
Domain-Specific Scenarios for Refinement-based
Methods

Colin Snook�https://orcid.org/0000-0002-0210-0983, Thai Son
Hoanghttps://orcid.org/0000-0003-4095-0732, Dana

Dghaymhttps://orcid.org/0000-0002-2196-2749, Asieh Salehi
Fathabadihttps://orcid.org/0000-0002-0508-3066, and Michael

Butlerhttps://orcid.org/0000-0003-4642-5373

ECS, University of Southampton, Southampton, U.K.,
{cfs, t.s.hoang, d.dghaym, a.salehi-fathabadi, mbutler}@soton.ac.uk

Abstract. Formal methods use abstraction and rigorously verified re-
finement to manage the design of complex systems, ensuring that they
satisfy important invariant properties. However, formal verification is not
sufficient: models must also be tested to ensure that they behave accord-
ing to the informal requirements and validated by domain experts who
may not be expert in formal modelling. This can be satisfied by scenar-
ios that complement the requirements specification. The model can be
animated to check whether the scenario is feasible in the model and that
the model reaches the states expected in the scenario. However, there
are two problems with this approach. 1) The natural language used to
describe the scenarios is often verbose, ambiguous and therefore difficult
to understand; especially if the modeller is not a domain expert. 2) Pro-
vided scenarios are typically at the most concrete level corresponding to
the full requirements and cannot be used until all the refinements have
been completed in the model. We show by example how a precise and
concise domain specific language can be used for writing these abstract
scenarios in a style that can be easily understood by the domain expert
(for validation purposes) as well as the modeller (for behavioural verifi-
cation) and can be used as the persistence for automated tool support.
We propose two alternative approaches to using scenarios during formal
modelling: A method of refining scenarios before the model is refined so
that the scenarios guide the modelling, and a method of abstracting sce-
narios from provided concrete ones so that they can be used to test early
refinements of the model. We illustrate the two approaches on the ‘To-
keneer’ secure enclave example and the ERTMS/ETCS Hybrid Level 3
specification for railway controls. We base our approach on the Cucum-
ber framework for scenarios and the Event-B modelling language and
tool set. We have developed a new ‘Scenario Checker’ plugin to manage
the animation of scenarios. 1.

keywords:Event-B; Cucumber; Validation; Domain Specific Language

1 The example model and scenario scripts supporting this paper are openly available
at https://doi.org/10.5258/SOTON/D1026

https://doi.org/10.5258/SOTON/D1026

2 Snook et al.

1 Introduction

Abstraction and refinement play a vital role in analysing the complexity of criti-
cal systems via formal modelling. Abstraction allows key properties to be estab-
lished which are then proven to be maintained as system details are gradually
introduced in a series of refinements. However, domain requirements are often
written in natural language [9] which can be verbose and ambiguous leading
to potential misinterpretation by formal modelling engineers. Hence, model ver-
ification is insufficient; validation of the model by domain experts is equally
important to ensure that it is a true representation of the system in mind. In
previous work [21,6] we proposed a behaviour driven approach to formal mod-
elling that allows domain experts to drive the formal modelling using scenarios.
The model is animated to check that the scenario is feasible and reaches the
states expected in the scenario. Our experience in using scenarios [10] led us
towards the use of Domain Specific Language (DSL) to specify scenarios more
precisely [20]. Here we bring together ideas from [20] and [6] as well as new contri-
butions for scenario-refinement based methods, and propose a general approach
to using domain-specific scenarios for formal refinement-based methods.

In some cases the modellers may need to construct scenarios as part of the
modelling process and refine them in parallel with development of the model. The
scenarios provide an interactive exploration of behaviour so that the modeller
can assess whether the model satisfies the requirements via iterative development
cycles. We describe our experience of using a scenario-refinement based approach
to drive the formal modelling using the Tokeneer case study [3]. In other cases,
scenarios may be given to the modeller as part of the system requirements. For
this case we propose a technique of synthesising abstract scenarios from given
concrete ones, so that the abstract refinements of the model can be checked
at an intermediate stage rather than waiting until the final details have been
incorporated. We illustrate this approach, called scenario-abstraction approach,
using the European Rail Traffic Management System (ERTMS)/European Train
Control System (ETCS), Hybrid Level 3 (HL3) specification [13] for which we
have previously developed a formal model presented in [10]. In both approaches
we advocate the use of a DSL that can be understood both by domain expert
and model engineer and is precise enough to provide a repeatable validation/ac-
ceptance test of the formal systems model.

The paper is structured as follows: Section 2 discusses related and previous
work. Section 3 introduces the HL3 and Tokeneer case studies used to illustrate
the paper. Section 4 provides background on the Event-B formal modelling lan-
guage, UML-B and the Cucumber framework for scenarios. Section 5 introduces
the idea of using scenarios in formal modelling, discusses different types of sce-
narios and gives the motivation for inventing a DSL for each problem domain. It
concludes by summarising two alternative approaches; scenario-refinement and
scenario-abstraction. Section 6 reports our experience of using the first, scenario-
refinement approach, including how to design and refine scenarios in parallel with
modelling the system through refinements. This section is illustrated with ex-
amples from the Tokeneer case study. Section 7 explains an alternative scenario-

DSL scenarios 3

abstraction approach where the concrete scenarios are provided as input to the
modelling stage and need to be abstracted to be useful. It discusses how the DSL
and scenarios support refinement. This section is illustrated with examples from
the HL3 case study. Section 8 describes future work and Section 9 concludes.

2 Related Work

Scenarios in general: User requirements and system behaviour are often
explained using scenarios. Requirement-level scenarios can be adopted as a pri-
mary design artifact and refined through detailed scenarios. Carroll et al. [8]
classify scenarios according to their use in systems development ranging from
requirements analysis, user-designer communication, software design, through
to implementation, training and documentation. In formal modelling, scenarios
can be used alongside formal verification to test models. Iliasov [14] developed
a language (Flow) to describe use cases, with features to make assertions about
event enabled-ness and feasibility. The main difference to our work is that Iliasov
focused on verification using proof, e.g., generating and proving verification con-
ditions to ensure that the models satisfy the use cases expressed using the Flow
language. We focus on validation using simulation by expressing scenarios using
DSLs and automatically executing the scenarios on the models. Our automatic
execution framework extends that proposed by Fischer and Dghaym [12] who
used the Cucumber framework [23] to create executable scenarios for Event-B
models.

DSLs and Scenarios: James and Roggenbach [15] propose the use of DSLs
as a way to aid in the uptake of formal methods within industry. They illustrate
the methodology within the railway domain using the algebraic specification
language CASL. The methodology demonstrates formalising a DSL through au-
tomatic translation of a UML class diagram followed by proving domain specific
lemmas and developing a graphical editor for the DSL. Bodeveix et al. [5] use
DSLs with the B formal method for the development of process schedulers in
Linux and the Chorus real-time operating system. Carioni et al. [7] present an
ASM based DSL for scenario-based validation (the AValLa language) and its
supporting tool (the AsmetaVvalidator). The actor concept of UML use-cases
is extended with the concept of an observer actor ; an external observer who can
interact with the system model and check the system state. Using AValLa, the
abstract syntax of the DSL language is defined by a meta-model and then a
concrete notation is automatically derived from the abstract syntax. The DSL
semantics are given in terms of ASMs. AValLa is supported by the AsmetaV
(ASM Validator) tool to execute AValLa scenarios.

Scenario Refinement: Sobernig et al. [22] outline the role of executable ab-
stract scenarios which are capable of being refined to concrete scenarios, through
a scenario-based meta-model testing approach. Arcaini and Riccobene [4] pro-
pose automatic refinement of scenarios for testing Abstract State Machines
(ASMs). They emphasise reusability of formal development artefacts that can
be achieved by adapting scenarios from abstract levels to refinements. The ap-

4 Snook et al.

proach they apply for generating refined scenarios is based on the classical model
checking technique of test generation. In this case the authors build an LTL for-
mula from the abstract scenario, negate it and then use the AsmetaSMV model
checker to find a counter example in the refined model. The counter example
is then used to extract a scenario for the refined model. Although this will in-
deed generate a refined scenario from an abstract one, it is not enough to fully
exercise the new behaviour introduced during refinement. The authors confirm
this and suggest that the modeller might need to develop new scenarios from
scratch to test new behaviours. This is equivalent to the guided development of
refined scenarios in our scenario-refinement approach. Malik et al. [16] manually
devise abstract scenario which are then refined in parallel with Event-B models.
The scenarios are represented using Communicating Sequential Process (CSP)
expressions, which can be refined in conformance with the Event-B models. The
authors use a restricted style of refinement which enables automatic derivation
of the refined CSP scenarios. Our approach is more generic because we do not
restrict the refinement process.

Summary: By comparison, we propose using problem specific DSLs for ex-
pressing scenarios with links to tool support for scripted or user controlled execu-
tions. We support the scenario-refinement approach suggested by other authors
but also suggest using scenario-abstraction approach when concrete scenarios
are already available as part of the system description.

3 Case Studies

3.1 Hybrid ERTMS/ETCS Level 3 specification

The Hybrid ERTMS/ETCS Level 3 (HL3) specification [13] describes a sys-
tem for controlling trains moving on a linear track and communicating by radio
and trackside equipment. The system is designed to allow for the presence of
older trains that are only detected by trackside sensors. A train movement con-
troller manages the Movement Authority (MA) granted to each train that it is in
communication with. The focus of the specification is the Virtual Block Detec-
tor (VBD), which conservatively estimates train locations to a finer granularity
than physically detected track sections, and thus reports free virtual track sub-
sections (Virtual Sub-Section (VSS)) available for train movement. Trains and
trackside report location data to the VBD which then reports free track sections
to the train movement controller. The MA granted to each train consists of a
set of sections that the train is permitted to move into.

The train separation function of HL3 relies entirely on the condition that the
system knows at all times the position, length, and integrity status of the train.
Each train needs to be fitted with a Train Integrity Monitoring System (TIMS)
to report its position and integrity status to the system. Due to the limitation
of GSM-R communication, these pre-conditions for Level 3 operation are not
always satisfied as the train may disconnect from the system because of poor
communication. The HL3 concept is brought up to solve the disconnect issue
by using a limited implementation of track-side train detection. Trains that are

DSL scenarios 5

on-board
view

trackside
view

estimated
front end

max safe
front endsafe train length

min safe rear end at
integrity confirmation

VSS11 VSS21 VSS22 VSS23

TTD10 TTD20

confirmed rear end
of the train location

front end of the
train location

trackside train location

VSS limit

TTD limit

track
VSS status

TTD status

free

occupied

Fig. 1: Hybrid ERTMS/ETCS Level 3 System Conventions [13]

disconnected from the HL3 are still visible using track-side train detection. Thus
trains that are not confirming integrity can still be authorized to run on the line.

Figure 1 shows the HL3 system conventions. The track line is divided into
Trackside Train Detection (TTD) sections according to the track-side equip-
ment. If no train is shown on the TTD section, the TTD section is considered as
free. Otherwise, it is considered as occupied. This large physical section is then
split into as many Virtual Sub-Sections as required for the intended performance.
These Virtual Sub-Sections are fixed virtual blocks to avoid train collision. The
occupation status of the VSS is determined using both TTD status informa-
tion and position reports of the train. The VSS is considered as free when the
track-side is certain that no train is located on the VSS while it is considered as
occupied when some integer train is located on this VSS while the track-side is
certain that no other vehicle is located on the same VSS. Status unknown and
ambiguous are used to indicate the states under the scenario with disconnected
trains. A VSS is considered as unknown when there is no certainty if it is free.
And a VSS is considered as ambiguous when it is known to be occupied but it is
unsure whether there is another train on the same VSS. The track-side detection
equipment can improve the system performance by providing a faster release of
VSS when the TTD is free on the basis of train position reports. A train on a
track with an established safe radio connection to the track-side is considered as
a connected train. The train location defines the track-side view of the VSS that
is currently occupied by a connecting train, whose granularity is one VSS. The
front and rear end of the train location is considered independently from each
other. Each train has an estimated front end, while the rear end is derived from
the estimated front end and the safe train length through train integrity confir-
mation. It takes time for a train to stop after it applies brakes. The estimated
front end and rear end are extended to the max safe front end and min safe rear
end with an additional safety margin to guarantee the safety properties of the
system. When the track-side receives the report that the max safe front end of
the train has entered a VSS, it considers the train to be located on this VSS. A

6 Snook et al.

train that allows the track-side to release VSS in the rear of the train based on
its position reports is defined as an integer train [13].

3.2 Tokeneer Secure Enclave

The Tokeneer system [3] consists of a secure enclave and a set of system com-
ponents, some housed inside the enclave and some outside (Figure 2). In this
paper, we focus on modelling the system-level requirements which prevent users
from entering the enclave if they do not hold appropriate permission. The ID
Station interfaces to four different physical devices: fingerprint reader, smartcard
reader, door and visual display. The primary objective is to prevent unautho-
rised access to the Secure Enclave. The requirements include (1) authenticating
individuals for entry into an enclave and (2) controlling the entry to and egress
from an enclave of authenticated individuals. The door has four possible states:
the cross-product of open/closed and locked/unlocked. In order to prove the se-
curity property we have to make an additional assumption that no tail-gating is
possible. To do this we only allow one person at a time to approach the door and
they may only do so when it is closed and locked. A card identifies a particular
user using a fingerprint mechanism. If a user holds a card that identifies them-
selves, they are permitted in the enclave. Hence cards should only be issued to
permitted users. A successful scenario involves: arrival of a permitted user at the
door who then presents a card on the card reader and a matching finger print at
the fingerprint reader. The system will then unlock the door allowing the user
to open it and enter the enclave.

Fig. 2: Tokeneer Secure Enclave

4 Background

4.1 Event-B

Event-B [1] is a formal method for system development. An Event-B model con-
tains two parts: contexts and machines. Contexts contain carrier sets s, constants
c, and axioms A(c) that constrain the carrier sets and constants. Note that the
model may be underspecified, e.g., the value of the sets and constants can be

DSL scenarios 7

any value satisfying the axioms. Machines contain variables v, invariants I(v)
that constrain the variables, and events. An event comprises a guard denoting
its enabling-condition and an action describing how the variables are modified
when the event is executed.

For example the enterEnclave event from the Tokeneer case study described
in Section 3.2, has one parameter this user and two guards. The first guard grd1
checks whether this user is already in the enclave, while grd2 checks if this user
is permitted in the enclave. If both guards are satisfied then enterEnclave can be
executed and the action act will update the variable inEnclave by adding a new
instance this user.

event enterEnclave
any this user
where
@grd1: this user /∈ inEnclave
@grd2: permittedInEnclave(this user)=TRUE
then
@act: inEnclave := inEnclave ∪ {this user}
end

Each machine also has a special event called INITIALISATION, with no pa-
rameters or guards, that puts the system into the initial state.

A machine in Event-B corresponds to a transition system where variables
represent the state and events specify the transitions. Event-B uses a mathe-
matical language that is based on set theory and predicate logic. Contexts can
be extended by adding new carrier sets, constants, axioms, and theorems. Ma-
chines can be refined by adding and modifying variables, invariants, events. In
this paper, we do not focus on context extension or machine refinement.

Event-B is supported by the Rodin Platform (Rodin) [2], an extensible open
source toolkit that includes facilities for modelling, verifying the consistency of
models using theorem proving and model checking techniques, and validating
models with simulation-based approaches.

4.2 UML-B

UML-B [17,18,19] provides a diagrammatic modelling notation for Event-B in
the form of state-machines and class diagrams. The diagrammatic models are
contained within an Event-B machine and generate or contribute to parts of
it. For example a state-machine will automatically generate the Event-B data
elements (sets, constants, axioms, variables, and invariants) to implement the
states while Event-B events are expected to already exist to represent the tran-
sitions. Transitions contribute further guards and actions representing their state
change, to the events that they elaborate. A choice of two alternative transla-
tion encodings are supported by the UML-B tools. State-machines are typically
refined by adding nested state-machines to states. Class diagrams provide a way
to visually model data relationships.

8 Snook et al.

4.3 Cucumber for Event-B

The Behaviour-Driven Development (BDD) principle aims for pure domain ori-
ented feature description without any technical knowledge. In particular, BDD
aims for understandable tests that can be executed on the specifications of a
system. BDD is important for communication between the business stakehold-
ers and the software developers. Gherkin/Cucumber [23] is one of the various
frameworks supporting BDD. Gherkin [23, Chapter 3] is a language that defines
lightweight structures for describing the expected behaviour in a plain text, read-
able by both stakeholders and developers, which is still automatically executable.
Each Gherkin scenario consists of steps starting with one of the keywords: Given,
When, Then, And or But.

– Keyword Given is used for writing test preconditions that describe how to
put the system under test in a known state. This should happen without any
user interaction. It is good practice to check whether the system reached the
specified state.

– Keyword When is used to describe the tested interaction including the pro-
vided input. This is the stimulus triggering the execution.

– Keyword Then is used to test postconditions that describe the expected
output. Only the observable outcome should be compared, not the internal
system state. The test fails if the real observation differs from the expected
results.

– Keywords And and But can be used for additional test constructs.

In [21], we described our specialisation of Cucumber for Event-B with the
purpose of automatically executing scenarios for Event-B models. Cucumber is
a framework for executing acceptance tests written in the Gherkin language and
provides a Gherkin language parser, test automation as well as report genera-
tion. We provide Cucumber step definitions for Event-B in [11] allowing us to
execute the Gherkin scenarios directly on the Event-B models. The Cucumber
step definitions for Event-B allow to execute an event with some contraints on
the parameters, or to check if an event is enabled/disabled in the current state,
or to check if the current state satisfies some constraint.

5 Scenarios

In this section we discuss different types of scenarios, explain the motivation for
providing a DSL and introduce two alternative approaches to using scenarios in
formal modelling. This section is based mostly on the HL3 specification which
contains explanatory scenarios that illustrate the motivation for using a DSL.

5.1 Types of Scenarios

We identify two orthogonal categorisations of scenarios. A conceptual categorisa-
tion of scenarios is that they may be seen as nominal or non-nominal depending

DSL scenarios 9

on their relevance to the main purpose of the system. A more practical cate-
gorisation is whether they are positive (something should happen) or negative
(something should not happen).

– Nominal scenarios are designed to exercise the main successful behaviours
of the system.

– Non-nominal scenarios are alternative outcomes where a nominal sce-
nario does not succeed. They can be deduced by finding deviations from the
nominal ones that are caused by conditions in the nominal scenario not being
met. Non-nominal scenarios work in exactly the same way to nominal ones
since they represent valid possible sequences of events and responses. They
only differ in our conception of what normal behaviour is and sometimes this
can be subjective. Typically, non-nominal scenarios are added in refinements
when details for the nominal scenarios to succeed are elaborated.

– Positive scenarios: can be expressed as a sequence of transition events
that should be possible in the system. The scenario tests that a sequence
of events, with particular parameter values, is feasible (i.e. that events are
enabled).

– Negative scenarios: we also consider scenarios which we do not want to be
possible in the system. These negative scenarios involve a check that some
particular events are disabled at a particular state of the system. Note that
disabledness is preserved by refinement since guards must not be weakened
in refinement. Hence, as for data checks performed in When clauses, we do
not need to re-check disabledness of events in negative scenarios. On the
other hand, standard Event-B refinement does not guarantee enabledness
which must, therefore, always be checked using a When clause to make sure
it is re-checked in refinements by the refined scenarios.

In the case of Tokeneer, a permitted user succeeding to enter the enclave
is a positive nominal scenario. A permitted user may approach the enclave but
decide not to enter the enclave after the door unlocks and opens, this as a
positive non-nominal scenario A non-permitted user should not be able to enter
the enclave, this is a negative nominal scenario since the scenario needs to check
that the event of entering is disabled. These examples are shown in more detail
in Section 6

5.2 Example Scenario

In this section, we use Scenario 4: Start of Mission / End of Mission in [13]
to illustrate our approach to generation of abstract scenarios. In this scenario,
there are eight numbered steps. However, since most steps contain a sequence
of actions and consequent state changes, we break the steps down further into
sub-steps 2. We also note that the associated diagram (Figure 3) shows, for each

2 Note that we have adapted step 3 slightly compared to the specification because our
model does not support granting Full Supervision Movement Authority (FS MA)
containing VSS that are not free

10 Snook et al.

step, more details about the expected state, than is given in the text. We have
included some (but for brevity, not all) of this state in the scenario. Hence, the
sub-steps given in italics are derived from the diagram rather than the original
text of [13].

1. (a) Train 1 is standing on VSS 11
(b) with desk closed and no communication session.
(c) All VSS in TTD 10 are “unknown”.
(d) TTD 10 is occupied and TTD20 is free.

2. (a) Train 1 performs the Start of Mission procedure.
(b) Integrity is confirmed.
(c) Because train 1 reports its position on VSS 11,
(d) this VSS becomes ”ambiguous”.

3. (a) Train 1 receives an OS MA until end of VSS 12
(b) and moves to VSS 12
(c) which becomes ”ambiguous”.
(d) VSS 11 goes to ”unknown”.
(e) Train 1 receives an FS MA until end of VSS 22

4. (a) Train 1 moves to VSS 21
(b) which becomes occupied
(c) and all VSS in TTD 10 become ”free”, VSS 11 and VSS 12.
(d) TTD 10 is free and TTD20 is occupied.

5. (a) Train 1 continues to VSS 22
(b) which becomes “occupied”.
(c) VSS 21 becomes ”free”;

6. Train 1 performs the End of Mission (EOM) procedure.
7. (a) Due to the EoM procedure VSS 22 goes to “unknown”

(b) and the disconnect propagation timer of VSS 22 is started.
8. (a) The disconnect propagation timer of VSS 22 expires.

(b) All remaining VSS in TTD 20 go to “unknown”

This example scenario is useful for understanding the specification but it
still contains ambiguities that are revealed when considering a formally precise
model. For example trains do not usually move to a new section in one atomic
step; it is not stated when position reports are sent or what information they
contain. In addition, the use of natural language is not always consistent; in
order to animate the scenario in a repeatable way with tool support, we need a
more consistent syntax. We also need more abstract versions of the scenario if
we wish to validate the initial stages of our model.

5.3 Domain Specific Language

To improve clarity and precision, we suggest a DSL (Figure 4) for HL3 sce-
narios that aims to retain understandability for domain experts of the natural
language version. We select nouns that are used in the natural language version
of the scenario to describe domain objects and their state. These will be used to

DSL scenarios 11

Fig. 3: Start of Mission / End of Mission [13]

describe the expected state of the model. We select a set of adjectives to provide
a consistent way to link the nouns when describing state. Finally we select a
set of verbs to describe transitions that change the state of objects. The DSL
is generic in the sense that it is agnostic of the target modelling language, al-
though very specific to the HL3 problem domain. In order to adapt the DSL for
use with a particular modelling notation (in our case Event-B) cucumber step
definitions must be written. Examples of these are shown in Section ??. The
process of constructing the DSL and adapting it using cucumber step definitions
is straightforward and relatively quick compared to the modelling stage. Hence,
a new DSL can be invented for each specification domain before beginning to
construct a formal model of it.

The kind of formal refinement modelling that we wish to support is based on
an abstract representation of state. In each refinement further distinction of the
state values are added, either by replacing a state variable with an alternative
one that gives finer detail, or by adding a completely new variable. As state
details are added, the transition events that change state are elaborated to deal
with the new values. In many cases completely new transitions are revealed.
As the model refinement process is state driven, so is our DSL for scenario
abstraction/refinement. Therefore in the DSL we add alternative names for state
values so that the scenario can be adapted to abstract levels by re-phrasing
clauses when the state is modelled more abstractly.

12 Snook et al.

Nouns

<train> = <label>
<section> = TTDx
<sub-section> = <section>.VSSy
<ma> = <abstract ma> | <concrete ma>
<abstract ma> = MA
<concrete ma> = FSMA | OSMA
<timer> = <sub-section>.DisconnectTimer | <sub-section>.ShadowTimer | <sub-section>.GhostTimer
<section state> = FREE | OCCUPIED
<sub-section sate> = <abstract sub-section state> | <concrete sub-section state>
<abstract sub-section state> = AVAILABLE | UNAVAILABLE
<concrete sub-section state> = FREE| OCCUPIED | AMBIGUOUS | UNKNOWN

Adjectives

<train> stood at <sub-section>
<train> connected | disconnected
<train> in mission | no mission
<train> is integral | is split
<train> has <ma>
<section> is <section state>
<sub-section> is <sub-section state>
<ma> until <sub-section>

Verbs

<train> enters | leaves <sub-section>
<train> connects | disconnects
<train> starts mission | ends mission
<train> splits | couples
<train> receives <ma>
<timer> starts
<timer> expires
<train> reports position
<train> reports position as integral
<train> reports position as split

Fig. 4: DSL for HL3 scenarios

5.4 Concrete Scenario using DSL

We first illustrate how the natural language scenario of the specification, listed
in Section 5.2, can be expressed in our domain specific language (Figure 5).
In Section 7 we will show how to extract abstract scenarios that fit with our
refinement levels.

With reference to the scenario steps listed in Figure 5(a), steps 1a,1b,1c and
1d give the initial starting state which becomes a Given clause in our language
(Lines 1–6 of Figure 5(b)). Note that the track state is included as Given rather
than checked by a Then clause because it does not necessarily follow from the
train state. Step 2a is an action that, in our model, requires two distinct events
which we conjoin in a When clause (Line 7) where Train1 starts mission and
connects. Steps 2b and 2c, are performed in a single atomic reporting event
in our model, giving another When clause (Line 8). Step 2d gives an expected
consequence concerning the state of a VSS, which we check with a Then clause
(Line 9). Step 3a grants an On Sight Movement Authority (OS MA) up to VSS
12, to the train (Line 10). Step 3b is somewhat ambiguous since trains can span
more than one sub-section and therefore enter and leave them in distinct events
which are not normally simultaneous. We interpret Step 3b as two consecutive
steps; enter the new VSS 12 (Line 11) and then leave the previous VSS 11 (Line
12). Also, we assume that the train then reports its new position as VSS 12
(Line 13), since otherwise the VBD would not know to update the VSS states

DSL scenarios 13

1. (a) Train 1 is standing on VSS 11
(b) with desk closed and no communication

session.
(c) All VSS in TTD 10 are “unknown”.
(d) TTD 10 is occupied and TTD20 is free.

2. (a) Train 1 performs the Start of Mission
procedure.

(b) Integrity is confirmed.
(c) Because train 1 reports its position on

VSS 11,
(d) this VSS becomes ”ambiguous”.

3. (a) Train 1 receives an OS MA until end of
VSS 12

(b) and moves to VSS 12
(c) which becomes ”ambiguous”.
(d) VSS 11 goes to ”unknown”.
(e) Train 1 receives an FS MA until end of

VSS 22

(a) Concrete scenario in natural language

1 Given Train1 stood at TTD10.VSS11
2 And Train1 disconnected
3 And TTD10.VSS11 is UNKNOWN
4 And TTD10.VSS12 is UNKNOWN
5 And TTD10 is OCCUPIED
6 And TTD20 is FREE
7 When Train1 starts mission and Train1

connects
8 When Train1 reports position as integral
9 Then TTD10.VSS11 is AMBIGUOUS

10 When Train1 receives OSMA until TTD10.VSS12
11 When Train1 enters TTD10.VSS12
12 When Train1 leaves TTD10.VSS11
13 When Train1 reports position as integral
14 Then TTD10.VSS12 is AMBIGUOUS
15 And TTD10.VSS11 is UNKNOWN
16

(b) Concrete scenario using DSL

Fig. 5: Translation of given scenario into DSL

as indicated in Steps 3c and 3d. Step 3 is a good example of why a more precise
domain specific language is needed for describing scenarios. A similar process of
interpretation is followed in the remaining steps.

5.5 Running Scenarios

To run the scenarios we use the ProB model checker in single step animation
mode. For the validation stage we need to observe the model’s behaviour as
the scenario is executing. ProB provides a basic GUI interface for controlling
animations, but manually firing the correct sequence of selected events was found
to be a slow and onerous task. ProB also provides an API for extending the
tooling with additional facilities and this was used to provide a new ‘Scenario
Checker’ tool The tool provides two areas of functionality that make scenario
checking feasible: run to completion and record/replay.

In Event-B we model closed systems of interacting components including the
domain or environment and any controlling device. Event-B makes no distinction
between the kinds of events and hence an event in the environment will usually
trigger a sequence of events of the controller as it responds to the change in the
environment. The events that fire to implement control are considered internal
implementation steps and are not specified in our scenarios. The scenario checker
repeatedly automatically fires any internal events until none are enabled and then
waits for another external environment event to be selected. Only the external
environment events and associated state are recorded during a scenario. During
playback, only the external events are needed from the scenario script because
internal ones are fired automatically when enabled. The scenario checker can be
used in a first iteration to record and save a scenario which is then replayed and
modified if the model has to be changed.

14 Snook et al.

An alternative way to run the scenarios is to automatically execute them
without human intervention using Cucumber for Event-B. This method also
uses ProB to animate the model but the Cucumber script drives the execution
and checks results. This method is useful as a regression test of the model after
changes have been made guiding the tester to focus on scenarios which need to
be revised. To automate a scenario written in our DSL we need to provide the
correspondence between DSL steps and Cucumber for Event-B steps. We start
with our most abstract model which has events for trains to enter or leave a
VSS. The signature of the event to move the rear of a train is as follows

event ENV rear leave section
any
tr // The train
vss // The VSS from that the train moves
where ... then ... end

In order to link the above event with the Gherkin commands, e.g., When Train1

leaves VSS11, we define the following step definition.

When(~/^${id} leaves ${id}$/) {

String train, String vss ->

fireEvent("ENV_rear_leave_section", "tr = " + train + " & " + "vss = " + vss)

}

Here fireEvent is a library method from Cucumber for Event-B to fire an event
in the model with possible additional constraints on the event’s parameters. In
the step definition above, the information about the train ID and the VSS is
extracted using pattern matching and subsequently used to build the parameter
constraint accordingly.

In the same model, we have a variable occupiedBy∈ VSS↔→ train to keep track
of information about occupation of VSS by trains. We can use this to specify
the step definition for commands, such as, Then Train1 stood at VSS11,VSS12,
as follows

Then(~/^${id} stood at ${id_list}$/) {

String train, String vss_set ->

assert isFormula("occupiedBy ~[{" + train + "}]", "{" + vss_set + "}")

}

Here isFormula is a library method from Cucumber for Event-B to compare the
evaluation of a formula (e.g., occupiedBy∼[{TRAIN1}]) and the expected result
(e.g., {VSS11, VSS12}).

Step definitions might need to change according to refinements of the model.
For example, when we introduce TTD information, event ENV rear leave section
is split into two events: ENV last train leave ttd (when the TTD will be freed) and
ENV rear leave section otherwise. We introduce an alternative step definition,
which selects whichever case is enabled, to reflect this refinement:

DSL scenarios 15

When(~/^${id} leaves ${id}$/) {

String train, String vss ->

String formula = "tr = " + train + " & " + "vss = " + vss

if (isEventEnabled("ENV_rear_leave_section", formula))

fireEvent("ENV_rear_leave_section", formula)

else if (isEventEnabled("ENV_last_train_leave_ttd", formula))

fireEvent("ENV_last_train_leave_ttd", formula)

}

6 Scenario-refinement Approach

In the HL3 case study described in Section 5, the scenarios were given as part
of the system requirements. We will return to this example in Section 7 to show
how a given concrete scenario can be used to validate abstract models. In this
section, we describe a process for driving the modelling by constructing scenarios
from the requirements to validate each refinement level. We are compelled to find
abstract scenarios since at early modelling stages we have no use for concrete
scenarios. This section is based on the Tokeneer system (see Section ??) which
only defines a few scenario requirements declaratively, leaving us to elaborate
their content.

Fig. 6: Scenario-refinement process

The scenario-refinement approach is illustrated in Figure 6. Note that, al-
though not shown, the whole process will be iterative. In our experience it is
usual to revise the refinement plan during development as the models give a
better understanding of issues inherent in the system.

– Refinement plan The first step (as is usual) is to construct a refinement
plan. This gives an outline for how the model will be developed, selecting
important properties to be verified at each refinement and how the details
of the system will be incorporated in manageable steps. In our process the
refinement plan also guides the scenarios needed at each refinement stage.

16 Snook et al.

– DSL A DSL is constructed as described in Section 5 and taking into account
any data refinements involved in refinement plan.

– For each refinement level:
• Construct scenarios Scenarios are chosen in accordance with the guide-

lines of Section 5. For a refinement, new scenarios may be added which
have no equivalent scenario in the abstraction. Alternatively, scenarios
may be derived from abstract counterparts that exist for the previous
refinement level. The model checker can be used to guide scenario re-
finement by showing options for traces to the next abstract step. The
Scenarios are written in the DSL.

• Modelling The scenarios are used to guide the construction of the next
refinement of the model. The automatic theorem provers attempt to
verify the model. If the automatic theorem provers do not succeed the
proof obligation may reveal a mistake in the model. However, if the
reason can not be determined easily, it may be more efficient to continue
with the next step and check that the model is valid before investing
time in manually discharging proofs.

• Run scenarios The scenarios are used to exercise the model to check
that it behaves as intended.

Our refinement plan starts with a simple model sufficient to express the
security property that only permitted people are able to enter the enclave. The
first refinement introduces the door locking and opening mechanisms. The door
is only unlocked for permitted people. To prove the refinement we had to make
a ‘no tailgating’ assumption that only one person is at the door and no others
can approach while the door is open or unlocked. However the need for this was
revealed by formal proof rather than behavioural scenarios. As a result of running
some scenarios on the first refinement, we discovered the need to add a time
delay to the lock mechanism to make sure there is time for a person to open the
door after it is unlocked by the system. This is revealed by our scenario checker
because it runs internal events such as lock and unlock automatically until no
internal events are enabled. The second refinement introduces the mechanism
(cards) that demonstrates that the holder is permitted in the enclave. In case a
card is stolen it immutably identifies the person it permits. The third refinement
elaborates the identification mechanism as being fingerprints, i.e. a card identifies
the person by holding a copy of their fingerprint.

The DSL (Figure 7) provides a notation for users to a) enter the enclave
(abstract model), b) by opening the door once it is unlocked by the system
(refinement 1), c) after presenting a card that identifies themselves (refinement
2).

6.1 Constructing Scenarios by refinement

For the first abstract level of the model a set of scenarios is chosen to test the
requirements that have been allocated in the refinement plan. For subsequent
refinement levels, scenarios can be derived from the abstract ones by adding

DSL scenarios 17

Nouns

<user> = <label>
<location> = ENCLAVE | APPROACH | ELSEWHERE
<door> = Door
<door state> = OPEN | CLOSED
<door latch> = Latch
<latch state> = LOCKED | UNLOCKED
<card> = <label>

Adjectives

<user> is in <location>
<user> is not in <location>
<door> is <door state>
<door latch> is <latch state>
<user> holds <card>
<card> identifies <user>
<user> is allowed in <location>

Verbs

<user> enters <location>
<door> opens
<door> closes
<door latch> locks
<door latch> unlocks
<user> is_issued <card>
<user> steals <card>
<user> inserts <card>
validate <card> for <user>

Fig. 7: DSL for Tokeneer Scenarios

intermediate steps to exercise the added functionality. Several choices may be
available for the intermediate path so that the scenario refinement relationship is
one to many. The scenario is also refined by removing Then clauses that are guar-
anteed by proof and adding new Then clauses to check the state of new variables
and enabledness of new events. Scenario construction can either be completed
for all refinement levels before starting modelling or it can be interleaved with
model refinements. The advantage of the former is that it provides an effective
review of the refinement plan and DSL before committing to modelling.

An alternative way to find refined scenarios (similar to that suggested by
Arcaini and Ricobene [4] for ASM) is to use a model checker. To do this the
abstract scenario is executed on the refined model until a step is not enabled
due to some new intermediate steps of the refinement. The ProB model checker
is then used to search for a trace to a state where the next abstract step is
enabled (by searching for a violation of the negation of its guard). We propose to
investigate this tool-assisted method as an additional post-modelling validation
stage in our process. It would allow us to explore generated variations of the
abstract scenarios to detect any undesirable behaviour that has not been revealed
by the manually constructed ones.

To illustrate the design of scenarios and their refinements, we show some
examples from the Tokeneer case study using the different categorisations intro-
duced in Section 5.1.

In the positive, nominal scenario; a permitted user succeeding in entering the
enclave, the abstract version (Figure 8(a)) of the scenario simply checks that the
permitted user enters the enclave and retains the permission. The first refinement
(Figure 8(b)) adds checks of the door and latch states and inserts events that

18 Snook et al.

unlock and open the door. The second refinement (Figure 8(c)) replaces checks
that the user has permission with checks that they hold a card that identifies
them.

Given USER1 is not in ENCLAVE
And USER1 is allowed in ENCLAVE
When USER1 enters ENCLAVE
Then USER1 is in ENCLAVE
And USER1 is allowed in ENCLAVE

(a) m0

Given USER1 is not in ENCLAVE
And Door is CLOSED
And Latch is LOCKED
And USER1 is allowed in ENCLAVE
When USER1 enters APPROACH
Then USER1 is allowed in ENCLAVE
When Latch unlocks
When Door opens
When USER1 enters ENCLAVE
When Door closes
When Latch locks
Then Door is CLOSED
And Latch is LOCKED

(b) m1

Given USER1 is not in ENCLAVE
And Door is CLOSED
And Latch is LOCKED
And USER1 holds Card1
And Card1 identifies USER1
When USER1 enters APPROACH
Then USER1 holds Card1
And Card1 identifies USER1
When Latch unlocks
When Door opens
When USER1 enters ENCLAVE
When Door closes
When Latch locks
Then USER1 holds Card1
And Card1 identifies USER1

(c) m2

Fig. 8: Nominal scenario - Permitted user enters enclave

The positive, non-nominal scenario; a permitted user may approach the en-
clave but decide not to enter the enclave after the door unlocks and opens, is
very similar to the previous one apart from the users action after the door opens
(Figure 9(a), Figure 9(b), Figure 9(c)).

Given USER1 is not in
ENCLAVE

And USER1 is allowed in
ENCLAVE

Then USER1 is not in ENCLAVE
And USER1 is allowed in

ENCLAVE

(a) m0

Given USER1 is not in ENCLAVE
And Door is CLOSED
And Latch is LOCKED
And USER1 is allowed in ENCLAVE
When USER1 enters APPROACH
Then USER1 is allowed in

ENCLAVE
When Latch unlocks
When Door opens
When USER1 enters ELSEWHERE
When Door closes
When Latch locks
Then Door is CLOSED
And Latch is LOCKED

(b) m1

Given USER1 is not in ENCLAVE
And Door is CLOSED
And Latch is LOCKED
And USER1 holds Card1
When USER1 enters APPROACH
Then USER1 holds Card1
And Card1 identifies USER1
When Latch unlocks
When Door opens
When USER1 enters ELSEWHERE
When Door closes
When Latch locks
Then USER1 holds Card1
And Card1 identifies USER1

(c) m2

Fig. 9: Non-nominal scenario - Permitted user does not enter enclave

For the negative nominal scenario; a non-permitted user should not be able
to enter the enclave (Figure 10(a)), the scenario checks that the enters ENCLAVE
event is disabled for User1. (To allow for negative checking we propose to add an
extra keyword Disabled to Gherkin to assert that a certain action is not allowed

DSL scenarios 19

to take place, and Not keyword to denote the negation of an assertion). In the
first refinement (Figure 10(b)) the scenario needs to check that a different event
is disabled since it is now the Latch unlocks event that leads to entering the
Enclave. In the second refinement we show two alternative scenarios that are
both valid refinements of the scenario. In Figure 10(c)), the user holds no cards
and in Figure 11 the user steals a card but it does not identify the user.

Given USER1 is not in ENCLAVE
And USER1 is not allowed in ENCLAVE
Then Disabled(USER1 enters ENCLAVE)
And USER1 is not in ENCLAVE
And USER1 is not allowed in ENCLAVE

(a) m0

Given USER1 is not in ENCLAVE
And Door is CLOSED
And Latch is LOCKED
And USER1
is not allowed in ENCLAVE

When USER1 enters APPROACH
Then USER1
is not allowed in ENCLAVE

Then Disabled(Latch unlocks)
And Door is CLOSED
And Latch is LOCKED

(b) m1

Given USER1 is not in ENCLAVE
And Door is CLOSED
And Latch is LOCKED
And USER1 holds no cards
When USER1 enters APPROACH
Then USER1 holds no cards

(c) m2

Fig. 10: Negative scenario - Non-permitted user cannot enter enclave

Given USER1 is not in ENCLAVE
And Door is CLOSED
And Latch is LOCKED
When USER1 steals Card1
And Not(Card1 identifies User1)
When USER1 enters APPROACH
And USER1 holds Card1
Then Not(Card1 identifies User1)

Fig. 11: Negative scenario - Non-permitted user steals card and cannot enter
enclave - m2

6.2 Running the Tokeneer Scenarios

At each refinement level, our Tokeneer models were verified by proof before run-
ning any of the scenarios. Figure 12 shows the UML-B class diagram for the
second refinement which introduces cards for permitted users. The provers pro-
vide insight into the system and its limitations (e.g. the danger of tailgating)
leading the modeller to either add requirements or explicitly state assumptions
that must be dealt with elsewhere. However, it is possible to overly restrict the
behaviour of the model in order to prove properties or to leave out desired be-
havioural restrictions that are not needed for the properties to hold. Running
the scenarios allows us to check that required behaviour is exhibited by the

20 Snook et al.

Fig. 12: UML-B class diagram for second refinement - m2

model and in doing so also provides further insight leading to iterative changes
to the models and the scenarios. When running the first nominal scenario on
the abstract model (Figure 13), although the scenario was executed successfully,
the tester noticed that the same user can enter the enclave even when they are
already inside of it. This is not physically possible without first leaving the en-
clave. We changed the model to incorporate this assumption and also developed
a negative scenario to check that the unwanted behaviour is not possible (i.e.
that enter is disabled for a user that is inside the enclave). It is important that
this early stage of scenario checking is done manually by the modeller so that
they can subjectively validate sensible behaviour as well as verify that the model
satisfies the scenario.

When running the nominal scenario on the first refinement we wanted to
make the latch unlock and lock events automatic since they are internal events
of the control system. (This is an optional feature of our scenario checker tool).
However, since a lock event was immediately enabled after an unlock event,
the internal events do not converge to completion. This observation led us to
understand that there needs to be a time delay after unlocking which we added
using nested states in the UNLOCKED state (Figure 15).

7 Scenario-abstraction Approach

In this section we illustrate the scenario-abstraction approach where a concrete
scenario is provided as part of a specification and abstract scenarios need to

DSL scenarios 21

Fig. 13: Running nominal scenario on abstract model m0

Fig. 14: Running nominal scenario on first refinement m1

Fig. 15: UML-B state-machine for the lock behaviour in m1

be extracted to validate abstract versions of the formal model. This section is
based on the HL3 specification. In order to obtain scenarios that can be used to
validate our abstract models, we deduce correspondingly abstract scenarios from
the concrete one that has been translated into our DSL (Fig. 16) as described in
Section 5.4. To do this, we consider the data refinement of the model including
superposition of new data. The process systematically reduces the concrete sce-

22 Snook et al.

nario by omitting any irrelevant details and only retaining clauses that relate to
the data representations used in that refinement level. Note that data represen-
tation may vary in refinement levels which affects the Cucumber step definition
used to convert the scenarios into a form that can be used to animate the model.

Given Train1 stood at TTD10.VSS11
And Train1 disconnected
And TTD10.VSS11 is UNKNOWN
And TTD10.VSS12 is UNKNOWN
And TTD10 is OCCUPIED
And TTD20 is FREE
When Train1 starts mission and Train1 connects
When Train1 reports position as integral
Then TTD10.VSS11 is AMBIGUOUS
When Train1 receives OSMA until TTD10.VSS12
When Train1 enters TTD10.VSS12
When Train1 leaves TTD10.VSS11
When Train1 reports position as integral
Then TTD10.VSS12 is AMBIGUOUS
And TTD10.VSS11 is UNKNOWN
When Train1 receives FSMA until TTD20.VSS22
When Train1 enters TTD20.VSS21
When Train1 leaves TTD10.VSS12
When Train1 reports position as integral
Then TTD10.VSS11 is FREE
And TTD10.VSS12 is FREE
And TTD20.VSS21 is OCCUPIED
And TTD10 is OCCUPIED
And TTD20 is FREE
When Train1 enters TTD20.VSS22
When Train1 leaves TTD20.VSS21
When Train1 reports position as integral
Then TTD20.VSS21 is FREE
And TTD20.VSS22 is OCCUPIED
When Train1 disconnects and Train1 ends mission
Then TTD20.VSS22 is UNKNOWN
Then TTD20.VSS22.disconnect_propagation_timer starts
When TTD20.VSS22.disconnect_propagation_timer expires
Then TTD20.VSS21 is UNKNOWN
And TTD20.VSS23 is UNKNOWN

Fig. 16: Concrete Scenario using DSL

The scenario-abstraction approach is illustrated in Figure 17. This process
can be applied when detailed concrete use cases are available as part of the
system requirements to validate the models. The process is very similar to the
scenario-refinement approach (Figure 6), differing only in the artefacts used/pro-
duced and the method of constructing scenarios (step 3). There is an additional
‘given’ input; Concrete use cases, which is used to design the DSL (step 2) and
construct scenarios (step 3).

– Refinement Plan Similar to the scenario-refinement approach, the first
step is building a refinement plan from the system requirements to guide the
modelling process.

DSL scenarios 23

Fig. 17: Scenario-abstraction process

– DSL Considering the concrete use cases and any data refinement in the
refinement plan, a DSL is designed as described in Section 5.

– Scenarios From the concrete use cases, scenarios are extracted for each re-
finement level in accordance with the refinement plan. The refined scenarios
of the most concrete refinement level should be the same as the concrete use
cases.

– Modelling and Running Scenarios Starting from the abstract level and
for each refinement, a model is constructed in accordance with the refinement
plan and guided by the extracted scenarios. As with the scenario-refinement
approach, proof obligations may identify problems in the model but judge-
ment should be used to decide whether it is more efficient to continue with
validation before returning to discharge proofs manually. Validation of each
model is done by running the scenarios using the model checker before mov-
ing to the next refinement. If any step leads to changes in the refinement
plan, the extracted scenarios must be updated accordingly. However, the
refined scenarios of the last refinement level must always be similar to the
concrete use cases.

When extracting scenarios, a state that has been checked at a particular
refinement level does not need to be checked at subsequent levels because the
proof of refinement ensures this. Any Then clauses of the previous level are
omitted and only if the state data representation is refined to add more detail is
it necessary to add new Then clauses. In our case the concrete scenario derived
from the specification has the correct final Then clauses to match our most
concrete model refinement. In general the starting specification scenario could
contain excess state checks that are already dealt with in earlier refinement
levels. The number of Then clauses to add is somewhat subjective; one could
for example check that nothing else has changed state after each When clause.
In the examples we have avoided this and adopt the same policy as the given
scenario of the specification which is to only check for expected changes in state.
However, in some cases it is important to add extra checks using Then clause
to check for negative scenarios. These scenarios can be part of the concrete use
cases and are particularly important when it is not clear why in some cases a

24 Snook et al.

certain event is not enabled or when a state change can result in disabling a
certain event.

In the rest of this section, we explain how the specification scenario is ab-
stracted at the different levels of refinement according to our development.

Movement on VSS. Our most abstract model contains no other state except
for the position of trains on VSS and hence, for its scenario, we pick only the
clauses that are related to train movement. Figure 18 compares the abstract
scenario with the concrete scenario, where the highlighted steps in Figure 18(b)
corresponds to the train position on VSS, which are used in the abstract scenario
(Figure 18(a)). At this stage, we have not yet introduced the concept of TTD,
hence the When clause omits the TTD prefix and only defines the position of the
train in terms of VSS. Since the concrete scenario concentrates on the internal
state of the VBD controller, its Then clauses are not relevant to the abstract
scenario. Instead we add new Then clauses that check the train’s position in
terms of VSS.

Radio communication and TTD. In our first and second refinements we add
radio communication and status of TTD. Here we have combined them into one
scenario for brevity. This scenario inherits the When clauses from the abstract
scenario Figure 18(a), but with the addition of TTD prefixes since our model now
incorporates TTD status. We then select When clauses related to radio connection
and TTD state from the concrete scenario as highlighted in Figure 19(b). The
Then clauses from the abstract scenario are omitted since they are guaranteed
by refinement. Instead, we add new Then clauses to check train connection and
TTD state after the When clauses that should affect this (Figure 19(a)).

Introduce missions and generic movement authority. Our next model refinement
introduces movement authority but does not distinguish between Full Supervi-
sion Movement Authority (FS MA) and OS MA modes. In the scenario we must
use the generic form of the DSL syntax which was introduced for this purpose.
Note that we still split the granting of MA into two When clauses so that the
state check is an abstract version of the order that will later be enforced in a re-
finement. The refinement also introduces the start of mission and end of mission
procedures (Figure 20).

Introduce position reports, VSS availability, integrity and distinguish between
FS and OS MA. In this refinement, we refine MA to distinguish between FS
MA and OS MA and introduce position and integrity reporting of trains which,
in conjunction with TTD status, determines abstract VSS status. Notice that
we replace the more abstract MA checks with OS MA and FS MA ones. At
this stage, VSS status is bi-state instead of the final four states of the concrete
scenario (Figure 21).

Introduce timers. This refinement introduces propagation timers that expand the
unavailable area of VSS in case a non-communicative train moves (Figure 22).

DSL scenarios 25

(a) Movement on VSS

Given Train1 stood at TTD10.VSS11
And Train1 disconnected
And TTD10.VSS11 is UNKNOWN
And TTD10.VSS12 is UNKNOWN
And TTD10 is OCCUPIED
And TTD20 is FREE
When Train1 starts mission and Train1

connects
When Train1 reports position as integral
Then TTD10.VSS11 is AMBIGUOUS
When Train1 receives OSMA until TTD10.VSS12
When Train1 enters TTD10.VSS12
When Train1 leaves TTD10.VSS11
When Train1 reports position as integral
Then TTD10.VSS12 is AMBIGUOUS
And TTD10.VSS11 is UNKNOWN
When Train1 receives FSMA until TTD20.VSS22
When Train1 enters TTD20.VSS21
When Train1 leaves TTD10.VSS12
When Train1 reports position as integral
Then TTD10.VSS11 is FREE
And TTD10.VSS12 is FREE
And TTD20.VSS21 is OCCUPIED
And TTD10 is OCCUPIED
And TTD20 is FREE
When Train1 enters TTD20.VSS22
When Train1 leaves TTD20.VSS21
When Train1 reports position as integral
Then TTD20.VSS21 is FREE
And TTD20.VSS22 is OCCUPIED
When Train1 disconnects and Train1 ends

mission
Then TTD20.VSS22 is UNKNOWN
Then TTD20.VSS22.

disconnect_propagation_timer starts
When TTD20.VSS22.

disconnect_propagation_timer expires
Then TTD20.VSS21 is UNKNOWN
And TTD20.VSS23 is UNKNOWN

(b) Concrete Scenario using DSL

Fig. 18: Deriving abstract scenario: train movement

When the propagation timer expires, the adjacent VSS in the TTD become
unavailable. Notice that the scenario is not like a refinement; we can add checks
of old variables when further steps of the scenario should affect this. In the
previous scenario we did not specify the state of these VSS, hence leaving room
to add them now without introducing a contradiction.

Introduce VSS state. In this refinement of the scenario we introduce the full VSS
states of the specification. That is, available is replaced by free and not available
is replaced by ambiguous, occupied or unknown as appropriate This refinement
brings us back to the full concrete scenario that was described in Section 5.3.

26 Snook et al.

(a) Radio connection

Given Train1 stood at TTD10.VSS11
And Train1 disconnected
And TTD10.VSS11 is UNKNOWN
And TTD10.VSS12 is UNKNOWN
And TTD10 is OCCUPIED
And TTD20 is FREE
When Train1 starts mission and Train1 connects
When Train1 reports position as integral
Then TTD10.VSS11 is AMBIGUOUS
When Train1 receives OSMA until TTD10.VSS12
When Train1 enters TTD10.VSS12
When Train1 leaves TTD10.VSS11
When Train1 reports position as integral
Then TTD10.VSS12 is AMBIGUOUS
And TTD10.VSS11 is UNKNOWN
When Train1 receives FSMA until TTD20.VSS22
When Train1 enters TTD20.VSS21
When Train1 leaves TTD10.VSS12
When Train1 reports position as integral
Then TTD10.VSS11 is FREE
And TTD10.VSS12 is FREE
And TTD20.VSS21 is OCCUPIED
And TTD10 is OCCUPIED
And TTD20 is FREE
When Train1 enters TTD20.VSS22
When Train1 leaves TTD20.VSS21
When Train1 reports position as integral
Then TTD20.VSS21 is FREE
And TTD20.VSS22 is OCCUPIED
When Train1 disconnects and Train1 ends mission
Then TTD20.VSS22 is UNKNOWN
Then TTD20.VSS22.disconnect_propagation_timer

starts
When TTD20.VSS22.disconnect_propagation_timer

expires
Then TTD20.VSS21 is UNKNOWN
And TTD20.VSS23 is UNKNOWN

(b) Concrete Scenario using DSL

Fig. 19: Deriving abstract scenario: train communication and TTD

8 Future Work

In future work we will continue to develop scenarios for the Tokeneer case study
and investigate tool automation of the scenarios based on the refinements from
the model. We will employ the scenario-based modelling techniques in other
domains such as aerospace to test its generality. Our eventual aim is to utilise
the scenarios in a ‘kind of’ continuous integration development environment for
formal modelling. Our future project commitments include model transformation
from Event-B systems models to semi-formal component models and the use
of precise and abstract scenarios could be utilised to validate and verify this
transformation stage by co-simulation of scenarios in both models.

We use two tools to execute scenarios; the Scenario Checker for manual val-
idation and Cucumber for Event-B for automated regression validation. It is

DSL scenarios 27

Given Train1 stood at TTD10.VSS11
And Train1 disconnected
And TTD10 is OCCUPIED
And TTD20 is FREE
When Train1 starts mission and Train1 connects
Then Train1 in mission
When Train1 receives MA until TTD10.VSS12
Then Train1 has MA until TTD10.VSS12
When Train1 enters TTD10.VSS12
When Train1 leaves TTD10.VSS11
When Train1 receives MA until TTD20.VSS22
Then Train1 has MA until TTD20.VSS12
When Train1 enters TTD20.VSS21
When Train1 leaves TTD10.VSS12
When Train1 enters TTD20.VSS22
When Train1 leaves TTD20.VSS21
When Train1 disconnects and Train1 ends mission
Then Train1 no mission

Fig. 20: Missions and generic MA

Given Train1 stood at TTD10.VSS11
And Train1 disconnected
And TTD10.VSS11 is UNAVAILABLE
And TTD10.VSS12 is UNAVAILABLE
And TTD10 is OCCUPIED
And TTD20 is FREE
When Train1 starts mission and Train1 connects
When Train1 reports position as integral
When Train1 receives OSMA until TTD10.VSS12
Then Train1 has OSMA until TTD10.VSS12
When Train1 enters TTD10.VSS12
When Train1 leaves TTD10.VSS11
When Train1 receives FSMA until TTD20.VSS22
Then Train1 has FSMA until TTD20.VSS22
When Train1 enters TTD20.VSS21
When Train1 leaves TTD10.VSS12
When Train1 reports position as integral
Then TTD10.VSS11 is AVAILABLE
And TTD10.VSS12 is AVAILABLE
And TTD10.VSS21 is UNAVAILABLE
When Train1 enters TTD20.VSS22
When Train1 leaves TTD20.VSS21
When Train1 reports position as integral
Then TTD10.VSS21 is AVAILABLE
And TTD10.VSS22 is UNAVAILABLE
When Train1 disconnects and Train1 ends mission

Fig. 21: Position reports, VSS avalability and integrity

desirable to have a common persistence in both tools using the DSL scenar-
ios syntax. Figure 23 shows a proposed architecture for the tools. The Scenario
Checker and Cucumber for Event-B share a common syntax for scenarios based
on Event-B (i.e. events, variables etc. rather than DSL concepts). A generic con-

28 Snook et al.

Given Train1 stood at TTD10.VSS11
And Train1 disconnected
And TTD10.VSS11 is UNAVAILABLE
And TTD10.VSS12 is UNAVAILABLE
And TTD10 is OCCUPIED
And TTD20 is FREE
When Train1 starts mission and Train1 connects
When Train1 reports position as integral
When Train1 receives OSMA until TTD10.VSS12
When Train1 enters TTD10.VSS12
When Train1 leaves TTD10.VSS11
When Train1 receives FSMA until TTD20.VSS22
When Train1 enters TTD20.VSS21
When Train1 leaves TTD10.VSS12
When Train1 reports position as integral
When Train1 enters TTD20.VSS22
When Train1 leaves TTD20.VSS21
When Train1 reports position as integral
When Train1 disconnects
When Train1 ends mission
Then TTD20.VSS22.disconnect_propagation_timer starts
When TTD20.VSS22.disconnect_propagation_timer expires
Then TTD20.VSS21 is UNAVAILABLE
And TTD20.VSS23 is UNAVAILABLE

Fig. 22: Timers

version tool loads/saves scenarios in a particular DSL, interpreting the mapping
based on the DSL definition.

DSL Scenarios

Event-B Scenarios

Cucumber for Event-B Scenario Checker

Fig. 23: DSL for Automatic and Interactive Validation

We plan to develop the Scenario Checker so that it becomes the user interface
for running both the automatic and manual validation. We will investigate the
potential for using the ProB to help discover refined scenarios as suggested in
Section 6.1. ProB can be used to find a trace from the current step to a state

DSL scenarios 29

where the next step in the abstract scenario is enabled, however, by default it
returns only the first trace found.

9 Conclusion

One of the strengths of formal methods lies in efficient, generic verification (using
theorem provers) which obviates the need for test cases and hence instantiation
with objects. However, to leverage this strength we need to convince domain
experts and, of course, ourselves, of the validity of the models. To this end we
adopt a strategy analogous to testing; animation of models using scenarios. We
envisage a growing reliance on scenarios as we seek to integrate formal systems
level modelling with industrial development processes. Scenarios are a reformu-
lation of the specification and, no matter what format they are expressed in,
errors may be introduced. However, errors are equally likely to exist in the orig-
inal specification. We have found that scenarios aid detection of specification
errors by allowing validation of the behaviour by domain experts. If errors are
introduced into the scenarios these will be discovered when they are used to
animate the model.

An important step is to make the scenarios more precise so that they are
clear and unambiguous while remaining easily understood by all stakeholders.
To achieve this, we have suggested deriving a scenario DSL from the particular
specification in question, prior to commencing the formal modelling. Scenarios
that illustrate the desired behaviour embodied by the specification, may then be
expressed in a clear, precise and concise way. For early detection of problems, it
is important that we can use the scenarios at stages when our abstract models
do not contain all of the detail involved in the concrete scenario.

When scenarios are not provided as part of the requirements they can be
constructed to match the planned model refinements. In this case the scenarios
are developed top down from an abstract version introducing the details in re-
fined versions that match the model refinements and using the refined scenarios
to explore the veracity of the model. Conversely, concrete use-case scenarios are
sometimes provided to illustrate the meaning of a specification. We therefore
propose a technique of synthesising abstract versions of the scenario that are
suitable for use with the abstract refinement levels of the model. The scenario-
refinement and scenario-abstraction techniques both use the planned event and
data refinement of the model to make corresponding refinements or abstractions
to scenarios.

Although there is some useful previous work in this area, we bring together
and discuss the different approaches available and provide tool support towards
a ‘continuous integration’ style validation process. We hope this will help prac-
titioners cope with the iterative nature of formal modelling as well as bridging
the semantic gap between domain knowledge and formal precision.

30 Snook et al.

Acknowledgements

This work was supported, in part, by the HICLASS project, funded by the Aerospace

Technology Institute and Innovate UK, as project number 113213.

References

1. Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

2. Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang,
Farhad Mehta, and Laurent Voisin. Rodin: an open toolset for modelling and
reasoning in Event-B. STTT, 12(6):447–466, 2010.

3. AdaCore. Tokeneer case study by Praxis. https://www.adacore.com/tokeneer.
Accessed 31/12/2019.

4. Paolo Arcaini and Elvinia Riccobene. Automatic refinement of ASM abstract test
cases. In 2019 IEEE International Conference on Software Testing, Verification
and Validation Workshops, ICST Workshops 2019, Xi’an, China, April 22-23,
2019, pages 1–10, 2019.

5. Jean-Paul Bodeveix, Mamoun Filali, Julia L. Lawall, and Gilles Muller. Formal
methods meet domain specific languages. In Integrated Formal Methods, 5th In-
ternational Conference, IFM 2005, Eindhoven, The Netherlands, November 29 -
December 2, 2005, Proceedings, pages 187–206, 2005.

6. M. Butler, D. Dghaym, T. S. Hoang, T. Omitola, C. Snook, A. Fellner, R. Schlick,
T. Tarrach, T. Fischer, and P. Tummeltshammer. Behaviour-driven formal model
development of the etcs hybrid level 3. In 2019 24th International Conference on
Engineering of Complex Computer Systems (ICECCS), pages 97–106, 2019.

7. Alessandro Carioni, Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra.
A scenario-based validation language for asms. In Abstract State Machines, B and
Z, First International Conference, ABZ 2008, London, UK, September 16-18, 2008.
Proceedings, pages 71–84, 2008.

8. John M. Carroll. Five reasons for scenario-based design. Interacting with Comput-
ers, 13(1):43–60, 2000.

9. Jacob L Cybulski. The formal and the informal in requirements engineering. Tech-
nical report, Technical Report 96/7, Department of Information Systems, The
University of Melbourne, 1996.

10. Dana Dghaym, Michael Poppleton, and Colin Snook. Diagram-led formal mod-
elling using iuml-b for hybrid ertms level 3. In 6th International ABZ Conference
ASM, Alloy, B, TLA, VDM, Z, 2018, Proceedings of, 2018.

11. Tomas Fischer. Cucumber for Event-B and iUML-B. https://github.com/

tofische/cucumber-event-b, 2018.

12. Tomas Fischer and Dana Dghyam. Formal model validation through acceptance
tests. In Simon Collart-Dutilleul, Thierry Lecomte, and Alexander Romanovsky,
editors, RSSRail 2019: Reliability, Safety, and Security of Railway Systems. Mod-
elling, Analysis, Verification, and Certification, volume 11495 of LNCS, pages 159–
169. Springer, 2019.

13. EEIG ERTMS Users Group. Hybrid ERTMS/ETCS Level 3:Principles, July 2017.
Ref. 16E042 Version 1A.

https://www.adacore.com/tokeneer
https://github.com/tofische/cucumber-event-b
https://github.com/tofische/cucumber-event-b

DSL scenarios 31

14. Alexei Iliasov. Use case scenarios as verification conditions: Event-b/flow approach.
In Elena Troubitsyna, editor, Software Engineering for Resilient Systems - Third
International Workshop, SERENE 2011, Geneva, Switzerland, September 29-30,
2011. Proceedings, volume 6968 of Lecture Notes in Computer Science, pages 9–23.
Springer, 2011.

15. Phillip James and Markus Roggenbach. Encapsulating formal methods within
domain specific languages: A solution for verifying railway scheme plans. CoRR,
abs/1403.3034, 2014.

16. Qaisar A. Malik, Johan Lilius, and Linas Laibinis. Model-Based Testing Using
Scenarios and Event-B Refinements. In Michael Butler, Cliff Jones, Alexander
Romanovsky, and Elena Troubitsyna, editors, Methods, Models and Tools for Fault
Tolerance, pages 177–195, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

17. Mar Yah Said, Michael Butler, and Colin Snook. A method of refinement in UML-
B. Softw. Syst. Model., 14(4):1557–1580, October 2015.

18. Colin Snook. iUML-B statemachines. In Proceedings of the Rodin Workshop 2014,
pages 29–30, Toulouse, France, 2014. http://eprints.soton.ac.uk/365301/.

19. Colin Snook and Michael Butler. UML-B: Formal modeling and design aided by
UML. ACM Trans. Softw. Eng. Methodol., 15(1):92–122, January 2006.

20. Colin Snook, Thai Son Hoang, Dana Dghaym, and Michael Butler. Domain-specific
scenarios for refinement-based methods. In Christian Attiogbé, Flavio Ferrarotti,
and Sofian Maabout, editors, New Trends in Model and Data Engineering, pages
18–31, Cham, 2019. Springer International Publishing.

21. Colin F. Snook, Thai Son Hoang, Dana Dghaym, Michael J. Butler, Tomas Fischer,
Rupert Schlick, and Keming Wang. Behaviour-driven formal model development.
In Jing Sun and Meng Sun, editors, ICFEM2018, volume 11232 of LNCS, pages
21–36. Springer, 2018.

22. Stefan Sobernig, Bernhard Hoisl, and Mark Strembeck. Requirements-driven test-
ing of domain-specific core language models using scenarios. In 2013 13th Inter-
national Conference on Quality Software, Najing, China, July 29-30, 2013, pages
163–172, 2013.

23. Matt Wynne and Aslak Hellesøy. The Cucumber Book: Behaviour-Driven Devel-
opment for Testers and Developers. Pragmatic Programmers, LLC, 2012.

http://eprints.soton.ac.uk/365301/

	Domain-Specific Scenarios for Refinement-based Methods

