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The ongoing COVID-19 pandemic rapidly spread across Eu-
rope throughout February and March 2020, making it the 
largest cluster of cases worldwide (1). In response, most of 
Europe implemented strict lockdown measures to control 
disease spread, which have been shown to be effective at re-
ducing transmission (2–4). As rates of new cases decline, 
countries are now implementing various exit strategies to re-
lax restrictions (5). Long-term success of any potential exit 
strategy hinges on what happens regionally, as international 
importation could overwhelm efforts to prevent resurgence 
through testing and contact tracing (6, 7). To account for this, 
the European Commission recommended that governments 
provide advance warning of plans to relax non-pharmaceuti-
cal interventions (NPIs) (8), and in particular, has focused on 
coordinated easing of travel restrictions (9). To better inform 
the importance and nature of an internationally coordinated 
exit strategy, governments require an evidence base for un-
derstanding importation and the consequences of easing in-
terventions in an uncoordinated way. 

Data from mobile phones can help address this by inform-
ing connectivity patterns, contact rates, and the effect of var-
ious NPIs on mobility. In other settings, they have been 
instrumental for understanding where infection occurs for 
various diseases (10) such as malaria (11, 12), predicting dis-
ease spread (13), and quantifying population mobility during 
and after catastrophic events (14). More recently, for the 
COVID-19 pandemic, mobile phone data have been valuable 
in assessing NPI effectiveness (3, 4), and remain at the 

forefront of understanding whether populations are adhering 
to social distancing policies (15–18). These data link well with 
theoretical models that provide a basis for understanding 
how heterogeneous mobility and exposure will affect disease 
invasion (19) in spatially structured populations (20), as well. 

Here we provide an evidence base for coordinated exit 
strategies across Europe using mobile phone data and a met-
apopulation model of COVID-19 transmission (21). Specifi-
cally, we quantify the progression of a second epidemic 
continent-wide if countries act in a coordinated or uncoordi-
nated manner. We also quantify how coordination could in-
fluence regionally interrupted transmission of COVID-19, 
testing the importance of synchronized NPIs if countries 
phase them to limit economic impact. We accomplished this 
by (i) estimating pre-COVID-19 mobility using a novel anon-
ymized and aggregated call data record (CDR) dataset from 
Vodafone and an anonymized and aggregated continental 
NUTS3 (Nomenclature of Territorial Units for Statistics) mo-
bility dataset from Google (table S1), (ii) measuring mobility 
reductions due to NPIs using a separate COVID-19 Google da-
taset, and (iii) propagating these reductions in an epidemio-
logical model (see fig. S1 for data flow). All analyses were 
undertaken at the NUTS3 administrative unit level, which are 
administrative boundaries regulated by the European Union 
(EU) for use within EU member states (22), with spatial ex-
tents defined by population thresholds ranging between 
150,000 to 800,000 residents. 
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while minimizing the risk of resurgent outbreaks. Here, we use mobility and case data to quantify how 
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half as many lockdown periods were required to end community transmission continent-wide. 
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Baseline mobility and COVID-19-related reductions 
First, we predicted the baseline probability of moving be-
tween NUTS3 regions across Europe using the Vodafone data 
in Spain and Italy and the continental Google NUTS3 dataset 
(Fig. 1). 

We then analyzed the Google COVID-19 dataset to quan-
tify reductions in mobility and contact rates from January 
2020 through the end of March 2020 in response to the 
COVID-19 pandemic (Fig. 2). In our simulations, we used ob-
served reductions in mobility in each NUTS3 area to propor-
tionally reduce outgoing flows, incoming flows, and local 
contact rates for that area. 

Using these baseline mobility patterns and reductions in 
mobility, we simulated the spread of COVID-19 over 6 months 
starting 4 April 2020 while making various assumptions 
about where and when NPIs would be relaxed or reinstated. 
Across all simulations, we started transmission on 20 March 
2020 because this predates large reductions in mobility (Fig. 
2, right), allowing the disease to spread initially in a data-
driven way that can help account for spatial biases in report-
ing and testing. We parameterized initial numbers of people 
infected using a repository maintained by the Johns Hopkins 
University CSSE (23). Because the case data from this reposi-
tory were country-level, we distributed cases across NUTS3 
area proportionally based on population size (fig. S10). 

To simulate different exit strategies and the overall im-
pact of different NPIs enacted, we reduced mobility one week 
past 28 March (for 29 March–4 April) based on the observed 
change between 15–21 March to 22–28 March to account for 
changes caused by further uptake of existing NPIs (Fig. 2). On 
average, this represented an overall mean 65% reduction in 
mobility compared to 28 January–18 February, agreeing with 
recent studies on contact rate reductions in the UK (24), 
which observed a 73% reduction in daily contacts. When sim-
ulating active lockdowns on dates past 4 April, we used the 
predicted mobility reduction for each NUTS3 area from 29 
March–4 April. When we simulated countries lifting their 
NPIs entirely, we used the relative mobility patterns observed 
during 1–7 March. 
 
Modeling the effect of lifting interventions early 
First, we compared secondary epidemic timing when all 
countries coordinated their exit strategies with simulations 
where one country ended their interventions early. We itera-
tively tested the impact of each country in Europe easing 
lockdowns starting 15 April, while all other countries ex-
tended their NPIs for 4, 8, and 12 weeks, depending on simu-
lation run. For the country that lifted their NPIs early, we 
assumed people in each NUTS3 area would voluntarily re-
duce their average contact rate by 20% compared to the Jan-
uary–February baseline, or slightly less than the reduction in 
mobility observed on 23 March, because countries that have 

lifted NPIs have observed sustained limited mobility reduc-
tions beyond the relaxing of various restrictions (16). 

If a country lifted their NPIs early, we found a second ep-
idemic could occur much earlier (Fig. 3, left). The right panel 
of Fig. 3 measures the earlier timing to 25% of people across 
Europe having had COVID-19 (infected + recovered + ex-
posed; see fig. S13 for plot showing this explicitly). This meas-
ure captures when uncontrolled widespread transmission 
occurred while accounting for multiple peaks and varying 
peak heights in Fig. 3. Time to 25% infected was particularly 
sensitive to well-connected countries that implemented 
strong NPIs, such as France and Italy (Fig. 3, right). France 
lifting their NPIs early led to the earliest second epidemic, 35 
days earlier than if all countries lifted their NPIs simultane-
ously (interquartile range from 32.3 to 36.8 days). Despite 
having experienced relatively low reductions in mobility 
through 28 March, Germany remains important to continen-
tal resurgence, due to high connectivity with neighboring 
countries (Fig. 1, right). When exploring the epidemic curves 
through time when different countries lifted their NPIs early, 
we found that different types of mobility initiated continental 
epidemics. While France lifting their NPIs early led to resur-
gence in major population centers continent-wide, Germany 
lifting NPIs early led to resurgence in neighboring countries 
first (fig. S15). Further, certain areas keeping R slightly over 1 
under NPIs also led to an initial peak in some simulations, 
and maintained the threat of resurgence even after 12 weeks 
of NPIs continent-wide (Fig. 3, left; see supplementary mate-
rials section “Exploring spatiotemporal dynamics of spread” 
for more detail). This occurred in central Turkey in our sim-
ulations and dramatically affected continental spread. In 
simulations where smaller or less-connected countries lifted 
their NPIs early, we found that resurgence was largely driven 
by importation from central Turkey and exhibited epidemic 
curves very similar to the case where all countries maintained 
NPIs (Fig. 3, red line). 
 
Modeling the effect of synchronized intermittent NPIs 
We also tested how cycling NPIs in a synchronized or unsyn-
chronized way affected the continent-wide epidemic. Cycled 
NPIs meant countries switched between being under inter-
ventions for several weeks and under no interventions for the 
same number of weeks over several cycles. Synchronized 
NPIs meant all countries implemented lockdowns at the 
same time, while unsynchronized NPIs meant half of all 
countries (randomly chosen for each simulation run) were 
under lockdown at any time. Cycling NPIs reflects the inter-
mittent lockdowns that could occur if countries reinstate in-
terventions after surpassing threshold numbers of new cases 
(25, 26). Therefore, this test helps predict what may happen 
if countries do not coordinate the easing and reinstating of 
NPIs based on regional rates of new cases. Here, we ran 
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various simulations where lockdown and non-lockdown peri-
ods were 3 or 4 weeks long over 2, 3, or 4 cycles in total. 

Across 1200 simulations, we found that synchronized cy-
cles of NPIs were always more likely to end community trans-
mission over 6 months, and generally lowered transmission 
further than if NPIs were unsynchronized (Fig. 4). In the 
most striking example, synchronizing four cycles of three 
week long lockdowns led to local elimination COVID-19 cases 
in 90% of simulations, while unsynchronized cycles only led 
to elimination 5% of the time (Fig. 4, bottom left). Two syn-
chronized cycles of four-week NPIs were also sufficient to end 
community transmission, whereas four unsynchronized cy-
cles of four-week NPIs were necessary to end community 
transmission (Fig. 4, right). The only simulations where un-
synchronized NPIs had fewer cases than synchronized NPIs 
at the end of simulation was with 2 cycles of 3 week-long NPIs 
(Fig. 4, top left), which occurred because enough people were 
infected under unsynchronized NPIs that herd immunity re-
duced transmission. Importantly, these simulations do not 
include any importation from other regions of the globe. As 
a result, simulations reflecting zero local cases after certain 
numbers of intermittent lockdowns are very unlikely to be 
realized. Instead, this result reflects the likelihood of reduc-
ing local cases to a low enough level that strong test-and-trace 
systems can catch importations before significant outbreaks 
occur. 

Intergovernmental organizations such as the World 
Health Organization have stressed the importance of inter-
national solidarity in terms of sharing resources and exper-
tise in combating COVID-19 (1). Our results reiterate this, as 
one country ending NPIs before others could mean disease 
resurgence across Europe as many as 5 weeks earlier, reduc-
ing the time available to expand test-and-treat and to develop 
new therapeutics or vaccines (Fig. 3). Heterogeneities in mo-
bility reduction (Fig. 2), baseline mobility patterns (Fig. 1), 
and population sizes mean that certain countries are partic-
ularly important to continental resurgence, such as France, 
Germany, Italy, and Poland (Fig. 3). 

These key countries varied in how local cases led to conti-
nental resurgence, implying different key interventions for 
each. For example, while spread out of Germany led to epi-
demics in neighboring countries initially, spread out of 
France led to epidemics in population centers continent-wide 
(fig. S12). Further, we found that small pockets of community 
transmission under NPIs could assure a second epidemic 
wave continent-wide. In our study, this occurred due to cen-
tral Turkey experiencing limited mobility reductions (Fig. 2) 
and exhibiting a high starting reproductive number (fig. S2) 
that kept local R slightly above 1 when under NPIs. While the 
actual mobility reduction in central Turkey is uncertain and 
has likely changed since late March 2020, this highlights the 
importance of countries ensuring that R stays below 1 during 

lockdown periods, and the importance of effective screening 
of international travelers from areas with sustained transmis-
sion well into the future. 

We also found that the nature of coordination was key to 
reducing resurgence risk. When cycling NPIs between weeks, 
synchronized interventions across all countries meant that 
cases could be driven down more quickly (Fig. 4). Fewer cases 
at the end of the synchronized lockdowns led to much higher 
likelihoods of reaching zero cases locally, due to a higher 
chance of stochastic recovery processes leading to inter-
rupted transmission. In real terms, the synchronized scenario 
approximates what could happen if countries set case thresh-
olds for lifting NPIs regionally, while the unsynchronized sce-
nario simulates what could happen if countries only consider 
case numbers within their boundaries. 

This study has several limitations that influence the direct 
applicability of our case number predictions across Europe. 
We also use observed mobility reductions as a proxy for re-
ductions in contact rate, which may not reflect reality, though 
the contact rate reduction estimates from this process accord 
with those observed in other studies (24). Secondly, COVID-
19 is known to exhibit age-dependent severity, and contact 
rates are strongly age-dependent (27, 28), which could intro-
duce heterogeneities that we did not incorporate into our 
simulations. We believe our results should be robust to these 
limitations, however, because we ran our simulations over 
different values of R and varying the serial interval. In these 
sensitivity analyses, we found that the existence of key coun-
tries and the importance of coordinated NPIs were robust to 
these changes (see supplementary materials), though varying 
the serial interval could extend or shrink the second epidemic 
timings and epidemic peaks observed in Fig. 3. Additionally, 
we reduced mobility for each NUTS3 area uniformly, but 
long-distance movement reduced much more than short-dis-
tance movement due to country-level travel restrictions and 
other NPIs (fig. S8). This likely provides a continental protec-
tive effect against early resurgence compared to our results, 
particularly if quarantining measures are put in place for 
long-distance travelers. 

Our mobility estimates may also be biased due to the pop-
ulations included in the Google and Vodafone data. Google’s 
consumer Location History feature is only available from 
smartphone users, is turned off by default, and is viewed 
through the lens of differential privacy algorithms designed 
to protect user privacy and obscure fine detail. Vodafone’s 
anonymized and aggregated data were based on network 
data from customers who had full control over their privacy 
settings, potentially introducing biases as well. This work 
makes a step toward using multiple datasets to capture pop-
ulation-level patterns that go beyond any one service or sys-
tem. Further, because both the Google and Vodafone data are 
aggregate datasets, we could not account for individual-level 
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correlation in mobility patterns in our model (i.e., individuals 
who travel elsewhere but return home shortly thereafter). 
This likely means our model will overestimate spread and re-
surgence in general, as infectious people will end up less 
likely to return home. 

Coordination will be key to an effective, equitable re-
sponse to COVID-19. This means not just sharing resources, 
but also ensuring that exit strategies account for neighboring 
countries and regions. While coordinating exit strategies 
across an entire continent may prove politically difficult, the 
presence of key countries and community structure offer pos-
sible coordination groups that do not require engagement 
from all countries. We have explored some of these coordina-
tion groups in a community detection analysis in the supple-
mentary materials (fig. S16). Further, coordinated exit 
strategies that account for real-time case data will likely im-
prove outcomes compared to our predictions, as we simu-
lated intermittent NPIs that were lifted regardless of actual 
transmission context. A multifaceted, reactive approach to 
lifting NPIs will be necessary to minimize resurgence risk. 
This means beyond international cooperation, robust test-
and-treat (29) and household quarantine (30) measures 
should be in place. Future work will further inform the role 
mobility, NPIs, and international coordination can play in 
slowing COVID-19 resurgence, building on existing work (31) 
examining invasion, re-invasion, and disease extinction (32) 
in spatially structured populations. Critically, even if commu-
nity transmission is reduced to very low levels within Europe 
(for example, through intermittent NPIs shown in Fig. 4), im-
portation from other regions of the globe mean coordination 
will be necessary to prevent epidemics continent-wide well 
into the future. 

The implications of our study extend well beyond Europe 
and COVID-19, broadly demonstrating the importance of 
communities coordinating easing of various NPIs for any po-
tential pandemic. In the United States, NPIs have been gen-
erally implemented at the state-level, and because states will 
be strongly interconnected, our results emphasize national 
coordination of pandemic preparedness efforts moving for-
ward. Elsewhere, relatively porous national borders between 
many lower and middle income countries mean without co-
ordination, these countries may have to deal with significant 
international importation after controlling local transmis-
sion (33). COVID-19 transmission and transmission of any in-
fectious disease will ignore national and provincial borders; 
preventing resurgence and spread will mean ensuring that 
pockets of transmission do not persist in areas with limited 
interventions at the expense of later epidemics in others. 
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repository: https://github.com/wpgp/BEARmod.The specific version of this 
model used in this study, with simulation code, R estimates shown in fig. S2, and 
initial numbers infected shown in fig. S10 can be found at 
https://doi.org/10.5281/zenodo.3932111 (21). The population movement data 
obtained from Google and Vodafone for this study are not publicly available due 
to stringent licensing agreements. The Google COVID-19 Aggregated Mobility 
Research Dataset used for this study is available with permission from Google 
LLC (contact: Adam Sadilek, sadilekadam@google.com). The Vodafone datasets 
can also be accessed with the permission of Vodafone through correspondence 
with the corresponding authors. A synthetic NUTS3-level dataset of mobility 
across Europe is also available at https://doi.org/10.5281/zenodo.3931987 
(35). This work is licensed under a Creative Commons Attribution 4.0 
International (CC BY 4.0) license, which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. To 
view a copy of this license, visit 
https://creativecommons.org/licenses/by/4.0/. This license does not apply to 
figures/photos/artwork or other content included in the article that is credited 
to a third party; obtain authorization from the rights holder before using such 
material. 
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Fig. 1. Predicted baseline mobility patterns for 28 Jan–18 Feb 2020. (Left) Probability of people moving 
between NUTS3 administrative units per 8 hours. (Right) Individual probability of moving between top 20 
European countries with the greatest outward mobility. For example, an individual in Germany (DE) is roughly 
twice as likely to travel internationally as compared to an individual in Austria (AT). Colors shown in the right 
panel correspond to the source country, and country codes shown are from Eurostat (34). 
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Fig. 2. Reduction in mobility observed in NUTS3 areas from 11 Feb to 6 Apr 2020.  
(Left) Reduction in mobility observed in each NUTS3 administrative unit across Europe for the week of 
21–28 Mar 2020 compared to Jan–Feb 2020. Movement data were not available for countries in grey. 
(Right) Weekly average change in mobility across all NUTS3 areas. Dark blue shows reductions observed 
in the Google COVID-19 dataset, light blue shows extrapolation of reductions by one week. Black line shows 
mean change compared to baseline. When implementing NPIs in various NUTS3 areas, we used the 
movement reduction estimates for the end of this period, 6 Apr 2020.  
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Fig. 3. Epidemic spread if all countries but one maintain existing NPIs. When lifting NPIs early, 
countries reverted to baseline mobility on 15 April. (Left) Epidemic curves, with varying numbers of 
weeks that NPIs are implemented. Curves indicate numbers of active cases at any given time, rather 
than numbers of new cases per day. Red lines indicate epidemic curves where all countries maintain 
NPIs for the denoted number of weeks. Blue lines indicate epidemic curves if one country ends 
intervention policies early (each line represents one randomly chosen country that ends its policies 
early); France, Germany, and Italy are highlighted. (Right) For the 4 weeks of NPI scenario, the 
number of days earlier that an uncontrolled second epidemic occurs continent-wide if each country 
ends NPIs early, measured as the time to 25% of the population of Europe having had COVID-19. 
Movement data were not available for countries in grey. 
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Fig. 4. Cases over time, when NPIs are synchronized and 
unsynchronized across all European countries. Rows vary the number 
of on-off cycles that occur, and columns indicate the number of on-off 
cycles implemented. For example, 4 weeks with 2 cycles (top right) 
indicates we simulated two cycles of 4 weeks on lockdown, 4 weeks off 
lockdown for each country. Red: Cases when European countries do not 
synchronize NPI timing. Blue: Cases when European countries are all 
synchronized in NPI timing. Shaded areas indicate intervals in which 95% 
of simulations fell within, over 200 simulations. 
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