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ABSTRACT. The problem of adjusting economic or social accounts can be quite complex when large
accounting equation systems are considered. This is especially true if they must fulfill predefined, known
functional relationships. For such complex systems, evaluating the accuracy of the estimates after the
adjustment is difficult since they are defined by unadjusted initial estimates, the accounting equations
and the adjustment method. In this paper, we consider such systems as a single entity and develop scalar
uncertainty measures that capture the adjustment effect as well as the relative contribution of the various
input estimates to the final estimated account. The scalar measures are based on the first two moments
of the joint distribution of the underlying true accounting system without requiring specification of the
distribution in full. Scalar measures can help to effectively communicate to the users the relevant uncer-
tainty of disseminated macro-economic accounts, and can assist the producer in choosing and improving
adjustment method and input estimators. The proposed approach will be illustrated both analytically and
by simulation. Applications to supply and use tables and to time series data will be presented.

Keywords: macro account; input estimates adjustment; scalar uncertainty measure; permutation invari-
ance.

1. Introduction

Macro-economic indicators are generally more meaningful when viewed in relation to other vari-
ables. Often, such variables are presented together to emphasize and depict their relationship,
and can even be the main feature of the presentation. This is especially the case for variables that
form equations. For instance, the total labor cost for a sector of the economy can be given as the
product of the number of full-time equivalent employees and the average wage. Together these
variables represent the structure of the labor cost. In practice, however, it is often the case that
each is estimated separately and independently by different sources and means. Decompositions
of GDP (gross domestic product) are another prime example of a macro-economic account. It
is based on the sum of consumption, investment, government spending, and net exports should
be equal to to the sum of consumption, private sector savings and net taxes, see for e.g. Miller
and Blair (2009). Similarly, the total value of the production of an economy can be decom-
posed as the sum of the production values of a number of categories of goods and services.
Each data point in these accounts is an aggregated estimate, obtained via a meticulous process
that combines data from diverse sources, including sample surveys, administrative data, busi-
ness organizations, web-sites, etc. Here we consider economic and accounting estimates that are
defined at any level of aggregation. The variables in these estimated accounts are estimates of
subpopulation figures, e.g. totals or means, and will have different properties than micro-level
accounts, consisting of measurements of e.g. individual firms or businesses. The initial estimates
have inherent bias or uncertainty for instance due to sampling or non-response and generally
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must be adjusted to satisfy the balancing of accounts, which is typically enabled via a set of con-
straints. The task of the national statistical office is to produce consistent figures, estimates that
satisfy required macro-economic or other accounts and are close to the initial figures. Adjustment
methods are applied to obtain these consistent estimates. Nice overviews on adjustment methods
applied within the systems of national accounts can be found in for e.g. Buono et.al. (2018) or
International Monetary Fund (2017).

In this paper, we define scalar measures of the uncertainty of the obtained consistent estimates
of aggregates in systems of additive or multiplicative accounting equations. When a number of
estimated aggregates must satisfy some accounting equations, we record estimates before the
accounting adjustment and after the adjustment. These estimates have variances that change due
to the adjustment. The revised variances depend on the initial variances, accounting constraints
and adjustment methods. With the scalar measure we aim to capture the uncertainty of the esti-
mates after the adjustment. In order to define the scalar measure, we assume a hypothetical fixed
true account exists. The true account is defined by the hypothetical true values of the accounting
system and the accounting constraints. In this accounting system, true values satisfy the account-
ing constraints. In practice, we have available only the initial estimates. These estimates do not
satisfy the accounting constraints due to measurement, non-response, sampling and other errors.
After an adjustment method is applied, one obtains the adjusted values that satisfy the accounting
constraints. Within this framework, different realizations of initial estimates, different account-
ing constraints and/or different adjustment methods will lead to different adjusted values. We
introduce a scalar measure for the uncertainty in the final estimates. This scalar measure depends
on all three attributes of the framework: the uncertainty of the initial estimates, accounting con-
straints and the adjustment method. This measure could be helpful (i) to capture the effect of the
uncertainty in the input data on the final estimates, and (ii) in making a choice between different
adjustment methods. For the latter purpose, one may use the relative efficiency of two adjustment
methods, which is the ratio of the corresponding scalar measures. Another advantage of our scalar
measure is that it is easy to interpret as the expectation of a chosen norm of the error vector. A
third advantage is that for large accounting system the scalar measures of its sub-systems can be
easily combined to yield a scalar measure of the whole system. In contrast, one cannot directly
combine variance-covariance matrices of sub-systems into that of the whole system, unless they
can be obtained independently of each other.

Manski (2014) argues for the importance of communicating uncertainty in official statistics.
Three types of uncertainty are distinguished, exemplified and discussed: Transitory statistical
uncertainty arises because data collection takes time, e.g. the first few rounds of GDP revision due
to incomplete data. Permanent statistical uncertainty arises from incompleteness or inadequacy
of data collection that does not diminish with time. Examples are sampling and non-sampling
errors such as survey non-response. Conceptual uncertainty arises from incomplete understand-
ing of the information that official statistics provide about well-defined economic concepts or
from lack of clarity in the concepts themselves. It concerns the interpretation of statistics rather
than their magnitudes. Seasonal adjustment is used as an example.

As pointed out by Manski (2014), permanent statistical uncertainty traditionally has been a
preoccupation of survey statisticians. Many studies have emerged concerning uncertainty assess-
ment of data from administrative sources. See for example Oberski et al. (2017), Zhang (2012),
Wallgren and Wallgren (2014). But rarely is the issue addressed, regarding the uncertainty of a
set of macro-economic figures that relate to each other via constraints.

For macro-economic accounts considered in this paper, several approaches exist regarding the
quantification of the uncertainty in the input estimates, how this knowledge may be incorporated
into the adjustment method, and how to evaluate the resulting integrated outputs. A typical prob-
lem in this context is that limited information may be available about the data sources and the
original figures. In Mushkudiani et al. (2018), uncertainty measures of the original figures are
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defined for a practical example of integration of supply and use tables in national accounts. The
uncertainty of the input estimates are summarised in the reliability weights for integration, which
are based on the knowledge of National Accounts specialists. The choice of weights is relative
for different figures, and all series are classified in discrete classes of reliability, ranging from
“least reliable” to “most reliable”. A similar ranking of classes of data quality is described by
Rodrigues (2014). Moreover, Rodrigues (2014) uses a Bayesian approach to balancing, related
to earlier work of Golan and Vogel (2000), in which the prior is a multivariate random vector of
economic data items that may be unbalanced and the posterior is obtained by minimising a loss-
function (cross-entropy) that measures the difference between prior and posterior distributions,
subject to the balance constraints. It is shown that several conventional balancing methods can
be obtained as special cases, including proportional fitting, weighted or generalised least squares
with different kinds of weights.

Rodrigues (2016) stresses the input uncertainty for macroeconomic reconciliation processes,
and proposes to approximate the probability distribution of the input items only based on esti-
mates of (up to) the first two moments. When the items are constrained by an additive constraint,
the paper provides approximations to the correlations between the data items. The probability
distribution is derived using the maximum entropy principle (MEP) for two cases: (I) when only
an estimate of the expected value is available and (II) when also an estimate of the variance is
available. For case (I) it is shown that the MEP induces an exponential distribution with standard
deviation equal to its expected value, and in case (II) it is a truncated normal distribution.

The normal distribution provides often a starting point in the literature for calculating the
uncertainty of the final integrated figures. Magnus et al. (2000) define a Bayesian setting for
the constrained optimization problem, including linearized ratio constraints, and provide closed-
form estimates of the mean and variance of the posterior under the normality assumption. Under
the same setting, Boonstra et al. (2011) emphasize the inclusion of inequality constraints within
the linear data integration framework. The method is based on a normal approximation to the
truncated multivariate normal distribution. The approximate moments method with Kullback-
Leibler divergence is applied to obtain closed-form approximation to the mean and variance of
the estimates, where the approximated variances are adopted as the uncertainty measures.

Golan (2018) proposes a general framework for the constrained optimization approach in
the present context, when only partial, uncertain or noisy information is available. Also the
constraints can be uncertain themselves. As more than a single inference exists that is logi-
cally consistent with the available information, an inferential method and a decision criterion
are selected. The author applies the maximum entropy optimization procedure for solving
these under-determined problems. In this framework, estimates of the uncertainty can be found
numerically; see also Temursho (2018).

In this paper the final disseminated figures are considered to be the result of the specific real-
isation of the input data as well as the application of the constraints and the specific adjustment
method. For the measurement of the effect of the application of constraints alone, several scalar
summary measures of the discrepancy between the input estimates and the adjusted estimates
have been proposed, see Jackson and Murray (2004) for a review and applications.

Often a covariance matrix of the adjusted figures is also considered. This matrix can be derived
for some adjustments when a covariance matrix for the original figures is available. But when
inequality constraints are added to the adjustment it becomes difficult to construct the covariance
matrix of the adjusted figures for large systems, see e.g. Boonstra et al. (2011). Scalar measures
that merely measure the closeness of adjusted figures to the original figures are easy to derive
and are often used, see e.g. Temursho (2018), Mushkudiani et al. (2018).

Our perspective in this paper fits the tenet that “Statistical agencies could mitigate misinterpre-
tation of official statistics if they were to measure uncertainty and report it in their news releases
and technical publications” Manski (2014) p. 1, according to which statistical uncertainty should
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have explicit and meaningful bearings on macro economic accounts. Rather than presenting
numerous uncertainty measures for each of the final estimates, which could easily hamper the
communication, we instead propose scalar measures for the set of disseminated macro-economic
accounts, in which all the relevant estimates are considered together, all at once. To illustrate the
working of these measures we present several scalar measures and their application. The trace
is one such measure. It is often used in the literature and has the nice property of permutation
invariance. The measures we consider can be applied to multiplicative accounts by taking the
logarithm.

2. Uncertainty of macro accounts

We consider the logical or theoretical constraints that can be expressed as multiplicative or
additive 1 accounting equations, which can be given, respectively, as

y1y2 · · · yp = z (1)

and
y1 + . . .+ yi + . . .+ yp = z. (2)

Note that for the multiplicative constraint (1) we consider only the case p = 2 in the rest of this
paper. The approach we develop allows p > 2 for the multiplicative constraint as well, but the
case of p = 2, as in the examples above of the total labor cost as the product of the number of
full-time equivalent employees and the average wage, is the most common with multiplicative
accounting equations. Moreover, we assume that the components of a multiplicative accounting
equation are all positive by definition.

Let the true values be denoted by (y01, ..., y0p, z0). Then, for a multiplicative accounting
equation with p = 2, we denote the true account A0 by

A0 = [y01y02 = z0],

which satisfies (1) by definition. We denote an additive accounting equation similarly. The nota-
tion A0 = [· · · ] is introduced to emphasize that the account is conceived as a single entity. Denote
by (ŷ1, ŷ2, ẑ) the initial input estimates of (y01, y02, z0), which do not satisfy the equation (1),
i.e. ŷ1ŷ2 ̸= ẑ.

Suppose that, after an adjustment of choice, we obtain adjusted values defined by (ỹ1, ỹ2, z̃)
that do satisfy the constraint, so that we obtain

A = [ỹ1ỹ2 = z̃]. (3)

We shall refer to (3) as the estimated account. To develop a scalar measure of uncertainty, we shall
consider the estimated account to be a single random outcome. Possible different realisations
could be, for instance, [100 · 1.2 = 120] or [80 · 1.5 = 120] or [90 · 1.2 = 108].

To measure the variance of an estimated account we need a notion of its expectation. The
expected account can be defined as the one we would obtain on average, under any well-defined
joint distribution of (ỹ1, ỹ2, · · · , ỹp, z̃), denoted by f(ỹ1, ỹ2, · · · , ỹp, z̃). The expected addi-
tive account is obtained by direct substitution of the expectations of the component variables.
The expected multiplicative account is less obvious because E(ỹ1)E(ỹ2) ̸= E(z̃). As a general

1 The possibility of a combination of multiplicative and additive accounts, i.e. when the y-variables in (2) can be seen
as the r.h.s. (z-variables) of multiplicative accounts (1), as suggested by a reviewer, is an extension that is not treated in
this paper.
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option, we propose to log-transform a multiplicative account to an additive account, and define
the expected account on the log-scale. An alternative approach on the original scale, will be
detailed in Section 4.2.

To motivate the need of a scalar uncertainty measure of an estimated account, we notice that an
obvious measure of the uncertainty in the input vector x̂ = (ŷ1, ŷ2, · · · , ŷp, ẑ) is the (p+ 1)×
(p+ 1) variance-covariance matrix, denoted by Σx̂. Similarly, let Σx̃ be the variance-covariance
matrix of the adjusted estimates x̃ = (ỹ1, ỹ2, · · · , ỹp, z̃), which includes the adjustment effect.
This approach to measuring the uncertainty in accounts is investigated by, among others, Stone et
al. (1942). A drawback of this approach is its multidimensional nature, which makes it difficult
to interpret for the user, just as it hampers the comparison of different estimates of the same
account for the producer.

In contrast, we propose to develop a scalar measure of uncertainty. This scalar measure
depends on three elements: the vector of input estimates, the accounting equation and the adjust-
ment method used to obtained the estimated account. The scalar measure would be helpful in at
least two respects:

I. Let ẋ = (ẏ1, ẏ2, · · · , ẏp, ż) be an alternative adjustment to x̃, both having the same input
estimates x̂. Let Ȧ and A be the estimated accounts, respectively for ẋ and x̃. Let u(A)
and u(Ȧ) be the respective scalar uncertainty measures. The relative efficiency (RE), i.e.
u(A)/u(Ȧ), would facilitate the choice between the two.

II. Write u(A;Fx̂) to signify its dependence on Fx̂, the distribution of x̂. Any change in
the input uncertainty would result in a different F ′

x̂, and u(A;F ′
x̂) accordingly. The RE

u(A;F ′
x̂)/u(A;Fx̂) could then help us to identify and to assess the changes, or improve-

ments, in the input data, which are most effective in terms of the uncertainty of the final
estimated account.

We shall investigate two different approaches to define a scalar measure of uncertainty: the
covariance approach and the deviation approach. The basic ideas of the two approaches are as
follows. For the covariance approach, one starts with the covariance matrix Σx̃ as a multivariate
measure of the expected deviation of x̃ from its expected value. This multivariate measure is then
reduced to a scalar summary. Scalar summary measures of multivariate variability based on the
covariance matrix, and their properties, have been studied by e.g. Peña and Rodríguez (2000).
One such measure is the average total variation, see e.g. Seber (1984), which will be shown to
have many desirable properties. For the deviation approach one first reduces the deviation of x̃
from its expectation to a scalar summary measure. Scalar summary measures based on L1 and
L2 norms will be considered. The uncertainty measure is then defined as the expectation of this
scalar measure. Thus, the covariance approach considers a scalar summary of the expected values
of the multivariate deviations, whereas the deviation approach considers the expected value of a
scalar summary of the multivariate deviations.

Reducing the information in the covariance matrix, or the component-wise deviations, to a
scalar summary will in general lead to a loss of information. An issue is therefore to clarify in
which sense a chosen measure summarizes as much as possible the relevant uncertainty. As we
explain in Section 4.4, a unified interpretation can be given in terms of expected norm. Notice that
using norm as a measure of the differences between vectors is a natural idea, also in the context
of macro accounts; see e.g. de Mesnard (1990, 2004). A key difference is the statistical nature
of the measure we propose in this paper. Let us explain in terms of the familiar biproportional
techniques for matrix balancing in input-output analysis (e.g. Lahr and de Mesnard (2004)).

The problem is the estimation of a matrix based on the structure of a prior (matrix) and the
margins (of target matrix). Since the true matrix, denoted by Y∗ is not identifiable based on
available information, a constrained optimisation approach is needed. In particular, let Ŷ be the
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initial matrix, by RAS, following Stone et al. (1942), one obtains

Ỹ = RŶS

where R and S are diagonal matrices of, respectively, the cumulated row and column multi-
plicative adjustments. Lahr and de Mesnard (2004) refer to the difference between Ỹ and Y∗

as the gap between the projection and the target. The uncertainty about the prior matrix and the
target margins is referred to as reliability, and its incorporation in the biproportional techniques
is discussed, as is noted in Section 1 above.

In the notation of this paper, denote by x̂ the vector of all relevant input variables, including
the margins. Some of the variables may have zero-variances, which are fully reliable and will
not be adjusted. We denote the target by x∗. Each target margin corresponds to an accounting
equation, and the margin is fixed if it is fully reliable. By any chosen matrix balancing technique,
which may or may not explicitly incorporate the reliability of x̂, we obtain the adjusted x̃, with at
least some components different to those of x̂. Under the assumption E(x̃) = x∗, each proposed
scalar measure of accounting uncertainty is simply the expected gap between x̃ and x∗ according
to a chosen norm ∥x̃− x∗∥, as explained in Section 4.4. A statistical measure (i.e., the expected
gap) will be necessary because one cannot estimate the gap between x̃ and x∗ directly, insofar
as x∗ is unknown and is estimated by x̃. Of course, whether or not E(x̃) = x∗, a scalar measure
is always the expected gap between x̃ and E(x̃). To include the bias E(x̃)− x∗ is generally
difficult in reality, which is a matter beyond the scope of this paper.

3. Example: An inconsistency in input estimates in supply and use tables

To explain the practical use of a scalar uncertainty measure we include, as a motivating example,
a greatly simplified set of supply and use tables, see Bikker et al. (2013). With this example
we illustrate the need to have an uncertainty measure to compare reconciliation methods and the
convenience of having a scalar measure. In Table 1 the supply table is given at the top and the use
table at the bottom. The rows of the supply table are related to the supply of products and services,
and the columns to the producing sectors. The first two rows of the use table show the demand
for products and services, and the first two columns show the customer sectors. The economy
depicted in this example is a closed one, there is no trading with foreign countries. The tables do
not contain import, taxes on products, subsidies, trade and transport margins. The grand totals
of both tables can be derived directly from the other totals. There are only two sectors, industry
and services, and two goods groups, industrial products and services, see Bikker et al. (2013)
for more details.

In general the supply and use tables are subject to multiple constraints including the non-
negativity of all variables. Constraints that should be satisfied for this tables are:

• total supply equals total use for industrial products and services:

y1 + y2 + (−y5) + (−y6) + (−y7) = 0

y3 + y4 + (−y8) + (−y9) + (−y10) = 0

• the sums of the entries of the tables must also equal the row and column totals:

y1 + y3 + (−y5) + (−y8) + (−y11) + (−y13) = 0

y2 + y4 + (−y6) + (−y9) + (−y12) + (−y14) = 0
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Table 1. Supply and use table

Industry Services Total
Industrial products 700 (y1) 300 (y2) 1000
Services 100 (y3) 400 (y4) 500
Total 800 700

Industry Services Consumption Total
Industrial products 50 (y5) 190 (y6) 860 (y7) 1100
Services 170 (y8) 100 (y9) 180 (y10) 450
Wages 450 (y11) 350 (y12) 800
Operating surplus 130 (y13) 60 (y14) 190
Total 800 700 1040

• all entries must be positive:

yi > 0, i = 1, ..., 14.

Two constraints are not satisfied in the starting situation: total supply is unequal to total use for
industrial products and services. To obtain adjusted values that satisfy these multiple constraints,
we here use an optimization method that finds adjusted values that satisfy all constraints by min-
imizing the weighted sum of squared adjustments (see e.g. Stone et al. (1942)). This difference
(the objective function of the optimization problem) can be defined in different ways, giving rise
to different adjustment methods. The weighted least squares criterion is a common choice for the
objective function. The weights determine the relative size of the adjustments: values with large
weights are adjusted less than those with smaller weights. A common choice of weights is the
inverse of the variance of the initial estimates. This means that initial values with a small variance
get a large weight and are therefore less adjusted than initial values with large variances. Note
that for the weights only the relative sizes of the variances are relevant, so we only need to know
the variance up to a constant factor. Moreover, in many applications the relative variances cannot
all be estimated and expert judgments are made about the relative accuracy. In the absence of
knowledge about the relative accuracy, a weighting scheme that is sometimes used is weighting
by the inverse of the initial values. With these weights, larger values are adjusted more than the
smaller ones which means that we are minimizing a relative error rather than an absolute one.

The resulting adjusted values are determined by the choice of weights and to investigate
the impact of this choice, we applied three common weighting schemes: equal, inverse vari-
ance and inverse value, see Section 5.4 for details. The results are in Table 2. The variances
of ŷ were chosen arbitrarily for the purpose of this illustration. In addition, we have chosen
V (ŷ5 + ŷ8 + ŷ11 + ŷ13) = 3400 and V (ŷ6 + ŷ9 + ŷ12 + ŷ14) = 3000. We assume independent
input estimators otherwise. All the three sets of adjusted figures satisfy the constraints above.

In practice one would like to have criteria which can help to choose among the different solu-
tions and determine the most appropriate adjustment method. For all three adjustment methods
we can calculate the corresponding variance-covariance matrices. In the previous sections we
propose to use a scalar measure of uncertainty. This measure is based on the covariance of
the adjusted figures. As mentioned above we can use this scalar measure to compare different
adjustment methods. The relative efficiency (RE) will facilitate the choice between the different
methods.
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Table 2. Adjusted values ỹ(a) with the equal weight, ỹ(b) with the weights equal to the inverse of the variance of ŷ,
ỹ(c) with the weights equal to the inverse of ŷ.

ŷ Variance ỹ(a) ỹ(b) ỹ(c)

y1 700 100 718.5709 703.3753 725.7539
y2 300 1000 318.5709 322.6111 315.5935
y3 100 1000 88.5709 90.6055 93.6004
y4 400 100 388.5709 397.9464 380.4763
y5 50 500 31.4291 33.1235 48.1604
y6 190 1000 171.4291 167.3889 180.1241
y7 860 1000 834.2873 825.4771 813.0654
y8 170 1000 181.4291 179.3945 180.8793
y9 100 1000 111.4291 120.5363 104.8809
y10 180 1000 184.2873 188.6246 188.3182
y11 450 700 457.1418 450.5389 458.0027
y12 350 700 357.1418 358.3382 350.9089
y13 130 1200 137.1418 130.9239 132.3119
y14 60 1200 67.1418 74.2941 60.1558

4. Scalar approaches to accounting uncertainty

In this section we develop two different scalar approaches, and present a unified interpretation.
However, we would first like to clarify a necessary property, permutation invariance, that any
admissible measure should possess, see e.g. Watrous (2018).

4.1. Permutation invariance

Under the additive constraint (2), any of the following permutation rearrangements of the
estimated account can be considered as equivalent to each other:

[(−z̃) + ỹ2 + · · ·+ ỹp = (−ỹ1)], [ỹ2 + ỹ1 + · · ·+ ỹp = z̃], ...

In other words, the placement of a component variable in an additive account should not matter,
because we can always rearrange their positions in the account without changing the underlying
constraint. Thus, a scalar uncertainty measure is said to be strongly permutation invariant if it
remains the same for any permutation rearrangement of the accounting equation A. In practical
applications it could be convenient to rearrange the account. If for e.g. we know that a certain ini-
tial entry of the account should be treated as constant, meaning in our setting that it has variance
equal to zero, we would place that entry on the right side of the accounting equation.

Similarly, permutation rearrangements can be applied to a multiplicative accounting equation
under the same constraint. But the interpretation equivalence may be less intuitive. For instance,
[Value · (1/Quantum) = Price] is possibly just as acceptable as [Quantum · Price = Value],
whereas [Quantum · (1/Value) = (1/Price)] may seem somewhat unnatural. We consider two alter-
natives. Firstly, provided the components are all strictly positive, one may measure the accounting
uncertainty on the log scale, where equivalency of permutation rearrangements is more readily
acceptable:

[logQuantum + log Price = logValue], [logQuantum + (− logValue) = (− log Price)], ...

The transformation on the log scale makes it also easier to deal with the accounts uncertainties,
see Section 4.2.2.
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Secondly, a scalar uncertainty measure is said to be weakly permutation invariant if it remains
the same for any permutation rearrangement of the left-hand side of an account A, i.e. a permuta-
tion of only the ỹ’s given the choice of z. We consider weakly permutation invariance primarily as
an additional possibility for constructing admissible uncertainty measures for the multiplicative
account, as discussed in Section 4.2 below.

4.2. Covariance approach

4.2.1. Single additive account

We start with the additive account (2). Consider the variance-covariance matrix Σx̃ of the
adjusted vector

x̃ = (ỹ1, ỹ2, · · · , ỹp, z̃)T ,

we have that

Σx̃ =

(
Σỹ Σỹz̃

Σz̃ỹ Σz̃

)
Here Σỹ is the variance-covariance matrix of ỹ = (ỹ1, ỹ2, · · · , ỹp)T , and Σz̃ is the variance of
z̃ as it is just one variable and

Σỹz̃ = (cov(ỹ1, z̃), cov(ỹ2, z̃), ..., cov(ỹp, z̃))
T

and

Σz̃ỹ = (cov(z̃, ỹ1), cov(z̃, ỹ2), ..., cov(z̃, ỹp))

are (p, 1) and (1, p) dimensional matrices. As ỹ’s are the adjusted vectors and satisfy the account
in (2) we have that

p∑
k=1

ỹk = z̃ (4)

and we will also have that:

p∑
k=1

cov(z̃, ỹk) =

p∑
k=1

cov(ỹk, z̃) = V (z̃)

and for k = 1, ..., p

p∑
i=1

cov(ỹk, ỹi) = cov(ỹk, z̃).

Now, to define a simple scalar summary of the variance-covariance matrix Σx̃ we consider the
following quantities: the sum of all elements (variances and covariances) of Σx̃ and the sum
of the diagonal elements (variances) only. The first scalar, defined by τ1(A) will be the sum of
variances of ỹ’s and z̃ and will include all covariances. The second scalar, τ2(A) is actually the
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trace of the matrix Σx̃:

τ1(A) = 1TΣx̃1 =

p∑
k,i=1

cov(ỹk, ỹi) + 2

p∑
k=1

cov(ỹk, z̃) + V (z̃) = 4V (z̃) (5)

and

τ2(A) = Trace(Σx̃) =

p∑
k=1

V (ỹk) + V (z̃). (6)

The second measure τ2 is also called the total variation (Seber, 1984) and, in the context
of accounts with constraints, it will generally be preferable to the first measure τ1 for several
reasons.

First, due to the constraint (4), τ1 actually contains ‘less’ of the information in Σx̃, since
τ2 = Trace(Σỹ) + τ1/4. We lose the variances of ỹ’s.

Next, observe that τ2 is strongly permutation invariant, whilst τ1 is only weakly permutation
invariant. To see this consider the two permutations of the estimated account:

[ỹ1 + ỹ2 + · · ·+ ỹp = z̃] and [(−z̃) + ỹ2 + · · ·+ ỹp = (−ỹ1)].

Define x̃1 = (ỹ1, ..., ỹp, z̃)
T and x̃2 = ((−z̃), ỹ2..., ỹp, (−ỹ1))

T , with covariance matrices Σx̃1

and Σx̃2
. Then we will have that τ x̃1

1 (A) = 4V (z̃) and τ x̃2
1 (A) = 4V (−ỹ1) and we would have

different values for τ1. This is not the case for τ2, which remains the same for all permutations.
Moreover, in many practical situations, some of the inputs may be treated as known and held
fixed in the adjustment, such as when certain fiscal figures are obtained from the tax office for
the Structural Business Statistics. The measure τ1 could be 0 in such cases, if we rearrange
the account so that the right-hand side consists only of the fixed components, and the variables
on the left hand side, denoted by ỹ = (ỹ1, ..., ỹp∗)T , sum up to a constant z, where p∗ is the
number of unfixed components. For Σx̃ we will then have τ1 = 1TΣx̃1 ∝ 1TΣỹ1 = V (z) = 0.
In contrast, τ2 = Trace(Σỹ) + V (z) = Trace(Σỹ) would remain a meaningful measure of the
accounting uncertainty. From now on we consider only τ2.

4.2.2. Multiplicative account

Consider now the multiplicative account with p = 2. As noted previously, a general option is to
measure the accounting uncertainty on the log scale, which is additive. Let the log-transformed
account be B = [log(ỹ1) + log(ỹ2) = log(z̃)]. We can define

τ2(B) = V (log(ỹ1)) + V (log(ỹ2)) + V (log(z̃)). (7)

In Section 2 we also mentioned an alternative approach on the original scale, which is weakly
permutation invariant. This approach can be described as follows. Let (z̃, D) be a one-one trans-
formation of (ỹ1, ỹ2), so that D summarizes all the conditional variation in (ỹ1, ỹ2) given z̃.
Weakly permutation invariance is achieved provided V (D) is invariant for ỹ-permutations, i.e.
D is symmetric in (ỹ1, ỹ2). A simple admissible choice is D(ỹ1, ỹ2) = ỹ1 + ỹ2, for which the
expectation and variance are well defined. In particular, we obtain V (D) = 1TΣỹ1. By the total
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variance argument we can write that

V (D) = Ez̃[V (D|z̃)] + Vz̃[E(D|z̃)]. (8)

The conditional covariance between ỹ1 and ỹ2 is given by

Cov(ỹ1, ỹ2|z̃) = E(ỹ1ỹ2|z̃)− E(ỹ1|z̃)E(ỹ2|z̃) = z̃ − E(ỹ1|z̃)E(ỹ2|z̃),

which is needed for the first term on the right-hand side of (8). One may consider the second
term on the right-hand side of (8) to be a summary of the variance of z̃, in cases it is not treated
as fixed. We therefore define a scalar measure, denoted by τ(A), to be

τ(A) def
= E[V (D|z̃)] + V (z̃)

= E[V (ỹ1|z̃)] + E[V (ỹ2|z̃)] + 2E(z̃)− 2E[E(ỹ1|z̃)E(ỹ2|z̃)] + V (z̃). (9)

The measure (9) involves in one way or another the first two moments of ỹ1, ỹ2 and z̃ on the
original scale. It is weakly permutation invariant given any symmetric D. Since this measure is
based on the decomposition of the total variance, we will also refer to this particular form of
covariance approach for multiplicative accounts as the decomposition approach.

4.2.3. Extension to multiple additive constraints

On many occasions, e.g. supply and use tables in National Accounts, we will have to consider
multiple additive constraints. These constraints may be connected because they have variables in
common, which calls for a simultaneous approach. In such cases we will have multiple equations
like (2). The y-variables on the left-hand side of these equations are different and possibly over-
lapping subsets of the complete p-set of y-variables. The z-variables are considered to be linear
functions of the y-variables and appear only on the right-hand side of the equations. The z-
values need not be all different because there may be different subsets of y-variables that add-up
to the same z-value. These multiple additive constraints can formally be denoted by the system
of equations:

Hy = z, (10)

where H is a q × p matrix with constant elements such as 0 and 1, and q is the number of
constraints and the size of z-vector. The vector x̃ is now given as

x̃ = (ỹ1, ỹ2, · · · , ỹp, z̃1, z̃2, · · · , z̃q) = (ỹ,Hỹ) = (x̃1, x̃2, · · · , x̃p, x̃p+1x̃p+2, · · · , x̃p+q).

The variance-covariance matrix Σx̃ has the following structure

Σx̃ =

(
Σỹ Σỹz̃

Σz̃ỹ Σz̃

)
=

(
Σỹ ΣỹH

T

HΣỹ HΣỹH
T

)
.

The scalar measure τ2 can be defined as in the single-constraint case:

τ2(A) = Trace(Σx̃) =

p∑
k=1

V (ỹk) +

q∑
l=1

V (z̃l) = Trace(Σỹ) + Trace(Σz̃).

Apart from the supply and use table example cited above, multiple additive constraints also
arise when accounts are hierarchical, with a higher level datum being itself the sum of lower-level
data. Such a hierarchical or nested account can be rewritten as two equations, one is the higher
level account with the lower-level variables substituted and the other consists of the lower-level
variables and their sum (the higher-level datum).
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4.3. Deviation approach

4.3.1. Additive account

For the additive account (2), let the vector E(x) = (M1, ...,Mp,Mp+1)
T be the expectation

of the true x = (y1, y2, ..., yp, z), such that x̃− E(x) contains the deviation of all the adjusted
components from those of their expected values. We can adopt a suitable scalar summary of
the component-wise deviations, generically denoted by δ = δ(x̃−Mx). Different choices are
possible. Two simple choices could be

δ1 =

p+1∑
k=1

wk|x̃k −Mk| and δ2 =

p+1∑
k=1

wk(x̃k −Mk)
2, (11)

where x̃k is the k-th element of x̃ and wk ≥ 0, to be referred to as the averaging weights. As a
scalar uncertainty measure we use

∆i(A) = E(δi) (i = 1, 2). (12)

The deviation approach (12) can easily be made strongly permutation invariant. For δ1 and δ2
above, this is the case because the wk’s are component-specific rather than position-specific.
We can vary the weights given to the different components, including wk = 0 for those that
are known and held fixed in the adjustment. Notice that ∆2 is closely related to τ2 under the
covariance approach: setting wi ≡ 1 yields a measure that is equal to τ2(A) by (6). In this way
we may consider the deviation approach based on ∆2 to be a generalization of the covariance
approach based on τ2.

For an additive account, when the sum z is fixed and known,2 we can view the account as a
decomposition of this total z into its components ỹ1, . . . , ỹp, or as a classification of the amount
z into p-categories. The differences ỹk −Mk can be interpreted as the classification errors that
sum to zero over k, i.e. the sum of the positive differences equals minus the sum of the negative
ones. The sum of the absolute differences is related to the Earth Movers Distance (EMD) which
is a measure for the distance between two discrete distributions. It measures the amount of mass
that must be redistributed to move from one distribution (ŷk) to the other (ỹk); see e.g. Hitchcock
(1941). The measure δ1 is the weighted sum of the absolute differences. An EMD-related choice
is wk = 1/2, in which case δ1 is the amount of z that is classified differently by ỹk than by Mk.
For δ2 a related choice is wk = 1/p, in which case it becomes the mean squared classification
error.

4.3.2. Multiplicative account

For the multiplicative account with p = 2, the expected account on the log scale equals

µ(B) = [E(log(ỹ1)) + E(log(ỹ2)) = E(log(z̃))].

Let mk = E(log(ỹk)), for k = 1, 2, and mz̃ = E(log(z̃)). We have µ(B) = [m1 +m2 = mz̃],
which implies eµ(B) = [em1em2 = emz̃ ]. It seems natural to use the proportional deviation here,
i.e. ỹ1/em1 , ỹ2/em2 and z̃/emz̃ . To measure in a symmetric manner the departure on each side

2 In some practical applications it could occur that some figures can not be adjusted, for e.g. if figures are already
published.
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of unity, a transformation to the log scale is employed. This yields then

δ1 =

3∑
k=1

wk| log(x̃k)−mk| and δ2 =

3∑
k=1

wk(log(x̃k)−mk)
2, (13)

and the corresponding ∆(A) by (12). Again, this amounts to measuring the uncertainty of a
multiplicative account A in terms of the corresponding B on the log scale. In section 5.2 we
illustrate this approach for the index problem.

4.4. General framework for a scalar uncertainty measure

In both the covariance and deviation approaches above the generic accounts (10) have fixed con-
straint matrix H. While this is the case in many applications, including the supply-and-use tables
for the National Accounts, there do exist situations where the constraint matrix is random itself.
For example, let y be the vector of domain some population counts in year t, and z the corre-
sponding vector in year t+ 1; let H be the gross-flow distribution matrix, whose elements are
non-negative and sum to 1 in each column. One may consider Hy = z as a population account
with random constraint matrix H. The matrix H has the same dimension as in (10), however it
has stochastic entries. We now present expected norm as a scalar measure of the generic account-
ing system (10), with fixed or random constraint matrix H, which provides a unified interpretation
of the covariance and deviation approaches above.

For a vector x∗ that we want to adjust so that (10) is fulfilled, the accounting system may be
expressed by A(x∗) = [Hy = z;x = x∗]. Define the account space Ω for all the x-vectors that
satisfy the account as follows:

Ω = {x : H(x)y(x) = z(x)}.

In particular, let x0 be the true x-vector, where x0 ∈ Ω, and A0 = A(x0) = [Hy = z;x = x0].
Let x̂ be the vector of initial input estimates, where x̂ ̸∈ Ω, if H(x̂)y(x̂) ̸= z(x̂). Let x̃ be
the vector of adjusted estimates, where x̃ ∈ Ω and H(x̃)y(x̃) = z(x̃), with the corresponding
estimated system Ã = A(x̃) = [Hy = z;x = x̃].

Thus, the account space Ω is a subset of the vector space of x; the true vector x0 is a point
in Ω; the initial vector x̂ is generally a point outside of Ω; the adjusted vector x̃ is a point in Ω,
which is typically obtained from x̂ via some minimum changes subjected to the constraints (10).
The difference x̂− x0 is the error of the initial vector of estimates, the change x̃− x̂ is needed in
order to move from x̂ outside Ω to x̃ inside Ω, and the final difference x̃− x0 is the error of the
adjusted vector of estimates. An illustration of [x1 + x2 = x3] with fixed x3 is given in Figure
1. The account space Ω is the line intersecting both axes in this case, on which (x01, x02) marks
the point of the true account. The input estimator x̂ = (x̂1, x̂2) is outside the account space Ω,
insofar as the corresponding point is not on the line. Orthogonally projecting x̂ onto the line (Ω)
yields the adjusted point (x̃1, x̃2). The change x̃− x̂ is marked by the line connecting these two
points.

Figure 1. Illustration of [x1 + x2 = x3] with fixed x3

One may envisage the initial and final vectors of error, i.e. x̂− x0 and x̃− x0, as two vectors
relocated to x0 as the origin, i.e. one may centre the vector space of x at x0. The measure
of the size (or length) of each error vector is then just a question of norm. The sizes of the
errors are unknown for the observed x̂ and x̃ because x0 is unknown. However, it is possible to
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measure the average size over the distribution of x̂ and x̃, respectively, if these are (assumed to)
be known or can be estimated (see sections 5.1 and 5.3). Such averaging measures are referred to
as statistical uncertainty measures. Figure 1 provides a geometric interpretation of the expected
norm. All the possible points of (x̂1, x̂2) can be placed on the infinite many concentric circles
around (x01, x02). The average radius of these circles, i.e. E[(x̂1 − x01)

2 + (x̂2 − x02)
2], which

is the expected Euclidean norm of x̂− x0, is marked by the circle in Figure 1. Meanwhile,
all the adjusted points (x̃1, x̃2) are on the line passing through (x01, x02), so that the expected
Euclidean norm E[(x̃1 − x01)

2 + (x̃2 − x02)
2] can be indicated by two points on the line with

equal distance to (x01, x02).
Weights can be introduced in the norm. For instance, the weighted Euclidean norm (WEN) of

v = x̃− x0 is given by

∥v∥wen =

K∑
i=1

aiv
2
i , (14)

where ai ≥ 0, and the corresponding statistical uncertainty measure given by

∆v = E
(
∥v∥wen

)
.

The WEN (14) is strongly permutation invariant, provided component-specific weights ai. Pro-
vided unbiased x̃, setting ai ≡ 1, we recover τ2 by the covariance approach; setting ai to be the
averaging weights wi, we recover ∆2 by the deviation approach, or ∆1 if we replace the L2 norm
in (14) by the L1 norm. Thus, using the expected norm as a scalar statistical uncertainty measure
of an accounting system unifies the covariance and deviation approaches.

5. Illustrations and applications

In this section we illustrate the theory developed above for both additive and multiplicative
accounts under simplified yet typical scenarios, for which closed expressions of the uncertainty
measures can be obtained. For more complex situations, we outline a simulation-based compu-
tation approach and compare it to the analytic results obtained in the example of an additive
account. Finally, we present an application to time series data subjected to additive constraints.

5.1. Additive account with independent normal input estimators

Suppose we have the input estimates ŷ = (ŷ1, . . . , ŷp) ∼ Np(µ,Σy), where µ = (µ1, . . . , µp)
and Σy is a diagonal matrix with the diagonal values σ2

k = V (yk) = σ2µk, for k = 1, . . . , p.
The scenario of independent normal input estimators represents a standard practical situation,
where one appeals to the Central Limit Theorem for the distribution of the estimators derived
from independent large sample surveys. Suppose the additive accounting equation of the form
(2), where z̃ = z is treated as fixed. Consider a common benchmarking method, which yields the
adjusted estimates

ỹk = ŷk + (z −
p∑

j=1

ŷj)νk, (15)

where νk are the adjustment weights that sum up to 1, for k = 1, . . . , p, by which the total
difference is simply apportioned to each component estimator.

In (A1) and (A2) from Appendix A we derive the expectation and variance for ỹk. It is easy to
see that since yk have the normal distributions, then the random variables ỹk −Mk, k = 1, . . . , p,
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also have normal distributions N(0, σ̃2
k) and due to the additive constraint ŷ1 + · · ·+ ŷp = z, the

ỹk’s are negatively correlated with each other.
Suppose one would like to compare two choices: ν1k = 1/p and ν2k = µk/

∑p
j=1 µj , which

yield, respectively, the following adjusted estimates

ỹ1k = ŷk +
1

p
(z −

p∑
j=1

ŷj) (16)

and

ỹ2k = ŷk +
µk∑p
j=1 µj

(z −
p∑

j=1

ŷj). (17)

Denote the reconciled estimated account by A1 based on (16) and by A2 based on (17).
We want to compare uncertainty measures defined above for these accounts. It is obvious from

(5) that τ1(A1) = 0, since z is fixed. For the measure τ2 given by (6) from (A4) follows that:

τ2(A1)− τ2(A2) =

p∑
j=1

V (ỹ1k)−
p∑

j=1

V (ỹ2k) > 0.

This implies that according to τ2, the adjustment method (16) is always more uncertain than (17)
as long as the µk’s are not all equal to each other.
Similarly for ∆2 given by (12) derived from δ2 in (11), for arbitrary positive wk ≥ 0

∆2(A1|z)−∆2(A2|z) = E(

p∑
k=1

wk(ỹ1k −Mk)
2)− E(

p∑
k=1

wk(ỹ2k −Mk)
2) (18)

=

p∑
k=1

wk(V (ỹ1k −Mk)− V (ỹ2k −Mk)) (19)

=

p∑
k=1

wkσ
2
(√∑p

j=1 µj

p
− µk√∑p

j=1 µj

)2

≥ 0. (20)

where the notation (·|z) emphasizes that z̃ = z is fixed. Again we conclude that the adjustment
method (16) is always more uncertain than (17).

Moreover, |ỹk −Mk| has the half-normal distribution with expectation equal to σ̃k

√
2/π, we

obtain the measure ∆1 given by (12) derived from δ1 in (11):

∆1(A|z) =
p∑

k=1

wkσ̃k

√
2/π.

We have that

∆1(A1|z)−∆1(A2|z) = σ
√
2/π

p∑
k=1

wk

(√√√√ 1

p2

p∑
j=1

µj + µk(1−
2

p
)−

√
µk −

µ2
k∑p

j=1 µj

)
.

Again, the adjustment method (16) is more uncertain than (17) because

1

p2

p∑
j=1

µj + µk(1−
2

p
) ≥ µk − µ2

k∑p
j=1 µj

– see (A4) in Appendix A, where the inequality holds as long as the µk’s are not all equal to each
other.
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5.2. A multiplicative account: The index problem

Here we illustrate the covariance and decomposition approaches to the multiplicative account:

(Quantum Index) · (Price Index) = Value Index ⇔ IQ · IP = IV .

The account above is related to the so-called index problem, where in general the directly
calculated indices do not satisfy the constraint, i.e. ÎQ · ÎP ̸= ÎV . To focus on the compari-
son between alternative adjustment methods for the index problem, we make the following
simplifying assumptions.

• The true account is A0 = [1 · 1 = 1], or B0 = [0 + 0 = 0] on the log-scale.
• The initial estimates are unbiased: E(x̂) = x0, where x̂ = (ÎQ, ÎP , ÎV ) and x0 =
(IQ, IP , IV ).

• Let ι̂P = log ÎP , ι̂Q = log ι̂Q and ι̂V = log ÎV . The initial estimates are independent and

V (ÎV ) = c1V (ÎP ) and V (ÎQ) = c2V (ÎP );

V (ι̂V ) = γ1V (ι̂P ) and V (ι̂Q) = γ2V (ι̂P ).

Consider two different adjustments of ÎQ · ÎP ̸= ÎV . First, the deflation adjustment is common
e.g. in the National Accounts, by which the quantum index is derived from the other two, yielding
A∗ = [ĨQ = ÎV /ÎP ] = [ĨQ · ÎP = ÎV ], and on the log-scale:

B∗ = [̃ιQ = ι̂V − ι̂P ] = [̃ιQ + ι̂P = ι̂V ]. (21)

Second, treating proportional adjustment in a symmetric manner leads us to consider joint
adjustment by the following minimization problem on the log-scale:

(ι̃V − ι̂V )
2 + (ι̃Q − ι̂Q)

2 + (ι̃P − ι̂P )
2 subjected to ι̃V = ι̃Q + ι̃P .

Denote the corresponding estimated account by A = [ĨQ · ĨP = ĨV ] and B = [̃ιQ + ι̃P = ι̃V ]
on the log-scale. Let 3α = ι̂V − (ι̂Q + ι̂P ). Using the method of Lagrange multipliers we will
obtain the second estimate

ι̃V = ι̂V − α = 2
3 ι̂V + 1

3 ι̂Q + 1
3 ι̂P

ι̃Q = ι̂Q + α = 1
3 ι̂V + 2

3 ι̂Q − 1
3 ι̂P

ι̃P = ι̂P + α = 1
3 ι̂V − 1

3 ι̂Q + 2
3 ι̂P

⇔


ĨV = ÎV exp(−α)

ĨQ = ÎQ exp(α)

ĨP = ÎP exp(α).

(22)

Consider first the scalar measure τ2 on the log-scale given by (7). For the deflation adjustment
(21), we have ι̃V = ι̂V , ι̃P = ι̂P and ι̃Q = ι̂V − ι̂P . It follows that

τ2(B∗) = V (ι̂V ) + V (ι̂P ) + V (ι̂V − ι̂P ) = 2(γ1 + 1)V (ι̂P ).

The joint adjustment (22) yields

τ2(B) =
2

3
(γ1 + γ2 + 1)V (ι̂P ).

Putting these together, we have

τ2(B) ≤ τ2(B∗) ⇔ γ2 ≤ 2(γ1 + 1).

Unless the variance of the initial quantum index estimator is at least double the sum of the other
two, the deflation adjustment is more uncertain than the joint adjustment.
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Consider next the decomposition approach (9) which is weakly permutation invariant. Under
the deflation adjustment, where ỹ1 = ĨQ = ÎV /ÎP , ỹ2 = ĨP = ÎP and z̃ = ĨV = ÎV , we obtain

τ(A∗) ≈ (2 + c1)V (ÎP )

– see Appendix B. Whereas, for the joint adjustment, we have ĨV = Î
2
3

V Î
1
3

Q Î
1
3

P , ĨQ = Î
1
3

V Î
2
3

Q Î
− 1

3

P

and ĨP = Î
1
3

V Î
− 1

3

Q Î
2
3

P . Let D = ĨQ + ĨP . Using 1/x+ x ≈ 2 for x ≈ 1, we have

D = Î
1
3

V Î
1
6

Q Î
1
6

P [(ÎQ/ÎP )
1
2 + (ÎQ/ÎP )

− 1
2 ] ≈ 2Î

1
3

V Î
1
6

Q Î
1
6

P = 2Ĩ
1
2

V ,

i.e. D is approximately a constant given ĨV . It follows that E[V (D|ĨV )] ≈ 0, so that

τ(A) ≈ V (ĨV ) ≈
1

9
(4c1 + c2 + 1)V (ÎP ).

Again, unless the initial quantum index estimator has considerably larger variance than the other
two, the deflation adjustment is more uncertain than the joint adjustment, since

τ(A) ≤ τ(A∗) ⇔ c2 ≤ 17 + 5c1.

5.3. Simulation-based computation

5.3.1. General method

Generally speaking, the adjusted estimates x̃ for a general accounting system A by (10) may
not be available in a closed expression. A simulation-based approach to the computation of the
uncertainty measures can be generically given as follows.

1. Specify and estimate the joint distribution of the input estimators, denoted by f(x̂);
2. For a large J , simulate J input vectors x(j) ∼ f(x̂) independently for j = 1, . . . , J ;
3. For each simulated x(j), obtain the corresponding adjusted vector x̃(j), in the same way as the

actual adjusted vector x̃ based on the realized input vector x̂;
4. Estimate E(x̃) and Σx̃, respectively, by the resample mean and variance-covariance matrix

over the J simulated vectors x̃(1), ..., x̃(J), and the estimated measure τ2 by the covariance
approach;

5. Calculate the deviation summaries δ(j)1 and δ
(j)
2 corresponding to each (x̃(j), E(x̃)); estimate

∆1 and ∆2 by the deviation approach, respectively, as the resample mean of δ(j)1 and δ
(j)
2 over

the J simulated deviation summaries.

The computation approach can easily be modified for the multiplicative account (1), whether the
uncertainty measure is defined on the log scale or by the decomposition approach (9).

5.3.2. Illustration using an additive account with normal inputs

To illustrate the simulation-based computation approach, and to compare it with analytical
results, we consider a single additive account as in Section 5.1 with the following specifications.
Let ŷ ∼ N(µ,Σŷ), with p = 10, and

µ = (150, 160, 140, 20, 15, 7, 2000, 2100, 2200, 550)

and Σy a diagonal matrix with diagonal elements 0.12µk, for k = 1, ..., 10. This completes Step
1, which specifies the distribution f(ŷ), now that z is treated as fixed. Let Step 2 be completed
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with J = 1000. For Step 3, we calculate the two adjusted vectors by (16) and (17), respectively,
for each simulated vector y(j), j = 1, ..., 1000. Finally, complete Step 4 to obtain the estimated
measure τ2 and Step 5 to obtain the estimated measures ∆1 and ∆2.

Table 3. Uncertainty measures ∆1, ∆2 and τ2 for ŷ, ỹ1 by (16) and ỹ2 by (17).

∆1(ŷ) ∆2(ŷ) τ2(ŷ) ∆1(ỹ1) ∆2(ỹ1) τ2(ỹ1) ∆1(ỹ2) ∆2(ỹ2) τ2(ỹ2)
Simulated 8.38 7.45 74.56 8.74 6.71 67.18 7.50 5.59 55.95
Exact 8.32 7.34 73.42 8.68 6.61 66.08 7.42 5.49 54.87

In Table 3, the simulation-based measures are compared to the analytic results described in
Section 5.1. In addition, we included the scalar measures of the input estimator ŷ, to give a better
appreciation of the adjustment effect. We observe the following. (I) Given the vector of interest,
which can be the initial ŷ, ŷ1 by (16) or ŷ2 by (17), the absolute values of τ2, ∆1 and ∆2 differ
from each other, which serves as a reminder that the uncertainty measures are to be interpreted
relatively between the different vectors, rather than in absolute terms. (II) With J = 1000 the
simulation-based values of the uncertainty measures are already quite close to the exact ones.
We have carried out simulations for larger values of J and observed that the uncertainty mea-
sures converge to the corresponding exact values. More importantly, the simulation-based results
agree with the exact results even better when the measures are used relatively. For instance,
∆1(ỹ2)/∆1(ỹ1) = 7.42/8.68 = 0.855 based on the exact values, and it is 7.50/8.74 = 0.858
based on the simulation-based results. Similarly for the other comparisons. (III) The numeri-
cal results confirm the analytic conclusion in Section 5.1, namely, the adjustment method (16) is
more uncertain than (17). Indeed, the adjusted vector by (16) is more uncertain than the input vec-
tor ŷ, whereas the adjusted vector by (17) is less uncertain than the input vector ŷ; see Appendix
A for the analytic details in this respect. Finally, (IV) in Section 1 we defined the relative effi-
ciency as τ(A1)/τ(A2), or ∆(A1)/∆(A2), which facilitates a choice of adjustment method.
Based on the exact results in Table 3, we obtain

τ2(A2)

τ2(A1)
=

54.87

66.08
< 1,

∆1(A2)

∆1(A1)
=

7.42

8.68
< 1,

∆2(A2)

∆2(A1)
=

5.49

6.61
< 1.

The conclusion is the same as with the simulation-based results.

5.4. Application to the supply and use tables

The supply and use tables introduced in Section 3 are subject to multiple constraints including
the non-negativity of all variables. For the multiple constraint case of the supply and use tables
where an optimization approach to adjustment is used, no analytical results are available and we
applied the simulation approach to assess the uncertainty measures, with the following details:

• The initial estimates are the values ŷi, i = 1, . . . , 14 from Table 2. The adjustment objective
amounts to satisfying the accounting system (10) where Hy = z is given by

y1 + y2 + (−y5) + (−y6) + (−y7) = 0

y3 + y4 + (−y8) + (−y9) + (−y10) = 0

y1 + y3 + (−y5) + (−y8) + (−y11) + (−y13) = 0

y2 + y4 + (−y6) + (−y9) + (−y12) + (−y14) = 0

and all adjusted values ỹi should be positive.
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• We assume independent truncated (at zero) normal distributions for ŷi, i = 1 . . . 14, with the
expectation set at the corresponding observed value, and the variance as in Table 2.

• We consider three weighted least squares schemes: equal, inverse variance and inverse value.
• We set J = 1000 as the number of simulations.
• We obtain the benchmark adjustments by the R-package rspa (van de Loo 2015). Note that,

while the initial estimates, are taken to be independent, due to the application of the constraints
to these initial estimates, the adjusted estimates have non-zero covariances.

• We calculate the scalar measures τ2, ∆1 and ∆2 for each adjustment method.

Table 4. Uncertainty measures for different weighting methods for the supply and use tables.

Weighting method τ2 ∆1 ∆2

Equal 8026.1 156.0 772.2
Inverse variance 7535.7 152.7 786.8
Inverse value 10239.1 175.5 1006.5

Tabel 4 shows that the adjustment method using the inverse of the variance as weights is overall
the best performing method, whereas using weights that are not based on the relative accuracy
(here the inverse value) can have a considerable adverse impact on the uncertainty measures.
Despite the variances have been set arbitrarily in this case, which are not always bigger for the
variables with larger initial estimates (Table 2), the illustration demonstrates that generally the
weights should be chosen carefully in practice.

5.5. An application to time series data

In this section we apply the simulation approach described in Section 5.3 to the benchmarking of
time series data Daalmans and Di Fonzo (2014). The data set consists of multiple time series for
the EU Quarterly Sector Accounts (EUQSA), flow variables only. The time series are assumed to
be independent of each other and should be adjusted to agree with benchmark values. Denote the
quarterly series by ŷ and the yearly series by z, where we have 28 quarterly values and 7 yearly
values for 61 independent series. All yearly values are treated as benchmarks for the quarterly
values. Di Fonzo and Marini (2011) describe this data in more detail. We apply the simulation
approach with the following details:

• Let ŷilk be the input quarterly figure, where i = 1, . . . , 4 for quarters, l = 1, ..., 7 for years and
k = 1, . . . , 61 for time series. Let zlk be the corresponding yearly figures, which are treated as
fixed. The benchmarking objective amounts to the accounting system (10) given by

A = [ỹ1lk + . . .+ ỹ4lk = zlk; l = 1, ..., 7; k = 1, ..., 61], with ỹilk ≥ 0.

• We assume independent truncated normal distributions of ŷilk, with the expectation set at the
corresponding observed value, and variance equal to σ2ŷilk, for some fixed σ2.

• We consider three different adjustment methods, denoted by Denton-Cholette, Fernandez and
Chow-Lin; see e.g.(Denton 1971), (Dagum and Cholette 2006) and (Chow and Lin 1971),
for details.

• We set J = 1000 as the number of simulations.
• We obtain the benchmark adjustments by the R-package tempdisagg (Sax and Steiner

2003).
• We calculate the scalar measures τ2, ∆1 and ∆2 of the account A for each combination of
(l, k) and present their average values in Table 5.
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Table 5. Averaged uncertainty measures for different adjustments methods for the time series data

Adjustment Method τ2 ∆1 ∆2

Denton-Cholette 25906.1 260.0 25880.2
Chow-Lin 25589.1 255.2 25563.5
Fernandez 25711.4 258.1 25685.7

Figure 2. Six selected input (preliminary) and adjusted time series

Figure 2 shows 6 selected input (or preliminary) and benchmarked time series. For two series
the adjustments make little difference. For the other four series it is not obvious from these plots
which method is the least uncertain. However, based on the results (Table 5) by the proposed
approach, one may conclude that for these data the Chow-Lin method is the least uncertain
according all the three scalar measures, but the difference is rather small in this case. For instance,
the ratio between the smallest and the largest average ∆2 is 25563.5/25904.8 = 0.987.

6. Final remarks

In this paper we propose a new approach for measuring the uncertainty of an estimated system
of accounting equations. We consider an accounting system as a single entity, and define scalar
uncertainty measures that capture both the uncertainty of the inputs estimates and the effects of
adjustments: In Section 3 the same optimization method is applied on aggregated supply and
use tables for three different weighting schemes, reflecting different uncertainties in the initial
estimates; In Section 5.5 we compared different benchmarking methods for time series data.
Compared to the use of a variance-covariance matrix of the adjusted estimators involved in an
accounting system, our approach has three important practical advantages:

(i) The scalar measures of different adjustment methods can be directly compared to each
other to facilitate a univocal choice among them, as has been demonstrated for a number of
different situations in Section 5.

(ii) A scalar measure is easy to interpret as the expectation of a chosen norm of the error vector.
(iii) A large accounting system (like the Systems of National Accounts) is often divided into

multiple (say, K) satellite systems. The scalar measures of the K satellite systems can be
easily combined to yield a scalar measure of the whole system. For instance, in the case of
an L2 norm like (14), the scalar measures of satellite systems are additive, and the resulting
sum is the scalar measure of the accounting system which consists of these satellite systems.
In contrast, one cannot directly combine K variance-covariance matrices into that of the
whole system, unless the satellite systems can be obtained independently of each other.
Even then, combining the K matrices into a single block-diagonal matrix does not make it
simpler to interpret, or easier for one to choose among alternative adjustment methods.

To define and compute the uncertainty measures we need to specify three components: the
initial estimates, including their joint distribution; the system of accounting equations; and the
adjustment method. In simple situations the distribution of the initial estimators can be speci-
fied directly. However, generally this is not an easy task. Thus, in order to apply the proposed
approach to a large accounting system, the most difficult task may still be the explicit specifica-
tion of the joint distribution of the input vector and the constraints involved. For this one needs to
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work with the subject experts, and there may be other technical issues that need to be resolved.
It will require effort that is beyond the scope of this paper. But we have indicated a road map
forward.

A. Analytic results for Section 5.1

Let ỹk = yk + (z −
∑p

j=1 yj)νk , for k = 1, . . . , p. Its expectation and variance are given by

E(ỹk) = E(yk) + E(z −
p∑

j=1

yj)νk = µk + (z −
p∑

j=1

µj)νk =: Mk (A1)

V (ỹk) = (1− νk)
2V (yk) + ν2k

∑
j ̸=k

V (yj) = ν2k

p∑
j=1

V (yj) + V (yk)(1− 2νk) =: σ̃2
k. (A2)

The additive constraint ỹ1 + · · ·+ ỹp = z implies that the ỹk’s are negatively correlated with each other. Provided
V (yk) = σ2

k = σ2µk , for k = 1, . . . , p, we have

V (ỹk) = ν2kσ
2

p∑
j=1

µj + σ2µk − 2νkσ
2µk. (A3)

Notice that V (ỹk) < V (yk) only if
∑p

j=1 µj < 2µk/νk . This is not the case given (16), which would require∑p
j=1 µj < 2pµk; but it is always the case given (17), since µk∑p

j=1 µj

∑p
j=1 µj < 2µk . Moreover,

V (ỹ1k)− V (ỹ2k) = σ2
( 1

p2

p∑
j=1

µj −
2

p
µk −

( µk∑p
j=1 µj

)2
p∑

j=1

µj +
2µk∑p
j=1 µj

µk

)
(A4)

= σ2
( 1

p2

p∑
j=1

µj −
2

p
µk +

µ2
k∑p

j=1 µj

)
= σ2

(√∑p
j=1 µj

p
−

µk√∑p
j=1 µj

)2
≥ 0. (A5)

B. τ (A∗) by the deflation adjustment

Apply the Taylor expansion for f(ÎP ) = ÎV /ÎP at IP , where ÎP and ÎV are independent of each other, and the true
IP and IV are both assumed to be equal to 1, we have

τ(A∗) = E
[
V (

ÎV

ÎP
|ÎV )

]
+ E

[
V (ÎP |ÎV )

]
+ 2E(ÎV )− 2E

[
E(

ÎV

ÎP
|ÎV )E(ÎP |ÎV )

]
+ V (ÎV )

≈ E
[
V (

ÎV

I2P
(ÎP − IP )|ÎV )

]
+ V (ÎP ) + 2− 2E(ÎV ) + V (ÎV )

= E(Î2V )V (ÎP ) + V (ÎP ) + 2− 2 + V (ÎV )

= (V (ÎV ) + 12)V (ÎP ) + V (ÎP ) + V (ÎV )

≈ (2 + c1)V (ÎP ).

Notice that in the above we have used the fact that typically V (ÎV )V (ÎP ) ≪ V (ÎP ).
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