Optical microfiber physical sensors
Optical microfiber physical sensors
This chapter explores the Optical microfibers and nanofibers (MNFs) in terms of the fabrication techniques and optical and mechanical properties and provides an overview of some MNF-based sensors. Optical MNFs exhibit many desirable characteristics such as large evanescent field, strong optical confinement, bend insensitivity, high configurability, high compactness, and the feasibility of extremely high-Q resonators. The resulting sensors hold numerous advantages over their standard optical fiber counterparts, including high sensitivity, high detection bandwidth, fast response, high selectiveness, low intrusiveness, small size, and lightweight. Resonator-type MNF-based sensors comprise all sensors that exploit resonant structures. MNFs have been used to manufacture homogeneous resonant sensors in the arrangements of loop, knot, and coil. The sensitivity of non-resonator-type MNF-based sensors scales with the MNF length. The detection bandwidth associated with certain sensing mechanisms such as the Faraday effect decreases with longer optical path lengths. A trade-off must be considered for a good balance between sensitivity and detection bandwidth.
Chen, G.Y.
b766d3f7-a6dc-4c15-8f00-17ad044348c1
Brambilla, G.
815d9712-62c7-47d1-8860-9451a363a6c8
2015
Chen, G.Y.
b766d3f7-a6dc-4c15-8f00-17ad044348c1
Brambilla, G.
815d9712-62c7-47d1-8860-9451a363a6c8
Chen, G.Y. and Brambilla, G.
(2015)
Optical microfiber physical sensors.
In,
Rajan, Ginu
(ed.)
Optical Fiber Sensors: Advanced Techniques and Applications.
Boca Raton.
CRC Press.
(doi:10.1201/b18074).
Record type:
Book Section
Abstract
This chapter explores the Optical microfibers and nanofibers (MNFs) in terms of the fabrication techniques and optical and mechanical properties and provides an overview of some MNF-based sensors. Optical MNFs exhibit many desirable characteristics such as large evanescent field, strong optical confinement, bend insensitivity, high configurability, high compactness, and the feasibility of extremely high-Q resonators. The resulting sensors hold numerous advantages over their standard optical fiber counterparts, including high sensitivity, high detection bandwidth, fast response, high selectiveness, low intrusiveness, small size, and lightweight. Resonator-type MNF-based sensors comprise all sensors that exploit resonant structures. MNFs have been used to manufacture homogeneous resonant sensors in the arrangements of loop, knot, and coil. The sensitivity of non-resonator-type MNF-based sensors scales with the MNF length. The detection bandwidth associated with certain sensing mechanisms such as the Faraday effect decreases with longer optical path lengths. A trade-off must be considered for a good balance between sensitivity and detection bandwidth.
This record has no associated files available for download.
More information
Published date: 2015
Identifiers
Local EPrints ID: 442518
URI: http://eprints.soton.ac.uk/id/eprint/442518
PURE UUID: dc7afbd1-2af3-453a-8793-32f0e23b531f
Catalogue record
Date deposited: 17 Jul 2020 16:31
Last modified: 17 Mar 2024 02:53
Export record
Altmetrics
Contributors
Author:
G.Y. Chen
Author:
G. Brambilla
Editor:
Ginu Rajan
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics