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Abstract 

Image reconstruction of pollen grains was performed using neural networks, from light 

scattering patterns recorded with simultaneous irradiation at three laser wavelengths. 

The shapes of the reconstructed optical images using one network were shown to have 

a pixel accuracy on average of 98.9%. Two other neural networks were shown to be 

able to convert scattering patterns into predictions of z-stack maximum intensity 

projection microscope images and scanning electron microscopy images. The 

capability of producing magnified images in a variety of formats directly from 

scattering patterns will be applicable to particle sensing in a range of fields, including 

health and safety, environmental protection, ocean and space science. 
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Introduction 

Sensing and monitoring of airborne pollution particles, such as pollen grains, wood combustion ash, 

microplastics and diesel soot, is important for understanding and mitigating their consequences for 

human exposure, and hence reducing what is rapidly becoming a significant global health problem. 

Particulate matter pollution is associated with respiratory and cardiovascular diseases, different types 

of cancers, as well as dementia [1–4]. Since different particles are more strongly associated with certain 

adverse health outcomes, and some people may be more susceptible to specific types of pollution [5], 

it is important to determine the individual species that are contributing to particulate matter pollution. 

For example, regarding hay fever, sufferers’ susceptibility varies depending on the types of pollen, be 

it weed, grass or tree pollen [6,7]. Therefore, it is advantageous for an individual to know what species 

of pollen is triggering hay fever symptoms, and whether they are present in the air around them at any 

particular time. Although imaging a particle directly could enable determination of some micron-sized 

particles, a lensless setup, in which only the scattered light from an object is captured, potentially offers 

simplicity, which is desirable for sensing applications. 

Since absorption coefficients vary from chemical to chemical [8], and since the shape and size of an 

object, along with the wavelength of illuminating light, can affect the scattering [9,10], the scattered 

light encodes information regarding these properties of the particle [11,12]. However, since standard 

cameras record only the intensity of the scattered light, the phase information is lost. Therefore, an exact 

description of the object is not directly possible, as both the amplitude and phase of the scattered light 

are required to fully characterise shape, refractive index and size. The challenge of producing the inverse 

function that maps a scattering pattern to the object has led to lensless imaging approaches such as 

phase retrieval [13–16] and non-interferometric imaging [17,18]. Phase retrieval offers a solution by 



requiring that the object is oversampled, which is equivalent to ensuring that the object has zero padding 

(i.e. no intensity contribution) outside a well-defined region. Therefore, this approach is generally only 

applicable to objects that are smaller than the size of the illuminating light source. Ptychography enables 

imaging over a continuous object, but requires the collection of scattering patterns that correspond to 

overlapping regions of the object, where, in general, the degree of overlap must also be measured, along 

with the illumination function.  

Deep learning convolutional neural networks [19–21], have been shown to be able to classify objects 

[22,23], and have been used in areas such as text classification [24], video classification [25], speech 

recognition [26] and bird song classification [27,28], as well as facial recognition in humans and non-

human primates [29–31]. Of greater relevance to this work, deep learning has been used in the counting 

and classification of particulate matter pollution, such as pollen and plastic microbeads via imaging 

their scattered light [32], as well as bio-aerosol sensing [33]. Recent work on deep learning in the field 

of phase retrieval has been discussed by [34–37], with deep learning having demonstrated the capability 

of retrieving phase information from images created using a spatial light modulator [38], via 

ptychography [39] and holography [35], and via multiple scattering patterns [40]. 

Here, we extend our earlier work on classification of pollution particles in water and in air [41,42] to 

show how neural networks can be used to generate images of pollen grains directly from acquired three-

wavelength scattering patterns and even predict their appearance under a scanning electron microscope 

(SEM).  

Experimental methods 

Sample fabrication and data collection: Two forms of experiments were carried out: the first was an 

in-situ experiment in which the optical imaging of, and laser scattering from, the pollen grains was 

recorded in parallel, whilst in the same setup. In the second set of experiments, optical images of (for 

reference only) and laser scattering data from the pollen were recorded using the same experimental 

apparatus as the in-situ experiments, but then, the pollen was imaged using different apparatus, such as 

a visible light microscope and an SEM. Here, for ease of distinction between the two experiments, we 

refer to this experiment as ‘ex-situ’, since the imaging part was done elsewhere relative to our initial 

setup. 

For the in-situ experiment, Iva xanthiifolia and Populus deltoides pollen grains were procured from 

Sigma Aldrich, and Narcissus and Mahonia aquifolium pollen grains were collected from the University 

of Southampton grounds. Iva xanthiifolia, Populus deltoides and Narcissus pollen grains, were 

deposited onto a substrate (a 25 mm by 75 mm, 1 mm thick soda-lime glass slide), while Mahonia 

aquifolium pollen grains (used solely for testing) were deposited onto a separate slide. A total of 120 

pollen grains (~ 33% for each pollen type: Iva xanthiifolia, Populus deltoides and Narcissus) were 

individually located and the scattering patterns and optical images for each were recorded and used for 

training and testing the neural network. Subsequently, images and scattering patterns for Mahonia 

aquifolium pollen (a species not used in training) were recorded to test the capability of the neural 

network to generate images of not just unseen pollen grains but previously-unseen species. 

For the ex-situ experiment, imaging of pollen grains was carried out using another separate glass slide 

that included additional pollen grains obtained from purchased flowers. Pollen from the species Bellis 

perennis, Populus deltoides, Narcissus, Iva xanthiifolia, Populus tremuloides, Hyacinthus orientalis, 

Chrysanthemum, Antirrhinum majus, Chamelaucium, and Rosa were included. Testing was carried out 

using pollen that was present on the same slide as the training. In this case, the scattering patterns and 

optical images for a total of 100 different pollen grains (10 for each pollen type) were recorded using 

the in-situ experimental setup. Additional ex-situ imaging data (z-stack maximum intensity projection 

and SEM) were then obtained for the same set of pollen grains. The pollen grains ranged from ~ 10 to 

~ 50 microns in size. 
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In-situ imaging setup: As shown in figure 1, light from 3 laser diodes (Thorlabs Inc.) operating at 405 

nm, 532 nm and 650 nm was focussed on the surface of a pollen-coated glass slide, producing a spot 

with a diameter of approximately 50 µm. The light from each laser was attenuated to below 1 mW using 

neutral density filters (Thorlabs Inc.), prior to focussing onto the sample. The forward scattered light 

from the pollen grains was collected by a CMOS colour camera (Thorlabs, DCC3260C, 1936 × 1216 

pixels, 5 ms integration time), placed 3 mm away from the pollen grains. The camera was connected to 

a computer to allow recording of the scattering patterns. The glass slides were mounted on a 3-axis 

stage (25 mm travel, 10 µm resolution) for positional control. The pollen grains were also illuminated 

using a white light source (a halogen lamp, I. + W. MUSTER Gdb, 150 W) so that the pollen grains 

could be imaged, via a beam splitter, using an Olympus SLMPLN 50× objective (NA = 0.35, WD = 18 

mm) and CMOS camera (Thorlabs Inc. DCC1645C, 1280 × 1024 pixels). Both cameras used ThorCam 

software [43] by Thorlabs Inc. to record the scattering patterns and images. 

 

Figure 1. (a) Illustration of setup for in-situ optical imaging of pollen grains and collection of their 

scattered light when illuminated by red, green and blue laser light. (b) Experimentally measured 

scattering patterns and associated in-situ optical images of Narcissus and Iva xanthiifolia pollen 

grains. 

Ex-situ imaging setup: Two methods of ex-situ imaging were applied. 1) Z-stack maximum intensity 

projection. For each pollen grain z-stack optical microscopy was performed using a Nikon microscope 

with an image magnification of 50× (Nikon, LE Plan, NA = 0.4, WD = 3.5 mm) and CMOS camera 

(Thorlabs Inc. DCC1645C, 1280 × 1024 pixels). The z-axis of the microscope stage was translated in 

micron increments with an image being recorded at every step. A z-stack of images was thus obtained 

from the top part of each pollen grain to its base on the surface of the glass slide. The stack of images 

was then combined via maximum intensity projection (a 2D image containing the maximum intensity 

value throughout all layers, for each pixel), to obtain ex-situ images of the pollen grains. The images 

were saved with an image pixel count of 1280 × 1024 pixels, and cropped to 512 × 512 pixels. 2) 

Scanning electron microscopy. Imaging was carried out using a Zeiss Evo SEM with probe current of 

134 pA, operating at high vacuum. The images were produced using a cycle time of 48.7 seconds, at a 

resolution of 1024 × 768 pixels, which were also cropped to 512 × 512 pixels. The samples were coated 

with 20 nm of Au/Pd (50:50) prior to placement inside the SEM in order to reduce charge build-up on 

the sample during imaging.  

Neural network: Three separate neural networks were used in this work, one for predicting the in-situ 

optical images based on the experimentally measured scattering pattern and, similarly, one each for 

predicting the image output for the two ex-situ imaging methods. All networks were trained using a 

conditional generative adversarial network (cGAN) architecture on an NVIDIA RTX 2080 graphics 

processing unit (GPU). The cGAN framework used here was based on the network presented in [44], 



which in turn was based on that described in [45]. The generator network had a 9-layer architecture in 

order to enable an image resolution of 512 × 512 pixels, and had a learning rate of 0.0002 and drop-out 

of 0.5. At the start of training, the neuron weightings for the generator and discriminator were randomly 

initialised, meaning they encoded zero information about the training data. Each neural network was 

trained until the training errors reached a minimum (approximately 500 epochs for the in-situ imaging 

neural network and 300 epochs for the ex-situ imaging neural networks, where one epoch is defined as 

the processing of all training data exactly once). For each respective neural network, 90% of the training 

data was used for training while 10% was used for validation. The processing time for the generation 

of test images was approximately 100 milliseconds in all cases.  

Figure 2 shows an overview of the procedure for training a neural network to transform experimental 

scattering patterns into predictions of an image of the particle. Scattering patterns were used as the input 

to the neural network and the neural network prediction of the particle image was compared with the 

experimental image. This process was repeated until the prediction error was minimised. The procedure 

was followed for training neural networks to convert the collected scattering patterns into predicted 

images in in-situ data format (optical image) and each of the ex-situ data formats (i.e. z-stack maximum 

intensity projection and SEM). 

    

Figure 2. Schematic of neural network training for generating images of pollen grains from their 

experimental scattering pattern via training that used pairs of experimental images and experimental 

scattering patterns. This procedure was followed for both in-situ and ex-situ neural network training. 

Results and discussion 

Figure 3 shows results obtained during testing of the in-situ neural network, showing scattering patterns 

that were fed into the neural network (column 1), the image generated by the neural network (column 

2) and the experimental image (column 3). Each row shows data for a different pollen species: (a) 

Narcissus, (b) Populus deltoides, (c) Iva xanthiifolia and (d) Mahonia aquifolium. Column 4 features a 

comparison metric in which the experimental images are subtracted from the neural network generated 

images (thresholding is applied to both image types to produce binary image masks). These are then 

combined so that black represents true negative, white is true positive, green is false positive and blue 

is false negative, for the in-situ image generation. The figure shows that the neural network was able to 

predict the shape and the orientation of pollen grains it has not seen before. Although there is sap present 

in the top left hand corner of the experimental image in figure 3(b), this is not present in the generated 

image, because the sap was not illuminated by the laser light and thus relevant information is not present 

in the scattering. The sulcus (a fissure on the pollen) is also present in the generated image shown in 
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figure 3(c), as indicated by an arrow. In addition to image prediction for unseen pollen grains of the 

same species that was used during training, figure 3(d) demonstrates image prediction for a pollen grain 

of the species Mahonia aquifolium that was not used during training.  

The length and width of the neural network generated Narcissus grain (figure 3(a)) were 100.3% and 

89.0% relative to the grain dimension in the experimental image. Similarly, the lengths and widths of 

the generated Populus deltoides (figure 3(b)), Iva xanthiifolia (figure 3(c)) and Mahonia aquifolium 

(figure 3(d)) were 102.4% and 100.0%, 101.9% and 98.6% and, 101.2% and 100.0%, respectively. 

 

Figure 3. Capability of the trained neural network to generate images of pollen grains from their 

scattering patterns, showing the scattering pattern (column 1), the generated image (column 2) and the 

actual image (column 3), for (a) Narcissus, (b) Populus deltoides (c) Iva xanthiifolia and (d) Mahonia 

aquifolium. Column 4 displays a comparison metric, where black is true negative, white is true 

positive, blue is false negative and green is false positive, obtained via thresholding and comparison 

of the generated and experimental images. 

Table 1 shows the percentage of pixels in the generated images that, when the overall shape of the 

pollen grains, obtained via image thresholding, is compared with the actual image, are true negative 

(black), false negative (blue), false positive (green) and true positive (white). The true total (true 

negative plus true positive percentage of pixels) is also shown in the table. The tabulated results show 

that on average, 98.9% of the pixels were true. 
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Table 1. Percentage of pixels in generated images shown in figure 3, for true negative (black), false 

negative (blue), false positive (green) and true positive (white). 

 Percentage of pixels in image 

Pollen species 

True 

negative 

False 

negative  

False 

positive 

True 

positive 

True 

total 

Narcissus 83.7 1.7 0.4 14.2 97.9 

Iva xanthiifolia 93.3 0.3 0.2 6.1 99.4 

Populus deltoides 94.6 0.2 0.2 5.0 99.6 

Mahonia aquifolium  90.1 0.6 0.8 8.5 98.6 

     Mean=98.9 

Figure 4 demonstrates the performance achieved by the neural networks with image data types that were 

recorded ex-situ of the scattering apparatus. It includes the scattering patterns (column 1), the neural 

network generated images (column 2) and the experimental images (column 3), for (a) Hyacinthus 

orientalis and (b) Chamelaucium. Columns 2 and 3 include images of both ex-situ measurement types: 

z-stack images are labelled (i) and (iii)), and SEM images are labelled (ii) and (iv)). Also, labelled on 

the images is sap, which was found in both the experimental and the generated images. These data 

presented in figure 4 were not included in the training data and so the image predictions are made for 

previously unseen pollen grains. It is evident from the figure that recovery of the overall shape and 

orientation of the grains has been achieved, and in addition, features such as the deformation at the top 

right of the Hyacinthus orientalis pollen grain in (a) are present in the generated images. In regard to 

the generated image of a Chamelaucium pollen grain in (b), the neural network was able to generate 

images of pollen with the correct orientation, as well as the spherical lobes at each of the corners of its 

triangular structure. In addition, in both the generated images, similar size sap droplets are present on 

the slides as compared with the actual images. Inexactness in the generated images is attributed to the 

limited number of scattering patterns and pollen grain image pairs used for training.  



  

Figure 4. Capability of the trained neural networks for generating ex-situ images of pollen grains from 

their experimental scattering patterns (column 1), showing the neural network generated images 

(column 2) and the ex-situ experimental images (column 3). Row (a) shows results for Hyacinthus 

orientalis and row (b) Chamelaucium. (i) and (iii) show z-stack type images whilst (ii) and (iv) show 

SEM type images (for a side-by-side comparison of generated and experimental images). Sap is also 

labelled on some of the images.  

The merit for using three lasers of different wavelengths to scatter from the pollen grains is 

demonstrated in figure 5. The figure shows reconstruction of a Chamelaucium pollen grain using neural 

networks that were trained using (a) red light, (b) green light, (c) blue light, and (d) all three 

wavelengths. For reference, the experimental z-stack image of the pollen grain is shown in (e). The 

insets in each sub-figure show the corresponding scattering pattern that was fed into the neural network 

to generate the images. Here, a separate neural network (using the same architecture and training regime 

as the multi-wavelength neural network) was trained for each of the different wavelengths used (one 

network for red light only, green light only and blue light only), such that each neural network created 

a transfer function between the scattering pattern and the experimental z-stack image. This was achieved 

by separating out the RGB channels of the scattering patterns recorded on the camera. Figure 5 clearly 

shows that the generated images for the single wavelength scattering patterns are less precise.  

We attribute this higher accuracy when using multiple wavelengths to being able to effectively obtain 

three sets of scattering information. The information is unique for each wavelength, due to the 



wavelength dependence of the refractive index of the material, and the fact that scattering from a 

structure is dependent on parameters such as its size, material and wavelength, hence, meaning that 

multiple wavelengths can yield additional information about the structure of the object from which the 

light is scattered. 

 

Figure 5. Comparison of the capability of trained neural networks for generating an ex-situ 

experimental image of a pollen grain from its scattering pattern, showing generated images for 

Chamelaucium using neural networks trained with (a) red light, (b) green light, (c) blue light, and (d) 

all three wavelengths, with the corresponding scattering patterns shown in the inset of each image. For 

reference, the experimental z-stack image of the pollen grain is shown in (e). 

Conclusion  

To conclude, we have shown how neural networks can be used to generate images of pollen grains 

using their experimentally measured scattering pattern, with the resultant images showing a high degree 

of similarity to the experimentally measured images. More specifically, one neural network was shown 

to be able to successfully generate an optical image of an unseen species of pollen grain from its 

scattering pattern, and had a pixel accuracy with an average of 98.9%. In addition, the capability for a 

neural network to generate images where training data (such as SEM images) were collected ex-situ of 

the scattering apparatus was shown. We presented evidence indicating that scattering patterns 

containing signals at multiple wavelengths were more effective than those containing only a single 

wavelength in producing accurate image reconstructions. Further improvements are anticipated through 

the collection of larger data sets and the use of additional wavelengths of light. 
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