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Abstract 

Artificial intelligence (AI) is the most important new methodology in scientific research since 
adoption of quantum mechanics and it is providing exciting results in multiple fields of science 
and technology. In this review we summarize research and discuss future opportunities for AI 
in the domains of photonics, nanophotonics, plasmonics and photonic materials discovery 
including metamaterials. 
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1. Introduction 

Artificial intelligence (AI) is currently one of the most 
active fields in research, mainly due to the impressive results 
obtained via machine learning (ML) in fields going from 
genetics and synthetic chemistry to speech recognition and 
image processing. The technology enables computers to learn 
on their own, without being explicitly programmed, to identify 
patterns in data, build models that explain the world, and make 
predictions that do not explicitly follow from predefined rules 
and models [1]. 

AI represents a potent addition to the computational toolkit 
for analysis and interpretation of data, predictive modelling, 
and the automated, (self-)adaptive design and control of 
systems and processes. Its greatest power lies in its ability to 
address big data, multi-dimensional and high-complexity 
problems that are intractable with conventional numerical and 
analytical computational techniques. It will become a major 
instrument/methodology for and driver of discovery and 
development in all areas of science and technology, including 
photonics/electromagnetism – the focus of this review. 

ML methods hold great potential for use in the development 
of new materials. So far in this field, ML algorithms have 
typically been applied to large databases (themselves 
generated computationally) for the purpose of predicting new 
materials and revealing trends that would not easily be seen by 

conventional data mining techniques. They have also been 
used to grow small experimental datasets in an iterative 
process that predicts new materials [2]. ML can furthermore 
facilitate multiobjective optimization of material properties, 
for example in the search for NiTi-based shape-memory alloys 
with very small thermal hysteresis, Xue et al. [3] began with 
only 22 experimental samples and found the optimal 
compound (with a hysteresis of only 1.84 K) on the sixth 
iteration. 

In the domain of nanophotonics and metamaterials, the 
design and optimization of devices to control light-matter 
interactions and manipulate electromagnetic fields at the 
subwavelength scale is computationally expensive (indeed, 
often prohibitively so). Here, ML techniques present 
opportunities both to extend physical insight and to search 
parameter spaces in a more efficient way, leading to data-
driven, on-demand design of novel devices [4]. For instance, 
Peurifoy et al. [5] trained a neural network to approximate 
light scattering by multilayer nanoparticles and, by taking 
advantage of the fact that it could do so orders of magnitude 
faster than conventional simulations, employed it to solve 
nanophotonic inverse design problems via back propagation. 

Recent years have also seen growing interest in photonic 
implementations of AI (c.f. all-optical computing), with 
reported approaches including photonic reservoir and 
neuromorphic optical computing, photonic deep neural 
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networks, and all-optical photonic cognitive networks (e.g. 
optical oracles). For example, Wu et al. [6] demonstrated that 
a fibre network can be considered as an optical oracle for the 
“Hamiltonian path problem” able to address the famous 
mathematical complexity problem (of determining whether a 
set of locations can be visited via a path that passes each 
location only once) hundreds of times faster than brute-force 
(electronic) computing; Estakhri et al. [7] have designed 
metastructures to perform analogue computing and solve 
integral equations using wave interactions. 

In summary, AI and photonics provide huge opportunities 
for both fields, it is essentially a two-way road: photonics is 
an ideal platform for ML methodology since the Maxwell 
equations can be used to generate extremely reliable source of 
training data and, on the other hand, photonic systems offer an 
extremely interesting platform for the implementation of AI 
due to the inherent parallelism of photonics technology. 

The use of ML in materials science and (nano)photonics is 
still in its infancy and the landscape of existing work at this 
intersection is relatively sparse. Nonetheless, key themes and 
activity areas are emerging, and the first international 
workshop on “Artificial Intelligence in Nanophotonics” was 
held recently (June 2019). Broadly, we consider that there are 
four areas in which the AI/ML toolkit may be applied: 
• Engineering of artificial electromagnetic materials 

(optimization of metamaterial and other nanostructural 
geometries to achieve specific, targeted optical 
properties); 

• Optimization of (nano)photonic device, system and 
network architectures (e.g. adaptively reconfigurable 
waveguide structures to perform arbitrary input/output 
operations); 

• Discovery and optimization of photonic materials, their 
synthesis and processing (identification of materials 
providing selected desirable properties for photonic 
applications); 

• Development of sources of complex electromagnetic 
fields, e.g. phase singularities, super-oscillatory foci, etc., 
(design of field structures themselves and evolution of 
strategies for generating, characterizing and utilizing such 
fields). 

2. AI methods 

AI is the study of agents that perceive the world around 
them, form plans and make decisions to accomplish their 
goals [8]. AI currently comprises a huge number of subfields, 
going from the general learning and perception to specific 
tasks, such as playing chess, proving mathematical theorems, 
writing poetry, driving cars and medical diagnosis. AI is an 
universal methodology and so it can find application in any 
intellectual task [9]. A particular subfield of AI named 
machine learning (ML) has shown impressive results on 
classification and prediction tasks becoming a vital part of 
many industries [10]; the ML approach is based on its intrinsic 
ability to solve tasks that are too challenging for conventional 
programmes [1]. The word “task” is used in ML to define a 
piece of work allocated to an algorithm and the process of 
learning itself is not a task. Learning is the procedure through 
which the algorithm reaches the ability to perform the task [1]. 
Most ML algorithms can be classified as supervised learning, 
unsupervised learning and reinforcement learning based on 
how the learning process is designed [1]. The most common 
form of ML is supervised learning (Figure 1) [11]. Within this 
approach, the starting point is to learn a mapping function 
from inputs x to outputs y, given a labelled set of input-output 
pairs 𝐷𝐷 = {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑁𝑁  where D is called the training set and 
N is the number of training examples [12]. After this first step 
named training, the algorithm has to make predictions on 
novel inputs (unseen data) and this process is called 
generalization or cross-validation. When the output y is a 
categorical or nominal variable (namely a word), the problem 
is known as classification or pattern recognition, instead when 
y is real-valued (namely a number), the problem is known as 
regression [12]. Learning to classify handwritten digits is a 
standard example of a classification task and to attain this 
result, a supervised learning algorithm takes thousands of 
pictures of handwritten digits labelled with the number each 
image represents. Then, the algorithm learns the relationship 
between the images and their associated numbers, and apply 
that learned relationship to classify completely new images 
(without labels) that the machine has not seen before [8].
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Figure 1: Supervised learning and deep learning. In supervised learning, the training dataset consists of a large number of input values 
(e.g. material compositions) linked to the corresponding output values (e.g. optical properties). At the training phase a model for a relationship 
between material composition and its properties is established. This can be achieved by a “deep learning” algorithm or by a combination of 
a simpler machine algorithm and human analysis. The algorithm often takes the form of a stacked neural network connecting input and output 
data and made of nodes. A node combines input from the data with a set of weights, thereby assigning significance to inputs with regard to 
the task the algorithm is trying to develop. The weighted inputs are summed and passed through a node’s activation function to the next layer 
of the network, to determine to what extent that signal should progress further through the network to affect the ultimate outcome. Once the 
model is established and evaluated, it can be applied for predictive modelling, for instance for predicting of materials optical properties for 
previously unseen material compositions. Moreover, predictive modelling can be reversed to identify the required composition of material to 
achieve desired properties.

Instead, the unsupervised learning approach (Figure 2) is 
based on unlabelled datasets, namely an unsupervised 
algorithm receives only given inputs 𝐷𝐷 = {(𝑥𝑥𝑖𝑖)}𝑖𝑖=1𝑁𝑁  and the 
goal is to find “interesting patterns” in the data [12] that 
consists on learning useful properties of the structure of the 
given dataset without the guide of a “teacher” or “instructor” 
that is present on supervised learning [1]. Two typical 
examples of unsupervised tasks are clustering the data into 
groups by similarity (Figure 2a) and reducing dimensionality 
(Figure 2b) to compress the data while maintaining its 
structure and usefulness [8, 12]. Unsupervised learning is 
more characteristic of human and animal learning since we 
acquire our knowledge mainly by observing the things around 

us and not by being told the name of every object [11, 12]. An 
advantage of unsupervised learning is that it does not need 
manually labelled data, thus its application is more broader 
than supervised learning [12]. The third type of ML, known as 
reinforcement learning, is a computational approach based on 
learning from interaction with an environment, namely there 
is a feedback loop between the learning system and its 
experiences [1, 13]. In this framework, the learning algorithm 
has to accomplish a specific goal for which it is rewarded. So 
far, this approach is less commonly used, but is holds great 
promises, for instance Melnikov et al. [14, 15] investigated the 
potential of intelligent machines in the context of scientific 
research using a reinforcement learning methodology. 
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Figure 2: Unsupervised learning. Unsupervised learning is based on unlabelled datasets and the goal of unsupervised algorithms is to find 
“interesting patterns” in the data (clustering, a) or to reduce dimensionality to compress the data while maintaining its structure and 
usefulness (b).

Conventional ML models have a simple two-layer structure 
meaning that inputs and outputs are directly connected via a 
certain function [12]. However, the study of the brain reveals 
the existence of many levels of processing and it is believed 
that each level is learning features or representations at 
increasing levels of abstraction [12]. This observation has 
stimulated the development of deep learning, a ML method 
that attempts to replicate this kind of architecture in a 
computer [12]. Therefore, deep learning can be considered as 
a sort of “evolution” of ML and deep learning algorithms can 
be classified in the same three categories used for ML 
algorithms. 

A deep learning architecture is composed of a multilayer 
structure of nodes that can learn and compute non-linear input-
output mappings [11]. This type of architecture is also called 
artificial neural network (ANN), one of the names given to 
deep learning during its “history” [1]. Deep networks or ANNs 
comprise an input and output layer linked via a certain number 
of so-called hidden layers. This type of structure allows to 
directly insert raw data into the deep learning algorithms 
without the need of human-designed feature extractor that 
instead is needed in conventional ML. Indeed, these multiple 
hidden layers are able to learn directly from the data the 
suitable feature extractors and so starting from the raw data 
(for instance a picture) each module or layer transform the 

representation at one level into a representation at a higher, 
slightly more abstract level [1]. The composition of these 
transformations enables the learning of very complex 
function. In the context of a classification task, the hidden 
layers can be considered to distort the input nonlinearly in 
such a way that the different groups become linearly separable 
by the last layer [11]. In summary, deep learning is a particular 
type of ML where the world is seen as a hierarchical structure 
of concepts and each concept can be described in terms of 
simpler concepts with more abstract representations computed 
based on less abstract ones [1]. A more detailed description of 
ANNs can be found in refs. [11, 16]. In particular, a detailed 
review of deep supervised learning, unsupervised learning, 
reinforcement learning and evolutionary computation with an 
historical perspective summarizing the relevant work (much 
of it from the previous millennium) is the subject of ref. [17]. 
Many different architectures have been developed for ANNs; 
recently the Asimov Institute has implemented a chart 
containing mostly of these architectures; this chart can be 
found at www.asimovinstitute.org/neural-network-zoo/ [18]. 

In recent years, deep learning has become more popular and 
useful mainly due to the availability of larger computational 
power, larger datasets and techniques to train deeper networks 
[1]. It has found many applications in several areas of science, 
business and government thanks to its capability for 
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discovering complex structures in high-dimensional data. 
Moreover, deep learning has set a new standard in many 
different fields like image and speech recognition, drugs 
discovery and medical diagnosis. Furthermore, deep learning 
is very promising for many tasks in natural language 
understanding, such as topic classification, sentiment analysis, 
question answering, and language translation [11]. 

2.1 Interpretation of deep neural networks 

Despite the astonishing results achieved with deep neural 
networks in many different fields, there is still a fundamental 
issue regarding how these models make their predictions, 
namely they are considered as black boxes that provide results 
without explaining them [19]. This aspect is particularly 
important in areas like medical applications or self-driving 
cars, and so there is an increasing interest in methods for 
visualizing, explaining and interpreting deep learning models 
[19-21]. This includes the development of techniques that 
enable a better comprehension of what the model has learned 
(i.e. its representation) and also methods for explaining 
individual predictions, to verify predictions, to reveal hidden 
flaws and biases that may lead to failure, to ensure legislative 
compliance, and to learn more about the problem posed in the 
first place. 

Two common techniques for explaining the individual 
predictions of a deep learning model in terms of input 
variables are sensitivity analysis (SA) and layer-wise 
relevance propagation (LRP). These are primarily used for 
interpretation of deep learning models applied to classification 
tasks, such as image and speech recognition. We consider an 
example of the former as presented in ref. [20].  

 
Figure 3: Explaining the predictions of an AI system. The input 
image is correctly classified as “rooster”. A heatmap derived, for 
example, via sensitivity analysis (SA) or layer-wise relevance 
propagation (LRP) reveals the importance of each input pixel for the 
prediction, helping to verify that the system works as intended [20]. 
In this example, the rooster’s red comb and wattle are identified as 
defining characteristics. Figure adapted from Samek, et al. [20] 
(International Telecommunication Union, 2017). 

The interpretation procedure is summarized in Figure 3: 
after an input image is correctly classified, the explanation 
process generates a ‘heatmap’ visualizing the importance of 
each pixel for the prediction. Sensitivity analysis assumes that 
the most relevant input features are those to which the output 
is most sensitive – it shows how much changes in each pixel 
affect the prediction. LRP explains the classifier’s decisions 
by decomposition; essentially, by propagating the output 
backwards to arrive at a relevance score for each input variable 
(pixel) – it shows how much each pixel contributes to the 
prediction. A detailed description of these techniques is given 
in refs. [19, 20]. These techniques for interpreting and 
understanding what the model has learned have become an 
essential element of a robust validation procedure. 
Furthermore, the application of these methods together with 
deep nonlinear ML models has offered new understandings 
from complex physical, chemical or biological systems [19]. 

Another method for neural network interpretation has 
recently been reported by Amey et al. [21], wherein a group-
theoretical procedure is employed to bring intermediate 
signalling (hidden layers) into a human-readable form that 
may allow neural network functionality to be replicated using 
deterministic digital signal processing. The technique is based 
upon assumptions that fully connected deep neural networks 
are interpretable and that the descrambled signals have 
identifiable and quantifiable features – for example, 
smoothness or locality.  It opens a path to deeper study of 
neural networks and potentially the derivation of new 
knowledge: so far, networks have only been seen to reinvent 
mathematics already known to humans; at some point though, 
previously unknown mathematics may emerge. 

3. AI for Materials Discovery 

The discovery and development of new materials plays an 
important role in the technological progress as shown by the 
way silicon has revolutionized the microelectronics industry. 
Indeed advances in technological areas such as renewable and 
sustainable energy depend on the ability to design and realize 
materials with optimal properties [22]. Materials discovery 
and design efforts require an interplay between materials 
prediction, synthesis and characterization. The increased use 
of computational tools, the generation of materials databases, 
and advances in experimental methods have significantly 
accelerated these activities [23]. In this context, materials by 
design approaches (Figure 3) have developed with the aim of 
accelerating materials transfer from computer simulations to 
lab experimentation and consumer products [23]. Acceleration 
of materials by design research is highlight by the almost 
exponential growth in the number of publications on materials 
design [23]. This was stimulated by the progress on 
computational techniques like the development of user 
friendly ab initio codes and automation of these codes to run 
high-throughput computations [23], and more recently by the 
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use of ML methods [24]. Indeed, the concept of the rational 
design of materials through the effective use of data‐driven 
methods is the fundamental principle of the U. S. Materials 
Genome Initiative [25]. The introduction of ML in materials 
science was firstly motivated by the generation of large 
databases mainly by computational methods such as high-
throughput density functional theory (HT-DFT) calculations 
and in some cases by high-throughput experiments [2]. 
However, in the last few years another approach has been 
established based in less common ML tools that allow to grow 
small experimentally generated databases into larger ones and 
along the way to predict new materials [2]. 

The application of ML to materials discovery involves the 
following steps [26]: 
1) Data collection: it consists on the collections of scientific 

raw data that can be done experimentally via the 
measurements of certain properties of interest or extracted 
from first-principles calculations like DFT. 

2) Data representation: the form in which raw data are 
presented often affects the learning algorithm; the process 
of converting raw data into something more appropriate 
for an algorithm is called featurization or feature 
engineering. 

3) Choice of model types (or learners): several different 
learning algorithms can be used based on the type of data 
and the specific application. Some of the common 
algorithms are the following: 
• Naive Bayes classifiers [12] 
• k-nearest-neighbour methods [12] 
• Decision trees [12] 
• Kernel methods [12] 
• ANNs and deep neural networks [1] 

4) Model optimization: the selected algorithm is applied to 
unseen data and its accuracy is evaluated. The three main 
sources of error are: model bias, model variance and 
irreducible errors; the total error of the model is the sum 
of these. 

A detailed review of ML methods used in materials science 
can be found on refs. [26, 27]. This section on “AI for 
materials discovery” covers the use of ML methods for the 
development of new materials with any desired property and 
is broadly divided in three subsections: the first one is on large 
datasets examples, the second one is on small datasets 
examples (Figure 3) and multiobjective optimization, and the 
last one is about methods for achieving inverse design, which 
aim to discover tailored materials from the starting point of a 
particular desired functionality. 

3.1 Application of AI methods on large datasets 

Today, the biggest databases of structural and other 
material information are those recently created by HT-DFT 
calculations [2]. These large databases (which have entries in 
the order of millions) are used as training data for ML 

algorithms in the context of supervised learning. The 
predictive ability of these algorithms is tested on unseen data 
and verified experimentally. This blend of computation and 
experimentation with data science for the development of 
materials is named materials informatics and due to its 
potential for discovering new materials and efficiently 
searching materials databases has become very interesting in 
materials science [28-30]. Nevertheless, materials informatics 
[31] have still some key aspects that need to be improved such 
as [23, 30]: 
1) Quality of data: the management and inspection of 

materials databases for the presence of errors is difficult 
due to the large number of sample points that they 
include; however, the identification and removal of such 
errors is fundamental for obtaining accurate predictions 
from ML algorithms [30]. 

2) Database management: the collection and organization of 
big data is quite challenging, especially for experimental 
databases since they depend on the experimental 
methodology used. Computational databases are in 
general easier to organize because data are generated 
using supercomputers, nevertheless they are limited on 
the material properties that can be calculated if first-
principle calculations are used. Furthermore, the 
collection of data for materials informatics requires both 
positive and negative results for the efficient application 
of ML algorithms while most of the time negative results 
are not considered. Other issues include database 
accessibility, since some databases are not open source, 
and the lack of a global standard method of organizing 
data; both these problems prevent the creation of a global 
database [30]. 

3) Data representation: the parametrization of raw data is an 
essential step in ML and this process defines the variables 
that are used by the learning algorithm. These variables 
are also called features or descriptors and connect the 
microscopic parameters (for example, formation and 
defect energies, atomic environments, band structure, 
density of states or magnetic moments) to macroscopic 
properties of the materials (for example, mobility, 
susceptibility or critical temperatures) [32]. Discovering 
descriptors corresponding to material properties is usually 
not a trivial process and a critical step in materials 
informatics [30]. 

4) Platform design: so far, these processes are realized with 
different software using different programming 
languages. Uniting all these processes under one software 
platform available in the Internet will benefit researchers 
that could add new data, extract existing data or predict 
unknown materials in a more consistent and systematic 
way [30]. 

Despite these critical aspects, the application of ML 
methods to big data has provided many successful results, for 
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example Jain et al. [29] have developed a probabilistic model 
for predicting the dominant character (element, charge state, 
and orbital type) of the electronic states near the valence band 
maximum and conduction band minimum over a broad range 
of compounds. Many materials properties, including the band 
gap (important for light capture) and Seebeck coefficient 
(important for thermoelectrics) depend critically on the details 
of these band edges. Understanding the character of these 
states allows one to determine the type of modifications 
needed to achieve desired properties. Another interesting 
example is the research work conducted by Kusne et al. [33], 
where they have developed a learning algorithm which allows 
on the-fly analysis of diffraction data collected at synchrotron 
beamline from combinatorial libraries as they are measured 
and rapidly cross-referenced with pre-selected entries from the 
Inorganic Crystal Structure Database (ICSD). They have used 
this approach to identify a novel magnetic phase with 
enhanced magnetic anisotropy which is a candidate for rare-
earth free permanent magnet. More examples related to big 
data science generated by synchrotrons and strategies adopted 
nowadays to deal with these big data can be found in a recent 
review article [34]. In addition to these examples, Stein et al. 
[35] have built and trained three distinct ML models that are 
able to predict the full UV (ultraviolet) – visible absorption 
spectra from just sample images (Figure 4d). Furthermore, 
they have shown that band gap energies extracted from the 
predicted spectra are very accurate and have claimed that this 
algorithm is better than common ab initio methods for phase-
pure materials. These results have been achieved through the 
training of an ANN using an experimental dataset composed 
of pairs of RGB (red-green-blue) images of 178 994 distinct 
materials samples acquired using a commercial scanner and 
the corresponding optical absorption spectra recorded using a 
UV-visible spectrometer. 

Another very recent piece of research work done by Jha et 
al. [36] has demonstrated that by using a deep learning 
approach it is possible to bypass the problematic step of data 
representation since deep learning models can work directly 
on raw data without the need to find manually the descriptors 
(or features) that are necessary on ML algorithms. They 
implemented a deep neural network model called Elemnet that 
can predict material properties starting from only the 
elemental compositions as inputs. By using Elemnet, they 
scanned around 450 million candidate compositions for novel 
ternary and quaternary compounds and predicted that new 
stable compounds could be found in about 368 000 different 
chemical systems. 

The application of ML methods to large datasets allows 
also to unveil information that is already included with the 
data but not apparent, this process is called data mining. Data 
mining methods are very helpful in materials discovery and 
optimization due to their good performance, speed, and 
simplicity, both in obtaining classification diagrams and in 

construction of quantitative structure-property relationship 
models. These methods have been used in the process of 
discovery of lithium battery materials and also in the 
development of novel thermoelectric materials [37]. 

The increasing amount of scientific literature is 
overwhelming researchers while machine and deep learning 
main capability is to deal with big data. Therefore, these 
techniques can be employed for the automatic extraction of 
information in a process called text mining. An astonishing 
application of this method has been reported by Tshitoyan et 
al. [38] where they have shown that materials science 
knowledge present in the published literature can be 
efficiently encoded as information-dense word embeddings 
(vector representations of words) without human labelling or 
supervision. Without any explicit insertion of chemical 
knowledge, these embeddings capture complex materials 
science concepts such as the underlying structure of the 
periodic table and structure– property relationships in 
materials. Additionally, they have demonstrated that this 
unsupervised method can recommend materials for functional 
applications several years before their discovery. Their 
findings highlight the possibility of extracting knowledge and 
relationships from the massive body of scientific literature in 
a collective manner and point towards a generalized approach 
to the mining of scientific literature. 

In the context of theoretical methods in materials science, 
approaches based on density functional theory (DFT) have 
been successful in predicting the properties of many classes of 
compounds, offering high accuracy at reasonable cost. 
However, DFT and related electronic structure techniques are 
limited by the exchange-correlation functional that describes 
non-classical interactions between electrons. Accurate 
universal density functionals can be learned from data 
extracted from structure–property databases and early 
examples include the Bayesian error-estimation functional 
and combinatorially optimized DFT functionals. Moreover, 
the use of ML algorithms could provide a new method beyond 
the standard approach to DFT that consists on learning 
density-to-energy and density-to-potential maps directly from 
training systems without the need to solve the Kohn–Sham 
equations [26, 39]. 

3.2 Application of AI methods on small datasets 

The introduction of ML methods in materials science was 
firstly motivated by the generation of large databases mainly 
by computational methods; however, methods like DFT 
cannot return directly information on significant 
functionalities such as superconductivity or magnetic 
properties and datasets generated computationally are usually 
calculated on ideal systems at thermodynamic equilibrium. 
Hence, experimental datasets are fundamental for real 
material problems that involve multicomponents, solid 
solutions, defects and metastable compositions; but in general, 
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experiments are expensive and time consuming, thus is very 
difficult to implement experimental datasets with thousands or 
millions of entries. For these reasons, ML methods that can be 
apply to small datasets (between 10 and 100 samples) have 
been recently employed in materials science. These are known 
as adaptive (or active) learning methods [40], part of the so-
called Bayesian global optimization process [41, 42]. The 
workflow of the methodology used for small datasets is 

reported in Figure 3; the first step is the establishment of a 
training dataset that consists on a small set of experimental 
data on structure and corresponding properties. The second 
step is the development of a model based on the learning of 
the relationship between the material descriptors (or features 
that are essentially the variables used in ML) and the material 
property that need to be optimized. 

 

 
Figure 4: Material discovery based on small datasets (after ref. [43]). In search for materials with desired properties, a small set of 
experimental data on structure and corresponding properties is initially used for training. The model is applied to a set of unexplored structures 
to identify the best material with properties closest to the target. This material is synthesised and results of its characterization are added to 
the dataset to improve the model in iterative fashion. 

Then, this model is applied to a set of unexplored structures 
to identify the best material with properties closest to the 
target. Finally, this material is synthesised and results of its 
characterization are added to the dataset to improve the model 
in iterative fashion [43]. 

The main advantage of this methodology compared with 
conventional ML methods is that it enables one to start with a 
relatively low number of data points (between 10 and 100) and 
then guide the successive experiments to find a material with 
an enhanced targeted property. This method is also called 
adaptive or active learning approach since it is a guided 
process that reduces the number of experiments or calculations 
needed compared to other techniques which requires the 
creation of big datasets generated in a “random fashion”. More 
details about this process can be found in ref. [2]. 

After a brief description of the general methodology used 
for working with small datasets in materials science, we 
present some recent examples where this approach accelerated 
the discovery of new materials with targeted properties. 

In the search for NiTi-based shape memory alloys with very 
small thermal hysteresis, Xue et al. [3] used 22 initial 
experimental samples and found the best compound with a 
thermal hysteresis as small as 1.84 K on the sixth iteration (a 
small hysteresis is crucial for realizing shape memory alloys 
application). Overall, they synthesized and characterized 36 
predicted compositions from a potential space of 800 000 

compositions. Of these, 14 had smaller thermal hysteresis than 
any of the 22 in the original data set. 

In another example, Yuan et al. [44] have found and 
synthesized the piezoelectric composition with the largest 
electrostrain of 0.23% in the BaTiO3 family. Their training 
dataset consisted of only 61 compounds while there are 
potentially 605 000 possible compositions. 

This active learning approach has been used also for 
guiding DFT calculations towards targeted regions, one 
example is from Seko et al. [45] where they combined 
systematic DFT calculations and ML techniques for predicting 
the melting temperature of single and binary compounds. 
They have shown that the average number of data points 
required for finding the compounds with the highest melting 
temperature over thirty trials using the Kriging method (a 
specific ML algorithm) compared to using random compound 
selections, are 16.1 and 133.4, respectively; hence ML 
substantially improved the efficiency of discovery. 

The active learning approach represented in Figure 3 can 
be generalized to include more than one targeted property, 
since in many cases more than one property is of interest. A 
detailed description of this method that is called 
multiobjective optimization can be found in ref. [46] . Here we 
illustrate the basic concepts of multiobjective optimization 
using an example from ref. [43]. This research work is 
essentially an extension of the previous example on NiTi-
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based shape memory alloys [3] where in this case the objective 
is to search for a composition that at the same time minimize 
the thermal hysteresis and the transition temperature. They 
used a training set of 53 different material compositions and 
this optimization strategy decreases the number of 
measurements required to find the optimal composition by 
nearly 20% compared to random selection. The same strategy 
can be used to discover new materials with other desired 
properties. 

3.3 Inverse design using machine learning 

This last subsection describes another approach to 
materials discovery that is based on inverse design, namely the 
aim is to discover tailored materials from the starting point of 
a desired functionality. So far, this approach has been applied 
mainly in molecular chemistry for the design of prospective 
drugs, synthetic routes to organic compounds, and 
optimization of photovoltaics and redox flow batteries [47]. 

In the context of solid-state materials this approach is less 
common, but an interesting example is the research work done 
by Franceschetti and Zunger [48] where they describe a 
theoretical method that addresses the problem of finding the 
atomic configuration of a complex, multi-component system 
having a target electronic-structure property, namely they 
started by considering a specific electronic structure and find 
the corresponding material composition with this desired 
property. They have predicted the composition with the largest 
optical bandgap for the AlGaAs alloy family. In this example 
ML methods are not used, but considering the successful 
results achieved in molecular chemistry, it seems that ML 
could be applied also in inverse design methods for solid-state 
materials to accelerate the discovery of new materials with 
specific targeted functionalities. 

4. AI in Photonics and Nanophotonics 

So far the application of ML methods described in the 
previous section has been used to develop new materials with 
many different types of functionality; however, the use of 
these methods in the search of new optical and photonic 
materials is not well established even if there is a considerable 
ongoing interest in the identification of new material platforms 
for plasmonics and photonic metamaterial applications [49, 
50]. Nevertheless, ML methods have been introduced recently 
in optics and nanophotonics mainly for the design and 
optimization of nanophotonic devices, since the continuous 
growing in the demand performance and integration level has 
become computationally expensive and time inefficient. 
Hence, the application of ML techniques enables to overcome 
physical intuitions and to explore the parameter space more 
effectively leading to data-driven, on-demand design of novel 
devices [4, 51] In this section, we review the main advances 
in the application of ML methods for improving the design of 

novel devices. Nanophotonics or nano-optics is the study of 
light and its interaction with matter at the nanoscale. 
Conventionally, the guiding principles for the design of 
nanophotonics devices are provided by the physical intuitions 
revealed by the study of simple systems, the experience 
obtained from previous practice, and the intuitive 
reasoning [4]. The optical properties of the initial design are 
usually computed by simulations solving the Maxwell’s 
equations and in order to obtain the desired optical response, 
the initial design is usually adjusted by performing multiple 
simulations until the target response is reached. This is a direct 
design process and it becomes computationally costly and 
time inefficient as the complexity of nanophotonic devices 
rises. Another approach is based on the so-called inverse 
design where targeted photonic functionalities are obtained by 
adjusting the parameters of the structure until the desired 
response is attained [4]. There are many different optimization 
techniques reported in literature for the inverse design 
problem such as genetic algorithm, particle swarm 
optimization, topology optimization and many others [4]. The 
use of these optimization methods has been quite successful, 
for example a genetic algorithm has been used for designing 
binary masks that create optical super-oscillations for imaging 
with the potential for manufacturing with light and data-
storage applications [52] and a particle swarm optimization 
algorithm has been employed to design metal nanoparticle 
arrays that produce broadband plasmonic field enhancement 
over the entire visible spectral range [53]. Another approach 
for designing optical devices has been implemented by D. 
Miller [54, 55] in the mathematic framework of singular value 
decomposition and by using this approach several different 
optical devices have been realised such as an extremely 
compact photonic crystal waveguide spatial mode converter 
which converts the fundamental even mode to the higher order 
odd mode with nearly 100% efficiency [56] and an optical 
device that can perform any linear function or coupling 
between inputs and outputs [57]. With the recent rise of AI 
techniques, machine and deep learning algorithms have 
become easily available in many research areas outside the 
typical computer science topics like computer vision, speech 
recognition and strategy making, etc. In particular, the recent 
application of deep learning (or ANNs) to nanophotonics 
design problems has provided a significant design flexibility 
compared with conventional optimization methods. Indeed, 
the advantages of ANNs over traditional optimization 
approaches have been highlighted in many recent publications 
[58-60] showing that ANNs enable to automate and solve 
design problems in a much faster way than conventional 
optimization methods (once the neural network is trained) [61] 
and, additionally, deep learning allows to tackle the direct and 
inverse problem at the same time [62, 63] and can help to find 
complex, nonintuitive relationship between the structure and 
its optical response as shown in Figure 4a [5]. 
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Figure 5: Artificial intelligence in photonic applications. Supervised deep learning has been applied to problems such as the design of (a) 
multilayer nanoparticles with prescribed light scattering spectra; (b) for the prediction of the 3D surface profile obtained by a laser machining 
process; (c) for a new kind of imaging technique named deeply subwavelength superoscillatory imaging; and (d) for predicting the full UV 
(ultraviolet) – visible absorption spectra from just sample images. Figures adapted from (a) Peurifoy et al. [5] (AAAS, 2018); (b) Heath, et 
al. [64] (OSA Publishing, 2018); (c) Pu, et al. [65]; (d) Stein, et al. [35] (RSC Publishing, 2019).

In this work, Peurifoy et al. [5] have used an ANN to 
approximate light scattering by multilayer nanoparticles. Once 
the neural network is trained, it can simulate the optical 
properties of nanoparticles orders of magnitude faster than 
conventional simulations. Furthermore, the trained neural 
network can be used to solve nanophotonic inverse design 
problems by using back propagation, where the gradient is 
analytical, not numerical. A further extension of this work has 
been recently reported by So et al. [66] where they include 
also the material information in the inverse design of core-
shell nanoparticles.  

Another recent example of the use of ANNs in 
nanophotonics has been reported by Ma et al. [67] where they 
developed a deep learning-based model, comprising two 
bidirectional neural networks, capable of automatically design 
and optimize three-dimensional chiral metamaterials with 
strong chiroptical responses at predesignated wavelengths 
(Figure 5b). The investigated chiral metamaterial has a unit 
cell that consists of two stacked gold split ring resonators 
(SRRs) twisted at a certain angle and separated by two spacing 
dielectric layers with a continuous gold reflector at the bottom. 
Firstly, they have solved the forward problem, namely they 
have trained the deep learning model in a supervised way 
using 25000 data points in order to find the relationship 

between the five design parameters of the metamaterial 
structure with its corresponding chiroptical properties. Then, 
they have shown that this model can also solve the inverse 
design problem, namely the model allows the retrieval of the 
geometric parameters of the metamaterial structure starting 
from specific targeted optical responses. 

Further application of ANNs included the identification of 
the parameters of a complex topological insulator in order to 
obtain protected edge states at target frequencies [68], the 
computation of the dispersion relations of photonic crystals 
[69], and the design of the smallest photonic lens for 
subwavelength focusing of light compared to the current state 
of the art [70]. Additionally, deep learning methodology has 
been used recently for the inverse design of graphene-based 
metamaterials with on-demand optical responses [71], it has 
been applied for designing photonics crystals with targeted 
photonics topological properties [72] and also for finding the 
material and the optimal geometrical properties of 
metasurface holograms (Figure 5d) with high efficiency [73]. 
In order to achieve this, Sajedian et al. [73] have used a double 
deep Q-learning network (a deep reinforcement learning 
method [74]) that acts like an intelligent sweep and could 
identify the optimal results in ~5.7 billion states after only 
2169 steps. The optimal results were found between 23 
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different material types and various geometrical properties for 
a three-layer structure. The computed transmission efficiency 
was 32% for high-quality metasurface holograms; this is two 
times bigger than the previously reported results under the 
same conditions. The found structure is transmission-type, 
polarization-independent and works in the visible region. 

Deep learning has also been used recently by Wilt et al. 
[75] for the design of auxetic metamaterials (materials with 
negative Poisson’s ratio): pseudorandomized images of 
experimental specimens and their respective computational 
deformation results were used to train a regressive model and 
predict the deviation from optimal behaviour, with a mean 
average error below 5% for the validation set. Subsequently, 
they have proposed a scalable workflow design process 
connecting the unique performance of auxetics to machine 
learning design. 

Most of these examples are based on supervised learning 
while Liu et al. (Figure 5c) [76] proposed a generative, deep, 
network model mostly based on unsupervised learning which 
ensures the generation of structural patterns independent of 
human experience that can discover and optimize unit cell 
patterns of metasurfaces in response to user-defined, on-
demand spectra at the input. The network architecture consists 
of three neural networks: the simulator, the generator and the 
critic. The simulator is used for solving the direct problem, 
namely this ANN takes the metasurface patterns as input and 
calculate the corresponding transmission spectra after being 
trained with 6500 full wave finite element simulations. The 
generator and the critic work together to solve the inverse 
problem, essentially this system can generate metasurface 
patterns in response to an arbitrarily input optical spectra. 
These two ANNs constitute a generative adversarial network 
(GAN) [77], a system where the two networks contest with 
each other to generate new data with the same statistics as the 
training set. In this case, the training set comprised a certain 
number of geometric shapes and the GAN learns to generate 
geometric pattern similar to the ones of the training set. In this 
way, specific geometrical constraints are applied at the input 
that help to narrow down the potential candidates (for instance 
unrealistic patterns for actual nanofabrication are excluded) 
and thereby accelerate the convergence to a solution. As a 
representative case study, they considered a unit cell of a 
metasurface which has a single layered gold pattern in a square 
lattice situated on a glass substrate (Figure 5c). 

Another example of the application of unsupervised 
learning is the work of Kudyshev et al. [78] where they used 
this method for the design of thermal emitters with a non-
trivial topology for thermophotovoltaics applications (Figure 
5a). They coupled a GAN with topology optimization showing 
that that the topology-optimized design can be up to 45% more 
efficient in comparison with a cylindrical emitter. The thermal 
emitters are realized with metasurfaces that consist of a three-
layered structure composed of 300 nm thick TiN back 

reflector, 40 nm thick SiN dielectric spacer and 100 nm thick 
TiN top layer. 

Despite designing issues, machine and deep learning can 
help optics and nanophotonics also in different tasks, for 
example Luo et al. [79] used a ML method to estimate the 
optical properties of black carbon fractal aggregates whereas 
the complex morphology of black carbon aggregates makes 
this problem computationally very expensive for broadband 
applications. Another example is reported by Barth and 
Becker [80] where they presented a method that combines 
finite element simulations and clustering for the identification 
of photonic modes with large local field energies and specific 
spatial properties. Additionally, a neural network modelling 
approach has been used for the simulations of laser machining 
processes [64], namely they have demonstrated that a neural 
network can predict the 3D surface profile of the laser 
machined surface after exposure to different spatial intensity 
profiles (Figure 4b). This has been achieved through an ANN 
trained on an experimental dataset composed of pairs of 
bitmap patterns used to spatially shape laser intensity profiles 
and measured height profiles of the corresponding laser 
machined surface. During the training, the predicted output 
from a particular input bitmap was compared to the 
experimentally measured output for the corresponding input 
bitmap from the training data set, and the difference (i.e., the 
error) was determined. This error was propagated backwards 
through the ANN, and the weightings of the neurons were 
changed accordingly until this error was minimized. The 
trained ANN has the predictive capability to simulate the 
depth profile resulting from laser machining using previously 
untested spatial intensity profiles. 

Furthermore, Pu et al. [65, 81] (Figure 4c) have shown that 
the combination of machine learning with photonics can 
revolutionize one of the most important field in optics, 
imaging. In a theoretical article [65], they first introduced a 
new imaging technique termed Deeply Subwavelength 
Superoscillatory Imaging (DSSI) that has the potential to 
reveal the fine structure of a physical object through its far-
field scattering pattern under superoscillatory illumination 
with a resolution far beyond the conventional “diffraction 
limit” exceeding λ/200 for a dimer comprising two 
subwavelength opaque particles. Then, they have 
demonstrated this new imaging technique experimentally [81] 
by retrieving the parameters of a physical object from its 
scattering pattern with resolution exceeding λ/20. And in an 
application of AI to optical metrology, Rendón-Barraza et al. 
[82] have demonstrated how the physical size of sub-
wavelength objects can be determined with accuracy 
exceeding λ/800 via a deep learning-enabled analysis of 
diffraction patterns. Using a 633 nm laser source, they 
measure the width of sub-wavelength slits in an opaque screen 
with accuracy of 0.77 nm – approaching that of the electron 
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and ion beam lithographic techniques by which such 
structures are typically fabricated. 

 
Figure 6: Artificial intelligence for optimization of metamaterials. The deep learning approach has been used for the design and 
optimization of metamaterials with different functionalities like (a) efficient metasurface absorbers for photovoltaic systems; (b) 
metamaterials with strong chiroptical responses; (c) metasurfaces with desired reflection and transmission spectra; and (d) metasurface 
holograms with high efficiency. Figures adapted from (a) Kudyshev, et al. [78] (AIP Publishing, 2020);  (b) Ma, et al. [67] (ACS, 2018); (c) 
Liu, et al. [76] (ACS, 2018); (d) Sajedian, et al. [73] (NPG, 2019). 

5. Optics and Nanophotonics for AI 

With the advent of big data, the hardware development has 
become a fundamental issue that requires the improvement of 
key factors such as the speed, energy consumption, and 
information density of computing. Traditional electronic 
components like the central processing units (CPUs) are not 
appropriate for the implementation of the emerging techniques 
in AI like artificial neural networks (ANNs), because 
traditional computers must emulate millions of artificial 
neurons and calculate each of them in turn. Therefore, new 
hardware architectures that are physically structured like 
artificial neural networks are more advantageous and they are 
urgently needed for accelerating AI and deep learning [83]. 

Many different all-optical implementations are reported in 
literature such as neuromorphic optical computing, photonic 
reservoir computing, photonic deep neural networks, and all-
optical photonic cognitive networks (e.g. optical oracles). In 
this section we provide a summary of the many different all-
optical architectures used for the realization of AI methods. 

5.1 Neuromorphic optical computing 

The concept of neuromorphic computing was firstly 
introduced in electronics with the aim of developing electronic 
analog circuits to mimic the architecture and processes present 
in the nervous system of animals [84, 85]. A neuromorphic 
optical computing (or neuromorphic photonic) system is 
fundamentally a neural network composed of connected 
artificial neurons (Figure 6a). Each neuron corresponds to a 
node of the ANN and is capable of only three fundamental 
mathematical operations: vector multiplication (weighting), 
spatial summation (addition) and a nonlinear transformation 
(activation function). The input of a neuron is a linear 
combination (or weighted addition) of the outputs of the 
neurons connected to it. Then, this neuron integrates the 
combined signal and delivers a nonlinear response that is 
named the activation function [84]. The peculiar characteristic 
of neural networks used in neuromorphic optical computing is 
that they are based on “spike processes” mimicking 
physiological neurons which communicate with each other 
using trains of electrical pulses called action potentials or 
spikes. 
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The main difference in the working principle between 
neuromorphic computing and conventional computers (which 
are based on the so-called Von Neumann architecture) is 
parallelization, namely Von Neumann processors depend on a 
single point-to-point link between memory and CPU while a 
neuromorphic processor typically necessitates a large number 
of interconnects [84]. The implementation of neuromorphic 
computing using a photonic platform can provide several 
advantages compared to electronics in terms of energy 
efficiency, bandwidth and latency. 

So far, the platforms used for the physical implementation 
of neuromorphic photonic systems are silicon photonics (the 
most mature technology [85]), photonic hybrids composed of 
III-V semiconductors (like GaAs and InP) on silicon-on-
insulator substrates and quantum dot lasers grown directly on 
silicon substrates [85].  

An artificial neural network is characterized by two 
fundamental elements: nonlinear nodes (artificial neurons) 
and interconnections (network)  

In neuromorphic photonic systems the artificial neurons 
can be realized with optoelectronics devices such as excitable 
lasers or integrated modulators [85]. Excitable lasers emulate 
the spiking behaviour of biological neurons and are 
characterized by three fundamental features: the system has 
only one stable state at which it can indefinitely stay at rest; 
when excited above a certain threshold, the system emits a 
“spike”; and after that, the system decays back to rest in the 
course of a “refractory period” during which it is temporarily 
less likely to emit another spike [84]. In general, excitable 
lasers use III-V quantum wells or quantum dots and these 
devices include multisection lasers, ring lasers, photonic 
crystal nanocavities, tunnelling diode attached to laser diodes, 
and semiconductor lasers with feedback [86]. An example of 
an integrated laser neural network is shown in Figure 6 (right); 
this picture represents an artificial neuron capable of operating 
roughly 100 million times the speed of biological neurons, due 
to the speed of optoelectronic systems compared to 
biochemical interactions [87]. 

Tait et al. [88] has recently demonstrated a silicon photonic 
modulator neuron that consists of a balanced photodetector 
directly connected to a microring (MRR) modulator. This 
device takes two optical inputs, subtracts their photocurrents 
electronically, and remodulates a signal onto a new 
wavelength. The output signal is a nonlinear function of inputs 
determined by the electro-optic transfer function of the 
modulator. 

Photonic neurons are interconnected with optical 
waveguides forming a network; these connections must be 
reconfigurable and provide the weighting functionality, 
namely during the training the weights that connect each 
neuron are adjusted until the neural network achieves the 
targeted performance. The physical implementation of these 
interconnections can be realized using MRR weight banks that 

act as reconfigurable filters and are essentially waveguides 
bent back on itself to create an interference condition [84]. The 
resonance of these devices can be tuned thermally or 
electronically for the adjustment of the weights that connect 
each neuron. An efficient approach to use the full capacity of 
a waveguide is wavelength division multiplexing (WDM). 
WDM is particularly important for solving the interconnect 
bottleneck (Figure 6, left), a typical problem encountered in 
the implementation of neural networks, since a waveguide can 
carry signals from multiple connections at the same time [87]. 

 
Figure 7: Neuromorphic optical computing. Schematic of a 
photonic neural network (left) highlighting that one waveguide can 
carry signals from multiple connections at the same time solving the 
interconnect bottleneck; (right) picture of a laser neural network on 
silicon photonics platform capable of operating roughly 100 million 
times the speed of biological neurons. Figures reproduced from 
Shastri, et al. [87] (SPIE, 2018). 

5.2 Photonic reservoir computing 

Photonic reservoir computing is a novel concept that has 
emerged from neuromorphic optical computing [89]. 
Fundamentally, it is a bio-inspired approach to realise a 
reservoir (a fixed complex system) computer in optics, where 
information is encoded in the intensity and phase of the optical 
field. Reservoir computing is a computational approach for the 
implementation of neural networks. The architecture of a 
standard reservoir consists of three basic components: the 
input layer, the reservoir and the output layer. Typically, an 
input signal is inserted into the reservoir that maps the input to 
a higher dimension. A simple readout mechanism is trained to 
read the state of the reservoir and map it to the desired output. 
The reservoir is fundamentally a neural network with the 
peculiarity of randomized but fixed connections. Indeed, in 
photonic reservoir computing only the output connections are 
trained while the reservoir itself and input layer connections 
remain unaltered and do not need to be reconfigured 
individually. This is the main advantage of reservoir 
computing, since the limited number of connections which 
must be modified individually strongly aids implementations 
in hardware and mass production [89]. Furthermore, the 
computational concept is fully parallel, starting with multi-
valued input data, continuing with the creation of high-
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dimensional reservoir responses until final computation of 
multi-valued output data. 

The reservoir can be implemented by a recurrent neural 
network (a network topology in which each neuron output can 
reach every other neuron, including itself) or a wide variety of 
other systems, such as time-delayed feedback [86].  

In general, there are two different class of photonic 
reservoirs: spatially extended reservoirs which consist of a 
network of spatially distributed nonlinear nodes (Figure 7a) 
and delay-based reservoirs which consist of a single nonlinear 
node multiplexed in time (Figure 7b) [90, 91]. 

The platforms used for the physical realization of spatially 
extended reservoirs are silicon photonics and diffractive 
imaging using diffractive optical elements. An example of 
spatially distributed reservoir is reported by Vandoorne et al. 
[92] where a linear photonic network consisting of optical 
waveguides, splitters and combiners has been implemented 
using a SOI system. This generic chip can perform arbitrary 
Boolean logic operations with memory as well as 5-bit header 
recognition up to 12.5 Gbit s-1, without power consumption in 
the reservoir and it can also perform spoken digit recognition. 

 
Figure 8: Photonic reservoir computing. (a) Schematic of a 
spatially distributed reservoir: the input is coupled into the reservoir 
via a randomly connected input layer to the N nodes in the reservoir. 
The connections between reservoir nodes are randomly chosen and 
kept fixed. (b) Schematic of a delay-based reservoir: the reservoir is 
obtained by dividing the delay loop into N intervals and using time 
multiplexing. The input states are sampled and held for a duration τ, 
where τ is the delay in the feedback loop. Figures adapted from 
Tanaka, et al. [91] (Elsevier, 2019). 

Delay-based reservoirs have been implemented using two 
different approaches: optoelectronic reservoirs that use laser 
sources, optical fibres [93] and Mach-Zehnder modulators, 
and all-optical reservoirs that are based on semiconductor 
lasers, semiconductor optical amplifiers or passive optical 
cavities [89]. An example of a delay-based reservoir is 
described by Dejonckheere et al. [94] and it is based on a fully 
passive nonlinearity, namely the saturable absorption of a 
semiconductor mirror placed in a ring-like optical cavity. This 
system has been tested on benchmark tasks such as speech 
recognition showing performances comparable to other 
photonic reservoir computers. 

5.3 Photonic deep neural networks 

Integrated optics is considered a promising hardware 
platform for implementing ML algorithms. A special interest 
is reserved for ANNs, since matrix-vector multiplications, 
which are used heavily in ANNs, can be done efficiently in 
photonic circuits. Moreover, speed and energy efficiency of 
nanophotonic circuits can be much higher than those of their 
electronic counterparts [4]. Deep neural networks comprise an 
input and output layer linked via a certain number of so-called 
hidden layers. Photonic deep neural networks differ from 
neuromorphic optical computing and photonic reservoir 
computing, because they are not “spiking systems” (main 
distinctive feature of neuromorphic computing) and their 
connections are reconfigurable while in reservoir computing 
they are fixed. 

So far, two different approaches have been used for the 
physical realization of photonic networks: the first one was 
suggested by Shen et al. [95] that rely on nanophotonic 
circuits and the other proposed by Lin et al. [96] is based on 
diffractive optical elements. 

Shen et al. proposed a theoretical fully optical neural 
network architecture where each layer of the network is 
composed of an optical interference unit (OIU) to perform the 
linear matrix multiplication and an optical nonlinear unit 
(ONU) that acts as the nonlinear activation (Figure 8a). In 
principle, this architecture enables the realization of an ANN 
with an arbitrary number of layers fully in the optical domain. 
For the physical implementation, the OIU is realized with a 
programmable nanophotonic processor (PNP) and the ONU is 
simulated on a conventional computer. The PNP is a silicon 
photonic integrated circuit composed of 56 Mach-Zehnder 
interferometers (MZIs) and 213 phase shifting elements. Each 
interferometer is composed of two evanescent-mode 
waveguide couplers sandwiching an internal thermooptic 
phase shifter to control the splitting ratio of the output modes, 
followed by a second modulator to control the relative phase 
of the output modes. By adjusting the phase shifters, it is 
possible to program the PNP to behave as an OIU. They 
experimentally demonstrated that this system is capable of 
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vowel recognition with an accuracy comparable of the one of 
a conventional digital computer [95]. 

Instead, Lin et al. [96] introduced an all-optical deep 
learning framework named diffractive deep neural network 
where the network is physically formed by multiple layers of 
diffractive surfaces (Figure 8b). Each point on a given layer 
acts as a secondary source of a wave (Huygens’ principle) 
which has an amplitude and phase determined by the product 
of the input wave and the complex valued transmission or 
reflection coefficient at that point. Hence, an artificial neuron 
in this network is connected to other neurons of the following 
layer through a secondary wave that is modulated in amplitude 
and phase by both the input interference pattern created by the 
previous layers and the local transmission/reflection 
coefficient at that point. This network is numerically 
simulated and trained on a conventional computer; once the 
optimal structure is achieved this is physically realized via 3D 
printing. They experimentally demonstrated that this network 
can perform classification of handwritten digits and fashion 
products with good accuracy. 

Both approaches are promising for the implementation of 
optical neural networks, nevertheless they both suffer from 
two important limitations: the training process and the 
nonlinear activation function are not yet implemented at the 
hardware level. Therefore, there is a lot of interest for the 
implementation of these functionality. For instance, Hughes et 
al. [97] introduced a method that enables highly efficient, in 
situ training of a photonic neural network. They used adjoint 
variable methods to derive the photonic analogue of the 
backpropagation algorithm, which is the standard method for 
computing gradients of conventional neural networks. This 
method works by physically propagating the adjoint field and 
interfering its time-reversed copy with the original field. The 
gradient information can then be directly measured out as an 
in-situ intensity measurement. As an application, they 
demonstrated the training of a numerically simulated photonic 
artificial neural network. 

Miscuglio et al. [98] have discussed two independent 
approaches for implementing a nonlinear activation function 
for optical neural networks. Their method is based on two 
different nanophotonic structures: a system consisting of a 
single quantum dot (QD) between a pair of gold nanoparticles 
integrated in a waveguide platform and a film of C60. The first 
structure exhibited induced transparency reaching a fully 
nonlinearity optical modulation of the transmitted signal up to 
3 dB; while the second one displayed a nonlinear optical 
response as function of the impinging power density with a 
modulation range of approximately 7 dB. The proposed 
nonlinear optical responses were used as activation functions 
for the simulation of fully-connected neural networks. They 
tested these nonlinear activation functions on a standardized 
neural network training set, MNIST (Modified National 
Institute of Standards and Technology database) classifiers of 

handwritten digits obtaining classification accuracies of 97% 
and near 100% that are comparable with software based 
trained neural networks. 

Another related work has been reported by Williamson et 
al. [99] where they have introduced an electro-optic hardware 
platform for nonlinear activation functions in optical neural 
networks.  

 
Figure 9: Photonic deep neural networks. (a) Simplified 
schematic, after ref. [95], of the proposed fully optical neural network 
architecture where each layer includes an optical interference unit 
(OIU) to perform the linear matrix multiplication and an optical 

Page 15 of 22 AUTHOR SUBMITTED MANUSCRIPT - ROPP-101283.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IOP Publishing Journal Title 
Journal XX (XXXX) XXXXXX  https://doi.org/XXXX/XXXX 

 

xxxx-xxxx/xx/xxxxxx 16 © xxxx IOP Publishing Ltd 
 

 
 

nonlinear unit (ONU) that acts as the nonlinear activation. The OIU 
is realized with a programmable nanophotonic processor (PNP) that 
is composed of a cascaded array of Mach-Zehnder interferometers in 
a silicon photonic integrated circuit capable of vowel recognition. (b) 
A diffractive deep neural network formed by multiple layers of 
diffractive surfaces where each point on a given layer acts as a 
secondary source of wave; after the training process performed in a 
conventional computer, this network has been tested on classification 
of handwritten digits, a benchmark machine learning task. Figure 
adapted from Lin, et al. [96] (AAAS, 2018). 

The optical-to-optical nonlinearity operates by converting 
a small portion of the input optical signal into an analog 
electric signal, which is used to intensity -modulate the 
original optical signal with no reduction in processing speed. 

Their scheme allows for complete nonlinear ON–OFF 
contrast in transmission at relatively low optical power 
thresholds and eliminates the requirement of having additional 
optical sources between each of the layers of the network 
Moreover, the activation function is reconfigurable via 
electrical bias, allowing it to be programmed or trained to 
synthesize a variety of nonlinear responses. Using numerical 
simulations, they have demonstrated that this activation 
function significantly improves the accuracy of optical neural 
networks, allowing them to perform well on two benchmark 
machine learning tasks: learning a multi-input exclusive-OR 
(XOR) logic function and classification of images of 
handwritten numbers from the MNIST dataset. The addition 
of the nonlinear activation function improves test accuracy on 
the MNIST task from 85% to 94%. 

The implementation of photonic deep neural networks 
requires integrated and parallel photonic interconnects, which 
correspond to the large-scale vector matrix products that are 
at the basis of neural network computation. However, parallel 
photonic waveguide circuits realized in two dimensions are 
strongly limited in size due to scaling constraints. To 
overcome this limitation, Moughames et al. [100] have used 
three-dimensional (3D) printed photonic waveguides. 3D 
optical couplers with fractal topology efficiently connect large 
numbers of input and output channels and they have shown 
that the required substrate area and structure height scale 
linearly. Going beyond simple couplers, they have introduced 
functional circuits for discrete spatial filters identical to those 
used in deep convolutional neural networks. 

There are also many suggested architectures for optical 
neural networks in literature that are not yet physically 
implemented, but only simulated on conventional computers. 
In this context, Khoram et al. [101] have recently proposed a 
novel approach to realize artificial neural computing in a 
continuous and layer-free fashion that goes beyond the 
paradigm of layered feed-forward networks. In their system, 
computation is performed by a host material with numerous 
subwavelength scatterers that transforms the wavefront of an 
input light to realize sophisticated computing tasks such as 

image recognition. These computing media can be as small as 
tens of wavelengths and offer ultra-high computing density. 

5.4 All-optical photonic cognitive networks 

The idea of optical cognitive information processing has 
been introduced by Ovshinsky [102] where he discussed the 
fact that ovonic phase change (non-volatile change of 
electrical and/or optical properties due to phase transition, e.g. 
from a crystalline phase to an amorphous phase) memories can 
behave in a similar way to nerve cells which due to their 
plasticity have the ability to change behaviours as a result of 
experience. This adaptive behaviour results in learning. 
Indeed, a cognitive process is essentially an acquisition of 
knowledge and understanding of the surrounding environment 
through experience. 

It has been demonstrated that optical networks are capable 
of performing cognitive processes and also solving 
computationally hard problems in an efficient way; for 
example Wu et al. [6] using a simple fibre network, provided 
a proof-of-principle demonstration that this network can be 
treated as an optical oracle for the Hamiltonian path problem, 
the famous mathematical complexity problem of finding 
whether a set of towns can be travelled via a path in which 
each town is visited only once (Figure 8a). 

Another example of the solution of the Hamiltonian path 
problem through optical networks is the one by Vazquez et al. 
[103] where they used a femtosecond laser-written optical 
oracle based on cascaded directional couplers in glass. 

Moreover, Hu et al. [104] employed an optical network 
with nonlinear waveguides for implementing the optimization 
algorithm of the famous "ant colony" problem. Ant colonies 
progressively optimize pathway to food discovered by one of 
the ants through identifying the discovered route with volatile 
chemicals (pheromones) secreted on the way back from the 
food deposit. They have experimentally shown that photons 
traveling through the network behave like ants that 
dynamically modify the environment to find the shortest 
pathway to any chosen point in the graph. This demonstration 
illustrates how transient nonlinearity in the optical system can 
be exploited to tackle complex optimization problems 
directly, on the hardware level, which may be used for self-
routing of optical signals in transparent communication 
networks and energy flow in photonic systems. 

Another very recent example on optical computing has 
been proposed by Estakhri et al. [7] where they explored a 
novel aspect of metamaterial-based optical processing. In 
particular, they used a metamaterial-waveguide network as 
analog computing system for solving integral equations of 
general format (Figure 8b). For an arbitrary wave as the input 
function to an equation associated with a prescribed integral 
operator, the solution of such an equation is generated as a 
complex-valued output electromagnetic field. Their approach 
is experimentally demonstrated at microwave frequencies 
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through solving a generic integral equation and using a set of 
waveguides as the input and output to the designed 
metastructures. By exploiting subwavelength-scale light-
matter interactions in a metamaterial platform, their wave-
based, material-based analog computer may provide a route to 
achieve chip-scale, fast, and integrable computing elements. 

An alternative optical computing approach has been 
proposed by Pierangeli et al. [105] where they have designed 
and experimentally demonstrated the use of spatial light 
modulation for calculating the ground state of an Ising 
Hamiltonian (Figure 8c). The phase matrix on a spatial light 
modulator (SLM) acts as a lattice of spins for which the 
interaction is ruled by the constrained optical intensity in the 
far field and can be programmed by input amplitude 
modulation. Feedback from the detection plane allows the 
spatial phase distribution to evolve towards the minimum of 
the selected spin model. They have realized configurations 
with thousands of spins that settle in the ground state in a low-
temperature ferromagnetic-like phase with all-to-all and 
tunable pairwise interactions. Their results open the route to 
classical and quantum photonic Ising machines that exploit 
light spatial degrees of freedom for parallel processing of a 
vast number of spins with programmable couplings and they 
have claimed that this computational system could provide 
new ultrafast hardware for machine learning. Moreover, they 
have recently demonstrated that an optimal noise level 
enhances the performance of spatial-photonic Ising machines 
on frustrated spin problems [106]. Their experimental results 
identify noise as a potentially valuable resource for optical 
computing, opening important possibilities for realizing 
classical and quantum annealing. 

 
Figure 10: All-optical photonic cognitive networks. Illustrations of 
all-optical photonic cognitive networks include: (a) an optical oracle 
where an optical pulse interrogates a fibre network to solve the 
Hamiltonian path problem, the mathematical complexity problem of 
finding whether a set of towns can be travelled via a path in which 
each town is visited only once; optical analog computing is 
represented in panel b where Estakhri et al. [7] have introduced a 
metamaterial platform capable of solving integral equations using 
monochromatic electromagnetic fields; (c) a photonic Ising machine 
based on a spatial light modulator (SLM) used for the calculation of 
the ground state of an Ising Hamiltonian with thousands of spins. The 
spin variables are encoded in a binary phase modulation of the field 
and light propagation can be tailored to minimize an Ising 
Hamiltonian with spin couplings set by input amplitude modulation 
and a feedback scheme. Figures adapted from (a) Wu, et al. [6] (NPG, 
2014); (b) Estakhri, et al. [7] (AAAS, 2019); (c) Pierangeli, et al. 
[105] (APS, 2019). 
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Furthermore, Miller [107, 108] proposed an approach that 
allows a broad category of optical networks to be set up 
progressively and automatically, including the correction of 
fabrication imprecision. By exploiting a new configuration 
algorithm, with embedded monitoring detectors, broad 
categories of linear optical networks can be refined, set up 
and/or calibrated progressively, based only on calibrated and 
controlled inputs. Specifically, this method can be applied 
generally to “forward-only” networks in which the light only 
flows in one direction. It will work for lossless networks and 
those in which the loss is substantially equal on all interfering 
paths, as is the case for a wide range of Mach-Zehnder 
networks. 

In this section we have presented an overview of the many 
different all-optical architectures used for the realization of AI 
methods covering neuromorphic optical computing, photonic 
reservoir computing, photonic deep neural networks, and all-
optical photonic cognitive networks. 

So far, neuromorphic optical computing seems the most 
mature approach since it can be implemented on silicon 
photonic platforms that is a well-established technology and 
integrated systems have been already realized using 
optoelectronics devices such as excitable lasers and integrated 
modulators [85]. Photonic reservoir computing has been 
introduced more recently, but it seems a very promising 
approach for the implementation of AI hardware, since the 
reservoir does not need to be trained and so hardware 
requirements are minimal compared with other methods such 
as neuromorphic optical computing that requires 
reconfigurable interconnections [89]. 

Photonic deep neural networks have been successfully 
implemented using nanophotonic circuits and diffractive 
optical elements; however, the training process and the 
nonlinear activation function are not yet implemented at the 
hardware level. Hence, finding solutions for these challenges 
will be crucial for the realization of all-optical neural 
networks [4]. 

All-optical photonic cognitive networks comprise several 
different approaches such a s optical oracles, optical analog 
computing and photonic Ising machine. These methods have 
been used to successfully tackle computationally challenging 
tasks like NP (nondeterministic polynomial time) problems, 
solving integral equations and calculation of the ground state 
of an Ising Hamiltonian with thousands of spins. In particular, 
the use of metamaterials could be useful for the 
miniaturization of the hardware since metamaterials offer a 
highly compact and novel technological solution for 
controlling light at the nanoscale. 

6. Conclusions 

The strength of the AI paradigm lies in its ability to address 
what would otherwise be intractable computational problems. 

In doing so it can provide not only new or optimized solutions 
and predictions, but also new physical insight to the system 
under consideration. 

This review focuses on the potential applications of AI at 
the intersection between optics/(nano)photonics and materials 
science. So far in this space, ML algorithms have typically 
been applied to large computationally-generated databases for 
the purpose of predicting new materials and unveiling trends 
that would not readily be revealed by conventional data 
mining techniques. They have also been used to grow small 
experimental datasets in iterative processes to predict new 
materials [2] and perform multiobjective optimization of 
properties. For example, in a search for NiTi-based shape-
memory alloys with very small thermal hysteresis, Xue et al. 
[3] started with only 22 experimental samples and found the 
optimal compound (with a hysteresis of only 1.84 K) on the 
sixth iteration. In another example, Yuan et al. [44] has found 
and synthesized the piezoelectric composition with the largest 
electrostrain of 0.23% in the BaTiO3 family. Their training 
dataset consisted of only 61 compounds while there are 
potentially 605 000 possible compositions. 

In the domain of optics and photonics, more work has so 
far been presented on applications of photonics to the 
implementation of AI (or all-optical computing in its various 
forms) than has been published on applications of AI to the 
design, development and optimization of photonic 
(meta)materials and devices. In regard to the latter, the design 
and optimization of nanostructured materials intended to 
harness light-matter interactions and manipulate 
electromagnetic fields at the subwavelength scale is 
computationally expensive. ML techniques present 
opportunities both to extend physical insight and to search 
parameter spaces in a more efficient way, leading to data-
driven, on-demand design of novel devices [4]. For instance, 
Peurifoy et al. [5] trained a neural network to approximate 
light scattering by multilayer nanoparticles and, by taking 
advantage of the fact that it could do so orders of magnitude 
faster than conventional simulations, employed it to solve 
nanophotonic inverse design problems via back propagation. 
In another example, Liu et al. [76] proposed a generative, 
deep, network model which can discover and optimize 
efficiently unit cell patterns of metasurfaces in response to 
user-defined, on-demand spectra at the input. Interestingly, 
this model is mostly based on unsupervised learning, which 
guarantees efficient generation of structural patterns 
independent of human experience. 

In the former, reported approaches include photonic 
reservoir and neuromorphic optical computing, photonic deep 
neural networks, and all-optical photonic cognitive networks 
(e.g. optical oracles). For example, Wu et al. [6] demonstrated 
that a fibre network can be treated as an optical oracle for the 
“Hamiltonian path problem” able to address the famous 
mathematical complexity problem (of determining whether a 
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set of locations can be visited via a path that passes each 
location only once) hundreds of times faster than brute-force 
(electronic) computing. 

Many of the world’s leading (nano)photonics research 
groups are now exploring applications of AI to the field and 
common themes are beginning to emerge, at least in regard to 
broadly categorized problem types amenable to the 
application of AI methodologies: 
• Engineering of artificial electromagnetic materials 

(optimization of metamaterial and other nanostructural 
geometries to achieve specific, targeted optical 
properties); 

• Optimization of (nano)photonic device, system and 
network architectures (e.g. adaptively reconfigurable 
waveguide structures to perform arbitrary input/output 
operations); 

• Discovery and optimization of photonic materials, their 
synthesis and processing (identification of materials 
providing selected desirable properties for photonic 
applications); 

• Development of sources of complex electromagnetic 
fields, e.g. phase singularities, super-oscillatory foci, etc., 
(design of field structures themselves and evolution of 
strategies for generating, characterizing and utilizing such 
fields). 
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