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Abstract 34 

Many ecosystem services (ES) models exist to support sustainable development decisions. However, 35 

most ES studies use only a single modelling framework and, because of a lack of validation data, rarely 36 

assess model accuracy for the study area. In line with other research themes which have high model 37 

uncertainty, such as climate change, ensembles of ES models may better serve decision-makers by 38 

providing more robust and accurate estimates, as well as provide indications of uncertainty when 39 

validation data are not available. To illustrate the benefits of an ensemble approach, we highlight the 40 

variation between alternative models, demonstrating that there are large geographic regions where 41 

decisions based on individual models are not robust. We test if ensembles are more accurate by 42 

comparing the ensemble accuracy of multiple models for six ES against validation data across sub-43 

Saharan Africa with the accuracy of individual models. We find that ensembles are better predictors 44 

of ES, being 5.0-6.1% more accurate than individual models. We also find that the uncertainty (i.e. 45 

variation among constituent models) of the model ensemble is negatively correlated with accuracy 46 

and so can be used as a proxy for accuracy when validation is not possible (e.g. in data-deficient areas 47 

or when developing scenarios). Since ensembles are more robust, accurate and convey uncertainty, 48 

we recommend that ensemble modelling should be more widely implemented within ES science to 49 

better support policy choices and implementation. 50 

Graphical Abstract 51 

 52 
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alleviation; sustainable development; water. 54 

Highlights: 55 

• Most ecosystem service (ES) models are uncertain 56 

• Still, most ES studies use only a single modelling framework 57 

• Ensembles of ES models are more robust to new data/models 58 

• Ensembles of ES are 5.0-6.1% more accurate than individual models 59 

• Variation within the ensemble provides a proxy for ensemble accuracy 60 

 61 

1. Introduction 62 

Planning and implementing sustainable development approaches requires knowledge on the 63 

ecosystem services (ES; nature’s contributions to people (Pascual et al., 2017)) provided in a region 64 

and how they might respond to management choices or other drivers of change (Guerry et al., 2015). 65 

Models can provide credible information where empirical data on ES are sparse, which is especially the 66 

case in many developing countries (IPBES, 2016; Suich et al., 2015). Although claims of superiority are 67 

sometimes made for specific models, independent evaluations of models have often been unable to 68 

demonstrate the pre-eminence of any individual model in terms of accuracy or other aspects of their 69 

utility (Box 1; Table SI-1-1) (Araújo and New, 2007; Willcock et al., 2019). When models are in 70 

disagreement, it is difficult for researchers or practitioners to know which model should be used to 71 

support their decision (Willcock et al., 2016). In fact, projections by alternative models can be so 72 

variable as to compromise even the simplest assessment; these results challenge the common practice 73 

of relying on one single method (Araújo and New, 2007). Put simply, decisions based on a single ES 74 

modelling framework are unlikely to be robust (Box 1). (Refsgaard et al., 2007; Walker et al., 2003) 75 
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Despite this lack of robustness, most ES modelling applications rely on a single model for each ES 76 

(Bryant et al., 2018). For example, the latest state-of-the-art ES models produced via the 77 

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) rely on 78 

single model outputs with little/no validation (Chaplin-Kramer et al., 2019). Although, few studies have 79 

explicitly validated ES models against independent datasets, there are notable exceptions (Bruijnzeel 80 

et al., 2011; Mulligan and Burke, 2005; Redhead et al., 2018, 2016; Sharps et al., 2017; Willcock et al., 81 

2019). Willcock et al. (2019) validated multiple models for several ES, testing their accuracy against 82 

empirical data across sub-Saharan Africa. While they found that more complex models (i.e. those 83 

representing more processes) were sometimes more accurate (Box 1), their results suggested it would 84 

be difficult to select a priori the most accurate of a set of models for an ES in any particular context 85 

(Willcock et al., 2019). 86 

One solution to inter-model variation is to utilise ensembles and apply appropriate techniques to 87 

explore the resulting range of projections. Ensembles are produced by running simulations for more 88 

than one set of models, initial conditions, model classes, model parameters and/or boundary 89 

conditions (Araújo and New, 2007). For example, since the current state and processes of the system 90 

are often uncertain, small differences in initial conditions or model parameters could result in large 91 

Box 1 – Key definitions 

Whilst relatively rare in the ES literature, frameworks for understanding model uncertainty can be 

found elsewhere in the literature (e.g. see Araújo and New (2007), Refsgaard et al. (2007), and 

Walker et al. (2003)). Key concepts are defined below: 

• Uncertainty – Any deviation from the unachievable ideal of completely deterministic 

knowledge of the relevant system (Walker et al., 2003). 

• Inaccuracy – The deviation from the ‘true’ value (i.e. how close a modelled value is to the 

measured value, the latter considered ‘true’ (Walker et al., 2003). 

• Robustness – The level of confidence in the overall patterns/conclusions derived from the 

model (which may be high even though quantified estimates in individual pixels are 

inaccurate) (Refsgaard et al., 2007). 

• Model Ensemble – A collection of modelled outputs produced by running simulations for 

more than one set of models, initial conditions, model classes, model parameters and/or 

boundary conditions (Araújo and New, 2007). 

• Committee averaging – A method combining models, giving each an equal weight (e.g. 

calculating the mean) (Araújo and New, 2007). 
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differences in model projections (van Soesbergen and Mulligan, 2018). Similarly, different model 92 

classes (e.g. statistical models vs process-based models) might be considered competing but equally 93 

valid representations of a system, and hence worth exploring (Araújo and New, 2007). If only one 94 

model is used, conclusions are dependent on the specific assumptions of that model. If an ensemble 95 

is used, conclusions are not dependent on that one set of assumptions and parameters, hence one can 96 

consider the variation (or uncertainty) in model outcomes and might obtain a better idea of what the 97 

reality might be. Single model forecasts have been criticised due to their potential to result in a decision 98 

that imposes rigidity, which might have serious negative consequences if there is large uncertainty and 99 

inaccuracies (Araújo and New, 2007).  100 

Whilst running ensembles of models is not the norm in ES studies (Bryant et al., 2018), this practice is 101 

commonplace in other disciplines, most famously for climate and weather modelling (Gneiting et al., 102 

2005; Refsgaard et al., 2014). For example, in contrast to IPBES, Intergovernmental Panel on Climate 103 

Change (IPCC) publications regularly use ensembles (Collins et al., 2013). These climate change 104 

ensembles generate a consensus prediction by measuring the central tendency (e.g. the mean or 105 

median) for the ensemble of forecasts (Araújo and New, 2007). Climate change ensemble forecasts 106 

might show enhanced performance over some individual models as the averaging results in a 107 

smoothing effect, reducing the impact of idiosyncratic responses of any particular model in the area 108 

of space and time of interest (Marmion et al., 2009). In short, by averaging multiple models the signal 109 

of interest emerges from the noise associated with individual model uncertainties (Araújo and New, 110 

2007; Knutti et al., 2010). Such, so-called, committee averaging gives equal weight to all models. The 111 

benefits of these techniques have been observed in multiple disciplines, ranging from agro-ecology 112 

(Elias et al., 2017; Refsgaard et al., 2014) and niche modelling (Aguirre-Gutiérrez et al., 2017; Crossman 113 

et al., 2012; Grenouillet et al., 2011) to market forecasting (He et al., 2012) and credit risk analysis (Lai 114 

et al., 2006).  115 

The level of variation within an ensemble (i.e. inconsistency among the individual models) may also be 116 

informative in itself. Lower variation within an ensemble of models may indicate increased accuracy 117 
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of the ensemble mean (Puschendorf et al., 2009). Thus, ensembles may also provide an indication of 118 

uncertainty when faced with data scarcity, a potential benefit that is perhaps most pronounced in 119 

many developing countries, where data collection and model assessment efforts are least advanced 120 

(Suich et al., 2015) but reliance on ES for wellbeing is arguably the highest (Daw et al., 2011; Shackleton 121 

and Shackleton, 2012; Suich et al., 2015). 122 

In this paper, we demonstrate that decision-making based on single ES models is not robust for large 123 

regions within sub-Saharan Africa as high variation between model estimates means that using a 124 

different model or incorporating an additional model into the decision-making process is highly likely 125 

to result in a different decision. In addition to increased robustness, we show that ensembles of ES 126 

models can provide improved accuracy over individual models, as well as an indication of uncertainty. 127 

Finally, we discuss how ensemble modelling might become standard practice within the ES community, 128 

particularly when supporting high-level policy decisions, such as in IPBES regional, global and thematic 129 

assessments used in policy and decision-making. 130 

2. Methods 131 

Recently we validated multiple models for each of six ES in sub-Saharan Africa (stored carbon, available 132 

water, water usage, firewood, charcoal, and grazing resources; Table 1) using 1,675 data points from 133 

16 independent datasets (Figure SI1-1; summarised in Table SI1-2, but see Willcock et al. (2019) for 134 

further information). In that paper, we used six ES modelling frameworks (InVEST (Kareiva, 2011; 135 

McKenzie et al., 2012), Co$ting Nature (Mulligan, 2015; Mulligan et al., 2010), WaterWorld (Mulligan, 136 

2013), benefits transfer based on the Costanza and others (2014) values, LPJ-GUESS (Smith et al., 2014, 137 

2001), and the Scholes models (comprising two grazing models and a rainfall surplus model) (Scholes, 138 

1998), following Willcock et al. (2019) by using a single set of parameters for each ES per modelling 139 

framework, with each framework requiring different inputs (Willcock et al., 2019). We employed two 140 

performance metrics to calculate model accuracy in terms of each validation dataset: Spearman’s ρ 141 

and mean inverse Deviance (D↓ the mean absolute distance between normalised model and validation 142 
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values per data-point, inversed so that a value of 1 represents a perfect fit). Both metrics have real-143 

world relevance, as decision-making can make use of both relative (e.g. rank order of sites or options) 144 

and absolute (e.g. the total amount or value of service delivered) values (Willcock et al. 2016), and ρ 145 

ranks locations by their relative ES values, whereas D↓ reflects the degree to which models consistently 146 

reflect absolute values in the validation dataset (Willcock et al. 2019). In the work reported here, we 147 

use the model outcomes and calculations, and validation data and methods presented in Willcock et 148 

al. (2019) (Figure 1). This includes our approach of normalising within model variation to fall within a 149 

0-1 scale, following Verhagen et al. (2017), which allows comparability among the different ES studied. 150 

Thecodes we used to do this are deposited here: https://github.com/dhooftman72/ES_Ensembles. All 151 

analyses were performed in Matlab (v7.14.0.739), with ArcGIS 10.7 used only for display purposes.  P 152 

< 0.05 was viewed as statistically significant throughout.  153 

https://github.com/dhooftman72/ES_Ensembles
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Figure 1 - A summary of the analytical framework, divided into modelling, validation and analysis 154 

subsets. 155 

 156 

2.1 Creating ensembles 157 

To depict among-model variation per service we divided the modelled areas into km2 gridcells – except 158 

water, which is represented in m3 ha-1 per polygon. Since all models do not cover the entire study area, 159 

we recorded the number of models with valid values per gridcell. For every gridcell where ≥3 modelled 160 

estimates were available, we calculated model ensembles and mapped the standard error of the mean 161 
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(SEM) among normalised model values.   162 

As described above, ensembles are created by combining individual model outputs, resulting in a 163 

smoothing effect whereby the individual model uncertainties are cancelled out and the signal of 164 

interest emerges (Araújo and New, 2007; Marmion et al., 2009). However, there are multiple ways by 165 

which individual models can be combined into an ensemble. For example, all models could be weighted 166 

equally (i.e. committee averaging) or weighted by some measure of reliability or trust. Here, we used 167 

committee averaging, but see SI3 for a further exploration of weighting. First, we created committee 168 

two ensemble values for each ES by calculating the arithmetic mean and median across the i individual 169 

model estimates for each modelled spatial data point (i.e. 1 km2 grid cell). To evaluate ensemble 170 

accuracy, we compared the ensemble estimate (E) to the validation data for that spatial location as 171 

described in Willcock et al. (2019). 172 

2.2 Comparing ensembles estimates 173 

To evaluate if the accuracy of the ensemble is an improvement on the accuracy of individual models 174 

(Willcock et al., 2019), we performed a comparison between the individual models and each ensemble 175 

(i.e. mean and median for each ES) using accuracy statistics Spearman’s ρ and Inverse Deviance (D↓; 176 

Figure 1). To calculate improvement percentages, Spearman’s ρ was normalised using Equation 1, 177 

resulting in a 0-1 scale. 178 

Equation 1: 𝜌𝑖
′ = (

𝜌𝑖+1

2
)  179 

We analysed the proportional change in accuracy (ρ and D↓) for all possible pairs of comparisons 180 

between: (i) the individual models, based on the mean accuracy statistics across the group of all 181 

possible models (described below), (ii) the different ensembles (mean/median), and (iii) the best 182 

performing model according to each validation dataset. We tested whether the accuracy of a first 183 

category (“A”, e.g., the ensemble mean) was higher – “improved” – or lower than a second category 184 

(“B”, e.g., the individual models). The accuracy level differed greatly across the 16 validation datasets 185 

and the different ES (Willcock et al., 2019). No among ES comparison is possible as 16 validation 186 
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datasets across six ES provides too low a level of replication per ES, but normalising each ES allows 187 

comparisons across the different ES as a whole. Normalising involved dividing the accuracy of A by the 188 

accuracy of B for each validation dataset. For simplicity, we refer to the 16 resulting proportions as 189 

“improvement values”, although they could indicate a loss of accuracy (values <1).  190 

Next, we analysed whether the set of 16 improvement values differ from a normal distribution with 191 

mean of 1, using a one-sample Student’s T-test (ttest-procedure in Matlab) to determine whether the 192 

accuracy of A is significantly higher or lower than B. For ensembles and best-fit models, this analysis 193 

involved a direct one-to-one comparison for each possible pair within each validation dataset (i.e. A = 194 

the best-fit model vs B =the mean/median ensemble). For individual models as a group, we used an 195 

averaging method, where we took per validation set the mean of the one-to-one comparisons between 196 

the single value of comparator A, e.g. the best model, and the set of multiple values of models for that 197 

validation set as B (Equation 2). 198 

Equation 2:  ((∑
𝐴

𝐵𝑖

𝑛
𝑖 ) ×

1

𝑛
), with n total of models for that validation set (i;  4-6 models depending on 199 

the service; Table 1). 200 

This was done for each of the 16 validation sets. This averaging method allowed for a fully balanced 201 

analysis, with a single improvement value associated with each of the 16 validation datasets. 202 

Alternative analyses in which we included single comparisons for individual models per validation 203 

dataset against respective ensemble scores (79 improvement values) showed similar results (Table SI-204 

1-4) as the larger variation was offset by higher degrees of freedom (78 vs 15).  205 

We also tested the correlation between ensemble uncertainty and absolute accuracy using 1661 of the 206 

1675 individual data-points for validation (anovan-procedure in Matlab). The large sample size meant 207 

we were able to differentiate between ES in this analysis. We calculated ensembles from a minimum 208 

of three models and so discarded 14 data-points since they only matched ≤2 modelled estimates. For 209 

each data-point (X), we calculated the absolute accuracy of the mean ensemble (D↓
(x)) and calculated 210 
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uncertainty as the SEM among-modelled values (Equation 3). For statistical comparison, we used an 211 

SS type 1 mixed regression model with the six ES as fixed variables and SEMX as the linear predictor, 212 

logit transformed, with correlation coefficient β1 and constant β0, and with a per ES interaction 213 

prediction with uncertainty (ESX x SEM’X). We identified a positive Spatial Autocorrelation (SA) for 214 

accuracy with a Moran’s I of 0.073 (P< 0.001, based on a permutation test), using the Moran’s module 215 

from https://github.com/dhooftman72/Morans-I. This SA has been corrected for through inclusion of 216 

a covariate within the regression model prior to estimating the model parameters of interest, with 217 

effect size βsa, describing relatedness between individual samples caused by the spatial structure 218 

following Dormann et al. (2007) and Brooks et al. (2016) (Equation 4). 219 

Equation 3: SEMX = (
𝜎𝑋

√𝑛𝑋
), where X represents each 1 km2 grid-cell, and n is the number of models. 220 

Equation 4: 𝐷(𝑋) 
↓ ~ 𝛽𝑠𝑎𝑆𝐴𝑥 + 𝐸𝑆𝑋 + 𝛽1𝑆𝐸𝑀𝑋

′ + (𝐸𝑆𝑋  × 𝑆𝐸𝑀𝑋
′ ) +  𝛽0        221 

With 𝑆𝐸𝑀𝑋
′ = (log10 (

𝑆𝐸𝑀𝑋

(1−𝑆𝐸𝑀𝑋)
+ 1))     222 

 223 

3. Results 224 

3.1 Variation amongst models shows strong spatial patterning 225 

For sub-Saharan Africa, we found large areas for which the variation among models was relatively low 226 

(Figure 2). In these areas all models provide similar normalised predictions and so a decision based on 227 

a single model may prove robust. However, there are also notable areas of disagreement, where 228 

variation among models was higher. These appear to occur in transition zones between vegetation 229 

types (Figure 2) and, for aboveground carbon storage models, in less densely forested areas (e.g. 230 

miombo woodland; Figure 2). These maps of variation, as well as the mean and median normalised 231 

values, for sub-Saharan Africa at a 1-km-resolution are available through the Environmental 232 

Information Data Centre (EIDC; https://eidc.ac.uk/) repository (https://doi.org/10.5285/11689000-233 

f791-4fdb-8e12-08a7d87ad75f). See SI2 and SI3 for further uses of multiple models (i.e. hotspots, 234 

https://github.com/dhooftman72/Morans-I
https://eidc.ac.uk/
https://doi.org/10.5285/11689000-f791-4fdb-8e12-08a7d87ad75f
https://doi.org/10.5285/11689000-f791-4fdb-8e12-08a7d87ad75f
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weighted ensembles).  235 

 236 

Figure 2. Among-model variation measured as standard error of the mean (SEM) using normalised 237 

model predictions. Non-coloured areas were not modelled (i.e. are outside LCM masks or outside the 238 

catchments we analysed). a) Water supply per hectare of the catchment (6 models); b) Water usage 239 

(6 models) per hectare of the country; c) Carbon storage in forest vegetation (4 models); d) Grazing 240 

use (6 models); e) Firewood usage (5 models); f) Charcoal usage (4 models). Firewood and Charcoal 241 
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have four models in common that are equal once normalised. However, Firewood contains an 242 

additional bespoke Firewood model that generates more variation making (e) and (f) slightly different 243 

(see Willcock et al. (2019) for full model details). 244 

 245 

Ensembles perform better than individual models, on average 246 

In general, individual models as a group were inferior to the ensembles created from them: ensembles 247 

outperform individual modelling frameworks by 5% to 6% for both ρ and D↓ (P = 0.03 and 0.008 248 

respectively; Figure 3; Table SI1-3). Ensembles were outperformed by the best model for each 249 

validation set by 13% (mean; P = 0.04) and 12% (median; P = 0.05) using ρ and 6% (P = 0.002) and 7% 250 

(P < 0.001) using D↓. Unfortunately, which model performs best for each validation dataset was hard 251 

to predict as no single model framework is consistently more accurate than others (Table SI1-1, 252 

Willcock et al. (2019)).  A full matrix of statistical results and means and standard errors of these 253 

pairwise comparisons is provided in Table SI1-3.  254 

 255 

 256 
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Figure 3. Mean ρ and D↓ of the individual models (as a group), the mean and median ensembles and 257 

best-fit individual model. Dark bars = Spearman’s ρ; Light bars = Inverse Deviance D↓. Black full error 258 

bars indicate variation in proportional improvement against the individual models, calculated as 259 

SEMimp = CVimp x absolute difference, with CV the coefficient of variation of proportional improvement 260 

based on standard error of the mean (SEM). Thus, error bars indicate the variation in improvement 261 

against individual models as a group to highlight the range of improvement of ensemble techniques. 262 

N = 16 per bar. Red dashed error bars indicate the SEM among all 79 models in this study as indication 263 

of overall variation in accuracy. 264 

 265 

3.2 Accuracy is correlated to ensemble uncertainty  266 

The accuracy of an ensemble in relation to validation datasets could be in part inferred from the 267 

variation among the models within the ensemble (Figure 4; F-value = 36.2, P < 0.001, df =1/1637). For 268 

example, for every 0.1 increase in the SEM among-modelled values, the inverse deviance decreases by 269 

0.054. We found no significant interaction effects among ES and uncertainty (F-value 1.09, df 5/1637) 270 

suggesting results are generalisable among the tested ES in this study. 271 
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 272 

Figure 4. Relationship between Uncertainty among ES models (Standard Error of the Mean of 273 

normalised values) and the Accuracy of the ensemble (mean) for six ES. ES-specific linear interactions 274 

are shown as dashed lines (although the interaction between ES and Uncertainty is not significant) 275 

using the same colour palette as the data points– all show a negative correlation against uncertainty, 276 

except for water use and charcoal use. 277 

 278 

4. Discussion 279 

We have demonstrated that there is substantial variation between ES models and the difficulty in 280 

predicting the best-fit model as no single model was consistently better than others (Table SI1-1) 281 

(Willcock et al., 2019). These areas of disagreement highlight regions where decisions based on 282 

individual models are likely not robust (Figure 2). For example, all ES models agreed less in transition 283 

zones between vegetation types. The majority of the models used here (and ES models generally) 284 

require input from land cover maps, and transition zones between land cover categories are likely 285 

areas of disagreement between maps. Reasons for this might include land cover maps being produced 286 
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in different years and so locating the forest frontier in different places, maps/models using slightly 287 

different definitions of land cover (and so drawing the boundaries between categories in different 288 

places), or because land cover categories are more uncertain in transition zones (Dong et al., 2015), 289 

partly due to the difficulties of accounting for degradation (Turner et al., 2016). However, even if 290 

vegetation transitions are also simulated (here by a Dynamic Global Vegetation Model, LPJ-GUESS), 291 

models are more likely to disagree at a transition zone compared to the central area of a vegetation 292 

type. Furthermore, vegetation transitions and carbon storage in sub-Saharan Africa are strongly driven 293 

by fire, which is difficult to simulate in process-based models (Hantson et al., 2016).  The variation 294 

between models due to different initial conditions (i.e. land cover maps) is not the focus of this paper, 295 

but has been highlighted previously (van Soesbergen and Mulligan, 2018) and can lead to large error 296 

propagation in downstream models (Estes et al., 2018). It is likely that such disagreement is also a key 297 

factor driving variation between the ES models considered here. Similarly, aboveground carbon 298 

storage models also showed disagreement in less densely forested areas (e.g. miombo woodland). 299 

Thus, these differences might partly arise due to uncertainties in the carbon data used to parameterise 300 

the models. Savanna and miombo ecosystems are understudied, with tree inventory plots showing a 301 

bias towards closed canopy forests (Phillips et al., 2002). Added to this, less densely forested areas 302 

show higher natural variation in aboveground carbon storage when compared to closed canopy forests 303 

as the land cover category definitions typically cover a wider range of canopy cover (e.g. 10-80% vs 80-304 

100%) (Willcock et al., 2014; Willcock et al., 2012). Thus, further collection of primary data is needed, 305 

particularly in the areas of disagreement highlighted here, to improve the next generation of ES 306 

models. 307 

Despite disagreement between individual models, ensemble modelling has been mostly neglected by 308 

the ES community; e.g. a Web of Science search (10 February 2020) for “model ensemble” and 309 

“ecosystem service” resulted in no records. This is surprising as: 1) Ensembles are commonly used for 310 

model types that simulate output variables closely related to ES, but without emphasising the ES 311 

concept in the publication, such as crop models (Rosenzweig et al., 2014), Dynamic Global Vegetation 312 



18 
 

Models simulating carbon uptake (climate mitigation, e.g. Ahlström et al., (2015)) or hydrology models 313 

simulating runoff (freshwater supply).; and 2) Other disciplines have found that ensembles can show 314 

enhanced robustness and performance over some individual models as the averaging minimises the 315 

influence of local idiosyncratic responses of any particular model (Marmion et al., 2009). For example, 316 

Inoue and Narihisa (2000) demonstrated that ensemble averaging classification problems resulted in 317 

1-7% improvements in accuracy using computational experiments and similar results are widespread 318 

in the literature; e.g. for species distribution models (Grenouillet et al., 2011; Marmion et al., 2009), 319 

climate change models (Refsgaard et al., 2014), and economic models (He et al., 2012). These findings 320 

from other disciplines mirror ours, that ensembles are around 6% more accurate than individual 321 

models (Figure 2, Table SI1-3). That said, if the desired model output can be validated, then accuracy 322 

is increased further by identifying and using the best-fit individual model (gaining a further 12 % 323 

increase in accuracy). However, using the best-fit model to support a decision does not necessarily 324 

increase its robustness as inclusion of new data or models may shift which model is thought to be most 325 

accurate (Table SI1-1) (Willcock et al., 2019).  326 

Ensembles will likely have the highest utility when validation using primary data is not possible (IPBES, 327 

2016). In these situations, individual model accuracy is not known, and committee ensemble methods 328 

can yield cost-effective solutions decision support tools (Araújo and New, 2007) (see SI3 for a 329 

discussion on weighted ensemble techniques). The sustainability agenda desperately requires 330 

evidence-based policies and actions for the developing world (Clark et al., 2016). In these regions, ES 331 

information is important because the rural and urban poor are often the most dependent on ES (either 332 

directly or indirectly (Cumming et al., 2014)), both for their livelihoods (Daw et al., 2011; Suich et al., 333 

2015) and as a coping strategy for buffering shocks (Shackleton and Shackleton, 2012). As such, a single 334 

model of unknown certainty could lack credibility, relevance and legitimacy – the major reasons for 335 

the ‘implementation gap’ between ES research and its incorporation into policy- and decision-making 336 

(Cash et al., 2003; Clark et al., 2016; Wong et al., 2014). Put simply, ensemble models offer a way to 337 

reduce as well as acknowledge uncertainty (Bryant et al., 2018) but also potentially offer a future 338 



19 
 

avenue to include other sources of knowledge including local and traditional knowledge in interpreting 339 

the outcomes and uncertainty of ensembles to ensure more legitimate and salient knowledge for use 340 

in decision making (Díaz et al., 2018; Pascual et al., 2017). Thus, model ensembles may be useful when 341 

estimating scenarios of future ES supply and use, but also for contemporary estimates in data deficient 342 

areas such as sub-Saharan Africa (Willcock et al., 2016). Furthermore, we suggest that variation among 343 

models can provide a first-order estimate of the quality of the prediction when no other information 344 

is available (Bryant et al., 2018; Puschendorf et al., 2009). Thus, we believe the benefits of using an 345 

ensemble of models in decision-making (increased robustness, increased accuracy over individual 346 

models in general, and the ability to estimate uncertainty) substantially outweigh the costs (reduced 347 

accuracy when compared to the best-fit model, and additional effort required). 348 

Such ensemble modelling is now possible, as a multitude of ES models have now been developed, with 349 

many capable of being run even in data-deficient regions (Willcock et al., 2019). For example, both 350 

InVEST (https://naturalcapitalproject.stanford.edu/software/invest) and ARIES 351 

(http://aries.integratedmodelling.org/) modelling frameworks are now capable of modelling multiple 352 

ES consistently at a global scale (Martínez-López et al., 2019). As a result, for many ES, there are at 353 

least three (and often more) independent models for every location across the world. Moreover, the 354 

increasing availability of high-speed computing, and a move towards open access code using open 355 

source platforms (e.g. InVEST) makes running multiple models increasingly straightforward. Hence, it 356 

is now possible for most studies using an ES model to shift to using multiple models.  We hope this 357 

study encourages ES researchers to do so.   358 

However, whilst using ensembles of ES models is indeed possible, there are several challenges that 359 

need to be overcome before it becomes standard practice within ES science. We argue that advances 360 

are necessary in two key areas: accessibility and comparability. As more independent models are 361 

developed, it might be hypothesised that the ease with which these models can be accessed might 362 

increase. Indeed, anecdotal evidence seems to support this as, for example, InVEST historically 363 

required access to expensive ArcGIS software and ARIES required extensive computational skills to run. 364 

https://naturalcapitalproject.stanford.edu/software/invest
http://aries.integratedmodelling.org/
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Accompanying the wider shift towards open science (Fecher and Friesike, 2014), InVEST now runs 365 

independently of any commercial software, where results can be mapped using open-source GIS 366 

(Bagstad et al., 2013; Peh et al., 2013) and ARIES models can be run by non-experts (Martínez-López 367 

et al., 2019). Similarly, despite models becoming increasingly complex, the computational capacity 368 

required to run some of these models has decreased as many modelling frameworks now make use of 369 

cloud-computing resources, putting less stringent requirements on the end-user (Willcock et al., 2019). 370 

Accessing multiple ES models remains a difficult undertaking. For example, whilst the software needed 371 

to run InVEST is free, it still requires substantial GIS knowledge and many of the models within this 372 

framework are ‘data-hungry’ and therefore require access to data and substantial processing power in 373 

order to run (Willcock et al., 2019). By contrast, ARIES and Co$ting Nature store the necessary data 374 

and processing power on their servers, but therefore require high-speed internet access (Willcock et 375 

al., 2019). Furthermore, to benefit from the full Co$ting Nature model outputs (i.e. disaggregate 376 

outputs of individual services) one either needs to enter a partnership with the model owners or pay 377 

a subscription of at least 2,000 GBP yr-1 (http://www.policysupport.org/access-costs). Thus, in order 378 

to contrast or combine, for example, carbon models across these frameworks you require access to 379 

the internet, adequate data and computational power, as well as the funds to support a model 380 

subscription fee and the extra staff time required (i.e. when compared to running a single model). Such 381 

resources are likely out of reach of many ES researchers and practitioners and so, for them, ES 382 

ensembles are an unfeasible ideal. However, this can be somewhat negated if those with access to 383 

these resources make the ensembles they are able to create freely available (e.g. as we have done so 384 

through the EIDC repository for our committee averaged ensembles and the SEM 385 

[https://doi.org/10.5285/11689000-f791-4fdb-8e12-08a7d87ad75f]).  386 

As well as the issues surrounding the feasibility of running ensembles of models, methodological 387 

limitations remain. For example, when validating any model (individual or ensembles) a reference of 388 

truth is required (Box 1). Validation data have their own intrinsic inaccuracies and so it may be good 389 

practice to validate models against more than one dataset per ES to ensure the accuracy assessment 390 

http://www.policysupport.org/access-costs
https://doi.org/10.5285/11689000-f791-4fdb-8e12-08a7d87ad75f
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is robust (Willcock et al., 2019). Whilst we use multiple sets of validation data here (Table S-1-2), data 391 

deficiency prevented further investigations into the sources of the uncertainty we identified; e.g. 392 

running simulations to vary initial conditions (e.g. spatial scale (Hou et al., 2013)), model classes, model 393 

parameters and/or boundary conditions (Araújo and New, 2007). This is an exciting avenue for future 394 

research, which could also compare using ensembles of models to assess uncertainty with other 395 

approaches (e.g. probabilistic models (Bagstad et al., 2014; Willcock et al., 2018)). Whilst both 396 

approaches are capable of estimating uncertainty, probabilistic approaches avoid the difficulties 397 

associated with running multiple models (above) but provide little insight into model-structural 398 

uncertainty, when compared to ensembles of models (Stritih et al., 2019). Thus, future investigations 399 

should include more individual models with more varied model-structures and create ensembles using 400 

a wider variety of algorithms to deepen our current understanding. 401 

A further outstanding issue for enabling ensemble modelling is that any comparisons or combinations 402 

of modelled outputs must involve matching like-for-like variables. This can be problematic, as, at 403 

present, a selection of models for a specific ES might, to some extent, be modelling different 404 

constructs. For example, Co$ting Nature’s stored carbon model includes both below- and above-405 

ground carbon while other models predict only above-ground carbon (Willcock et al., 2019). Similar 406 

issues arise when linking benefit transfer models (i.e. a valuation output (Costanza et al., 2014)) with 407 

both relative and quantitative estimates of available ES resource (i.e. T C ha-1). To reduce these issues 408 

and enable like-for-like comparisons, our statistical analyses focused on relative ranking (see Willcock 409 

et al. (2019) for further details). Whilst relative rankings allow for some types of questions to be 410 

answered and so are useful to support decision-making, biophysical units are required for many 411 

sustainable development decisions (Willcock et al., 2019). For example, it is impossible to evaluate if 412 

we are operating in the safe and just operating space (Raworth, 2012) without unit estimates 413 

predicting if individuals are meeting the threshold supply of a good required to support basic needs, 414 

whilst collectively not exceeding planetary thresholds (Rockström et al., 2009). Thus, concerted effort 415 

is needed to standardise the outputs of ES models to increase the ease at which they can be compared. 416 
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Such efforts are perhaps best coordinated by large, multi-national organisations, and so the 417 

Ecosystems Service Partnership (ESP) or IPBES could play a central role in defining key reporting 418 

metrics, akin to the role of the IPCC in providing good practice guidance on the productions of 419 

emissions estimates (Knutti et al., 2010). Due to the large quantity and diversity of ES, this is no small 420 

challenge. However, the majority of ES modelling and mapping studies focus on relatively few ES 421 

(Willcock et al., 2016) and so these could be prioritised. Furthermore, there is potential to use this 422 

guidance to converge with other disciplines by aligning on agreed proxies/outputs required to measure 423 

and monitor the attainment of the Sustainable Development Goals (SDGs; 424 

https://sustainabledevelopment.un.org/) (Xu et al., 2020). At the very least, ES studies must validate 425 

model outputs against independent data (Willcock et al., 2019) and transparently convey the identified 426 

uncertainty to model users (Bryant et al., 2018; Kleemann et al., 2020). Such practices will increase 427 

confidence in ES science and help to reduce the implementation gap between ES models and policy- 428 

and decision-making (Cash et al., 2003; Clark et al., 2016; Voinov et al., 2014; Wong et al., 2014). 429 

5. Conclusions 430 

This study highlights that, in most instances, ensemble modelling may provide more robust and better 431 

estimates than using single models, as well as an indication of confidence in model predictions when 432 

validation data are unavailable. Whilst ES science is not yet ready for ensembles to become standard 433 

practice, ensemble modelling should be adopted more widely in ES modelling. In future, studies of high 434 

policy relevance (e.g. future assessments of IPBES), as well as efforts to inform decisions and track 435 

progress to sustainable development (e.g. the new Global Biodiversity Framework of the CBD and the 436 

final decade of the SDGs) would benefit from using ensembles of models.  437 

Acknowledgements 438 

This work took place under the ‘WISER: Which Ecosystem Service Models Best Capture the Needs of 439 

the Rural Poor?’ project (NE/L001322/1), funded by the UK Ecosystem Services for Poverty Alleviation 440 

program (ESPA; www.espa.ac.uk) and ‘EnsemblES - Using ensemble techniques to capture the accuracy 441 

https://sustainabledevelopment.un.org/
http://www.espa.ac.uk/


23 
 

and sensitivity of ecosystem service models’ (NE/T00391X/1). JML acknowledges the support of the 442 

Spanish Government through María de Maeztu excellence accreditation 2018-2021 (Ref. MDM-2017-443 

0714). We thank three anonymous reviewers for their insightful comments that improved this 444 

manuscript. 445 

Compliance with Ethical Standards 446 

Conflict of Interest: The authors declare that they have no conflict of interest. 447 

References 448 

Aguirre-Gutiérrez, J., Kissling, W.D., Biesmeijer, J.C., WallisDeVries, M.F., Reemer, M., Carvalheiro, 449 

L.G., 2017. Historical changes in the importance of climate and land use as determinants of 450 

Dutch pollinator distributions. J. Biogeogr. 44, 696–707. https://doi.org/10.1111/jbi.12937 451 

Ahlström, A., Raupach, M.R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Canadell, 452 

J.G., Friedlingstein, P., Jain, A.K., Kato, E., Poulter, B., Sitch, S., Stocker, B.D., Viovy, N., Wang, 453 

Y.P., Wiltshire, A., Zaehle, S., Zeng, N., 2015. Carbon cycle. The dominant role of semi-arid 454 

ecosystems in the trend and variability of the land CO₂ sink. Science 348, 895–9. 455 

https://doi.org/10.1126/science.aaa1668 456 

Araújo, M.B., New, M., 2007. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–457 

47. https://doi.org/10.1016/J.TREE.2006.09.010 458 

Bagstad, K.J., Semmens, D.J., Waage, S., Winthrop, R., 2013. A comparative assessment of decision-459 

support tools for ecosystem services quantification and valuation. Ecosyst. Serv. 5, 27–39. 460 

https://doi.org/10.1016/j.ecoser.2013.07.004 461 

Bagstad, K.J., Villa, F., Batker, D., Harrison-Cox, J., Voigt, B., Johnson, G.W., 2014. From theoretical to 462 

actual ecosystem services: mapping beneficiaries and spatial flows in ecosystem service 463 

assessments. Ecol. Soc. 19, art64. https://doi.org/10.5751/ES-06523-190264 464 

Brooks, E.G.E., Holland, R.A., Darwall, W.R.T., Eigenbrod, F., 2016. Global evidence of positive 465 



24 
 

impacts of freshwater biodiversity on fishery yields. Glob. Ecol. Biogeogr. 25, 553–562. 466 

https://doi.org/10.1111/geb.12435 467 

Bruijnzeel, L.A., Mulligan, M., Scatena, F.N., 2011. Hydrometeorology of tropical montane cloud 468 

forests: emerging patterns. Hydrol. Process. 25, 465–498. https://doi.org/10.1002/hyp.7974 469 

Bryant, B.P., Borsuk, M.E., Hamel, P., Oleson, K.L.L., Schulp, C.J.E., 2018. Transparent and feasible 470 

uncertainty assessment adds value to applied ecosystem services modeling. Ecosyst. Serv. 33, 471 

103–109. https://doi.org/10.1016/J.ECOSER.2018.09.001 472 

Cash, D.W., Clark, W.C., Alcock, F., Dickson, N.M., Eckley, N., Guston, D.H., Jäger, J., Mitchell, R.B., 473 

2003. Knowledge systems for sustainable development. Proc. Natl. Acad. Sci. U. S. A. 100, 8086–474 

91. https://doi.org/10.1073/pnas.1231332100 475 

Chaplin-Kramer, R., Sharp, R.P., Weil, C., Bennett, E.M., Pascual, U., Arkema, K.K., Brauman, K.A., 476 

Bryant, B.P., Guerry, A.D., Haddad, N.M., Hamann, M., Hamel, P., Johnson, J.A., Mandle, L., 477 

Pereira, H.M., Polasky, S., Ruckelshaus, M., Shaw, M.R., Silver, J.M., Vogl, A.L., Daily, G.C., 2019. 478 

Global modeling of nature’s contributions to people. Science 366, 255–258. 479 

https://doi.org/10.1126/science.aaw3372 480 

Clark, W.C., Tomich, T.P., van Noordwijk, M., Guston, D., Catacutan, D., Dickson, N.M., McNie, E., 481 

2016. Boundary work for sustainable development: Natural resource management at the 482 

Consultative Group on International Agricultural Research (CGIAR). Proc. Natl. Acad. Sci. U. S. A. 483 

113, 4615–22. https://doi.org/10.1073/pnas.0900231108 484 

Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, 485 

W.J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A.J., Wehner, M., 2013. Long-486 

term Climate Change: Projections, Commitments and Irreversibility, in: Stocker, T.F., Qin, D., 487 

Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. 488 

(Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the 489 

Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge 490 



25 
 

University Press, Cambridge, United Kingdom and New York, NY, USA. 491 

Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S.J., Kubiszewski, I., Farber, S., 492 

Turner, R.K., 2014. Changes in the global value of ecosystem services. Glob. Environ. Chang. 26, 493 

152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002 494 

Crossman, N.D., Bryan, B.A., Summers, D.M., 2012. Identifying priority areas for reducing species 495 

vulnerability to climate change. Divers. Distrib. 18, 60–72. https://doi.org/10.1111/j.1472-496 

4642.2011.00851.x 497 

Cumming, G.S., Buerkert, A., Hoffmann, E.M., Schlecht, E., von Cramon-Taubadel, S., Tscharntke, T., 498 

2014. Implications of agricultural transitions and urbanization for ecosystem services. Nature 499 

515, 50–57. 500 

Daw, T., Brown, K., Rosendo, S., Pomeroy, R., 2011. Applying the ecosystem services concept to 501 

poverty alleviation: the need to disaggregate human well-being. Environ. Conserv. 38, 370–379. 502 

https://doi.org/doi:10.1017/S0376892911000506 503 

Díaz, S., Pascual, U., Stenseke, M., Martín-López, B., Watson, R.T., Molnár, Z., Hill, R., Chan, K.M.A., 504 

Baste, I.A., Brauman, K.A., Polasky, S., Church, A., Lonsdale, M., Larigauderie, A., Leadley, P.W., 505 

van Oudenhoven, A.P.E., van der Plaat, F., Schröter, M., Lavorel, S., Aumeeruddy-Thomas, Y., 506 

Bukvareva, E., Davies, K., Demissew, S., Erpul, G., Failler, P., Guerra, C.A., Hewitt, C.L., Keune, H., 507 

Lindley, S., Shirayama, Y., 2018. Assessing nature’s contributions to people. Science 359, 270–508 

272. https://doi.org/10.1126/science.aap8826 509 

Dong, M., Bryan, B.A., Connor, J.D., Nolan, M., Gao, L., 2015. Land use mapping error introduces 510 

strongly-localised, scale-dependent uncertainty into land use and ecosystem services modelling. 511 

Ecosyst. Serv. 15, 63–74. https://doi.org/10.1016/J.ECOSER.2015.07.006 512 

Dormann, C.F., McPherson, J.M., Araújo, M.B., Bivand, R., Bolliger, J., Carl, G., Davies, R.G., Hirzel, A., 513 

Jetz, W., Daniel Kissling, W., Kühn, I., Ohlemüller, R., Peres-Neto, P.R., Reineking, B., Schröder, 514 

B., Schurr, F.M., Wilson, R., 2007. Methods to account for spatial autocorrelation in the analysis 515 



26 
 

of species distributional data: a review. Ecography (Cop.). 30, 609–628. 516 

https://doi.org/10.1111/j.2007.0906-7590.05171.x 517 

Elias, M.A.S., Borges, F.J.A., Bergamini, L.L., Franceschinelli, E. V., Sujii, E.R., 2017. Climate change 518 

threatens pollination services in tomato crops in Brazil. Agric. Ecosyst. Environ. 239, 257–264. 519 

https://doi.org/10.1016/j.agee.2017.01.026 520 

Estes, L., Chen, P., Debats, S., Evans, T., Ferreira, S., Kuemmerle, T., Ragazzo, G., Sheffield, J., Wolf, A., 521 

Wood, E., Caylor, K., 2018. A large-area, spatially continuous assessment of land cover map 522 

error and its impact on downstream analyses. Glob. Chang. Biol. 24, 322–337. 523 

https://doi.org/10.1111/gcb.13904 524 

Fecher, B., Friesike, S., 2014. Open Science: One Term, Five Schools of Thought, in: Opening Science. 525 

Springer International Publishing, Cham, pp. 17–47. https://doi.org/10.1007/978-3-319-00026-526 

8_2 527 

Gneiting, T., Raftery, A.E., Westveld, A.H., Goldman, T., Gneiting, T., Raftery, A.E., III, A.H.W., 528 

Goldman, T., 2005. Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics 529 

and Minimum CRPS Estimation. Mon. Weather Rev. 133, 1098–1118. 530 

https://doi.org/10.1175/MWR2904.1 531 

Grenouillet, G., Buisson, L., Casajus, N., Lek, S., 2011. Ensemble modelling of species distribution: the 532 

effects of geographical and environmental ranges. Ecography (Cop.). 34, 9–17. 533 

https://doi.org/10.1111/j.1600-0587.2010.06152.x 534 

Guerry, A.D., Polasky, S., Lubchenco, J., Chaplin-Kramer, R., Daily, G.C., Griffin, R., Ruckelshaus, M., 535 

Bateman, I.J., Duraiappah, A., Elmqvist, T., Feldman, M.W., Folke, C., Hoekstra, J., Kareiva, P.M., 536 

Keeler, B.L., Li, S., McKenzie, E., Ouyang, Z., Reyers, B., Ricketts, T.H., Rockström, J., Tallis, H., 537 

Vira, B., 2015. Natural capital and ecosystem services informing decisions: From promise to 538 

practice. Proc. Natl. Acad. Sci. U. S. A. 112, 7348–55. https://doi.org/10.1073/pnas.1503751112 539 

Hantson, S., Arneth, A., Harrison, S.P., Kelley, D.I., Prentice, I.C., Rabin, S.S., Archibald, S., Mouillot, F., 540 



27 
 

Arnold, S.R., Artaxo, P., Bachelet, D., Ciais, P., Forrest, M., Friedlingstein, P., Hickler, T., Kaplan, 541 

J.O., Kloster, S., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Melton, J.R., Meyn, A., Sitch, S., 542 

Spessa, A., van der Werf, G.R., Voulgarakis, A., Yue, C., 2016. The status and challenge of global 543 

fire modelling. Biogeosciences 13, 3359–3375. https://doi.org/10.5194/bg-13-3359-2016 544 

He, K., Yu, L., Lai, K.K., 2012. Crude oil price analysis and forecasting using wavelet decomposed 545 

ensemble model. Energy 46, 564–574. https://doi.org/10.1016/j.energy.2012.07.055 546 

Hou, Y., Burkhard, B., Müller, F., 2013. Uncertainties in landscape analysis and ecosystem service 547 

assessment. J. Environ. Manage. 127 Suppl, S117-31. 548 

https://doi.org/10.1016/j.jenvman.2012.12.002 549 

Inoue, H., Narihisa, H., 2000. Improving Generalization Ability of Self-Generating Neural Networks 550 

Through Ensemble Averaging. Springer, Berlin, Heidelberg, pp. 177–180. 551 

https://doi.org/10.1007/3-540-45571-X_22 552 

IPBES, 2016. The methodological assessment report on scenarios and models of biodiversity and 553 

ecosystem services, in: Ferrier, S., Ninan, K.N., Leadley, P., Alkemade, R., Acosta, L.A., Akçakaya, 554 

H.R., Brotons, L., Cheung, W.W.L., Christensen, V., Harhash, K.A., Kabubo-Mariara, J., Lundquist, 555 

C., Obersteiner, M., Pereira, H.M., Peterson, G., Pichs-Madruga, R., Ravindranath, N., Rondinini, 556 

C., Wintle, B.A. (Eds.), Secretariat of the Intergovernmental Science-Policy Platform on 557 

Biodiversity and Ecosystem Services. Bonn, Germany, p. 348. 558 

Kareiva, P.M., 2011. Natural capital : theory & practice of mapping ecosystem services. Oxford 559 

University Press. 560 

Kleemann, J., Schröter, M., Bagstad, K.J., Kuhlicke, C., Kastner, T., Fridman, D., Schulp, C.J.E., Wolff, S., 561 

Martínez-López, J., Koellner, T., Arnhold, S., Martín-López, B., Marques, A., Lopez-Hoffman, L., 562 

Liu, J., Kissinger, M., Guerra, C.A., Bonn, A., 2020. Quantifying interregional flows of multiple 563 

ecosystem services – A case study for Germany. Glob. Environ. Chang. 61, 102051. 564 

https://doi.org/10.1016/J.GLOENVCHA.2020.102051 565 



28 
 

Knutti, R., Abramowitz, G., Collins, M., Eyring, V., Gleckler, P.J., Hewitson, B., Mearns, L., 2010. Good 566 

Practice Guidance Paper on Assessing and Combining Multi Model Climate Projections, in: 567 

Stocker, T., Dahe, Q., Plattner, G.-K., Tignor, M., Midgley, P. (Eds.), Meeting Report of the 568 

Intergovernmental Panel on Climate Change Expert Meeting on Assessing and Combining Multi 569 

Model Climate Projections. IPCC Working Group I Technical Support Unit, University of Bern, 570 

Bern, Switzerland, p. 13. 571 

Lai, K.K., Yu, L., Wang, S., Zhou, L., 2006. Credit Risk Analysis Using a Reliability-Based Neural Network 572 

Ensemble Model. Springer, Berlin, Heidelberg, pp. 682–690. 573 

https://doi.org/10.1007/11840930_71 574 

Marmion, M., Parviainen, M., Luoto, M., 2009. Evaluation of consensus methods in predictive species 575 

distribution modelling. Divers. Distrib. 15, 59–69. 576 

Martínez-López, J., Bagstad, K.J., Balbi, S., Magrach, A., Voigt, B., Athanasiadis, I., Pascual, M., 577 

Willcock, S., Villa, F., 2019. Towards globally customizable ecosystem service models. Sci. Total 578 

Environ. 650, 2325–2336. https://doi.org/10.1016/J.SCITOTENV.2018.09.371 579 

McKenzie, E., Rosenthal, A., Bernhardt, J., Girvetz, E., Kovacs, K., Olwero, N., Tof, J., 2012. Guidance 580 

and Case Studies for InVEST Users, Developing Scenarios to Assess Ecosystem Service Tradeoffs. 581 

World Wildlife Fund, Washington, USA. 582 

Mulligan, M., 2015. Trading off agriculture with nature’s other benefits, spatially, in: Zolin, C.., 583 

Rodrigues, R. de A.. (Eds.), Impact of Climate Change on Water Resources in Agriculture. CRC 584 

Press. 585 

Mulligan, M., 2013. WaterWorld: a self-parameterising, physically based model for application in 586 

data-poor but problem-rich environments globally. Hydrol. Res. 44. 587 

Mulligan, M., Burke, S.., 2005. Global cloud forests and environmental change in a hydrological 588 

context. DFID FRP Project ZF0216 Final Technical Report. pp74. 589 



29 
 

Mulligan, M., Guerry, A., Arkema, K., Bagstad, K., Villa, F., 2010. Capturing and quantifying the flow of 590 

ecosystem services, in: Silvestri, S., Kershaw, F. (Eds.), Framing the Flow: Innovative Approaches 591 

to Understand, Protect and Value Ecosystem Services Across Linked Habitats. UNEP World 592 

Conservation Monitoring Centre, Cambridge, UK, pp. 26–33. 593 

Pascual, U., Balvanera, P., Díaz, S., Pataki, G., Roth, E., Stenseke, M., Watson, R.T., Başak Dessane, E., 594 

Islar, M., Kelemen, E., Maris, V., Quaas, M., Subramanian, S.M., Wittmer, H., Adlan, A., Ahn, S., 595 

Al-Hafedh, Y.S., Amankwah, E., Asah, S.T., Berry, P., Bilgin, A., Breslow, S.J., Bullock, C., Cáceres, 596 

D., Daly-Hassen, H., Figueroa, E., Golden, C.D., Gómez-Baggethun, E., González-Jiménez, D., 597 

Houdet, J., Keune, H., Kumar, R., Ma, K., May, P.H., Mead, A., O’Farrell, P., Pandit, R., Pengue, 598 

W., Pichis-Madruga, R., Popa, F., Preston, S., Pacheco-Balanza, D., Saarikoski, H., Strassburg, 599 

B.B., van den Belt, M., Verma, M., Wickson, F., Yagi, N., 2017. Valuing nature’s contributions to 600 

people: the IPBES approach. Curr. Opin. Environ. Sustain. 26–27, 7–16. 601 

https://doi.org/10.1016/j.cosust.2016.12.006 602 

Peh, K.S.-H., Balmford, A., Bradbury, R.B., Brown, C., Butchart, S.H.M., Hughes, F.M.R., Stattersfield, 603 

A., Thomas, D.H.L., Walpole, M., Bayliss, J., Gowing, D., Jones, J.P.G., Lewis, S.L., Mulligan, M., 604 

Pandeya, B., Stratford, C., Thompson, J.R., Turner, K., Vira, B., Willcock, S., Birch, J.C., 2013. 605 

TESSA: A toolkit for rapid assessment of ecosystem services at sites of biodiversity conservation 606 

importance. Ecosyst. Serv. 5, 51–57. https://doi.org/10.1016/j.ecoser.2013.06.003 607 

Phillips, O.L., Malhi, Y., Vinceti, B., Baker, T., Lewis, S.L., Higuchi, N., Laurance, W.F., Vargas, P.N., 608 

Martinez, R. V, Laurance, S., Ferreira, L. V, Stern, M., Brown, S., Grace, J., Management, R., 609 

Vargas, H., York, N., Garden, B., International, W., 2002. Changes in growth of tropical forests: 610 

Evaluating potential biases. Ecol. Appl. 12, 576–587. 611 

Puschendorf, R., Carnaval, A.C., VanDerWal, J., Zumbado-Ulate, H., Chaves, G., Bolaños, F., Alford, 612 

R.A., 2009. Distribution models for the amphibian chytrid Batrachochytrium dendrobatidis in 613 

Costa Rica: proposing climatic refuges as a conservation tool. Divers. Distrib. 15, 401–408. 614 



30 
 

https://doi.org/10.1111/j.1472-4642.2008.00548.x 615 

Raworth, K., 2012. A safe and just space for humanity: can we live within the doughnut?, Oxfam 616 

Discussion Paper. Oxfam, Oxford, UK. 617 

Redhead, J.W., May, L., Oliver, T.H., Hamel, P., Sharp, R., Bullock, J.M., 2018. National scale 618 

evaluation of the InVEST nutrient retention model in the United Kingdom. Sci. Total Environ. 619 

610–611, 666–677. https://doi.org/10.1016/J.SCITOTENV.2017.08.092 620 

Redhead, J.W., Stratford, C., Sharps, K., Jones, L., Ziv, G., Clarke, D., Oliver, T.H., Bullock, J.M., 2016. 621 

Empirical validation of the InVEST water yield ecosystem service model at a national scale. Sci. 622 

Total Environ. 1–9. https://doi.org/10.1016/j.scitotenv.2016.06.227 623 

Refsgaard, J.C., Madsen, H., Andréassian, V., Arnbjerg-Nielsen, K., Davidson, T.A., Drews, M., 624 

Hamilton, D.P., Jeppesen, E., Kjellström, E., Olesen, J.E., Sonnenborg, T.O., Trolle, D., Willems, 625 

P., Christensen, J.H., 2014. A framework for testing the ability of models to project climate 626 

change and its impacts. Clim. Change 122, 271–282. https://doi.org/10.1007/s10584-013-0990-627 

2 628 

Refsgaard, J.C., van der Sluijs, J.P., Højberg, A.L., Vanrolleghem, P.A., 2007. Uncertainty in the 629 

environmental modelling process – A framework and guidance. Environ. Model. Softw. 22, 630 

1543–1556. https://doi.org/10.1016/J.ENVSOFT.2007.02.004 631 

Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin  III, F.S., Lambin, E., Lenton, T.M., Scheffer, 632 

M., Folke, C., Schellnhuber, H.J., Nykvist, B., de Wit, C.A., Hughes, T., van der Leeuw, S., Rodhe, 633 

H., Sörlin, S., Snyder, P.K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R.W., 634 

Fabry, V.J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., Foley, J., 2009. 635 

Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecol. Soc. 14. 636 

Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A.C., Müller, C., Arneth, A., Boote, K.J., Folberth, C., 637 

Glotter, M., Khabarov, N., Neumann, K., Piontek, F., Pugh, T.A.M., Schmid, E., Stehfest, E., Yang, 638 

H., Jones, J.W., 2014. Assessing agricultural risks of climate change in the 21st century in a 639 



31 
 

global gridded crop model intercomparison. Proc. Natl. Acad. Sci. U. S. A. 111, 3268–73. 640 

https://doi.org/10.1073/pnas.1222463110 641 

Scholes, R.J., 1998. The South African 1: 250 000 maps of areas of homogeneous grazing potential. 642 

Shackleton, S.E., Shackleton, C.M., 2012. Linking poverty, HIV/AIDS and climate change to human and 643 

ecosystem vulnerability in southern Africa: consequences for livelihoods and sustainable 644 

ecosystem management. Int. J. Sustain. Dev. World Ecol. 19, 275–286. 645 

https://doi.org/10.1080/13504509.2011.641039 646 

Sharps, K., Masante, D., Thomas, A., Jackson, B., Redhead, J., May, L., Prosser, H., Cosby, B., Emmett, 647 

B., Jones, L., 2017. Comparing strengths and weaknesses of three ecosystem services modelling 648 

tools in a diverse UK river catchment. Sci. Total Environ. 584, 118–130. 649 

https://doi.org/10.1016/j.scitotenv.2016.12.160 650 

Smith, B., Prentice, I.C., Sykes, M.T., 2001. Representation of vegetation dynamics in the modelling of 651 

terrestrial ecosystems: comparing two contrasting approaches within European climate space. 652 

Glob. Ecol. Biogeogr. 10, 621–637. https://doi.org/10.1046/j.1466-822X.2001.t01-1-00256.x 653 

Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., Zaehle, S., 2014. Implications of 654 

incorporating N cycling and N limitations on primary production in an individual-based dynamic 655 

vegetation model. Biogeosciences 11, 2027–2054. https://doi.org/10.5194/bg-11-2027-2014 656 

Stevens, F.R., Gaughan, A.E., Linard, C., Tatem, A.J., Jarvis, A., Hashimoto, H., 2015. Disaggregating 657 

Census Data for Population Mapping Using Random Forests with Remotely-Sensed and Ancillary 658 

Data. PLoS One 10, e0107042. https://doi.org/10.1371/journal.pone.0107042 659 

Stritih, A., Bebi, P., Grêt-Regamey, A., 2019. Quantifying uncertainties in earth observation-based 660 

ecosystem service assessments. Environ. Model. Softw. 111, 300–310. 661 

https://doi.org/10.1016/j.envsoft.2018.09.005 662 

Suich, H., Howe, C., Mace, G., 2015. Ecosystem services and poverty alleviation: A review of the 663 



32 
 

empirical links. Ecosyst. Serv. 12, 137–147. https://doi.org/10.1016/j.ecoser.2015.02.005 664 

Turner, K.G., Anderson, S., Gonzales-Chang, M., Costanza, R., Courville, S., Dalgaard, T., Dominati, E., 665 

Kubiszewski, I., Ogilvy, S., Porfirio, L., Ratna, N., Sandhu, H., Sutton, P.C., Svenning, J.-C., Turner, 666 

G.M., Varennes, Y.-D., Voinov, A., Wratten, S., 2016. A review of methods, data, and models to 667 

assess changes in the value of ecosystem services from land degradation and restoration. Ecol. 668 

Modell. 319, 190–207. https://doi.org/10.1016/j.ecolmodel.2015.07.017 669 

van Soesbergen, A., Mulligan, M., 2018. Uncertainty in data for hydrological ecosystem services 670 

modelling: Potential implications for estimating services and beneficiaries for the CAZ 671 

Madagascar. Ecosyst. Serv. 33, 175–186. https://doi.org/10.1016/J.ECOSER.2018.08.005 672 

Verhagen, W., Kukkala, A.S., Moilanen, A., van Teeffelen, A.J.A., Verburg, P.H., 2017. Use of demand 673 

for and spatial flow of ecosystem services to identify priority areas. Conserv. Biol. 31, 860–871. 674 

https://doi.org/10.1111/cobi.12872 675 

Voinov, A., Seppelt, R., Reis, S., Nabel, J.E.M.S., Shokravi, S., 2014. Values in socio-environmental 676 

modelling: Persuasion for action or excuse for inaction. Environ. Model. Softw. 53, 207–212. 677 

https://doi.org/10.1016/J.ENVSOFT.2013.12.005 678 

Walker, W.E., Harremoës, P., Rotmans, J., van der Sluijs, J.P., van Asselt, M.B.A., Janssen, P., Krayer 679 

von Krauss, M.P., 2003. Defining Uncertainty: A Conceptual Basis for Uncertainty Management 680 

in Model-Based Decision Support. Integr. Assess. 4, 5–17. 681 

https://doi.org/10.1076/iaij.4.1.5.16466 682 

Willcock, S., Hooftman, D., Sitas, N., O’Farrell, P., Hudson, M.D., Reyers, B., Eigenbrod, F., Bullock, 683 

J.M., 2016. Do ecosystem service maps and models meet stakeholders’ needs? A preliminary 684 

survey across sub-Saharan Africa. Ecosyst. Serv. 18, 110–117. 685 

https://doi.org/10.1016/j.ecoser.2016.02.038 686 

Willcock, S., Hooftman, D.A.P., Balbi, S., Blanchard, R., Dawson, T.P., O’Farrell, P.J., Hickler, T., 687 

Hudson, M.D., Lindeskog, M., Martinez-Lopez, J., Mulligan, M., Reyers, B., Shackleton, C., Sitas, 688 



33 
 

N., Villa, F., Watts, S.M., Eigenbrod, F., Bullock, J.M., 2019. A Continental-Scale Validation of 689 

Ecosystem Service Models. Ecosystems 22, 1902–1917. https://doi.org/10.1007/s10021-019-690 

00380-y 691 

Willcock, S., Martínez-López, J., Hooftman, D.A.P., Bagstad, K.J., Balbi, S., Marzo, A., Prato, C., 692 

Sciandrello, S., Signorello, G., Voigt, B., Villa, F., Bullock, J.M., Athanasiadis, I.N., 2018. Machine 693 

learning for ecosystem services. Ecosyst. Serv. https://doi.org/10.1016/j.ecoser.2018.04.004 694 

Willcock, S., Phillips, O.L., Platts, P.J., Balmford, A., Burgess, N.D., Lovett, J.C., Ahrends, A., Bayliss, J., 695 

Doggart, N., Doody, K., Fanning, E., Green, J., Hall, J., Howell, K.L., Marchant, R., Marshall, A.R., 696 

Mbilinyi, B., Munishi, P.K.T., Owen, N., Swetnam, R.D., Topp-Jorgensen, E.J., Lewis, S.L., 2012. 697 

Towards Regional, Error-Bounded Landscape Carbon Storage Estimates for Data-Deficient Areas 698 

of the World. PLoS One 7, e44795. https://doi.org/10.1371/journal.pone.0044795 699 

Willcock, S., Phillips, O.L., Platts, P.J., Balmford, A., Burgess, N.D., Lovett, J.C., Ahrends, A., Bayliss, J., 700 

Doggart, N., Doody, K., Fanning, E., Green, J.M.H., Hall, J., Howell, K.L., Marchant, R., Marshall, 701 

A.R., Mbilinyi, B., Munishi, P.K.T., Owen, N., Swetnam, R.D., Topp-Jorgensen, E.J., Lewis, S.L., 702 

2014. Quantifying and understanding carbon storage and sequestration within the Eastern Arc 703 

Mountains of Tanzania, a tropical biodiversity hotspot. Carbon Balance Manag. 9. 704 

Wong, C.P., Jiang, B., Kinzig, A.P., Lee, K.N., Ouyang, Z., 2014. Linking ecosystem characteristics to 705 

final ecosystem services for public policy. Ecol. Lett. 18, 108–118. 706 

https://doi.org/10.1111/ele.12389 707 

Xu, Z., Chau, S.N., Chen, X., Zhang, J., Li, Yingjie, Dietz, T., Wang, J., Winkler, J.A., Fan, F., Huang, B., Li, 708 

S., Wu, S., Herzberger, A., Tang, Y., Hong, D., Li, Yunkai, Liu, J., 2020. Assessing progress towards 709 

sustainable development over space and time. Nature 577, 74–78. 710 

https://doi.org/10.1038/s41586-019-1846-3 711 

712 



34 
 

Table 1. Overview of ecosystem service models included in this study, including all ecosystem services covered and their spatial grain (adapted from 713 
Willcock et al. (2019)). For more extensive descriptions see Willcock et al. (2019), Bagstad et al. (2013) and Peh et al. (2013).  714 

Model 
framework 

 Description* Ecosystem services currently available Spatial grain Ecosystem 
service modelled 

in this study 

WaterWorld An internally parameterised model of accumulated water 
run-off. This web-based model incorporates all data required 
for application. 

• Water Supply 
1 km2 gridcells for 
continental scale 
calculations 

Water supply 

Co$ting 
Nature 

A web-based series of interactive maps that defines the 
contribution of ecosystems to the global reservoir of a 
particular ES and its realisable value (based on flows to 
beneficiaries of that service).  

• Biodiversity Resources 

• Carbon Storage & Sequestration 

• Recreation value  

• Hazard Mitigation 

• Water Quality 

• Water Supply 

1 km2 gridcells for 
continental scale 
calculations 

Water supply ≈ 
Clean water run-
off  

Stored Carbon  ≈ 
above and below 
ground carbon  

LPJ-GUESS The Lund–Potsdam–Jena General Ecosystem Simulator model 
(Smith et al., 2014, 2001). LPJ-GUESS is a dynamic 
vegetation/ecosystem model designed for regional to global 
applications. The model combines process-based 
representations of terrestrial vegetation dynamics and land–
atmosphere carbon and water exchanges in a modular 
framework.  

• Carbon Storage & Sequestration 

• Nitrogen Storage & Sequestration 

• Water run-off 
 

0.5 degree≈ 55.6 x 
55.6 km gridcells 

Water supply 

Woody species 
carbon 

Grazing = C3/C4 
carbon 

InVEST A suite of free, open-source software models from the 
Natural Capital Project, used to map and value the goods and 
services from nature. InVEST returns results in either 
biophysical or economic terms. 

• Carbon: Terrestrial & Coastal Storage 
& Sequestration 

• Crops: Pollination & Production 

•  Scenic Quality, Recreation & Tourism 

• Fisheries: Marine & Aquaculture 
Habitat: Quality & Risk 

• Marine Water Quality 

• Water Quality: Nutrients and 
Sediment 

• Water Supply 

• Wind & Wave Energy 

Any, land-use map 
input data 
depending 

Water supply 

Carbon (above 
ground only) 

Benefit 
transfer 

Bespoke adaptations of Costanza and others (2014) for the 
study region in $ per hectare. Benefit transfer assumes a 

• Gas regulation 
Any,  land-use map 
input data 

Water yield ≈ 
Water supply 
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constant unit value per hectare of ecosystem type and 
multiplies that value by the area of each type to arrive at 
aggregate totals.  

• Climate regulation 

• Disturbance regulation 

• Water regulation 

• Water supply 

• Erosion control 

• Soil formation 

• Nutrient cycling 

• Waste treatment 

• Pollination 

• Biological control 

• Habitat/Refugia 

• Food production 

• Raw materials 

• Genetic resources 

• Recreation 

• Cultural 

depending Carbon ≈ Climate 
regulation value 

Charcoal use ≈ 
Raw materials 
value 

Firewood use ≈ 
Raw materials 
value 

Scholes 
models 

Interpretation of Scholes (1998).  
• Grazing 

• Firewood 

• Water supply** 

Any, input data 
depending 

Water surplus ** 
≈ Water supply 

Grazing use†† 

Firewood use‡‡ 

New  models§ 
 

Bespoke calculation of Water use per country, calculated as 
the sum of all run-off per country# divided by the full 
population per country as calculated from Afripop 2010 
(Stevens et al. 2015) 

Bespoke models 
made in this 
study from 
Willcock et al. 
(2019) 

All models with Water 
Supply above 

Depending on 
water supply source 
data 

Water use 

Bespoke models for carbon based services grazing, charcoal 
and firewood using as input the carbon stock output of the 
existing carbon models and adapted using multiplication 
factors and spatial masks (see Willcock et al. (2019) for full 
details). 

Co$ting Nature carbon 

Depending on 
carbon source data 

Grazing use 

Charcoal use 

Firewood use 

InVEST carbon Grazing use 

Charcoal use 

Firewood use 

LPJ-GUESS woody 
species carbon 

Charcoal use 

Firewood use 

Benefit transfer carbon Grazing use 

 * All 1x1 km in this study, unless otherwise noted. Willcock et al. (2019) investigated the impact of spatial scale on ecosystem service models and found no significant impact 715 
(unpublished results). Thus, spatial scales are unlikely to affect results here. § These services were not modelled in these model frameworks when we conducted our model 716 
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runs (in 2016). We developed new models using carbon stock outputs from existing models as input (see Willcock et al. (2019) for full details). The original models and their 717 
developers should not be held responsible for the results from these new models. # except for accumulated flow from WaterWorld which is the sum over all watersheds 718 
within countries of the maximum flow per watershed. **Estimated as number of days that precipitation exceeds evapotranspiration, this service was added by the current 719 
study to the available Scholes models (Scholes, 1998). †† We have two Scholes grazing models in our study, a generic international model using freely available global data 720 
and a locally parameterised South African model (see Willcock et al. (2019) for full details). ‡‡ Modelled at a 5x5 km resolution. 721 


