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REINFORCEMENT LEARNING WITH LIMITED PRIOR KNOWLEDGE IN

LONG-TERM ENVIRONMENTS

by David M. Bossens

Increasingly, artificial learning systems are expected to overcome complex and open-

ended problems in long-term environments, where there is limited knowledge about the

task to solve, the learners receive limited observations and sparse feedback, the designer

has no control over the environment, and unknown tasks may present at random times

to the learner. These features are still challenging for reinforcement learning systems,

because the best learning algorithm and the best hyperparameters are not known a

priori. Deep reinforcement learning methods are recommended but are limited in the

number of patterns they can learn and memorise. To overcome this capacity issue, this

thesis investigates long-term adaptivity to improve and analyse reinforcement learning in

long-term unknown environments. A first case study in non-episodic mazes with sparse

rewards illustrates a novel learning type called active adaptive perception, which actively

adapts how to use and modify perception based on a long-term utility function. Such

learning systems are here shown to construct emergent long-term strategies to avoid

detracting corridors and rooms in non-episodic mazes, where a state-of-the-art deep

reinforcement learning system DRQN gets stuck. A consequent case study in lifelong

learning, where reinforcement learners must solve different tasks presented in sequence.

It is shown that multiple policies each specialised on a subset of the tasks can be used

as a source of performance improvement as well as a metric for task capacity, how many

tasks a single learner can learn and remember. The case study demonstrates that the

DRQN learner has low task capacity compared to an alternative deep reinforcement

learning system PPO. The results indicate that this is because PPO’s slower learning

allows improved long-term adaptation to different tasks. An additional finding is that

adaptively learning which policy to use can be beneficial if the policies are sufficiently

different from each other. On the same case study, an additional result shows that, when

using a long-term utility function to evaluate performance, a correction for the different

reward functions is beneficial to avoid forgetting.

mailto:db2c15@soton.ac.uk




Contents

Declaration of Authorship xi

Acknowledgements xiii

1 Introduction 1

1.1 Learning in long-term environments with limited prior knowledge . . . . . 1

1.2 Artificial General Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Research Aim, Questions & Objectives . . . . . . . . . . . . . . . . . . . . 10

1.5 Contribution and Novelty . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Literature review 13

2.1 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Traditional Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Reinforcement learning with limited observation . . . . . . . . . . . . . . 20

2.4 Deep reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Universalist reinforcement learning methods . . . . . . . . . . . . . . . . . 27

2.6 Other lifelong reinforcement learning approaches . . . . . . . . . . . . . . 29

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Long-term adaptivity to alleviate and shift inductive bias 33

3.1 The inductive bias of deep reinforcement learning systems . . . . . . . . . 34

3.2 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Long-term adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Long-term learning with limited knowledge and sparse rewards 49

4.1 Non-episodic partially observable mazes . . . . . . . . . . . . . . . . . . . 50

4.2 Active Adaptive Perception implementation . . . . . . . . . . . . . . . . 51

4.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Experimental demonstration of active adaptive perception . . . . . . . . . 62

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Lifelong learning with multiple policies 79

5.1 Learning many tasks with a limited number of policies . . . . . . . . . . . 79

5.2 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

v



vi CONTENTS

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Towards active adaptive perception in lifelong learning environments 99

6.1 Lifelong Success Story Algorithm . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7 Discussion 121

7.1 Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8 Conclusion 131

Appendix A Publications 133

Appendix B Experimental parameters 155

B.1 Learning with limited knowledge and sparse rewards . . . . . . . . . . . . 155

B.2 Lifelong learning with multiple policies . . . . . . . . . . . . . . . . . . . . 160

B.3 Towards active adaptive perception in lifelong learning environments . . . 160

Appendix C Additional results (Chap. 4) 163

C.1 Effect of duplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Appendix D Additional results (Chap. 5) 165

D.1 Ordinal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Appendix E Additional results (Chap. 6) 169

E.1 Lifelong SSC proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

E.2 Task-specific development plots . . . . . . . . . . . . . . . . . . . . . . . . 172



List of Figures

2.1 The agent-environment interface for reinforcement learning . . . . . . . . 18

3.1 Illustration of inductive bias . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Block diagram of the generic architecture . . . . . . . . . . . . . . . . . . 40

3.3 Learning with multiple policies . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Flow diagram of non-episodic maze with sparse rewards . . . . . . . . . . 51

4.2 Implementation of active adaptive perception . . . . . . . . . . . . . . . . 52

4.3 Illustration of the network construction operators. . . . . . . . . . . . . . 58

4.4 SMP-DRQN’s key mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Heatmaps on a partially observable maze . . . . . . . . . . . . . . . . . . 65

4.6 SMP-DRQN’s goal matching . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7 Development of the valid modifications . . . . . . . . . . . . . . . . . . . . 69

4.8 Development of the valid modifications . . . . . . . . . . . . . . . . . . . . 70

4.9 Development of the reward speed . . . . . . . . . . . . . . . . . . . . . . . 72

4.10 Development of the reward speed . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Illustration of various tasks based on three defining characteristics of the
feature vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Illustration of the task sequences . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Cumulative reward depending on the number of policies . . . . . . . . . . 89

5.4 DRQN performance development on individual tasks, depending on the
number of policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 PPO performance development on individual tasks, depending on the
number of policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6 Policy spread as a function of time, depending on the number of policies . 93

5.7 Effect of intermediate tasks on forgetting, depending on the number of
policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.8 Effect of prior tasks on transfer, depending on the the number of policies 96

6.1 Catastrophic forgetting in SSA . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Task-specific reward velocities . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Stack structure for Lifelong SSA . . . . . . . . . . . . . . . . . . . . . . . 104

6.4 The problem with the evaluation-modification-gap . . . . . . . . . . . . . 108

6.5 Cumulative reward over time for each evaluation module . . . . . . . . . . 113

6.6 Effect of intermediate tasks on forgetting for different evaluation modules 116

6.7 Effect of prior tasks on transfer for different evaluation modules . . . . . . 116

6.8 Development of hyperparameters over the lifetime . . . . . . . . . . . . . 117

vii



viii LIST OF FIGURES

B.1 Complete set of easy mazes . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.2 Complete set of difficult mazes . . . . . . . . . . . . . . . . . . . . . . . . 159

E.1 Performance development of the various evaluation modules on individual
tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172



List of Tables

2.1 Features of state-of-the-art reinforcement learning methods to deal with
challenges related to long-term learning in unknown environments. . . . . 26

3.1 Operators on the stack S and data stored in stack-entries e ∈ S . . . . . 42

4.1 List of instructions for SMP learners . . . . . . . . . . . . . . . . . . . . . 54

4.2 Correctness over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Variance analysis on the effect of learning condition on lifetime averaged
normalised reward speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Additional performance metrics . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 Variance analysis on the effect of adaptivity and the number of policies
on performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1 List of instructions for SMP learners . . . . . . . . . . . . . . . . . . . . . 112

6.2 Variance analysis on the effect of evaluation module on performance. . . . 114

6.3 Ordinal analysis on the effect of evaluation module on performance. . . . 114

6.4 Effect of task velocities on stack size. . . . . . . . . . . . . . . . . . . . . . 115

B.1 DRQN parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

B.2 Parameter settings for the base learners . . . . . . . . . . . . . . . . . . . 161

B.3 DRQN parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

B.4 Exploration rate settings’ performance . . . . . . . . . . . . . . . . . . . . 162

C.1 Effect of duplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

D.1 Ordinal analysis on the effect of adaptivity and the number of policies on
the performance of DRQN. . . . . . . . . . . . . . . . . . . . . . . . . . . 166

D.2 Ordinal analysis on the effect of adaptivity and the number of policies on
the performance of PPO. . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

ix





Declaration of Authorship

I, David M. Bossens , declare that the thesis entitled Reinforcement learning with limited

prior knowledge in long-term environments and the work presented in the thesis are both

my own, and have been generated by me as the result of my own original research. I

confirm that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as:

Bossens, D. M., Townsend, N. C., & Sobey, A. J. (2019). Learning to learn

with active adaptive perception. Neural Networks, 115, 30-49. Note: this pub-

lication was also featured in Elsevier Press https: // www. journals. elsevier.

com/ neural-networks/ news/ can-ai-ever-learn-without-human-input .

Signed:.......................................................................................................................

Date:..........................................................................................................................

xi

mailto:db2c15@soton.ac.uk
https://www.journals.elsevier.com/neural-networks/news/can-ai-ever-learn-without-human-input
https://www.journals.elsevier.com/neural-networks/news/can-ai-ever-learn-without-human-input




Acknowledgements

This thesis project was only possible with the cooperation of many other important

actors. This includes people who organised the PhD grant: Engineering & Physical

Sciences Research Council, Lloyd’s Register Foundation, my supervisors Adam Sobey

and Nicholas Townsend, and others. I thank my supervisors a second time as well for

the useful discussions, comments, guidance, and asking the right questions, all of which

helped the thesis greatly. I thank the examiners Sarvapali Ramchurn and Ke Chen for

their valuable feedback, and I acknowledge the use of the IRIDIS High Performance

Computing Facility and associated support services at the University of Southampton.

xiii





Chapter 1

Introduction

It has been estimated that by 2030 global GDP could increase by 13.8% merely due

to the impact of Artificial Intelligence (AI). AI has become an instrumental part of

nearly all human activities and services, with applications in medicine, manufacturing,

media, transport, and energy [138]. To solve menial aspects of these domains, software

programs can be applied to fullfill specific tasks in specific pre-defined cases known to

the designer. However, increasingly, research into AI has been emphasising adaptivity,

generality and creativity.

This shift has been motivated by practical demands for intelligent agents performing

complex tasks over extended time without human intervention. Entertainment is one

key industry, with companies such as Microsoft (Cortana), Apple (Siri), and Amazon

(Alexa) developing virtual assistants, and DeepMind providing artificial agents that pro-

vide novel and super-human solutions to game playing. Care of the elderly is another

consideration, for example, in Japan where the rapidly ageing population must be sup-

ported [54]. Another practical consideration is that robotic systems may replace humans

in complex activities that are simply too dangerous, including nuclear site disaster re-

sponse, deep sea missions and space exploration. To illustrate the importance, space

economy contribution is currently estimated at 13.7 billion pounds [214], and extensive

scientific investigations of other planets are being being planned [38].

1.1 Learning in long-term environments with limited prior

knowledge

With increased expectations for general and creative artificial learners, this thesis focuses

on scenarios in which these properties are especially important. Such scenarios, best

described as “long-term environments with limited prior knowledge”, allow low designer

effort, novel solutions not foreseen by the designer, and the exploration of the unknown.

1



2 Chapter 1 Introduction

1.1.1 Motivating examples

To illustrate the types of scenarios, a few notable examples are here given.

Long-term autonomy in robotics Imagine a future scenario, possibly within a

few decades, where robotic devices are fully operational for 200 years or more without

requiring recharging or maintenance, and are being used to explore unknown planets.

In some such missions help from humans may be sparse at best, since communication

is hampered by the delays in signals traveling from one planet to another. Even worse,

almost no information will be known about the most distant planets where no human

has ever ventured. This implies that, to discover anything meaningful, such robotic

devices need to be completely autonomous not only in mechanical operation but also in

their learning procedures: the learners have to be sufficiently flexible to peform complex

tasks, to set their own goals and to reason across vast temporal scales, all without the

help of humans.

Creativity in science, games and artistic fields Productivity in science could be

greatly expanded by applying artificial intelligence to the process of science itself. One

possibility which is being explored is automated experimentation [184], in which an AI

performs the entire cycle of experimentation autonomously. A more ambitious aim is to

develop a completely autonomous scientist [234, 63]. One approach would be to design

the system pre-built with physical laws. However, there is a possibility that some of

science is either wrong or incomplete, and building a system with wrong foundations

could prove detrimental. Learning with limited prior knowledge therefore allows more

creative solutions, unanticipated by the designers. This, in fact, is analogous to two

deep reinforcement learning methods that have made the headlines: the improvement

of the Alpha-Go to the Alpha-Zero system [176], which showed that a system trained

with expert knowledge actually performed worse than a system which played against

itself; the Q*bert-playing reinforcement learning system in [35], which learned how to

exploit a bug in the program. Findings such as these show that, even on quite limited

time scales, injecting human knowledge into artificial systems can hamper performance

and generality. Beyond science and game playing, similar arguments can be made for

the arts, where there is a great need for creative solutions.

1.1.2 Characteristics of long-term environments with limited prior

knowledge

This thesis will investigate scenarios with long-term environments with limited prior

knowledge, which are characterised by the following challenges:
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• open-ended missions: although humans cannot prescribe what the optimal be-

haviour is, they can provide feedback on to what extent they like the behaviour.

Such open-ended missions may occur when dynamics are unknown or because

the aim is vague. For example, exploration missions aim to “discover interesting

things” while ethical decisions aim to “improve human well-being”.

• continual lifetime: the learner is subjected to a single lifetime during which

anything that happens may affect what happens later, including environmental

dynamics, cognitive processes and decisions. This requires long-range memory

of previous events and the ability to explore if they get stuck in a part of the

environment in which further learning is difficult. This is opposed to the controlled

learning conditions used frequently in AI, in which learning proceeds in episodes of

experience with no sequential dependencies and with a time-out to limit the time

spent in a single episode.

• ambiguity of observations: the observations of the learner may be missing vital

information for decision making. This may be due to hidden variables or due to

time dependencies within the environment.

• learning and maintaining skills: learners must develop transferable skills which

can be applied to a wide set of tasks, and avoid losing previously learned skills.

• efficient use of sparse feedback when feedback is sparse, the learner needs to

make efficient use of the limited information received about the goodness of its

behaviour.

Beyond the mentioned bullet points, there are additional challenges not considered in

the thesis which would characterise realistic long-term robot missions. This includes:

(a) fault-tolerance and robustness in case robots are damaged or experience other types

of failures; and (b) feedback conveying data about the environment or the robot rather

than the goodness of the robot’s current behaviour.

To deal with learning with limited knowledge from experience, a common framework

that is suggested is reinforcement learning. The complexities that follow from rein-

forcement learning in unknown long-term environments come in at least two categories:

• A single task is difficult to learn, either because the learner cannot focus its explo-

ration on the most useful patterns, because its representation cannot capture the

patterns, or because the algorithm does not apply the learned patterns correctly.

• A multitude of tasks is difficult to learn because knowledge about one task may

affect adversely the performance on another task.

These two categories form the core of the thesis’ investigations. In light of these difficul-

ties, the designer cannot pre-determine the best strategy, the best hyperparameters or
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even the best learning algorithm, and new tasks have to be learned by experience. This

is a challenge even for state-of-the-art reinforcement learning systems.

1.2 Artificial General Intelligence

As a solution to such long-term, open-ended and complex problems, the designer cannot

hand-craft a solution for each problem and then inform the agent. The artificial agents

must therefore have general intelligence.

1.2.1 Definitions of general intelligence

A key concept in psychological literature is general intelligence or g for short [185], the

potential to perform well across seemingly uncorrelated tasks, by virtue of a general

cross-domain reasoning and memory capacity. Over the years, psychology has provided

metrics such as IQ tests, not without its critics [190], and biological metrics based on

brain sizes [29]. However, when considering artificial agents, a more objective and also

less anthropocentric definition of machine intelligence was given by [105], where a math-

ematical value is calculated based on achieving high cumulative rewards over a vast

amount of time over a wide set of environments – with the simplest environments hav-

ing a greater weight due to the principle of algorithmic probability which is similar to

Occam’s razor. Goertzel [62] extends this definition to incorporates a probability distri-

bution over resources such as memory, time and energy, and then penalises those agents

that consume too much of them. Similarly, Wang [223] considers the Assumption of

Incomplete Knowledge and Resources (AIKR), which states that resources such as time,

memory and knowledge are limited, as the key assumption behind general intelligence.

When the AIKR is not met, it is often more productive to use Narrow AI methods

specialised to the given problem or mathematically optimal solvers instead of AGI; for

example, for any task with a well-defined optimal strategy, a sufficient amount of re-

sources, and all relevant information, the mathematically optimal solver can be applied

without any problem, and, by definition, it will yield the best results.

1.2.2 Background on AGI

From the above it is clear that machine intelligence metrics typically emphasise the

ability to obtain high rewards in a wide set of environments and with limited knowledge

and resources. In reinforcement learning, an agent interacts with the environment to

obtain high cumulative reward. This makes reinforcement learning a popular approach

for open-ended environments and AGI.
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Historically, reinforcement learning can be traced back to the early years of psychol-

ogy, with Pavlov’s classical conditioning [133]: when a particular stimulus was consis-

tently paired with a so-called Unconditioned Stimulus, a stimulus that evokes reflexive

responses, the mere sight of this stimulus, the Conditioned Stimulus, will evoke this re-

flexive response. For example, a dog will salivate when it smells meat, but by repeatedly

coupling the sound of a bell together with meat, this sound will start evoking saliva-

tion as well. A related principle called operant conditioning was found by Thorndike

[208] and Skinner [182]: by incurring a reward (positive reinforcement) or punishment

(negative reinforcement) it is possible to stimulate particular responses. For example, a

mouse may be given food whenever it presses a lever, thus causing the mouse to press

the lever whenever it needs food.

Other important foundations for AGI were soon to follow. Kurt Goedel, in a study of

self-referential statements, had shown that there are essential limits to the statements

that may be proven in formal systems [61]. Alan Turing had created a formal structure,

called the Universal Turing Machine, a general purpose machine which could simulate all

other machines [212]. Inspired by the workings of the human brain, a first mathematical

model for neural networks was formulated by McCulloch and Pitts [120]. In 1950, Turing

proposed a test for assessing whether or not a machine is as intelligent as a human, the

idea of which was to test whether or not a machine could credibly imitate a human being

[213]. In 1956, the Dartmouth Summer Research Project on Artificial Intelligence [119]

first coined the term “Artificial Intelligence” (AI) with the aim of creating self-improving

creative machines with thinking capacities similar to humans. In 1957, Rosenblatt [141]

invented the perceptron algorithm, which made it possible to learn binary classification

by adaptively changing the weights of a linear function, and was optimistic this system

would achieve human-like intelligence. Around the same time, reinforcement learning

was formalised in the dynamic programming of Bellman [19] where a probabilistic model

of state-transitions calculates the optimal action given the current state, based on a long-

term value function which accumulates the rewards over a number of time steps. The

term AI was used in the 50s mainly for the pursuit of human-like general intelligence, and

in the sixties, researchers were optimistic that human-level AI would be achieved within

several decades. However, the book ‘Perceptrons’ by Minsky and Papert in 1969 showed

the limits of the single-layered perceptron [122], and the neural network approach was

abandoned for a while.

Between 1970 and 1990, it had become apparent that “AI” had not lived up to the hype;

consequently, two periods, commonly referred to as “AI winters”, occurred in which AI

funding was reduced. This also lead to new fields being investigated. The 70s and 80s

had lead to the emergence of the first cognitive architectures, such as ACT [3, 4] and Soar

[101], which mimic the core functionalities of human cognition by the use of symbolic

reasoning. Concept learning, the induction of general rules from limited number of

examples, was especially undergoing rapid development. Many of these studies focused
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on inductive bias, assumptions in the learning representation or the learning algorithm

that affect the generalisation. This highlighted one of the key properties of induction:

a strong bias enables rapid learning of a limited number of patterns while a complete

lack of bias would amount to simply restating the training examples or making all

generalisations equally likely, not learning at all [124].

In 1986, the work in [143] popularised the backpropagation algorithm for neural net-

works, by demonstrating how hidden layers can form abstract representations. Another

notable contribution for formalising reinforcement learning was Watkins’ Q-learning

[225], a method which allowed to learn in environments for which the learner has no

model. From 90s onward, neural networks gained more popularity, and with Moore’s

Law enabling doubling computing power every 12-24 months, large networks with many

layers, deep neural networks, eventually became feasible, and evidence of its increas-

ing scalability of neural networks and reinforcement learning is already seen in 1995 in

the work of Tesauro, with a human-level performance at the Backgammon game [206].

Together with algorithmic advances, deeper neural networks allowed impressive perfor-

mance on tasks difficult for other AI techniques, such as image recognition and natural

language processing. When reinforcement learning was later combined with deep neu-

ral networks, the field of deep reinforcement learning has made news headlines several

times due to exciting robotics applications, such as learning from limited feedback how

to manipulate objects [1], and super-human performance in games such as Shogi, Chess,

and Go [83].

In present times, many scientists use the term AI to describe endeavours that do not

explicitly aspire to emulate the generality of a human: rather than attempting to mimick

human-like general intelligence, scientists researching AI investigate specific issues such

as the optimisation of the cost of an engineering design [115] and classification tasks [216].

However, a growing number of scientists have regained optimism in the achievement of

human-level intelligence, and this is reflected in the birth of a new field called Artificial

General Intelligence (AGI). The opinion of AGI scientists is paraphrased best by the

Core AGI hypothesis [63], which states that

“the creation and study of synthetic intelligences with sufficiently broad (e.g.

human-level) scope and strong generalization capability, is at bottom quali-

tatively different from the creation and study of synthetic intelligences with

significantly narrower scope and weaker generalization capability.”

1.2.3 AGI approaches

Having given a background to AGI, this section describes the various modern approaches

to AGI, according to the categorisation of [63].
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Symbolic approach The symbolic approach relies on the notion of a “symbol”, a

compact and discrete representation of a larger concept whose meaning derives from

the programmer. In this approach, a language expresses declarative knowledge about

the real world and various procedures to manipulate and grow knowledge bases. The

learners can then reason about these fact based on logic, inference, and if-then-rules, also

called production rules. Unlike traditional Logical AI, these learners allow the revision

of beliefs using non-monotonic logic. Various cognitive architectures have been proposed

in this category [103, 93, 173, 107, 34] and generally these are not using reinforcement

learning. However, Soar, one of the earliest but still active cognitive architectures has

been extended to include reinforcement learning to help procedural learning [100] when

no production rules are applicable. The symbolic approach, with its logical reasoning, is

good for: well-defined problems and high-level decision-making; using a database of facts,

it is not prone to catastrophic forgetting, in the sense that many of the facts remain

constant during the lifetime and that, in case revision is required, new facts may be

created and different facts may be merged together to a more general fact; the language

and basic symbols make it transparent to the designer. However, its key limitation is

the symbol grounding problem [194, 189, 204, 68]: their symbols are not “grounded”,

meaning they are not derived from sensori-motor interactions with the world, and this

implies not only that such systems rely heavily on designer knowledge but also that they

may not always be able to identify what the symbol is referring to and to form a fully

connected network of meanings. Further, its if-then rules do not sufficiently take into

account uncertainty, and its low-level pattern recognition and real-number processing

are limited. The approach is also prone to memory overload due to requiring a huge

database of facts.

Sub-symbolic approach Inspired by biological organisms, the philosophy of the sub-

symbolic or emergentist approach is that high-level concepts will emerge from low-level

elements. The approach is also connectionist because meaning arises only from the con-

nection of the elements, whereas a single element does not have any inherent meaning.

They are characterised by numerical computations and parametric adjustments rather

than logic inference. Some such approaches attempt to reverse engineer the brain [71, 90],

others use a developmental robotics [7, 239, 148] approach. Many of these approaches

are heavily inspired by reinforcement learning with intrinsic motivation [195, 153, 181],

lifelong reinforcement learning [20, 211, 180, 139], and developmental psychology [137].

Most of the deep learning and deep reinforcement learning methods [6, 104, 108, 163]

could also be classified in this category due to their reliance on the connectionist repre-

sentation and their increasing emphasis on generality. End-to-end RL has emphasised

that a variety of functions can emerge even from utilising a single neural network for

deep reinforcement learning [174]. Strengths of the sub-symbolic approach include: the

ability to work with real numbers; to recognise general patterns in high-dimensional

spaces and across time, making them suitable for perceptual processing. Limitations
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include: opaqueness, meaning it is often difficult to understand how they work and why

they do or do not perform well on a particular problem; sensitivity to tuning parameters

and initialisation; they are often sensitive to catastrophic forgetting.

Hybrid approach The hybrid approach combines insights of the symbolic and the

sub-symbolic approach. This has been implemented in various cognitive architectures

[57, 56, 64, 197, 31]. A large number of the works in this approach can be found under

the name neural-symbolic learning or neural-symbolic reasoning [22]. The amount of

research in reinforcement learning in this line of research is scarce, although recently

methods for deep symbolic reinforcement learning [60, 41] have been proposed. The

strengths and limitations of this approach are in part explained in the symbolic and sub-

symbolic approach; however, an additional difficulty in the hybrid approach is how to

integrate efficiently the sub-symbolic and the symbolic level without a loss of generality

or information.

Universalist approach The universalist approach, in contrast to the sub-symbolic

approach, is not at all biologically inspired but rather is based on the idea that a sin-

gle meta-algorithm, if applied recursively, will be able to find a good program. Such

meta-algorithms construct better and better solution algorithms to problems in their

environment. In reinforcement learning problems, this results in an algorithmic induc-

tive bias that facilitates more rapid learning of the correct behavioural patterns. Two

typical algorithms are mentioned in Goertzel’s classification, both of which are reinforce-

ment learners: the AIXI [81] which maximises future reward with a simplicity bias which

weights world models’ predictions based on their algorithmic complexity, and the Goedel

Machine (GM) [160, 162]. The GM proposes modifications to itself: its axioms, its proof

search, or its policy. Only if the GM can prove mathematically that these modifications

result in an improved expected utility, the modifications are performed. The GM is

a self-modifying policy, a reinforcement learning policy which includes in its action set

instructions which modify the policy. Whilst providing a method for self-improvement,

such learners are bounded by the limits to the provability within complex systems as

proven by Goedel’s incompleteness theorems. Related methods are those that allow flex-

ible search in program space but are not based on reinforcement learning [223, 131, 159].

The main strength of the universalist approach is the flexibility to construct arbitary

learning programs from experience, representing a true meta-learning, the ability to

learn how to learn. The limitations are the lack of biological plausibility, the scalability

issues due to the search space being increased when the learning algorithm is included

in the learning process, and the fact that the approaches remain mostly theoretical.
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1.3 Thesis approach

Based on the definitions of general intelligence in Section 1.2.1, a likely ingredient charac-

terising the study of general synthetic intelligence, as referred to by the Core AGI hypoth-

esis, is reinforcement learning in long-term environments with limited prior knowledge.

This characterises the approach taken in this thesis.

One argument that forms the foundation of the thesis is when there is a lack of prior

knowledge, there are certain core assumptions that can be made to help reinforcement

learners obtain a favourable bias towards the tasks they face. Some may argue that, if

the task or tasks are not known by the designer, there is no a priori distinction between

algorithms and artificial general intelligence is impossible. Representative of this view,

the no free lunch theorems [233] state that the performance of all optimisation algorithms

is the same when averaged over the set of all problems, assuming that problems are

sampled iid from a uniform distribution. However, as commented in [159], the existence

of regularities across successive tasks could potentially be exploited. This could be done

by transferring knowledge gained in one task to another task, by exploiting a structured

curriculum, or even by learning how to learn. Moreover, even in cases with limited prior

knowledge, some features of the system and the environment are known at design time.

For example, regardless of their task, robotic systems with pixel-maps as sensory inputs

will need to perform visual recognition and, due to their spatial inductive bias [123],

the assumption of local correlations in spatial structures, convolutional neural networks

achieve elevated performance on such tasks. Similarly, when a robot’s sensors are limited,

it is beneficial to apply algorithms which take into account historic information rather

than only the current sensory observation.

Another position taken by the thesis is to emphasise the role of adaptivity to improve

the generality of reinforcement learners, but to recognise the possible trade-offs between

adaptivity and efficiency. Defining adaptivity in terms of the type and the number of

parameters that can be modified by the learning algorithm and efficiency in terms of

the number of samples required to solve a problem, the following trade-off is typically

observed: on the one hand, adaptive systems may be slower to find the optimal solution

since they require expensive experience with the environment; on the other hand, adap-

tive learners can solve a wider variety of problems with a larger ceiling on performance.

When solving a single task, the unadaptive learner may have a limited representation

that cannot capture a valid solution; its algorithm may make certain assumptions that

are only true for the limited cases anticipated by the designer; and, there may be solu-

tions not envisioned by the designer. Further, when solving a large number of unforeseen

tasks, the unadaptive learner cannot be pre-programmed to solve all tasks. The adaptive

learner, by contrast, may improve as time proceeds, as transfer of knowledge may ex-

ploit similarities among the tasks, and as meta-learning can be used to exploit rewarding

patterns in the learning process itself.
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1.4 Research Aim, Questions & Objectives

The aim of the research is to investigate long-term adaptivity to enable reinforcement

learning with limited knowledge in long-term environments. To address this issue, the

thesis targets the following questions:

• How can adaptivity be exploited to provide improved learning in unknown envi-

ronments?

• What is the trade-off between adaptivity and efficiency?

• Which kind of loss or utility functions are useful to guide reinforcement learning

in long-term environments?

• How prone are reinforcement learning policies to forgetting in lifelong learning

environments?

• How well do reinforcement learning policies transfer across tasks in lifelong learning

environments?

Consequently, the thesis pursues the following objectives:

1. Literature review: To review the literature on reinforcement learning with lim-

ited prior knowledge, sparse rewards and a variety of unforeseen tasks, and identify

gaps in the state-of-the-art.

2. Learning a long-term task with limited knowledge and sparse feedback:

this objective has three measurable components:

A to demonstrate the capability of a novel adaptive reinforcement learning sys-

tem to learn how to learn with limited assumptions, based on a long-term

utility function

B to obtain favourable performance in a long-term task with limited knowledge

and sparse rewards, when compared to state-of-the-art deep reinforcement

learners.

C to provide a detailed analysis of the key factors to the performance of this

system.

3. Learning multiple tasks in sequence:

A to propose adaptive algorithms to improve lifelong learning, including avoid-

ing catastrophic forgetting and improving selective transfer.

B to provide a theoretical and empirical analysis on utility functions to improve

lifelong reinforcement learning.

C to analyse the scalability of reinforcement learners to a large number of tasks

and a longer lifetime.
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1.5 Contribution and Novelty

Most existing work on reinforcement learning assumes relatively well-behaved environ-

ments: the observation of the environment perfectly describes the state of the envi-

ronment, the reinforcement learning agent receives frequent feedback and can be reset

whenever a trial does not work out, and there is usually only a single task, which ignores

the changing requirements of the environment. By contrast this thesis focuses on en-

vironments in which these assumptions do not hold true. Two challenging case studies

are considered, one in which there is a prolonged task in which the learner may get

stuck without any feedback at all, another in which there are 18 unique tasks sampled

randomly and presented in sequence.

To solve such ill-behaved environments, the thesis investigates the role of long-term adap-

tivity in overcoming the challenges in such environments. The thesis defines long-term

adaptivity as augmenting traditional reinforcement learning methods with a selective

use of representation learned by long-term experience with the environment. To allow

adaptation of the use and learning of perception based on a long-term utility function,

and deal with unknown environments some of which may not be solvable by deep rein-

forcement learners, a novel meta-learning principle, called active adaptive perception, is

proposed and implemented using a unique combination of universalist and sub-symbolic

AGI. The method is highly adaptive by including learning operations as part of the

parameters, and represents a trade-off between adaptivity and expressive efficiency; an

initial phase of learning to learn is required to find a suitable learning strategy, but

eventually the learning strategy allows exceeding the performance on ill-behaved environ-

ments due to finding an alternative learning algorithm more suitable to the environment

than traditional reinforcement learning. To improve performance in lifelong learning

scenarios such as the above-mentioned 18-task scenario, a multiple policy reinforcement

learning approach is proposed for lifelong learning scenarios, where a policy is selected

based on the long-term cumulative reward on the task. The approach is proposed both

as a tool to study the goodness of a lifelong reinforcement learner as well as a possible

alternative approach for lifelong reinforcement learning. The method improves selective

transfer and reduces catastrophic forgetting by defining policies across a subset of tasks

and allows to study different base-learners with different utility functions. Finally, to

allow reinforcement learners to learn with a long-term objective with reduced catas-

trophic forgetting in lifelong learning environments, a novel long-term utility function is

proposed which corrects for the different reward functions of different tasks.

1.6 Thesis outline

The thesis first investigates the existing literature on reinforcement learning in long-term

environments in Chapter 2. The general thesis methodology is provided in Chapter 3.
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Chapters 4-6 are the contribution chapters: (i) Chapter 4 investigates the use of active

adaptive perception for a long-term single task scenario where the learner may get stuck

without any feedback; (ii) Chapter 5 investigates learning with multiple policies in an

18-task scenario; (iii) Chapter 6 investigates a novel objective function to allow active

adaptive perception in lifelong learning scenarios. These contributions are then discussed

in Chapter 7, and the thesis concludes in Chapter 8.



Chapter 2

Literature review

This chapter investigates closely the literature on reinforcement learning in long-term

unknown environments. Key difficulties in such environments may be: hidden variables

due to the limited observation; changes in the tasks provided to the learner; sparse

feedback; limited control over the learning conditions, for example for when to finish a

task. Because of the need to overcome a large amount of unknowns, this challenge raises

fundamental questions about the adaptivity, capacity and bias of learning systems.

2.1 Neural networks

Perception [149] is defined as the organization, identification, and interpretation of sen-

sory information in order to represent and understand the presented information, or the

environment. The perception of a learner must be adaptive because the demands of the

environment can change. Neural networks, which are easily integrated with with rein-

forcement learning algorithms, are probably the best known example of such adaptive

perception, as they are able to learn from experience various functional regularities.

2.1.1 Types of neural networks

Feedforward neural networks takes an input x, processes it through its hidden layers

of neurons, and at the output layer it produces an output y. They are especially used

in static classification tasks, like image recognition. It is well known that deep neural

networks can represent complex hierarchies in a manner similar to that of the visual

cortex [163]; convolutional neural networks [65, 66, 85, 91, 97, 98, 99, 113, 186, 202, 237]

have been especially useful in such tasks.

Recurrent neural networks add a temporal dimension to the network, allowing them

to learn dynamic systems. At a step t, a recurrent neural network takes an input xt,

13
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propagates xt through the hidden layers with feedforward connections but also prop-

agates neuronal activations from time t − 1 through the hidden layers using recurrent

connections, after which an output y is produced. Popular examples include Elman

networks [45], fully recurrent neural networks [144], Gated Recurrent Units [33], and

Long Short-Term Memory networks (LSTMs) [77]. Amongst these LSTMs have by far

yieldest the most impressive performance results. For example, they have been ap-

plied at speech recognition and similar problems with continuous streams of information

[48, 227, 48, 67], where due to their forget gates they can learn when to forget cer-

tain information. The LSTMs ameliorate the vanishing gradient problem by including

a self-recurrent unit which continually repeats past information [77]. Recurrent neural

networks can be used in addition to convolutional neural networks, see for example [69].

Additional flexibility in representation building can be achieved by further adding the

ability to determine the neural network’s architecture, as is done in constructive neural

networks [109, 46, 58].

2.1.2 Theoretical capacity

A key subject of study for theoretical investigations has been the capacity, or expressive-

ness, of neural networks, which loosely phrased means the number and type of functions

it can represent. Over the years, there have been a variety of results in this regard.

In the context of binary classification, one of the tools to analyse capacity is the Vap-

nik Chervonenkis (VC) dimension [220], which considers the largest number of points

for which it would be able to classify each possible combination of labels accurately.

Specific for feedforward neural networks, a polynomial formula was given for the ca-

pacity of feedforward neural networks with linear outputs in [13], which was based on

the sizes of the different layers. With metrics such as these, the general conclusion is

that capacity is increased by including the number of neurons and parameters and by

including non-linearity in the function. Moreover, the capacity and sample complexity

are proportional, such that more expressive learners also need more training data [183].

This trade-off has also been phrased as expressive efficiency [36]: as the search space

more closely fits the true function, the learner will be less expressive but much faster to

obtain the solution. This is also embodied in Probably Approximately Correct (PAC)

learnability [217], whether or not an algorithm can learn, within a number of N samples,

a solution with an error of at most ε with a probability of at least 1− δ, for some δ > 0

and some ε > 0 – that is, VC dimension and the upper bound on sample size N required

for PAC-learnability are inversely related.

Neural networks have strong theoretical results about their capacity, backing up their

succcessful practical application. One of the earliest theoretical results is the proof that

feedforward neural networks are universal function approximators [79], when they have

at least one hidden layer with sufficient amount of sigmoid-type units. This result has
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later been extended to yield even more impressive results for recurrent neural networks,

which were shown to be able to approximate any open dynamical system with arbitrary

efficiency [150].

2.1.3 Training methods and their practical difficulties

Despite the impressive theoretical results, neural networks are by no means universal in

practice. One important issue is that the data acquired must fairly represent the function

to be approximated and that they require much training time due to their many free

parameters. The training procedure itself also defines an inductive bias, preferring some

generalisations over others. These aspects are discussed further below for the two most

popular tools for training neural networks, gradient descent and evolution, and for a

novel emerging framework based on meta-learning.

Gradient descent Gradient descent methods calculate an objective function on the

outputs and then update the interconnections between the neurons in the direction of

the gradient, effectively performing a local search. For this reason, such algorithms

tend to get stuck in local optima if the of the objective function is deceptive. The

backpropagation algorithm [143] has been traditionally used for feedforward neural net-

works. Recurrent neural networks such as those mentioned above are often trained using

backpropagation-through-time [127], and due to multiplication and addition, this can

lead to the gradient either vanishing, resulting in no updating, or exploding, resulting

in too strong updates [21]. Although LSTMs do not tend to suffer from the vanishing

gradient compared to traditional recurrent neural networks [77], comparable issues may

occur due to the exploding gradient [199]. Using backpropagation-through-time, learn-

ing across large history windows can be time consuming, and the window also limits the

time period across which can be memorised, but has the advantage of being able to be

learned offline, meaning the data provided to the learning algorithm do not necessarily

have to be the data that is currently being gathered. Compared to back-propagation,

real-time recurrent learning methods [230] can accumulate the gradient over time incre-

mentally without a limiting time window, and a forward propagation step requires only

a single input to the network rather than a history window. This allows them to bridge

longer time gaps without excessive computational expense, but at the expensive that all

data must be provided online and therefore this type of algorithm is more sensitive to

overfitting and getting stuck in a local optimum. To this day, gradient descent methods

are the most popular training method for neural networks because of how they allow fast

training of large networks. Inherently, there is no real adaptivity in the gradient descent

type of methods. A type of pre-programmed adaptivity is included in adaptive gradient

methods [94, 238], which adjust the size of the update to compensate for the sizes of the

previous gradients for each weight. The main empirical results provide evidence that

the effect is to speed up learning, but sometimes at the cost of reduced generality [232].
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Evolutionary algorithms Evolutionary algorithms come in many flavours, but a key

principle is that they evolve a population of individuals, each of which represents a solu-

tions to the given optimisation problem. This idea has also been applied to training the

weights of a neural network [82, 52, 196]. Compared to gradient descent type methods,

a downside is that they are slower to train, not only because of the many advances in

efficient differentiation methods, but also because evolutionary algorithms are a form of

random search. However, one major advantage over the gradient descent type of meth-

ods is that by maintaining a population it is less likely to get stuck in a local optimum

and to learn in more deceptive objective functions. Unlike gradient descent methods,

evolutionary algorithms allow to evolve neural network topologies. This can be done

by modifying a direct encoding of a neural network, as is done in NeuroEvolution of

Augmenting Topologies (NEAT) [188], or indirectly, based on a generative encoding of

a neural network (e.g., [187]).

Unfortunately, it must be assumed that evolutionary algorithms are done in simulation

rather than in online fashion, because each individual must be evaluated in the same

type of trials. Since the main aim of this study is to investigate an agent’s learning

development throughout a long-term autonomous lifetime, rather than a controlled sim-

ulation of perfectly repeatable trials, evolution will not be further considered in this

literature study.

Meta-learning A less explored alternative for training neural networks is meta-learning,

where the training process itself is subject to learning. By adapting the algorithm, this

gives them a higher capacity in practice, even when representationally equivalent. In

contrast to the above-mentioned training methods, most of these methods have not yet

seen application to reinforcement learning. The most influential example in this regard

is the class of hyper-networks [5, 78, 40, 116], in which a top-level super-ordinate net-

work searches, by gradient descent, for ways to update the weights of a sub-ordinate

network. Such systems are not yet true meta-learning systems, as they are limited to

a single meta-level; there is one system which optimises one other sub-ordinate system.

Systems with unlimited meta-levels would allow optimisation of the super-ordinate sys-

tem, the super-super-ordinate system, etc. Such systems are self-referential, i.e., they

take their own data and algorithms as input to their learning. This type of system has

been explored in the self-referential weight matrix [154], which has the ability to take all

its adaptive parameters, including those parts of the weight matrix which modify and

analyse the weight matrix. This method is far from ready for practical application; a

remaining challenge for meta-learning is to realise practical self-referential learning sys-

tems. Finally, there are other works that use the term meta-learning to denote the use

of a meta-level objective without modifying the bottom-level training algorithm. Such

systems have been explored in the reinforcement learning context; for example, for multi-

task reinforcement learning, Model-Agnostic Meta-Learning [51] uses a shared parameter
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vector as an initialisation for a new batch of tasks. From a computational perspective,

such methods can be quite efficient, however, they do not share the same flexibility to

modify the learning algorithm as hyper-networks or self-referential networks.

2.2 Traditional Reinforcement learning

This section presents the traditional reinforcement learning approaches which revolve

around the Markov Decision Process framework. This section describes these formalisms

and some well-explored issues within the framework. This mainly helps to lay the

foundations for the later literature which builds further on these issues and formalisms.

2.2.1 Reinforcement learning formalisms

Agent-environment interface Most reinforcement learning algorithms are derived

from the Markov Decision Process [18] formalism. In Markov Decision Processes, there

is a set of environment states S, a set of actions A, a model for state transitions

P (st+1|st, at), with st ∈ S and At ∈ A, and a reward function r(st+1|st, At). In rein-

forcement learning the same formalism is used but the state transition model is assumed

to be unknown, and is derived only implicitly from interacting with the environment.

These interactions take place based on a repeated cycle: at a given time step t, an agent

(i) receives an input st ∈ S; (ii) performs an action At ∈ A, where A is the action set;

(iii) receives a real-valued reward rt ∈ R. The agent’s action selection is based on a

policy P : S → A, and the agent’s aim is to find a policy which maximises a particular

utility function. An example of a utility function is the discounted cumulative reward:

U(t) =

∞∑
i=0

γirt+i , (2.1)

where γ ∈ [0, 1) is the discounted cumulative reward. In most reinforcement learning set-

ups the environment is considered in discrete episodes; this means that the environment

is started in some initial state, then runs for a while performing the above-mentioned

cyclic process, and then halts as a terminal state is reached, to start again in an initial

state, etc.

Reinforcement learning approaches and their fundaments Approaches to rein-

forcement learning are generally classified into three approaches. Value-based meth-

ods capture for each environment state how good the action is by mapping a state-action

pair to a particular utility function, usually reflecting the discounted cumulative future

reward U(t) =
∑∞

i=0 γ
irt+i obtained when following a particular state-action trajectory.

This works well when the action space is discrete. Value-based methods originated in the
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Agent

Environment

A s, r

Figure 2.1: The agent-environment interface for reinforcement learning. The agent
continually performs a cycle in which it registers information from the environment via
its sensory inputs, namely a state s and a real-valued reward r, and then outputs an
action a.

nineties, and well-known examples are Q-learning [225, 226], State Action Reward State

Action (SARSA) [144], and Advantage learning [10]. The value-function of Q-learning

[225, 226] is given by :

Q(st, At) = (1− α) ∗Q(st, At) + α(rt + γ arg max
At+1∈A

Q(st+1, At+1)) , (2.2)

where st is the current state, At is the current action, rt is the current reward, st+1

is the next state, At+1 is the next action, and γ ∈ [0, 1] is the discount factor for the

discounted future reward, and α ∈ [0, 1] is the learning rate. Traditionally, the Q-values

are stored in a matrix in which the columns represent the states and the rows the actions.

The SARSA [144] updating algorithm is similar to Q-learning, but instead of updating

the Q-value towards the optimal policy, the updating is done towards the action At+1

actually taken at time t+ 1:

Q(st, At) = (1− α) ∗Q(st, At) + α(rt + γQ(st+1, At+1)) . (2.3)

Related to the Q-function is the advantage function A [10, 9]. Defining the best pos-

sible Q-value for a given state st as Q∗(st) = maxA∈A(Q(st, A)), it can be seen as the

advantage of a particular action At for a given state st:

A(st, At) = Q∗(st) + (Q(st, At)−Q∗(st)) ∗ k/dt , (2.4)

where dt is the user-defined size of a time step, controlling the continuity for continuous-

time applications, and k is a user-defined constant. Advantage learning is sometimes

used as an alternative to Q-learning because it allows custom time steps and because

it can distinguish better the action values when there are small differences between

Q-values. Policy-based methods directly update the policy’s parameters θ based

on a score function, a measure of the quality of the policy’s parameters. Unlike most

value-based methods they are suitable for continuous or stochastic actions, and they do

not require an explicit estimate of the value of each action in each state. One popular
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class of policy-based learners is the policy-gradient methods. REINFORCE [229] is a

traditional policy gradient method which updates its policy parameters according to

θ = θ+∇θ log(P(At|st; θ))(Uobs(t)− b(s)) with P being the policy, Uobs(t) the observed

discounted cumulative reward in the entire episode from time t onwards, and b(s) a re-

ward baseline for a given state; this effectively follows the gradient to obtain parameters

that maximise the discounted cumulative reward. This method also serves as an exam-

ple of Monte Carlo updating, a type of evaluation process which simply averages the

discounted cumulative reward across the episode, and which can also be used in value-

based methods. Actor-critic methods are now quite simple to explain: they rely on

the interaction between an actor, a policy-based method which learns a distribution over

actions according to a policy P(At|st; θ), and a critic, a value-based method which crit-

ically evaluates the actions taken by the actor according to some value-function V (st).

This allows them to use a value-based representation whilst learning continuous and

stochastic action policies. Although these are in a sense a combination of the previous

two types, their roots trace back to much earlier works [14].

Exploration vs Exploitation A common example to illustrate the importance of

exploration is the k-armed bandit setting [8], a stateless setting which is analogous to

selecting one machine from a multitude of gambling machines each with their own pay-

off distribution. In such setting, should the agent continue selecting the action with the

best observed pay-off, or explore other actions the value of which, due to the stochas-

ticity, may have been underestimated ? To solve this dilemma, a few basic strategies

are common in value-based methods: (a) optimistic initialisation, with initial value

functions set to high values such that the unexplored observation-action pairs will be

more frequently visited; (b) epsilon-greedy exploration, in which the explorer selects the

policy’s best action with a probability 1 − ε and a random action with probability ε,

(c) Boltzmann exploration, which selects an action probabilistically depending on the

action-values for a given observation, p(At|st) = exp(Q(st,At))∑
At∈A exp(Q(st,At))

; (d) an exploration

bonus for states that are less frequently visited. Policy-based methods can avoid addi-

tional exploration mechanisms like the above, because they can directly optimise their

policy to be more deterministic or more stochastic, and the advantage there is that this

allows an exploration component sensitive to the current state.

On-policy vs off-policy Compare the Q-learning update, given in Equation 2.2, to

that of SARSA, given in Equation 2.3; the former updates its parameters based on the

best possible action whilst the latter updates based on the action that was actually taken.

Q-learning therefore represents off-policy learning whilst SARSA is illustrative of on-

policy learning. The off-policy learning methods can in principle learn from data collected

at any time in the past and their behaviour policy can be different from their greedy

policy, whilst on-policy cannot; on-policy methods allow learning stochastic policies

whilst off-policy methods must rely on some exploration parameters.
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2.3 Reinforcement learning with limited observation

The bulk of the reinforcement learning literature assumes the Markov property : the

transition probabilities in the environment satisfy

P (st+1|st, At) = P (st+1|st, At, st−1, At−1, . . . , s0, A0) . (2.5)

Realistically, any agent can only partially observe the world with its limited sensory

capacities.

To solve this problem, the traditional Markov Decision Process framework has been

extended to Partially Observable Markov Decision Processes. In this case, reinforcement

learning agents do not get the environment state as input but rather they receive a

limited observation ot from an observation space O. The observation space is ambiguous,

meaning the same observation can map to many different environment states.

Some of these approaches try to reformulate the problem to a Markov Decision Problem.

This approach makes use of a so-called belief state p(st|ht), where ht is the action-

observation history and st is the state [87, 179, 172]. These solvers still assume knowledge

of the underlying variables that determine the state uniquely, although the learner never

knows the variables’ exact values, and they assume further that the underlying state-

dynamics are Markovian. A more general scenario, perhaps best called non-Markovian

problems or partially observable environments, is a scenario in which the learner does not

know which variables are underlying the environment’s state and in which in principle

the environment could itself be non-Markovian.

An alternative category which does not require this assumption is tree-based reinforce-

ment learning; this consists of methods, such as U-Tree [118] and Active-LZ [47], which

roll out a tree over observation-action histories. Such methods cannot learn beyond

a fixed depth of the observation-action history. Also, for complex or continuous ob-

servation and action spaces the tree would be large or infinite, making the approach

unscalable.

2.4 Deep reinforcement learning

To really obtain scalable methods for dealing with limited observation and other chal-

lenges related to unknown environments, deep reinforcement learning integrates the

pattern recognition abilities of deep learning with the motivational structure provided

by reinforcement learning. Here, state-of-the-art deep reinforcement learning methods

are discussed in terms of how they learn in unknown long-term environments. The

structure of the section will follow the categorisation used in Section 2.2.1.
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2.4.1 Value-based learners

Since the early days, in which a look-up table records for each state and each action

an associated Q-value, scalability of value-based methods has increased by using a deep

neural network to approximate the Q-function, taking as inputs the observation and ac-

tion and outputting the Q-value. This has lead to Deep Q-Networks (DQN) [126] which

achieved human-level performance across several Atari games. DQN’s performance re-

sults are attributed to solving two issues in approximating the Q-function: (a) there is

a correlation between the Q-values and the target such that, if the Q-value is adjusted,

so does the target, causing instability; (b) observations are correlated over time and

changes to the policy will further affect this data distribution, making online learning

problematic. To resolve (a), a distinction is made between the actual Q-function, which

is being continuously trained, and the “target network”, which at time t provides the

target rt + γQ(st, arg maxAt+1∈AQ(st+1, At+1)) in Equation 2.2, is updated only peri-

odically after thousands of time steps. To resolve (b), Q-learning is supplemented with

experience replay [111], a technique in which learning experiences (st, At, rt, st+1) are

stored in a large buffer from which mini-batches are sampled to train the Q-network.

Due to the promising results in the original DQN paper [126], many variants of DQN

[224, 219, 75] have been proposed. For example, Rainbow [75] combines various insights

across the years such as double Q-learning [219], distributional Q-learning [16] and pri-

oritised experience replay [152], leading to further performance improvements in the

Atari domain.

Limited observation The LSTM network [77], the current state-of-the-art in recur-

rent neural networks, has been integrated with various reinforcement learners and has

compared favourably to other reinforcement learning approaches. RL-LSTM [12] ap-

proximates the value function of the above-mentioned Advantage Learning [10] with an

LSTM, illustrating comparatively favourable performance compared to Elman networks

[112] and the memory-bits [134] approach, on partially observable T-mazes with long-

term dependencies of up to 100 time steps as well as a pole-balancing experiment with

hidden state variables. Out of these, arguably the most challenging scenarios were solved

by Deep Recurrent Q-Networks [69], an extension to the earlier-mentioned DQN which

includes an LSTM layer as well; this includes Atari games with flickering pixels and

the VizDoom competition related to the first-person shooter game Doom [170, 102, 32].

In the latter, DRQN achieves the highest scores on several metrics and second in other

metrics, demonstrating itself to be a scalable algorithm for complex non-Markovian envi-

ronments. This is not surprising as DRQN includes many desirable features for complex

environments, such as experience replay, convolutional layers and an LSTM layer.
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Non-episodic environments A positive aspect of value-based methods not based

on Monte-Carlo updates, is that bootstrapping of future estimates based on the value-

function, as is done in Q-learning and Advantage learning methods, allows to estimate

what will happen in the future. However, this bootstrapping is based on the discounted

cumulative reward, which implies that events which provide rewards after a long delay

do not contribute to learning. This is problematic in non-episodic environments, where

delays may stretch far out in the future.

Sparse rewards For sparse-reward environments, RL-LSTM bases its exploration rate

on the temporal difference error, a measure of model uncertainty, for a given observation

[12], constituting a method for active exploration. Methods using experience replay, such

as DQN [126, 69], sample experiences for training in a way that could potentially span

the entire lifetime, rather than overfitting on patterns which are not associated with any

rewards. This of course assumes that the agent is not stuck in an area without rewards

all the time.

Lifelong learning Experience replay is based on a First-In-First-Out mechanism,

which can result in catastrophic forgetting, for example, when the buffer only replays

the current task. To solve this, distribution matching [84] makes the experience sampling

mimic the tasks’ distributions, and this was demonstrated on a sequence of randomly

ordered autonomous driving tasks, where tasks are conceptually similar, all being de-

fined by a particular goal location, and where the path to take is provided to the learner.

Another method to avoid catastrophic forgetting is Elastic Weight Consolidation [95],

which modifies the objective function to penalise large deviations from the optimal so-

lution to earlier tasks. Kirkpatrick et al. (2017) applied their system on a randomly

ordered task sequence of Atari games, which are characterised by different reward func-

tions and dynamics but where the task could potentially be recognised due to the rich

observation. It was shown that a DQN with EWC penalty outperformed DQN without

penalty. However, training a single EWC-based DQN for all tasks still resulted in a

lower performance than training task-specific DQN learners.

2.4.2 Policy-based learners

The approach with “vanilla policy gradients” [229] has been largely abandoned in rein-

forcement learning, mainly due to recent performance results. Further, its Monte Carlo

style updating which assumes episodic structure is less attractive in long-term continued

environments. State-of-the-art policy-based learners include Deterministic Policy Gra-

dient [177], Proximal Policy Optimisation [169], and Trust Region Policy Optimisation

[167]. Because they are often implemented as actor-critic learners, they will be explained
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in the following subsection. However, as an illustration, Trust Region Policy Optimisa-

tion was also implemented as a traditional policy-based method in [167], where it was

applied to continuous control tasks such as swimming and walking; there it showed a

performance improvement compared to a variety of competitive reinforcement learning

methods; for full reference list see [88, 203, 136, 135].

Sparse rewards Policy-based learners, and therefore also actor-critic learners, opti-

mise the policy directly and with stochastic policies, this can be favourable for explo-

ration as the degree of stochasticity can be controlled.

Lifelong learning Model-Agnostic Meta-Learning (MAML) [51] is an approach for

learning multiple tasks, suitable for gradient descent methods for both supervised and

reinforcement learning. The method computes a general parameter vector which serves

as an initial point for exploration to more rapidly learn new tasks and as new tasks

are seen, this initialisation allows to position the parameter vector more favourably in a

region of parameter space where only few gradient updates are required for learning a

new task. Although it is not a traditional lifelong reinforcement learner, in the sense that

multiple tasks can be incurred at the same time in batch, similar to multi-task learning1,

the method reduces to a lifelong learning approach when the batch size is one, due to the

sequential looping over batches. Applying MAML with TRPO as meta-optimiser and

REINFORCE as base optimiser allowed good performance on continuous control tasks

involving locomotion, and this approach compared favourably to pretraining the network

on all tasks and a network with random weights in just a few gradient updates, though

it had weak performance compared to adding the task as network input. The Efficient

Lifelong Learning Algorithm has been extended to Policy Gradients (PG-ELLA) [2],

which they describe as online multi-task learning. PG-ELLA models each tasks control

parameters as a linear combination of the components from a sparse shared knowledge

base acquired from the previous tasks. They study four types of dynamical system

domains, in which the parameters that determine the dynamics system are varied across

each of the dimension resulting in 30 tasks for each domain, showing that performance on

a new task increases as more tasks are previously seen. The above-mentioned results of

MAML and PG-ELLA rely on finding a common representation to all the tasks within

a domain and the tasks in a domain all have the same type of goal; therefore, such

methods may not be suitable for domains with different goals or reward functions. An

extension to PG-ELLA has allowed for additional cross-domain knowledge transfer [25]

by using projections from the knowledge base to the task group, however, this requires

more knowledge to be given to the learner due to the need to provide the task group

index to the learner.

1In multi-task learning [15, 30], the emphasis is on offline learning of many tasks in parallel with
the aim of finding a single representation that generalises across tasks, while in lifelong learning the
emphasis is on the online, sequential learning of an ordered sequence of tasks.



24 Chapter 2 Literature review

2.4.3 Actor-critic learners

Advantage actor-critic (A2C) and Asynchronous advantage actor-critic (A3C) [125] es-

timate the discounted cumulative reward as the critic and use Advantage learning as

the actor. Another type of actor-critic method is Trust Region Policy Optimization

(TRPO) [167] which combines a policy-based optimisation with advantage values. It

utilises a surrogate objective based on importance sampling due to which it is possible

to sample actions according to a distribution other than that of the unknown newly

proposed policy, thereby reducing the variance on the estimated objective. It includes

a constraint such that parameter changes are limited to a maximal Kullback-Leibler

divergence between the old policy and the proposed new policy. This conservative bias

allows TRPO to make changes to the parameters which guarantee monotonic policy

improvement. In [168], it was shown to solve 3D-control problems difficult for earlier

reinforcement learning algorithms. Proximal Policy Optimisation (PPO) [169] has fol-

lowed up on TRPO to penalise the parameter change in a continuous way. Since the

objective is to maximise Pθ(At|st)
q(At|st) Ât, where Ât is the estimated advantage (cf. Equation

2.4) at time t, Pθ the newly proposed policy and q is the sampling distribution, the

update will be too large when the ratio r = Pθ(At|st)
q(At|st) moves away too much from 1.

Therefore, PPO proposes instead a clipped surrogative objective, where the ratio r is

clipped to [1 − ε, 1 + ε] but only when the clipping reduces the objective. Thus, when

parameter change size is high, there is the potential for a penalty by taking the worst

of the clipped and unclipped objective. Competitive results were presented on Atari

problems [169], and PPO was the top performer in OpenAI’s transfer learning competi-

tion in the Sonic Hedgehog domain [130]. PPO has favourable properties compared to

A2C and A3C: the use of the Generalised Advantage Estimation [168] reduces variance;

the clipping provides a correction for overly large parameter updates, allowing mono-

tonic improvements; the ability to learn with multiple actors is maintained. Whilst the

above actor-critic methods are on-policy methods, there is also an off-policy actor-critic

approach called Deep Deterministic Policy Gradient (DDPG) [177]. DDPG applies a

Deterministic Policy Gradient algorithm to learn a deterministic target policy P(At|st)
and uses a separate behavioural policy, either deterministic or stochastic, to explore.

An example is to sample the behaviour policy from a Gaussian distribution around θ,

the target policy parameters. Like DQN, DDPG makes use of a target network and

experience replay.

Currently, actor-critic methods have gained in popularity due to these promising results.

However, an analysis in [74] shows that many of the comparative results are explained by

variability of random seeds, parameter settings, and score normalisations. Further, these

methods will often use multiple actors which independently assess the same environment

to learn from uncorrelated samples for more stable learning. Compared to experience

replay, this has two drawbacks: first, it is not realistic since in real-life learning scenarios

it would require multiple physical agents at the same time; second, not all comparisons
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to other methods may be fair, since multiple actors gather more experience in the same

amount of time steps. With these cautionary remarks in place, these methods have

been successful in various types of video games, but also in continuous control problems,

thereby distinguishing it from value-based learners.

Limited observation A3C [125] has been integrated with an LSTM layer outperform-

ing feedforward versions of A3C and several feedforward DQN variants [126, 152, 128,

224], on a variety of Atari games with limited time dependencies. RDPG [72] similarly

extends DDPG with an LSTM network, enabling it to learn better than the feedfor-

ward version of DDPG on a Morris water maze. PPO has yielded impressive results

when integrated with LSTM [73], demonstrating robust locomotion behaviours such as

crouching, jumping, and turning by subjecting the learner to more diverse environments.

Sparse rewards Stochastic policy-based and actor-critic methods can additionally

incorporate an entropy regularisation component to penalise solutions with high deter-

minism [125, 168]. This allows to explore the environment without getting stuck in

sub-optimal near-deterministic policies. An intrinsically motivated system based on ex-

ploration counts was shown to improve performance on difficult Atari games, including

Montezuma’s revenge where rewards are highly sparse [17]. Further, a large scale study

compared various surprise-based intrinsic motivation mechanisms on a large variety of

problems such as Atari games, Mario, and Roboschool problems [28]; this study showed

that a dynamics-based surprise reward, which motivates the agent to explore obser-

vations with large prediction errors, yields both performance and transfer benefits to

PPO. To improve exploration, a meta-learning approach applied policy gradient meth-

ods to train DDPG’s behaviour policy [235]. This was then demonstrated on continuous

control tasks, outperforming the non-adaptive strategy for exploration usually used in

DDPG. A downside of this approach is that the short-term objective used to train the

meta-learner may not be applicable to long-term environments.

Lifelong learning Similar to Model-Agnostic Meta-Learning, the meta-critic approach

in [198] also investigates a model-agnostic approach with tasks being incurred in batches,

which is convenient but not realistic for online learning in long-term environments.

There, the implementation is based on an actor-critic model which parametrises the

critic with the current task. This method outperformed Model-Agnostic Meta-Learning,

more rapidly learning new tasks in the cartpole control domain. Further, there have been

positive results on transfer learning when using PPO as a base reinforcement learner.

In two studies, PPO was shown to transfer from one game level to another [28, 130]. In

another study, it was shown that subjecting PPO to a curriculum of sorts can improve

robustness; by letting an agent perform the same locomotion task but across diverse

terrains, presented randomly in a variety of ways involving mixing within episode and
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Table 2.1: Features of state-of-the-art reinforcement learning methods to deal with challenges related to long-term learning in unknown environments.
+ and - indicate positive and negative, whilst an empty space means no relevant feature. Bold face indicates a special significance in the coming
chapters.

Type Examples Limited
observation

Sparse rewards Non-episodic Meta-learning Lifelong learning

Value-based DQN DRQN + experience replay + bootstrapping +;
discounting -

fixed exploration
schedule -

distribution matching +
EWC +
task-specific policy better -

Policy-based TRPO optimises policy itself +
online updates -

bootstrapping +;
discounting -

MAML optimises policy itself +
online updates -

Monte Carlo - ∗ learn task-specific policies from
initialisation policy +
task distribution not realistic -

PG-ELLA MDP - optimises policy itself +
online updates -

Monte Carlo - shared basis for transfer +

Actor-critic A2C/A3C LSTM layer + optimises policy itself +
online updates -

bootstrapping + ;
discounting -
multiple actors -

DDPG RDPG + optimises policy itself +
experience replay +
fixed exploration schedule -

bootstrapping +;
discounting -
multiple actors -

meta-policy gradient :
learning of behaviour
policy +
short-term gradient de-
scent -

PPO LSTM layer+ optimises policy itself +
online updates -
intrinsic motivation +

bootstrapping +;
discounting -
multiple actors -

transfer learning results +

Universalist MC-AIXI context tree +
scalability -

fixed exploration schedule - limited horizon -

ALS working memory +
active perception +
inefficient and unadaptive
perception -

long-term objective + repeatable simulations - search over program space
+

transfer learning results +
assumption about reward veloc-
ity -

IS working memory +
active perception +
inefficient and unadap-
tive perception -

optimises policy itself +
long-term objective +
Dual Brain +

long-term objective + unlimited meta-levels +
optimising learning it-
self +

transfer learning results +
requires curriculum -
assumption about reward
velocity -

Note (*): the Model-Agnostic Meta-Learning defines meta-learning in terms of learning of different tasks. In this work, meta-learning is defined as the ability to learn
how to modify aspects of the learning algorithm.
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between episodes, robust locomotion behaviours emerged after training [73]. In sum,

the positive generalisation results suggest a role for PPO as a suitable base-learner for

lifelong learning.

2.5 Universalist reinforcement learning methods

While deep neural networks benefit from the capacity of neural networks, the way those

neural networks are trained is in itself not part of the learning, and this limits the extent

to which the learning method works on unknown environments. True meta-learning is

best represented by the universalist RL methods, which perform a general search in

program space using a single meta-algorithm. Due to the possibility of learning how to

compute arbitrary learning algorithms, the approach is promising in principle, although

not as widely explored as deep reinforcement learning.

The Goedel Machine (GM) [160, 162] is an instance of what is called a self-modifying

policy (SMP), meaning it is able to learn how to make modifications to its own policy,

and which represents Recursive Self-Improvement (RSI) [236, 193], an approach in which

the original algorithm may be completely replaced by a novel improved algorithm. The

GM proposes modifications to itself, namely its axioms, its proof search, or its policy,

but proposals are only accepted if they are mathematically proven to improve expected

utility. Despite its optimality in some sense, the GM is not the most practical approach:

(a) due to apparent inconsistencies in the real-world and the limitations to provability

by Goedel’s incompleteness theorems, some statements will be unable to be proven and

the self-modification system may be completely inert; (b) no working implementation

exists though some ideas have been proposed in [191, 192]. Another approach to obtain

a universal learner is, instead of shifting a learner’s inductive bias, to use an inductive

bias suitable for many problems. AIXI [81] maintains a Bayesian mixture model over

possible environments, weighting the simplest environments more than the complex en-

vironments according to the length of the programs to generate them. This respects

philosophical principles such as Occam’s razor, which states that the most simple ex-

planation should be preferred, and Epicurus’ principle of noncontradiction, which states

that all hypotheses consistent with the data should be maintained. Unfortunately, the

approach is not practical, as it relies on the uncomputable Kolmogorov complexity of

the environments. A practical approximation called MC-AIXI was proposed in [222]

but this suffers from the limitations of tree-based learners, which have limited scalabil-

ity and limited horizon. Additionally, recent theoretical research has invalidated AIXI’s

previous universality claims [106].

So far, the most practical universalist RL methods are based on the Success Story

Algorithm (SSA) [166]. SSA performs a back-tracking over modifications to the meta-

program until the system only maintains those modification sequences that, starting from
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their introduction, result in lifetime reward acceleration. Various implementations of

SSA have been proposed for meta-learning. Adaptive Levin Search [166] performs Levin

Search, searching candidate programs according to their Levin Complexity, increases

the probabilities of those instructions that lead to the correct solution of the problem,

and then evaluates those probability changes with SSA. This increased performance on

a big episodic partially observable maze and transfer learning in a maze with varying

goal-sets, when compared to either Levin Search or Adaptive Levin Search without SSA.

Another implementation, called Incremental Self-improvement (IS) [166, 157], similarly

modifies instruction probabilities and evaluates them with SSA, but builds algorithmic

solutions based on self-referential instructions to inspect and modify the probabilities of

the instructions. Similar to the Goedel Machine, the method is part of the wider class

of Self-Modifying Policies (SMPs), which due to encoding self-modifications into the

action set have an unlimited number of meta-levels. The method treats computational

procedures similar to external actions on actuators, and this allows resource-bounded

rationality [145, 156]. Further, it allows the coordination of attentional, sensory, and

learning operations efficiently with the external actions; therefore, such systems can

also be used for a general form of active perception. So far IS has been demonstrated

on non-episodic environments [157], multi-agent systems [164, 241], partially observable

environments [164, 241, 157], noisy environments [240], as well as continual learning,

solving problems of increasing complexity presented sequentially across the lifetime [166].

In the past, this approach has compared favourably over various versions of Q-learning,

although it is not clear how Incremental Self-improvement would compare to modern

versions of Q-learning such as DQN or DRQN.

Limited observation On a variety of partially observable environments,including a

challenging partially observable pacman problem, MC-AIXI achieves higher performance

when compared to tree-based learners U-Tree [118] and Active-LZ [47]. Like other tree-

based learners, a downside of MC-AIXI is the scalability when the time dependencies and

observation or action spaces grow larger. Some Incremental Self-improvement systems

allow reading and writing information on a working memory [157] to provide general

perception and memorisation, but this has limited efficiency due to modifying only a

single variable at a time. Other implementations include active perception instructions

[164] to allow checking for user-specified objects at times chosen by the learner. This

has at least three limitations: (i) it is assumed the objects that may appear are known

in advance; (ii) the exact implementation of these instructions is not provided; (iii) their

categorisation mechanism cannot adapt to environment changes.

Sparse rewards and non-episodic environments MC-AIXI has a limited horizon

which makes it unsuitable for non-episodic environments with sparse rewards. Adaptive

Levin Search tests programs on a repeatable simulation, which is not realistic for on-

line learning in non-episodic environments. In contrast, Incremental Self-improvement
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allows evaluation at self-chosen time-points, by learning when to perform an instruction

which initiates the Success Story Algorithm. SSA then repeatedly performs evalua-

tion of past policies by back-tracking over previous self-modifications and calculating

whether or not they improve the lifetime reward velocity. Because the evaluation spans

the entire lifetime, this makes Incremental Self-improvement suitable for non-episodic

and sparse reward environments such as the maze setting in [157]. Incremental Self-

improvement has also been extended for sparse reward environments in the Dual Brain

framework [158]. This framework utilises a combination of two interacting Incremental

Self-improvement learners, each of which obtain surprise rewards whenever one predicts

a correct outcome and the other predicts a false outcome. Illustrative of the pros and

cons of intrinsic motivation, the method was able to gain prediction capabilities even

when there was no feedback from the environment, but completely ignored the external

rewards in some runs.

Meta-learning In most reinforcement learning systems, there is an assumption of

some knowledge about the time scales of a problem, as is visible for example in fixed

updating frequencies, fixed evaluation frequencies, and exploration schedules which for

example decrease the exploration rate from time t = 0 to some later time, e.g., t = 106.

Further, they assume a fixed learning algorithm with no modifications. Another key

assumption is that, according to the agent-environment interface, the learner’s algo-

rithmic procedures do not consume any time. Incremental Self-improvement does not

need to make these assumptions, and instead constructs algorithmic procedures based

on elementary instructions. This property of Incremental Self-improvement also allows

a form of real-time reinforcement learning. Unlike existing approaches to real-time rein-

forcement learning [76, 222, 178, 200, 9], Incremental Self-improvement learns how much

time should be spent doing which learning operations.

Lifelong learning In one study [166], Incremental Self-improvement has been suc-

cessfully applied to lifelong learning scenarios, solving related mathematical functions of

increasing complexity, using a learning schedule which initially provided easy tasks fre-

quently and gradually increased the frequency difficult tasks. Due to the well-designed

learning curriculum, the study yields only limited conclusions about lifelong learning in

unknown environments, where: (a) tasks can be presented in a more random order; (b)

tasks may not relate to each other; and (c) discontinuous reward function changes may

occur.

2.6 Other lifelong reinforcement learning approaches

Many other reinforcement learning methods are fairly similar in assumptions and mech-

anisms when compared to traditional and deep reinforcement learning. This section
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reviews those methods which are specifically proposed for improved lifelong learning.

2.6.1 Hierarchical approaches

A variety of hierarchical reinforcement learning approaches break up reinforcement learn-

ing in smaller problems, enabling to find routines which are re-usable across different

subtasks to provide increased transfer learning. SKILLS [209] defines sub-policies based

on a partition of the state space, learning those skills shared across tasks. The Options

approach [201] uses special hierarchical actions called options, which are initiated based

on particular conditions, then define a particular state-action policy to follow for that

option, and then terminate in a particular set of states. The Options approach was

extended in [26] for Option discovery, utilising a two-phase structure to first extract

options in various MDPs and later combine them to learn a policy using the options.

A hierarchical approach called Hierarchical Deep Reinforcement Learning Network (H-

DRLN) [207] defines a policy over primitive actions, first-order skills pre-trained on

simple tasks, and second-order skills which combine first-order skills based on policy

distillation [147], a method to transfer knowledge from a teacher to a student model.

Compared to other approaches in this category, H-DRLN can be applied in complex

state spaces, as demonstrated by the use in MineCraft.

A downside of these approaches is that they are typically assuming a two-phase struc-

ture, in which first re-usable subroutines are learned, and then the hierarchical model

over these routines is learned. This means that the subroutines are not learned online,

limiting their adaptivity. Also these approaches make the Markov assumption, which

prevents learning with limited observation. Apart from the H-DRLN approach, the

above-mentioned approaches have limited scalability. Also some of these approaches,

such as the ones mentioned in Konidaris et al. [96], require special domain knowledge.

2.6.2 Constructive approaches

Various authors have explored an incremental approach to build skills of increasing

complexity, by expanding the number of units. CHILD [140] demonstrated an approach

using a constructive neural network for Q-learning, increasing the historical context to

take into account for decision making to solve increasingly difficult problems. Progres-

sive neural networks [146], which add a new sub-network for each new task while adding

lateral connections to previous tasks, were previously applied on sequences of Markovian

environments including Atari games, pong and 3D mazes (each class a separate lifelong

learning scenario). This includes sequences containing tasks with orthogonal properties,

although in many cases detecting the task that is being solved can be inferred from

the observation. In such scenarios, the progressive networks strategy has been shown
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to increase positive and reduce negative transfer. Beyond the above, literature on con-

structive networks for online reinforcement learning is sparse, and the few approaches

that do [218] are not tailored to the lifelong learning scenario.

A downside of this approach is that not all learning is fundamentally incremental, and

that the complexity of these methods grows over time. Approaches based on constructive

networks also add neurons based on relatively heuristic hand-crafted criteria; a challenge

is to allow adaptive learning of network construction.

2.7 Summary

Neural networks provide a solid foundation for adaptive perception. Recurrent neural

networks have a high capacity, as they can represent complex dynamical systems, but are

difficult to train. With many free parameters, they need high quantity of representative

data. When there is only a single sequential lifetime, such as in real-life robotic systems,

methods such as evolutionary algorithms cannot be applied as they require repeatable

trials and controlled conditions. Gradient descent algorithms get stuck in local optima

difficult to escape, which limits the type of functions they can learn.

Neural networks have been integrated with reinforcement learning in the field of deep

reinforcement learning. Value-based learners and actor-critic methods have been es-

pecially popular in deep reinforcement learning literature. Due to the use of target

networks and experience replay which allow more stable learning in long-term environ-

ments with sparse rewards, Deep Q-Networks and variants thereof have been applied

successfully to game playing environments. One variant is Deep Recurrent Q-Networks,

which combines DQN with Long Short-Term Memory to obtain state-of-the-art perfor-

mance in partially observable environments. Value-based learners are limited in lifelong

learning, as learning task-specific DQN policies outperformed the lifelong learning DQN

with Elastic Weight Consolidation. For actor-critic methods, Proximal Policy Optimi-

sation has generally yielded the best performance, and has favourable transfer learning

properties. Similar to the DQN system, PPO has also been extended to include Long

Short-Term Memory networks for partially observable environments.

Although meta-learning, learning how to learn, has been studied to improve adaptivity

in deep reinforcement learning, such studies have been limited to systems with only a sin-

gle meta-level, where one meta-optimiser optimises a small part of a subordinate policy.

In comparison, the universalist tradition of AGI better represents the true meaning of

meta-learning, allowing multiple meta-levels by considering the learning algorithm as an

input to itself. Incremental Self-improvement is the most practical in this approach and

using its long-term utility function in principle allows learning regularities in long-term

environments; however, (a) it is unknown how it compares to modern deep reinforce-

ment learning systems; (b) its instructions for perceiving the world are unadaptive and
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unrealistic; (c) its lifelong learning results depend on a well-designed curriculum, rather

than an unknown environment.



Chapter 3

Long-term adaptivity to alleviate

and shift inductive bias

A key property introduced in Chapter 2 is capacity or expressiveness, a quantitative

metric for how many functions a learning system can represent. There, it was discussed

how recurrent neural networks can in principle represent all open dynamical systems

but how in practice this can be difficult to achieve due to the limitations of the training

method and the data provided to the training method.

Inductive bias [124] is a more qualitative concept which refers to what types of functions

a learning system can represent and why it can or cannot represent them. It refers to the

set of assumptions which determine how to generalise observed data to unobserved data.

When solving an unknown long-term environment, this becomes incredibly important

as the data distribution of the future is unknown and, in reinforcement learning, may

be dependent on the actions of the agent. As discussed in the literature review, a bias

for a limited number of functions, corresponding to a low capacity, would be beneficial

for rapid learning, but comes with the risk that no valid solution can be expressed.

Therefore, ideally, the learner is open to a wide set of functions, corresponding to a

weak bias, but has long-term adaptivity of representation and learning to shift the bias

for more efficient learning.

In this context, this chapter presents the main research methodology used in the the-

sis. First, the chapter identifies the bias in deep reinforcement learning systems. The

motivation behind the case studies, consisting of a continuing single-task scenario and a

lifelong learning scenario, is presented. Finally, the methods for reinforcement learning

with long-term adaptivity are proposed, with emphasis on the key concepts rather than

the implementation level.

33
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3.1 The inductive bias of deep reinforcement learning sys-

tems

Bias may be present in the representation itself or in the algorithmic procedures. Below

is a list of biases that make it difficult to learn in long-term unknown environments:

• Limited memory: in general non-Markovian environments, the system usually can-

not memorise all previous events that happened in the causal chain. This makes

it risky to simply try to memorise all patterns, because observations and decisions

made much earlier might affect which decision should be taken now.

• Architectural constraints: the fixed hidden layer sizes may not be suitable for the

environment. Too many neurons come at the risk of overfitting, while too few

come at the risk of not being to learn complex patterns.

• Limited evaluation horizon/Short-term objectives: evaluation with the cumulative

discounted reward inherently means that learner’s decision do not get a complete

picture of the environment, as rewarding or punishing events in the distant future

are not accounted for. Such learners therefore implicitly assume the distant past

is not relevant to making decisions.

• Locality of the search space: methods of the gradient descent type are most widely

used in deep reinforcement learning, but a problem is that they simply descend

into the most promising regions. The assumption of smooth, continuous objective

landscapes with reliable progress indicators is not always true, and therefore such

methods risk getting stuck in a local optimum.

• Untargeted exploration: when the environment is unknown and incurs only sparse

rewards, exploration is important to find the higher-density reward regions and

learn how to consistently reach them. Without any idea of how to best explore

the environment, deep reinforcement learners can potentially get lost forever, as

the best learned actions might be preventing to reach the good locations. The

assumption that an unadaptive exploration mechanism, such as epsilon-greedy, or

adaptive exploration based on a short-term objective, such as meta-policy gradient

[235], will lead to exploring all the possible patterns is not always true, especially

when rewards are sparse.

• Unadaptive learning: whilst reinforcement learners are inherently adaptive, the

learning mechanisms themselves are not adaptive. For example, although Q-

learning updates adapt the value of state-action pairs over time, the learning itself

is static since the same type of update is being applied on the same tabular or

neural network representation. This makes it impossible to obtain a good perfor-

mance if, due to one of the reasons mentioned above, the learning algorithm or

representation is not suited to the environment.
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• Catastrophic forgetting and negative transfer: learning one task may actually ham-

per the performance on other tasks. With features of the tasks at hand unknown

and the task being difficult to classify, deep reinforcement learners struggle to solve

lifelong learning scenarios.

The above biases limit the possible environments which deep reinforcement learners

can accurately learn. This is not necessarily bad: if the bias is correct, then the deep

reinforcement learner is able to correctly learn the patterns for the environment it en-

counters, whilst avoiding an unnecessarily large search space; such learners are said to

have a high expressive efficiency. If the bias is false in a strict sense, for example when

some patterns occurring in the environment cannot be expressed by the representation,

then the deep reinforcement learner will never be able to correctly learn the environment.

It is also possible that, although it is theoretically possible to learn the pattern, in

practice the corret pattern is never learned because of the practical limitations of the

training algorithm. This can be particularly well illustrated for gradient descent meth-

ods, as shown in Figure 3.1. A gradient descent search effectively defines a practical

search space: because it follows the gradient and it cannot reach certain regions of pa-

rameter space when the objective landscape is deceptive. Lifelong learning also presents

similar challenges: when learning different problems, performance on earlier tasks may

be hampered because the agent learns a parameter set that is somewhere in between the

different tasks’ optimal parameter settings.

Meta-learning is one potential approach to mitigate this problem. By selecting different

representations centered around a different region in parameter space or even changing

the dynamics of the search itself, meta-learning can effectively change the practical

search space. As such, it can shift bias based on experience.

3.2 Case studies

Due to their relevance for solving long-term unknown environments, the sources of bias

mentioned above inspire the investigations into two case studies.

3.2.1 Case 1: long-term learning with limited knowledge and sparse

rewards

As a first case study, Chapter 4 considers a maze problem with several challenging

characteristics. The observation is limited, leading to partial observabilty and the need

to remember the recent history of events. The environment appears as non-episodic: the

learners are not aware of any terminal states and the designer has no control over the

environment in the sense that when learners fail to reach the goal for prolonged amount
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(a) Trade-off between capacity and expressive ef-
ficiency

All functions
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(b) Meta-learning

All functions
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Figure 3.1: Illustration of inductive bias. (a): Sizes of the ellipses denote the the-
oretical search space of the learners. The ‘Inexpressive’ learner has a high capacity
which means it can represent a small set of functions and therefore has a representa-
tional bias. This makes it more efficient at learning a particular problem f for which
its bias is correct, but can never learn the function g for which its bias is incorrect. The
‘Expressive’ learner can learn both f and g in principle, but because its search space
is larger it may not always find the solution in practice. (b): Meta-learning with a
single meta-level can be seen as a search for the best practical search space, here shown
in blue at different time steps, by adjusting its shape and location in the space of all
functions, in the search of the best procedure which allows it to best learn the optimal
function f . Meta-learning with two meta-levels can then be understood as the search for
the search in practical search space. (c): In lifelong learning scenarios, a key challenge
is to search for solutions to new tasks efficiently without losing solutions on old tasks;
two common strategies are using separate policies for each task guided by an initialisa-
tion and learning a single policy which captures aspects of all tasks. When a new task
is presented that has a different optimal set of parameters, these approaches reposition
their policy and therefore the practical search space to better capture the range of tasks.
As a consequence, performance on subsequent tasks which are similar to f1, f2, and f3
may now be reduced.
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of times there is no means to let them know this. This non-episodic property makes

the evaluation horizon span out far in the future and makes it possible to get stuck in

a location far away from the goal. Due to the sparse feedback, with rewards only being

received at the goal location, the learner must explore the environment intelligently to

avoid getting stuck.

3.2.2 Case 2: lifelong learning

As a second case study, Chapters 5 and 6 investigate a lifelong learning scenario. Unlike

usual reinforcement learning scenarios, the environment will, at different points of the

learner’s lifetime, present a new task to be solved. In traditional reinforcement learning,

based on Markovian Decision processes, there is a single reward function r(st, At) in

which each state-action pair is associated with a real-valued reward, and the state tran-

sitions follow a Markovian transition probability model Pr(st+1|st, At). In the lifelong

learning scenario, different tasks have completely different non-Markovian dynamics, as

well as different reward functions. The learner then must adapt to this task, transferring

its knowledge from previously seen tasks, or, if the task was already learned, remember

the relevant skills used to solve it. The tasks are presented in unknown order, and, due

to the partial observability, simply observing the environment does not yield any infor-

mation about the task at hand. This makes it difficult to transfer knowledge selectively

and to prevent updates from erasing previously learned knowledge; therefore, effects

of negative transfer and catastrophic forgetting pose a particularly strong challenge in

this environment. As in the first case study, the partial observability in itself poses a

challenge, as the learner needs to remember many previous time steps.

3.3 Long-term adaptivity

To address these challenging case studies in a task-agnostic manner, the thesis inves-

tigates the role of long-term adaptivity to solve and diagnose issues related to the in-

ductive bias of deep reinforcement learners. Various aspects of long-term adaptivity are

included into the thesis, in the sense that: (i) long-term objective functions are included

to consider a lengthy time-span such as the entire lifetime; (ii) long-term adaptations

to learning itself, based on many prior evaluations; and (iii) selective use of represen-

tation which spans a longer time-frame than is usually the case. A novel learning type

called “active adaptive perception” incorporates (i) and (ii). A different approach called

“learning with multiple policies” incorporates (iii) as a feature and further serves as an

analysis tool for lifelong learning, with the aim of finding suitable training methods and

objective functions for long-term environments.
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3.3.1 Shifting bias with Active Adaptive Perception

The issue of inductive bias is highly relevant for autonomous systems as they must make

sense of the world using their perception. Perception is commonly defined as the ability

to interpret sensory information to represent the external world [149]. Bias in perception

may lead learners to fail, either completely or for particular spatio-temporal patterns,

when they are subjected to unknown environments for which they are not specialised.

Even though the representation using recurrent neural networks may be sufficient to

capture all the relevant patterns in theory, in practice this will not always be true, due

to the bullet points in Section 3.1.

Among the points raised, “Unadaptive learning” is the limitation that unadaptive learn-

ing methods may find themselves unable to solve a given environment with no ability to

make according adjustments. To remedy this limitation, here it is proposed that allowing

agents to flexibly use and modify their perception may provide improved performance

when the agents are granted a sufficiently long lifetime to learn how to learn. Interest-

ingly, this bullet point is relevant for many other bullet points as well: limited memory,

architectural constraints, locality of the search space, and untargeted exploration are

key domains that may be improved by allowing more autonomously generated routines

for learning and behaviour.

To further explore this reasoning, Chapters 4 and 6 explore a novel learning type, further

called active adaptive perception, defined based on two conjunctive characterisations.

A first characterisation (C1) is as an active form of adaptive perception. Adaptive percep-

tion makes long-term adjustments to the perceptual system based on the environment’s

feedback; to be an active adaptive perceiver then means to be able to decide how and

when to modify the perceptual system, based on environmental demands. Therefore,

active adaptive perceivers include a significant meta-learning component to learn how

to improve their adaptive perception.

A second characterisation (C2) is active perception, using Bajcsy’s definition “an agent

is an active perceiver if it knows why it wishes to sense, and then chooses what to

perceive, and determines how, when and where to achieve that perception” [11]. This

broad definition of active perception includes but is not limited to actively choosing

when and how to reposition the sensors, interpreting sensory information, or predicting

incoming sensory information.

By combining these two characterisations, active adaptive perception allows learning how

to modify and apply perception. Due to the large scope of active adaptive perception,

and the inherent complexity in analysing such flexible behaviours, the thesis will focus

on simple cases, by investigating systems which learn:

• which experiences are useful to pursue as goals (C1)
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• which parts of a neural networks should be modified (C1)

• which learning rate is suitable in which situations (C1);

• which exploration rate is suitable in which situations or for which goals (C1-C2

interaction);

• when and how to interpet sensory information (C2), by deciding

– how frequently to rely on a neural network representation versus a probabilis-

tic instruction-based representation;

– for which goals to rely on a neural network representation;

A generic architecture To achieve active adaptive perception, the thesis proposes

a generic architecture illustrated in Figure 3.2. The architecture consists of four basic

components: an instruction module, an evaluation module, a working memory and a per-

ception module. On a conceptual level, the difference with a traditional self-modifying

policy such as Incremental Self-improvement is the introduction of a perception module, a

sub-symbolic system that provides a selective use of representation and efficient pattern

recognition to guide the subsequent instruction cycles. The architecture serves as an

abstract template for learners with active adaptive perception; the way the architecture

is implemented may alter efficiency but not the property of active adaptive perception.

To emphasise this, the specifics of its implementation are left for the following chapters;

this subsection serves to explain the generic properties of the modules, and to point to

the connection of the perception module to Chapter 4 and the evaluation module to

Chapter 6.

The instruction module organises the interactions with the environment but also

with the different modules of the architecture by utilising a user-defined instruction set

A, a set of operations which includes external actions which involve interacting with

the environment, e.g. moving one step north, grabbing an object, or applying sensory

mechanisms; and internal operations to enable memory, learning and inference. The

mechanism of the instruction module is to continuously generate instructions based on

the current instruction module parameters P and a set of working memory variables.

Throughout the thesis, the instruction module will be based on a probability matrix in

which rows represent the internal state of the learner whilst the columns represent the

instruction used. The instructions, similar to functions used in programming languages,

take several arguments as inputs and then perform some computations based on these

arguments.

The perception module is a modifiable sub-symbolic module whose function is to

advise the instruction module, using special instructions relevant for active adaptive

perception. It supplies bottom-up perception to the architecture by analysing sensory
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Figure 3.2: Block diagram of the generic architecture. This architecture for active
adaptive perception serves as the basis for the next two chapters. The Perception Module
(red color), investigated especially in Chapter 4, is used to inputs and historical variables
stored in the working memory. The Evaluation Module (brown color) is the topic of
Chapter 6 where variants of the Success Story Algorithm are investigated.

inputs and working memory variables in terms of high-level concepts to help decision-

making. For example, successive layers of a neural network may process elementary

visual stimuli such as edges into shapes and objects, and a configuration of free and

blocked spaces in a maze may be processed in terms of a narrow corridor or a wide area.

By interacting with the working memory and the instruction generation, it can influ-

ence the decisions made by the instruction module, using perceptual advice instructions.

The architecture and the parameters of the perception module are subject to long-

lasting modifications when the instruction module calls special perceptual modification

instructions. By learning when to use which perceptual advice and perceptual modi-

fication instruction, various strategies for utilising and training the perception module

will emerge from experience, leading to active adaptive perception. Chapter 4 investi-

gates this module in particular, to illustrate a range of possible perceptual advice and

perceptual modification instructions.

The evaluation module uses a long-term objective function to determine whether

changes to the instruction module and the perception module are beneficial for long-

term reward intake. The evaluation module is therefore a key factor to facilitate adap-

tivity. Before explaining roughly the ideas behind this module, consider the Section 3.1

bullet point of “limited evaluation horizon”. Traditional reinforcement learning systems

consider the future discounted reward as the main objective. For meta-learning, as well

for learning in long-term environments with no clearly defined episode boundaries, this
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is not suitable. Instead, the evaluation module in Chapter 4 will be based on the Suc-

cess Story Algorithm. The Success Story Algorithm evaluates self-modifications, little

chunks of information which when introduced modify the policy of the learner whilst

when removed revert the learner back to the policy from before the modification, similar

to a version control system. To keep of track of all the self-modifications, the algorithm

makes use of a data structure called the stack, further denoted as S . Table 3.1 shows the

list of operators that will be used throughout Chapter 4 and Chapter 6. To account for

delayed effects of self-modifications, the stack is evaluated in terms of self-modification

sequences. This is done based on the Success Story Criterion, which asserts whether

or not the lifetime reward velocity has speed up since the self-modification has been

introduced. If this is not true, the self-modification sequence is removed, and the policy

from before the removed self-modifications is restored. The evaluation module is of crit-

ical importance in this thesis; in Chapter 6, the Success Story Algorithm is extended to

better be able to evaluate self-modification sequences in lifelong learning environments,

especially when different tasks have completely different reward profiles.

As a last module of the generic architecture, the working memory is used to store

and manipulate information from various parts of the learning structure as well as the

environment. Variables in the working memory are updated regularly or at self-chosen

times by the instruction module and the environment. The working memory provides

other modules with historic information, contributing to non-Markovian learning and

decision-making.

Algorithmic Overview Now that the meaning of the various modules has been ex-

plained, the order of the various interactions between them can be further clarified. In

general it will always be assumed that a learner, L, is put in an environment, E , with

the aim of maximising a long-term objective such as the lifetime cumulative reward∑∞
t=0 rt. L seeks out rewards by outputting an instruction a from a user-defined set of

instructions A. The learner’s instruction cycle works as follows. The agent, with its D

sensors, receives an observation o ∈ O ⊂ RD from E and writes it directly to the working

memory elements reserved for observation. Based on a fixed subset of working memory

cells, not necessarily the same as observation elements, the instruction module, based on

the instruction module parameters P, generates an instruction A ∈ A and its arguments

a1, . . . , aN , if that instruction has any. The execution of A results in interactions be-

tween modules (internal actions) or between L and E (external actions A ∈ AE); types

of interactions are described in the following paragraph. As in reinforcement learning, a

critic in the environment E sends a reward r ∈ R after an external action is taken. The

cycle ends after L has processed the reward in the evaluation module.

Interactions between modules are encoded in the instructions. This flexibility allows

true meta-learning, as computational elements are treated in exactly the same way as
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Table 3.1: Operators on the stack S and data stored in stack-entries e ∈ S . The
stack is a convenient datastructure to enable back-tracking across incremental self-
modifications, and this is used as part of the implementation of the evaluation module.

Type Operator Meaning

Stack operators S the stack containing all valid modifications
S [i] get the i’th element in S
S [sp] the top-most element of the stack
S .push(e) add a new entry to the top of S
S .pop() remove S [sp]

Stack-entry data e or e ∈ S a single entry in the stack, with data to re-
store the learner to its settings before the
modification were made

e.first pointer to the first entry in the same self-
modification sequence as e

e.t the time at which e was pushed
e.R the cumulative reward at time t, R(t)
e.X the data to recover the instruction module

or perception module as it was before e was
pushed.

e.address pointer to the location where the instruc-
tion module or perception module is modi-
fied; helps to avoid storing the entire policy

Firsts subset Firsts or Firsts ⊂ S a convenient mathematical notation,
Firsts = {e ∈ S | e = S [e.first]}
includes only those entries which started a
self-modification sequence; stack-operators
can be applied analogously.

Firsts.top() get the top-most element of Firsts; is equiv-
alent to getting i ← S [sp].first, where sp
points to the top index of S , and then ob-
taining the entry e = S [i].

Firsts.secondtop() get the second top-most element of Firsts;
is equivalent to getting i← S [S [sp].first−
1].first, where sp points to the top index of
S , and then obtaining the entry e = S [i].

interactions with the environment. The following types of instructions are the minimal

requirement for active adaptive perception:

• External actions (A ∈ AE): interact with E to obtain rewards

• Self-modification (A ∈ AIM ): modify the instruction module parameters P.

• Working memory manipulation (A ∈ AWM ): change the working memory based

on the sensory inputs and the current working memory

• Perceptual advice (A ∈ APM ): based on the current working memory a part of

the perception module computes outputs which influence instruction generation.
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• Perceptual modification (A ∈ APM ): modify the perception module’s parameters,

changing the way perceptions form and interact with the instruction module.

• Evaluation (A ∈ AEM ): call the evaluation module to evaluate changes to the

instruction module and the perception module

When all instructions are regularly used, this results in the following learning steps:

1. The learner starts with a minimally biased instruction and perception module,

where the instruction probabilities are uniform and the perception module’s pa-

rameters are randomly initialised;

2. Intermittently, changes to instruction generation and the perceptual processes are

made;

3. Once the evaluation module is called, the changes are accepted or rejected based

on evidence of their contribution to reward intake;

4. The instruction module thus learns when to execute the instructions but also

how; the meaning of instructions is optimised as the arguments supplied to the

instruction is changed.

5. This leads to optimisation of the interaction between the various modules. One of

the consequences is perceptual learning, which may be divided into two processes:

• long-term parameter changes: similar to traditional sub-symbolic learners,

the best parameters for a given perceptual operation are learned.

• active adaptive perception: learning how to modify and use the perception

module.

Blending the universalist and the sub-symbolic tradition The above archi-

tecture is inspired by two different AGI traditions discussed in Section 1.2.3, namely

the sub-symbolic tradition and the universalist tradition. The sub-symbolic approach, of

which deep learning is a major part, is particularly strong in recognising complex spatio-

temporal patterns. The universalist approach by contrast prides itself on the ability to

find good or optimal solutions in vast algorithmic search spaces. The underlying ratio-

nale behind the generic architecture is that a universalist algorithm searches the space

of possible programs for learning, constructing and applying one or more sub-symbolic

learners which then supply perception to the system.

This works as follows. The instruction module, a universalist meta-algorithm, utilises

elementary instructions to construct perceptual modification algorithms and to selec-

tively apply the perception module. In contrast to deep reinforcement learners, which

use a fixed update rule, a deep neural network or other sub-symbolic representation
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can be modified in this manner by learning from long-term experience how to combine

elementary update steps included in specialised instructions – a process called percep-

tual modification. Similarly, another set of instructions allow the instruction module

to utilise, at self-chosen times, the patterns detected by the perception module to tem-

porarily influence which instructions (external actions, working memory, etc.) will be

generated in the following instruction cycles – a process called perceptual advice. Using

these instructions, the system can then successfully learn when and how to request fur-

ther perceptual processing and when and how to make long-term modifications to the

perceptual system, thereby achieving active adaptive perception.

Due to fitting the above description, a natural candidate for the instruction module is

the self-modifying policy. As discussed in Section 2.5, self-modifying policies such as the

Goedel Machine and Incremental Self-improvement learn a policy which includes in its

action set instructions for modifying the policy and usually some other instructions which

are internal or computational in nature rather than just outputting external actions. If

such a policy successfully learns when and how to use self-modification instructions, such

a policy learns how to generate changes to itself, then this allows an adaptive learning

system which keep learning even when typical reinforcement learning assumptions are

not met. Moreover, if such a policy successfully learns when and how to use perceptual

modification and perceptual advice instructions, according to their above definition, this

will achieve active adaptive perception.

3.3.2 Selective use of representation with multiple policies

The second case study provides a challenging scenario: when partial observability is

combined with multiple tasks presented sequentially across the lifetime, with completely

different reward functions, knowing how to perform one task may not be beneficial to

solving another task. Behaviours that obtain the best performance in some task may well

be detrimental in another task. When the task cannot be identified from the observation,

simply applying the same policy for a different task might not work. This is easy to see

for example in the value-function in Equation 2.2: in partially observable environments

the states become limited observations and the reward function varies dependent on the

task in an unknown way. With F being the current task, reformulating the Q-learning

equation accordingly leads to:

Q(ot, At,F) = (1− α) ∗Q(ot, At) + α(rFt + γ arg max
At+1∈A

Q(ot+1, At+1)) , (3.1)

where the limited observation is denoted by ot (compare st for the full state in Equation

2.2), and the reward is now denoted by rFt to illustrate the task-dependency. The

equation shows that if the observation does not include any information about the task,

then unless the reward function rF is highly similar, negative transfer will happen across
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tasks and knowledge. For similar reasons catastrophic forgetting will occur due to the

incremental updates in the Q-learning algorithm: once the value-function has updated

to more closely mimic the intermediate tasks, the knowledge of how to perform the

original task may be completely lost.

Assuming for a moment that the task at hand is known, then this problem can be solved

with two types of solutions. A first solution is to add the task features as parameters

to the observation, which has been explored in previous works [151, 42]. A second is to

learn multiple policies, which has been explored mainly in three ways:

• Initialise first, specialise later: several methods provide a way to extract an initial

policy for a given task and then specialise a separate policy for each task [51, 95,

231, 96, 210].

• Partially defined subpolicies: these methods use differrent policies selectively over

the state space [209, 26, 96, 207, 147].

• Learning each task from scratch: this approach, which is not scalable when the

number of tasks grows large, is to learn a single policy for each different task,

all with different initialisation. Although this may seem simple and sometimes

inefficient due to the lack of transfer learning, empirical findings show that this

approach usually outperforms the Elastic Weight Consolidation method [95].

As mentioned in the third bullet point, learning a policy for each task can be beneficial

compared to state-of-the-art lifelong learning methods, even in Atari domains where

observations give a lot of information about the task to solve [95]. Due to the limited

scalability of this approach as more and more tasks are given across the lifetime, a natural

question that arises is whether performance benefits could be observed by adaptively

using a more limited number of polices depending on the task at hand.

Therefore, as illustrated in Figure 3.3, this work considers a fourth alternative, further

simply called “learning with multiple policies”: rather than defining policies selectively

over the state space, they are defined selectively over a particular subset of tasks, by

using exploration-and-exploitation strategies to learn from the long-term reward intake

of policies on tasks which policy has the highest performance on which task and then

applying the best policy for a given task most frequently. Due to this selective use of

representation, the issue of “Catastrophic forgetting and negative transfer” mentioned

above may be avoided or ameliorated. By including an additional layer of adaptivity,

which assigns policies to the tasks in which they perform well, the approach is useful to

allow policies to specialise to the tasks they are best suited to. Due to defining policies

which may diverge towards different regions of the search space, one of the expected

benefits of the adaptive approach is to overcome the “Locality of the Search Space”

issue mentioned above.
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Policy 1 Policy 2

. . .

Policy N

AssignmentEnvironment

select evaluate

task

interface

Figure 3.3: Learning with multiple policies. The following cycle is repeated: first, a
policy is chosen to solve the current task; second, the policy interfaces with the environ-
ment for a prolonged amount of time (e.g., one episode). Additional adaptivity can be
included by allowing a performance evaluation to modify the policy chosen for a given
task.

Furthermore, in the context of the earlier work on capacity, one question remaining

is to what extent a reinforcement learning policy can generalise, and particularly, how

many tasks a single policy would be able to learn. Despite the variety of metrics for

function approximation [220, 59, 13], and various proofs about the capacity of neural

networks in terms of their ability to represent functions and open dynamic systems

[79, 150], capacity metrics are a poor guideline for lifelong reinforcement learning. In

reinforcement learning, there are practical difficulties in training procedure, the data

that is being presented to learn the patterns, and the objective function which takes

into account only a limited time frame or may be biased in a different way.

To assess their capacity in a practical manner, Chapter 5 compares different settings of

the number of policies to investigate task capacity, how many tasks can be reasonably be

learned and remembered by a single policy, in a single lifetime. This notion differs from

earlier capacity metrics: first, it assumes a practical setting in which issues related to the

learning algorithm, such as catastrophic forgetting and inability to escape local optima,

affect the resulting metric score; second, rather than considering how many functions a

neural network would be able to learn in isolation, the task capacity metric considers

how many tasks can be represented by a single policy at or around the same time. In

this sense, the task capacity metric is more similar to the memory capacity in Hopfield

networks [59], which captures the number of patterns that can be stored at the same

time. Compared to this memory capacity metric, though, there are no architectural

constraints and the test is applicable to lifelong reinforcement learning.
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Such a task capacity analysis is then used to compare different base learners. By com-

paring the response of different base learners to the number of policies included, this

allows a comparative assessment task capacity as a metric for the goodness of a lifelong

reinforcement learner. The use of multiple policies further facilitates additional statis-

tics on the impact of policy diversity and how rapid a base-learner learns and forgets

depending on the number of tasks a single policy has been assigned to. This in turn

may lead to a better understanding as to why certain objective functions and training

methods work and others do not.

3.4 Summary

This chapter presents the main research methodology used in the thesis. The key mo-

tivator behind the research methodology is the observation of inductive bias in deep

reinforcement learning systems: a limit to effective memory of the causal chain, ar-

chitectural constraints of the neural networks, the assumption of locality of the search

space inherent to methods of the gradient descent type, untargeted exploration, fixed

algorithm updates not subject to modification, and catastrophic forgetting and negative

transfer.

To investigate how to mitigate these sources of bias, two case studies are explored, a

long-term maze where the learner can get stuck forever and a task sequence of randomly

presented, unrelated tasks. A novel learning principle called active adaptive perception is

proposed, which combines two key features: (i) an active form of adaptive perception by

learning how to make modifications to a perception module; and (ii) active perception,

by selective request of advice from a perception module. The architecture for active

adaptive perception, proposed in this chapter, will be investigated in Chapter 4, as a

means to shift the inductive bias for more effective learning on the first case study, but

also in Chapter 6, where the issue of catastrophic forgetting is investigated on the second

case study. A second learning system that will be explored (see Chapter 5) is learning

with multiple policies, a simple method to assign policies to tasks, thereby avoiding

locality of search space and negative transfer and catastrophic forgetting. Using this

system allows to investigate task capacity, how many tasks a policy can represent, and

the potential benefit of adaptively changing the policy to use for a task; and since this

method is agnostic to the type of base-learner, it allows investigating the differences

between base-learners with regard to these properties.





Chapter 4

Long-term learning with limited

knowledge and sparse rewards

In long-term unknown environments, the task presented to the learner will be unknown,

meaning that even a single task may be difficult to learn without prior knowledge.

As discussed in Chapter 1, one property of general learners is that they abide with

the Assumption of Insufficient Knowledge and Resources (AIKR). This principle holds

true not only for the learning phase but also for the design phase: if the designer

can accurately make many assumptions on the environment, then specialised learning

methods will yield better performance than general learners. In the opposite case,

avoiding to make assumptions is more important, since assumptions that hold true

for some environments will not for others. It is such a case which is the topic of this

chapter.

A single unknown task may be presented to the learner for a prolonged amount of time

without episodic boundaries and with the possibility of getting no feedback at all, and

given the bias of current reinforcement learning systems, this may be misleading. To

investigate this scenario, this chapter considers a task which is atypical for reinforcement

learners, in the sense that many of the usual assumptions do not hold: terminal states

are unknown and there are no time-outs, the environment is partially observable, and

the rewards are incurred on a sparse basis with the possibility of not getting feedback at

all. Further, unlike some types of Partially Observable Markov Decision Process solvers,

such as those in [87, 179, 172], but similar to many other RL methods for partially

49
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observable environments, the underlying state space is not known1. Due to these prop-

erties, it is expected that adaptive learners, which adapt their learning procedures to the

environment, will outperform unadaptive learners, which have a bias that is unsuited to

this environment.

4.1 Non-episodic partially observable mazes

The maze setting considered in [155, 157], and investigated in this chapter, is an example

of an atypical environment. The learner has a lifetime going from t = 0 to t = T without

any interruptions. The learner initially wanders around without knowing what its goal is.

At each time-step, it obtains an observation about whether the four adjacent locations

in a Von Neumann neighbourhood2 are free or blocked and selects an operator from the

set of external actions AE = {north, east, south, west}. After taking such an external

action, a reward of 1.0 is given only when the learner finds the goal position, otherwise a

reward of 0.0 is given. The learners task is to maximise the cumulative reward. Whenever

a goal is obtained, the learner is reset to a starting position. However, the environment

appears as non-episodic to the learner since it has no knowledge of this inherent episodic

structure: the goal location is not noted as a terminal state, the memory is not reset

after reaching the goal, and there is no artificial time-out to reset the learner when the

learner does not reach the goal. Instead, the environment appears to the agent as a

single history from t = 0 to an unknown t = T .

If the above maze setting is extended to larger mazes with similar obstacle density, then

this problem is challenging: detracting corridors and rooms, an initially faulty policy, a

sparse reward structure, and a non-episodic setting without time-outs, the learning agent

may get stuck in a bad region of the maze and experience thousands of steps without

any rewards. This is significantly different from other partially observable environments

investigated in deep reinforcement learning papers, such as T-maze experiments [12],

the 89-state maze [228], Atari experiments [69] and the Invisible Target Capture Task

[175]. Those experiments are comparatively easy in the sense that: (a) the agent has

knowledge of terminal states and the memory is reset at the start of the episode; (b) to

avoid getting stuck without feedback, there is an artificial time-out such that, after a

certain number of time steps without reaching the goal, the agent is reset to the initial

state; (c) there is no corridor from which it is difficult to escape, instead the space

1These methods are a subset of Partially Observable Markov Decision Process solvers which estimate
the unknown environment state from the known observations, usually using the “belief state” p(st|ht),
the probability of the state given the history of observations and actions. In the below maze, each (x, y)-
coordinate’s probability could be estimated from the previous Von Neumann neighbourhood observations
and the previous actions. Such methods imply that the designer has domain knowledge about which
state variables underly the dynamics (x and y in the maze example), even though their exact values are
never known.

2The Von Neumann neighbourhood around a location (x, y) includes all positions within a Manhattan
distance of 1, that is, (x, y), (x + 1, y), (x − 1, y), (x, y + 1), and (x, y − 1); for observations, only the
adjacent locations are considered, because (x, y) is occupied by the agent and therefore redundant.
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Start

Search

Reward

(x, y) = G

(x, y) 6= G
(indefinitely)

Figure 4.1: Flow diagram of non-episodic maze with sparse rewards. A random start
position initiates the search through the maze for an indefinite period of time, until the
goal location is reached. Upon reaching the goal location G, a positive reward is incurred
and the agent is reset at a random start, and the search through the maze restarts. A
key challenge is that agents may get stuck without rewards for indefinite amount of
time, resulting in useless experiennces that do not allow any learning.

is open or there is a single path; (d) reward structure is more dense, for example, by

giving feedback about whether or not the step lead closer to goal. Nevertheless, those

experiments have difficulties not addressed in the present maze setting: for example,

Atari experiments and the Invisible Target Capture Task have complex dynamics and a

large state-space.

4.2 Active Adaptive Perception implementation

This section proposes an exemplary implementation of the generic architecture proposed

in Chapter 3, based on Incremental Self-improvement. Figure 4.2 illustrates the meaning

of the various modules and their interactions. Two different perception modules will be

proposed: the first includes computationally cheap network-modification instructions,

illustrate how to learn based on rewards rather than using gradient descent; the second

system includes instructions to learn to apply a DRQN learner selectively for particular

goals and with particular exploration rates.

4.2.1 Instruction Module implementation: probability matrix

The learner’s policy P consists of a number of m program cells Pi (i = ProgramStart,

. . . , P rogramStart + m − 1) each of which represent a discrete modifiable probability

distribution over the integers {0, . . . , |A| − 1} initialised to a uniform distribution but

subject to change due to self-modification instructions. Using the instruction pointer
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IP ← 9
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While not SSC:

0. if S is empty:
stop; else continue 1-4.

1. get the SMS starts:
t1 = Firsts.top().t;
t2 = Firsts.secondtop().t;

2. get the cumulative rewards :
R1 = Firsts.top().R;
R2 = Firsts.secondtop().R;.

3. if R(t)−R1
t−t1 > R(t)−R2

t−t2 then
SSC←True.

4. if not SSC:
pop away all stack entries
with times t ≥ t1, restoring the old
policy Pt1

A ∈ AEM

P

reward=0 &

A ∈ AE

reward=0

Figure 4.2: Diagram of the active adaptive perception implementation on the maze
problem. Based on the current instruction pointer as an internal state, the instruction
module generates an instruction and its arguments. The Working memory elements –
which form a list of integers in [−16, 16] each with their own address and are organised
in four distinct categories (input, working, register and output cells) – are then used
to process the arguments for context-sensitive instruction execution. The instruction is
then performed, calling the evaluation module to perform SSA, the perception module
to modify it or to request an advised action, the working memory to make historical
notes, the instruction module to self-modify, or an external action in the environment.
When perceptual advice is requested, the perception module’s neural network outputs
an advised action after taking the input cells’ contents, normalised in [−1, 1], as in-
puts. Input cells are the current reward, the binary observation bits indicating whether
north, east, south, and west are free positions or obstacles, and internal variables for
disambiguating the state based on the history, namely the time, the stacklength and
the instruction pointer. Note that (a) a simplified representation is given because the
number of working memory cells and program cells is larger in the experiments; (b) in
the SMP-DRQN implementation, the inputs to the perception module is the history of
observations instead of all current input cells, and additional perceptual modifications
are done on a set of useful experiences.
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IP , a special working memory variable that points to the current program cell, an

instruction cycle consists of sampling an integer j ∼ PIP representing an instruction

Aj ∈ A = {A0, A1, . . . , A|A|−1}. After checking how many arguments, N , are required

for executing Aj , integer arguments a1, . . . , aN are generated according to the distribu-

tions of the following program cells PIP+1, . . . ,PIP+N . After executing the instruction

and its arguments, a new cycle starts with IP ← IP + N + 1. Instructions include

various external actions but also internal operations. For self-improvement, the learner

uses self-modification instructions incP and decP which increase and decrease the prob-

ability of a chosen program cell Pi by a chosen amount, respectively. Evaluation is

initiated by endSelfMod which ends the current modification sequence and starts the

evaluation of the latest changes made to the instruction module and the perception

module. External actions are application-dependent, such as north, east, south and

west in maze-problems. The working memory is manipulated using reading, writing and

arithmetic operations and instructions that change the IP similarly determine the state

of the learner. Perceptual modification and perceptual advice instructions are explained

in Section 4.2.4 and 4.2.5, while a complete instruction set is given in Table 4.1.

4.2.2 Evaluation Module implementation: Success Story Algorithm

The function of the evaluation module is to determine if changes to the instruction

module and the perception module are beneficial by considering evidence of how self-

modifications relate to reward intake.

Implementation: Success Story Algorithm To allow a learner to incrementally

improve its performance with minimal assumptions on the environment, an empirical

evaluation method called the Success Story Algorithm (SSA) is used which maintains

only those incremental modifications that lead to long-term reward acceleration. At

time points called checkpoints initiated by the instruction endSelfMod, the learner per-

forms an evaluation of the current self-modification sequence (SMS). The learner can

adapt to tasks with atypical reward structures because it can determine the frequency

of endSelfMod, learning how much time is required to reliably evaluate a series of mod-

ifications. The evaluation is done using the Success Story Criterion (SSC),

R(t)−R(t2)

t− t2
>
R(t)−R(t1)

t− t1
, (4.1)

where R(t) =
∑t

τ=0 r(τ) is the cumulative reward, t is the current time and t2 =

Firsts.top().t and t1 = Firsts.secondtop().t are the times of the first self-modifications

after the most and second-most recent checkpoint, respectively. Thus the SSC asserts

whether the reward intake has accelerated since t2 > t1. If this is true, then modifications

made in [t2, t] will be maintained, otherwise the current modifications are removed and
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Instruction Type Explanation

north AE take one step north
east AE take one step east
south AE take one step south
west AE take one step west

getOutput() APM forward inputs c−16:−9 through the perception module network, yielding activations
act(A) for all A ∈ AE . Set Aadv ← arg maxA∈AE act(c

′); Next cycle the instruction
module will execute Aadv.

doQuntil(a1,a2,a3) APM if looping = True or t < replayStart return; else, set looping ← True, the termination
experience term ← Ea1 as the a1’th element of the experience set E, the maximal
number of looping cycles until ← narr(a2, [1, unroll/2]), and ε← a3 ∗ .005. The next
cycles, the DRQN network outputs as the activations act(A) the Q-values Q(s, a) for
all A ∈ AE with s denoting the history of observations, and then the ε-greedy strategy,
with the self-chosen ε, selects the next external action. The loop is terminated when
the current experience is term or when until time steps have passed.

weightChange(a1,a2) APM add a copy of the current network to the stack S . set i← narr(cca1 , [0, nnodes−1]),j ←
narr(cca2 , [0, nnodes − 1]); set wij ← clip(wij + N (0, σw); rangew) with rangew =
[−50, 50] and σw = 5.50.

addNode(a1,a2) APM add a copy of the current network to the stack S . set i← narr(cca1 , [0, nnodes−1]),j ←
narr(cca2 , [0, nnodes − 1]) ; perform switch(i, j) ; if layer(j) > layer(i) + 1 then delete
the old connection (from = i, to = j, w = wij), add a new node k in layer layer(i) + 1
and add connections (from = i, to = k,w = 1) and (from = k, to = j, w = wij).

addConnection(a1,a2) APM add a copy of the current network to the stack S . set i ← narr(cca1 , [0, nnodes −
1]),j ← narr(cca2 , [0, nnodes − 1]); perform switch(i, j); create a new connection gene
(from, to, w) with w ∼ N (0, σw)

setExperience(a1) APM if t < replayStart, return; else, add the current value of Ea1 to the stack S , the a1’th
element of the experience set, to the stack and replace it with the current experience:
Ea1 ← (o,A, r, o′), with o the previous observation, A the previous external action, r
the current reward, and o′ the current observation.

incP(a1, a2, a3) AIM push the current probability distribution Pca1 to the stack S . Then, set Pca1 ,ca2 ←
1− .01 ∗ cca3 ∗ (1− Pca1 ,ca2 ), with ca1 ∈ {0, . . . , |A| − 1} ;
Pca1 ,i ← .01 ∗ cca3 ∗ P for all i ∈ {0, . . . , |A| − 1} \ ca2 . Reject the modification if
Pca1 ,i < minP = 0.0005 for any i ∈ {0, . . . , |A| − 1}

decP(a1, a2, a3) AIM push the current probability distribution Pca1 to the stack S . Then, set Pca1 ,ca2 ←
.01 ∗ cca3 ∗ Pca1 ,ca2 , with ca1 ∈ {0, . . . , |A| − 1}; Pca1 ,i ← Pca1 ,i ∗ (1 − .01 ∗ cca3 ∗
Pca1 ,ca2 )/(1 − Pca1 ,ca2 ) for all i ∈ {0, . . . , |A| − 1} \ ca2 . Reject the modification if
Pca1 ,i < minP = 0.0005 for any i ∈ {0, . . . , |A| − 1}.

endSelfMod() AEM evaluate the current self-modification sequence with SSA

jumpHome() AWM set IP ← ProgramStart
jumpEq(a1, a2, a3) AWM if cca1 = cca2 , set IP ← cca3 .

jumpLower(a1, a2, a3) AWM if cca1 = cca2 , set IP < cca3 .

add(a1, a2, a3) AWM cca3 ← clip(cca1 + cca2 ; [MinInt,MaxInt])

sub(a1, a2, a3) AWM cca3 ← clip(cca1 − cca2 ; [MinInt,MaxInt])

mult(a1, a2, a3) AWM cca3 ← clip(cca1 ∗ cca2 ; [MinInt,MaxInt])

div(a1, a2, a3) AWM cca3 ← clip(cca1//cca2 ; [MinInt,MaxInt])

rem(a1, a2, a3) AWM cca3 ← clip(cca1 mod cca2 ; [MinInt,MaxInt])

mov(a1, a2) AWM cca2 ← cca1
init(a1) AWM ca2 ← a1 − ProgramStart− 2
inc(a1) AWM cca1 ← clip(cca1 + 1; [MinInt,MaxInt])

dec(a1) AWM cca1 ← clip(cca1 − 1; [MinInt,MaxInt])

Table 4.1: List of instructions used for the instruction set A in the SMP learners.
Instructions are divided in categories based on the module it directly affects: E for
environment, PM for perception module, IM for instruction module, EM for eval-
uation module, and WM for working memory. The SMPs included in the experi-
ments used a different subset of APM , the instructions relevant for active adaptive
perception, and the set A \ APM are instructions commonly used in Incremental Self-
improvement. Function and operator definitions: c is the working memory tape,
often indexed by double/indirect-addressing; layer(i) obtains the layer index of node i;
narr(a, [b, c]) performs a narrowing conversion from a ∈ [0, |A| − 1] to an integer in
[b, c]; switch(from, to) switches from and to when from > to or aborts the instruc-
tion when from = to; N (µ, σ) is the normal/Gaussian distribution; clip(a; [b, c]) clips
a to an integer in the range [b, c]. a//b returns sign(a) ∗MaxInt if b = 0 and integer
division otherwise; a mod b returns a if b = 0 and a− b ∗ floor(a/b) otherwise. Note:
some operations yield invalid addresses or numbers according to rules of syntactical cor-
rectness (cf. [157]); if these conditions are not met the operation does nothing except
for the usual increments to the instruction pointer IP .



Chapter 4 Long-term learning with limited knowledge and sparse rewards 55

the old instruction module and perception module before t2 are restored. This is done

recursively, until the SSC is met. The complete list of modifications that survived the

SSC is maintained in the stack S . The recursive procedure of popping entries that do

not yield reward acceleration is illustrated in Algorithm 4.1.

Algorithm 4.1 Success story algorithm for evaluating self-modification sequences
(SMSs).
Note that when sp = 1, the top entry is compared to the initial entry
S [0] = (t = 0, R = 0,X = ∅, first = 0, address = ∅).

procedure popBackUntilSSC
sp← length(S )− 1
while True do

if sp = 0 then
break; . no modifications left; SSC satisfied

else
e1 ← Firsts.top(); . first entry of the top SMS
e2 ← Firsts.secondtop(); . first entry of the second-top SMS

if R(t)−e1.R
t−e1.t > R(t)−e2.R

t−e2.t then
break; . reward accelerates; SSC satisfied

else
popAndRestore;

end if
end if

end while
end procedure
procedure popAndRestore(index i)

while sp ≥ i do
e = S [sp]
if e.X is a modification of P then
Pe.address = e.X ; . restore probability vector at the correct address

else
restore the parameters of the perception module using e.X .

end if
S .pop(); . delete S [sp]
sp← sp− 1;

end while
end procedure

4.2.3 Working Memory implementation: addressed integers

The implementation of the working memory is a number of storage cells, each with a

unique address in [Min,Max] store integer values in [−MaxInt,MaxInt], initialised

randomly and then changed by fixed routines or self-chosen instructions. The function-

ality of the working memory can be categorised into four types, illustrated in Figure

3.2. Each of the cells have particular integer address to access them, and Section B.1.1
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indicates how to obtain the exact addresses used in the experiments. Input cells are

special working memory cells that are updated every cycle and which store the current

observation as well as other information, i.e., the instruction pointer IP , the time t, the

reward r and the length of the stack S . Output cells store the history of recent actions:

when PIP has generated an integer, this number is written to the output cell that is

addressed by IP . Working cells provide more long-term memories, only being modi-

fied when special instructions in AWM manipulate them. Register cells have the same

function but additionally they are used for a process called double-indexed addressing:

because P generates arguments in the limited range [0, |A|−1], the values of the register

cells in [0, |A| − 1] are used to address the entire range of working memory cells. Work-

ing memory contents are used extensively in the execution of the various instructions.

For example, the instruction add(a1,a2,a3) first reads the contents of the register cell

at address a1 and then fetches the value at the address ca1 , as notated by cca1 ; then

similarly reads cca2 ; finally, adds both cca1 + cca2 and stores this sum on the address

ca3 . Similar to the above example, many other instructions, including instructions used

for self-modification and perceptual modification, also use working memory contents to

determine how the instructions are executed.

To illustrate how the processing of the working memory can be used for processing

observations to influence external actions, an illustrative example is mentioned for the

maze example of Section 2.1:

1. first, the agent records an observation and a reward in its input cells, indicating

whether the neighbouring positions are obstacles or free spaces and whether or not

it reached a goal;

2. then, it uses working memory operators to manipulate the memory, based on

various cells including the working cells;

3. an execution of jumpEq or jumpLower then sets the instruction pointer IP based

on working memory contents;

4. eventually, an external action is executed based on IP .

4.2.4 Perception Module implementation 1: neural network with NEAT

representation

The first implementation considers simple instructions to use and modify a feed-forward

network, using a representation similar to NEAT [188]. As in NEAT, this implemen-

tation represents a neural network using node and connection genes and allows various

incremental operators to modify the network; the key difference to NEAT, however, is

that no evolution is performed but instead Incremental Self-improvement applies these
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operators as part of its perception module instructions. Consequently, this implementa-

tion highlights the use of active adaptive perception as a framework for constructing and

training neural networks within a single lifetime rather than a multitude of independent

individuals in a population.

To achieve perceptual advice in this implementation, a special instruction getOutput()

performs forward pass of the perception module’s feedforward neural network which

takes as input the eight input cells of the working memory and then outputs activations

act(a) for each external action. Based on these output activations an advisory action

Aadv is selected to be executed at the next instruction cycle. A unit u, an elemen-

tary node in the network, activates its incoming activation node-input(u, t) at time t

according to:

u(t) = typeu(node-input(u, t)), (4.2)

where typeu is the transfer function of u. If unit u is situated at layer `, the node input

is defined by:

node-input(u, t) =
∑

v∈U l<`
wuvv(t) (4.3)

where U l<` is the set of nodes at a layer lower than `. To achieve perceptual mod-

ification, the learner uses computationally cheap instructions weightChange, addNode

and addConnection to modify both topology and weights of a neural network. Each

change to the network is recorded on the stack S such that it can be evaluated later

by the evaluation module. This is done with a special representation similar to NEAT,

where a neural network consists of two sets of genes. Connection genes are tuples of

(from, to, weight): from and to represent the connections input and output unit re-

spectively and weight represents the interconnection weight. Node genes are tuples of

(type, bias, response, layer): type is the transfer function used to output at the neuron,

bias encodes a number to be added to the activation independent of all other incom-

ing activations , response is a number that the neuron multiplies with all its incoming

weights and layer is used to adequately structure the connections. Together, the node

genes and the connection genes represent the neural network which is being learned, al-

lowing the use of constructive operators addNode and addConnection, shown in Figure

4.3(a) and 4.3(b), respectively. Other parameters not changed by the above instructions

are fixed, with type being sigmoid for non-inputs and identity for inputs, and bias = 0

and response = 4.92 for all neurons. The weight-range and the response are selected

based on the peas-neat implementation, cf. https://github.com/noio/peas/blob/

master/peas/methods/neat.py, as they are commonly used settings.

https://github.com/noio/peas/blob/master/peas/methods/neat.py
https://github.com/noio/peas/blob/master/peas/methods/neat.py
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(a) addNode
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(b) addConnection

Figure 4.3: Illustration of the network construction operators. For simplicity, only
two input nodes are shown and the bias unit is shown without its connections. Network
connections are restricted such that the layers satisfy from < to. Blue nodes indicate
input units, grey-brown nodes indicate output nodes, and white nodes indicate hidden
nodes. Input units use the identity function (denoted by ide) as a transfer function,
while non-input units use the sigmoid function (denoted by sig). The added connection
is emphasised in red bold.

4.2.5 Perception Module implementation 2: DRQN with modifiable

experience set

The second implementation embeds the learning of the Deep Recurrent Q-Networks [69],

a recurrent extension to Deep Q-Networks [126], and a modifiable experience set as its

perception module. The experience set E is a database of interesting experiences which

serve as goals after which network use is halted. This enables selective network usage,

learning when to rely on the Q-network, as well as goal-based exploration, learning when

to use which exploration rate.

After observing and acting at a time t and t+ 1, DQN fills a buffer B with experiences

(ot, At, rt, ot+1), which are tuples of observation, chosen action, observed reward, and

the following observation. DQN minimises a loss function

L(θ) = E(o,A,r,o′)∼U(B)[(rt + γmax
A′

Q(o′, A′; θ̂)−Q(o,A; θ))2] , (4.4)

where an experience (o,A, r, o′) is sampled uniformly from the buffer B for the next

mini-batch update, a process called experience replay; Q is the value-function for Q-

learning [226]; γ is the discount used to compute the discounted future cumulative
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reward
∑∞

i=0 γ
iri; θ contains the current parameters whereas θ̂ contains the parame-

ters of the target network which are updated only infrequently, increasing stability. In

DRQN, the loss function is the same but the observations are passed through a recurrent

network including a Long Short-Term Memory layer [77], such that the history of obser-

vations affects the internal state of the learner. The experience replay thus is modified

in DRQN to randomly sample a history of unroll consecutive experiences rather than a

single experience.

Perceptual advice in the second implementation consists of a single instruction doQuntil.

When the instruction module performs the doQuntil instruction the DRQN network

takes the observation o as its only input, with no other working memory variables, and

outputs the Q-values of the different actions from which it determines the advised ac-

tion. An ε-greedy strategy is used such that with probability 1 − ε the chosen action

is Aadv = arg maxAt+1∈AE Q(ot, At+1) whereas with probability ε a random action is

chosen. This is done repeatedly until a self-chosen experience tuple ea1 = (o,A, r, o′)

is achieved or until a number of self-chosen time-steps are reached without matching

ea1 . The arguments of the doQuntil instruction determine three important parameters:

a1 determines which experience is taken from the experience set E to end the loop, a2

determines the number of maximal steps of the loop, and a3 determines the exploration

ε. Perceptual modification consists of two instructions. The first, trainReplay, is

the typical experience replay procedure as is performed in DRQN, but with the added

flexibility that the instruction module determines the batch size. This instruction is not

followed by pushing the network modification onto the stack S since this instruction

already combines updating with an immediate evaluation. The second, setExperience,

adapts the set of experiences E by replacing the experience at index a1, Ea1 , by the

current experience. This instruction then pushes this modification to the stack to allow

the evaluation module to perform long-term evaluation of the new E. Note that E is

initialised with experiences randomly drawn from the experience buffer just before the

replay-start at t = 50000.

4.2.6 How the exemplar learns

Instructions incP and decP modify the probability of a particular entry Pij , and nor-

malisation is then performed ensuring
∑

k Pik = 1. This results in a change of the

probability distribution of instructions for a given program cell i. In turn, this changes

the system’s response to the internal state IP = i, a variable changed by the various

jump instructions and incremented by executing instructions. The probability changes

affect not only external but also the internal behaviours due to the choice of instructions

and arguments for working memory manipulation, evaluation, perceptual advice, per-

ceptual modification, and self-modification. For self-modification instructions, this leads

to a self-referential recursion, meta-meta-...-learning: changes to P affect how P will be

changed, and so on. In particular, self-modifications may affect the probability of incP,
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decP or its arguments for a given internal state IP and given working memory state,

implying a context-sensitive learning of (a) self-modification probability; (b) which pro-

gram cell should be modified; (c) which entry in the program cell’s distribution should

be incremented or decremented; (d) how large the increment or decrement should be.

Because the Success Story Algorithm repeatedly evaluates previous self-modifications

and maintains only those self-modifications that result in lifetime reward acceleration,

early self-modifications result in better generators of self-modifications later on; Assum-

ing the instructions cover all aspects of learning and behaviour, this means P improves

itself.

4.3 Experimental setup

This section describes the setup for the experiments in this chapter, all of which are

based on the examplary non-episodic maze setting explained in Section 4.1.

4.3.1 Time measurement

It is assumed that each action consumes one time-step and computational processes

do not consume time, diverging in this respect from [157]. Although the proposed

implementation should similarly be applicable to real-time environments, this type of

time measurement is used for the following reasons:

• Real-time experiments may overemphasise implementation details rather than as-

sessing whether the learners make efficient use of experience. One algorithm im-

plemented in an efficient language may outperform another simply by virtue of the

language.

• Real-time experiments must be carefully designed not to test for trivial behaviours.

For example, a simple algorithm which randomly selects an external action, with-

out any learning, may perform better than a more intelligent algorithm, simply

because the intelligent algorithm takes more processing time.

• The time measurement based on actions allows direct comparison to traditional

reinforcement learning methods which have the same assumption.

4.3.2 Experimental conditions

There are four experimental conditions based on the dimensions easy vs difficult and

fixed vs random. Easy problems have shorter optima, requiring at least 4-8 steps from

start to goal, while difficult problems require at least 11-30 steps from start to goal. Easy
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problems also have lower ambiguity and fewer free spaces to get lost in. The difficulty is

used to test the hypothesis that self-modifying policies are beneficial when environments

have higher ceilings of performance. Higher ceilings are defined as a higher potential to

increase the reward intake speed compared to a random learner which for every 104 time

steps has 30-120 rewards for easy and 1-10 rewards for difficult problems. The second

dimension, fixed vs random, describes what happens after goal achievement, concretely

whether or not the next starting position is fixed or chosen randomly. Ten easy and

ten difficult mazes are generated according to Algorithm B.1, found in the Appendix B,

on a grid of dimensions 13 × 13. The resulting mazes have a variety of features: wide

open spaces, narrow straight corridors and intersecting corridors which results in central

decision points.

For easy problems, each learner was given a lifetime of 5 million time steps because

initial experiments suggested learners have converged by then. For difficult problems,

optimal path lengths increased approximately four times, and the actual path lengths,

and thus the time to learn from rewards, relates exponentially to the optimal path length

due to the increase in possible misleading explorations. 80 million time steps are judged

to be a reasonable number without excessive computational expense.

4.3.3 Learners

To investigate the impact of various learning properties in the mentioned environments,

the following learners are implemented in python code:

• SMP: the above-mentioned implementation of the generic architecture without

perception module is used as the baseline SMP – therefore, its context sensitivity

relies only on the instruction pointer and the working memory. This is the same as

Incremental Self-improvement (IS) in [157], except the instructions jump, effects

of which can be achieved using other instructions, and getP, an instruction which

is rarely included in other experiments.

• SMP-Fixed: A perception module is added to the above SMP, to generate an

exemplar of active adaptive perception. The perception module is a single feed-

forward neural network which outputs external actions whenever the instruction

getOutput is called, taking as inputs the input cells in the working memory. Thus,

the instruction module may generate external actions directly, for example by

generating north, or indirectly by calling getOutput. The network is a fully

connected network with two hidden layers of 10 neurons each.

• SMP-Constructive: This condition further adds network construction instruc-

tions addNode and addConnection to the SMP-Fixed architecture. Similarly to

NEAT, the networks start as a fully connected network without any hidden units.
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• DRQN: this condition replicates the Deep Recurrent Q-Network with random

bootstrapped updates [69]. It was included as an off-policy deep reinforcement

learner, using experience replay to more efficiently learn by sampling experiences

from an experience buffer and using a target network for improved stability. Two

changes are made due to the domain: first, because the observation is small

and has no spatial correlations, the convolutional layer is replaced with a dense

layer, resulting in a topology of two hidden layers, one dense with 50 RELU-

neurons and one LSTM with tanh-neurons; second, due to the non-episodic set-

ting, the experience buffer is organised as a single lifetime rather than a multi-

tude of episodes. To implement DRQN, existing code from VizDoom-Keras-RL,

cf. https://github.com/flyyufelix/VizDoom-Keras-RL/blob/master/drqn.

py, was modified to the non-episodic setting and to allow the utilisation of the

target-network in experience replay.

• SMP-DRQN: to provide a second example of the perception module, this learner

utilises the same network as the DRQN condition, but enables the SMP to utilise

it selectively as a special loop instruction doQuntil, with self-chosen exploration

rate and self-chosen termination conditions. The DRQN network is modified us-

ing trainReplay which performs experience replay with a self-chosen batch size

while setExperience is used to construct a set of useful experiences for finishing

doQuntil.

Parameter settings are mentioned in B.1.1, found in Appendix B.

4.4 Experimental demonstration of active adaptive per-

ception

Behavioural assessment Choices of the agents are visually inspected on heat-maps

with arrows indicating the most frequently chosen action at each position. In the easy

mazes, methods using an LSTM network, namely SMP-DRQN and DRQN are able to

memorise the path to the goal, while the other SMPs only learn a basic sense of direction.

In the difficult mazes, more differences between the learners emerge:

• SMP has a probabilistic preference for a single default direction which is best

leading to the goal;

• SMP-Fixed and SMP-Constructive briefly check detracting corridors before avoid-

ing them, and frequently visit the best corridors. These methods are not com-

pletely able to disambiguate their current state, but rather their networks are

similar to a Markovian policy in which faulty choices usually do not lead away

from goal, and their P-matrix is similar to the SMP, choosing a single direction;

https://github.com/flyyufelix/VizDoom-Keras-RL/blob/master/drqn.py
https://github.com/flyyufelix/VizDoom-Keras-RL/blob/master/drqn.py
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• Early in the lifetime, DRQN memorises the path towards the goal nearly optimally

in 4 out of 10 unique mazes, but gets stuck frequently in the other mazes. The

detracting corridors and rooms in those mazes are either greater in number or

further from goal. Towards the end, two of those unique mazes keep causing

problems with getting stuck. These findings are consistent in the sense that the

stuck frequency depended reliably on the maze’s topology rather than on network

initialisation;

• SMP-DRQN similarly has nearly optimal behaviour on those 4 mazes, and only

rarely gets stuck in other mazes. The network’s output is similar to DRQN but

on detracting corridors, where DRQN fails, the method ignores the network and

relies on the P-matrix for a global sense of direction, similar to the SMP.

This illustrates the difficulty of traditional SMPs with perception, the difficulty of deep

reinforcement learners in atypical environments, and that active adaptive perception

may remedy these problems.

A representative example of the final policy is included for one of the most challeng-

ing mazes in Figure 4.5, illustrating that methods of active adaptive perception avoid

misleading corridors and rooms more often than other methods. Figure 4.4 illustrates

behaviours observed for SMP-DRQN during the early to middle stages of the lifetime,

showing how SMP-DRQN used its perception module less frequently when it was not

reliable. Video material 3 shows the behaviours of DRQN and SMP-DRQN on the

mentioned example mazes.

Correctness and perception-correctness The correctness, the proportion of moves

that lead the agent closer to the goal, is displayed in Table 4.2. Methods utilising an

LSTM network, DRQN and SMP-DRQN, are characterised by relatively high correct-

ness, and their performance was highly correlated with correctness, indicating their

performance is dependent on memorising a correct path. For difficult environments

SMP-DRQN did not have a positive correlation, suggesting additional strategies beyond

path memorisation. This is in line with the observation that the SMP-DRQN has a per-

formance advantage compared to DRQN in the difficult-random condition, where path

memorisation is more challenging.

The development of correctness during the early-mid stages of the lifetime illustrate the

difference between SMP-DRQN and DRQN. As exemplified in Figure 4.4(b), it can be

observed that the perception-correctness, the correctness of the external actions taken

due to the perception module’s advice, ignoring external actions directly output by

the instruction module, varied strongly over the map. The DRQN system, illustrated

3https://www.youtube.com/watch?v=xRh-ZXkUJ2Y

https://www.youtube.com/watch?v=xRh-ZXkUJ2Y
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(a) SMP-DRQN net-
work usage (Pr)

(b) SMP-DRQN
Perception-correctness
(Pr)

(c) SMP-DRQN Explo-
ration rate (Eps)

(d) SMP-DRQN
Heatmap (V is)

(e) SMP-DRQN ter-
mination experiences
(V is)

(f) DRQN Correctness
(Pr)

(g) DRQN Exploration
rate (Eps)

(h) DRQN Heatmap
(V is)

Figure 4.4: Illustration of the mechanisms behind SMP-DRQN’s performance, using
the early-mid stage of the lifetime, i.e., in the time interval [30 ∗ 106, 32 ∗ 106], on a
maze from the difficult-random condition. The first principle is the selective network
usage: panel (a) shows that the proportion of perception module usage is particularly
low in detracting corridors, whilst panel (e) shows that this due to how the system
matches termination experiences on paths to the goal, halting the network usage before
reaching detracting corridors; panels (b) and (f) illustrate the perception-correctness
of SMP-DRQN and the correctness of DRQN is high on paths close to the goal and
highly incorrect far from goal and in detracting corridors; together these illustrate that
SMP-DRQN uses its perception module selectively on locations with high perception-
correctness, ignoring it when it is not reliable. The second principle is the goal-based
exploration: panels (c) and (g) illustrate the exploration rate of SMP-DRQN is often
higher than DRQN in difficult environments, and especially so on detracting corridors.
Together these two principles allow SMP-DRQN to better escape detracting corridors
than DRQN, as illustrated in panels (d) and (h).

in Figure 4.4(f), has a low correctness in detracting corridors and rooms, and a high

correctness close to the goal, and the same finding is observed for the DRQN network

when used as the perception module of SMP-DRQN. The explanation for this finding

is that initially in the challenging mazes, the system gets stuck for prolonged time in

detracting corridors and rooms, without obtaining any rewards. This leads to erroneous

and low Q-values for the visited locations on the map. When later the DRQN system

more regularly obtains reward, the detracting corridors and rooms maintain such Q-

values for a longer time since they usually do not lead to near-term rewards: far from
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(a) SMP-DRQN (b) SMP-Fixed

(c) DRQN (d) SMP

Figure 4.5: Heat-map of the final policy on a maze from the difficult-random condi-
tion. SMP-Fixed is here taken to represent the first implementation of active adaptive
perception since its behaviour is comparable to SMP-Constructive. Though not visible
to the agent, the goal location is illustrated by “G” while white boxes indicate starting
positions. The legend displays the meaning of the colours of the heat-map in terms
of visitations per time unit times the number of unique visited locations. →: arrows
indicate the direction of the most frequently chosen action (north, east, south, or west).

goal, those corridors and rooms have the lowest Q-values; while close to goal they have

lower Q-values than locations which are distant but on path to the goal. By contrast,

SMP-DRQN is able to escape detracting rooms and corridors throughout the lifetime due

to the mechanisms of selective network usage and goal-based exploration. Because the

resulting experiences are added to the experience buffer at each time step, regardless

of whether or not the perception module is used, both mechanisms contribute to an

intelligent exploration mechanism.

As exemplified in Figure 4.5, the final policies are strongly differring. DRQN still gets
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Figure 4.6: Illustration of the perception module’s goal-matching, based on metrics av-
eraged across mazes in the difficult-random condition. Panel (a) illustrates increasing
goal-matching: the left y-axis illustrates the number of network usage terminations due
to match, the number of times the system matches the self-chosen termination experi-
ence and due to time, when the looptime of the doQuntil instruction exceeds the self-
chosen until parameter ; the right y-axis illustrates the valid number of modifications
to the experience set E which contains the termination experiences. Panel (b) illustrates
how the duration for match and time increase over time, indicating the learner selects
a higher until parameter for the doQuntil instruction, and how in-between, the time
in between doQuntil loops, decreases over time as the perception-correctness becomes
high across the map.

stuck in detracting rooms for indefinite periods of time, because it remains inside a

detracting room or corridor and does not reach the reward location, filling the experience

buffer with useless experiences. After the lifetime of intelligent exploration, SMP-DRQN

has now established the optimal policy on key decision points and the path from start

to goal, and therefore the SMP-DRQN rarely gets stuck in the rooms.

An additional observation in Figure 4.5 is that when the learner was on the dead-

end spaces the DRQN module had low correctness and in some cases more frequent

visitation, despite there being only a single action that does not lead to bumping into

an obstacle; this occurred either when it was used alone or embedded into SMP-DRQN.

This behaviour is due to the combination of two reasons: (i) compared to some other

works, for example the T-mazes reported in [12], there is no negative reward incurred for

bumping into obstacles or any other incorrect actions, and there is no positive reward

for correct actions; and (ii) the incorrect actions do not lead away from the goal at

these locations and therefore these actions only delay the reward achievement by one

time step, resulting in smaller differences between the different actions’ Q-values; this

makes dead-end locations more difficult to learn than other locations for which incorrect

actions lead to significant delays in reward achievement. The SMP-DRQN was better

able to escape such dead-ends by using a high exploration rate and low network-usage

at those locations.
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Table 4.2: The correctness metric for the different learners, indicating the proportion
of choices made that bring the agent closer to the goal. Ci and Cf are the values of the
correctness metric averaged over the various runs during the first and last time slice.
The time slice is 1 million time steps for easy and 16 million time steps for difficult.
r is the correlation between the lifetime average correctness measure and the lifetime
average reward speed.

Environment

Method Easy-Fixed Easy-Random Difficult-Fixed Difficult-Random

Ci Cf r Ci Cf r Ci Cf r Ci Cf r

DRQN .48 .79 .75 .47 .77 .87 .41 .56 .40 .40 .55 .40
Random .32 .32 -.69 .33 .33 -.74 .36 .36 .16 .36 .36 .14
SMP .44 .43 .89 .42 .42 .89 .34 .33 -.67 .33 .32 -.74
SMP-Fixed .41 .38 .54 .41 .42 .62 .32 .32 .26 .30 .30 .18
SMP-Constructive .40 .37 .15 .39 .38 .47 .31 .29 -.58 .32 .32 -.06
SMP-DRQN .61 .72 .93 .58 .71 .95 .38 .55 .06 .37 .62 -.27

Comparatively, SMP-Fixed and SMP-Constructive have a low correctness and, in diffi-

cult environments, the random policy, despite its poor performance, has higher correct-

ness than these two methods. Their perception-correctness is high in strategic locations

such as paths leading up to the area with the reward or away from a detracting corridor

or room, and incorrect decisions usually are not detrimental to performance as can be

observed numerically by the absence of positive correlation between reward speed and

correctness. This is related to the visual observations that the decisions made usually did

not lead further into wrong corridors, which helps to explain the paradox that although

the correctness of SMP-Fixed and SMP-Constructive is low their performance is good.

For all conditions, the standard deviation of the correctness over mazes is considerably

higher for SMP-Fixed and SMP-Constructive than for other methods. This higher vari-

ability may indicate that the learning strategy is more dependent on the features of the

environment.

Network nodes and connections In the network construction of SMP-Constructive

a pattern emerged in which the runs with good performance form a greater number

of connections, 2000-4000, and maximise the number of nodes nnodes in the network,

specifically 176 for easy problems and 276 for difficult problems (cf. Appendix B for

parameter settings). The runs with bad performance would end up with a small number

of neurons, 20-90, with the difficult-random condition yielding the lowest cumulative

reward and the lowest number of nodes, 20-40. This is supported by the correlation

between the number of nodes and the reward speed which is medium to high, 0.60-0.93,

over the various conditions. However, there are several exceptionally small networks

which resulted in excellent performance. For example, in the difficult-fixed condition, a

network of 34 neurons resulted in a lifetime average reward of 0.089 on maze 1 which is

much larger than for SMP-Fixed, 0.037, and SMP, 0.013. Since SMP-Fixed is able to

perform well with just 20 hidden units, this suggests that constructive modifications are
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only accepted by the evaluation module to the extent other modification types introduced

during that modification sequence are useful.

Network usage The neural network usage, which is the proportion of times the per-

ception module is used to output an external action, developed similarly in SMP-Fixed

and SMP-Constructive. It started out small at 20%, but gradually the system started

to rely on the network for its instructions, reaching 30% for easy problems and 40% for

difficult problems. The discrepancy between easy, 30%, and difficult, 40%, is possibly

due to the longer learning time. The heat-maps indicated that the network usage is

uniformly spread over the different locations on the map, meaning the learner relied

consistently on the perception module. The network usage of SMP-DRQN is higher as

advice on several steps are given after a single call of doQuntil. In easy environments,

SMP-DRQN starts with 5-20% network usage and develops up to 50-70%. In difficult

environments, eventually the learner relied on the perception module 90% of the time.

Unlike the other methods, the network usage of SMP-DRQN is not evenly spread, es-

pecially during the early to middle stages of the lifetime: on areas close to the goal, the

network usage is 70-90%, whereas on detracting corridors the network usage is between

20 and 60%. Combined with the fact that the network correctness is much lower in those

areas, as illustrated in Fig 4.4(a), this means that SMP-DRQN applies DRQN when it

is reliable, such as the paths close to the goal location, but applies a more basic sense

of direction where DRQN is not reliable, such as the detracting corridors. This explains

why SMP-DRQN performs better in environments where DRQN gets stuck. During the

end of the lifetime, the network’s correctness in corridors is improved and this resulted

in more uniformly high network usage.

Valid modifications Those modifications maintained at the end of the lifetime, the

valid modifications, yield insights into how the agent is learning as they record those

changes that accelerated reward intake. These include P-modifications which alter the

instruction modules probability matrix and network-modifications which change the net-

work of the perception module. The valid modifications are illustrated in Figure 4.7 and

Figure 4.8. In easy problems, the number of valid modifications is spread evenly across

time with the different learners making a similar number of valid modifications. The

valid modifications are illustrated for the difficult-random environments in Figure 4.8.

For all SMPs, a brief initial learning effect is observed, similar to the initial performance

gains observed in all learners, since improving on an initial faulty policy is easy. After

the initial learning has passed, learning to learn is taking place: the learners increasingly

learn to generate difficult-to-find modifications that will further accelerate future reward

intake. At the end of the lifetime there is a recency effect, a sudden peak in valid modifi-

cations as a direct result of halting the lifetime at that point: since recent modifications

have only been evaluated a few times, the SSA has not yet removed changes which do

not accelerate reward in the long run. Compared to the difficult-random condition, the
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results for the difficult-fixed condition are more monotonously increasing over time but

similarly have a brief initial and final peak. A difference between the learners emerges in

the second phase where SMP-Fixed and SMP-Constructive have a much greater number

of valid P-modifications, with typical peaks of 25-50 and 50-75, respectively, compared

to the traditional SMP with peaks of 5-15. For SMP-DRQN there is a continuously

increasing curve, eventually reaching a peak of nearly 700 modifications. This higher

amount of P-modifications of the active adaptive perception implementations indicates

that most of the useful policy changes involve finding out when and how to modify and

utilise the neural network perception module. SMP-Fixed and SMP-Constructive also

display a similar pattern on the network-modifications, indicating they have learned how

to perform useful modifications to the network weights and topology. Other SMP-DRQN

development statistics are mentioned in the following subsection.
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Figure 4.7: Development of the valid modifications in the easy-fixed condition. Valid
modifications are those changes that are successful according to the Success Story Crite-
rion, indicating lifetime reward acceleration. Each point in the plot thus represents the
number of modifications, introduced in a particular time interval [t, t+δ] with t ∈ [0, T ),
which remain in use at the end of the lifetime T , after repeated SSA evaluations.

SMP-DRQN development statistics The SMP-DRQN system performs two types

of perceptual modifications: trainReplay and setExperience. trainReplay is simi-

lar to DRQN’s usual experience replay and therefore is not proposed to be the main

mechanism behind the performance advantage of SMP-DRQN; this is supported by the

lower training frequency exhibited by SMP-DRQN. setExperience makes changes to

the experience set which are later evaluated by SSA. The setExperience and doQuntil

instruction appear to be key to SMP-DRQN’s performance advantage by enabling se-

lective network usage and goal-based exploration. The selective network usage, using
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Figure 4.8: Development of the valid modifications in the difficult-random condition.
Valid modifications are those changes that are successful according to the Success Story
Criterion, indicating lifetime reward acceleration. Each point in the plot thus represents
the number of modifications, introduced in a particular time interval [t, t + δ] with t ∈
[0, T ), which remain in use at the end of the lifetime T , after repeated SSA evaluations.

DRQN only where it has reliably memorized the path to the termination experience se-

lected by the instruction module, allows the perception module to be used only when the

DRQN is advantageous. In areas where DRQN performs poorly the instruction module

can directly output external actions. This allows, for example, escaping rooms where

the DRQN is stuck. A second factor is goal-based exploration. This allows the instruc-

tion module to determine which exploration rates should be chosen together with which

termination experiences, meaning that high exploration rates can be set in areas where

the learner does not recognise where it is or what is the best action. In the maze tasks,

these two factors allow the system to escape detracting corridors and rooms, finding

more rewards. Due to reaching the reward location more often initially, these learners

can also accumulate more useful experiences compared to learners which get stuck.

The selective network usage is enabled by the instruction module selecting the doQuntil

instruction and its two key parameters: the term experience, an experience taken from

the experience set E, and the until parameter, a time limit to network usage. The

doQuntil instruction then repeatedly requests external actions from the perception mod-

ule until the current experience matches term or until the loop time exceeds until time

steps. The results of this matching process are illustrated in Figure 4.4(e), where it can

be seen that the successfully reached term experiences include strategic locations on

the path from start to the goal, avoiding usage in detracting corridors. When the term

experiences are not matched, the network is not used for prolonged amounts of time in

detracting corridors and rooms due to the time limit of until time steps. Figure 4.6(a)
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further illustrates that the system is able to better match the self-chosen termination

experiences over time. This is not only due to the setExperience instruction modifying

the experience set E and the increasing network-correctness due to the experience replay,

but also, as illustrated in Figure 4.6(b), due to the P-modifications, which increase the

until parameter to allow itself more time to reach the more difficult goals. Figure 4.6(b)

also illustrates why towards the end of the lifetime, the network usage is uniformly high:

as the network’s correctness increases, the system learns it can boost the reward speed

by increasing the until parameter and the frequency of the doQuntil instruction.

The goal-based exploration is enabled by the instruction module’s choice of the ex-

ploration rate, as the third parameter of the doQuntil instruction, together with the

self-chosen term experience which serves as a goal. Illustrative of this principle, the

exploration rate is dependent on the difficulty of the environment and the chosen termi-

nation experiences: in easy environments rates are lower, with some experiences having

an exploration rate between 0.02 and 0.05, most around 0.05-0.11, and the highest av-

erage exploration rate is ε = 0.12, whereas in difficult environments, most experiences

are associated with an exploration rate between 0.09 and 0.12, some are between 0.02

and 0.08, and others between 0.13 and 0.16. This suggests that the system learns which

termination experiences are more difficult to achieve and therefore require more explo-

ration. This finding is supported by exploration maps such as those in Figure 4.4(c),

where it can be observed that detracting corridors have relatively high exploration rates

compared to DRQN.

Average performance The development plots in Figures 4.9 and 4.10 display the

development of reward speed, the average reward per time step, divided by the optimal

reward per time step. On the easy mazes, SMP-DRQN and DRQN obtain the highest re-

ward speeds. DRQN obtains a final reward speed close to 0.70 while SMP-DRQN is just

above 0.60. Other SMP conditions are just above 0.30. In the difficult problems SMP-

DRQN and DRQN are by far the top performers on the average reward speed. DRQN

obtains a final reward speed around 0.4 while SMP-DRQN obtains reward speeds of 0.4

and 0.5 in the fixed and random condition, respectively. Compared to the development

in easy problems, more differences emerged between the different SMPs. SMP-Fixed

and SMP-Constructive are continuously improving across the lifetime while SMP only

initially found good policy improvements. In the fixed condition, this leads to a final

reward speed of 0.1 for SMP-Fixed and 0.08 for SMP-Constructive, while SMP has a

speed of 0.025. The random starting position gives a similar performance for SMP, 0.02

across the lifetime, .08 for SMP-Fixed and 0.07 for SMP-Constructive. In difficult prob-

lems, it can also be observed that while SMP-Constructive initially learns more quickly,

its learning rate slows down compared to SMP-Fixed after around 5 ∗ 106 steps.
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Figure 4.9: Development plots of the reward speed for the easy-fixed and the easy-
random condition, over the lifetime of 5 million time steps. For each plot reward speed,
the average reward per time step, is averaged over 20 runs, 2 repetitions for each of the
10 mazes, and normalised in [0, 1] such that the optimal speed gives performance of 1.0.
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Figure 4.10: Development plots of the reward speed for the difficult-fixed and difficult-
random condition, over the lifetime of 80 million time steps. For each plot reward speed,
the average reward per time step, is averaged over 20 runs, 2 repetitions for each of the
10 mazes, and normalised in [0, 1] such that the optimal speed gives performance of 1.0.

As illustrated in Table 4.3, DRQN obtained the best lifetime average in the easy environ-

ments, 0.615 (fixed) and 0.572 (random), but SMP-DRQN obtained the best lifetime av-

erage in difficult environments, 0.310 (fixed) and 0.361 (random). Table 4.3 further shows

pair-wise F -tests conducted on the lifetime average reward speed to analyse whether or
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not between-condition variability is significantly higher than within-condition variabil-

ity. For the easy problems, no significant effects are found except for the SMP-DRQN

and DRQN learners which significantly outperform all other learners. In the difficult

problems, the performance of both SMP-Fixed and SMP-Constructive leads to signifi-

cant effects when compared to SMP. This indicates that rather than maze variability, the

principle of active adaptive perception explains why SMP-Fixed and SMP-Constructive

outperform SMP. In turn, the difference between SMP-DRQN and DRQN is not signif-

icant while pair-wise differences of these learners to SMP-Fixed and SMP-Constructive

are significant.

Table 4.3: Variance analysis on the effect of learning condition on lifetime averaged
normalised reward speed (mean ± standard-deviation). < and > are used to indicate
whether the method’s performance is higher or lower than its comparison, while d is the
effect size and p denotes the significance value of the pair-wise F -test.

Method Performance Comparison

DRQN SMP-Constr. SMP-Fixed SMP Random

Easy-Fixed SMP-DRQN 0.592± 0.132 < p = 0.644 > p < 0.001 > p < 0.001 > p < 0.001 > p < 0.001
DRQN 0.615± 0.069 / > p < 0.001 > p < 0.001 > p < 0.001 > p < 0.001
SMP-Constr. 0.312± 0.120 / / < p = 0.807 < p = 0.982 > p < 0.001
SMP-Fixed 0.325± 0.111 / / / > p = 0.813 > p < 0.001
SMP 0.313± 0.106 / / / / > p < 0.001
Random 0.046± 0.019 / / / / /

Easy-Random SMP-DRQN 0.542± 0.164 < p = 0.649 > p = 0.003 > p = 0.001 > p < 0.001 > p < 0.001
DRQN 0.572± 0.113 / > p < 0.001 > p < 0.001 > p < 0.001 > p < 0.001
SMP-Constr. 0.314± 0.142 / / > p = 0.923 > p = 0.611 > p < 0.001
SMP-Fixed 0.308± 0.124 / / / > p = 0.657 > p < 0.001
SMP 0.284± 0.118 / / / / > p < 0.001
Random 0.042± 0.019 / / / / /

Difficult-Fixed SMP-DRQN 0.310± 0.109 > p = 0.909 > p < 0.001 > p < 0.001 > p < 0.001 > p < 0.001
DRQN 0.304± 0.135 / > p < 0.001 > p < 0.001 > p < 0.001 > p < 0.001
SMP-Constr. 0.056± 0.027 / / < p = 0.425 > p = 0.001 > p < 0.001
SMP-Fixed 0.069± 0.041 / / / > p = 0.002 > p < 0.001
SMP 0.023± 0.013 / / / / > p < 0.001
Random 0.010± 0.004 / / / / /

Difficult-Random SMP-DRQN 0.361± 0.075 > p = 0.294 > p < 0.001 > p < 0.001 > p < 0.001 > p < 0.001
DRQN 0.295± 0.176 / > p < 0.001 > p < 0.001 > p < 0.001 > p < 0.001
SMP-Constr. 0.050 + 0.030 / / > p = 0.765 > p = 0.011 > p < 0.001
SMP-Fixed 0.054± 0.029 / / / > p = 0.003 > p < 0.001
SMP 0.021± 0.013 / / / / > p = 0.008
Random 0.010± 0.004 / / / / /

Other performance metrics The average reward speed, even when normalised, does

not necessarily imply superiority, because an excellent relative performance in the most

difficult environment will not contribute as much as an excellent absolute performance

in a less challenging environment. To resolve this issue, additional metrics illustrate this

comparison in Table 4.4. In the easy mazes, it is clear that DRQN performs the best on

all metrics, followed closely by the SMP-DRQN; a more extended lifetime could poten-

tially overcome this given the trend in both development plots. In the difficult mazes,

SMP-DRQN has the best average rank, scoring among the top performers consistently,

and is followed by DRQN and SMP-Fixed which have the same average rank. The perfor-

mance ratio, the ratio of the method’s average performance to the average performance

of the best ranked method, illustrates that SMP-DRQN has the best relative perfor-

mance, followed by DRQN. Finally, the stuck frequency measures how prone the learner
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is to get stuck without obtaining rewards; on this metric, the DRQN learner clearly per-

forms worst. To illustrate the statistical significance of the stuck frequencies, pair-wise

F-tests comparing the SMPs to the DRQN learner yielded p = 0.092 for SMP, p = 0.036

for SMP-Fixed, p = 0.065 for SMP-Constructive and p = 0.094 for SMP-DRQN in the

difficult-fixed condition, and p = 0.063 for SMP, p = 0.035 for SMP-Fixed, and p = 0.034

for SMP-Constructive and p = 0.033 for SMP-DRQN in the difficult-random condition.

This means that based on a threshold for significance α = .05, all learners with active

adaptive perception have significantly lower stuck frequency in the difficult-random con-

dition, supporting observations that they avoid detracting corridors and rooms more

easily.

Table 4.4: Additional performance metrics (mean ± standard-deviation), for the dif-
ferent conditions (a) easy, and (b) difficult. rank indicates the rank, ranging between
1.0, always best, and 6.0, always worst. ratio indicates the ratio of performance to the
performance of the best of both, yielding 1 if it is the best, otherwise a number in [0, 1).
stuck is the proportion of consequent samples in which the cumulative reward did not
increase, with a sampling rate of once every 10000 time steps.

(a) Easy

Fixed Random

rank ratio stuck rank ratio stuck

DRQN 1.2± 0.4 .97± .08 0.00± .00 1.4± 0.5 .97± .06 0.00± .00
Random 6.0± 0.0 .07± .03 0.00± .00 6.0± 0.0 .07± .03 0.00± .00
SMP 3.9± 0.8 .49± .16 0.00± .00 4.3± 0.8 .46± .16 0.00± .00
SMP-Fixed 3.9± 0.8 .50± .16 0.00± .00 3.7± 0.8 .51± .18 0.00± .00
SMP-Constructive 4.2± 0.8 .48± .16 0.00± .00 3.8± 0.8 .52± .21 0.00± .00
SMP-DRQN 1.7 + 0.4 .91± .12 0.00± .00 1.7± 0.7 .90± .14 0.00± .00

(b) Difficult

Fixed Random

rank ratio stuck rank ratio stuck

DRQN 1.9± 1.4 .63± .43 .20± .25 2.3± 1.9 .74± .39 .24± .29
Random 5.8± 0.5 .04± .07 .01± .01 5.7± 0.4 .05± .03 .01± .01
SMP 4.8± 0.6 .08± .09 .04± .12 4.9± 0.5 .06± .03 .05± .10
SMP-Fixed 3.2± 0.5 .22± .16 .02± .03 3.2± 0.5 .14± .08 .03± .06
SMP-Constructive 3.6± 0.9 .20± .20 .04± .07 3.3± 0.7 .13± .08 .04± .06
SMP-DRQN 1.7± 0.9 .83± .23 .05± .05 1.5± 0.5 .93± .09 .03± .02

Resource consumption Experiments on the difficult problems lasted 20-60 hours for

most SMP runs, 20-25 days for SMP-DRQN runs and 40-50 days for DRQN runs, using

a single Intel Xeon E5-2670 CPU (2.60GHz) on the IRIDIS4 supercomputer [215]. The

memory requirements of SMPs can grow strongly over time. As an illustration, the aver-

age number of valid modifications for SMP-Fixed and SMP-Constructive is higher than

for SMP, 10507 elementary modifications for SMP, 16846 for SMP-Fixed and 16362

for SMP-Constructive in the easy-fixed condition, and 215 elementary modifications

for SMP, 2556 for SMP-Fixed and 2225 for SMP-Constructive in the difficult-random

condition. For SMP-Fixed and SMP-Constr, half to two-thirds of modifications are
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network-modifications, which use more memory, illustrated by the stack’s memory con-

sumption of 1MB-1.8 GB as opposed to 1-6MB for SMP. SMP-DRQN has even more

valid modifications, mainly because of the many changes to the experience set. To ex-

amplify, the number of valid modifications to the experience set averaged 121683 in the

difficult-random condition. However, its memory consumption is not so high due to

the simplicity of the experience set modifications, namely 80-350 MB in the difficult

conditions and 60-90MB in the easy conditions.

4.5 Discussion

4.5.1 Strengths

As illustrated by experiments, examplars of the SMP-DRQN type exhibit a greater

flexibility and higher performance compared to DRQN in the difficult mazes. This

is because of three key factors. First, this learning exemplar makes use of repeated

long-term evaluation, repeatedly calling the SSA evaluation module to evaluate self-

modifications in terms of their contribution towards the lifetime reward intake. This is

especially useful in sparse rewards environments because behaviours that lead to getting

stuck without rewards for extended periods of time will eventually be removed. Second,

the exploration rate is determined dependent on the difficulty of the local environment

to allow exploitation where the pattern is already learned and exploration where the

pattern is still to be discovered by the learner. Third, the selective network usage

allowed to apply selectively the DRQN only where it is reliable, and this allowed it to

avoid the faulty policy locally in detracting rooms and corridors, avoiding to get stuck.

The SMP-Fixed and SMP-constructive have lower average performance but it is surpris-

ing to see that given the limited instructions for learning they are still able to display

unique behaviours; despite utilising a simple feedforward network which is usually not

suitable for partially observable environments, and utilising only simplistic instructions,

due to active adaptive perception and long-term evaluation they are able to avoid de-

tracting corridors and rooms; this is in contrast to the traditional DRQN system which

bases its decisions and training on expensive LSTM forward and backward propagation

procedures.

One of the conjectures of the thesis is that active adaptive perception is preserved even

when the implementation is changed significantly; due to the architecture’s genericity,

different implementations may be used for each of its four components. For example,

the evaluation module need not be the Success Story Algorithm. The perception module

may consist of not one but several sub-symbolic components such as neural networks,

support vector machines or clustering methods, and perceptual advice does not neces-

sarily output external actions, but may be any operation which temporarily influences
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instruction generation. For example, it may make temporary changes in the probabilities

of neighbouring cells or change the contents of internal variables to generate instructions

based on a classification of the agent’s state. The instruction module may generate its

programmatic instructions using a representation different than a probability matrix.

The working memory could be implemented differently to use real numbers instead,

allowing to solve environments with continuous state and action spaces. Similarly, the

interactions between the components may be directed by a different set of instructions.

Additional components suitable for cognitive architectures may be added for further

gains in complex tasks. For example, a long-term memory could potentially enable

more long-term planning and improved behaviour on coarse time scales. To enable

large-scale experimentation whilst maintaining the incremental network parameter up-

dates with long-term evaluations, as in the NEAT-network implementation, future work

could modify a functional, abstract representation of a network rather than a network

itself, similar to HyperNEAT [187]. Moreover, its random increments to the network

parameters could be improved: a straightforward extension to the NEAT implementa-

tion could be to, in addition to learning which parameters are in need of update, also

learn how to increment or decrement the parameters by including the increment as an

additional argument to the instruction.

The proposed active adaptive perception implementations are expected to be useful for

real-time environments. For example, the proposed trainReplay instruction would be

interesting in real-time scenarios, because the Incremental Self-improvement learner can

decide when to use the instruction, thereby allowing a balance between real-time con-

straints and efficient use of experience. This point is not speculative, because earlier im-

plementations of Incremental Self-improvement with SSA [157, 166] have demonstrated

the ability to optimise the real-time performance.

4.5.2 Limitations

Self-modifying systems are inherently more opaque and therefore more difficult to un-

derstand than traditional reinforcement learning systems, because they are not provided

with a fixed learning routine to follow, and therefore their learning behaviour may be

different for each different run. Such systems therefore require additional caution in

realistic environments, and analysing such systems in complex dynamic environments is

challenging.

Currently, two aspects of the current implementations scale poorly towards large prob-

lems with continuous variables: the working memory so far is limited to integers and

modifies a single variable at a time, and the goal-matching procedure works on a limited

set of experiences which may be more difficult to match as the observation or action

space grows.
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Due to modifying the perception module one parameter at a time, the NEAT imple-

mentation is not suitable for large-scale experiments. The feedforward structure did not

solve partial observability, despite including historical variables, and instead additional

working cells as inputs or a recurrent structure should be considered. In addition, de-

spite often introducing more complexity, the performance of the constructive network

is comparable to a network with fixed topology. One reason may simply be due to the

nature of constructive neural networks which tend to learn fast initially but resulted

in a similar even sometimes lower final performance due to overfitting on the initially

small network [55, 86]. In addition, the observed relation between reward intake and

addition of nodes and connections suggests that SSA is not noticing small negative ef-

fects of constructive changes that go together with large positive effects of weight and

instruction probability changes, due to the evaluation of modification sequences rather

than individual modifications.

Although the study experiments with different perception modules, the study does not

address the full scope of active adaptive perception. The evidence brought forward in

this chapter does not necessarily indicate there may be benefits for other aspects of active

perception, such as the use of predictive models to predict future sensor activations and

repositioning the sensors.

4.6 Summary

In long-term unknown environments, the task presented to the learner will be unknown,

meaning that even a single task may be difficult to learn without prior knowledge. This

chapter investigates a single unknown task presented to the learner for a prolonged

amount of time without episodic boundaries and with the possibility of getting no feed-

back at all. Given the bias of current reinforcement learning systems, this may be

misleading and therefore it is investigated how adaptive learning may be used to over-

come this bias. To this end, the chapter investigates active adaptive perception, the

ability to modify and utilise perception modules in completely self-chosen ways. The

chapter demonstrates two exemplar systems with active adaptive perception, accord-

ing to the generic architecture presented in Section 3.3.1, which are compared to other

methods on non-episodic partially observable mazes with sparse reward structures. The

first exemplar learns to modify and use a feedforward network with a simple instruction

set based on long-term reward intake of the self-modifying policy, instead of tradition-

ally training the network on an explicit loss function. This has lead to simple strategies

to avoid detracting corridors and rooms, comparing favourably over a traditional self-

modifying policy. A second exemplar system is more computationally expensive, using

a recurrent network and experience replay. This system uses instructions to determine

when and how to apply and update a DRQN network. It learns to selectively apply the

DRQN where it is reliable and to select the exploration factor depending on its current
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goal. This is shown to be beneficial compared to DRQN on the most difficult problems

included, where DRQN gets stuck in detracting corridors and rooms. The architecture

also constitutes a novel framework for training and constructing neural networks by

learning to use elementary user-defined instructions based on long-term reward intake.



Chapter 5

Lifelong learning with multiple

policies

In long-term unknown environments, there may be multiple unknown tasks presented

in sequence. In such lifelong learning environments, it is essential to selectively transfer

knowledge only to tasks which are related, thereby stimulating positive transfer and

avoiding negative transfer. Similarly, it is essential to avoid catastrophic forgetting,

where knowledge of a task learned earlier may be completely erased.

To improve performance of reinforcement learners and allow the development of analysis

tools, this chapter investigates the use of multiple policies, each assigned to a subset

of the tasks. Beyond providing a means to provide improved performance in lifelong

learning environments, this “learning with multiple policies” approach will be used to

assess two questions:

• Task capacity: How many tasks can a single policy represent?

• Adaptive task assignment: Is it better to (a) train a policy on a static, pre-

determined set of tasks, which limits the number of tasks to train on and thereby

increases the number of training samples per task; or (b) to explore each pol-

icy on all tasks, which allows searching for each policy the best set of tasks but

which “wastes” some training samples on exploratory tasks on which the policy

eventually does not specialise?

5.1 Learning many tasks with a limited number of policies

This section explains the strategy used to learn many tasks with a limited number of

policies, and how it provides a metric for task capacity, the number of tasks a policy can

79
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represent from a set of tasks corresponding to different coordinates in a space of tasks

forming the application domain of interest.

5.1.1 Algorithmic overview

The user can select a number of Npol policies. The top-level learner L receives an

identifier i ∈ N corresponding to the current task Fi from the environment E . Then

at regular intervals, called policy intervals, it selects the current policy according to

a mapping M : N → {1, . . . , Npol}. The policy then behaves as a usual reinforcement

learning policy. Tasks are assumed to be episodic and mutually independent in the sense

that the performance on one task does not affect the states or performance on any other

task.

5.1.2 Unadaptive assignment of policies to tasks

One special case of the policy-selection map M investigated in this study is a fixed

deterministic mapping of a set of tasks to a single policy. For Npol = 1 this means a

single policy is used throughout; for Npol < N , where N is the number of tasks, this

means a single policy is based on a mapping with each policy having a number of N
Npol

tasks, based on a fixed mapping determined at the start of the lifetime by randomly

shuffling tasks, with the number of tasks being as balanced as possible across policies;

for Npol = N , each policy is used for one single task across the lifetime.

5.1.3 Adaptive assignment of policies to tasks

Here we consider an adaptive assignment of policies to tasks, based on the performance

of policies on tasks.

Rationale An adaptive method for policy assignment, based on empirical evidence of

the policy’s performance on a task, would be useful in the following sense:

• If a policy is assigned to tasks which are incompatible, this strategy could adap-

tively assign the task to another policy which is able to solve this task.

• Because each policy is tested on all tasks, there is unlikely to be an overfitting, and

the policies generated therefore generalise across different tasks and adapt rapidly

to new tasks.
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Implementation The choice made in this study is to apply traditional exploration-

exploitation strategies to select the policy which performs the best most frequently and

explore other policies less frequently. A well-known strategy is ε-greedy exploration;

here the ε-greedy exploration is not used for action selection, but it is applied to policy

selection, defining a probabilistic map M which selects the best policy with a probability

1 − ε the best policy and a random policy with probability ε . The “best” policy will

here be defined as the policy with maximal lifetime average reward velocity:

best-policy(Fj) = arg max
i

Vavg(P i|Fj) , (5.1)

where Vavg(P i|Fj) is the lifetime reward velocity of policy P i on task Fj . The resulting

implementation is simple and does not add much computation since the updates are

purely based on tracking lifetime performance.

5.1.4 Base learners

The above strategies can easily be applied to a variety of base learners. Here, two base

learners, each with different objective functions, are included in the study, one represent-

ing value-based reinforcement learners and one representing actor-critic reinforcement

learners. Further details on their implementation is given in Section B.2, found in Ap-

pendix B.

Deep Recurrent Q-networks (DRQN) This value-based RL method is a recurrent

extension to DQN [126] suitable for partially observable environments. Its updates are

based on Q-learning [226]. DQN uses the loss function

E(o,A,r,o′)∼U(B)[(r + γmax
A′

Q(o′, A′; θ̂)−Q(o,A; θ))2] , (5.2)

where the experience tuples (o,A, r, o′) of observation, action, reward and next action

are sampled uniformly from a buffer B, and where a factor γ discounts future rewards.

The policy’s current parameters are θ whilst another set of policy parameters θ̂, updated

infrequently on periodic basis, is used for the target of the neural network. In DRQN,

the sampled states are traces of observations which are passed through an LSTM layer

such that the system remembers previous time steps. In the present paper’s experiments,

the buffer is treated as part of the policy, and therefore each policy will have a separate

experience buffer.

Proximal Policy Optimisation (PPO) PPO [169] applies a clipped loss function

that takes into account that policy updates should not be too large, to allow monotonic

improvements:

min(gtÂt, clip(gt; 1− ε, 1 + ε)Ât) , (5.3)
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where Ât is the advantage estimated at time t by Generalised Advantage Estimation

[168], gt = P(At|ot, θ)/P(At|ot, θold) is the ratio of the probability of the chosen action

At according to the new parameters θ and the old parameters θold, and clip(a; b, c) clips

the number a to the interval [b, c]. This method is applied in an actor-critic style, in

which a critic learns the value of a given observation according to V (ot) = E[
∑∞

i=0 γ
irt+i],

with rt the reward at time t, and in which the actor learns P(At|ot, θ), the probability

of the chosen action in the observed state ot, based on the current policy parameters θ.

5.1.5 Estimating task capacity

Analogous to the Vapnik-Chervonenkis dimension [220] providing a quantitative metric

for the number of binary classifications a single representation can make, here the above

setup with multiple policies is used to construct a metric called the task capacity, how

many tasks can be represented by a single policy. Here it is proposed to base task

capacity on the performance difference obtained by manipulating the amount of policies;

base learners with high task capacity are those for which a low number of policies results

in a performance close to, or even better than, a one-to-one mapping of tasks to policies.

Task capacity metric Based on the above intuition, one possible metric for the task

capacity is:

C = N/N∗pol , (5.4)

where N∗pol is the lowest setting of Npol, the number of policies, which reaches a perfor-

mance close to, or better than, the one-to-one mapping and N is the total number of

tasks. To determine whether the performance is close, an additional tolerance εc ∈ (0, 1]

can be specified such that the performance P ∗ of the N∗pol setting satisfies:

P ∗ ≥ (1− εc) ∗ P , (5.5)

where P is the performance of the one-to-one mapping. Learners with high C and

lower εc therefore can be said to be able to represent C tasks with a loss of at most εc

percentage of P .

Compared to earlier works on capacity [220, 129, 53], this metric is particularly suited

to lifelong reinforcement learning scenarios. Furthermore, this contrasts to theory-based

approaches which only work for certain topologies and which do not take into considera-

tion the practical limitations inherent to the training procedure and the data distribution

[13, 79, 150]. Such practical considerations are especially important in the reinforcement

learning setting.

Task selection An important determinant of the above-mentioned task capacity met-

ric is the set of tasks in which it is to be evaluated. To allow interpretation of the task
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capacity, the task set is defined along a limited number of orthogonal dimensions, span-

ning a space of tasks which represents the domain of interest. The orthogonal dimensions

represent the variable aspects of the decision problem within the domain of interest, such

as the dynamics of the environment and the reward function. Consequently, the task

capacity metric assesses the number of tasks a policy can learn within the domain of

interest.

5.1.6 Other metrics

Aside from task capacity and performance, three other metrics are used to analyse the

learners.

Forgetting and transfer Two related metrics are used for assessing forgetting and

transfer, both of which assess how earlier tasks affect the initial performance on the

current task. In both cases, they are inspired by performance-based metrics which

compare the performance of the learner which did not see any previous tasks to the

learner which saw previous tasks [23, 205], and forgetting metrics which correct for

the random performance on a given task [171]. The resulting metrics allow evaluation

in lifelong learning scenarios, are comparable across different tasks, and is suitable for

lifelong reinforcement learning as it does do not require multi-task test procedures at the

end of each task block. An additional advantage of the metrics is that, when the score

on the metrics is compared to score of the task-specific learner which maps one policy

to one task, they distinguish between two sources of information, the rate of learning as

well as forgetting and transfer.

For forgetting, this leads to the following metric which we will call here the forgetting

ratio:

forgetting ratio(t) =
Vafter(F(t))− Vbefore(F(t))

VR(F(t))
, (5.6)

where t is the current task block; Vafter(F(t)) is the current performance on the task

F(t) given during task block t; Vbefore(F(t)) is the performance obtained on the previous

block of task F(t); and VR(F(t)) is the random performance on the task. By assessing

this metric for all the different task-blocks t in which F(t) was the first presentation

of F, the interpretation of the metric is the improvement in performance on task F by

presenting the task again, expressed in units of the random policy’s performance on the

task.

For transfer learning, this leads to the following metric which we will call here the

transfer ratio:

transfer ratio(t) =
Vafter(F(t))− VR(F(t))

VR(F(t))
, (5.7)
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where t is the current task block, Vafter(F(t)) is the performance on the task F(t) given

during task block t, and VR(F(t)) is the random performance on the task. The metric

quantifies, when taking the random performance as a unit, the improvement from a

random performance level obtained by seeing prior tasks not equal to F(t).

Not all of the task transitions are suitable to be evaluated with these metrics. The

forgetting metric can only be calculated when a task is seen at least twice in the lifetime,

whilst the transfer ratio is defined only for task blocks t in which F(t) is the first task

block that includes F. For each metric, first the valid transitions are obtained, after

which the metrics for each F(t) are then averaged to obtain a single number for each

metric.

Policy spread One of the expected benefits of including multiple policies is that each

policy can represent a different solution to a task. For adaptive policy changes, an

additional benefit is that, if one policy is situated in a region of the parameter space

which has low task-performance, then a different policy could be selected from a more

favourable region in parameter space. Both factors therefore imply that a diverse set of

policies is preferable, to some extent, to maximise the performance of methods that use

multiple policies.

To assess the diversity of solutions, the spread in parameter space can be misleading

since variability in the parameter space does not necessarily equate to variability in the

policies. Instead, as explained in pseudo-code in Algorithm 5.1, here the variability in

policies is assessed empirically, based on data obtained by randomly sampling viable

observations. The policies then repeatedly generate their output based on the history of

observations, and this can then be used to obtain the action probilities, which can then

be used to compare the spread of the probability distribution across different policies.

In PPO, this is directly based on the output of the actor-network which directly outputs

a probability for each action a ∈ A. In DRQN, this is based on the ε-greedy exploration,

which first obtains the action A = arg maxAQ(ot, A) and then assigns the probability

1 − ε + ε/|A| for A and the probability ε/|A| otherwise. The calculation of the spread

is based on the total variation distance, a distance metic for probability distributions,

applied to all pair-wise combinations of the policies in a condition.

5.2 Experimental set-up

The key purpose of the experiments is to assess how performance is affected as a function

of the number of policies, and to assess whether it is beneficial to adaptively learn which

policy to assign to which task. To do so, the experiments compare the above-mentioned

base learners, as a function of the number of policies included, in a challenging set of

lifelong learning environments.
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Algorithm 5.1 Calculating the policy spread.

sample random observations o1, . . . , oN , with N = 106

policy-spread← 0.
for i = 1, . . . N − unroll do . account for the trace-length (unroll parameter)

form traces ht ← {ot, . . . , ot+unroll−1}
for j = 1, . . . , Npol do

compute the probability P i(At = A|ht) for all A ∈ A.
end for
m← 0; . initialise accumulator
for i = 1, . . . , Npol do

for j = 1, . . . , Npol where j 6= i do
. add the total variation distance between policy i and j
m← m+ 0.5 ∗

∑
A∈A |P i(At = A|ht)− Pj(At = A|ht)|;

end for
end for
policy-spread← policy-spread +m/(Npol ∗ (Npol − 1));. add the average distance

end for
policy-spread← policy-spread

N−unroll . . divide by number of datapoints

5.2.1 Lifelong learning environments

Lifelong learning is a challenge to reinforcement learners because there are a variety

of tasks, each with possibly different dynamics, different reward functions, and a dif-

ferent operating environment. In this study, scenarios consisting of 18 tasks are here

constructed by manipulating such task characteristics: the dynamics, the reward func-

tion, and the topology. For the experiments, small-scale topologies, with small state

and observation spaces, are used; this with the aim to limit computational expense and

to provide partially observable problems which can be learned within a fairly limited

number of learning experiences. The topologies correspond to the cheese-maze [118],

Sutton’s maze as mentioned in [157] and a 9-by-9 version of the partially observable

pacman (POcman) [222], and examples of the resulting tasks are illustrated in Figure

5.1.

Although the scenario involves small-scale topologies, it is challenging in two ways. First,

the learner faces many tasks across its lifetime. Tasks follow each other in rapid succes-

sion such that, after a single presentation of a task, the learner has not yet converged its

parameters. Moreover, because of the variety of tasks, memories of earlier tasks can be

lost by the time they are presented again, and a policy learned on one task may transfer

negatively to other tasks. Second, the observation is limited, leading to two difficulties:

(a) to solve a single task, it is required to learn patterns over the history of observations;

(b) a learner cannot immediately infer what is the task from the observation and must

therefore can only identify it based on the dynamics of the problem, contrasting to Atari

and other video games where a single observation is usually sufficient.
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The lifetime of the learner Over its lifetime of 90 million time steps, the learner

must navigate through various topologies to maximise cumulative reward by avoiding

objects with negative reward and seeking out objects with positive reward, using a fixed

set of 5 external actions AE = {north, east, south, west, stay}, and a limited observa-

tion consisting of 11 bits of either 1 or -1, which are similar to the partially observable

pacman: the first four indicate for each direction in a Von Neumann-neighbourhood

whether the position contains an obstacle or not, the next four check for an object in

the Von Neumann-neighbourhood, and the final three bits indicate whether or not the

object is within a Manhattan distance of 2, 3 or 4 steps from the learner. After each 1000

time steps the learner is reset to the starting location but no terminal states are known

to the learner. Then, the learners perform their usual learning cycles again but, in the

first unroll = 15 time steps, any external actions chosen by the learner is replaced by a

random external action. This ensures DRQN’s initial memory contains only information

relevant to the current episode.

Types of tasks As illustrated in Figure 5.1, the environment’s 18 distinct tasks are

based on three dimensions, F = (reward, dynamic, topology), where: reward ∈ {−1, 1}
is the reward for touching the main object in the task; dynamic ∈ {0, 1, 2} is a dimension

describing how dynamic the main object is, with 0 indicating static, 1 indicating a

random step (north, east, south or west) once every 20 time steps, and 2 indicating

a policy which reacts defensively for reward = 1 or aggressively for reward = −1.;

topology ∈ {0, 1, 2} the topology of the problems corresponding to the cheese-maze, the

Sutton maze and the POcman problem. Behaviourally, when the object is static with

dynamic = 0, the learner must find a single good location with the object, if reward = 1,

or without the object, if reward = −1; when the object is dynamic with dynamic > 0,

the learner should either follow the object as closely as possible, if reward = 1, or stay

away at a safe distance, if reward = −1. Unlike the original tasks, objects are never

removed when touching them but continue to be a source of reward, until the elementary

task ends, and instead of a fixed initialisation, static main objects are randomly chosen

from a set of (x, y)-coordinates; see Section B.2 in Appendix B for starting coordinates.

Task sequences As illustrated in Figure 5.2, 18 task sequences were generated by

pseudo-randomly sampling, at a frequency of once every 200 000 time steps, a task from

a uniform distribution over a set of 18 features. A block in which a same task occurs

is called a task block; a single task block has 200 elementary instances of the current

task, each consisting of 1000 time steps. To fill all task-time combinations, only the first

run’s task-sequence is generated randomly while the 17 other sequences have for each

task block its task index j computed as j = (i+n) mod 18 where i is the task index of

the block in the first task-sequence and n is the task-sequence.
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(a) positive, dynamic,
cheese maze

(b) negative, dynamic, Sutton maze

(c) positive, static, pacman
maze

(d) negative, pacman maze

Figure 5.1: Illustration of various tasks based on three defining characteristics of the
feature vector.

time

F0 F5 F8 F6 F10 . . . F1 F2 F2 F9 F17

time

F1 F6 F9 F7 F11 . . . F2 F3 F3 F10 F18

time

F17 F4 F7 F5 F9 . . . F0 F1 F1 F8 F16

Figure 5.2: Illustration of the task sequences. A total of 18 task features which are
sampled randomly to form the first task sequence. The following task sequences are then
computed by computing for each block its task index j = (i+n) mod 18, where i is the
task index of the block in the first task-sequence and n is the task-sequence.

5.2.2 Learning systems

To assess the score on the metrics mentioned in Section 5.1.5 and 5.1.6, the base-learners

DRQN [69] and PPO [169], as explained in Section 5.1.4, will be subjected to the above-

mentioned lifelong learning environments. Each base learner is supplied with an LSTM

layer [77] to learn from the previous unroll = 15 time steps to allow learning in partially

observable environments. These base learners are then embedded in the task assignment
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strategies mentioned in Section 5.1.2 and 5.1.3, with the adaptive assignment conditions

varying in Npol ∈ {2, 4, 9} and the unadaptive varying in Npol ∈ {1, 2, 4, 9, 18}; the addi-

tional conditions in {1, 18} in the unadaptive case are used as baselines which have been

used in other previous experiments, with Npol = 1 representing the traditional DRQN,

and Npol = 18 representing the one-to-one mapping of tasks to policies. Parameter

settings are mentioned in Section B.2 found in Appendix B.

5.3 Results

The various conditions are analysed in this section. The section is composed of two parts:

a performance section which analyses the effect of the number of policies on performance,

and a section which explains the performance results using additional statistics. The

learned behaviours can be observed on video from the link https://drive.google.

com/drive/folders/1wlf1zh6bhyNhpQvO6siYkX7TTvB1_owR?usp=sharing.

5.3.1 Performance

This subsection discusses the performance as a function of the number of policies and

the base learner.

Cumulative reward Figure 5.3 illustrates the lifetime average performance of the

various learners. Here it can be observed that:

• The cumulative reward intake improves as the number of policies is increased.

• In DRQN conditions, the single policy approach’s reward velocity actually de-

creases over time.

• In PPO conditions, all learners are able to improve over the lifetime and the

differences between conditions are less pronounced; compared to DRQN, the single

policy performance is better and the performances of other conditions are poorer.

Performance metric and statistical significance In Table 5.1, the average and

final performance are summarised and analysed in terms of statistical significance. Fur-

ther, Appendix D includes the ordinal analyses of DRQN and PPO in Table D.1 and

Table D.2, respectively.

For DRQN, including multiple policies improved lifetime average performance with a

factor 6-20 times, with the strongest effect being observed when comparing the 18-policy

learner to the single policy learner. Results on DRQN’s lifetime averages show that

https://drive.google.com/drive/folders/1wlf1zh6bhyNhpQvO6siYkX7TTvB1_owR?usp=sharing
https://drive.google.com/drive/folders/1wlf1zh6bhyNhpQvO6siYkX7TTvB1_owR?usp=sharing
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(a) DRQN
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Figure 5.3: Cumulative reward depending on the number of policies.

nearly all differences are significant with significance threshold α = .05 and α = 0.001,

with conditions with more policies outperforming conditions with fewer policies, and

the adaptive solutions outperforming the unadaptive solutions with the same number

of policies. In case unadaptive algorithms outperformed adaptive algorithms with the

same number of policies, the difference was not significant.

For PPO, including multiple policies is also beneficial but has a much smaller effect,

and only the 18-policy condition achieves p < 0.001; all conditions have a performance

of 1-2 times the performance of the single policy condition. The single policy PPO

performs much stronger than the single policy DRQN, by a factor 4 for lifetime aver-

age performance. In contrast, the multiple policy PPO conditions have a performance

2-3 times lower than DRQN. In PPO conditions, adaptive multi-policy approaches per-

formed worse than their unadaptive counterparts with the same number of policies.

Measuring the final performance by averaging the reward velocity over the final 2 million

time steps yields similar results, with two notable exceptions. First, the variability is

much higher, and therefore p-values are generally higher. Second, the single policy

approach in DRQN deteriorates strongly, and its performance is now down to 0.002.

With other final performances in DRQN being in the range of 0.072, for the unadaptive

2-policy, and 0.323, for the 18-policy DRQN approach, this means that the improvement

obtained by including multiple policies is between 35 and 133 times in reward velocity,

For PPO, the single policy approach has not deteriorated and scores similar to its lifetime

average, 0.054.

With an upper bound on optimal performance of 45 million 1, the 18-policy DRQN’s

1An upper bound for the optimal performance is achieving a reward of 1 in tasks with reward = 1
and a reward of 0 in tasks with reward = −1. With tasks being equally split in reward ∈ {−1, 1}, this
implies for a lifetime of 90 million steps an upper bound on the cumulative reward equal to 45 million.
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performance just below 30 million is close to optimal considering that a proportion of

the time is allocated to exploratory actions.

Table 5.1: Variance analysis on the effect of adaptivity and the number of policies on
performance (mean ± standard deviation). < and > are used to indicate whether the
method’s performance is higher or lower than its comparison, while p denotes the sig-
nificance value of the pair-wise F -test. Performance is based on the cumulative reward
function as R(t) =

∑t
τ=0 rτ . The lifetime reward velocity is obtained by R(T )/T where

T = 9 ∗ 107 is the total lifetime of the learner, and the final reward velocity is obtained

by R(T )−R(T−t)
t where T = 9 ∗ 107 and t = 2 ∗ 106. Bold font indicates significance with

criterion α = 0.05 while ∗ indicates significance with criterion α = 0.001.

(a) DRQN
Metric Method Performance Comparison

lifetime AdaptiveDRQN4P AdaptiveDRQN9P UnadaptiveDRQN1P UnadaptiveDRQN2P UnadaptiveDRQN4P UnadaptiveDRQN9P UnadaptiveDRQN18P

AdaptiveDRQN2P 0.098± 0.017 <, p < 0.001∗ <, p < 0.001∗ >, p < 0.001∗ >, p < 0.001∗ <, p = 0.532 <, p < 0.001∗ <, p < 0.001∗

AdaptiveDRQN4P 0.154± 0.027 / <, p < 0.001∗ >, p < 0.001∗ >, p < 0.001∗ >, p < 0.001∗ <, p < 0.001∗ <, p < 0.001∗

AdaptiveDRQN9P 0.200± 0.025 / / >, p < 0.001∗ >, p < 0.001∗ >, p < 0.001∗ <, p = 0.124 <, p < 0.001∗

UnadaptiveDRQN1P 0.016± 0.007 / / / <, p < 0.001∗ <, p < 0.001∗ <, p < 0.001∗ <, p < 0.001∗

UnadaptiveDRQN2P 0.049± 0.017 / / / / <, p < 0.001∗ <, p < 0.001∗ <, p < 0.001∗

UnadaptiveDRQN4P 0.105± 0.029 / / / / / <, p < 0.001∗s <, p < 0.001∗

UnadaptiveDRQN9P 0.220± 0.028 / / / / / / <, p < 0.001∗

UnadaptiveDRQN18P 0.309± 0.021 / / / / / / /

final AdaptiveDRQN4P AdaptiveDRQN9P UnadaptiveDRQN1P UnadaptiveDRQN2P UnadaptiveDRQN4P UnadaptiveDRQN9P UnadaptiveDRQN18P

AdaptiveDRQN2P 0.104± 0.092 <, p = 0.248 <, p = 0.019 >, p = 0.009 >, p = 0.513 >, p = 0.909 <, p = 0.024 <, p < 0.001∗

AdaptiveDRQN4P 0.160± 0.104 / <, p = 0.232 >, p < 0.001∗ >, p = 0.091 >, p = 0.239 <, p = 0.199 <, p = 0.006
AdaptiveDRQN9P 0.221± 0.105 / / >, p < 0.001∗ >, p = 0.006 >, p = 0.023 <, p = 0.802 <, p = 0.078
UnadaptiveDRQN1P 0.002± 0.054 / / / <, p = 0.091 <, p = 0.028 <, p < 0.001∗ <, p < 0.001∗

UnadaptiveDRQN2P 0.072± 0.104 / / / / <, p = 0.618 <, p = 0.008 <, p < 0.001∗

UnadaptiveDRQN4P 0.098± 0.108 / / / / / <, p = 0.026 <, p < 0.001∗

UnadaptiveDRQN9P 0.236± 0.135 / / / / / / <, p = 0.178
UnadaptiveDRQN18P 0.323± 0.124 / / / / / / /

(b) PPO

Method Performance Comparison

lifetime AdaptivePPO4P AdaptivePPO9P UnadaptivePPO1P UnadaptivePPO2P UnadaptivePPO4P UnadaptivePPO9P UnadaptivePPO18P

AdaptivePPO2P 0.062± 0.012 <, p = 0.607 <, p = 0.178 >, p = 0.341 <, p = 0.878 <, p = 0.013 <, p = 0.003 <, p < 0.001∗

AdaptivePPO4P 0.065± 0.011 / <, p = 0.343 >, p = 0.139 >, p = 0.743 <, p = 0.032 <, p = 0.008 <, p = 0.001
AdaptivePPO9P 0.072± 0.017 / / >, p = 0.036 >, p = 0.243 <, p = 0.278 <, p = 0.102 <, p = 0.038
UnadaptivePPO1P 0.057± 0.011 / / / <, p = 0.296 <, p = 0.001 <, p < 0.001∗ <, p < 0.001∗

UnadaptivePPO2P 0.063± 0.013 / / / / <, p = 0.022 <, p = 0.005 <, p < 0.001∗

UnadaptivePPO4P 0.081± 0.017 / / / / / <, p = 0.542 <, p = 0.325
UnadaptivePPO9P 0.086± 0.018 / / / / / / <, p = 0.751
UnadaptivePPO18P 0.088± 0.015 / / / / / / /

final AdaptivePPO4P AdaptivePPO9P UnadaptivePPO1P UnadaptivePPO2P UnadaptivePPO4P UnadaptivePPO9P UnadaptivePPO18P

AdaptivePPO2P 0.055± 0.081 <, p = 0.738 <, p = 0.723 >, p = 0.987 <, p = 0.717 <, p = 0.537 <, p = 0.564 <, p = 0.243
AdaptivePPO4P 0.070± 0.098 / >, p = 1.000 >, p = 0.737 <, p = 0.985 <, p = 0.800 <, p = 0.795 <, p = 0.441
AdaptivePPO9P 0.070± 0.088 / / >, p = 0.723 <, p = 0.984 <, p = 0.789 <, p = 0.787 <, p = 0.418
UnadaptivePPO1P 0.055± 0.090 / / / <, p = 0.717 <, p = 0.544 <, p = 0.568 <, p = 0.256
UnadaptivePPO2P 0.071± 0.094 / / / / <, p = 0.811 <, p = 0.806 <, p = 0.443
UnadaptivePPO4P 0.082± 0.093 / / / / / <, p = 0.973 <, p = 0.594
UnadaptivePPO9P 0.084± 0.116 / / / / / / <, p = 0.658
UnadaptivePPO18P 0.107± 0.096 / / / / / / /

Task performances To visualise how the different learners perform on the different

kinds of tasks, Figures 5.4 and 5.5 show performances of the learners specific to tasks

that represent the extremes: (reward = −1, dynamic = 0, topology = 2) represents the

easiest task for negative reward environments, since the object of interest is static and

the topology is large and cluttered, meaning it is difficult to encounter the object by

chance; (reward = −1, dynamic = 2, topology = 0) represents the most difficult task for

negative reward environments, since the object is highly dynamic in a small topology

where it is difficult to escape; (reward = 1, dynamic = 0, topology = 0) represents

the easiest positive reward task since once the object is found in a small topology, the

agent simply can stay put on that location; (reward = 1, dynamic = 2, topology = 2)

represents the most difficult positive reward task since the agent must continually chase

the highly dynamic object in a large cluttered environment.

For DRQN, a general observation is that Npol < 9 often leads to a degrading task

performance over time, whilst the 9- and 18-policy solutions are increasing towards a
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nearly identical final task performance. However, for task (−1, 2, 0) it can be observed

that initially the undaptive 9-policy solution appears to learn stably, but then later has

declining performance, and that the adaptive 9-policy solution avoids this problem. This

suggests the use of adaptivity as a means to overcome catastrophic forgetting.
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(b) F = (−1, 2, 0)
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(c) F = (1, 0, 0)
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(d) F = (1, 2, 2)

Figure 5.4: DRQN performance development on individual tasks, depending on the
number of policies. Since the lifelong scenario involves different blocks of tasks, the
different blocks of each unique task are here joined together, illustrating the total time
spent in the task on x-axis, and the performance on that task on y-axis. The task
is indicated in the subcaption as F, with values along three dimensions: the reward
incurred by the object {−1, 1}, the dynamicity of the object {0, 1, 2}, and the topology
of the environment {0, 1, 2}. Performance is the reward velocity normalised such that
0 indicates worst and 1 indicates best possible performance.

For PPO, static tasks appear to be learned more slowly, and in dynamic tasks, PPO

struggles to learn anything. In general, few differences can be observed between the

different settings of Npol, except that the Npol = 18 setting develops more smoothly over

time, due to there being no interfering task blocks for any given policy.
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(a) F = (−1, 0, 2)
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(b) F = (−1, 2, 0)
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(c) F = (1, 0, 0)
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Figure 5.5: PPO performance development on individual tasks, depending on the
number of policies. Since the lifelong scenario involves different blocks of tasks, the
different blocks of each unique task are here joined together, illustrating the total time
spent in the task on x-axis, and the performance on that task on y-axis. The task
is indicated in the subcaption as F, with values along three dimensions: the reward
incurred by the object {−1, 1}, the dynamicity of the object {0, 1, 2}, and the topology
of the environment {0, 1, 2}. Performance is the reward velocity normalised such that
0 indicates worst and 1 indicates best possible performance.

5.3.2 Explanatory results

To explain the above findings in greater detail, the role of adaptivity and the effect of

prior tasks is investigated more closely.

The effect of policy spread One of the expected benefits of multiple policy approach

is that if a particular policy is situated in a bad region of parameter space, then it is

easier to escape this region simply by selecting one of the alternative policies, which may

be located in more favourable locations of parameter space. If this is indeed true, then

one would expect that multiple policies are more beneficial when the policy spread is

high, and especially when they are chosen adaptively since that allows to select one of
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the alternative policies. If this hypothesis is true, then it can be expected that: PPO has

low policy spread, since the effect of multiple policies is weak and there is no benefit of

adaptivity, and, that DRQN has high policy spread, since for DRQN adaptive learners

outperform their unadaptive counterparts, with the exception of the 9-policy case where

the difference is non-significant. Figure 5.6 shows that this is indeed the case. For

adaptive PPO methods, all conditions have a policy spread within [0.1, 0.3], whilst for

adaptive DRQN methods, policy spread lies within [0.6, 0.7].

0.0 0.2 0.4 0.6 0.8
time 1e8

0.0

0.2

0.4

0.6

0.8

1.0
po

lic
y 

sp
re

ad
AdaptiveDRQN2P
AdaptiveDRQN4P
AdaptiveDRQN9P

AdaptivePPO2P
AdaptivePPO4P
AdaptivePPO9P

Figure 5.6: Policy spread as a function of time, depending on the number of policies.

Task capacity Normally, one would expect that performance increases after a suc-

cessive presentation of the same type of task; however, catastrophic forgetting could

prevent this from happening. Using the forgetting ratio from Equation 5.6, Figure 5.7

illustrates that DRQN learners with a low number of policies fail to maintain the per-

formance on a particular task across the lifetime, especially with many interfering task

blocks. For the single policy approach, one interfering task block appears to be enough

to cause forgetting. In contrast, PPO methods all have a forgetting ratio similar to the

18-policy approach, indicating they do not forget.

Similarly, general learners are expected to be able to transfer their knowledge learned in

earlier tasks to a completely new unseen task. Figure 5.7 illustrates, using the transfer

ratio from Equation 5.7 , that most PPO methods score well above their 18-policy

counterpart, indicating a larger transfer among tasks; meanwhile, the DRQN methods

score well below the 18-policy DRQN condition.

When the 18-policy solutions are compared between DRQN and PPO, the transfer and

forgetting ratio scores show that, regardless of any transfer or forgetting, DRQN learns

more rapidly than PPO. This in fact may be one of the explanations for the results;

rapid learning on one task may improve task-specific policies but due to overfitting may
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result in negative transfer and catastrophic forgetting when more than one task has to

be learned.

The main results on forgetting and transfer explain the difference in task capacity be-

tween PPO and DRQN: DRQN is strongly affected by manipulating the number of

policies because it is prone to forgetting and does not transfer well between tasks; in

contrast, PPO can represent more tasks without large performance effects. When the

task capacity metric in Equation 5.4 is applied to the lifetime average performance with a

setting of εc = 40%, this results in DRQN having a task-capacity C = 2 and PPO having

a task capacity of C ≥ 18. This can be seen in Table 5.1, where: UnadaptiveDRQN9P

has a lifetime average of .220, a performance of 71.1% of the UnadaptiveDRQN18P per-

formance of 0.309; UnadaptivePPO1P has a performance of 0.057, which is 64.8% of the

UnadaptivePPO18P. With εc = 0, both PPO and DRQN have a task capacity C = 1,

since the 18-policy conditions obtain the highest performance.

5.3.3 Resource consumption

Illustrative of the need for learning with a limited number of policies, an increase in

memory consumption is observed as one includes more policies. Experiments are con-

ducted on the IRIDIS4 supercomputer [215] using a single Intel Xeon E5-2670 CPU

(2.60GHz) with a varying upper limit to RAM: 1- and 2-policy conditions use 4GB; 4-

policy conditons use 8GB; 9-policy conditions use 16GB; 18-policy conditions use 28GB.

6-9 days of computing are required, with consumption lowering as RAM is increased.

5.4 Discussion

5.4.1 Strengths

This chapter shows that using a more limited number of policies can achieve great

performance gains compared to a single policy approach. Similar to the experiments

in this thesis, using multiple policies would yield the strongest performance advantages

when task sequences involve (i) a rapid succession of different tasks; (ii) distinct task

clusters each of which allow significant positive transfer within clusters and negative

transfer between clusters. It is further expected that using multiple representations and

similar adaptive strategies are applicable to supervised learning tasks with only minor

modifications.

The study illustrates a novel type of analysis based on task capacity, the number of

tasks a single base learner may represent. Due to combining both the acquisition and

storage of new information, task capacity depends on both the learning algorithm and the

architecture, and therefore gives an indication of the overall lifelong learning scalability
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Figure 5.7: Effect of intermediate tasks on forgetting depending on the number of poli-
cies. The x-axis shows the number of interfering tasks, measured in bins; for example,
x = 1 means a number of interfering tasks in [1, 9] and the final value of x = 30 means
30 or greater. The y-axis shows the forgetting ratio as defined in Equation 5.6, with the
interpretation being that, y = −1 means a decrease of 1 time the random performance,
whilst y = 1 means an increase of 1 time the random performance, when compared
to the performance of the same task in a task block before the interfering task blocks.
Note: the 18-policy condition (cyan) can be seen as a baseline since there is no catas-
trophic forgetting possible because each of its policies sees only a single task; therefore
every learner below the 18-policy will have some forgetting.

of a base learner for a given domain. In this sense it contrasts to earlier metrics which

isolate particular aspects relevant to lifelong learning such as transfer and catastrophic

forgetting [171, 95, 43, 114, 92, 205]. The task capacity analysis is, however, easily

supplemented with additional analyses in terms of transfer and forgetting metrics to

provide further insights into the mechanisms behind a base-learner’s task capacity.

The results show PPO and DRQN differ strongly in their task capacity: allowing a drop

of 40% in performance, PPO is able to represent 18 tasks with just 1 policy, whilst a

single DRQN policy can learn only 2 tasks. PPO is shown to be only weakly affected by

the number of policies; a possible explanation is that PPO’s objective function stimulates
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Figure 5.8: Effect of prior tasks on transfer depending on the number of policies. The
x-axis shows the number of prior tasks, measured in bins; for example, x = 1 means a
number of interfering tasks in [1, 9] and the final value of x = 30 means 30 or greater.
The y-axis shows the forgetting ratio as defined in Equation 5.7, with the interpretation
being that, as a result of the prior task blocks, y = −1 means a decrease of 1 time the
random performance, whilst y = 1 means an increase of 1 time the random performance,
when compared to the random performance. Note: the 18-policy condition (cyan) can
be seen as a baseline since there is no transfer learning possible because each of its
policies sees only a single task; therefore every learner above the 18-policy will have
some transfer learning.

monotonic improvement over time, while DRQN policies are overfitting on new patterns

allowing resulting in a low transfer to new tasks and rapid forgetting of learned tasks.

This explanation is supported by the difference in transfer and forgetting metrics and

the decreasing performance of the single-policy DRQN over time.

Another key result is that a simple performance-based strategy to adaptively assign

policies to tasks can improve performance, likely because the time to learn the task

from a bad location in parameter space is longer than the time to experiment with

various policies. For PPO this is not found, and it is suggested this is because PPO’s

policies’ performances are close to each other, and searching over policies simply wastes
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experience for learning a single good policy, with PPO being known as a slower but

monotonically improving learner. This is indeed supported by the policy spread metric,

which shows that the responses of the different policies are much more dissimilar for

DRQN than for PPO. The adaptive strategy appears to be beneficial not only in the

early stages of learning, when selecting a policy might yield more rapid performance

advantages compared to learning it, but also to switch to another policy in the later

stages of learning when experience with interfering tasks has decreased performance on

a previously learned task.

Finally, the study is not simply an empirical study but also contributes a novel metric.

Due to different base learners differing in how much tasks they can represent, learn-

ing with multiple policies can serve as a metric for task capacity of lifelong learning

algorithms, analogous to the Vapnik-Chervonenkis dimension [220] for classification al-

gorithms. To continue this reasoning more rigorously, theoretical frameworks could be

developed based on a similar notion of task capacity. A more direct use of the metric

here proposed for task capacity is to allow it to select how many policies are required

for learning a set of tasks most efficiently. Similarly, the task capacity can be seen as

the “goodness of a lifelong learner”: the more tasks a policy is able to represent, the

stronger the lifelong learning aspects of this learner, particularly in regards to transfer

learning and forgetting. An important issue to assess task capacity in this empirical way

is the choice of the tasks; here it is suggested to perform the capacity test on the target

domain, in which the user wants to apply the learning system, whilst manipulating those

task parameters that can reasonably be expected to vary and affect performance.

5.4.2 Limitations

Although the present study shows a large performance benefit in using multiple policies,

the approach taken in this study has its limitations when used as a method for lifelong

learning, as opposed to an analysis tool. First, there is currently a requirement to provide

the task to help select the policy; task identification methods such as the flat forget-me-

not strategy [95] could be used to overcome this limitation. Second, the adaptive policy

assignment strategy relies on performance metrics and policy exploration algorithms,

which may not be optimal; future work could investigate a variety of policy selection

strategies to gain further performance improvements. Third, here it was assumed that

policy intervals started at the start of a new episode; however, the environment may be

inherently non-episodic or the knowledge of resets may be unavailable to the learner. To

solve this, an additional learning mechanism could be implemented to determine the start

of policy intervals. Fourth, in unknown environments, the designer has limited knowledge

of the tasks, and therefore the choice of the tasks may not be representative for the

target application. Finally, because the number of tasks representable by a single base

learner is limited, scenarios with a vast number of tasks may require too much memory
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consumption due to the many base learners. As a remedy to the increasing memory

requirements and the performance loss observed compared to using task-specific policies,

the use of a limited number of policies could be combined with other lifelong learning

strategies; this would be useful to maintain a diversity of policies, each of which specialise

on a large set of tasks, whilst making each policy as robust as possible to variations in

that specialisation. For example, methods which apply a single parameter vector for

multiple tasks combined with task-specific parameters [42, 110] may be applied, one to

each of the subsets of tasks.

5.5 Summary

In long-term unknown environments, different tasks may be presented in sequence, re-

quiring lifelong learning. This chapter empirically investigates the use of multiple poli-

cies, each specialised on a subset of tasks. To improve performance in lifelong learning

scenarios and to analyse different base reinforcement learners’ task capacity, using a

study which manipulates the number of policies included. Results on an 18-task lifelong

learning scenario, including DRQN and PPO as base-learners, show that (a) allowing a

40% loss of performance, single-policy DRQN can learn at most 2 tasks, whilst PPO can

learn all 18 tasks included in the study; (b) DRQN’s performance can greatly exceed

that of PPO when using 2 or more policies; (c) adaptively learning to assign policies to

tasks can improve the performance up to a factor of 2, but only for the DRQN learner.

The key contribution of this chapter is to provide a novel learning system and novel

analysis tools for lifelong learning, both of which are based on policies specialising on a

subset of the tasks.



Chapter 6

Towards active adaptive

perception in lifelong learning

environments

In long-term unknown environments, a learner may be confronted with the challenge

of learning a set of tasks presented sequentially across the lifetime. In such lifelong

learning environments, the same task learned earlier in the lifetime can be unlearned,

due to catastrophic forgetting: when specialising on novel tasks, the parameters learned

for an earlier task may be completely overridden.

This is an issue that is currently not taken into account in the active adaptive perception

learners mentioned in Chapter 4. This is because the evaluation module of the generic

architecture is implemented as the Success Story Algorithm. Although a previous study

in [166] showed that SSA agents could transfer their knowledge across a hand-crafted

curriculum consisting of similar tasks of increasing complexity, such a curriculum is not

always possible and in more challenging lifelong learning scenarios, SSA may have strong

limitations. Due to the complete removal of self-modifications which do not currently

improve the lifetime reward velocity, it appears plausible that such learners are prone

to catastrophic forgetting when there is a sudden reward functions change.

For the above reason, this chapter investigates the limitations of SSA when applying

active adaptive perception learners in lifelong learning environments, and proposes a

novel long-term utility function which corrects for the different reward functions that

occur in different tasks. Due to the novel utility function, this also implies further

changes to SSA, resulting in the Lifelong Success Story Algorithm.

99



100 Chapter 6 Towards active adaptive perception in lifelong learning environments

6.1 Lifelong Success Story Algorithm

The active adaptive perception learners presented in Chapter 4 all rely on the Success

Story Algorithm as their evaluation module. This section illustrates the limitations

of SSA and proposes mechanisms to overcome these limitations. Reformulating SSA’s

stack, which stores the valid self-modifications, plays an essential role in overcoming

these limitations; therefore, the section makes extensive use the operators and data

structures from Table 3.1.

6.1.1 Rationale

The Success Story Algorithm maintains only self-modifications which ensure a lifetime

reward acceleration. This implies that, when different tasks with different reward func-

tion are presented sequentially, this can lead to a false impression of improvement or

performance decline. As illustrated in Figure 6.1, when negative rewards occur after a

history of success, this can completely remove any earlier learned knowledge, even if this

is close to the new task’s optimal performance level, resulting in catastrophic forgetting

and failure to learn. In similar spirit, when the new task is highly rewarding compared

to previous tasks, a new task can give the false impression of improvement, leading the

agent to learn poor behaviours, in what may be called overly eager learning.

6.1.2 Correcting for different reward functions: the Lifelong Success

Story Criterion

The above provides a rationale to provide SSA with a correction for the different reward

functions that may occur during the active adaptive perception learner’s lifetime. When

in lifelong learning different tasks each are characterised by different reward velocity

profiles, one way to avoid the problems mentioned in Section 6.1.1 is to account for all

the different task-specific reward velocities. This idea is illustrated in Figure 6.2.

Based on such task-specific velocities, a novel utility function called the baseline-adjusted

global velocity, or Ṽ for short, is proposed to improve evaluation of active adaptive

perception learners in lifelong learning scenarios. This metric forms the basis of the

Lifelong Success Story Criterion :

Firsts.top() = arg max
e∈Firsts⊂S

Ṽ (e) =

N∑
i=1

wi(VFi(e.tFi)−Bi) , (6.1)

where Firsts is a subset of the stack which includes only the starts of self-modification

sequences; Firsts.top() is the entry in the stack which started the last self-modification
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Figure 6.1: An illustration of catastrophic forgetting in SSA, based on hypothetical
data. For simplicity it is assumed checkpoints are spaced evenly across time. (a) When
confronted with a task 2 with a lower optimal performance of V opt = −6 when compared
to the earlier task with V opt = 7, even an optimal task performance may result in all
self-modification sequences (SMS) being removed. This removes any knowledge learned
in both the current and the earlier task. (b) Even when cumulative reward is increasing,
transitioning from a task with high optimal performance, V opt = 4, to a task with a lower
optimal performance, V opt = 1, may result in knowledge removal about the current task
and parts of the previous task.

sequence; VFi(e.tFi) =
RFi
−e.RFi

tFi−e.tFi
calculates the task-specific reward velocity for the in-

terval between the moment e was pushed onto the stack S , corresponding to e.RFi and

e.tFi , and the current moment, corresponding to e.RFi and e.tFi , and the current mo-

ment, corresponding to RFi and tFi ; wi ∈ R+ can be set to reflect the task’s importance

and the distribution of tasks; and, where Bi is the velocity baseline, a running average

of the VFi observed across the lifetime.

The introduction of Bi into Equation 6.1 is crucial because it allows the Lifelong SSA

evaluations to correct for the different tasks’ baseline velocities, and thereby overcomes

the aforementioned problems of catastrophic forgetting and eager learning (see Section

6.1.1).

Equation 6.1 incorporates two aspects that are different from the traditional Success

Story Criterion. A first factor is the utility function Ṽ and the procedures needed to

compute it. A second factor is the arg max operator: in traditional SSA there is only

the requirement to check the top two entries in the stack, but this strategy does not

work for Ṽ . These two aspects of the Lifelong Success Story Algorithm are discussed in

the next two sections.
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Figure 6.2: Illustration of task-specific reward velocities, based on hypothetical data
with each data point representing the start of a self-modification sequence. Panel (a)
illustrates the global velocities used in traditional SSA. Panel (b) illustrates the task-
specific velocities, calculated by dividing the accumulated task-specific reward with the
task-specific time that has passed. The annotation in (b) also illustrates that when no
time has passed, the entry is unevaluated on F1 and therefore the task-specific velocity is
estimated by taking the most recent observed velocity for that task, VF1

(2, 2) ≈ VF1
(2, 1).
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6.1.3 Computing the baseline-adjusted global velocity

To compute the baseline-adjusted global velocity, there are two steps: computing task-

specific velocities and combining the different task-specific velocities to a single metric.

Computing task-specific velocities To be able to compute the task-specific veloc-

ities, the stack structure used in traditional SSA must be modified to include data in a

task-specific manner.

The stack, denoted as S , contains different entries e ∈ S , each of which represent two

types of information: (a) information to restore the learner, such as the parameters X
of the instruction module or perception module obtained just before a self-modification

or perceptual modification, and the address address at which the self-modification was

made; and (b) auxiliary information to be able to calculate the performance of the

learner since the introduction of the modification, such as the time t and cumulative

reward R recorded at the time that a modification was made.

In traditional SSA, the performance of a self-modification sequence is evaluated by ob-

taining the first entry e in the self-modification sequence, and then computing R(t′)−e.R
t′−t .

In Lifelong SSA, the auxiliary information in the stack must be modified because the

Lifelong Success Story Criterion is based on the baseline-adjusted global velocity Ṽ ,

which requires calculation of task-specific reward velocities, SSA is modified such that

entries e ∈ S now have task-specific timers e.tFi and task-specific cumulative rewards

e.RFi for all N tasks seen so far. To do so, Lifelong SSA keeps track of tFi and RFi

for all tasks seen so far, F1, . . . ,FN , and, whenever a new stack entry is pushed, it then

sets e.tFi ← tFi and e.RFi ← RFi .

Recording task-specific performance data does not yet help solve all issues; as illustrated

in Figure 6.2, for many tasks no task-specific time will have passed in between the start

of a self-modification sequence and the evaluation time, and computing the velocity for

those tasks is not possible. To solve this problem, Algorithm 6.1 estimates unevaluated

velocities based on the most recent prior entry evaluated for Fi. This is illustrated in

Algorithm 6.1. This procedure ensures such entries cannot be removed without evidence

and, once task time passed, their task velocities are calculated as usually. When a task

is not seen at all, it does not contribute to Ṽ ; the system therefore remains open to new

tasks at all times.

Combining task-specific velocities into a single metric After calculating the

task-specific velocities, these then have to be combined into a single metric Ṽ . One can

see from Equation 6.1, that there is some freedom to choose the possible weightings. As

natural weighting of the tasks is to set 1 for all the seen tasks, and 0 for all unseen tasks.

The main reason for selecting this task weighting in the coming experiments is to reduce
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Figure 6.3: Illustration of the stack structure to record self-modifications, for a se-
quence of three consecutive tasks F1 (red), F2 (green) and F3 (blue), each ran for a total
of 1000 time steps. The stack entries include many of the properties included in the
traditional SSA stack: first, the index of the first entry in stack of the self-modification
sequence; Pt, the old policy at the time t when the self-modification was performed,
needed to recover the old policy when its corresponding self-modification sequence is
popped; address, the address at which Pold was modified. However, instead of a global
timer, each entry has a separate timer tF and cumulative reward RF for each task F
seen so far. As in traditional SSA, the initial entry (grey) cannot be popped off, and
represents the initial stack at t = 0 and R = 0; in general, the absense of a task F
implies that tF = 0 and RF = 0. Firsts.top() and Firsts.secondtop() indicate the
first stack entry of the top two self-modification sequences.

the free parameters and to give each task a similar importance. Other weightings may

be a source for future work; in this study, the focus is on correcting the influence of the

baseline reward velocities of different tasks to avoid catastrophic forgetting, rather than

determining the importance of a task.

In addition to Equation 6.1, one may add an additional parameter, which considers a

correction for the fact that some tasks have a naturally higher standard deviation around

the baseline. If tasks have a low reward variability, this can result in low contributions

to Ṽ even if this performance improvement might be difficult to achieve and include

important modifications. Instead of using the mere difference between the task velocity

and baseline to compute task-specific components, Ci = VFi − Bi, such a correction

would compute a Z-score:

Ci = wi
VFi −Bi

Si
, (6.2)

for a given task Fi, where Si is the standard deviation of the task velocity. From here

on, the version with VFi−Bi will be referred to as the absolute model, whilst the version

in Equation 6.2 will be called the relative model.
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Algorithm 6.1 Calculating task-specific reward velocities. When a stack entry e has
no time passed for a given task Fi, getLastEval gets the top-most entry e′ prior to e for
which task-time has passed, and uses the task-specific velocity VFi(e

′) as an estimation
of VFi(e).

procedure getTaskVelocity(entry e,task Fi, task time tFi)
if e.tFi = tFi then

VFi ←estimateVelocity(e,Fi,tFi);
else

VFi ←
R(tFi )−e.RFi
tFi−e.tFi

;

end if
end procedure
procedure estimateVelocity(entry e,task Fi, task time tFi)

e′ ← getLastEval(e.first, F );
return VFi(e

′);
end procedure
procedure getLastEval(index i,task F)

t← S [i].tF;
if t← 0 then

return ∅;
end if
i← i− 1;
while i ≥ 0 do

first← S [i].first;
e← S [first];
if e.tF < tF then

return S [e.first];
end if
i← i− 1;

end while
end procedure

6.1.4 The argmax operator: finding the best policy

In traditional SSA, obtaining the best policy is done by comparing the reward velocities

of the first entries of the top two self-modification sequences in the stack. In Lifelong

SSA there are two complications which make finding the best policy more difficult.

The first and main problem is that the stack is not necessarily sorted. When it is assumed

the current task F has occured in a task block before the current, the current evaluation

interval will not affect entries introduced during intermediate tasks because these will

have the same task-specific time for F. This implies entries before the intermediate

task blocks may, due to the influence of the current evaluation interval on the task-

specific velocity VF, now have a larger baseline-adjusted global velocity Ṽ than these

intermediate entries, resulting in an unsorted stack. However, there are two properties

which can be exploited to avoid checking all the entries: (a) due to the entries in the

bottom of the stack being evaluated over a longer period of time, the current evaluation
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interval has a progressively reduced effect as the stack is traversed from to bottom; (b)

in Equation 6.1, it can be observed that each of the tasks’ contributions are independent

when the weight parameters are fixed. Lifelong SSA exploits these properties by defining

a stop-condition; based on an entry’s time of introduction, an upper bound on the change

in task-specific velocity 1 allows defining an entry after which, when traversing from top

to bottom of the stack, none of the entries could possibly be the new maximum baseline-

adjusted global velocity.

A second key problem is that, when parameters such as the task weights, the baselines

or the standard deviations change over time, this could change the relative importance

of tasks and therefore the maximal velocity of the self-modification sequences may be

hidden anywhere in Firsts ⊂ S . Since these effects do not progressively decline over

the stack, all entries must be checked for the new maximum; however, computational

expense can easily be limited by limiting the amount of parameter changes. A similar

exhaustive check is performed at the start of an unseen task, because for unseen tasks the

task-specific timers and cumulative rewards will all be zero; since then all the previous

task-specific velocities are the same, there is no progressively declining effect. Due to

the need for exhaustive checks, the Lifelong Success Story Algorithm cannot update the

parameters w, S and B too often, or it will come at a significant performance cost. For

this reason, updates are limited in the experiments to Nest = 10 estimation intervals

of length Test = 5000 for each task. To avoid evaluations based on faulty estimates,

it is required that at least 3 estimation intervals have ocurred on a new task before

any evaluation can take place; these first three intervals follow in quick succession with

Test = 25.

The resulting algorithm, illustrated in Algorithm 6.2, ensures the top velocity in the

stack is maximal, as shown in the proof of Theorem E.1. Note that if it is assumed

that each unique task can occur only once, this procedure is not necessary, since then

it is sufficient to improve on each task. In terms of time complexity, the worst case is

O(N |S |), where N is the number of tasks seen so far and |S | is the stacksize, which

adds a factor N to the traditional SSA due to the need to combine task-specific velocities,

and the best case is O(1) with all entries being accepted due to improving on the top

entry. The average case requires more computations than the traditional SSA due to

the requirement to go back until the effect diminishes to near zero; however, for longer

lifetimes only a small proportion of the stack needs to be checked. Space complexity

is the same as in traditional SSA, namely, the best case is when no entry is accepted,

leading to O(1) complexity, and the worst case is when all entries are accepted, in which

case complexity is O(NT ) where T is the lifetime of the learner and N the number of

seen tasks, since task-specific timers and cumulative rewards need to be stored. Overall

this suggests the algorithm is applicable when the unique number of tasks does not keep

1The use of the task-specific velocity relies on the fact that only one task has time passed since last
evaluation; this is ensured by forcing evaluation at the end of the task block.
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growing and when the valid number of modifications does not grow too large, such as

when parameters subject to modification are required to be relatively stable over time.

Algorithm 6.2 An algorithm for evaluating self-modification sequences (SMSs) in Life-
long SSA.

procedure popBackUntilNoEffect(current task F, stack indexes Firsts ⊂ S ,
small user-defined tolerance ε > 0 )

set top← Firsts.top() and second← Firsts.secondtop();
if Lifelong SSA parameter changed or new task block with F ∈ F then

maxfirst = getMaxVelocity() . check all velocities and get maximum
popAndRestore(maxfirst) . cf. Algorithm 4.1
return

end if
M̂F ← max

(
M̂F, V

F(top)
)

if VF(top) ≤ VF(second) then
max← Ṽ (second)
maxfirst← second
∆V max ← tF−top.tF

tF−second.tF (M̂F − VF(top)).
if ∆V max ≥ ε then . maximum may have changed

for e in Firsts.thirdtop() . . . F irsts.bottom() do
if Ṽ (e) ≥ max then

max← Ṽ (e)
maxfirst← e

end if
if VF(e) > VF(top) then . This implies ∆VF(e) < 0.

∆V max ← tF−top.tF
tF−e.tF (M̂F − VF(top)).

if ∆V max < ε then:
break

end if
end if

end for
end if

else
maxfirst← top

end if
popUntilMaxfirst(maxfirst)

end procedure
procedure popUntilMaxfirst(index with maximal global velocity maxfirst)

while True do
first← Firsts.top().first
if first = maxfirst then

break;
end if
popAndRestore(first); . cf. Algorithm 4.1

end while
end procedure
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6.1.5 The evaluation-modification gap

In addition to the above, a seemingly minor issue, though with large cumulative effects

over time, is observed and corrected for. The issue is a gap in between the time of

evaluation and the start of the next self-modification sequence that is unaccounted for

by the velocity computations of the next SSA evaluation.

When the current policy is evaluated on the Success Story Criterion at a check-point

at time t1, the traditional Success Story Algorithm does not necessarily start the next

self-modification sequence. Instead, it waits for the next self-modification, at some time

t′ ≥ t1, because otherwise the policy at time t1 is still in place. This has the side-

effect that, in the time interval (t1, t
′], there is a gap which is not accounted for when

comparing only the top two velocities in Firsts. This “evaluation-modification-gap” is

problematic because when the velocity in between evaluation and modification is much

lower than V (Firsts.top()), as illustrated in Figure 6.4, the stack may become unsorted.

Therefore, checking only that V (Firsts.top()) > V (Firsts.secondtop()) is not enough.

Note that if the velocity during the evaluation-modification gap is higher than usual,

then the top entry will be removed, and there no longer is a gap.
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Figure 6.4: Illustration of the problem with the evaluation-modification-gap. A steep
decline in cumulative reward during the gap in between the prior evaluation and the
first modification of the final self-modification sequence confuses the SSA algorithm.
(a) At the first evaluation, all self-modification sequences form a success story of in-
creasing reward velocity, as observable by the black line’s slope. (b) However, at the
second evaluation, the velocities indicated by the V -annotations, representing the slopes
from the starts to the final evaluation point, show that the stack is no longer sorted:
the sequence starting at t = 0 as well as the sequence starting at t = 200 have a higher
reward velocity than the final self-modification sequence starting at time t = 900. The
effect of pair-wise popping of the stack is that SSA maintains the self-modification se-
quence starting around t = 700 even though the sequence starting at t = 200 has the
best performance.
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To solve this issue in both traditional and Lifelong SSA, a new self-modification is

forced to be executed immediately after each evaluation. This is implemented by using

a special instruction endSelfModAfterNext which sets a variable waitForNext← True,

to ensure evaluation is stalled until a syntactically correct self-modification is proposed;

the evaluation can then proceed after which immediately, with no delay, the proposed

self-modification is executed and pushed to the top of the stack.

At the end of a task, Lifelong SSA enforces evaluations to ensure that only a single

task has its timer ticking during the current evaluation interval. To ensure there is

no evaluation-modification gap in that case, a small probability increase δ, sampled

randomly from a uniform distribution, δ ∼ U(0, 0.001), is applied to a randomly chosen

cell in the probability matrix.

6.1.6 Metrics to assess Lifelong SSA

In addition to the performance, and the metrics proposed for transfer learning and

forgetting ratios mentioned in Section 5.1.6, here two additional metrics are considered

to measure the effect of Lifelong SSA when compared to traditional SSA.

Rationale Lifelong SSA is proposed to ameliorate the limitations of traditional SSA

when faced with tasks with different reward velocity profiles. The following effects are

expected to be observed in traditional SSA and not in Lifelong SSA:

• In the short term, negative transitions result in forgetting: when a task with

high reward velocity is followed by a task with low reward velocity, the stack of

traditional SSA will reduce in size, whilst Lifelong SSA is unaffected.

• In the short term, positive transitions result in too eager learning: when a task

with low reward velocity is followed by a task with high reward velocity, the stack

of traditional SSA will grow rapidly in size whilst Lifelong SSA is unaffected.

• In the long term, these two factors make it more difficult to learn how to make

self-modifications.

The analysis in Section 6.1.2 and

The effect is assessed with an empirical study of an active adaptive perception system

similar to the SMP-DRQN system mentioned in Chapter 4. A theoretical investigation

into these effects would
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Stack size To assess the long-term effect of Lifelong SSA on learning self-

modifications, the metric used here is the stack size, further denoted as |S |. Since

the stack S includes all the valid modifications that the learner made to improve its

instruction module or perception module, the number of entries in the stack, or stack

size, shows the knowledge accumulated and retained over the lifetime.

Correlation between task velocity and stack size To assess short-term effects,

the key thing to show is whether or not positive transitions result in eager learning

whilst negative transitions result in forgetting.

To define eager learning and forgetting, the dynamics of the stack size over time are

here considered: since the stack size reflects how much knowledge is accumulated, the

change in stack size, here denoted as ∆S , indicates learning, in case ∆S > 0 and

forgetting, in case ∆S < 0. To define positive and negative transitions, a notion of

the reward velocity corresponding to each task is needed. To do so, a natural option,

comparable across different learners, is the reward velocity of a policy which outputs

random actions, VR(F(t)) 2, where F(t) is the task occuring at the t’th task block. A

positive and negative transition can then be defined based on the quantity

∆VR = VR(F(t))− VR(F(t− 1)) , (6.3)

which compares the new task’s random performance to that of the previous task’s ran-

dom performance. Based on this quantity, a positive transition occurs when ∆VR > 0

whilst a negative transition occurs when ∆VR < 0.

To combine both definitions in a single quantity which addresses the key question, a

metric is needed which captures the dependency between both quantities. This is here

done using the Pearson product-moment correlation coefficient r between the change in

task velocity ∆VR and the resulting change in stack size ∆S :

r(∆VR,∆S ) =
Cov(∆VR,∆S )

σ∆VRσ∆S
, (6.4)

where Cov computes the covariance whilst σ computes the standard deviation. The

interpretation is that if r > 0 then eager learning follows positive task transitions and

catastrophic forgetting follows negative task transitions.

2see also Equation 5.6 and 5.7
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6.2 Experimental setup

The purpose of the following experiments is to investigate which evaluation module is

better for evaluating incremental self-modifications, with and without the above modi-

fications. The learners incorporated in this study will be simplistic examples of active

adaptive perception; their instructions are as simple as possible, while still technically

categorising as active adaptive perception learners, affecting perceptual modification and

advice only by changing two hyperparameters. This is done to reduce the complexity of

the learning systems and thereby facilitate their interpretation.

6.2.1 Experimental plan

All experiments follow the task sequences mentioned in Section 5.2.1. The experiments

aim to determine which evaluation module is best suited for the evaluation of active

adaptive perception learners in lifelong learning scenarios.

Learning conditions In the experiments, different SSA-based methods have the task

to improve a Deep Recurrent Q-Network by setting the exploration rate and the initial

learning rate provided to the AdaDelta optimiser [238]. The following learning conditions

are included:

• DRQN: as a baseline method, hyperparameters are fixed from start to end of

lifetime, without any SSA optimisation.

• SMP-DRQN: a single SSA agent optimises a single set of hyperparameters, and is

evaluated based on the lifetime cumulative reward.

• Lifelong SMP-DRQN (Abs): a single SSA agent optimises a single set of hyper-

parameters, and is evaluated based the adjusted global velocity (cf. Equation

6.1).

• Lifelong SMP-DRQN (Rel): the same as the previous condition, but with the

Z-score adjustment mentioned in Equation 6.2).

To isolate the effect of the correction for task velocities, and eliminate any effect of the

evaluation-modification gap, all learners will use the endSelfModAfterNext instruction.

Parameter settings are given in Appendix B, Section B.3.

Implementation details For SMP-DRQN, instructions remain the same compared

to the experiments in the previous chapter, except for the following changes: to allow IS

to change how DRQN is used and modified, two special instructions set eps and set lr
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Table 6.1: List of instructions used for the instruction set A in the SMP learners.
Instructions are divided in categories based on the module it directly affects: PM for
perception module, IM for instruction module, EM for evaluation module, and WM
for working memory. Function and operator definitions: c is the working memory
tape, often indexed by double/indirect-addressing; clip(a; [b, c]) clips a to an integer in
the range [b, c]. a//b returns sign(a) ∗MaxInt if b = 0 and integer division otherwise;
a mod b returns a if b = 0 and a−b∗floor(a/b) otherwise. Note: some operations yield
invalid addresses or numbers according to rules of syntactical correctness (cf. [157]); if
these conditions are not met the operation does nothing except for the usual increments
to the instruction pointer IP .

Instruction Type Explanation

getP AIM cca3 = round(MaxInt ∗ Pca1 ,ca2 )

incP(a1, a2, a3) AIM push the current probability distribution Pca1 to the stack S. Then, set Pca1 ,ca2 ←
1− .01 ∗ cca3 ∗ (1− Pca1 ,ca2 ), with ca1 ∈ {0, . . . , |A| − 1} ;
Pca1 ,i ← .01 ∗ cca3 ∗ P for all i ∈ {0, . . . , |A| − 1} \ ca2 . Reject the modification if
Pca1 ,i < minP = 0.0005 for any i ∈ {0, . . . , |A| − 1}

decP(a1, a2, a3) AIM push the current probability distribution Pca1 to the stack S. Then, set Pca1 ,ca2 ←
.01 ∗ cca3 ∗ Pca1 ,ca2 , with ca1 ∈ {0, . . . , |A| − 1}; Pca1 ,i ← Pca1 ,i ∗ (1 − .01 ∗ cca3 ∗
Pca1 ,ca2 )/(1 − Pca1 ,ca2 ) for all i ∈ {0, . . . , |A| − 1} \ ca2 . Reject the modification if
Pca1 ,i < minP = 0.0005 for any i ∈ {0, . . . , |A| − 1}.

set eps APM ε← aε + a1 ∗ (bε − aε)/(nops − 1), with aε = 0.0 and bε = 0.4
set lr APM α← aα + a1 ∗ (bα − aα)/(nops − 1), with aα = 10−6 and bα = 0.2

endSelfModAfterNext AEM set waitMod ← True; at the first syntactically correct self-modification, perform
SSA/Lifelong SSA evaluation; add the self-modification to the stack; set waitMod←
False

jumpHome() AWM set IP ← ProgramStart
jumpEq(a1, a2, a3) AWM if cca1 = cca2 , set IP ← cca3 .

jumpLower(a1, a2, a3) AWM if cca1 = cca2 , set IP < cca3 .

add(a1, a2, a3) AWM cca3 ← clip(cca1 + cca2 ; [MinInt,MaxInt])

sub(a1, a2, a3) AWM cca3 ← clip(cca1 − cca2 ; [MinInt,MaxInt])

mult(a1, a2, a3) AWM cca3 ← clip(cca1 ∗ cca2 ; [MinInt,MaxInt])

div(a1, a2, a3) AWM cca3 ← clip(cca1//cca2 ; [MinInt,MaxInt])

rem(a1, a2, a3) AWM cca3 ← clip(cca1 mod cca2 ; [MinInt,MaxInt])

mov(a1, a2) AWM cca2 ← cca1
init(a1) AWM ca2 ← a1 − ProgramStart− 2
inc(a1) AWM cca1 ← clip(cca1 + 1; [MinInt,MaxInt])

dec(a1) AWM cca1 ← clip(cca1 − 1; [MinInt,MaxInt])

mentioned in Table 6.1 choose the learning rate and the exploration rate to be used for

DRQN; the getP used in some IS implementations is added; the ratio of duplication

was similar, but due to a lower number instructions the absolute number was lower, i.e.

incP and decP were represented each 6 times in total; to narrow the focus of the study,

trainReplay was replaced with a fixed training schedule with update-frequency of once

every four time steps.

Another change is that external actions are left entirely up to the DRQN module, remov-

ing the need for the doQuntil instruction: after DRQN selects an action, Incremental

Self-improvement performs exactly 10 cycles at each time step. This is to make computa-

tion time more predictable compared to the previous system which allowed a self-chosen

number of internal computations before selecting an external action, simplifies analysis,

and reduces the search space. Because the only task of the learner is to optimise DRQN’s

learning, the SSA optimisations are delayed until the DRQN starts learning, which is

defined by the replay start time t = 50000.
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6.3 Results

This section analyses the results concerning the performance and other metrics explained

in Section 6.1.6.

6.3.1 Performance comparison

Figure 6.5 illustrates the lifetime average performance of the various learners. Similar to

the results in the previous chapter, the performance benefit of active adaptive perception

learners can only be observed near the end of the lifetime. In this lifelong learning setting,

however, it can be observed that the traditional DRQN’s performance is deteriorating

rapidly towards the end of the lifetime; presumably this is because its weights are being

pulled to opposite directions, never specialising well at any particular task. The active

adaptive perception learners seem to be able to sustain a more stable performance level

at the end of the lifetime.
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Figure 6.5: Cumulative reward over time for each evaluation module.

The variance analysis, shown in Table 6.2 illustrates that the overall performance differ-

ences between conditions are quite small compared to the variability within conditions,

with no significant effects being found. This suggests that the impact of the condition

on performance is small.

The conclusion from the above analysis is not complete, in the sense that one condition

may still consistently outperform another condition, even if compared to the variance

this effect is small. Therefore, Table 6.3 analyses the results from an ordinal perspective.

This analysis shows that, although the rank of performance of different methods is not

consistent across the 18 independent runs, the different methods are characterised by

a different distribution of performance, as indicated by Cliff’s δ. The performance

distributions of Lifelong SSA conditions dominate those in DRQN and traditional SSA,
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Table 6.2: Variance analysis on the effect of evaluation module on performance (mean
± standard deviation). < and > are used to indicate whether the method’s performance
is higher or lower than its comparison, while p denotes the significance value of the
pair-wise F -test. Performance is based on the cumulative reward function as R(t) =∑t
τ=0 rτ . The lifetime reward velocity is obtained by R(T )/T where T = 9 ∗ 107 is the

total lifetime of the learner, and the final reward velocity is obtained by R(T )−R(T−t)
T−t

where T = 9 ∗ 107 and t = 2 ∗ 106.
Metric Method Performance Comparison

lifetime Lifelong SMP-DRQN (Abs) Lifelong SMP-DRQN (Rel) DRQN

SMP-DRQN 0.015± 0.010 <, p = 0.376 <, p = 0.565 <, p = 0.804
Lifelong SMP-DRQN (Abs) 0.019± 0.007 / >, p = 0.759 >, p = 0.444
Lifelong SMP-DRQN (Rel) 0.017± 0.008 / / >, p = 0.690
DRQN 0.016± 0.007 / / /

final Lifelong SMP-DRQN (Abs) Lifelong SMP-DRQN (Rel) DRQN

SMP-DRQN 0.015± 0.058 >, p = 0.784 >, p = 0.966 >, p = 0.653
Lifelong SMP-DRQN (Abs) 0.008± 0.046 / <, p = 0.819 >, p = 0.830
Lifelong SMP-DRQN (Rel) 0.014± 0.057 / / >, p = 0.683
DRQN 0.002± 0.054 / / /

Table 6.3: Ordinal analysis on the effect of evaluation module on performance (median
± interquartile range). Performance is based on the lifetime reward velocity R(T )/T
where T = 9 ∗ 107 is the total lifetime of the learner. significance denotes the p-value
obtained from the Wilcoxon ranksum-test. effect size denotes Cliff’s δ, an ordinal
effect size metric for dominance of one distribution over the other. The label in paren-
thesis denotes the magnitude of the effect; its estimate is based on Vargha et al.’s study
[221].

Method Performance Comparison

Lifelong SMP-DRQN (Abs) Lifelong SMP-DRQN (Rel) DRQN

significance effect size significance effect size significance effect size

SMP-DRQN 0.015± 0.009 p = 0.121 −0.30 (medium) p = 0.486 −0.14 (small) p = 0.635 −0.09 (negligible)
Lifelong SMP-DRQN (Abs) 0.018± 0.007 / / p = 0.752 0.06 (negligible) p = 0.282 0.21 (small)
Lifelong SMP-DRQN (Rel) 0.018± 0.011 / / / / p = 0.681 0.08 (negligible)
DRQN 0.015± 0.007 / / / / / /

with non-negligible effect sizes. The largest effect here is the medium effect size of

δ = −0.30 when SMP-DRQN is compared to Lifelong SMP-DRQN (Abs).

Task performances are overall quite similar, although DRQN and SMP-DRQN with

traditional SSA have a degrading performance effect over time, as illustrated in Figure

E.1 in Appendix D.

6.3.2 Effect of task velocities on stack size

Here the metrics to assess long- and short-term effects on the stack size, mentioned

in Section 6.1.6, are analysed. Results, illustrated in Table 6.4, are in line with the

hypotheses mentioned in Section 6.1.6:

• An improved ability to build and maintain knowledge on a long-term basis: the

stack size of the Lifelong SSA learners is on average 70-90 times larger than that

of the traditional SSA learner.
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Table 6.4: Effect of task velocities on stack size. r(∆VR,∆S) is the Pearson product-
moment correlation between the change in the random baseline velocity, ∆VR, and the
corresponding average stack size change ∆S . p denotes the significance test for one-
tailed t-test. |S | denotes the stack size obtained at the end of the lifetime, for which
both the average and standard deviation across runs is reported. Abs denotes the abso-
lute model according to Equation 6.1 while Rel denotes the relative model according to
Equation 6.2.

Method Evaluation type r(∆VR,∆S ) |S |
SMP-DRQN Traditional SSA 0.633, p < 0.001 20± 14
Lifelong SMP-DRQN (Abs) Lifelong SSA (Abs) −0.189, p = 1.000 1405± 1099
Lifelong SMP-DRQN (Rel) Lifelong SSA (Rel) −0.169, p = 0.999 1810± 868

Note: Task transitions are recorded across the entire lifetime of the learner. To calculate ∆S , the stack
sizes are compared the end of the previous task, at time t, and then after the initial phase of the new
task, at time t′ = t + 10000.

• No eager learning and catastrophic forgetting: for Lifelong SSA no positive corre-

lation is observed between task velocity and stack size, whilst for traditional SSA

this is the case.

6.3.3 Effect of prior tasks on forgetting and transfer

A key reason why lifelong learning is so difficult is because, when learning a new skill or

maintain an old skill, many different tasks are presented and this can either improve or

diminish performance. Figure 6.6 shows these two effects graphically, using the forgetting

ratio and transfer ratio mentioned in Section 5.1.6. In these plots, no clear difference can

be observed between the traditional SSA and Lifelong SSA. Given the above-mentioned

results on performance and other metrics, it is clear that there is a benefit from Lifelong

SSA; the absense of an effect in these plots may therefore mean that the effects of adding

or removing incremental self-modifications made by the instruction module do not come

into effect immediately, but rather have effects only over the long-term and therefore

calculating the effect across the next task block has little effect. Comparisons to DRQN,

however, show that transfer learning is reduced whilst forgetting is improved. This

interaction effect may be because a reduced forgetting on some tasks implies a worse

performance on other tasks due to negative transfer.

6.3.4 Development of the exploration rate and learning rate

Since in this study, the difference between the learners is how they modify the explo-

ration rate and the learning rate, the performance effect is due to the dynamics of these

hyperparameters. Figure 6.8 shows that, after an initial phase of searching across the

range of the hyperparameters, SMP-DRQN implementations choose a higher exploration

rate and learning rate than DRQN, with an average of around 0.25 for the exploration

rate and 0.13 for the learning rate. The SMP-DRQN based on traditional SSA has a
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Figure 6.6: Effect of intermediate tasks on forgetting for different evaluation modules.
The x-axis shows the number of interfering tasks, measured in bins; for example, x = 1
means a number of interfering tasks in [1, 9] and the final value of x = 30 means 30
or greater. The y-axis shows the forgetting ratio as defined in Equation 5.6, with the
interpretation being that, y = −1 means a decrease of 1 time the random performance,
whilst y = 1 means an increase of 1 time the random performance, when compared
to the performance of the same task in a task block before the interfering task blocks.
Note: the 18-policy condition (dashed line) can be seen as a baseline since there is
no catastrophic forgetting possible because each of its policies sees only a single task;
therefore every learner below the 18-policy will have some forgetting.
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Figure 6.7: Effect of prior tasks on transfer for different evaluation modules. The
x-axis shows the number of prior tasks, measured in bins; for example, x = 1 means a
number of interfering tasks in [1, 9] and the final value of x = 30 means 30 or greater.
The y-axis shows the forgetting ratio as defined in Equation 5.7, with the interpretation
being that, as a result of the prior task blocks, y = −1 means a decrease of 1 time the
random performance, whilst y = 1 means an increase of 1 time the random performance,
when compared to the random performance. Note: the 18-policy condition (dashed line)
can be seen as a baseline since there is no transfer possible because each of its policies
sees only a single task; therefore every learner below the 18-policy will have negative
transfer.
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Figure 6.8: Development over hyperparameters over the lifetime. Central lines repre-
sent the mean value of the hyperparameter across independent runs, whilst the shaded
area represents the variability based on the standard deviation.

larger variability than the methods based on Lifelong SSA. This is because the former

maintains only a limited number of self-modifications in the stack, as shown in Table

6.4; this implies that the instruction module’s policy parameters are closer to the ini-

tial P0, which applied a uniform distribution in [0, 0.40] for the exploration rate and in

[10−6, 0.20] for the learning rate. With the performance of the DRQN system declining

over time, the interpretation of these findings is that maintaining a large learning rate

is necessary to maintain plasticity in the neural network, to learn new behaviours but

especially to re-learn forgotten behaviours, and that maintaining a large exploration rate

is necessary to supply the right data.

6.3.5 Resource consumption

The time complexity of Lifelong SSA does not appear to be a bottle-neck in practice. The

total run time of traditional SSA is similar to the total run time of Lifelong SSA, both

being around 12 days for all 90 million time steps to finish; all runs are done on a single

Intel Xeon E5-2670 CPU (2.60GHz) on the IRIDIS4 supercomputer [215]. The effect

of the 10 additional IS cycles each time step can be estimated by the observation that

DRQN needed around 9 days for all 90 million time steps. The time estimation concludes

that the bulk of the time is being consumed by the DRQN’s forward and backward passes,

and that approximately 30% of computation time is added by performing IS cycles, with

a negligible amount of computation time increase due to the Lifelong SSA evaluation

compared to SSA evaluation. The observed memory consumption by the stack ranges

between 1-2MB for Lifelong SSA and between 40-120 kB in traditional SSA.
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6.4 Discussion

6.4.1 Strengths

This chapter demonstrates that a utility function which accounts for different reward

velocities observed in different tasks ameliorates the catastrophic forgetting exhibited

by the traditional Success Story Algorithm. Experiments on challenging task sequences

in partially observable environments demonstrate that this utility function improves the

performance of the SMP-DRQN implementation by removing the correlation between

tasks’ baseline reward velocities and the acceptance of new self-modifications. Due to

correcting for tasks’ baseline reward velocities, the proposed utility function is expected

to yield performance benefits when different tasks are widely differring in their reward

function, although there is no reason to believe it would be detrimental to performance

when this is not the case.

A novel evaluation instruction is also proposed to ensure no gap between the evaluation

and the first modification of a self-modification sequence can exist. Although a fairly

minor change and none of the learners included in the ablation study excluded this

modification, its effect could potentially be large as the original instruction does not

guarantee that all self-modifications are progressively improving reward intake.

To allow the evaluation of self-modifications with the baseline-adjusted global velocity

as a utility function, the SSA algorithm is modified, resulting into Lifelong SSA. The

advantages of SSA also hold true for the novel Lifelong SSA: its long-term evaluation

makes it possible to learn in non-episodic environments, environments with no artificial

time-outs, and sparse-reward environments; SSA-type algorithms are useful for meta-

learning in long-term environments due to the ability to track back to earlier versions

of a set of parameters across the entire lifetime. Similar to SSA, the use of Lifelong

SSA is not limited to learners based on Incremental Self-improvement or learners with

active adaptive perception. For example, the Adaptive Levin Search [166] approach

could use Lifelong SSA instead of SSA for improved lifelong learning. The contribution

may possibly go beyond SSA, since there may similarly be benefits to using the baseline-

adjusted global velocity as a utility function in other learning algorithms.

6.4.2 Limitations

There are some points relating to SSA that are unaddressed by the Lifelong SSA eval-

uation. The Success Story Algorithm consumes a lot of memory when lifetime is long,

assuming the algorithm keeps finding self-modifications that improve the reward intake.

In the worst case, the memory could grow with one stack entry per time step, if the

number of self-modifications is limited to at most one per time step, as in the experi-

ments. In the best case, however, the memory required is only the initial stack-entry.
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Other memory aspects remain constant across the lifetime. If the time metric is the

number of external actions, then the time consumption could grow in principle indefi-

nitely as the system’s reward velocity does not need to take into account real-time cost,

however, simply adjusting the time metric to take into account real-time removes this

effect. Further, there are no known guarantees about sample complexity, meaning that

it cannot be known in advance how much experience is needed to obtain a desirable per-

formance level; this is especially so because the learning itself depends on instructions

being computed in a stochastic manner.

Compared to SSA there are three additional limitations. First, Lifelong SSA requires

the extra assumption that the task needs to be uniquely and correctly identifiable by

the learner. The requirement of task information is an important limitation of Lifelong

SSA; however, now that this thesis has helped identify the impact of a tasks’s reward

structure on the formation of valid self-modifications, it may be relatively straightforward

to automatically classify tasks such that the algorithm does not requires knowledge of the

current task, based on an automated task identification methods (e.g., [121]). Second,

due to the need to correct for task velocities an additional multiplicative factor is added

to the time and memory consumption: because all N seen task’s reward velocities must

be calculated, the baseline-corrected global velocity is a factor N more expensive than

the traditional SSA’s reward velocity; similarly, the stack structure needs to store timers

and cumulative rewards for each of the N seen tasks. Third, the algorithm has a worst

average case complexity compared to traditional SSA as it often requires more stack

entries to be checked to ensure the top entry is maximal; the extent of this difference

will depend on the domain being solved. Consequently, the algorithm in its current form

is practically applicable only when the unique number of tasks does not keep growing

and when the valid number of modifications does not grow too large.

Although in the present experiments a Lifelong SSA does not demonstrate any observ-

able computation time increase compared to traditional SSA, and its observed memory

consumption is at most 2MB, the additional complexity introduced by Lifelong SSA

could become problematic once lifetimes grow larger. For scalability therefore, alterna-

tives must be considered, meaning the present study resides at the proof-of-concept level

rather than as an implementation recommended for users. Still, it is worth suggesting

some implementation tweaks which may remove this limitation: (a) using a real-time

version of Lifelong SSA, which conform to earlier SSA experiments uses the real-time

in the calculation of the reward velocity to automatically penalise time consumption

from the evaluation procedure; (b) adding a penalty to the reward velocity calculation

when memory grows too large; (c) using compression techniques to reduce the memory

consumed by the stack; and, (d) making algorithmic improvements to the popping al-

gorithm of Lifelong SSA or providing tighter bounds on the maximal velocity change

size.
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6.5 Summary

In long-term unknown environments, different tasks may be presented in sequence, re-

quiring lifelong learning. A key requirement for lifelong reinforcement learners is a

suitable utility function which defines their objective. While active adaptive percep-

tion aims to improve the generality of reinforcement learners across long time-scales,

the implementations presented in Chapter 4 are based on the Success Story Algorithm

(SSA) which has not been tested on challenging lifelong learning scenarios. This chapter

analyses the limitations of SSA in such scenarios, particularly in regard to catastrophic

forgetting, and based on this analysis proposes a novel long-term utility function which

corrects for the different reward functions associated with different tasks. To allow SSA

to learn with a different utility function, its algorithm must be modified and this results

in Lifelong SSA. SSA and Lifelong SSA are compared empirically on challenging 18-task

lifelong learning scenarios, with the main task of SSA learners being to optimise a per-

ception module’s hyperparameters. Results show that, although performances are close,

correcting for the task-velocities improves the Success Story Algorithm’s lifetime perfor-

mance by removing the positive correlation between acceptance of new self-modifications

and a task’s baseline performance, and thereby increasing overall stack sizes, reflecting

a higher quantity of valid self-modifications. The key contribution of this chapter is

a better understanding of the impact of long-term utility functions in lifelong learning

environments.
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Discussion

This chapter reflects on how the thesis adresses the research questions, discusses the

limitations of the thesis, and suggests future work.

7.1 Strengths

The thesis investigates the role of adaptivity to deal with long-term unknown environ-

ments. This includes how adaptivity may benefit in such environments, the potential

trade-offs to consider when applying adaptive learning systems, as well as the chal-

lenges related to prolonged tasks with sequential dependencies and a multitude of tasks

presented in sequence.

7.1.1 Benefits from increased adaptivity

Increased adaptivity is suggested in the thesis as a means to overcome the many un-

knowns when facing long-term reinforcement learning environments with limited prior

knowledge.

The studies presented in the thesis investigate adaptivity to overcome three types of

unknowns.

A first unknown is which learning algorithm is suitable for the environment, and active

adaptive perception is here put forward as a method to solve this unknown. Active

adaptive perception is shown in Chapter 4 to learn how to learn, as evidenced by the

increase the rate of adding valid modifications to the perception module and the instruc-

tion module. The implementations with the NEAT-based representations are shown to

increasingly learn which weight updates may work for a simple feedforward network;

and, the SMP-DRQN implementation is shown to increasingly learn which experiences

121
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are useful to serve as goal, and when to use which instructions. By contrast, the SMP

alone, based on Incremental Self-improvement [157], could not obtain a high perfor-

mance, and the results indicate that perceptual modification and usage instructions

are the most impactful on performance. Active adaptive perception therefore presents

a departure from existing self-modifying policies. Previous theoretical approaches to

self-modifying policies [161] have yet to be implemented. Practical approaches have

either used unadaptive, unrealistic, unscalable, and/or inefficient active perception in-

structions [165, 164], or, as in the baseline SMP included in this study, rely solely on

working memory for processing sensory inputs [157]. Although more work is needed to

demonstrate the potential of the generic architecture, Chapter 4 demonstrates the fea-

sibility of learning how to apply, train, construct and provide data to a neural network.

Compared to previous meta-learning research in deep reinforcement learning [235, 198],

such systems include adaptivity across the entire learning cycle rather than isolating

just one of the components, and rather than optimising a single meta-level [40] they

optimise the algorithm on an unlimited number of meta-levels. In comparison, the use

of self-modifications, to learn which instructions to use, and the use of arguments to

provide additional flexibility.

Another unknown investigated in the thesis is the best choice of the hyperparameters.

In Chapter 6 adapting the learning rate as well as exploration rate provides a minor

source of performance improvement by optimising it based on the lifetime reward ac-

celeration. Chapter 4 demonstrates the potential benefits of goal-based exploration:

difficult or uncertain areas are in need for more aggressive exploration. Both findings

support one of the principles of active adaptive perception: learning parameters need not

be static entities but may be optimised within the agent’s current context to facilitate

improved learning. Most hyperparameter tuning strategies [50] ignore this potential and

require multiple independent runs which may not be possible when online adaptation is

required. There have been some works which have included adaptivity to the hyperpa-

rameter. Meta-policy gradient [235] temporarily adapts hyperparameters by following a

gradient based on a short-term reward contribution, which may not be suitable in many

long-term environments; that said, gradient-based optimisation is efficient when the cost

function is well-formulated and when the global optimum can be reached. Hyperparame-

ter Optimisation on the Fly [132] can learn dynamic hyper-parameter schedules but only

for parameters which are directly related to the policy update function; this includes

the learning rate, the discount factor and the parameter for Generalised Advantage Es-

timation. The performance benefits observed in the thesis also illustrate that adaptive

gradient methods such as the AdaDelta [238], included in Deep Recurrent Q-Networks

and in the perception module of SMP-DRQN, can be subject to further improvements.

A third unknown investigated in the thesis is which representation may best be chosen

for guiding external action selection. As shown in Chapter 4, the active adaptive per-

ception systems can choose when to use which representation, depending on long-term
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experience or short-term perceptual clues from the environment. Although hierarchical

approaches [201, 26, 207] can also adaptively learn which representation to select, the

pre-training phase implies the representations themselves are no longer modifiable once

they are put in practice. This may be desirable in some cases to reduce the sample com-

plexity; however, for long-term environments an increased adaptivity may in principle

yield a better final performance, as suggested by the SMP-DRQN versus DRQN compar-

isons in both Chapter 4 and 6. The study in Chapter 5 demonstrates that specialising

action selection representations to a cluster of tasks is beneficial to performance, thereby

presenting an alternative approach to hierarchical lifelong reinforcement learning.

Although adaptivity has also improved performance in the multiple policy study of

Chapter 5, the active adaptive perception provides a more novel perspective with com-

paratively more adaptive potential to explore. In what may be best phrased as algorith-

mic emergence, new learning algorithms and solving strategies may be discovered as a

result of the processes emerging from active adaptive perception systems. Although in

principle any self-modifying policy may be able to lead to algorithmic emergence, this

thesis shows that the use and modification of the perception module is key to unleashing

this potential. The work in Chapter 4 effectively demonstrates the emergence of active

exploration algorithms [12, 117], where the approach is to increase exploration when

learner is uncertain what to do. Similarly, the effects of the increased network usage

could also be compared to annealing schedules of the exploration rate in off-policy rein-

forcement learning methods. The fact that similar behaviours are often hand-crafted by

human experts indicates that algorithmic emergence is feasible within this framework.

7.1.2 Insights into the trade-off between adaptivity and efficiency

Since adaptivity depends on the ability to modify free parameters, adaptivity is tightly

correlated with the capacity, as it has been well-documented in theoretical work on

neural networks that free parameters increase the capacity of learners, allowing them to

represent more complex functions or remember more patterns 1 [13, 59, 53]. However,

there is a trade-off: when learners with lower capacity and few free parameters can

still represent the functions of interest, they will learn more rapidly because they have

a smaller parameter space to explore; in other words, they have a higher expressive

efficiency [183, 36].

Chapter 4 and 6 demonstrates this trade-off between the adaptivity and the number of

samples required for learning. There it is demonstrated that, when comparing SMP-

DRQN to DRQN, active adaptive perception learns slow initially but then eventually

1As some earlier works suggest [59], storage capacity and representation capacity are intimately
intertwined, with the ability to represent functions being equivalent to the ability to memorise a function
of the data.
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reaches a greater performance. Since the learning itself is also parametrised, the SMP-

DRQN system has more free parameters than DRQN. Consequently, it may take more

time to learn but, when given sufficient amount of learning time, it can exploit these

additional flexibilities to reach an elevated final performance.

Chapter 5 demonstrates that improved capacity in the form of multiple policies, each

specialised on a cluster of tasks, is beneficial for learning multiple tasks in sequence, but

requires more memory. The results from the task capacity analysis further appear to

support the existence of trade-off between task capacity and task-specific performance.

DRQN can learn at most 2 tasks, while PPO can learn all 18 tasks included in the anal-

ysis, but the 18-policy DRQN far outperforms the 18-policy PPO. Based on transfer and

forgetting metrics, the suggested interpretation is that PPO is based on a conservative

clipped objective that prevents too large parameter updates while DRQN performs more

aggressive updates resulting in erasing previously learned knowledge. This suggests a

wider principle in which short-term adaptivity may lead to a superior single-task perfor-

mance, but, due to overfitting on short-term data, an inferior multi-task performance.

This trade-off indicates two feasible approaches to lifelong learning: one in which a

learner is organised modularly with specialised representations, and another in which a

single representation is learned slowly to ensure the data from all tasks is learned.

Chapter 5 shows that including the additional ability to adapt which policy to use for

which tasks in some cases helps efficiency whilst in others it hampers efficiency. When

the policies are sufficiently diverse, as is observed for DRQN, learning by switching the

policy is more rapid than traversing the parameter space with slow gradient-based up-

dates. However, when the policies are all similar to each other, as is observed for PPO,

there is no advantage to be gained from switching, as simply optimising one policy would

start from the same region of parameter space and find the best local solution there.

This finding corroborates results from various other studies. For example, snapshot

ensembling [170, 80] maintains several local minima solutions of a neural network to

construct a higher-performing neural network ensemble. Another example is the Intel-

ligent Trial and Error algorithm [39] which enables fault-recovery by searching across a

behaviourally diverse repertoire of controllers.

7.1.3 Overcoming challenges in long-term environments

Reinforcement learning in long-term environments is challenging, not only when one

task is presented during an extended amount of time, but also when multiple tasks are

presented in sequence. The thesis demonstrates insights to overcome these challenges,

including the choice of the objective function as well as how to avoid catastrophic for-

getting and stimulative positive transfer.
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Challenges in single-task environments When the learner has to solve a task for

an extended amount of time, there are certain sequential dependencies introduced by

the interactive and non-episodic learning setting. Choices made early in the lifetime

affect how well the learning proceeds later in the lifetime.

Certain states in the environment may only be reachable by performing particular se-

quences of behaviours, and this problem is exacerbated when there is no time-out and

only sparse rewards. Chapter 4 illustrates what can go wrong if a learner cannot escape

a certain region of the state space: the DRQN agent gets stuck in detracting rooms

and corridors, preventing it to obtain any rewards at all. Selective network usage and

targeted exploration are able to overcome this issue, owing in part to the Success Story

Algorithm’s long-term objective which can detect stagnation or deterioration over long

time intervals. This strategy may therefore provide an alternative to intrinsic rewards

[27, 17, 28, 158], which may optimise the intrinsic rewards rather than external rewards

and go for short-term rather than long-term gains, or other strategies to overcome sparse

reward structures [44], which assume the environment is a controllable simulation that

requires time-outs and different learning phases.

Research into environments without time-outs is scarce. One other approach, applied

to a dynamic maze setting without time-outs, is to consider sequential dependencies as

sub-tasks and define a Q-table for each sub-task [89]. This is reminiscent of hierarchical

approaches, and one possibility is to consider automated procedures to learn skills [209,

26]. Compared to these approaches the active adaptive perception systems do not require

pre-training or domain knowledge, giving them an advantage when there is no possibility

for extensive experimentation before application, as is the case in, for example, planetary

exploration missions.

The active adaptive perception learners are likely scalable to more complex sequential

dependencies than those investigated in the thesis. Prior research into Incremental

Self-improvement [165, 241] has shown the feasibility to learn more complex sequential

dependencies involving consecutive steps of cooperation between multiple agents. With

the results demonstrating all active adaptive perception implementations to have large

performance benefits over the traditional Incremental Self-improvement, it therefore

appears plausible that active adaptive perception learners will be able to solve such

scenarios with higher performance levels.

Challenges in multi-task cases A second challenge is that a multitude of tasks,

presented sequentially across the lifetime, is difficult to learn due to the need to avoid

catastrophic forgetting, to selectively transfer and apply knowledge, and to maintain

high efficiency and low memory consumption.

Scalability is one important challenge to be overcome for lifelong reinforcement learners.

To assess the limit to the number of tasks a single policy can learn and represent without
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erasing earlier tasks, the thesis shows that the use of multiple policies can provide

the basis for (a) an empirical study into the task capacity of learners; and, (b) an

analysis of both the rate of learning as well as forgetting and transfer. Based on this

analysis, Chapter 5 demonstrates that PPO has a larger task capacity than DRQN. As

an explanation for this finding, DRQN has strong single-task performance but suffers

from catastrophic forgetting on multiple tasks, while a transfer between a larger number

of tasks is possible for PPO. These findings are in line with the literature, in the sense

that: (a) PPO transfers well across tasks [130, 28]; and, (b) DQN [126], the predecessor

of DRQN, often performs better when learning task-specific policies, as opposed to

attempting to overcome catastrophic forgetting with a single policy [95]. Although

there have been studies in assessing capacity [13, 59, 53, 220], these have focused on

specific types of architectures and are not addressing lifelong reinforcement learning and

its practical difficulties arising from the learning algorithm and the data provided. The

task capacity analysis therefore represents a practical method to assess scalability in

lifelong reinforcement learning.

Although here mainly proposed as a tool for comparing different base-learners, the use

of multiple policies each applied onto their own specialisation of tasks may represent a

viable approach to overcome the challenges in lifelong reinforcement learning. In com-

parison to policy reuse [142, 49], learning with multiple policies can be seen as an online,

model-agnostic method with a fixed capacity in terms of the number of stored policies,

without the need for temporary policies for new tasks. Compared to other hierarchical

approaches [209, 26] it may be beneficial when tasks come in similar clusters. Com-

pared to ensemble methods [37], it may represent a computationally cheap alternative,

particularly when the number of tasks is limited or the number of policies required is

low. Also, in comparison to single-policy approaches, there may be benefits: there is no

need to know the task feature vector [151, 42], and there is no need to find a common

representation for widely differing tasks [95, 110].

The thesis provides novel insights into the choice of the objective function for learning

a complex task sequence. As shown in Chapter 6, the variety of reward functions in

the environment poses a significant challenge to learners based on the Success Story

Algorithm. To overcome this issue, the thesis demonstrates that correcting for the

tasks’ different reward profiles allows to maintain a larger amount of knowledge in the

stack which records the successful self-modifications across the lifetime. Although the

performance effects there are small, more impactful types of self-modifications which

go beyond adapting hyperparameters may yield more impressive performance benefits.

Also, this objective may be beneficial to other types of reinforcement learners, and a

similar objective may also be applicable to supervised learning. Further, in Chapter 5,

the larger task capacity of PPO compared to DRQN, and the comparison of the rate

of learning, suggests that more conservative objectives may be needed when solving

multiple tasks with a limited number of policies across a vast lifetime.
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7.2 Limitations

The present study is limited in its theoretical analysis. Active adaptive perception

systems such as those in Chapter 4 and 6 are opaque and difficult to analyse theoretically

because even their learning algorithm is being modified continually. Similarly, the task

capacity analysis in Chapter 5 is purely empirical and the domain to which its conclusions

may be generalised is not clear. Since the environments of application may be unknown,

the selection of tasks may not be representative. Also, it is likely that, as the task

space becomes exhaustively covered with some precision, any new unique tasks will only

deviate in a minor sense from learned tasks; consequently, when scaled towards lengthy

lifetimes, there may be little or no benefit to learning new policies from scratch because

some of the policies are already well-suited to solve such tasks 2.

This thesis only has explored a limited domain in the space of environments. Although

the case studies include features such as partial observability, lack of time-outs, and

different sequentially presented tasks, there are other features not considered in the thesis

which may be of similar importance to reinforcement learning in long-term unknown

environments. After longer operation times, memory becomes a bottle-neck which may

be problematic for the methods considered in this thesis. Some of the agent’s sensors or

actuators may be disrupted or fail, either persistently due to damage or sporadically due

to temporary environmental influences. Decision delays due to long-lasting computations

may affect performance in real-time environments. In similar spirit, some environments

may require immediate adaptation and do not allow slow reinforcement learning. The

state space and/or state transition dynamics are relatively simple compared to typical

deep reinforcement learning applications. Similarly, within the features investigated, the

number of included benchmarks is limited. Finally, the current experiments are based

on simulation, while the assumption is that the agent is learning online in an unknown

target environment which often may be a physical application.

7.3 Future work

Before being applied widely in long-term unknown environments, reinforcement learners

must be subjected to more exhaustive testing procedures. Beyond corroborating the

present results with similar empirical studies, this includes testing: (i) their ability to

scale towards much longer time scales than those in the thesis; (ii) their robustness to

minor changes in the environments; (iii) their generalisation to unseen tasks; (iv) their

ability to scale to more complex state transition dynamics; (v) application in physical

environments.

2Although exhaustion of the task space would be a concern for the current formulation of the task
capacity analysis, this would also have beneficial implications for the scalability of learning with multiple
policies as a lifelong learning method.
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A significant driver of the future development of reinforcement learners for long-term

unknown environments should be inspired by its possible applications. Long-term au-

tonomous robotic systems is a good example which incorporates these demands, with

the limited observations, sparse rewards, and the possibility of landing in a completely

unknown environment for time periods much longer than any previous reinforcement

learning experiment, and the continuity of the environment where each cognitive or ex-

ternal action co-determines the future. In this context, robots may be sent on isolated

missions in space or the ocean bed for topographical or chemical investigations or to

continually inspect and maintain the functionality of equipment. Another example ap-

plication is virtual reality environments, where a virtual agent possibly interacts with

human online players, which can often result in sparse, unstable, noisy, or otherwise

deceptive reward profiles.

However, another driver for future reinforcement learning systems should be based purely

on their algorithmic properties. Further work in algorithmic emergence is needed to an-

swer two questions: (i) under which conditions can meta-reinforcement learning systems

construct an existing (near-)optimal algorithm?; (ii) what types of new algorithms can

emerge from meta-reinforcement learning systems, leading to novel solutions not yet

conceived by humans?

The current lifelong reinforcement learning approach may be extended further. First,

because the aim has been to show in the ideal case how much could be gained from

the proposed lifelong learning strategies, the task index has been given to the learner

in the present studies, and the ability of the proposed methods to be integrated with

task identification methods should be further investigated. Second, there is a need to

further investigate the potential of utility functions which compute the lifetime reward

intake with corrections for the different task’s reward functions; this includes the study of

different weighting schedules to best reflect the expected importance of different tasks,

but also investigating the potential of the baseline-adjusted global velocity or similar

utility functions to be applied to other reinforcement learning algorithms than SSA, or

even applying a similar objective in supervised learning contexts.

More theoretical analysis is required to understand reinforcement learning systems in

long-term unknown environments. Although it may be difficult to make general state-

ments about sample complexity of Incremental Self-improvement-based learners, due to

the user-defined instructions varying and due the self-modifying learning, future research

could investigate this for some simplified cases using a Probably Approximately Correct

analysis [217, 70]; these investigations should ideally be coupled to above-mentioned

issues in algorithmic emergence. To ensure the task capacity analysis can be tailored to

the application, there is a need for theoretical framework to determine key variables for

the experimental set-up used to estimate the task capacity: the length of a task block,

the number of unique tasks, the type of tasks based on a formal specification of the

domain, etc. Further, there is a need for an asymptotic analysis tool to investigate the
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task capacity as a function of increasing number of tasks and increasing lifetime of the

agent.

More work is needed to enable more efficient learning with a given representational ca-

pacity. One example that comes to mind is that providing the active adaptive perception

learners with an initial bias could prove worthwile to reduce the initial learning time.

Moreover, although in this work it is shown that the final performance of the active

adaptive perception learners is improved after lengthy lifetimes, more work needs to be

done in establishing the conditions in which this improvement will manifest. Further

work should also be done to improve the memory requirements and other scalability

issues of both active adaptive perception systems and multiple policy systems.





Chapter 8

Conclusion

Increasingly, there is a demand for autonomous artificial agents which are able to learn

in a long-term environment with only limited prior knowledge and no ability to fine-

tune the system to the environment. The thesis investigates the challenges in long-term

unknown environments: limited observations, sparse feedback, long-term dependencies

without any intervention from the designer, and multiple reward functions and dynamics

characterising different tasks. To improve reinforcement learning in such cases, the thesis

investigates long-term adaptivity.

In a first case study, the thesis investigates the challenge of an unknown task occurring

for a prolonged amount of time without episodic boundaries and with the possibility of

getting no feedback at all. In this scenario, the thesis demonstrates a novel meta-learning

principle called active adaptive perception. The principle involves learning how to mod-

ify and use perception, and combines strengths of universalist and sub-symbolic AGI

to maximise lifetime reward intake. The results show how this system autonomously

construct algorithms for learning and exploring its environment and demonstrates se-

lective use of the perception module. The results further show a performance benefit

compared to Deep Recurrent Q-Networks, a state-of-the-art deep reinforcement learner

for partially observable environments.

In a second case study, the thesis investigates the challenge of multiple tasks presented

in sequence. The study demonstrates the effect of learning with multiple policies applied

selectively on a subset of the tasks. First, Deep Recurrent Q-Networks learns rapidly

and its performance is strongly increased by including multiple policies, whilst Proximal

Policy Optimisation learns slowly, allowing improved long-term adaptation to different

tasks, and is therefore only weakly affected by including multiple policies. Second, adap-

tively changing the assigment of policies to tasks can be beneficial if there is sufficient

diversity across the policies. A further study in lifelong learning shows that lifetime

cumulative reward intake is a misleading objective; instead, the learner must maximise

an objective which corrects for the different reward functions of the different tasks.
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a b s t r a c t

Increasingly, autonomous agents will be required to operate on long-term missions. This will create
a demand for general intelligence because feedback from a human operator may be sparse and
delayed, and because not all behaviours can be prescribed. Deep neural networks and reinforcement
learning methods can be applied in such environments but their fixed updating routines imply an
inductive bias in learning spatio-temporal patterns, meaning some environments will be unsolvable.
To address this problem, this paper proposes active adaptive perception, the ability of an architecture
to learn when and how to modify and selectively utilise its perception module. To achieve this,
a generic architecture based on a self-modifying policy (SMP) is proposed, and implemented using
Incremental Self-improvement with the Success Story Algorithm. The architecture contrasts to deep
reinforcement learning systems which follow fixed training strategies and earlier SMP studies which
for perception relied either entirely on the working memory or on untrainable active perception
instructions. One computationally cheap and one more expensive implementation are presented and
compared to DRQN, an off-policy deep reinforcement learner using experience replay and Incremental
Self-improvement, an SMP, on various non-episodic partially observable mazes. The results show that
the simple instruction set leads to emergent strategies to avoid detracting corridors and rooms, and
that the expensive implementation allows selectively ignoring perception where it is inaccurate.

© 2019 Published by Elsevier Ltd.

1. Introduction

Imagine a scenario where a robotic agent is given an extended
lifetime to explore an area unreachable to humans due to harsh
environmental conditions. The robot is able to communicate only
infrequently and messages are often subject to delay. The human
employers are able to communicate which findings are interest-
ing and which are not, even though they do not know what they
are looking for. These agents will require flexibility to deal with
a larger number of obstacles than a human programmer could
prepare them for and therefore require a general intelligence, or
ability to create solutions to their own problems.

Current approaches to solve such problems include reinforce-
ment learning (RL) (Gosavi, 2009; Sutton & Barto, 2018) and
deep reinforcement learning (DRL) (Arulkumaran, Deisenroth,
Brundage, & Bharath, 2017; Lecun, Bengio, & Hinton, 2015; Li,
2017; Schmidhuber, 2015). Reinforcement learning takes place
in a setting where an agent interacts with the environment
to maximise the sum of rewards where its behaviour is based
on a policy which maps the agent’s observation, e.g. a pixel-
map, to an external action, e.g. one step north. Since the space

∗ Corresponding author.
E-mail addresses: D.M.Bossens@soton.ac.uk (D.M. Bossens),

N.C.Townsend@soton.ac.uk (N.C. Townsend), ajs502@soton.ac.uk (A.J. Sobey).

of possible observations may be large or ambiguous, additional
mechanisms for perceptual processing are typically used. Active
perception, defined as actions to increase the information content
of sensory data (Gibson, 1966), or more broadly as modelling and
control strategies for perception (Bajcsy, 1988), has been used
in several reinforcement learning studies. For example, special
actions can be used for recording additional information to solve
partially observable environments (Crook, 2006; Whitehead &
Ballard, 1990) or for repositioning sensors to better recognise
patterns in the environment (Mnih, Hess, Graves, & Kavukcuoglu,
2014; Shibata, Nishino, & Okabe, 2001). DRL methods use deep
neural networks to provide additional mechanisms for perceptual
processing. Among these approaches, LSTM networks that learn
the value of an action in a particular memory state (Bakker,
2002; Hausknecht & Stone, 2015; Sorokin, Seleznev, Pavlov, Fe-
dorov, & Ignateva, 2015; Wierstra, Forster, Peters, & Schmidhuber,
2010) have been applied to partially observable environments
and compared favourably over other methods, including Elman
networks (Lin & Mitchell, 1993) and the non-recurrent Deep
Q-Networks (DQN) (Mnih et al., 2015) supplied with past sensor
signals as inputs.

Despite their successes, a limitation of current RL agents is
that they do not allow self-modification and self-evaluation; they
lack the ability to tune their own learning mechanisms to the
requirements of the environment, meta-learning or learning to

https://doi.org/10.1016/j.neunet.2019.03.006
0893-6080/© 2019 Published by Elsevier Ltd.
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learn. The generality of such approaches is reduced due to the
inherent inductive bias in a single learning algorithm (Mitchell,
1980; Wolpert & Macready, 1997). To address the limits of spe-
cialised AI approaches, research into Artificial General Intelli-
gence (AGI) or Human-level artificial intelligence (Adams et al.,
2012; Baum, Goertzel, & Goertzel, 2011; McCarthy, 2007; Nils-
son, 2005) is making efforts towards learners with a generality
greater than or equal to humans. To achieve AGI, various different
approaches have been proposed. Symbolic approaches (Anderson
et al., 2004; Choi & Langley, 2018; Kieras & Meyer, 1997; Laird,
2012; Lenat, Guha, Pittman, Pratt, & Shepherd, 1990; Shapiro
& Rapaport, 1992) aim to emulate the cognition by allowing
ability to reason about symbols, high-level discrete concepts.
Subsymbolic or emergentist approaches assume that high-level
concepts will emerge from elementary processes. Some such ap-
proaches attempt to reverse engineer the brain (Hawkins, 2004;
Karnowski, Arel, & Rose, 2010), while others use a developmental
robotics (Asada et al., 2009; Sandini, Metta, & Vernon, 2007;
Zeng, Tham, Badgero, & Weng, 2002) approach. The latter are
heavily inspired by reinforcement learning with intrinsic mo-
tivation (Schmidhuber, 1991; Singh, Barto, & Chentanez, 2004;
Storck, Hochreiter, & Schmidhuber, 1995), lifelong reinforcement
learning (Bengio, Louradour, Collobert, & Weston, 2009; Ring,
1994; Silver, Yang, & Li, 2013; Thrun & Mitchell, 1995), and devel-
opmental psychology, e.g. Piaget (1952). Still other sub-symbolic
approaches, called end-to-end RL, have emphasised that a variety
of human-like functions can emerge even from utilising a single
neural network for deep reinforcement learning (Shibata, 2017).
Hybrid systems (Cassimatis, 2002; Cassimatis, Trafton, Bugajska,
& Schultz, 2004; Franklin, Madl, Mello, & Snaider, 2014; Goertzel
et al., 2013, 2011; Sun & Zhang, 2004) combine strengths of
both approaches by including reasoning on both the symbolic
and subsymbolic level but their flexibility is limited due to the
difficulty of communicating between levels. Unlike previously
mentioned approaches, the universalist approach (Hutter, 2007;
Nivel et al., 2013, 2014; Schmidhuber, 2004, 2007; Wang, 2007)
explicitly addresses the inductive bias: universalist learners em-
ploy a meta-algorithm which constructs solution methods to the
various challenges in the environment.

One class of universalist learner which allows a general mech-
anism for shifting inductive bias as well as the ability to learn
from quantitative rewards is self-modifying policies (SMPs), spe-
cial kinds of reinforcement learners which learn how to mod-
ify their own policies (Everitt, Filan, Daswani, & Hutter, 2016;
Orseau & Ring, 2011; Schmidhuber, 2007; Schmidhuber, Zhao
and Schraudolph, 1997). This is achieved by including instruc-
tions in the action set which modify the current policy, rather
than just external actions. SMPs therefore have a meta-learning
capability with an unlimited number of meta-levels, since the
actions that modify the policy also modify the use of actions that
modify the policy. They can mimic, expand or integrate other
algorithms, taking any algorithmic routine as a single instruction
and learning when to use it. Additionally, SMPs are suitable for
non-episodic learning; this contrasts to traditional reinforcement
learners which assume knowledge of certain terminal states after
which a similar task will occur, and, in making this assumption,
their memory can be safely reset as if no previous history has
occurred. SMPs have proved to be useful for learning in com-
plex domains such as multi-agent systems (Schmidhuber & Zhao,
1997; Zhao & Schmidhuber, 1998), partially observable environ-
ments (Schmidhuber, 1999; Schmidhuber & Zhao, 1997; Zhao &
Schmidhuber, 1998), noisy environments (Zhao, 2002), as well
as continual learning, solving problems of increasing complexity
presented sequentially across the lifetime (Schmidhuber, Zhao
and Wiering, 1997).

However, current practical SMPs have limited perception ca-
pabilities, they do not integrate sub-symbolic routines which

would allow for pattern recognition and function approximation,
or learning operations which improve discrimination between
stimuli. In Schmidhuber and Zhao (1997), Schmidhuber, Zhao and
Schraudolph (1997) and Zhao and Schmidhuber (1998), special
active perception instructions are implemented for Incremental
Self-improvement (IS) which check for particular, user specified,
objects. This approach is limited because it assumes the objects
that may appear are known in advance, reducing their generality.
In addition the exact implementation of these instructions is not
provided and no modifiable perception module is implemented
which would adaptively categorise objects. Other implementa-
tions of IS (Schmidhuber, 1995, 1999; Schmidhuber, Zhao, &
Wiering, 1996) rely on a working memory which may be used
to store and manipulate information about previous observations
numerically. Although this is more general it can be cumbersome
to learn useful perceptual routines this way. For example, to
achieve a procedure similar to a single forward pass of a neu-
ral network, a relatively long sequence of instructions must be
learned, and this does not include the utilisation of the resulting
output. This difficulty may be the source of the observations
reported in Schmidhuber (1999) that the learning curve of IS is
step-wise. More efficient perceptual routines could potentially
make the learning curve continuous and increase performance.

The above discussion on DRL has highlighted that, due to
the particular algorithmic assumptions on the perceptual system,
learners may fail, either completely or for particular spatio-
temporal patterns, when they are subjected to atypical
environments where such assumptions are not met. Agents that
would be able to flexibly use and modify their perceptual sys-
tem may therefore have an improved performance in atypical
environments, especially when given an extended lifetime to
learn how to learn. Therefore, this paper explores active adaptive
perception. Active adaptive perception is :

• An active form of adaptive perception: adaptive perception
is the long-term adaptation of perceptual systems to envi-
ronmental demands. To be an active adaptive perceiver then
means to be able to decide how and when to modify the
perceptual system, based on environmental demands.
• Active perception: based on Bajcsy, Aloimonos, and Tsotsos

(2017), an agent is an active perceiver if it knows why it wishes
to sense, and then chooses what to perceive, and determines
how, when and where to achieve that perception.

To address active adaptive perception, a generic SMP learning
architecture is proposed which uses special instructions to im-
prove its perceptual architecture and to adapt the learning and
use of its perceptual operations based solely on the reinforcement
signals it receives. The proposed architecture is intended for
complex, long-term reinforcement learning problems. To demon-
strate the approach (a) a computationally cheap implementa-
tion is presented which improves its perception by modifying
the weights, topology and use of a neural network perception
module; (b) a more expensive implementation which allows the
learner to choose situations and parameters for training and
utilising a deep recurrent Q-network. Illustrative experiments are
performed on non-episodic partially observable mazes compar-
ing the implementation to DRQN (Hausknecht & Stone, 2015),
an off-policy deep reinforcement learner using experience re-
play, and Incremental Self-improvement (Schmidhuber, 1999),
representing traditional SMPs. Approaches similar to this imple-
mentation are expected to improve training and construction of
neural networks.
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2. Learning with limited knowledge and sparse feedback

A general learner must be able to consistently rank highly
across all problems. An example where general learners demon-
strate some benefits are atypical environments, where traditional
RL assumptions are not valid: terminal states do not exist or
are unknown, the environment is partially observable, and the
rewards are incurred on a sparse basis with the possibility of
not getting feedback at all. Further, unlike some types of Par-
tially Observable Markov Decision Process solvers, such as those
in Kaelbling, Littman, and Cassandra (1998), Shani, Pineau, and
Kaplow (2013) and Silver and Veness (2010), but similar to many
other RL methods for partially observable environments, the un-
derlying state space is not known.1 The environments considered
here are atypical problems, where it is expected that general
solvers will outperform specialist equivalents.

The maze setting considered in Schmidhuber (1999), and
investigated in this paper, is an example of an atypical en-
vironment. The learner has a lifetime going from t = 0 to
t = T without any interruptions. The learner initially wanders
around without knowing what its goal is. At each time-step,
it obtains an observation about whether the four adjacent lo-
cations in a Von Neumann neighbourhood are free or blocked
and selects an operator from the set of external actions AE

=

{north, east, south, west}. After taking such an external ac-
tion, a reward of 1.0 is given when the learner finds the goal
position, otherwise a reward of 0.0 is given. The learners task
is to maximise the cumulative reward. Whenever a goal is ob-
tained, the learner is reset to a starting position. However, the
environment appears as non-episodic to the learner since it has no
knowledge of this inherent episodic structure: the goal location
is not noted as a terminal state, the memory is not reset after
reaching the goal, and there is no artificial time-out to reset the
learner when the learner does not reach the goal. Instead, the
environment appears to the agent as a single history from t = 0
to an unknown t = T . Another source of ambiguity is that the
learner is reset immediately to a start position without recording
an observation at the goal location.

If the above maze setting is extended to larger mazes with
similar obstacle density, then this problem is challenging: de-
tracting corridors and rooms, an initially faulty policy, a sparse
reward structure, and a non-episodic setting without time-outs,
the learning agent may get stuck in a bad region of the maze
and experience thousands of steps without any rewards. This is
significantly different from other partially observable environ-
ments investigated in deep reinforcement learning papers, such
as
T-maze experiments (Bakker, 2002), the 89-state maze (Wierstra
et al., 2010), Atari experiments (Hausknecht & Stone, 2015) and
the Invisible Target Capture Task (Shibata & Goto, 2013). Those
experiments are comparatively easy in the sense that: (a) the
agent has knowledge of terminal states and the memory is reset
at the start of the episode; (b) to avoid getting stuck without
feedback, there is an artificial time-out such that, after a certain
number of time steps without reaching the goal, the agent is
reset to the initial state; (c) there is no corridor from which

1 These methods are a subset of Partially Observable Markov Decision Process
solvers which estimate the environment state, which is unknown, from the
known observations, usually using the ‘‘belief state’’ p(st |ht ), the probability
of the environment’s state given the history of observations and actions. In
the below maze, each (x, y)-coordinate’s probability could be estimated from
the previous Von Neumann neighbourhood observations and the previous
actions. Such an estimation procedure implies that the designer has specific
domain knowledge of the true environment; in the maze example, the domain
knowledge is that x and y are the main variables of the state space, even though
their exact values are never known.

it is difficult to escape, instead the space is open or there is a
single path; (d) reward structure is more dense, for example, by
giving feedback about whether or not the step lead closer to goal.
Nevertheless, those experiments have difficulties not addressed
in the present maze setting: for example, Atari experiments and
the Invisible Target Capture Task have complex dynamics and a
large state-space.

3. Generic architecture for active adaptive perception

This section proposes a generic architecture and an exemplar
implementation, illustrated in Fig. 1. The generic architecture
consists of four basic components: an instruction module, an
evaluation module, a working memory and a perception mod-
ule. It serves as an abstract template for learners with active
adaptive perception; the way the architecture is implemented
may alter efficiency but not the property of active adaptive per-
ception. In the exemplar implementation, the perception module
is implemented as a neural network with an evolvable repre-
sentation as in NEAT (Stanley & Miikkulainen, 2002), whereas
other modules are implemented according to Incremental Self-
improvement (Schmidhuber, 1999). After providing an algorith-
mic overview and the rationale, the remainder of the section
describes each module and its corresponding implementation in
detail.

3.1. Rationale

To achieve active adaptive perception, an architecture of at
least two components is proposed: first, a universalist meta-
algorithm, called the instruction module, utilises elementary in-
structions to construct perceptual modification algorithms and
to selectively apply the perceptual apparatus; second, a sub-
symbolic system, called the perception module, is being selec-
tively called by some of the instruction module’s instructions,
either to make long-term modifications to the sub-symbolic sys-
tem, perceptual modification, or to utilise the patterns detected
by the perception module to temporarily influence which in-
structions are generated by the instruction module, perceptual
advice. Using these instructions, the system can then successfully
learn when and how to request further perceptual processing and
when and how to make long-termmodifications to the perceptual
system, thereby achieving active adaptive perception.

Due to fitting the above description, a natural candidate for the
instruction module is the self-modifying policy (SMP) learner, a
special reinforcement learning policy. A reinforcement learning
policy P : O → A outputs actions A ∈ A based on the agent’s
observation o ∈ O, thereby maximising a particular utility-
function. An SMP is a special kind of reinforcement learner which
includes in A instructions that modify P , and possibly various
other instructions for performing computations. If such a policy
successfully learns when and how to use self-modification in-
structions, such a policy learns how to generate changes to itself.
This allows learning even when typical reinforcement learning
assumptions are not met, and therefore provides improved gen-
erality. Moreover, if such a policy successfully learns when and
how to use perceptual modification and perceptual advice in-
structions, according to their above definition, this will achieve
active adaptive perception.

3.2. Algorithmic overview

A learner, L, is put in an environment, E , with the aim of
maximising the sum of rewards. L seeks out rewards by out-
putting an instruction a from a user-defined set of instructions A.
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Fig. 1. Diagram of the generic architecture for active adaptive perception, and its current implementation on the maze problem. Based on the current instruction
pointer as an internal state, the instruction module generates an instruction and its arguments. Working memory elements, integers in [−16, 16], are then used to
process the arguments for context-sensitive instruction execution. The instruction is then performed, calling the evaluation module to perform SSA, the perception
module to modify it or to request an advised action, the working memory to make historical notes, the instruction module to self-modify, or an external action
in the environment. When perceptual advice is requested, the perception module’s neural network outputs an advised action after taking the input cells’ contents,
normalised in [−1, 1], as inputs. Input cells are the current reward, the binary observation bits indicating whether north, east, south, and west are free positions
or obstacles, and internal variables for disambiguating the state based on the history, namely the time, the stacklength and the instruction pointer. Note that (a) a
simplified representation is given because the number of working memory cells and program cells is larger in the experiments; (b) in the SMP-DRQN implementation,
the inputs to the perception module is the history of observations instead of all current input cells, and additional perceptual modifications are done on a set of
useful experiences.
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Instructions are similar to functions used in programming lan-
guages which take several arguments as inputs and then perform
some computations based on these arguments. The following
subsection describes how the short-term behaviour, which is
structured into instruction cycles, of L leads to the long-term
process of active adaptive perception, due to the usage of various
instruction types.

A single instruction cycle. A single instruction cycle works as
follows. The agent, with its N sensors, receives an observation
o ∈ O ⊂ RN from E and writes it directly to the working
memory elements reserved for observation. Based on a fixed
subset of working memory cells, not necessarily the same as
observation elements, the instruction module, based on the in-
struction module parameters P , generates an instruction A ∈ A
and its arguments a1, . . . , aN , if that instruction has any. The
execution of A results in interactions between modules (internal
actions) or between L and E (external actions A ∈ AE); different
types of interactions are described in the following paragraph. As
in reinforcement learning, a critic in the environment E sends a
reward r ∈ R, usually only when an external action is taken.
The cycle ends after L has processed the reward in the evaluation
module.

Instruction types. Interactions between modules or between L
and E are encoded in the instructions; the following types of
instructions are the minimal requirement for active adaptive
perception:

• External actions (A ∈ AE): interact with E to obtain rewards
• Self-modification (A ∈ AIM ): modify the instruction module

parameters P .
• Working memory manipulation (A ∈ AWM ): change the

working memory based on the sensory inputs and the cur-
rent working memory
• Perceptual advice (A ∈ APM ): based on the current working

memory a part of the perception module computes outputs
which influence instruction generation.
• Perceptual modification (A ∈ APM ): modify the perception

module’s parameters, changing the way perceptions form
and interact with the instruction module.
• Evaluation (A ∈ AEM ): call the evaluation module to eval-

uate changes to the instruction module and the perception
module

Steps involved in the learning process. All instructions must be
regularly used which results in the following learning steps:

1. The learner starts with a minimally biased instruction and
perception module;

2. Intermittently, changes to instruction generation and the
perceptual processes are made;

3. Once the evaluation module is called, the changes are ac-
cepted or rejected based on evidence of their contribution
to reward intake;

4. The instruction module thus learns when to execute the
instructions but also how; the meaning of instructions is
optimised as the arguments supplied to the instruction is
changed.

5. This leads to optimisation of the interaction between the
various modules. One of the consequences is perceptual
learning, which may be divided into two processes:

• long-term parameter changes: similar to traditional
sub-symbolic learners, the best parameters for a given
perceptual operation are learned.
• active adaptive perception: learning how to modify

and use the perception module.

3.3. Instruction module

The instruction module organises the interactions with the en-
vironment but also with the different modules of the architecture
by utilising a user-defined instruction set A, a set of operations
which includes external actions which involve interacting with
the environment, e.g. moving one step north, grabbing an ob-
ject, or applying sensory mechanisms; and internal operations to
enable memory, learning and inference. The mechanism of the
instruction module is to continuously generate instructions based
on the current instruction module parameters P and a set of
working memory variables.

Implementation: probability matrix P . The learner’s policy P con-
sists of a number of m program cells Pi (i = ProgramStart, . . . ,
ProgramStart +m− 1) each of which represents a discrete mod-
ifiable probability distribution over the integers {0, . . . , |A| − 1}
initialised to a uniform distribution but subject to change due
to self-modification instructions. Using the instruction pointer IP ,
a special working memory variable that points to the current
program cell, an instruction cycle consists of sampling an integer
j ∼ PIP representing an instruction Aj ∈ A = {A0, A1, . . . , A|A|−1}.
After checking how many arguments, N , are required for execut-
ing Aj, integer arguments a1, . . . , aN are generated according to
the distributions of the following program cells PIP+1, . . . ,PIP+N .
After executing the instruction and its arguments, a new cycle
starts with IP ← IP + N + 1. Instructions include various ex-
ternal actions but also internal operations. For self-improvement,
the learner uses self-modification instructions incP and decP
which increase and decrease the probability of a chosen pro-
gram cell Pi by a chosen amount, respectively. Evaluation is
initiated by endSelfMod which ends the current modification
sequence and starts the evaluation of the latest changes made to
the instruction module and the perception module. External ac-
tions are application-dependent, such as north, east, south and
west in maze-problems. The working memory is manipulated
using reading, writing and arithmetic operations and instructions
that change the IP similarly determine the state of the learner.
Perceptual modification and perceptual advice instructions are
explained in Section 3.6, while a complete instruction set is given
in Table 1.

3.4. Evaluation module

The function of the evaluation module is to determine if
changes to the instruction module and the perception module
are beneficial by considering evidence of how self-modifications
relate to reward intake.

Implementation: Success story algorithm. To allow a learner to
incrementally improve its performance with minimal assump-
tions on the environment, an empirical evaluation method called
the Success Story Algorithm (SSA) is used which maintains only
those incremental modifications that lead to long-term reward
acceleration. At time points called checkpoints initiated by the
instruction endSelfMod, the learner performs an evaluation of
the current self-modification sequence (SMS). The learner can
adapt to tasks with atypical reward structures because it can
determine the frequency of endSelfMod, learning how much
time is required to reliably evaluate a series of modifications. The
evaluation is done using the Success Story Criterion (SSC),
R(t)− R(t2)

t − t2
>

R(t)− R(t1)
t − t1

, (1)

where R(t) =
∑t

τ=0 r(τ ) is the cumulative reward, t is the current
time and t2 and t1 are the most and second-most recent check-
points, respectively. Thus the SSC asserts whether the reward

138 Appendix A Publications



D.M. Bossens, N.C. Townsend and A.J. Sobey / Neural Networks 115 (2019) 30–49 35

Table 1
List of instructions used for the instruction set A in the SMP learners. Instructions are divided in categories based on the module it
directly affects: E for environment, PM for perception module, IM for instruction module, and WM for working memory. The SMPs
included in the experiments used a different subset of APM , the instructions relevant for active adaptive perception, and the set A\APM

are instructions commonly used in Incremental Self-improvement. Function and operator definitions: c is the working memory tape,
often indexed by double/indirect-addressing; layer(i) obtains the layer index of node i; narr(a, [b, c]) performs a narrowing conversion
from a ∈ [0, |A|−1] to an integer in [b, c]; switch(from, to) switches from and to when from > to or aborts the instruction when
from = to; N (µ, σ ) is the normal/Gaussian distribution; clip(a; [b, c]) clips a to an integer in the range [b, c]. a//b returns sign(a)∗MaxInt
if b = 0 and integer division otherwise; a mod b returns a if b = 0 and a− b ∗ floor(a/b) otherwise.
Instruction Type Explanation

north AE Take one step north
east AE Take one step east
south AE Take one step south
west AE Take one step west

getOutput() APM Forward inputs c−16:−9 through the perception module network, yielding activations
act(A) for all A ∈ AE . Set Aadv ← argmaxA∈AE act(c ′); Next cycle the instruction module
will execute Aadv .

doQuntil(a1 , a2 , a3) APM If looping = True or t < replayStart return; else, set looping ← True, the termination
experience term← Ea1 as the a1 ’th element of the experience set E, the maximal
number of looping cycles until← narr(a2, [1, unroll/2]), and ϵ ← a3 ∗ .005. The next
cycles, the DRQN network outputs as the activations act(A) the Q-values Q (s, a) for all
A ∈ AE with s denoting the history of observations, and then the ϵ-greedy strategy,
with the self-chosen ϵ, selects the next external action. The loop is terminated when
the current experience is term or when until time steps have passed.

weightChange(a1 , a2) APM Add a copy of the current network to the stack S. set i← narr(cca1 , [0, nnodes − 1]),
j← narr(cca2 , [0, nnodes − 1]); set wij ← clip(wij +N (0, σw); rangew) with
rangew = [−50, 50] and σw = 5.50.

addNode(a1 , a2) APM Add a copy of the current network to the stack S. set i← narr(cca1 , [0, nnodes − 1]),
j← narr(cca2 , [0, nnodes − 1]) ; perform switch(i, j) ; if layer(j) > layer(i)+ 1 then delete
the old connection (from = i, to = j, w = wij), add a new node k in layer layer(i)+ 1
and add connections (from = i, to = k, w = 1) and (from = k, to = j, w = wij).

addConnection(a1 , a2) APM Add a copy of the current network to the stack S. set i← narr(cca1 , [0, nnodes − 1]),
j← narr(cca2 , [0, nnodes − 1]); perform switch(i, j); create a new connection gene
(from, to, w) with w ∼ N (0, σw)

setExperience(a1) APM If t < replayStart , return; else, add the current value of Ea1 to the stack S, the a1 ’th
element of the experience set, to the stack and replace it with the current experience:
Ea1 ← (o, A, r, o′), with o the previous observation, A the previous external action, r the
current reward, and o′ the current observation.

incP(a1, a2, a3) AIM Push the current probability distribution Pca1
to the stack S. Then, set

Pca1 ,ca2
← 1− .01 ∗ cca3 ∗ (1− Pca1 ,ca2

), with ca1 ∈ {0, . . . , |A|−1} ;
Pca1 ,i ← .01 ∗ cca3 ∗ P for all i ∈ {0, . . . , |A|−1} \ ca2 . Reject the modification if
Pca1 ,i < minP = 0.0005 for any i ∈ {0, . . . , |A|−1}

decP(a1, a2, a3) AIM Push the current probability distribution Pca1
to the stack S. Then, set

Pca1 ,ca2
← .01 ∗ cca3 ∗ Pca1 ,ca2

, with ca1 ∈ {0, . . . , |A|−1};
Pca1 ,i ← Pca1 ,i ∗ (1− .01 ∗ cca3 ∗ Pca1 ,ca2

)/(1− Pca1 ,ca2
) for all i ∈ {0, . . . , |A|−1} \ ca2 .

Reject the modification if Pca1 ,i < minP = 0.0005 for any i ∈ {0, . . . , |A|−1}.

endSelfMod() AEM Evaluate the current self-modification sequence with SSA

jumpHome() AWM Set IP ← ProgramStart
jumpEq(a1, a2, a3) AWM If cca1 = cca2 , set IP ← cca3 .
jumpLower(a1, a2, a3) AWM If cca1 = cca2 , set IP < cca3 .

add(a1, a2, a3) AWM cca3 ← clip(cca1 + cca2 ; [MinInt,MaxInt])
sub(a1, a2, a3) AWM cca3 ← clip(cca1 − cca2 ; [MinInt,MaxInt])
mult(a1, a2, a3) AWM cca3 ← clip(cca1 ∗ cca2 ; [MaxInt,MaxInt])
div(a1, a2, a3) AWM cca3 ← clip(cca1 //cca2 ; [MinInt,MaxInt])
rem(a1, a2, a3) AWM cca3 ← clip(cca1 mod cca2 ; [MinInt,MaxInt])
mov(a1, a2) AWM cca2 ← cca1
init(a1) AWM ca2 ← a1 − ProgramStart − 2
inc(a1) AWM cca1 ← clip(cca1 + 1; [MinInt,MaxInt])
dec(a1) AWM cca1 ← clip(cca1 − 1; [MinInt,MaxInt])

Note: some operations yield invalid addresses or numbers according to rules of syntactical correctness (cf. Schmidhuber, 1999); if
these conditions are not met the operation does nothing except for the usual increments to the instruction pointer IP .

intake has accelerated since t2 > t1. If this is true, then modifi-
cations made in [t1, t2] will be maintained, otherwise the current
modifications are removed and the old instruction module and
perception module before t1 are restored, recursively, until the
SSC is met. The complete list of modifications that survived the
SSC is maintained in the stack S. The recursive procedure of pop-
ping entries that do not yield reward acceleration is illustrated in
Algorithm 1.

3.5. Working memory

A working memory is used to store and manipulate informa-
tion from various parts of the learning structure as well as the
environment. Variables in the working memory are updated reg-
ularly or at self-chosen times by the instruction module and the
environment. The working memory provides other modules with
historic information, contributing to non-Markovian learning and
decision-making.
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Algorithm 1 Success story algorithm for evaluating self-
modification sequences (SMSs). Note that when sp = 1, the
top entry is compared to the initial entry S[0] = (t = 0, R =
0,X = ∅, first = 0, address = ∅).

sp← length(S)− 1

while True do

if sp = 0 then
break; ▷ no modifications left; SSC satisfied

else
i← S[sp].first; ▷ first index of the top SMS
j← S[i− 1].first; ▷ first index of the second-top SMS
if R(t)−S[i].R

t−S[i].t >
R(t)−S[j].t].R

t−S[j].t then
break; ▷ reward accelerates; SSC satisfied

else
while sp ≥ i do

if S[sp].X is a modification of P then
Paddress1 = S[sp].X ; ▷ restore probability

vector at index address1.
else

restore the parameters of the perception mod-
ule using S[sp].X .

delete S[sp];
sp← sp− 1;

Implementation: addressed integers. The implementation of the
working memory is a number of storage cells, each with a unique
address in [Min,Max] store integer values in [−MaxInt,MaxInt],
initialised randomly and then changed by fixed routines or self-
chosen instructions. The functionality of the working memory
can be categorised into four types, illustrated in Fig. 1. Each of
the cells have particular integer address to access them, and
Appendix B indicates how to obtain the exact addresses used in
the experiments. Input cells are special working memory cells
that are updated every cycle and which store the current obser-
vation as well as other information, i.e., the instruction pointer IP ,
the time t , the reward r and the length of the stack S. Output cells
store the history of recent actions: when PIP has generated an
integer, this number is written to the output cell that is addressed
by IP . Working cells provide more long-term memories, only
being modified when special instructions in AWM manipulate
them. Register cells have the same function but additionally they
are used for a process called double-indexed addressing: because
P generates arguments in the limited range [0, |A|−1], the values
of the register cells in [0, |A| − 1] are used to address the entire
range of working memory cells. Working memory contents are
used extensively in the execution of the various instructions. For
example, the instruction add(a1, a2, a3) first reads the contents
of the register cell at address a1 and then fetches the value at the
address ca1 , as notated by cca1 ; then similarly reads cca2 ; finally,
adds both cca1+cca2 and stores this sum on the address ca3 . Similar
to the above example, many other instructions, including instruc-
tions used for self-modification and perceptual modification, also
use working memory contents to determine how the instructions
are executed.

To illustrate how the processing of the working memory can
be used for processing observations to influence external actions,
an illustrative example is mentioned for the maze example of
Section 2:

1. first, the agent records an observation and a reward in its
input cells, indicating whether the neighbouring positions
are obstacles or free spaces and whether or not it reached
a goal;

2. then, it uses working memory operators to manipulate
the memory, based on various cells including the working
cells;

3. an execution of jumpEq or jumpLower then sets the in-
struction pointer IP based on working memory contents;

4. eventually, an external action is executed based on IP ’’.

3.6. Perception module

The perception module is a modifiable sub-symbolic module
whose function is to advise the instruction module, using special
instructions relevant for active adaptive perception. It supplies
bottom-up perception to the architecture by analysing sensory
inputs and working memory variables in terms of high-level
concepts to help decision-making. For example, successive lay-
ers of a neural network may process elementary visual stimuli
such as edges into shapes and objects, and a configuration of
free and blocked spaces in a maze may be processed in terms
of a narrow corridor or a wide area. By interacting with the
working memory and the instruction generation, it can influence
the decisions made by the instruction module, using percep-
tual advice instructions. The architecture and the parameters of
the perception module are subject to long-lasting modifications
when the instruction module calls special perceptual modifi-
cation instructions. By learning when to use which perceptual
advice and perceptual modification instruction, various strategies
for utilising and training the perception module will emerge
from experience, active adaptive perception. Two implementa-
tions were made to demonstrate that the architecture of the
perception module and the instructions for the perceptual advice
and modifications can vary while still providing active adap-
tive perception. The first implementation would likely be more
suitable for real-time environments where learning should not
consume too much time, whereas the second implementation
is more computationally expensive but makes better use of its
experiences. The relevant instructions are displayed in Table 1, in
the group APM .

Implementation 1: NEAT neural network. The first implementa-
tion considers simple instructions to use and modify a NEAT
feed-forward network. To achieve perceptual advice in this
implementation, a special instruction getOutput() performs
forward pass of the perception module’s feedforward neural net-
work which takes as input the eight input cells of the working
memory and then outputs activations act(a) for each external
action. Based on these output activations an advisory action Aadv
is selected to be executed at the next instruction cycle. A unit
u, an elementary node in the network, activates its incoming
activation node-input(u, t) at time t according to:

u(t) = typeu(node-input(u, t)), (2)

where typeu is the transfer function of u. If unit u is situated at
layer ℓ, the node input is defined by:

node-input(u, t) =
∑

v∈U l<ℓ

wuvv(t) (3)

where U l<ℓ is the set of nodes at a layer lower than ℓ. To
achieve perceptual modification, the learner uses computation-
ally cheap instructions weightChange, addNode and addCon-
nection to modify both topology and weights of a neural
network. Each change to the network is recorded on the stack
S such that it can be evaluated later by the evaluation mod-
ule. This is done with a special representation similar to NEAT,
where a neural network consists of two sets of genes. Connec-
tion genes are tuples of (from, to, weight): from and to represent
the connections input and output unit respectively and weight
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Fig. 2. Illustration of the network construction operators. For simplicity, only
two input nodes are shown and the bias unit is shown without its connections.
Network connections are restricted such that the layers satisfy from < to.
Blue nodes indicate input units, grey–brown nodes indicate output nodes,
and white nodes indicate hidden nodes. Input units use the identity function
(denoted by ide) as a transfer function, while non-input units use the sigmoid
function (denoted by sig). The added connection is emphasised in red bold.
(For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

represents the interconnection weight. Node genes are tuples of
(type, bias, response, layer): type is the transfer function used to
output at the neuron, bias encodes a number to be added to
the activation independent of all other incoming activations ,
response is a number that the neuron multiplies with all its
incoming weights and layer is used to adequately structure the
connections. Together, the node genes and the connection genes
represent the neural network which is being learned, allowing
the use of constructive operators addNode and addConnection,
shown in Fig. 2a and 2b, respectively. Other parameters not
changed by the above instructions were fixed, with type being
sigmoid for non-inputs and identity for inputs, and bias = 0
and response = 4.92 for all neurons. The weight-range and the
response are selected based on the peas-neat implementation,
cf. https://github.com/noio/peas/blob/master/peas/methods/neat.
py, as they are commonly used settings.

Implementation 2: DRQN with modifiable experience set. The sec-
ond implementation embeds the learning of the Deep Recurrent
Q-Networks (Hausknecht & Stone, 2015), a recurrent extension to
Deep Q-Networks (Mnih et al., 2015), and a modifiable experience
set as its perception module. The experience set E is a database of
interesting experiences which serve as goals after which network
use is halted. This enables selective network usage, learning when
to rely on the Q-network, as well as goal-based exploration,
learning when to use which exploration rate.

While observing and acting, DQN fills a buffer B with experi-
ences (o, A, r, o′), which are tuples of observation, chosen action,
observed reward, and the following observation. DQN minimises
a loss function

L(θ ) = E(o,A,r,o′)∼U(B)[(r + γ max
A′

Q (o′, A′; θ̂ )−Q (o, A; θ ))2] , (4)

where experiences are sampled uniformly from the buffer B for
the next mini-batch update, a process called experience replay; Q

is the value-function for Q-learning (Watkins & Dayan, 1992); γ
is the discount used to compute the discounted future cumulative
reward

∑
∞

i=0 γ ir i; θ contains the current parameters whereas θ̂
contains the parameters of the target network which are updated
only infrequently, increasing stability. In DRQN, the loss function
is the same but the observations are passed through a recurrent
network including a Long Short-Term Memory layer (Hochreiter
& Schmidhuber, 1997), such that the history of observations
affects the internal state of the learner. The experience replay
thus is modified in DRQN to randomly sample a history of unroll
consecutive experiences rather than a single experience.

Perceptual advice in the second implementation consists of a
single instruction doQuntil. When the instruction module per-
forms the doQuntil instruction the DRQN network takes the
observation o as its only input, with no other working memory
variables, and outputs the Q-values of the different actions from
which it determines the advised action. An ϵ-greedy strategy
is used such that with probability 1 − ϵ the chosen action is
Aadv = argmaxA′∈AEQ (o, A′) whereas with probability ϵ a random
action is chosen. This is done repeatedly until a self-chosen ex-
perience tuple ea1 = (o, A, r, o′) is achieved or until a number
of self-chosen time-steps are reached without matching ea1 . The
arguments of the doQuntil instruction determine three impor-
tant parameters: a1 determines which experience is taken from
the experience set E to end the loop, a2 determines the number
of maximal steps of the loop, and a3 determines the exploration
ϵ. Perceptual modification consists of two instructions. The
first, trainReplay, is the typical experience replay procedure
as is performed in DRQN, but with the added flexibility that the
instruction module determines the batch size. This instruction
is not followed by pushing the network modification onto the
stack S since this instruction already combines updating with
an immediate evaluation. The second, setExperience, adapts
the set of experiences E by replacing the experience at index
a1, Ea1 , by the current experience. This instruction then pushes
this modification to the stack to allow the evaluation module
to perform long-term evaluation of the new E. Note that E is
initialised with experiences randomly drawn from the experience
buffer just before the replay-start at t = 50000.

3.7. How the exemplar learns

Instructions incP and decP modify the probability of a par-
ticular entry Pij, and normalisation is then performed ensuring∑

k Pik = 1. This results in a change of the probability distribution
of instructions for a given program cell i. In turn, this changes the
system’s response to the internal state IP = i, a variable changed
by the various jump instructions and incremented by executing
instructions. The probability changes affect not only external but
also the internal behaviours due to the choice of instructions
and arguments for working memory manipulation, evaluation,
perceptual advice, perceptual modification, and self-modification.
For self-modification instructions, this leads to a self-referential
recursion, meta-meta-...-learning: changes to P affect how P will
be changed, and so on. In particular, self-modifications may affect
the probability of incP, decP or its arguments for a given internal
state IP and given working memory state, implying a context-
sensitive learning of (a) self-modification probability; (b) which
program cell should be modified; (c) which entry in the pro-
gram cell’s distribution should be incremented or decremented;
(d) how large the increment or decrement should be. Because
the Success Story Algorithm repeatedly evaluates previous self-
modifications and maintains only those self-modifications that
result in lifetime reward acceleration, early self-modifications re-
sult in better generators of self-modifications later on; Assuming
the instructions cover all aspects of learning and behaviour, this
means P improves itself.
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4. Experimental set-up

All experiments took place in the exemplary non-episodic
maze setting explained in Section 2. However, it is assumed that
each action consumes one time-step and computational processes
do not consume time, diverging in this respect from Schmidhu-
ber (1999). This facilitates interpretation and also comparison to
traditional reinforcement learning which have the same assump-
tion. The section further justifies the selection of experimental
conditions and learners used in the experiments.

4.1. Experimental conditions

There are four experimental conditions based on the dimen-
sions easy vs. difficult and fixed vs. random. Easy problems have
shorter optima, 4–8 steps vs. 11–30 for difficult problems, of-
ten with lower ambiguity and fewer free spaces to get lost in.
The difficulty is used to test the hypothesis that self-modifying
policies are beneficial when environments have higher ceilings of
performance. Higher ceilings are defined as a higher potential to
increase the reward intake speed compared to a random learner
which for every 104 time steps had 30–120 rewards for easy
and 1–10 rewards for difficult problems. The second dimension,
fixed vs. random, describes what happens after goal achieve-
ment, concretely whether or not the next starting position is
fixed or chosen randomly. Ten easy and ten difficult mazes were
generated according to Algorithm 2, found in the Appendix A,
on a grid of dimensions 13 × 13. The resulting mazes had a
variety of features: wide open spaces, narrow straight corri-
dors and intersecting corridors which results in central decision
points.

For easy problems, each learner was given a lifetime of 5
million time steps because initial experiments suggested learn-
ers had converged by then. For difficult problems, optimal path
lengths increased approximately four times, and the actual path
lengths, and thus the time to learn from rewards, relates expo-
nentially to the optimal path length due to the increase in possi-
ble misleading explorations. 80 million time steps were judged
to be a reasonable number without excessive computational
expense. Experiments on the difficult problems lasted 20–60 h
for most SMP runs, 20–25 days for SMP-DRQN runs and 40–50
days for DRQN runs, on the IRIDIS4 supercomputer (University of
Southampton, 2017).

4.2. Learners

To investigate the impact of various learning properties
in the mentioned environments, the following learners were
implemented in python code:

• SMP: the above-mentioned implementation of the generic
architecture without perception module is used as the base-
line SMP. This is the same as Incremental Self-improvement
(IS) in Schmidhuber (1999), except the instructions jump,
effects of which can be achieved using other instructions,
and getP, an instruction which is rarely included in other
experiments.
• SMP-Fixed: A perception module is added to the above SMP,

to generate an exemplar of active adaptive perception. The
perception module is a single feed-forward neural network
which outputs external actions whenever the instruction
getOutput is called, taking as inputs the input cells in the
working memory. Thus, the instruction module may gen-
erate external actions directly, for example by generating
north, or indirectly by calling getOutput. The network is
a fully connected network with two hidden layers of 10
neurons each.

• SMP-Constructive: This condition further adds network
construction instructions addNode and addConnection to
the SMP-Fixed architecture. Similarly to NEAT, the networks
start as a fully connected network without any hidden units.
• DRQN: this condition replicates the Deep Recurrent

Q-Network with random bootstrapped updates (Hausknecht
& Stone, 2015). It was included as an off-policy deep
reinforcement learner, using experience replay to more
efficiently learn by sampling experiences from an
experience buffer and using a target network for improved
stability. Two changes were made due to the domain:
first, because the observation is small and has no spatial
correlations, the convolutional layer was replaced with a
dense layer, resulting in a topology of two hidden layers,
one dense with 50 RELU-neurons and one LSTM with
tanh-neurons; second, due to the non-episodic setting,
the experience buffer is organised as a single episode
rather than a multitude of episodes. To implement DRQN,
existing code from VizDoom-Keras-RL, cf. https://github.
com/flyyufelix/VizDoom-Keras-RL/blob/master/drqn.py,
was modified to the non-episodic setting and to allow the
utilisation of the target-network in experience replay.
• SMP-DRQN: to provide a second example of the perception

module, this learner utilises the same network as the DRQN
condition, but enables the SMP to utilise it selectively
as a special loop instruction doQuntil, with self-chosen
exploration rate and self-chosen termination conditions.
The DRQN network is modified using trainReplay which
performs experience replay with a self-chosen batch size
while setExperience is used to construct a set of useful
experiences for finishing doQuntil.

Parameter settings are mentioned in Appendix B.

5. Experimental demonstration of active adaptive perception

Behavioural assessment. Choices of the agents were visually in-
spected on heat-maps with arrows indicating the most frequently
chosen action at each position. In the easy mazes, methods using
an LSTM network, namely SMP-DRQN and DRQN are able to
memorise the path to the goal, while the other SMPs only learn
a basic sense of direction. In the difficult mazes, more differences
between the learners emerge:

• SMP has a probabilistic preference for single default
direction which is best leading to the goal;
• SMP-Fixed and SMP-Constructive briefly check detracting

corridors before avoiding them, and frequently visit the
best corridors. These methods are not completely able to
disambiguate their current state, but rather their networks
are similar to a Markovian policy in which faulty choices
usually do not lead away from goal, and their P-matrix is
similar to the SMP, choosing a single direction;
• Early in the lifetime, DRQN memorises the path towards

the goal nearly optimally in 4 out of 10 unique mazes, but
gets stuck frequently in the other mazes. The detracting
corridors and rooms in those mazes were either greater in
number or further from goal. Towards the end, two of those
unique mazes keep causing problems with getting stuck.
These findings were consistent in the sense that the stuck
frequency depended reliably on the maze’s topology rather
than on network initialisation;
• SMP-DRQN similarly has nearly optimal behaviour on those

4 mazes, and only rarely gets stuck in other mazes. The
network’s output is similar to DRQN but on detracting cor-
ridors, where DRQN fails, the method ignores the network
and relies on the P-matrix for a global sense of direction,
similar to the SMP;
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This illustrates the difficulty of traditional SMPs with perception,
the difficulty of deep reinforcement learners in atypical environ-
ments, and that active adaptive perception may remedy these
problems.

A representative example of the final policy is included for
one of the most challenging mazes in Fig. 3, illustrating that
methods of active adaptive perception avoid misleading corridors
and rooms more often than other methods. Fig. 4 illustrates
behaviours observed for SMP-DRQN during the early to middle
stages of the lifetime, showing how SMP-DRQN used its per-
ception module less frequently when it was not reliable. Video
material2 shows the behaviours of DRQN and SMP-DRQN on the
mentioned example mazes.

Correctness and perception-correctness. The correctness, the pro-
portion of moves that lead the agent closer to the goal, is dis-
played in Table 2. Methods utilising an LSTM network, DRQN and
SMP-DRQN, were characterised by relatively high correctness,
and their performance was highly correlated with correctness,
indicating their performance is dependent on memorising a cor-
rect path. For difficult environments SMP-DRQN did not have
a positive correlation, suggesting additional strategies beyond
path memorisation. This is in line with the observation that the
SMP-DRQN had a performance advantage compared to DRQN
in the difficult-random condition, where path memorisation is
more challenging. As exemplified in Fig. 4b, it can be observed
that the perception-correctness, the correctness of the external
actions taken due to the perception module’s advise, ignoring
external actions directly output by the instruction module, varied
strongly over the map. The DRQN system, illustrated in Fig. 4f,
had a low correctness in detracting corridors and rooms, and
a high correctness close to the goal, and the same finding was
observed for the DRQN network when used as the perception
module of SMP-DRQN. The explanation for this finding is that
initially in the challenging mazes, the system gets stuck for pro-
longed time in detracting corridors and rooms, without obtaining
any rewards. This leads to erroneous and low Q-values for the
visited locations on the map. When later the DRQN system more
regularly obtains reward, the detracting corridors and rooms
maintain such Q-values for a longer time since they usually do
not lead to near-term rewards: far from goal, those corridors
and rooms have the lowest Q-values; while close to goal they
had lower Q-values than locations which were distant but on
path to the goal. Later in the lifetime, SMP-DRQN’s perception-
correctness was higher than DRQN in environments such as those
in Fig. 3, where the DRQN got stuck indefinitely. This is because
DRQN remains inside a detracting room or corridor and does
not reach the reward location, filling the experience buffer with
useless experiences. By contrast, SMP-DRQN was able to escape
detracting rooms and corridors throughout the lifetime due to
the mechanisms of selective network usage and goal-based ex-
ploration, and this helped to provide the perception module with
useful experiences to learn more efficiently. Therefore, because
the experiences are added to the experience buffer at each time
step, regardless of whether or not the perception module was
used, both mechanisms contribute to an intelligent exploration
mechanism. An additional observation in the heatmaps is that
when the learner was on the dead-end spaces the DRQN module
had low correctness, despite there being only a single action
that does not lead to bumping into an obstacle; this occurred
either when it was used alone or embedded into SMP-DRQN. This
behaviour is due to the combination of two reasons: compared to
some other works, for example the T-mazes reported in Bakker
(2002), there is no negative reward incurred for bumping into

2 https://www.youtube.com/watch?v=xRh-ZXkUJ2Y.

obstacles or any other incorrect actions, and there is no positive
reward for correct actions; in addition, the incorrect actions do
not lead away from the goal at these locations and therefore these
actions only delay the reward achievement by one time step,
resulting in smaller differences between the different actions’
Q-values; this makes dead-end locations more difficult to learn
than other locations for which incorrect actions lead to significant
delays in reward achievement. The SMP-DRQN was better able to
escape such dead-ends by using a high exploration rate and low
network-usage at those locations.

Comparatively, SMP-Fixed and SMP-Constructive have a low
correctness and, in difficult environments, the random policy,
despite its poor performance, has higher correctness than these
two methods. Their perception-correctness was high in strategic
locations such as paths leading up to the area with the reward
or away from a detracting corridor or room, and incorrect de-
cisions usually are not detrimental to performance as can be
observed numerically by the absence of positive correlation be-
tween reward speed and correctness. This is related to the visual
observations that the decisions made usually did not lead further
into wrong corridors, which helps to explain the paradox that
although the correctness of SMP-Fixed and SMP-Constructive is
low their performance is good. For all conditions, the standard
deviation of the correctness over mazes was considerably higher
for SMP-Fixed and SMP-Constructive than for other methods. This
higher variability may indicate that the learning strategy is more
dependent on the features of the environment.

Network nodes and connections. In the network construction of
SMP-Constructive a pattern emerged in which the runs with
good performance form a greater number of connections, 2000–
4000, and maximise the number of nodes nnodes in the network,
specifically 176 for easy problems and 276 for difficult prob-
lems (cf. Appendix B for parameter settings). The runs with bad
performance would end up with a small number of neurons,
20–90, with the difficult-random condition yielding the lowest
cumulative reward and the lowest number of nodes, 20–40. This
is supported by the correlation between the number of nodes and
the reward speed which was medium to high, 0.60–0.93, over
the various conditions. However, there were several exceptionally
small networks which resulted in excellent performance. For
example, in the difficult-fixed condition, a network of 34 neurons
resulted in a lifetime average reward of 0.089 on maze 1 which
was much larger than for SMP-Fixed, 0.037, and SMP, 0.013. Since
SMP-Fixed was able to perform well with just 20 hidden units,
this suggests that constructive modifications were only accepted
by the evaluation module to the extent other modification types
introduced during that modification sequence were useful.

Network usage. The neural network usage, which is the pro-
portion of times the perception module was used to out-
put an external action, developed similarly in SMP-Fixed and
SMP-Constructive. It started out small at 20%, but gradually the
system started to rely on the network for its instructions, reach-
ing 30% for easy problems and 40% for difficult problems. The
discrepancy between easy, 30%, and difficult, 40%, is possibly due
to the longer learning time. The heat-maps indicated that the
network usage was uniformly spread over the different locations
on the map, meaning the learner relied consistently on the per-
ception module. The network usage of SMP-DRQN is higher as
advice on several steps are given after a single call of doQuntil.
In easy environments, SMP-DRQN starts with 5%–20% network
usage and develops up to 50%–70%. In difficult environments,
eventually the learner relied on the perception module 90% of the
time. Unlike the other methods, the network usage of SMP-DRQN
was not evenly spread, especially during the early to middle
stages of the lifetime: on areas close to the goal, the network
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Fig. 3. Heat-map of the final policy on a maze from the difficult-random condition; SMP-Fixed is here taken to represent the first implementation of active adaptive
perception since its behaviour is comparable to SMP-Constructive. Though not visible to the agent, the goal location is illustrated by ‘‘G’’ while white boxes indicate
starting positions. The legend displays the meaning of the colours of the heat-map in terms of visitations per time unit times the number of unique visited locations.
→: arrows indicate the direction of the most frequently chosen action (north, east, south, or west).

Table 2
The correctness metric for the different learners, indicating the proportion of choices made that bring the agent closer to the goal. Ci and Cf are the values of the
correctness metric averaged over the various runs during the first and last time slice. The time slice is 1 million time steps for easy and 16 million time steps for
difficult. r is the correlation between the lifetime average correctness measure and the lifetime average reward speed.
Method Environment

Easy-fixed Easy-random Difficult-fixed Difficult-random

Ci Cf r Ci Cf r Ci Cf r Ci Cf r

DRQN .48 .79 .75 .47 .77 .87 .41 .56 .40 .40 .55 .40
Random .32 .32 −.69 .33 .33 −.74 .36 .36 .16 .36 .36 .14
SMP .44 .43 .89 .42 .42 .89 .34 .33 −.67 .33 .32 −.74
SMP-Fixed .41 .38 .54 .41 .42 .62 .32 .32 .26 .30 .30 .18
SMP-Constructive .40 .37 .15 .39 .38 .47 .31 .29 −.58 .32 .32 −.06
SMP-DRQN .61 .72 .93 .58 .71 .95 .38 .55 .06 .37 .62 −.27

usage was 70%–90%, whereas on detracting corridors the network
usage was between 20 and 60%. Combined with the fact that the
network correctness was much lower in those areas, as illustrated
in Fig. 4a, this means that SMP-DRQN applied DRQN when it was
reliable, such as the paths close to the goal location, but applied
a more basic sense of direction where DRQN was not reliable,
such as the detracting corridors. This explains why SMP-DRQN
performs better in environments where DRQN gets stuck. During
the end of the lifetime, the network’s correctness in corridors

was improved and this resulted in more uniformly high network
usage.

Valid modifications. Those modifications maintained at the end of
the lifetime, the valid modifications, yield insights into how the
agent is learning as they record those changes that accelerated
reward intake. These include P-modifications which alter the in-
struction modules probability matrix and network-modifications
which change the network of the perception module. The valid
modifications are illustrated in Figs. 6 and 7. In easy problems,
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Fig. 4. Illustration of the mechanisms behind SMP-DRQN’s performance. The first principle is the selective network usage: panel (a) shows that the proportion of
perception module usage is particularly low in detracting corridors, whilst panel (e) shows that this is due to how the system matches termination experiences
on paths to the goal, halting the network usage before reaching detracting corridors; panels (b) and (f) illustrate the perception-correctness of SMP-DRQN and the
correctness of DRQN is high on paths close to the goal and highly incorrect far from goal and in detracting corridors; together these illustrate that SMP-DRQN uses
its perception module selectively on locations with high perception-correctness, ignoring it when it is not reliable. The second principle is the goal-based exploration:
panels (c) and (g) illustrate the exploration rate of SMP-DRQN is often higher than DRQN in difficult environments, and especially so on detracting corridors. Together
these two principles allow SMP-DRQN to better escape detracting corridors than DRQN, as illustrated in panels (d) and (h). Note: the colour of the plots is variable
across figures, and their units are mentioned in parentheses; Pr is the proportion, Eps is the ϵ parameter for the ϵ-greedy action selection, and Vis is the visitations
per time unit times the number of unique visited locations.

Fig. 5. Illustration of the perception module’s goal-matching in the difficult-random condition. Panel (a) illustrates increasing goal-matching: the left y-axis illustrates
the number of network usage terminations due to match, the number of times the system matches the self-chosen termination experience and due to time, when
the looptime of the doQuntil instruction exceeds the self-chosen until parameter; the right y-axis illustrates the valid number of modifications to the experience
set E which contains the termination experiences. Panel (b) illustrates how the duration for match and time increase over time, indicating the learner selects a
higher until parameter for the doQuntil instruction, and how in-between, the time in between doQuntil loops, decreases over time as the perception-correctness
becomes high across the map.

the number of valid modifications is spread evenly across time
with the different learners making a similar number of valid
modifications. The valid modifications are illustrated for the
difficult-random environments in Fig. 7. For all SMPs, a brief ini-
tial learning effect is observed, similar to the initial performance

gains observed in all learners, since improving on an initial faulty
policy is easy. After the initial learning has passed, learning to
learn is taking place: the learners increasingly learn to generate
difficult-to-find modifications that will further accelerate future
reward intake. At the end of the lifetime there is a recency
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Fig. 6. Development of the valid modifications in the easy-fixed condition. Valid modifications are those changes that were successful according to the Success Story
Criterion, indicating lifetime reward acceleration. Each point in the plot thus represents the number of modifications, introduced in a particular time interval [t, t+δ]

with t ∈ [0, T ), which remained in use at the end of the lifetime T , after repeated SSA evaluations.

effect, a sudden peak in valid modifications as a direct result
of halting the lifetime at that point: since recent modifications
have only been evaluated a few times, the SSA has not yet
removed changes which do not accelerate reward in the long run.
Compared to the difficult-random condition, the results for the
difficult-fixed condition are more monotonously increasing over
time but similarly had a brief initial and final peak. A difference
between the learners emerges in the second phase where SMP-
Fixed and SMP-Constructive have a much greater number of valid
P-modifications, with typical peaks of 25–50 and 50–75, respec-
tively, compared to the traditional SMP with peaks of 5–15. For
SMP-DRQN there is a continuously increasing curve, eventually
reaching a peak of nearly 700 modifications. This higher amount
of P-modifications of the active adaptive perception implemen-
tations indicates that most of the useful policy changes involve
finding out when and how to modify and utilise the neural net-
work perception module. SMP-Fixed and SMP-Constructive also
display a similar pattern on the network-modifications, indicating
they have learned how to perform useful modifications to the
network weights and topology. Other SMP-DRQN development
statistics are mentioned in the following subsection.

SMP-DRQN development statistics. The SMP-DRQN system per-
forms two types of perceptual modifications: trainReplay and
setExperience. trainReplay is similar to DRQN’s usual ex-
perience replay and therefore is not proposed to be the main
mechanism behind the performance advantage of SMP-DRQN;
this is supported by the lower training frequency exhibited by
SMP-DRQN. setExperience makes changes to the experience
set which are later evaluated by SSA. The setExperience and
doQuntil instruction appeared to be key to SMP-DRQN’s per-
formance advantage by enabling selective network usage and
goal-based exploration. The selective network usage, using DRQN
only where it has reliably memorised the path to the termination
experience selected by the instruction module, allows the per-
ception module to be used only when the DRQN is advantageous.
In areas where DRQN performs poorly the instruction module
can directly output external actions. This allows, for example,
escaping rooms where the DRQN is stuck. A second factor is
goal-based exploration. This allows the instruction module to de-
termine which exploration rates should be chosen together with
which termination experiences, meaning that high exploration
rates can be set in areas where the learner does not recognise

where it is or what is the best action. In the maze tasks, these
two factors allow the system to escape detracting corridors and
rooms, finding more rewards. Due to reaching the reward location
more often initially, these learners can also accumulate more
useful experiences compared to learners which get stuck.

The selective network usage is enabled by the instruction
module selecting the doQuntil instruction and its two key pa-
rameters: the term experience, an experience taken from the
experience set E, and the until parameter, a time limit to net-
work usage. The doQuntil instruction then repeatedly requests
external actions from the perception module until the current
experience matches term or until the loop time exceeds until
time steps. The results of this matching process are illustrated
in Fig. 4e, where it can be seen that the successfully reached
term experiences include strategic locations on the path from
start to the goal, avoiding usage in detracting corridors. When
the term experiences are not matched, the network is not used
for prolonged amounts of time in detracting corridors and rooms
due to the time limit of until time steps. Fig. 5a further illustrates
that the system was able to better match the self-chosen ter-
mination experiences over time. This is not only due to the
setExperience instruction modifying the experience set E and
the increasing network-correctness due to the experience replay,
but also, as illustrated in Fig. 5b, due to the P-modifications,
which increase the until parameter to allow itself more time to
reach the more difficult goals. Fig. 5b also illustrates why towards
the end of the lifetime, the network usage is uniformly high:
as the network’s correctness increases, the system learns it can
boost the reward speed by increasing the until parameter and the
frequency of the doQuntil instruction.

The goal-based exploration is enabled by the instruction mod-
ule’s choice of the exploration rate, as the third parameter of
the doQuntil instruction, together with the self-chosen term
experience which serves as a goal. Illustrative of this princi-
ple, the exploration rate was dependent on the difficulty of the
environment and the chosen termination experiences: in easy
environments rates were lower, with some experiences having an
exploration rate between 0.02 and 0.05, most around 0.05–0.11,
and the highest average exploration rate is ϵ = 0.12, whereas
in difficult environments, most experiences were associated with
an exploration rate between 0.09 and 0.12, some were between
0.02 and 0.08, and others between 0.13 and 0.16. This suggests
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Fig. 7. Development of the valid modifications in the difficult-random condition. Valid modifications are those changes that were successful according to the Success
Story Criterion, indicating lifetime reward acceleration. Each point in the plot thus represents the number of modifications, introduced in a particular time interval
[t, t + δ] with t ∈ [0, T ), which remained in use at the end of the lifetime T , after repeated SSA evaluations.

that the system learns which termination experiences are more
difficult to achieve and therefore require more exploration. This
finding is supported by exploration maps such as those in Fig. 4c,
where it can be observed that detracting corridors have relatively
high exploration rates compared to DRQN.

Average performance. The development plots in Figs. 8 and 9
display the development of reward speed, the average reward per
time step, divided by the optimal reward per time step. On the
easy mazes, SMP-DRQN and DRQN obtains the highest reward
speeds. DRQN obtains a final reward speed close to 0.70 while
SMP-DRQN is just above 0.60. Other SMP conditions are just
above 0.30. In the difficult problems SMP-DRQN and DRQN are
by far the top performers on the average reward speed. DRQN
obtains a final reward speed around 0.4 while SMP-DRQN obtains
reward speeds of 0.4 and 0.5 in the fixed and random condition,
respectively. Compared to the development in easy problems,
more differences emerged between the different SMPs. SMP-
Fixed and SMP-Constructive are continuously improving across
the lifetime while SMP only initially found good policy improve-
ments. In the fixed condition, this leads to a final reward speed of
0.1 for SMP-Fixed and 0.08 for SMP-Constr, while SMP a speed of
0.025. The random starting position gives a similar performance
for SMP, 0.02 across the lifetime, .08 for SMP-Fixed and 0.07 for
SMP-Constructive. In difficult problems, it can also be observed
that while SMP-Constructive initially learns more quickly, its
learning rate slows down compared to SMP-Fixed after around
5 ∗ 106 steps.

As illustrated in Table 3, DRQN obtained the best lifetime aver-
age in the easy environments, 0.615 (fixed) and 0.572 (random),
but SMP-DRQN obtained the best lifetime average in difficult
environments, 0.310 (fixed) and 0.361 (random). Table 3 fur-
ther shows pair-wise F-tests conducted on the lifetime average
reward speed to analyse whether or not between-condition vari-
ability was significantly higher than within-condition variability.
For the easy problems, no significant effects are found except for
the SMP-DRQN and DRQN learners which significantly outper-
form all other learners. In the difficult problems, the performance
of both SMP-Fixed and SMP-Constructive leads to significant ef-
fects when compared to SMP. This indicates that rather than maze
variability, the principle of active adaptive perception explains
why SMP-Fixed and SMP-Constructive outperform SMP. In turn,
the difference between SMP-DRQN and DRQN was not significant

while pair-wise differences of these learners to SMP-Fixed and
SMP-Constructive were significant.

Other performance metrics. The average reward speed, even when
normalised, does not necessarily imply superiority, because an
excellent relative performance in the most difficult environment
will not contribute as much as an excellent absolute performance
in a less challenging environment. To resolve this issue, additional
metrics illustrate this comparison in Table 4. In the easy mazes,
it is clear that DRQN performs the best on all metrics, followed
closely by the SMP-DRQN; a more extended lifetime could poten-
tially overcome this given the trend in both development plots. In
the difficult mazes, SMP-DRQN has the best average rank, scoring
among the top performers consistently, and is followed by DRQN
and SMP-Fixed which had the same average rank. The perfor-
mance ratio, the ratio of the method’s average performance to the
average performance of the best ranked method, illustrates that
SMP-DRQN has the best relative performance, followed by DRQN.
Finally, the stuck frequency measures how prone the learner
is to get stuck without obtaining rewards; on this metric, the
DRQN learner clearly performs worst. To illustrate the statistical
significance of the stuck frequencies, pair-wise F-tests comparing
the SMPs to the DRQN learner yielded p = 0.092 for SMP,
p = 0.036 for SMP-Fixed, p = 0.065 for SMP-Constructive and
p = 0.094 for SMP-DRQN in the difficult-fixed condition, and
p = 0.063 for SMP, p = 0.035 for SMP-Fixed, and p = 0.034 for
SMP-Constructive and p = 0.033 for SMP-DRQN in the difficult-
random condition. This means that based on a threshold for
significance α = .05, all learners with active adaptive perception
had significantly lower stuck frequency in the difficult-random
condition, supporting observations that they avoided detracting
corridors and rooms more easily.

6. Discussion

Similar to earlier SMPs, the proposed architecture is coor-
dinated by a self-modifying policy which interacts with itself
and other functional components by means of instructions. This
is a general approach due to the way in which any sort of
instruction may be utilised for learning how to maximise the
cumulative reward. The results of the experiments have provided
evidence that the addition of active adaptive perception as an ad-
ditional mechanism in SMPs makes the architecture more suitable
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Fig. 8. Development plots of the reward speed for the easy-fixed and the easy-random condition, over the lifetime of 5 million time steps. For each plot reward
speed, the average reward per time step, is averaged over 20 runs, 2 repetitions for each of the 10 mazes, and normalised in [0, 1] such that the optimal speed
gives performance of 1.0.

Fig. 9. Development plots of the reward speed for the difficult-fixed and difficult-random condition, over the lifetime of 80 million time steps. For each plot reward
speed, the average reward per time step, is averaged over 20 runs, 2 repetitions for each of the 10 mazes, and normalised in [0, 1] such that the optimal speed
gives performance of 1.0.

for recognising complex situations and constructing perceptual
learning strategies. A first implementation with a feedforward
network using computationally cheap instructions and trained
without an explicit loss function was implemented to illustrate
emergence of simple strategies: rather than learning correct re-
sponses across the map, the learners discovered how to adjust the
neural network to maintain only those modifications that lead to
lifelong reward acceleration, by focusing on those areas where
learning yields the most benefits. In the maze experiments this
manifested itself by the selective optimisation of the network for
particular parts of the map. As the neural network was adapted
in this way, it was used more often as time went by. The fact
that even simple instructions allowed consistent learning in dif-
ficult environments is a strong statement, since more efficient
instructions are likely to yield greater benefits. A second imple-
mentation utilised a recurrent Q-network selectively where it is
reliable and the SMP’s probabilistic sense of direction otherwise,
allowing direct performance benefits but also indirect benefits

by providing useful experiences to improve the Q-network’s ac-
curacy. The learner was also able to select the exploration rate
for epsilon-greedy action selection dependent on its self-chosen
goals and found that difficult goals require higher exploration
rates. Earlier studies with SSA (Schmidhuber, 1999; Schmidhu-
ber, Zhao and Wiering , 1997) have demonstrated the ability
to optimise the real-time performance. Because the SSA is part
of the active adaptive perception implementation, it is expected
that the current implementation is suitable for real-time environ-
ments. Additionally the proposed architecture is a novel method
for composing training and construction algorithms for neural
networks, it can evolve a network in non-episodic environments,
unlike Topology and Weight Evolving Artificial Neural Networks
such as NEAT (Stanley & Miikkulainen, 2002), and compared to
Constructive Neural networks (Fahlman & Lebiere, 1990; Fanguy
& Kubat, 2002; Frean, 1990; Lahnajarvi, Lehtokangas, & Saari-
nen, 2002; Parekh, Yang, & Honavar, 2000; Ring, 1997; Sharma
& Chandra, 2010; Vamplew & Ollington, 2005) the architecture
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Table 3
Life-time averaged normalised reward speed. > and < are used to indicate whether the method’s performance is higher or lower than its comparison, and p denotes
the significance value of the pair-wise F-test.

Method Performance Comparison

DRQN SMP-Constr. SMP-Fixed SMP Random

Easy-fixed SMP-DRQN 0.592± 0.132 < p = 0.644 > p < 0.001 > p < 0.001 > p < 0.001 > p < 0.001
DRQN 0.615± 0.069 / > p < 0.001 > p < 0.001 > p < 0.001 > p < 0.001
SMP-Constr. 0.312± 0.120 / / < p = 0.807 < p = 0.982 > p < 0.001
SMP-Fixed 0.325± 0.111 / / / > p = 0.813 > p < 0.001
SMP 0.313± 0.106 / / / / > p < 0.001
Random 0.046± 0.019 / / / / /

Easy-random SMP-DRQN 0.542± 0.164 < p = 0.649 > p = 0.003 > p = 0.001 > p < 0.001 > p < 0.001
DRQN 0.572± 0.113 / > p < 0.001 > p < 0.001 > p < 0.001 > p < 0.001
SMP-Constr. 0.314± 0.142 / / > p = 0.923 > p = 0.611 > p < 0.001
SMP-Fixed 0.308± 0.124 / / / > p = 0.657 > p < 0.001
SMP 0.284± 0.118 / / / / > p < 0.001
Random 0.042± 0.019 / / / / /

Difficult-fixed SMP-DRQN 0.310± 0.109 > p = 0.909 > p < 0.001 > p < 0.001 > p < 0.001 > p < 0.001
DRQN 0.304± 0.135 / > p < 0.001 > p < 0.001 > p < 0.001 > p < 0.001
SMP-Constr. 0.056± 0.027 / / < p = 0.425 > p = 0.001 > p < 0.001
SMP-Fixed 0.069± 0.041 / / / > p = 0.002 > p < 0.001
SMP 0.023± 0.013 / / / / > p < 0.001
Random 0.010± 0.004 / / / / /

Difficult-random SMP-DRQN 0.361± 0.075 > p = 0.294 > p < 0.001 > p < 0.001 > p < 0.001 > p < 0.001
DRQN 0.295± 0.176 / > p < 0.001 > p < 0.001 > p < 0.001 > p < 0.001
SMP-Constr. 0.050+ 0.030 / / > p = 0.765 > p = 0.011 > p < 0.001
SMP-Fixed 0.054± 0.029 / / / > p = 0.003 > p < 0.001
SMP 0.021± 0.013 / / / / > p = 0.008
Random 0.010± 0.004 / / / / /

Table 4
Additional performance metrics, illustrated with the average and standard-
deviation across runs, for the different conditions (a) easy, and (b) difficult. rank
indicates the rank, ranging between 1.0, always best, and 6.0, always worst.
ratio indicates the ratio of performance to the performance of the best of both,
yielding 1 if it is the best, otherwise a number in [0, 1). stuck is the proportion
of consequent samples in which the cumulative reward did not increase, with
a sampling rate of once every 10000 time steps.

Fixed Random

rank ratio stuck rank ratio stuck

(a) Easy

DRQN 1.2± 0.4 .97± .08 .00± .00 1.4± 0.5 .97± .06 .00± .00
Random 6.0± 0.0 .07± .03 .00± .00 6.0± 0.0 .07± .03 .00± .00
SMP 3.9± 0.8 .49± .16 .00± .00 4.3± 0.8 .46± .16 .00± .00
SMP-Fixed 3.9+ 0.8 .50± .16 .00± .00 3.7± 0.8 .51± .18 .00± .00
SMP-Constructive 4.2± 0.8 .48± .16 .00± .00 3.8± 0.8 .52± .21 .00± .00
SMP-DRQN 1.7+ 0.4 .91± .12 .00± .00 1.7± 0.7 .90± .14 .00± .00

(b) Difficult

DRQN 1.9± 1.4 .63± .43 .20± .25 2.3± 1.9 .74± .39 .24± .29
Random 5.8± 0.5 .04± .07 .01± .01 5.7± 0.4 .05± .03 .01± .01
SMP 4.8± 0.6 .08± .09 .04± .12 4.9± 0.5 .06± .03 .05± .10
SMP-Fixed 3.2± 0.5 .22± .16 .02± .03 3.2± 0.5 .14± .08 .03± .06
SMP-Constructive 3.6± 0.9 .20± .20 .04± .07 3.3± 0.7 .13± .08 .04± .06
SMP-DRQN 1.7± 0.9 .83± .23 .05± .05 1.5± 0.5 .93± .09 .03± .02

does not need heuristic criteria for updating and is suitable for
reinforcement learning. Lastly, the architecture for active adap-
tive perception has demonstrated features typically associated
with continual learning, particularly (a) the ability to learn in
a single lifetime with no known terminal states, and (b) the
ability to learn how to learn incrementally. Although the current
experiments have not provided evidence for the ability to learn
multiple tasks, the extension to continual and lifelong learning
is feasible since an earlier SMP study, utilising the Incremental
Self-improvement which serves as the basis for the current imple-
mentation, demonstrated the ability to solve different problems
of increasing complexity using inductive transfer (Schmidhuber,
Zhao and Wiering , 1997).

Comparatively, adding adaptive perception as an additional
mechanism in SMPs yielded a continuous learning curve and sig-
nificant performance gains. For a traditional SMP, it was difficult

to find valid self-modifications relating to instructions that did
not help the learner perceive the environment, and although it
had an overall sense of direction, its working memory operations
did not enable it to develop a search strategy. Compared to active
perception instructions used in earlier SMPs (Schmidhuber, Zhao
and Schraudolph , 1997), the perception module similarly influ-
ences the instruction generation but allows long-term adaptation
and does not rely on knowledge of the environment.

The deep reinforcement learners included in the study use
an LSTM network to learn an action value-function (Sutton
& Barto, 2018), an estimate of the discounted cumulative re-
ward for a given history and a given action. These learners
were able to memorise the sequence from start to goal when
path lengths were short, but did not perform so well when
paths were longer and when there were more detracting cor-
ridors and rooms. Providing the action-value as the target for
backpropagation-through-time is problematic in complex contin-
uing environments. This is because it makes the limited trace
length of back-propagation and the discounted cumulative re-
ward imply events in the distant future do not affect action
selection. Similarly, although LSTMs do not tend to suffer from
the vanishing gradient compared to traditional recurrent neu-
ral networks (Bengio, Simard, & Frasconi, 1994; Hochreiter &
Schmidhuber, 1997), comparable issues may occur due to the
exploding gradient (Sutskever, Vinyals, & Le, 2014). The proposed
implementations of active adaptive perception avoid these prob-
lems by either not requiring a target, or by selectively applying
the action-value network only when it is correct. Even though
the DRQN system is normally trained on episodic environments,
still this system was successful in the non-episodic environments
with sparse feedback. This is attributed to two factors: first, the
stability of the Q-function is increased by only updating the target
network periodically to the parameters of the model-network
which is updated during training; second, the problem of learning
even when there is a low diversity of experiences, such as when
stuck in a detracting corridor, is addressed by sampling from the
experience buffer which stores experiences over a long period of
time. Despite this, in the most challenging mazes DRQN gets stuck
in detracting corridors and rooms for extended periods of time.
SMP-DRQN did not suffer from this problem which is attributed
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to (a) the ability to ignore the network when it is not reliable;
(b) SSA evaluating the agent in the long-term; and (c) goal-based
exploration allowing to set the exploration rate depending on
a particular target experience chosen by the learner. Although
SMP-DRQN overcame some of the issues, several strategies used
in deep reinforcement learning are useful for the non-episodic
scenario with limited knowledge and sparse feedback: prioritised
experience replay (Schaul, Quan, Antonoglou, & Silver, 2016) may
focus training on the most problematic experiences; exploration
may be stimulated by intrinsic motivation (Singh et al., 2004)
or exploration bonuses (Bellemare et al., 2016); average reward
reinforcement learning (Mahadevan, 1996; Yang, Gao, An, Wang,
& Chen, 2016) may be used to avoid the problems with dis-
counting the future experiences; for decorrelating experiences,
asynchronous methods (Mnih et al., 2016) may be used as an
alternative to experience replay which is suitable for both off-
and on-policy methods and which may make use of parallelism
for improved real-time performance.

There are some limitations for the current exemplar method
including its reduced relative performance on simple environ-
ments, likely because the universality of the method implies
that it takes longer to find narrow behaviours from the larger
behavioural repertoire. Due to modifying the perception module
one parameter at a time, the NEAT implementation is not suitable
for large-scale experiments. Larger scale experimentation, whilst
maintaining the incremental network parameter updates with
long-term evaluations, would be possible by utilising instructions
which modify a functional, abstract representation of a network
rather than a network itself, similar to HyperNEAT. Moreover,
its random increments to the network parameters could be im-
proved: a straightforward extension to the NEAT implementation
could be to, in addition to learning which parameters are in
need of update, also learn how to increment or decrement the
parameters by including the increment as an additional argu-
ment to the instruction. The feedforward structure did not solve
partial observability, despite including historical variables, and
instead additional working cells as inputs or a recurrent structure
should be considered. In addition, despite often introducing more
complexity, the performance of the constructive network was
comparable to a network with fixed topology. One reason may
simply be due to the nature of constructive neural networks
which tend to learn fast initially but resulted in a similar even
sometimes lower final performance due to overfitting on the
initially small network (Franco & Conde, 2008; Junior, Nicoletti,
& Lu, 2016). In addition, the observed relation between reward
intake and addition of nodes and connections suggests that SSA
is not noticing small negative effects of constructive changes that
go together with large positive effects of weight and instruc-
tion probability changes, due to the evaluation of modification
sequences rather than individual modifications. The SMP-DRQN
implementation addresses some of the above issues, particularly
the efficient use of experience, state disambiguation, and the
selective application of perception. A limitation of the evaluation
module implementation, SSA, is that it uses a stack which can in
principle grow indefinitely. While compression of stack entries
can reduce memory in practice, this limitation highlights the
need for practical long-term evaluation of self-modifying rein-
forcement learning policies. Also the current system is limited in
predictive capabilities: the trial-and-error self-modification yields
many unsuccessful self-modifications and there is no extensive
world model.

The key conjecture of this paper is that active adaptive per-
ception is preserved even when the implementation is changed
significantly; different implementations may be used for each
of its four components, as long as the functional requirements
are satisfied. For example, the evaluation module need not be
the Success Story Algorithm. The perception module may consist
of not one but several sub-symbolic components such as neural
networks, support vector machines or clustering methods, and
perceptual advice does not necessarily output external actions
but may be any operation which temporarily influences instruc-
tion generation. For example, it may make temporary changes
in the probabilities of neighbouring cells or change the con-
tents of internal variables to generate instructions based on a
classification of the agent’s state. The instruction module may
generate its programmatic instructions using a representation
different than a probability matrix. The working memory could be
implemented differently to use real numbers instead. Similarly,
the interactions between the components may be directed by a
different set of instructions. Additional components suitable for
cognitive architectures may be added for further gains in complex
tasks.

7. Conclusions

To address the need for universal reinforcement learners, this
paper investigated how a self-modifying reinforcement learning
policy may benefit from active adaptive perception, the ability
to modify and utilise perceptual modules in completely self-
chosen ways. This ability enables a learner to invent strategies for
discriminating various situations to help achieve goals in complex
environments. It does this by learning how to modify its own
learning operations based on incoming rewards. As an illustra-
tion, two exemplar systems with active adaptive perception were
compared to other methods on non-episodic partially observ-
able mazes with sparse reward structures. The first exemplar
learned to modify and use a feedforward network with a simple
instruction set based on long-term reward intake of the self-
modifying policy, instead of traditionally training the network
on an explicit loss function. This leads to simple strategies to
avoid detracting corridors and rooms, comparing favourably over
a traditional self-modifying policy. A second exemplar system
was more computationally expensive, using a recurrent network
and experience replay. This system used instructions to deter-
mine when and how to apply and update a DRQN network. It
learned to selectively apply the DRQN where it was reliable and
to select the exploration factor depending on its current goal. This
was beneficial compared to DRQN on the most difficult prob-
lems where DRQN got stuck in detracting corridors and rooms.
The architecture also constitutes a novel framework for training
and constructing neural networks by learning to use elementary
user-defined instructions.
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Appendix A. Maze generation

Mazes were created according to algorithm below. In the fixed
condition, the starting position S and G are selected manually
such that the distance d(S,G) is in the desired distance range,
4–8 steps for easy vs. 11–30 for difficult mazes. In the random
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condition, the goal location G is the same and a starting point
S is sampled from the set of open spaces with a distance in
[α ∗ d(S,G), β ∗ d(S,G)]. Due to the restricted set of locations
in easy problems, setting α = .5 and β = 1.2 for easy and
α = .90, β = 1.10 for difficult resulted in a sufficient number
of starting locations.

Algorithm 2 Procedure for generating mazes. Note: / is the
integer division.
1: sizeX ← 13; sizeY = 13;
2: compl← .10; density← .10;
3: length← floor(complexity ∗ (5 ∗ (sizeX + sizeY )));
4: islands← floor(density ∗ ((sizeX/2) ∗ (sizeY/2)));
5: Fill borders with obstacles;
6: for i← 0 to islands− 1 do
7: (y, x)← get-random-position();
8: set obstacle on (y,x);
9: for j← 0 to length− 1 do
10: neighbours← ∅;
11: if x > 1 then
12: neighbours.append((y, x− 2);
13: if x < sizeX − 2 then
14: neighbours.append((y, x+ 2));
15: if y > 1 then
16: neighbours.append((y− 2, x));
17: if y < sizeY − 2 then
18: neighbours.append((y+ 2, x));
19: if length(neighbours) > 0 then
20: ỹ, x̃← random-neighbour();
21: if (ỹ, x̃) is free then
22: set obstacle on (ỹ, x̃);
23: ȳ = ỹ+ (y− ỹ)/2;
24: x̄ = x̃+ (x− x̃)/2);
25: set obstacle on (ȳ, x̄);
26: (y, x)← (ỹ, x̃)
27: Pick start S and goal G manually.
28: if condition=Random then
29: Initialise α < 1, β > 1
30: reachable← reachable-from(G);
31: dref ← dist(S,G);
32: starts← ∅
33: for p ∈ reachable do
34: if dist(p,G) ∈ [αdref , βdref ] then
35: starts.append(p);

Appendix B. Parameter settings

For the SMPs using Incremental Self-improvement, the num-
ber of program cells m was set to 50 for easy and 100 for difficult
problems. A minimal probability minP = .0005 ensured all in-
structions were regularly computed. The total number of working
memory cells Nwm, including input, working, register and output
cells, was 130 for easy and 220 for difficult problems. A small
change was made to IS to encourage learning over the lifetime,
namely, duplicates of each of the self-modification instructions
incP and decP were added to the instruction set A. For the SMP
condition, both were duplicated 10 times, yielding |A| = 39 and
22 modification instructions; For the SMP-Fixed condition, both
were duplicated 9 times resulting in |A| = 39 instructions, 21 of
which were modification instructions; For the SMP-Constructive,
both were duplicated 8 times resulting in |A| = 39 instructions,
21 of which were modification instructions; For the SMP-DRQN,
both were duplicated 9 times resulting in |A| = 40, 22 of
which were modification instructions. The effect of duplication is
discussed in Appendix C. In SMP-Constructive, addition of nodes
was limited to a maximum of max = 2MaxInt neurons, leading
to 176 for easy and 276 for difficult problems. Using the above
information, the following parameters were set to determine

Table 5
DRQN parameters.
Parameter Setting

Unroll 25 (easy), 40 (difficult)
Batch size 32
Replay memory size 400000 experiences
Initial exploration rate 1.0
Final exploration rate 0.1
Exploration frame 1000000 time steps
Optimisation algorithm AdaDelta (Zeiler, 2012)
Learning rate 0.1
Momentum 0.95
Clip gradient Absolute value exceeding 10
Replay start 50000 time steps
Update frequency 4 time steps
Target update frequency 10000 time steps

the addresses of the working memory: Max = A + m; Min =
Max − Nwm; RegisterStart = 0; InputEnd = Min + 8. The input
cells had addresses in Min, . . . , InputEnd, the working cells had
addresses in InputEnd+ 1, . . . , RegisterStart − 1, the register cells
had addresses in RegisterStart, . . . , |A| − 1, and the output cells
had addresses in |A,Max|. The range of representable numbers
[−MaxInt,MaxInt] was set using MaxInt = max(|Min|,Max)
where Min is the lowest address and Max is the highest address
in the working memory.

For DRQN, all parameter settings, mentioned in Table 5, were
the same as in Hausknecht and Stone (2015), except the unroll
parameter, the trace-length for prediction and backpropagation
through time, was set to 25 and 40 for easy and difficult mazes,
respectively. The only exception is that the exploration frame
of 106 time steps used in DRQN, in which the exploration rate
is decreased linearly from ϵ = 1 to ϵ = .10, is not re-
quired for SMP-DRQN, since (a) the SMP does not necessarily
rely on the Q-network; and (b) the exploration rate is con-
trolled by the instruction module via arguments to doQuntil.
The batch size and exploration rate were adapted dynamically by
SMP-DRQN, starting initially from a uniform distribution with the
same average as the original DRQN setting, namely, batchsize =
32 and ϵ = .10.

Appendix C. Effect of duplication

Duplication of incP and decP is suggested to improve the per-
formance of Incremental Self-improvement. Comparative results
with and without duplication are shown in Table 6. They illustrate
that, even without duplication, the active adaptive perception

Table 6
Effect of duplication of the incP and decP instructions on the lifetime average of
the normalised reward speed. Bold font is used to illustrate the best-performing
learner without duplication.
Condition Learner Dupl No Dupl

Easy-fixed SMP .313 .362a

SMP-Fixed .325 .323
SMP-Constructive .312 .306

Easy-random SMP .284 .257
SMP-Fixed .308 .258
SMP-Constructive .314a .272

Difficult-fixed SMP .023 .023
SMP-Fixed .069a .041
SMP-Constructive .056 .048

Difficult-random SMP .021 .018
SMP-Fixed .054a .039
SMP-Constructive .050 .051

aIndicates the best-performing learner in general, duplication or no duplication.
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methods always outperform the traditional SMP in the difficult
environments. However, duplication provides an additional pos-
itive effect on performance. This positive effect is attributed to
a greater flexibility in change sizes. For example, if a particular
entry has .001 as a probability, performing decP on this en-
try shrinks the entry to between .00001 and .00099, whereas
performing decP on another entry with a probability .10 will de-
crease its probability to between .001 and .099, which is a much
larger absolute decrease. Moreover, there are favourable side-
effects: (a) there is a higher initial probability of self-modification
instructions since they have multiple entries in the matrix;
(b) the combined minimal probability of self-modification is
higher since each entry in the probability matrix must have
a probability greater than minP; (c) an enhanced syntacti-
cal correctness, resulting in more correct executions of the
self-modification instructions.
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Appendix B

Experimental parameters

This appendix includes parameter settings and other implementation details required to

reproduce the findings in the experiments.

B.1 Learning with limited knowledge and sparse rewards

This section describes the parameter settings used for the experiments in Chapter 4.

B.1.1 Learning parameters

For DRQN, all parameter settings, mentioned in Table B.1, were the same as in [69], ex-

cept the unroll parameter, the trace-length for prediction and backpropagation through

time, was set to 25 and 40 for easy and difficult mazes, respectively. The only exception

is that the exploration frame of 106 time steps used in DRQN, in which the exploration

rate is decreased linearly from ε = 1 to ε = .10, is not required for SMP-DRQN, since

(a) the SMP does not necessarily rely on the Q-network; and (b) the exploration rate

is controlled by the instruction module via arguments to doQuntil. The batch size

and exploration rate were adapted dynamically by SMP-DRQN, starting initially from

a uniform distribution with the same average as the original DRQN setting, namely,

batchsize = 32 and ε = .10.

For the SMPs using Incremental Self-improvement, the number of program cells m was

set to 50 for easy and 100 for difficult problems. A minimal probability minP = .0005

ensured all instructions were regularly computed. The total number of working memory

cells Nwm, including input, working, register and output cells, was 130 for easy and 220

for difficult problems. A small change was made to IS to encourage learning over the

lifetime, namely, duplicates of each of the self-modification instructions incP and decP

were added to the instruction set A. For the SMP condition, both were duplicated 10
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Table B.1: DRQN parameters.

Parameter Setting

unroll 25 (easy), 40 (difficult)
batch size 32
replay memory size 400000 experiences
initial exploration rate 1.0
final exploration rate 0.1
exploration frame 1000000 time steps
optimisation algorithm AdaDelta [238]
learning rate 0.1
momentum 0.95
clip gradient absolute value exceeding 10
replay start 50000 time steps
update frequency once every 4 time steps
target update frequency once every 10000 updates

times, yielding |A| = 39 and 22 modification instructions; For the SMP-Fixed condition,

both were duplicated 9 times resulting in |A| = 39 instructions, 21 of which were modifi-

cation instructions; For the SMP-Constructive, both were duplicated 8 times resulting in

|A| = 39 instructions, 21 of which were modification instructions; For the SMP-DRQN,

both were duplicated 9 times resulting in |A| = 40, 22 of which were modification in-

structions. The effect of duplication is dicussed in Appendix C. In SMP-Constructive,

addition of nodes was limited to a maximum of max = 2MaxInt neurons, leading to

176 for easy and 276 for difficult problems. Using the above information, the following

parameters were set to determine the addresses of the working memory: Max = A+m;

Min = Max−Nwm; RegisterStart = 0; InputEnd = Min+Nobs + 4, where Nobs = 4

cells record the observation. The input cells had addresses in Min, . . . , InputEnd,

the working cells had addesses in InputEnd + 1, . . . , RegisterStart − 1, the register

cells had addresses in RegisterStart, . . . , |A| − 1, and the output cells had addresses

in |A,Max|. The range of representable numbers [−MaxInt,MaxInt] was set using

MaxInt = max(|Min|,Max) where Min is the lowest address and Max is the highest

address in the working memory.

B.1.2 Maze generation procedure

The maze generation procedure is shown in Algorithm B.1.
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Algorithm B.1 Procedure for generating mazes. Note: / is the integer division.

1: sizeX ← 13; sizeY = 13;
2: compl← .10; density ← .10;
3: length← floor(complexity ∗ (5 ∗ (sizeX + sizeY )));
4: islands← floor(density ∗ ((sizeX/2) ∗ (sizeY/2)));
5: Fill borders with obstacles;
6: for i← 0 to islands− 1 do
7: (y, x)← get-random-position();
8: set obstacle on (y,x);
9: for j ← 0 to length− 1 do

10: neighbours← ∅;
11: if x > 1 then
12: neighbours.append((y, x− 2);
13: end if
14: if x < sizeX − 2 then
15: neighbours.append((y, x+ 2));
16: end if
17: if y > 1 then
18: neighbours.append((y − 2, x));
19: end if
20: if y < sizeY − 2 then
21: neighbours.append((y + 2, x));
22: end if
23: if length(neighbours) > 0 then
24: ỹ, x̃← random-neighbour();
25: if (ỹ, x̃) is free then
26: set obstacle on (ỹ, x̃);
27: ȳ = ỹ + (y − ỹ)/2;
28: x̄ = x̃+ (x− x̃)/2);
29: set obstacle on (ȳ, x̄);
30: (y, x)← (ỹ, x̃)
31: end if
32: end if
33: end for
34: end for
35: Pick start S and goal G manually.
36: if condition=Random then
37: Initialise α < 1, β > 1
38: reachable← reachable-from(G);
39: dref ← dist(S,G);
40: starts← ∅
41: for p ∈ reachable do
42: if dist(p,G) ∈ [αdref , βdref ] then
43: starts.append(p);
44: end if
45: end for
46: end if
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B.1.3 Resulting mazes

Figure B.1: Complete set of easy mazes, which have an optimal solution of 4-9 steps.
The yellow food source indicates the goal location while the agent is located on the
starting position used for the easy-fixed condition.
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Figure B.2: Complete set of difficult mazes, which have an optimal solution of 11-30
steps. The yellow food source indicates the goal location while the agent is located on
the starting position used for the difficult-fixed condition.
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B.2 Lifelong learning with multiple policies

This section describes the parameter settings used for the experiments in Chapter 5.

B.2.1 Starting coordinates

Taking x increasing to the east and y increasing to the south, static main objects

were initialised randomly from a set of coordinates: {(3, 3), (5, 3)} in the cheese maze;

{(6, 1), (9, 1), (9, 6)} in Sutton’s maze; {(1, 1), (1, 7), (7, 1), (7, 7)} in the pacman topol-

ogy. This implies a general search strategy should be used, rather than the memorisation

of a single path. Similar to the orginal tasks, the learner’s initial position is (1, 2) for the

cheese-maze, (1, 3) in Sutton’s maze, and (4, 7) for the pacman task. The initial location

of dynamic objects, similar to pacman ghosts, is based on a single home position, which

is the central bottom location (3, 3) for the cheese maze, the top-right location (9, 1) for

Sutton’s maze, and the above-center location (4, 3) for the pacman topology.

B.2.2 Base learners

Code from https://github.com/flyyufelix/VizDoom-Keras-RL/blob/master/ and

https://github.com/magnusja/ppo/ are taken as a template, and then modified to use

with multiple policies, and to match the original papers [69, 169]: for DRQN, a slowly

changing target value-function; for PPO, the set-up similar to the Atari experiments in

[169], where actions are discrete, non-output layers are shared and the objective include

additional terms for the value function and the entropy.

Parameter settings, mentioned in Table B.2 are chosen based on the original papers and

any other modifications are chosen based on a limited tuning procedure, with the only

exceptions being that (a) PPO used only a single actor to compare the various learners

on the same number of experiences, to limit computational expense, and in line with

real-life experiments where only one copy of the environment exists; (b) no annealing

of parameters was done to keep the various conditions comparable. For both learners,

the network topology is modified to suit the domain: an LSTM layer [77] was used for

learning in partially observable environments, and convolutional layers are replaced by a

single densely connected layer due to the small observation without spatial correlations.

B.3 Towards active adaptive perception in lifelong learn-

ing environments

This section describes the parameter settings used for the experiments in Chapter 6.

https://github.com/flyyufelix/VizDoom-Keras-RL/blob/master/
https://github.com/magnusja/ppo/
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Table B.2: Parameter settings for the base learners. “All” denotes settings common
to all base-learners.

Base Learner Parameter Setting

All unroll 15
hidden layers 80 (Dense RELU) - 80 (LSTM tanh)
discount 0.99

DRQN batch size 32
update frequency once every 4 time steps
replay memory size 400000 experiences
optimisation algorithm AdaDelta [238]
momentum 0.95
learning rate 0.1
exploration rate 0.2
clip gradient absolute value exceeding 10
replay start 50000 time steps
target update frequency once every 10000 time steps (DRQN)

PPO actors 1
optimisation algorithm Adam [94]
learning rate 0.00025
batch size 34
update frequency once every 100 time steps
epochs 3
clip gradient norm exceeding 1.0
GAE parameter 0.95
clipped objective coefficient 0.10
value function coefficient 1
entropy coefficient 0.01

B.3.1 Learning parameters

The parameters for DRQN are similar to the above, with the following exceptions: the

unroll parameter is lower to reduce computation time and because environments are not

so large; the number of neurons in each hidden layer was set to 80 instead of 50, because

larger networks can potentially represent more tasks. AdaDelta is comparatively robust

to various hyperparameter settings so the learning rate is taken from earlier studies

[24, 69]; the final exploration rate was set higher, to ε = .20, than the ε = .10 in [24, 69],

and compared to these works the final exploration rate was used throughout the lifetime

without any annealing schedule. This choice (a) allows a greater flexibility throughout

the lifetime; (b) avoids overexploiting faulty policies when a new task arrives. Table B.4

is not the basis of the parameter choice, but illustrates how, on the first three scenarios,

ε = .10 and ε = .20 give the strongest results in the first two million time steps of the

lifetime. To exploit the temporal structure, DRQN’s buffer is organised in episodes. The

same topology is used as in the previous study.

For the SSA agents, the initial uniform distribution of the hyperparameters is such that

the baseline DRQN’s setting was the mean: [0, 0.40] for the exploration rate; [10−6, 0.20]

for the learning rate. The SSA agents are then allowed to modify the distribution freely,

although the bounds remain the same across the lifetime. Working memory variables

such as Max, MaxInt, InputEnd, etc. are obtained in the same manner as described

in Section B.1.1, although some of the settings are different: the working memory cells

Nwm = 180 and Nobs = 11. The instruction set A consisted of 28 instructions, and



162 Appendix B Experimental parameters

Table B.3: DRQN parameters.

Parameter Setting

unroll 15
batch size 32
replay memory size 400000 experiences
exploration rate 0.2
learning rate 0.1
optimisation algorithm AdaDelta [238]
momentum 0.95
clip gradient absolute value exceeding 10
replay start 50000 time steps
update frequency once every 4 time steps
target update frequency once every 10000 updates

Table B.4: Effect of exploration rate on performance.

Parameter setting Cumulative reward

ε = .05 34689± 133302
ε = .10 99351± 178464
ε = .20 91926± 166078

the self-modification instructions were duplicated 5 times each, resulting in 12 self-

modification instructions and 2 instructions related to network changes.



Appendix C

Additional results (Chap. 4)

C.1 Effect of duplication

Duplication of incP and decP is suggested to improve the performance of Incremental

Self-improvement. Comparative results with and without duplication are shown in Ta-

ble C.1. They illustrate that, even without duplication, the active adaptive perception

methods always outperforms the traditional SMP in the difficult environments. How-

ever, duplication provides an additional positive effect on performance. This positive

effect is attributed to a greater flexibility in change sizes. For example, if a particular

entry has .001 as a probability, performing decP on this entry shrinks the entry to be-

tween .00001 and .00099, whereas performing decP on another entry with a probability

.10 will decrease its probability to between .001 and .099, which is a much larger absolute

decrease. Moreover, there are favourable side-effects: (a) there is a higher initial proba-

bility of self-modification instructions since they have multiple entries in the matrix; (b)

the combined minimal probability of self-modification is higher since each entry in the

probability matrix must have a probability greater than minP ; (c) an enhanced syntacti-

cal correctness, resulting in more correct executions of the self-modification instructions.
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Table C.1: Effect of duplication of the incP and decP instructions on the lifetime av-
erage of the normalised reward speed. Bold font is used to illustrate the best-performing
learner without duplication. A * sign indicates the best-perfoming learner in general,
duplication or no duplication.

Condition Learner Dupl No Dupl

Easy-Fixed SMP .313 .362*
SMP-Fixed .325 .323
SMP-Constructive .312 .306

Easy-Random SMP .284 .257
SMP-Fixed .308 .258
SMP-Constructive .314* .272

Difficult-Fixed SMP .023 .023
SMP-Fixed .069* .041
SMP-Constructive .056 .048

Difficult-Random SMP .021 .018
SMP-Fixed .054* .039
SMP-Constructive .050 .051



Appendix D

Additional results (Chap. 5)

D.1 Ordinal analysis

The following two pages include the ordinal analyses on the impact of adaptivity and

the number of policies.
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Table D.1: Ordinal analysis on the effect of adaptivity and the number of policies on performance (median ± interquartile range) of DRQN.
Performance is based on the lifetime reward velocity R(T )/T where T = 9 ∗ 107 is the total lifetime of the learner. significance denotes the p-value
obtained from the Wilcoxon ranksum-test. effect size denotes Cliff’s δ, an ordinal effect size metric for dominance of one distribution over the
other. The label in parenthesis denotes the magnitude of the effect; its estimate is based on Vargha et al.’s study [221].

Method Performance Comparison

AdaptiveDRQN4P AdaptiveDRQN9P UnadaptiveDRQN1P UnadaptiveDRQN2P UnadaptiveDRQN4P UnadaptiveDRQN9P UnadaptiveDRQN18P

significance effect size significance effect size significance effect size significance effect size significance effect size significance effect size significance effect size

AdaptiveDRQN2P 0.099± 0.016 p < 0.001∗∗ −0.94 (large) p < 0.001∗∗ −1.00 (large) p < 0.001∗∗ 1.00 (large) p < 0.001∗∗ 0.95 (large) p = 0.527 −0.12 (small) p < 0.001∗∗ −1.00 (large) p < 0.001∗∗ −1.00 (large)
AdaptiveDRQN4P 0.156± 0.037 / / p < 0.001∗∗ −0.78 (large) p < 0.001∗∗ 1.00 (large) p < 0.001∗∗ 1.00 (large) p < 0.001∗∗ 0.76 (large) p < 0.001∗∗ −0.90 (large) p < 0.001∗∗ −1.00 (large)
AdaptiveDRQN9P 0.206± 0.038 / / / / p < 0.001∗∗ 1.00 (large) p < 0.001∗∗ 1.00 (large) p < 0.001∗∗ 0.99 (large) p = 0.066 −0.36 (medium) p < 0.001∗∗ −1.00 (large)
UnadaptiveDRQN1P 0.015± 0.007 / / / / / / p < 0.001∗∗ −0.97 (large) p < 0.001∗∗ −1.00 (large) p < 0.001∗∗ −1.00 (large) p < 0.001∗∗ −1.00 (large)
UnadaptiveDRQN2P 0.047± 0.017 / / / / / / / / p < 0.001∗∗ −0.91 (large) p < 0.001∗∗ −1.00 (large) p < 0.001∗∗ −1.00 (large)
UnadaptiveDRQN4P 0.102± 0.046 / / / / / / / / / / p < 0.001∗∗ −1.00 (large) p < 0.001∗∗ −1.00 (large)
UnadaptiveDRQN9P 0.223± 0.042 / / / / / / / / / / / / p < 0.001∗∗ −0.99 (large)
UnadaptiveDRQN18P 0.310± 0.023 / / / / / / / / / / / / / /
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Table D.2: Ordinal analysis on the effect of adaptivity and the number of policies on performance (median ± interquartile range) of PPO.
Performance is based on the lifetime reward velocity R(T )/T where T = 9 ∗ 107 is the total lifetime of the learner. significance denotes the p-value
obtained from the Wilcoxon ranksum-test. effect size denotes Cliff’s δ, an ordinal effect size metric for dominance of one distribution over the
other. The label in parenthesis denotes the magnitude of the effect; its estimate is based on Vargha et al.’s study [221].

Method Performance Comparison

AdaptivePPO4P AdaptivePPO9P UnadaptivePPO1P UnadaptivePPO2P UnadaptivePPO4P UnadaptivePPO9P UnadaptivePPO18P

significance effect size significance effect size significance effect size significance effect size significance effect size significance effect size significance effect size

AdaptivePPO2P 0.060± 0.013 p = 0.591 −0.10 (negligible) p = 0.146 −0.28 (medium) p = 0.229 0.23 (small) p = 0.704 0.07 (negligible) p = 0.002∗ −0.59 (large) p < 0.001∗∗ −0.74 (large) p < 0.001∗∗ −0.86 (large)
AdaptivePPO4P 0.065± 0.010 / / p = 0.376 −0.17 (small) p = 0.054 0.38 (medium) p = 0.359 0.18 (small) p = 0.008∗ −0.52 (large) p < 0.001∗∗ −0.67 (large) p < 0.001∗∗ −0.84 (large)
AdaptivePPO9P 0.067± 0.031 / / / / p = 0.016∗ 0.47 (large) p = 0.129 0.30 (medium) p = 0.082 −0.34 (medium) p = 0.046∗ −0.39 (medium) p = 0.011∗ −0.49 (large)
UnadaptivePPO1P 0.057± 0.010 / / / / / / p = 0.311 −0.20 (small) p < 0.001∗∗ −0.74 (large) p < 0.001∗∗ −0.85 (large) p < 0.001∗∗ −0.93 (large)
UnadaptivePPO2P 0.059± 0.013 / / / / / / / / p = 0.002∗ −0.59 (large) p < 0.001∗∗ −0.69 (large) p < 0.001∗∗ −0.80 (large)
UnadaptivePPO4P 0.081± 0.028 / / / / / / / / / / p = 0.411 −0.16 (small) p = 0.217 −0.24 (small)
UnadaptivePPO9P 0.084± 0.027 / / / / / / / / / / / / p = 0.776 −0.06 (negligible)
UnadaptivePPO18P 0.086± 0.022 / / / / / / / / / / / / / /





Appendix E

Additional results (Chap. 6)

E.1 Lifelong SSC proof

Theorem E.1. Algorithm 6.2 maximises the global velocity, such that the Lifelong Suc-

cess Story Criterion in Equation 6.1 is satisfied.

Proof via induction: It will be shown that (a) initially after the first evaluation

Firsts.top() = arg maxe∈Firsts⊂S Ṽ (e); and then (b) if the statement is true for evalua-

tion i, it is also true for evaluation i+1. For notation, the abbreviation top = Firsts.top()

and second = Firsts.secondtop() will be used for the top and second to top entry in

Firsts.

(a) At the first evaluation, the only entries in Firsts are the initial stack entry e0, which

has task time and reward equal to zero for all tasks, and top, and second = e0. With only

the current task F seen so far, VF = Ṽ . Therefore, if Ṽ (second) ≥ Ṽ (top), the algorithm

will set maxfirst to the second entry, and then pops back such that e0 is now the only

entry and top = e0; it then follows top = arg maxe∈Firsts⊂S Ṽ (e). If Ṽ (second) < Ṽ (top)

then the algorithm will return immediately, resulting in top = arg maxe∈Firsts⊂S Ṽ (e).

(b) Suppose the previous evaluation point satisfied top = arg maxe∈Firsts⊂S Ṽ (e) =∑
j C

N
j=1(e); after the new self-modification sequence this entry can be fetched as second.

The new self-modification sequence may either improve on the global maximum or not,

and there are four special cases that deserve special attention:

(i) If the new self-modification sequence top, satisfies VF(top) > VF(second), then since

only the current task F has been affected in this evaluation interval and previously

Ṽ (second) was maximal, this means Ṽ (top) is now maximal.

(ii) Suppose that the new self-modification sequence did not improve on the previous.

(ii).1: entries with ∆Ṽ (e) < 0 ∧ −∆Ṽ (second) < ε. The maximum cannot have

changed for sufficiently small ε > 0, because previously second was the maximum.
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(ii).2: entries with ∆Ṽ (e) < 0 ∧ −∆Ṽ (second) ≥ ε. The previous baseline-adjusted

global velocity’s maximum was entry second; since −∆Ṽ (second) ≥ ε, earlier entries

could now have Ṽ (e) ≥ Ṽ (second). Therefore, checking all entries e ∈ Firsts which

satisfy −∆Ṽ (e) ≥ ε is sufficient to find the baseline-adjusted global velocity’s maximum

Since ∆VF(e) = VF(e)−V old
F (e), an upper bound on ∆VF(e) can be obtained as follows:

−∆VF(e) = V old
F (e)− top.tF − e.tF

tF − e.tF
V old
F (e)− tF − top.tF

tF − e.tF
VF(top) (E.1)

=
tF − top.tF
tF − e.tF

(V old
F (e)− VF(top)) (E.2)

≤ tF − top.tF
tF − e.tF

(max(V old
F )− VF(top)) (E.3)

. (E.4)

Note that, as tF − e.tF grows larger going further down the stack, the upper bound

on −∆VF(e) shrinks, with tF − e.tF → ∞ implying −∆VF(e) → 0. This progressive

shrinking implies that searching entries e ∈ Firsts until :

−∆Ṽ (e) = −w
S

∆VF(e) (E.5)

≤ w

S

tF − top.tF
tF − e.tF

(max(V old
F )− VF(top)) < ε , (E.6)

is sufficient to find the maximum, given a user-defined tolerance of error ε > 0. Note that

to assess whether or not case (ii).2 holds, it is required to know whether ∆Ṽ (e) < 0. For

this purpose, it is sufficient to check that VF(e) > VF(top) 1. The procedure assumes an

upper bound for the task velocity can be found which satisfies M̂F ≥ max(V old
F ). The es-

timated maximum task velocity is reset regularly to the actual maximum, M̂ = max(VF),

after the popping procedure in cases (iii) and (iv) 2 From there on, it is (over)estimated

at the start of each cycle: if VF(top) ≤ M̂F, M̂F ← tM
tM+∆tM̂F + tM

∆tVF(top) and

tM ← tM + ∆t; if VF > M̂F, M̂F ← VF(top) and tM ← ∆t.

(ii).3: entries with ∆Ṽ (e) ≥ 0.. If an entry satisfies ∆Ṽ (e) ≥ 0, then this means that

Ṽ old(e) ≤ Ṽ (top). Because Ṽ (e) will be an interpolation between Ṽ old(e) and Ṽ (top),

this means that Ṽ (e) < Ṽ (top) ≤ Ṽ (second).

(iii) When a parameter changed, this affects all entries without any progressively de-

clining effect. Therefore, if during the new evaluation interval there is also a parameter

change, the algorithm simply evaluates all entries and this way the maximum is always

found.

(iv) When the current task was previously unseen by the algorithm, its baseline was

Bold = 0, and its component is Cold = wold

Sold
(V old

F −Bold) = 0, with Bold = 0. Therefore,

any entry in the stack will have V old
F = 0, and the first self-modification sequence will

1Since VF(e) is an interpolation between V old
F (e) and VF(top), this implies VF(e) > VF(top) ⇐⇒

V old
F (e) > VF(e).

2this adds no computation because in these cases Ṽ needs to be computed for all entries, and this
requires VF.
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change Ṽ (e) of earlier entries according to ∆Ṽ (e) = VF(e). As in (iii), this case implies

there is no progressively declining effect as one traverses the stack from top to bottom,

and is resolved by evaluating all entries.
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E.2 Task-specific development plots
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(a) F = (−1, 0, 2)
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(b) F = (−1, 2, 0)
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(c) F = (1, 0, 0)
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(d) F = (1, 2, 2)

Figure E.1: Performance development of the various evaluation modules on individual
tasks. Since the lifelong scenario involves different blocks of tasks, the different blocks
of each unique task are here glued together, illustrating the total time spent in the task
on x-axis, and the reward velocity on that task on y-axis. The task is indicated in the
subcaption as F, with values along three dimensions: the reward incurred by the object
{−1, 1}, the dynamicity of the object {0, 1, 2}, and the topology of the environment
{0, 1, 2}. Performance is the reward velocity normalised such that 0 indicates obtaining
the minimal reward at every time step and 1 indicates obtaining the maximal reward at
every time step; these are under- and over-estimates of the worst and best performance,
respectively.
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[171] Serrà, J., Suŕıs, D., Miron, M., and Karatzoglou, A. (2018). Overcoming catas-

trophic forgetting with hard attention to the task. In Proceedings of the 35th Inter-

national Conference on Machine Learning, volume 80, Stockholm, Sweden. PMLR.

[172] Shani, G., Pineau, J., and Kaplow, R. (2013). A survey of point-based POMDP

solvers. Autonomous Agents and Multi-Agent Systems, 27(1):1–51.

[173] Shapiro, S. C. and Rapaport, W. J. (1992). The SNePS family. Computers &

Mathematics with Applications, 23:243–275.

[174] Shibata, K. (2017). Functions that Emerge through End-to-End Reinforcement

Learning - The Direction for Artificial General Intelligence. arXiv preprint, pages 1–4.

[175] Shibata, K. and Goto, K. (2013). Emergence of flexible prediction-based discrete

decision making and continuous motion generation through actor-Q-learning. 2013

IEEE 3rd Joint International Conference on Development and Learning and Epige-

netic Robotics, ICDL 2013 - Electronic Conference Proceedings, pages 2–7.

[176] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Graepel, T., Lillicrap,

T., Simonyan, K., Hassabis, D., Turing, A., and Shannon, C. (2018). A general

reinforcement learning algorithm that masters chess, shogi, and Go through self-play.

Science, 362(6419):1140–1144.

[177] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M.

(2014). Deterministic Policy Gradient Algorithms. In Proceedings of the 31 st Inter-

national Conference on Machine Learning, Bejing, China.

[178] Silver, D., Sutton, R. S., and Müller, M. (2008). Sample-based learning and search

with permanent and transient memories. In Proceedings of the 25th international

conference on Machine learning, pages 968–975, Helsinki, Finland.

[179] Silver, D. and Veness, J. (2010). Monte-Carlo Planning in Large POMDPs. Ad-

vances in neural information processing systems (NIPS)., pages 1–9.

[180] Silver, D. L., Yang, Q., and Li, L. (2013). Lifelong Machine Learning Systems :

Beyond Learning Algorithms. 2013 AAAI Spring Symposium Series, pages 49–55.

[181] Singh, S. P., Barto, A. G., and Chentanez, N. (2004). Intrinsically motivated

reinforcement learning. Advances in Neural Information Processing Systems 17 (NIPS

2004), pages 1281–1288.

[182] Skinner, B. (1938). The Behavior of Organisms: An Experimental Analysis. B.F.

Skinner Foundation, Cambridge, Massachusetts.

[183] Sontag, E. D. (1998). VC dimension of neural networks. NATO ASI Series F

Computer and Systems Sciences, 168:69–96.



REFERENCES 187

[184] Sparkes, A., Aubrey, W., Byrne, E., Clare, A., Khan, M. N., Liakata, M.,

Markham, M., Rowland, J., Soldatova, L. N., Whelan, K. E., Young, M., and King,

R. D. (2010). Towards Robot Scientists for autonomous scientific discovery. Auto-

mated Experimentation, 2(1):1–11.

[185] Spearman, C. (1904). General Intelligence , Objectively Determined and Mea-

sured. The American Journal of Psychology, 15(2):201–292.

[186] Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2015). Striv-

ing for Simplicity: The All Convolutional Net. In Proceedings of the International

Conference on Learning Representations (ICLR 2015), pages 1–14.

[187] Stanley, K. O., D’Ambrosio, D. B., and Gauci, J. (2009). A hypercube-based

encoding for evolving large-scale neural networks. Artificial Life, 15(2):185–212.

[188] Stanley, K. O. and Miikkulainen, R. (2002). Evolving Neural Networks through

Augmenting Topologies. Evolutionary Computation, 10(2):99–127.

[189] Steels, L. (2008). The Symbol Grounding Problem has been solved. So what’s

next? In de Vega, M., Glenberg, A. M., and Graesser, A. C., editors, Symbols and

Embodiment: Debates on Meaning and Cognition, pages 223–244. Oxford University

Press.

[190] Sternberg, R. (2000). The Theory of Successful Intelligence. Gifted Education

International, 15:4–21.

[191] Steunebrink, B. R. and Schmidhuber, J. (2011). A family of Gödel machine im-
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