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Abstract. We define the concept of a partial translation structure T on a
metric space X and we show that there is a natural C∗-algebra C∗(T ) asso-
ciated with it which is a subalgebra of the uniform Roe algebra C∗

u
(X). We

introduce a coarse invariant of the metric which provides an obstruction to
embedding the space in a group. When the space is sufficiently group-like,
as determined by our invariant, properties of the Roe algebra can be deduced
from those of C∗(T ). We also give a proof of the fact that the uniform Roe
algebra of a metric space is a coarse invariant up to Morita equivalence.

Many interesting geometric properties of spaces and groups are captured by the
structure of C∗-algebras associated with those objects. For example, a discrete
group G is amenable if and only if the full C∗-algebra C∗(G) is nuclear [7].

In a similar vein, for a discrete groupG, Yu’s property A is equivalent both to the
nuclearity of the uniform Roe algebra C∗

u(G) and to the exactness of the reduced
C∗-algebra C∗

r (G). This follows from the results of Anantharaman-Delaroche and
Renault [1], Higson and Roe [5], Guentner and Kaminker [4], and Ozawa [10].
While property A and the uniform Roe algebra can be defined for arbitrary metric
spaces, we cannot generalise these results without a good analogue of the reduced
C∗-algebra of a group.

In this paper we introduce a C∗-algebra to fulfill this role. To do so we carry
out the following programme. First we define the notion of a partial translation
structure (Definition 11) on a uniformly discrete metric space, which captures ge-
ometrically the interplay between the left and the right action of a group on itself.
In broad terms, this can be described as follows. In Euclidean space translations
are distinguished from other isometries of the space by the fact that they move each
point by the same distance. Let us assume that a group G is equipped with a left
invariant metric d, which means that for any elements g, s, t of G, d(gs, gt) = d(s, t).
In other words, multiplication on the left acts by isometries on the metric space
(G, d). On the other hand, the right multiplication by a fixed element g of G moves
each element r of G by the same distance: d(r, rg) = d(e, g), where e is the identity
of G. Thus we say that the right multiplication acts by translations on (G, d) even
though these translations are not isometries in general. However, there is an inter-
esting connection between the translations arising from the right multiplication and
the isometries given by the left multiplication. This interaction is encoded in our
definition of partial translation structure. It will follow directly from this definition
that any group admits a canonical partial translation structure given by the left
and right multiplication. This partial translation structure is in some sense the best
possible, as discussed in Section 3. To measure how group-like is a given metric
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space X , we introduce a coarse invariant, a real valued function κX(R), associated
to the space X . When κX(R) = 1 for all R > 0 we say that the partial translation
structure is free.

Next we construct a C∗-algebra, the partial translation algebra C∗(T ), associ-
ated to any partial translation structure T . This is a subalgebra of the uniform Roe
algebra C∗

u(X). We show that when the space X is a group and T is the canonical
partial translation structure then C∗(T ) is isomorphic to the reduced C∗-algebra of
the group. We study the analytic properties of the partial translation algebras and
we prove that when the space admits a free, globally controlled partial translation
structure T then the following are equivalent (Theorem 29):

(1) X has property A;
(2) C∗(T ) is exact;
(3) C∗

u(X) is exact;
(4) C∗

u(X) is nuclear.

This is related to a theorem of Skandalis, Tu and Yu, [13], who proved the equiva-
lence of 1 and 4 for bounded geometry metric spaces.

In Theorem 19 we prove the following. When the space X admits an injective
uniform embedding into a group, one can pull back the canonical partial translation
structure from the group to the space to obtain a free partial translation structure
on X which satisfies the hypotheses of the above Theorem 29. We conclude fur-
thermore that κX(R) = 1 for all R in this case. It follows that if κX(R) > 1 for
some R, then X does not admit an injective uniform embedding into any countable
group. Our invariant therefore provides an obstruction to the existence of such an
embedding (Corollary 20).

The question of the existence of a uniform embedding in a group can be treated
locally. We introduce the notion of a local embedding in a group and show that a
discrete metric space X is embeddable in a group if and only if it is locally embed-
dable (Theorem 22). The main interest in this notion comes from the existence of
a space ΓU with the universal property that every bounded geometry space locally
uniformly embeds in ΓU . We are therefore able to show that ΓU embeds uniformly
in a countable discrete group G if and only if for each uniformly discrete bounded
geometry metric space X there is a countable discrete group GX such that X
uniformly embeds in GX .

We remark that property A of a metric space X is a coarse invariant, but the
uniform Roe algebra C∗

u(X) is not. We prove, however, that if X and Y are
coarsely equivalent then C∗

u(X) and C∗
u(Y ) are Morita equivalent (Theorem 4).

Thus exactness and nuclearity of the uniform Roe algebra are preserved by coarse
equivalence.

1. Characterisations of Property A

In this section we will review various characterisations of property A for metric
spaces. The original definition, due to Yu, is stated as follows.

Definition 1 (Yu, [16]). A uniformly discrete metric space (X, d) has property A
if for all R, ε > 0 there exists a family of finite non-empty subsets Ax of X × N,
indexed by x in X , such that

- for all x, y with d(x, y) < R we have
|Ax∆Ay|
|Ax∩Ay|

< ε;

- there exists S such that for all x and (y, n) ∈ Ax we have d(x, y) ≤ S.
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We will begin by giving some conditions which are equivalent to property A. For
this the following terminology will be useful.

Definition 2. A function from X to a Banach space x 7→ ξx has (R, ε)-variation
if d(x, y) ≤ R implies ‖ξx − ξy‖ < ε.

A kernel u : X×X → R or C has (R, ε)-variation if d(x, y) ≤ R implies |u(x, y)−
1| < ε.

A kernel u : X ×X → R or C has finite propagation if there exists R ≥ 0 such
that u(x, y) = 0 for d(x, y) > R. The propagation of u is the smallest such R.

We recall that a uniformly discrete metric space X has bounded geometry if for
all R > 0 there exists N , such that the cardinality of BR(x) is at most N for all x in
X . Hence, if u : X ×X → C is a finite propagation kernel on a bounded geometry
discrete metric space then there exists N such that for each x there are no more
than N points y such that u(x, y) 6= 0. Thus u defines a bounded linear map from
l2(X) to itself, (u ∗ ξ)(x) =

∑

y∈X u(x, y)ξ(y). These linear maps are also said to
have finite propagation.

The uniform Roe algebra, C∗
u(X), is the C∗-algebra completion of the algebra of

bounded operators on l2(X) having finite propagation.
The following result summarises various characterisations of Property A.

Theorem 3. Let X be a uniformly discrete bounded geometry metric space. The
following are equivalent.

(1) X has property A.
(2) For all R, ε there exists a family of vectors ξx ∈ l1(X) for x ∈ X, such that:

- ‖ξx‖1 = 1; the family (ξx) has (R, ε)-variation;
- there exists S such that for all x, ξx is supported in the S-ball about x.

(3) For all R, ε there exist vectors ξx ∈ l2(X) for x ∈ X, such that:
- ‖ξx‖2 = 1; the family (ξx) has (R, ε)-variation;
- there exists S such that for all x, ξx is supported in the S-ball about x.

(4) For all R, ε there exist vectors ξx ∈ l2(X) for x ∈ X, such that:
- ‖ξx‖2 = 1; the family (ξx) has (R, ε)-variation;
- for all δ > 0 there exists S such that for all x, the restriction of ξx to

the S-ball about x has norm at least 1 − δ.
(5) There exists δ < 1 such that for all R, ε there exist vectors ξx ∈ l2(X) for

x ∈ X, such that:
- ‖ξx‖2 = 1; the family (ξx) has (R, ε)-variation;
- there exists S such that for all x the restriction of ξx to the S-ball

about x has norm at least 1 − δ, and the restriction of ξx to the set
BR+S(x) \BS(x) has norm at most ε.

(6) For all R, ε there exists a Hilbert space H and vectors ξx ∈ H for x ∈ X,
such that:

- ‖ξx‖2 = 1; the family (ξx) has (R, ε)-variation;
- there exists S such that d(x, y) > S implies 〈ξx, ξy〉 = 0.

(7) For all R, ε there exists a finite propagation positive type kernel u : X×X →
R such that u has (R, ε)-variation.

(8) For all R, ε there exists a positive type kernel u : X ×X → C such that: u
has (R, ε)-variation; convolution with u defines a bounded operator in the
uniform Roe algebra C∗

u(X).
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Proof. The equivalence of 1 and 2 is proved in [5], Lemma 3.5. The equivalence of
2 and 3 is proved in [14] Proposition 3.2.

3 ⇐⇒ 4 ⇐⇒ 5: Note that 3 =⇒ 4 trivially. Given 4, fix δ < 1, and for any
R, ε, take δ′ to be the smaller of δ, ε. For S, ξx such that the restriction of ξx to
the S-ball has norm at least 1− δ′ ≥ 1− δ, the restriction to BR+S(x) \BS(x) has
norm at most δ′ ≤ ε. Thus 4 =⇒ 5.

To show 5 =⇒ 3, fix δ and given any R, ε let ξx and S be as in 5. Define
ζx to be the restriction of ξx to the R + S-ball about x. We write ζx − ζy as
the sum of three parts: ξx restricted to BR+S(x) \ BR+S(y); ξx − ξy restricted
to BR+S(x) ∩ BR+S(y); and −ξy restricted to BR+S(y) \ BR+S(x). Note that for
d(x, y) < R we have BR+S(x) \ BR+S(y) contained in BR+S(x) \ BS(x), thus the
restriction of ξx to this set has norm at most ε. Similarly for the corresponding
restriction of −ξy. The variation condition ensures that any restriction of ξx−ξy has
norm at most ε, hence for d(x, y) < R we have ‖ζx − ζy‖ ≤ 3ε. Let ηx = ζx/‖ζx‖.
Now use the estimates

‖ηx − ηy‖ ≤ 1

‖ζx‖
‖ζx − ζy‖ + ‖ζy‖

∣

∣

∣

∣

1

‖ζx‖
− 1

‖ζy‖

∣

∣

∣

∣

=
1

‖ζx‖
‖ζx − ζy‖ +

|‖ζy‖ − ‖ζx‖|
‖ζx‖

≤ 6ε

1 − δ

for d(x, y) ≤ R. As δ is fixed, independent of ε we can achieve arbitrarily small
variation.

3 ⇐⇒ 6 ⇐⇒ 71 ⇐⇒ 8: Note 3 =⇒ 6 trivially. To show 6 =⇒ 7, given ξx
let u(x, y) = Re〈ξx, ξy〉. Clearly this is of positive type and satisfies the appropriate
vanishing conditions. The identity

‖ξx − ξy‖2 = 2 − 2u(x, y)

shows that (R,
√

2ε)-variation for ξx is equivalent to (R, ε)-variation for u. To show
that 7 =⇒ 8, note that bounded geometry, along with the support condition
of 7 implies that convolution with u defines a bounded operator Op(u) on l2(X),
specifically an element of the uniform Roe algebra C∗

u(X).
Now we’ll show that 8 =⇒ 3. Let u be a kernel with (R, ε)-variation, and Op(u)

the corresponding operator in C∗
u(X). As u is of positive type, Op(u) is a positive

operator so it has a positive square root. We denote the corresponding kernel by v
and note that as Op(v) lies in C∗

u(X) there is a self-adjoint kernel w satisfying the
support condition and the inequality

‖Op(v) − Op(w)‖ < min

(

ε,
ε

2(‖Op(v)‖ + ε)

)

.

From this it follows that ‖Op(w)‖ ≤ ‖Op(v)‖ + ε so we have

‖Op(v)2−Op(w)2‖ ≤ ‖Op(v)‖‖Op(v)−Op(w)‖+‖Op(v)−Op(w)‖‖Op(w)‖ < ε.

Let ζx ∈ l2(X) be the vector with entries ζx(z) = w(z, x). Now observe that

〈ζx, ζy〉 =
∑

z

w(z, x)w(z, y) =
∑

z

w(x, z)w(z, y),

i.e. the kernel 〈ζx, ζy〉 consists of the matrix entries of the operator Op(w)2. Since
Op(w)2 differs from Op(v)2 = Op(u) by at most ε it follows that the kernel 〈ζx, ζy〉

1The equivalence of 3 and 7 is also proved in [14] Proposition 3.2.
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differs from u(x, y) entrywise by at most ε. (In fact this condition is much weaker.)

Hence the kernel 〈ζx, ζy〉 has (R, 3ε)-variation, so ζx has (R,
√

6ε) variation. Finally
replace ζx by ηx = ζx/‖ζx‖ and note that ‖ζx‖2 = 〈ζx, ζx〉 ≥ 1−2ε. As in the proof

of 5 =⇒ 3 we conclude that ηx has (R, 2
√

6ε/(1 − 2ε))-variation. �

2. Morita invariance of C∗
u(X)

The uniform Roe algebra is not a coarse invariant, as the following example
illustrates. The uniform Roe algebra of a finite space is Mn(C) where n is the
cardinality of the space, however all finite spaces are coarsely equivalent. While the
algebras Mn(C) are not all isomorphic, they are all Morita equivalent. Note that
for unital C∗-algebras, such as the uniform Roe algebra, two algebras A and B are
Morita equivalent if and only if they are stably isomorphic [8, Thm. 7.6], which
means that A⊗ K ∼= B ⊗ K, where K denotes the algebra of compact operators.

We prove the following.

Theorem 4. If X and Y are uniformly discrete bounded geometry spaces, and X
is coarsely equivalent to Y , then C∗

u(X) is Morita equivalent to C∗
u(Y ).

Before proving the theorem, we note the following corollary.

Corollary 5. If X and Y are uniformly discrete bounded geometry spaces, and X
is coarsely equivalent to Y then C∗

u(X) is nuclear (resp. exact) if and only if C∗
u(Y )

is nuclear (resp. exact).

Proof of Corollary 5. By the Theorem, if X and Y are coarsely equivalent, then
the algebras C∗

u(X) and C∗
u(Y ) are Morita equivalent. By Proposition 6.2 of [6], if

A and B are Morita equivalent C∗-algebras, then A is nuclear if and only if B is
nuclear.

In the case of exactness, we argue as follows. Since the algebras C∗
u(X) and

C∗
u(Y ) are unital and Morita equivalent, they are stably isomorphic. Since K is

nuclear (and hence exact), if the algebra C∗
u(X) is exact, then the tensor product

C∗
u(X)⊗K is also exact. Therefore C∗

u(Y )⊗K is exact. Since a subalgebra of an exact
C∗-algebra is also exact [15, Prop. 2.6], the inclusion C∗

u(Y ) →֒ C∗
u(Y )⊗K, defined

with the help of a projection in K, shows that C∗
u(Y ) is exact, as required. �

We will now prove the theorem.

Proof of Theorem 4. First we will prove this under the assumption that the coarse
equivalence f : X → Y is surjective. The issue is one of multiplicities, as in the
above example of the finite spaces; if the map f is actually a bijection, then we would
have an isomorphism from C∗

u(X) to C∗
u(Y ). We will prove that C∗

u(X)⊗K(l2(Z)) ∼=
C∗

u(Y )⊗K(l2(Z)), where K(l2(Z)) denotes the algebra of compact operators on the
Hilbert space l2(Z); this is equivalent to Morita equivalence of the algebras C∗

u(X)
and C∗

u(Y ). Note that the algebras C∗
u(X) ⊗ K(l2(Z)) and C∗

u(Y ) ⊗ K(l2(Z)) can
be viewed as algebras of operators on l2(X × Z) and l2(Y × Z) respectively.

Since f is a coarse equivalence there exists R > 0 such that for each y in Y ,
the preimage f−1(y) lies in some R-ball in X . By bounded geometry of X , there
exists N such that for each y, the cardinality of f−1(y) is at most N . Define N(y)
to be the cardinality of f−1(y), and for each y, enumerate the points of f−1(y),
i.e. pick a bijection of f−1(y) with {1, . . . , N(y)} ⊆ {1, . . . , N}. We therefore
obtain an identification of X with a subset of Y × {1, . . . , N}. Let π denote the
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corresponding projection from X to {1, . . . , N}, so that x 7→ (f(x), π(x)) is the
above identification.

We define a map φ from X × Z to Y × Z, by φ(x, j) = (f(x), π(x) + jN(f(x))).
Since for each y in Y there is exactly one x in X with f(x) = y, π(x) = i for
i = 1, . . . , N(y), the map φ is a bijection. This bijection gives rise to a unitary
isomorphism from l2(X × Z) to l2(Y × Z), and hence an isomorphism Φ from the
algebra of bounded operators on l2(X ×Z) to the algebra of bounded operators on
l2(Y × Z). We claim that Φ maps C∗

u(X) ⊗ K(l2(Z)) into C∗
u(Y ) ⊗ K(l2(Z)), and

Φ−1 maps C∗
u(Y ) ⊗ K(l2(Z)) into C∗

u(X) ⊗ K(l2(Z)). Hence the restrictions of Φ
to C∗

u(X) ⊗ K(l2(Z)) and Φ−1 to C∗
u(Y ) ⊗ K(l2(Z)) give an isomorphism between

C∗
u(X) ⊗ K(l2(Z)) and C∗

u(Y ) ⊗ K(l2(Z)) as required.
First we will show that Φ maps C∗

u(X)⊗K(l2(Z)) into C∗
u(Y )⊗K(l2(Z)). Since Φ

is continuous, it suffices to prove this for the dense subalgebra of C∗
u(X)⊗K(l2(Z))

consisting of sums of elementary tensors of the form T ⊗M where T is a finite
propagation operator on l2(X) and M is a finite matrix. Indeed it is sufficient to
prove that Φ(T ⊗ ejj′) lies in C∗

u(Y ) ⊗ K(l2(Z)), for T of finite propagation, and
where ejj′ denotes a matrix unit. Partition X as X =

⋃

n=1,...,N, i=1,...,nXn,i where

Xn,i = {x ∈ X : N(f(x)) = n, π(x) = i}.
We can write T as the sum

T =
∑

n,n′≤N

i≤n,i′≤n′

Pn,iTPn′,i′

where Pn,i denotes the projection of l2(X) onto the subspace l2(Xn,i). Note that
for each i, the restriction of f to Xi =

⋃

n≥iXn,i is injective, and let Vi de-

note the corresponding isometry from l2(Xi) to l2(Y ). Fix n, n′ and i, i′, and
let S = Pn,iTPn′,i′ . Then Φ(S ⊗ ejj′ ) = ViSV

∗
i′ ⊗ ei+nj,i′+n′j′ . Since f is a coarse

equivalence, the operator ViSV
∗
i′ is of finite propagation, hence ViSV

∗
i′ ⊗ei+nj,i′+n′j′

lies in C∗
u(Y )⊗K(l2(Z)). Since this holds for each n, n′, i and i′, we conclude that

Φ(T ⊗ ejj′ ) lies in C∗
u(Y ) ⊗ K(l2(Z)) as required.

We will now show that Φ−1 maps C∗
u(Y ) ⊗ K(l2(Z)) into C∗

u(X) ⊗ K(l2(Z)). As
above, it suffices to show this for operators of the form T ⊗ ekk′ , with T a finite
propagation operator on l2(Y ). Let Yn = {y ∈ Y : N(y) = n}, and let Pn denote the
projection of l2(Y ) onto l2(Yn). We can write T as a sum T =

∑

n,n′≤N PnTPn′ .

Now fix n, n′ and write k = i + nj, k′ = i′ + n′j′. Then for S = PnTPn′ we
have Φ−1(S ⊗ ekk′) = V ∗

i SVi′ ⊗ ejj′ . As f is a coarse equivalence V ∗
i SVi′ has

finite propagation, and hence we conclude that Φ−1 maps C∗
u(Y ) ⊗ K(l2(Z)) into

C∗
u(X) ⊗ K(l2(Z)).
We have therefore shown that for f : X → Y a surjective coarse equivalence,

C∗
u(X) is Morita equivalent to C∗

u(Y ). The general case follows from the obser-
vation that given any coarse equivalence f : X → Y , there are surjective coarse
equivalences from both X and Y to the image f(X). Hence we have the following
isomorphisms:

C∗
u(X) ⊗ K(l2(Z)) ∼= C∗

u(f(X)) ⊗ K(l2(Z)) ∼= C∗
u(Y ) ⊗ K(l2(Z)).

�

In [10] Ozawa showed that a discrete group G is exact if and only if its uniform
Roe algebra is nuclear. Using Theorem 4 we can extend this result as follows.
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Corollary 6. Let G be a countable group acting properly by isometries on a uni-
formly discrete proper metric space X. If C∗

u(X) is an exact algebra, then G is an
exact group. If moreover the action is cocompact, then the following are equivalent.

(1) X has property A;
(2) C∗

u(X) is nuclear;
(3) C∗

u(X) is exact;
(4) G is exact.

Proof. Pick a basepoint x0 in X . Then G is coarsely equivalent to the orbit Y =
Gx0. Exactness passes to subalgebras, so if C∗

u(X) is exact, then C∗
u(Y ) is also

exact. The algebra C∗
u(Y ) is Morita equivalent to C∗

u(G), so the latter is exact.
This algebra contains a subalgebra isomorphic to C∗

r (G), so C∗
r (G) is also exact,

hence G is an exact group.
If the action ofG is cocompact then G is coarsely equivalent to X , hence property

A for X , nuclearity of C∗
u(X) and exactness of C∗

u(X) are all equivalent to their
counterparts for G. For the group G, property A, nuclearity of C∗

u(G), exactness
of C∗

u(G) and exactness of G are all equivalent by the results of [4, 5, 10]. �

Remark 7. An alternative to the direct proof of Theorem 4 would be to rely on the
following result from groupoid theory [13, 3.6]: If X and Y are coarsely equivalent
uniformly locally finite coarse spaces then the groupoidsG(X) and G(Y ) are Morita
equivalent. Given that C∗

r (G(X)) ∼= C∗
u(X) one then appeals to the fact that Morita

equivalence of groupoids implies the Morita equivalence of the associated reduced
groupoid C∗-algebras [9].

3. Partial translation structures

A group G comes equipped with both left and right multiplications. We as-
sume that a discrete group G is equipped with a left invariant metric so that left
multiplication acts by isometries on G. As noted in the introduction, the right
multiplication by an element g ∈ G moves every element h of the group the same
distance. We will reserve the term translation for the right action on the group and
the term cotranslation will refer to the left action.

We will now define analogues of both of these actions for a discrete metric space.

Definition 8. A partial bijection from X to X is a subset s of X ×X such that
the coordinate projections of s onto X are injective.

A partial bijection can be viewed as a partially defined injection from X into X ,
and we will write x = s(y) if (x, y) ∈ s.

Definition 9. A partial translation of X is a partial bijection t such that d(x, y)
is bounded for (x, y) ∈ t. The identity translation, denoted 1, is the diagonal of
X ×X . The inverse of t is t∗ = {(y, x) : (x, y) ∈ t}.

A partial translation gives rise to a partial isometry in C∗
u(X); the inverse gives

the adjoint partial isometry.
For G a discrete group and for g ∈ G, the set tg = {(h, hg) : h ∈ G} is a (globally

defined) partial translation. Viewing tg as a map from G to itself, it acts by right
multiplication by g−1.

Definition 10. Let T be a collection of disjoint partial translations of X . A partial
bijection σ of X is a partial cotranslation for T if for all t ∈ T and (x, y) ∈ t such
that σ is defined on both x and y, we have (σx, σy) ∈ t.
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For G a group, elements of G acting by left multiplication are (globally defined)
partial cotranslations for {tg : g ∈ G}.
Definition 11. A partial translation structure on X is a collection T of partial
translations ofX , such that for allR > 0 there is a finite subset TR of disjoint partial
translations in T , and a collection ΣR of partial cotranslations of TR satisfying the
following axioms.

(1) the union of the partial translations t in TR contains the R-neighbourhood
of the diagonal, that is the set of all (x, y) ∈ X ×X such that d(x, y) < R.

(2) there exists k such that for each x, x′ in X , there are at most k elements σ
in ΣR such that σx = x′;

(3) for each t in TR and for all (x, y), (x′, y′) in t, there exists σ in ΣR such that
σx = x′ and σy = y′.

A family {(TR,ΣR) | R > 0} of partial translations and partial cotranslations
satisfying conditions 1-3 will be called an atlas. Note that there is always a par-
tial translation structure associated with an atlas given by putting T =

⋃

R>0 TR.
Indeed we can always enlarge this family T to include any additional partial trans-
lations we desire and the enlarged family will still be a partial translation structure.
In particular if X has any partial translation structure or equivalently any atlas,
then taking T to be the family of all partial translations we obtain the maximal
partial translation structure.

An atlas {(TR,ΣR) | R > 0} where each TR lies in a partial translation stucture
T will be called an atlas for T . Note that atlases can be combined in the the
following way: given any family Ai = {(T i

R,Σ
i
R) | R > 0} of atlases for T we may

construct a new atlas for T by choosing one of the pairs (T i
R,Σ

i
R) for each R > 0.

For A = {(TR,ΣR) | R > 0} an atlas on X , and for R > 0, let kA(R) denote the
smallest k such that for all x, x′ in X , there are at most k elements σ in ΣR with
σx = x′. For T a partial translation structure on X let kT (R) denote the minimum
kA(R) taken over all atlases A for T .

It is not immediately clear for which spaces partial translation structures exist.
In Theorem 18 we will show that every uniformly discrete bounded geometry met-
ric space does admit a partial translation structure which allows us to make the
following definition.

Definition 12. For (X, d) a uniformly discrete bounded geometry metric space let
T denote the partial translation structure consisting of all partial translations on
X . We define the translation invariant of X to be the function

κX(R) = kT (R).

Note that if d, d′ are two coarsely equivalent metrics on X then any partial
translation structure for (X, d) is a partial translation structure for (X, d′) and vice
versa. Thus sup

R

κX(R) is invariant under coarse equivalence of metrics.

We now introduce two properties for an atlas (freeness and global control) which
we will need later.

Definition 13. An atlas A on X is said to be free if kA(R) = 1 for all R > 0.

Since atlases, may be combined it follows that a partial translation structure T
admits a free atlas if and only if kT (R) = 1 for all R > 0, and that X admits a free
atlas if and only if κX(R) = 1 for all R > 0.
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Definition 14. An atlas {(TR,ΣR) | R > 0} is said to be globally controlled if the
partial cotranslation orbit

{(x′, y′) : there exists σ in ΣR such that σx = x′, σy = y′}
is a partial translation for all R > 0 and x, y ∈ X .

Note that for R > 0 and x, y with d(x, y) ≤ R it is automatic that the orbit
under ΣR is a partial translation; the cotranslation orbit of (x, y) under ΣR is the
unique t in TR such that (x, y) ∈ t.

The following proposition describes the motivating example of a partial transla-
tion structure.

Proposition 15. Let G be a countable discrete group. Then G admits a canonical
atlas which is free and globally controlled. In particular, κG(R) = 1 for all R.

Proof. Since G is a countable discrete group it may be equipped with a bounded
geometry left invariant metric d. Let tg denote the partial translation tg = {(x, xg) :
x ∈ G} and for R > 0 let TR = {tg | d(e, g) < R}. Since the metric has bounded
geometry TR is a finite set.

The pair (x, y) belongs to the R-neighbourhood of the diagonal if and only if
d(x, y) < R, so d(e, x−1y) < R by the left invariance of the metric. But then
(x, y) ∈ tx−1y and tx−1y ∈ TR. Hence TR satisfies condition 1 of Definition 11.

For each element h ∈ G we have the bijection σh : G→ G defined by σh(x) = hx.
For each partial translation tg and each element (x, xg) ∈ tg we have

(σh(x), σh(xg)) = (hx, hxg) = (σh(x), σh(x)g) ∈ tg.

Thus the bijections σh are partial cotranslations for TR.
For all R > 0 let ΣR = {σh : h ∈ G}. Clearly for any elements x, x′ ∈ G

there is exactly one element of ΣR, namely the cotranslation σx′x−1 , such that
σx′x−1(x) = x′ so the subsets ΣR satisfy condition 2 of Definition 11.

Let tg ∈ TR and (x, xg), (x′, x′g) ∈ tg. Then setting h = x′x−1 we have σh(x) =
x′ and σh(xg) = x′g so condition 3 of Definition 11 is also fulfilled. Set A =
{(TR,ΣR)}.

As noted above, there is exactly one element of ΣR such that σh(x) = x′, namely
σx′x−1 , so we have kA(R) = 1 and so κG(R) is also 1 for all R. This means that
the atlas is free.

Finally if x, y ∈ G then the cotranslation orbit {(σh(x), σh(y)) | σh ∈ ΣR} is
equal to the set tx−1y = {(h, hx−1y) | h ∈ G}, so in particular it is a partial
translation. Thus the atlas is globally controlled. �

We call the partial translation structure T =
⋃

R TR the canonical partial trans-
lation structure on the group G.

We shall now demonstrate the existence of partial translation structures for
arbitrary uniformly discrete bounded geometry metric spaces. We shall use the
following terminology.

Definition 16. A metric space X is R-separated if for all distinct x, y in X , we
have d(x, y) ≥ R.

For metric spaces the following standard lemma will be needed to demonstrate
the existence of partial translation structures.
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Lemma 17. Let X be a uniformly discrete bounded geometry metric space. Then
for all R the space X can be written as a finite disjoint union of R-separated subsets.

Proof. This is a colouring argument. Given R let n be an upper bound on the
cardinality of the R-balls of X . As a uniformly discrete bounded geometry metric
space must be countable we can enumerate the points of X as x1, x2, . . . . We will
define inductively a colouring c : X → {1, . . . , n}, such that d(x, y) < R implies
c(x) 6= c(y). Let c(x1) = 1. Now suppose we have defined c on the set {x1, . . . , xj}
in such a way that for x, y in {x1, . . . , xj} with d(x, y) ≤ R, we have c(x) 6= c(y).
The set BR(xj+1) contains at most n− 1 points from the set {x1, . . . , xj}, so there
exists i ∈ {1, . . . , n} with c(x) 6= i for all x in {x1, . . . , xj} ∩ BR(xj+1). Define
c(xj+1) = i. This extension also has the property that points x, y with d(x, y) ≤ R
are coloured differently, hence by induction we can extend c to a colouring of X
such that d(x, y) ≤ R implies c(x) 6= c(y). The sets Xi = c−1({i}) are R-separated
as required. �

Theorem 18. Let X be a uniformly discrete bounded geometry metric space. Then
X admits a partial translation structure.

Proof. Fix R and write X as a disjoint union, X = X1 ∪ · · · ∪Xn, of S-separated
sets, for S > 2R. Let tij be the set of pairs (x, y) ∈ Xi ×Xj such that d(x, y) ≤ R.
For each x ∈ Xi there is at most one y ∈ Xj with d(x, y) ≤ R, since Xj is S
separated, with S > 2R. Conversely for each y ∈ Xj there is at most one x ∈ Xi

with d(x, y) ≤ R. Hence tij is a partial translation. Note that tji = t∗ij ; tii is the
diagonal of Xi × Xi; and the union of the sets tij is the R-neighbourhood of the
diagonal. Define TR = {tij : i, j = 1, . . . , n}.

We will now define cotranslations. We will write ΣR as a union of sets Σij
R , for

i, j = 1, . . . , n with i ≤ j. For each partial translation t = tij , pick a transitive
permutation σij of the set t. This gives a partial cotranslation for t: for (x, y) in t we
will define σij onXi∪Xj . We define σijx and σijy such that (σijx, σijy) = σij(x, y).
This is well defined as for each x in Xi there is at most one y in Xj with (x, y) in

t and conversely for each y there is at most one x. We define Σij
R to be the set of

powers of these permutations {σm
ij : m ∈ Z}.

Note that σm
ij is defined on pairs (x, y) in tij , tji, tii, tjj but not on any other t in

TR. For t = tij , tji, tii or tjj and (x, y) in t, it is clear that (σm
ij x, σ

m
ij y) also lies in

t, so the elements of ΣR =
⋃

i≤j Σij
R are cotranslations for TR. For each i ≤ j and

x, x′ ∈ X there is at most one cotranslation σ ∈ Σij
R such that σx = x′, thus there

are at most k = n(n + 1)/2 elements of ΣR taking x to x′. By construction, for
each i ≤ j, and (x, y), (x′, y′) in tij there exists m such that σm

ij x = x′, σm
ij y = y′,

and the same holds for tji = t∗ij . Thus TR,ΣR satisfy the required axioms. Now

define T =
⋃

R TR. �

We conclude this section by discussing the question: under what circumstances
do there exist free or globally controlled atlases? We will show that uniform em-
beddings in groups give rise to these, and we will discuss the issue of which spaces
are uniformly embeddable in groups. Throughout, the groups we consider will be
countable discrete groups, equipped with a proper, left-invariant metric; such a
metric is unique up to coarse equivalence.
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Theorem 19. Let X be a space admitting an injective uniform embedding into
some discrete group G. Then X admits a free and globally controlled atlas, and in
particular κX(R) = 1 for all R > 0.

Proof. Let dX denote the metric on X , and let dG denote the metric on G. Let
φ : X → G denote the injective uniform embedding of X into G. We construct a
partially defined action of G on X as follows. For y in X and g in G we define
g ⋄ y = x if φ(y)g−1 = φ(x), while g ⋄ y is undefined if φ(y)g−1 is not in the image
of φ. Note that g ⋄ y is uniquely determined if it exists, since φ is injective.

Fix g ∈ G. If g ⋄ y = x, then

dG(φ(x), φ(y)) = dG(φ(y)g−1, φ(y)) = dG(e, g).

As φ is a uniform embedding, there exists R such that for x, y with dG(φ(x), φ(y)) =
dG(e, g) we have dX(x, y) ≤ R. Thus if g ⋄y = x then dX(x, y) ≤ R. Hence for each
g ∈ G the action g⋄, viewed as a partial bijection of X , defines a partial translation
of X .

As φ is a uniform embedding, for all R there exists S such that if dX(x, y) ≤ R
then dG(φ(x), φ(y)) ≤ S i.e. dG(e, φ(x)−1φ(y)) ≤ S. Let TR denote the set of
partial translations g⋄ with dG(e, g) ≤ S. These are disjoint partial translations
whose union contains all (x, y) with dX(x, y) ≤ R, i.e. the union contains the R-
neighbourhood of the diagonal.

We will now define the cotranslations on X . We construct another partially
defined action ofG onX . For x inX and h in G we define h·x = x′ if hφ(x) = φ(x′),
while h · x is undefined if hφ(x) is not in the image of φ. Let ΣR denote the set of
partial bijections h· for h ∈ G. We will show that these are partial cotranslation
for TR. We must check that for each g in TR, and (x, y) in the corresponding
partial translation g⋄, if (h · x, h · y) is defined, then it also lies in the partial
translation g⋄. The pair (x, y) lies in g⋄ if and only if x = g ⋄ y, and we then have
(h ·x, h ·y) = (h · (g ⋄ y), h ·y), where this is defined. Note that h · (g ⋄ y) = g ⋄ (h ·y)
when both of these are defined, since the two actions arise from left and right
multiplication in the group, so they commute. Moreover if h · (g ⋄ y), h · y are both
defined then so is g ⋄ (h · y). Hence

(h · x, h · y) = (h · (g ⋄ y), h · y) = (g ⋄ (h · y), h · y)
whenever (h · x, h · y) is defined, and (g ⋄ (h · y), h · y) lies in the partial translation
g⋄ as required.

We have shown that h· acts on the partial translations, so it is a cotranslation.
Moreover, the set of these cotranslations acts transitively on each partial translation
in TR. To see this, note that for each partial translation g⋄ in TR, and for any two
pairs (g ⋄ y, y), (g ⋄ y′, y′) in g⋄, there exists h, namely h = φ(y′)φ(y)−1, such that
h· takes (g ⋄ y, y) to (g ⋄ y′, y′).

For each x, x′ we note that there is a unique cotranslation, namely h· for h =
φ(x′)φ(x)−1, such that h · x equals x′. Thus {(TR,ΣR) | R > 0} is a free atlas on
X .

Finally, for any x, y in X , if x′ = h · x and y′ = h · y then φ(x′)−1φ(y′) =
φ(x)−1φ(y). Let R = dG(e, φ(x)−1φ(y)) = dG(e, φ(x′)−1φ(y′)). As φ is a uniform
embedding there exists S such that d(e, φ(x′)−1φ(y′)) ≤ R implies dX(x′, y′) ≤ S.
Thus dX(x′, y′) is bounded for (x′, y′) in the cotranslation orbit of (x, y), so the
atlas is globally controlled. �
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Corollary 20. If X is a uniformly discrete bounded geometry metric space for
which κX(R) > 1 for some R, then X does not admit an injective uniform embed-
ding into any countable group.

4. Uniform embeddings in groups

Motivated by Theorem 19 we turn to the question of when a locally finite metric
space may admit a uniform embedding into a discrete group. We shall use the
following result from [2, 3.2] as our guiding principle: A locally finite metric space
admits a uniform embedding in a Hilbert space if and only if it admits a local
uniform embedding.

In this section we formulate a similar local to global principle for embeddings in
groups and for this we need to define local variants of global properties of metric
spaces.

Given a countable, uniformly discrete metric space X , let Fin(X) be the disjoint
union of all finite subsets of X . To be explicit about the metric, we can enumerate
the finite sets as X1, X2, . . . , and view Fin(X) as the union of the sets Xi ×{i2} in
X ×N. The metric d that FinX inherits from the product metric on X ×N agrees
with the given metric on each set Xi. If we then measure the distance between the
subsets Xi in the usual way then the metric has the property that d(Xi, Xj) tends
to infinity as i, j tend to infinity with i 6= j. Any other metric on Fin(X) with these
properties will be coarsely equivalent to d.

We say that a metric space X locally has property A if FinX has property A.
We say that X is locally uniformly embeddable in a space Y if FinX is uniformly
embeddable in FinY . We note that this notion of local uniform embeddability in
Hilbert space agrees with the definition of [2].

As a first example of our local to global principle we have the following.

Proposition 21. A bounded geometry uniformly discrete metric space X has prop-
erty A if and only if it locally has property A.

Proof. We use the characterisation of property A in terms of kernels, as in condition
7 of Theorem 3. Given a positive kernel u on X with (R, ε)-variation, and vanishing
for d(x, y) > S, we can produce a positive kernel on FinX by defining kernels ui on
Xi to be the restrictions of u to Xi ×Xi. Each individual ui has (R, ε)-variation,
however this need not be true for the collection taken together as a kernel on FinX .
Let I be the finite set of i such that Xi is within distance R of some other Xj . We
define a kernel v on FinX by

v(x, y) =











1, if x ∈ Xi, y ∈ Xj , i, j ∈ I;

ui(x, y), if x, y ∈ Xi, i /∈ I;

0, otherwise.

It is easy to see that v has (R, ε)-variation, and vanishes for d(x, y) sufficiently
large. The kernel v can be regarded as a block-diagonal matrix in which each block
is positive. Thus property A implies local property A.

Conversely, given a positive kernel v on FinX with (R, ε)-variation, and vanish-
ing for d(x, y) > S, define vi to be the restriction of v to the set Xi. View vi as a
kernel on X vanishing outside Xi. Choose a subsequence ij such that Xij

is an in-
creasing sequence of sets whose union is X . By a diagonal argument we can extract
a further subsequence such that the kernels converge pointwise. Let u denote the
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limit kernel. As each vi is positive, and vanishes for d(x, y) > S the same is true for
u. To see that u has (R, ε)-variation, note that whenever d(x, y) ≤ R and x, y ∈ Xi

we have |vi(x, y) − 1| < ε. By construction, for any fixed x, y, if j is sufficiently
large then x, y ∈ Xij

, hence if d(x, y) ≤ R then |vij
(x, y) − 1| < ε for j sufficiently

large. Thus u has (R, ε)-variation. Hence local property A implies property A. �

The following Theorem and its Corollary 23 establish an analogous principle for
embedding spaces in groups. Together they will provide a local version of Theorem
19.

Theorem 22. Let X be a countable discrete metric space, and G a countable
group. Then X is uniformly embeddable in G if and only if X is locally uniformly
embeddable in G.

Proof. To show that uniform embeddability implies local uniform embeddability is
straightforward. The uniform embedding gives uniform embeddings of each finite
subset Xi of X into some finite subset Gi of G, uniformly in i. By replacing
finite subsets Gi of G with larger finite subsets if necessary, we can arrange that
Gi 6= Gj for i 6= j. The disjoint union

⊔

Gi may be equipped with a metric in
a similar way to the construction of the metric on FinX . By reindexing the sets
Gi we may extend this to an enumeration of the finite subsets of G. In this way
we obtain a uniform embedding of

⊔

Gi into FinG, and so a uniform embedding
of FinX into FinG. (Recall that the coarse structure on Fin(G) is independent of
the enumeration chosen.)

The converse is a limiting argument. We will takeXi to be an increasing sequence
of finite subsets of X whose union is X , so that

⊔

iXi is a subset of FinX . By
assumption we have a uniform embedding φ = ⊔iφi of this into FinG.

Enumerate the pairs (x, y) ∈ X×X , as (xn, yn) for n = 1, 2, . . . . As φ is a coarse
map, for each n there is a finite subset Fn of G such that if xn, yn ∈ Xi then we have
φi(xn)−1φi(yn) in Fn. As F1 is finite, we can extract a subsequence of i = 1, 2, . . .
for which φi(x1)

−1φi(y1) is constant. Similarly there are further subsequences for
which this is constant for (x2, y2), (x3, y3), . . . . Thus by a diagonal argument there is
a subsequence φij

such that for each n the sequence φij
(xn)−1φij

(yn), j = 1, 2, . . . ,
is ultimately constant.

For x, y ∈ X define gxy to be the limit of φij
(x)−1φij

(y). Note that as

(φij
(x)−1φij

(y))(φij
(y)−1φij

(z)) = φij
(x)−1φij

(z)

for all j we have the identity gxygyz = gxz. Similarly gxx = e for all x and gyx = g−1
xy .

As φ is a uniform embedding (i.e. each φi is a uniform embedding uniformly in i),
for all R there exists S such that d(x, y) ≤ R implies |φi(x)

−1φi(y)| ≤ S for all i.
Conversely |φi(x)

−1φi(y)| ≤ R implies d(x, y) ≤ S for all i, where | · | denotes the
length function on the group. Thus for all R there exists S such that

d(x, y) ≤ R =⇒ |gxy| ≤ S,

|gxy| ≤ R =⇒ d(x, y) ≤ S.

Now fix a basepoint x0 in x and define ψ : X → G by ψ(x) = gx0x. Then
d(ψ(x), ψ(y)) = |g−1

x0xgx0y| = |gxy|. The above inequalities thus show that ψ is
a uniform embedding. �
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Corollary 23. If a countable discrete space X is locally uniformly embeddable in
a countable group G then X contains a coarsely equivalent subset Y which admits
a free, globally controlled atlas.

Proof. If X is locally uniformly embeddable in G then X is uniformly embeddable
in G. Let φ denote the embedding. As this is a uniform embedding, there exists
R such that d(x, y) ≥ R implies φ(x) 6= φ(y). Let Y be a maximal R-separated
subset of X . Then Y is coarsely equivalent to X , and the restriction of φ to Y
is an injective uniform embedding, so by Theorem 19, Y admits a free, globally
controlled atlas. �

We finish this section by constructing a universal space ΓU with the property
that ΓU is uniformly embeddable in a countable discrete group G if and only if each
uniformly discrete bounded geometry metric space X uniformly embeds in some
countable group GX .

We begin by showing that every discrete bounded geometry space can be uni-
formly embedded in a graph with bounded valences. Note that any bounded geom-
etry space can be embedded in its total coarsening space, constructed in [15]. This
is a locally finite simplicial complex, hence any bounded geometry space embeds
into a locally finite graph, viz. the 1-skeleton of this. The issue is to produce a
graph with bounded valences. The following can be found in [2, Prop. 5.1]. For the
convenience of the reader we give here an alternative proof which emphasises the
local nature of the question.

Proposition 24. Let X be a uniformly discrete bounded geometry metric space.
Then there exists a graph Γ for which each vertex lies in at most three edges, such
that X uniformly embeds in Γ.

Proof. The idea is a telescope construction. Let Γi denote the 1-skeleton of the ith
Rips complex, i.e. Γi is the graph whose vertices are the points of X and for which
there is an edge between x and y if and only if d(x, y) ≤ i. We can then form a
telescope graph by taking Γ0 ⊔Γ1 ⊔ . . . and for each x ∈ X and i = 0, 1, . . . adding
an edge from the vertex x in Γi to the corresponding point in Γi+1. The inclusion
of X into this telescope as Γ0 gives a uniform embedding, however in the telescope
graph the number of edges emanating from a vertex is unbounded. To fix this we
adjust the graphs Γi. Each vertex will be replaced by a linear graph.

We define the graph Γ as follows. The vertex set of Γ will be the set of triples
(i, x, y) with i = 0, 1, 2, . . . , and x, y in X with d(x, y) ≤ i. Let bi,x denote the
set of triples (i, x, y) with d(x, y) ≤ i, and enumerate these starting with (i, x, x).
We use this enumeration to connect one triple to the next, thus bi,x is given the
structure of a linear graph. Now for each i and x, y with d(x, y) ≤ i, we add an edge
joining (i, x, y) with (i, y, x) as Figure 1. If we fix i, and consider the projection
(i, x, y) 7→ x, this has the effect of collapsing each bi,x to a point, to recover the
graph Γi. To complete the graph Γ, we carry out the telescope construction, by
connecting (i, x, x) to (i + 1, x, x) for each i, x. Note that the graph produced in
this way has at most three edges emanating from any given vertex. Let dΓ denote
the path length metric on Γ.

We will show that the inclusion of X into Γ given by mapping each x ∈ X to
the vertex (0, x, x) in b0,x is a uniform embedding. Denote this map by φ. Given
R, pick i > R, and note that as X has bounded geometry, there is an upper
bound N on the number of points in an i-ball of X , thus, |bi,x| ≤ N for all x in
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(0,x,x)

(0,y,y) (i−1,y,y) (i,y,y) (i+1,y,y)

(i+1,x,x)(i,x,x)(i−1,x,x)

(i,y,x)

(i,x,y)

Figure 1. The graph Γ.

X . Suppose that x, y ∈ X with d(x, y) ≤ R. Then there is a vertex (i, x, y) in
bi,x and a vertex (i, y, x) in bi,y, and these are connected by an edge. We have
dΓ((i, x, x), (i, x, y)) ≤ N − 1, since |bi,x| ≤ N , and similarly dΓ((i, y, y), (i, y, x)) ≤
N − 1, thus dΓ((i, x, x), (i, y, y)) ≤ 2N − 1. On the other hand φ(x) = (0, x, x)
and φ(y) = (0, y, y), so dΓ(φ(x), (i, x, x)) = i and dΓ(φ(y), (i, y, y)) = i. Thus
d(x, y) ≤ R implies dΓ(φ(x), φ(y)) ≤ S = 2i+ 2N − 1.

Conversely, suppose that dΓ(φ(x), φ(y)) ≤ R. Then there is a sequence of adja-
cent vertices φ(x) = v0, v1, . . . , vk = φ(y) in Γ with k ≤ R. Write vj in coordinates
as (ij , xj , yj), and consider the sequence of points x = x0, x1, . . . , xk = y in X .
Since ij ≤ R/2 for all i, we have d(xj , xj+1) ≤ ij ≤ R/2 for all j. It follows that
if dΓ(φ(x), φ(y)) ≤ R then d(x, y) ≤ kR/2 ≤ S = R2/2. Thus φ is a uniform
embedding. �

Let ΓU denote the disjoint union of all connected finite graphs such that every
vertex lies in at most three edges. This union may be equipped with a metric
satisfying the following properties: 1) the restriction to each graph is the standard
edge metric; 2) for all R > 0 all but finitely many components Γ of ΓU have the
property that the distance from Γ to its complement in ΓU is greater than R. This
metric is unique up to coarse equivalence.

Note that ΓU is a uniformly discrete metric space with bounded geometry. Con-
structions of Gromov [3] show that there exists a group G and a coarse map from
ΓU to G, with a certain amount of control on how much the image of ΓU is collapsed
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in G. This however is somewhat weaker than the assertion that ΓU is uniformly em-
beddable in G. Proposition 24 implies that ΓU has the universal property that every
bounded geometry space locally uniformly embeds in ΓU . Combining Proposition
24 with Theorem 22 we obtain the following.

Theorem 25. The following are equivalent:

(1) There exists a countable discrete group G such that the space ΓU uniformly
embeds in G;

(2) For each uniformly discrete bounded geometry metric space X there is a
countable discrete group GX such that X uniformly embeds in GX ;

(3) There exists a countable discrete group G such that every uniformly discrete
bounded geometry metric space X uniformly embeds in G.

5. Translation algebras

In this section we show how to associate a C∗-algebra C∗(T ) to any partial
translation structure T on a space X . This algebra will play the role assumed by
the reduced C∗-algebra for a group.

Definition 26. For T a partial translation structure, the partial translation algebra
C∗(T ) is the subalgebra of C∗

u(X) generated by the partial translations t ∈ T
(viewed as partial isometries).

Note that given an atlas A = {(TR,ΣR) | R > 0} there is a canonical par-
tial translation algebra C∗(T ) associated to the partial translation structure T =
⋃

R TR. When A is free and globally controlled this algebra shares many of the
important properties of the reduced C∗ algebra of a group. In particular it allows
us to deduce properties of C∗

u(X) from those of C∗(T ), as in the proof of Theorem
29 below.

Let G be a countable discrete group and let T be the canonical partial translation
structure on G defined in Section 3. Note that C∗(T ) is a subalgebra of C∗

u(G),
however C∗

r (G) is not in general a subalgebra of C∗
u(G). This is potentially a

cause of confusion: The uniform Roe algebra for the group G equipped with a
right invariant metric contains the algebra C∗

r (G) which is the closure of the left
regular representation. However, if G is given the usual left invariant metric, then
the uniform Roe algebra contains the right regular representation of G. This is
because, with the left invariant metric, the left regular representation of the group
acts by cotranslations, and not by operators of finite propagation, (i.e. translations)
while the right regular representation of G on l2(G) does act by translations. It is
this algebra which is recovered by the construction of C∗(T ).

Theorem 27. Let G be a countable discrete group and let T be the canonical partial
translation structure on G. Then the algebra C∗(T ) is canonically isomorphic to
C∗

r (G).

Proof. It is immediate from the definitions that the algebra C∗(T ) is equal to the
closure of the right regular representation of G on l2(G). The isomorphism of the
closures of the left and right regular representations is given by conjugating by the
unitary operator on l2(G) defined by δg 7→ δg−1 where δg denotes the usual basis
vector corresponding to g. �

When the metric space X is sufficiently group-like, i.e., it admits a free and
globally controlled atlas {(TR,ΣR) | R > 0}, we can use the partial translation
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algebra corresponding to T =
⋃

R TR to show that property A is equivalent to
exactness of C∗

u(X). In particular, if the space is uniformly embeddable in a group
we will show that C∗

u(X) is nuclear if and only if it is exact. In the case where the
atlas is free but not necessarily globally controlled we will show that the inclusion
C∗(T ) →֒ C∗

u(X) is a nuclear embedding if and only if X has property A. We begin
with the following lemma.

Lemma 28. Let H be a Hilbert space, and A a C∗-subalgebra of B(H). Suppose
ι : A →֒ C∗

u(X) is a nuclear embedding. Then for any finite subset E of A and
ε > 0 there exists a finite rank completely positive map θ : B(H) → C∗

u(X) and
S > 0 with ‖θ(a)− ι(a)‖ < ε for a ∈ E, and with θ(a) of propagation at most S for
all a ∈ B(H).

Proof. By nuclearity of the embedding there are completely positive maps φ : B(H) →
Mn and ψ : Mn → C∗

u(X) such that ‖ψ ◦ φ(a) − ι(a)‖ < ε/2 for all a ∈ E, see [12,
Def. 6.1.2]. There is a bijection between completely positive maps from Mn to
C∗

u(X) and positive elements of Mn(C∗
u(X)), thus we can identify ψ with a positive

matrix T in Mn(C∗
u(X)), namely Tij = ψ(eij), where eij is the standard matrix

unit.
We now approximate T by a matrix whose entries are finite propagation opera-

tors.
Let C be the maximum of the norms ‖φ(a)‖1 for a ∈ E, where ‖φ(a)‖1 denotes

the l1 norm,
∑

i,j |φ(a)ij |. Let W be the square root of T . Let W ′ be a finite

propagation element of Mn(C∗
u(X)) such that ‖W ′ −W‖ < min(ε, ε

4C(‖W‖+ε) ) and

let T ′ = (W ′)2. Then T ′ is a positive matrix, and

‖T ′ − T ‖ = ‖(W ′)2 −W 2‖ ≤ ‖W ′‖‖W ′ −W‖ + ‖W ′ −W‖‖W‖ < ε

2C
.

Now let ψ′ : Mn → C∗
u(X) be the completely positive map corresponding to T ′, and

define θ = ψ′ ◦ φ. Then for a ∈ E we have

‖θ(a) − ι(a)‖ ≤ ‖ψ′ ◦ φ(a) − ψ ◦ φ(a)‖ + ‖ψ ◦ φ(a) − ι(a)‖
= ‖

∑

i,j

φ(a)ij(T
′ − T )ij‖ + ‖ψ ◦ φ(a) − ι(a)‖

≤ C‖T ′ − T ‖ + ε/2 < ε.

Let S be the maximum of the propagations of the entries of T ′. Then θ(a) has
propagation at most S for all a ∈ B(H) as required. �

Now we are in a position to establish the following:

Theorem 29. Consider the following statements.

(1) X has property A.
(2) C∗

u(X) is nuclear.
(3) For every partial translation structure T on X, C∗(T ) →֒ C∗

u(X) is a
nuclear embedding.

(4) There exists a partial translation structure T on X admitting a free atlas
and for which C∗(T ) →֒ C∗

u(X) is a nuclear embedding.
(5) C∗

u(X) is exact.
(6) For every partial translation structure T on X, C∗(T ) is exact.
(7) There exists a partial translation structure T on X admitting an atlas which

is free and globally controlled and for which C∗(T ) is exact.
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For X a uniformly discrete bounded geometry metric space we have (1)⇐⇒(2) =⇒
(3) and (2) =⇒ (5) =⇒ (6). If κX(R) = 1 for all R, then conditions (1), (2), (3)
and (4) are all equivalent. If moreover there is a partial translation structure which
admits a free and globally controlled atlas then (1) through (7) are all equivalent.

Proof. 1 =⇒ 2: This is proved in [11], Proposition 11.41 and the equivalence 1 ⇔ 2
was proved in [13]. Here we give an alternative proof. We use the characterisation
of property A, in terms of kernels (condition 7 of Theorem 3). For each i there
exists a positive type kernel ui such that

(1) ui(x, x) = 1;
(2) |1 − ui(x, x

′)| ≤ 1/i, for d(x, x′) ≤ i;
(3) there exists Si such that ui(x, x

′) vanishes for d(x, x′) > Si.

Define θi : B(l2(X)) → B(l2(X)) to be the Schur multiplication by ui. This is
a completely positive contraction. The support condition on ui ensures that the
range of θi lies in C∗

u(X), while the variation condition ensures that for T in C∗
u(X)

such that d(x, x′) ≤ i on the support of T , we have ‖T − θi(T )‖ ≤ ‖T ‖/i. Thus for
any T in C∗

u(X), θi(T ) tends to T as i→ ∞.
Now define Φ: B(l2(X)) → l∞(X) to be restriction to the diagonal. Note that for

a partial translation t, viewed as a partial isometry of l2(X), the operator tΦ(t∗T )
is the restriction of T to t. By bounded geometry, there exists a finite set Fi of
disjoint partial translations whose union includes all points with d(x, x′) ≤ Si. For
t ∈ Fi define ηt

i : B(l2(X)) → l∞(X) by ηt
i(T ) = Φ(t∗θi(T )), and note that this is a

complete contraction. Then we have θi(T ) =
∑

t∈Fi
tηt

i(T ).

Now for any algebra B we will show that the quotient map Q : C∗
u(X)⊗maxB →

C∗
u(X) ⊗min B is injective. As ηt

i is completely contractive, there is a well-defined
map

ηt
i ⊗ 1: C∗

u(X) ⊗min B → l∞(X) ⊗min B = l∞(X) ⊗max B ⊂ C∗
u(X) ⊗max B.

We use here the fact that l∞(X) is nuclear. There is also a map

θi ⊗ 1: C∗
u(X) ⊗max B → C∗

u(X) ⊗max B,

and we have θi⊗1 =
∑

t∈Fi
(tiη

t
i⊗1)Q; this holds for a dense subset of C∗

u(X)⊗maxB,

and hence holds for all elements of C∗
u(X) ⊗max B.

If Q(S) = 0 for S ∈ C∗
u(X) ⊗max B then (θi ⊗ 1)(S) = 0 for all i. But on the

other hand we know that (θi⊗1)(S) → S as i→ ∞, hence Q(S) = 0 implies S = 0.
Injectivity of Q implies nuclearity of C∗

u(X).
2 =⇒ 3 is immediate, as is 2 =⇒ 5 =⇒ 6.
Now suppose κX(R) = 1 for all R. Then there exists a partial translation

structure with a free atlas, so 3 =⇒ 4.
4 =⇒ 1: Again we use the characterisation of property A in terms of kernels.

We must show that there is an approximate unit consisting of finite width positive
kernels, for the algebra of functions on X × X tending to zero away from the
diagonal. Nuclearity of the embedding provides approximate identity maps from
C∗(T ) into C∗

u(X). Let δx, x ∈ X denote the standard basis for l2(X). The idea of
the proof is to write the constant kernel 1 as 〈δx, txyδy〉 for certain operators txy,
and then to use nuclearity to approximate the operators txy in such a way as to
produce kernels of finite width.

We make the following claim.
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Claim. Let X be a uniformly discrete bounded geometry metric space, and let T
be a partial translation structure on X with a free atlas {(TR,ΣR) | R > 0}. Then
for all R, there exists a positive matrix (txy) indexed by x, y in X with entries
in C∗(T ), such that if d(x, y) ≤ R then 〈δx, txyδy〉 = 1, and such that the set of
operators {txy : x, y ∈ X, d(x, y) ≤ R} is finite.

Given this claim we can produce a positive kernel as follows. Fix R, ε > 0.
As C∗(T ) →֒ C∗

u(X) is a nuclear embedding we can apply Lemma 28 to produce
S > 0, and a completely positive map θ from B(l2(X)) into elements of C∗

u(X) with
propagation at most S, such that for x, y with d(x, y) ≤ R we have ‖θ(txy)− txy‖ <
ε.

Define u(x, y) = 〈δx, θ(txy)δy〉. This is positive by positivity of the map θ and
the matrix (txy). It vanishes if d(x, y) > S as θ(txy) has propagation at most
S for all x, y. If d(x, y) ≤ R then ‖θ(txy) − txy‖ < ε and 〈δx, txyδy〉 = 1, so
|1 − u(x, y)| = |〈δx, (txy − θ(txy))δy〉| < ε. Hence we have produced a positive
kernel with (R, ε)-variation supported in the S-neighbourhood of the diagonal. As
we can do this for each R and ε, the space X has property A.

It remains to prove the Claim. Fix R. For each x ∈ X we define an operator
sx : l2(X) → l2(ΣR) as follows. For x′ ∈ X we define sx(δx′) to be δσ where σx = x′,
if such an element exists, and sx(δx′) = 0 otherwise. The element σ is unique if it
exists, since the atlas is free.

For each fixed x, y, s∗xsy is an operator on l2(X) thus it can be viewed as a matrix
indexed by X . It has matrix entries

〈δx′ , s∗xsyδy′〉 = 〈sxδx′ , syδy′〉, x′, y′ ∈ X

taking the value 1 if there exists σ such that σx = x′, σy = y′ and 0 otherwise.
By hypothesis, if d(x, y) ≤ R then there exists such a partial cotranslation taking
(x, y) to (x′, y′) if and only if (x, y), (x′, y′) lie in the same element t in TR. Thus if
d(x, y) ≤ R then s∗xsy is the unique partial translation t in TR such that (x, y) ∈ t.

We now define txy = s∗xsy. This is positive by construction. If d(x, y) ≤ R
then txy is a partial translation in the finite set TR, and moreover (x, y) ∈ txy so
〈δx, txyδy〉 = 1. This establishes the claim.

Finally suppose that there exists a partial translation structure which admits a
free and globally controlled atlas. Then each of 2, 3, 5 and 6 immediately implies
7. To see that 1 and 4 each imply 7 note that we have already established that 1
is equivalent to 2 and to 4 in this setting.

7 =⇒ 1: The proof is essentially the same as 4 =⇒ 1. Define txy as before.
We have the weaker hypothesis that C∗(T ) is exact, i.e. C∗(T ) →֒ B(l2(X)) is a
nuclear embedding. We make use of [10] Lemma 2. This implies that for all R, ε
there exists a completely positive finite rank map θ : C∗(T ) → B(l2(X)) such that:

(1) θ has the form θ(�) =
∑d

i=1〈δai
, �δbi

〉Ti, for some ai, bi in X , and Ti in
B(l2(Y )), and

(2) for all x, y with d(x, y) ≤ R we have ‖θ(txy) − txy‖ < ε.

Again we define u(x, y) = 〈δx, θ(txy)δy〉. Positivity and (R, ε)-variation follow as
before. Each txy is a partial isometry whose support is a cotranslation orbit, and
these supports partition X × X . The global control condition implies that the
supports are controlled, i.e. txy has finite propagation for all x, y. Let S be the
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maximum of the propagations of the operators taibi
. Then for d(x, y) > S we have

θ(txy) = 0, since the support of txy must be disjoint from the supports of the
operators taibi

, and in particular it does not contain (ai, bi). It follows that u(x, y)
vanishes when d(x, y) > S as required. �

We conclude with the following corollaries.

Corollary 30. If X admits a (local) uniform embedding into a countable discrete
group, then the following are equivalent: C∗

u(X) is nuclear; C∗
u(X) is exact; C∗(T )

is exact for all partial translation structures T on X; X has property A.

Proof. By Corollary 23, if X admits a local uniform embedding into a countable
group then X admits a free, globally controlled atlas. The result now follows
immediately from the theorem. �

Corollary 31. If the universal space ΓU admits a (local) uniform embedding into
a countable discrete group, then for every bounded geometry metric space X the
following are equivalent: C∗

u(X) is nuclear; C∗
u(X) is exact; C∗(T ) is exact for all

partial translation structures T on X; X has property A.

Proof. If the universal space ΓU admits a local uniform embedding into a countable
discrete group then by Theorem 25, so does every bounded geometry metric space.
The result now follows from the previous corollary. �
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