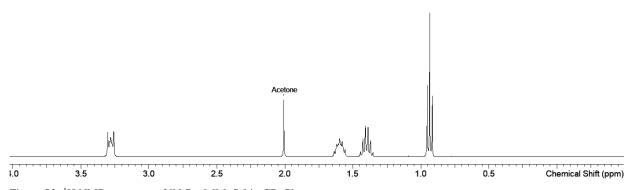


Figure S2: ¹H NMR spectrum of [NⁿBu₄]₂[MoS₄] in CD₂Cl₂.

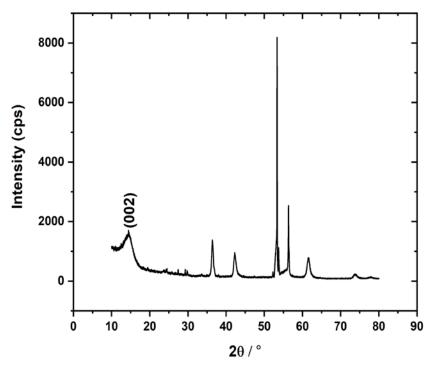


Figure S3: XRD pattern recorded from annealed MoS_2 thin film obtained by applying -0.8 V vs. Ag/AgCl for 1 hour.

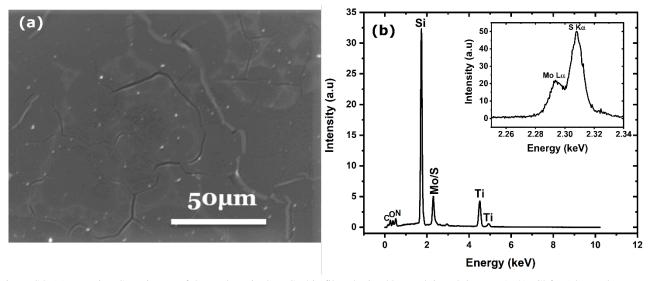


Figure S4: (a) Top-view SEM image of the as-deposited MoS_2 thin film obtained by applying -0.8 V vs. Ag/AgCl for 1 hour. (b) EDX profile of the as-deposited film. The inset shows the WDX spectrum for Mo- L_{α} and S- K_{α} .

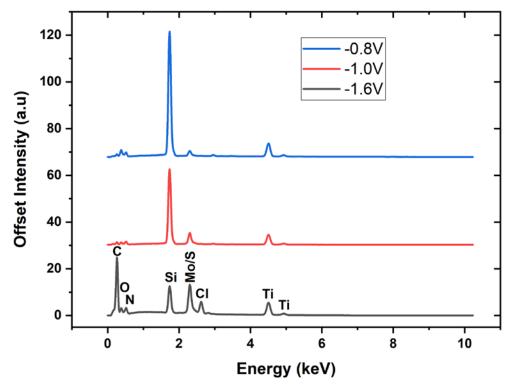


Figure S5: EDX profile of the as-deposited MoS_2 thin films obtained at different applied potentials vs. Ag/AgCl.

References

1. G. Alonso, G. Aguirre, I. A. Rivero, and S. Fuentes, *Inorg. Chim. Acta*, **274** (1), 108-110 (1998).