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How adult stem cells maintain self-renewing tissues is in vivo com-
monly assessed by analysing clonal data from cell lineage tracing
assays. To identify strategies of stem cell self-renewal requires that
different models of stem cell fate choice predict sufficiently differ-
ent clonal statistics. Here we show that models of cell fate choice
can, in homeostatic tissues, be categorized by exactly two ‘univer-
sality classes’, whereby models of the same class predict, under
asymptotic conditions, the same clonal statistics. Those classes re-
late to generalizations of the canonical asymmetric vs. symmetric
stem cell self-renewal strategies and are distinguished by a conser-
vation law. This poses both challenges and opportunities to identify
stem cell self-renewal strategies: while under asymptotic conditions,
self-renewal models of the same universality class cannot be distin-
guished by clonal data only, models of different classes can be dis-
tinguished by simple means.

Introduction

Adult stem cells are the key players for maintaining and re-
newing biological tissue, due to their ability to persistently
produce tissue cells through cell division and differentiation
(1). For maintaining tissues in a homeostatic state it is cru-
cial that stem cells adopt suitable self-renewal strategies, a
pattern of stem cell fate choices that balances proliferation
and differentiation; otherwise, imbalanced proliferation may
lead to hyperplasia and cancer. Therefore, the understanding
and identification of stem cell self-renewal strategies has been
a major goal of stem cell biology ever since the discovery of
adult stem cells.

Classically, two stem cell self-renewal strategies have been
proposed (2, 3): following the Invariant Asymmetric division
(IA) strategy, stem cells undertake only asymmetric divisions,
whose outcome is one differentiating cell and one stem cell as
daughter cells. The other proposed strategy, Population Asym-
metry (PA) (2–5), features additionally symmetric divisions,
which produce either two stem cells or two differentiating
cells as daughters, yet in balanced proportions. Both patterns
of cell fate choice leave the number of cells on average un-
changed and thus can maintain homeostasis. Assessing stem
cell self-renewal strategies experimentally is difficult in vivo,
since direct observation of cell divisions is rarely possible. Yet,
through genetic cell lineage tracing assays, the statistics of
clones – the progeny of individual cells – can be obtained,
and via mathematical modelling assessing cell fate dynamics
became possible. With such an approach several studies sug-
gested that population asymmetry prevails in many mouse
tissues (e.g. Refs. (6–10)).

However, the interpretation of those studies has been chal-
lenged by a suggested alternative self-renewal strategy, called
Dynamic Heterogeneity (DH), featuring some degree of cell

fate plasticity (11). In this model all stem cell divisions are
asymmetric, yet it is in agreement with the experimental clonal
data that had previously been shown to agree also with the
population asymmetry strategy. Thus, those two strategies
are not distinguishable in view of the clonal data.

This raises the question to what extent different stem cell
self-renewal strategies can be distinguished at all via clonal
data (5, 12). Here, we address this question by studying
models for stem cell fate choice, which define the self-renewal
strategies, in their most generic form. We show that many cell
fate models predict, under asymptotic conditions, the same
clonal statistics and thus cannot be distinguished via clonal
data from cell lineage tracing experiments. In particular, we
find that there exist two particular classes of stem cell self-
renewal strategies: one class of models which all generate
an Exponential distribution of clone sizes (the number of
cells in a clone) after sufficiently large time, and one which
generates a Normal distribution under sufficiently fast stem cell
proliferation. Crucially, these two classes are not differentiated
via the classical definitions of symmetric and asymmetric
stem cell divisions, but by whether or not a subset of cells is
conserved. These classes thus bear resemblance to “universality
classes” known from statistical physics, as suggested in (5).
This leads us to a more generic, and in this context more
useful, definition of the terms “symmetric” and “asymmetric”
divisions. Notably, however, we find that the conditions for
the emergence of universality are not always fulfilled in real
tissues, which provides chances, but also further challenges,
for the identification of stem cell fate choices in homeostatic
tissues.

Strategies for stem cell self-renewal. The two classical stem
cell self-renewal strategies, Invariant Asymmetry (IA) and
Population Asymmetry (PA) (2–5), are commonly described
in terms of two cell types: stem cells (S) which can self-renew
(i.e. divide without reducing their potential to divide in the
future); and differentiating cells (D). Both strategies can be
expressed in terms of a single parametrized stochastic model,
a multi-type branching process (13), defined by the outcomes
of cell divisions (the cell fate choices)

S
λ−→


S + S with probability r
S +D with probability 1− 2r
D +D with probability r

, [1]
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where cells of type S divide with rate λ. Here, a daughter cell
configuration S + S corresponds to symmetric self-renewal di-
vision and D+D to symmetric differentiation, while daughter
cells of different type, S +D, marks an asymmetric division.
In the basic model version, a cell of type D is eventually lost
with rate γ, D γ−→ ∅ (corresponding to death, shedding, or
emigration of D-cells), while other versions may include the
possibility of limited proliferation as committed progenitor
cells. The two self-renewal strategies, IA and PA, are distin-
guished by the value of the symmetric division fraction r: the
PA model corresponds to any 0 < r ≤ 1

2 ; the IA model is
defined by r = 0, i.e. only asymmetric divisions occur.

To maintain homeostasis, the number of cells must stay,
on average, constant. Thus cells following the PA strategy
must regulate the probabilities of symmetric self-renewal and
differentiation to be exactly equal, whereas for the IA model
this is trivially assured. However, only for the IA model is the
number of stem cells strictly conserved, i.e. no gain or loss of
stem cells is possible.

A way to assess self-renewal strategies experimentally is
via genetic cell lineage tracing (14, 15): By marking single
cells with an inheritable genetic marker (through a Cre-Lox
system (16, 17)) each cell’s progeny, called a clone, which
retain that marker, can be traced. The number of cells per
clone, that is the clone size, is measured and the statistical
frequency distribution of clone sizes (clone size distribution)
determined. To test the cell fate choice models on that data,
one evaluates the models with a single cell as initial condition
and samples the outcome in terms of the final cell numbers –
the size of a virtual clone. In the basic version of the model (i.e.
when D γ−→ ∅), the IA and PA models predict, respectively, a
Poisson and an Exponential clone size distribution for large
times (5, 18) (see also the Appendix, section 3.A). Thus, they
are fundamentally different and can easily be distinguished
when compared with clonal data. By a series of lineage tracing
experiments it was confirmed that Exponential clone size
distributions prevail for most mouse tissues, which thus exclude
the IA model and support the PA strategy (6–10).

While this seemed to settle the case in favour of the PA strat-
egy, at least for most adult mouse tissues, this was challenged
by a third type of strategy, the DH model (11). Motivated by
the emerging view of prevailing cell plasticity (19–22), the DH
model considers the possibility of reversible switching between
two cell types:

S
λ−→ S +D, S

ωD−−→
←−
ωS

D, D
γ
−→ ∅ . [2]

where symbols at arrows denote the process rates (frequency
of events). This strategy is also capable of maintaining a
homeostatic population if γ/λ = ωS/ωD. Notably, the DH
model only features asymmetric divisions (in that daughter
cells are of different type), like the IA model, yet the DH
model predicts clonal statistics that are indistinguishable from
the PA model (11). This means that in view of the existing
clonal data for mouse tissues, the DH model, may as well
describe the real cell fate dynamics. More fundamentally, this
implies that the PA and DH model cannot be distinguished
via plain clonal data, which poses fundamental limitations to
the common approach to use lineage tracing for determining
cell fate choices.

This demonstrates that the classical definition of asymmet-
ric and symmetric divisions is not always suitable to distinguish
cell fate strategies in view of clonal data alone. In general, cell
fate dynamics may be much more complex than the simplified
models described above, as there may exists a plethora of cell
(sub-)types in a tissue. However, to what extent would it be
possible to distinguish details of potentially rather complex
cell fate dynamics models through comparison with clonal
data at all? This is only the case if the clonal statistics are
sufficiently different. In the following we study cell fate models
in their most generic form, and analyze what clonal statistics
would be expected.

Results

Model Generalization. Let us consider the dynamics of a
generic system of cells, characterized by a number m of pos-
sible cell states Xi, i = 1, ...,m. We define a cell state here
as a group of cells showing common properties (e.g. any cell
sub-type classification). Most generally, cells in a state Xi may
be able to divide, producing daughter cells of any cell states
Xj and Xk (where i = j = k, i.e. simple cell duplication, is
possible). Furthermore, any cell state Xi may turn into an-
other state Xj or may be lost (through emigration, shedding,
or death). Hence, we can write a generic cell fate model as

cell division: Xi
λir

jk
i−−−−→ Xj +Xk [3]

cell state change: Xi
ωij−−→ Xj [4]

cell loss: Xi
γi−→ ∅ [5]

where i, j, k = 1, ...,m. In this model, λi is the rate of division
of cells in state Xi and the parameter rjki corresponds to the
proportion of division outcomes producing daughter cells of
state Xj and state Xk; ωij is the transition rate from state
Xi to state Xj and γi the loss rate from state Xi.

The dynamics of each cell in Eqs. 3-5 could depend on
the cell environment through spatial, cell-extrinsic regulation
of cell fate. However, the clonal statistics of spatial models
that include cell-extrinsic regulation of cell fate (models of
the voter type (23)) are, in the long term, the same as for the
corresponding models which do not (branching processes (13)),
except for one-dimensional arrangements of cells∗ (as shown
in Refs. (5, 24)). Here, we are focussing on the long-term
clonal statistics of self-renewal strategies, and since this is
not affected by cell-extrinsic regulation, for tissues with two
dimensional or three dimensional arrangements of dividing
cells (like epithelial sheets, and volumnar tissue), we wish to
keep the analysis simple and therefore choose dynamics (and
thus the parameters λi, ωij , rjki , γi) to be independent of the
cell environment.

In the following, we study the dynamics of cell numbers in
each state Xi, ni. To gain initial insight into those dynamics,
let us first consider the time evolution of themean cell numbers,
n̄i = 〈ni〉, given by,

d

dt
n̄i =

∑
j

(
λj2rij + ωji

)
n̄j − (λi +

∑
j

ωij + γi)n̄i . [6]

in which rji =
∑

k
(rjki + rkji )/2 is the probability of having

a daughter cell in state Xj produced upon division of a cell
∗The mean clone size as a function of time also slightly differs for two dimensional systems, but only

by a logarithmic pre-factor which approaches a constant for large time (5).
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Fig. 1. Illustration of the decomposition of a homeostatic cell state network into SCCs and the compartment representation, Eq. 9. (Left): An example cell state network
representing the matrix A in Eq. 8 (self-links not displayed). The dashed circles denote the network’s Strongly Connected Components (SCCs) (see definition in text). (Middle):
The Condensed network is the corresponding network of SCCs, Sk , wherein SCCs are the nodes and a link between two SCCs exists if any of their states are connected. For
homeostatic networks, an SCC with dominant eigenvalue µ = 0 is at the apex, while other SCCs have µ < 0. (Right): We distinguish two compartments, the Renewing
compartmentR, consisting of the apex SCC, with µ = 0, and the Committed compartment C consisting of the remainder, with µ < 0.

in state Xi. This linear system of differential equations can
be written more compactly in terms of the mean cell number
vector n̄ = (n̄1, n̄2, ..., n̄m),

d

dt
n̄ = An̄, [7]

with A being the m×m matrix

A =

(
κ11 − δ1 κ21 κ31 · · ·
κ12 κ22 − δ2 κ32 · · ·
κ1m κ2m · · · κmm − δm

)
, [8]

where we defined the total transition rate κij = λi2rji + ωij ,
combining all transitions from Xi to Xj by cell divisions and
direct transitions, and the local loss rate δi = λi +

∑
j
ωij +γi.

Models of the form 3-5 are not generally in homeostasis,
which in this context is defined by the existence of a stationary
state n̄∗, with dn̄∗/dt = 0, that is stable and non-trivial†. This
can in principle be assessed through the spectral properties of
A (25), but applying spectral conditions explicitly is unwieldy
and difficult to interpret biologically. For a more intuitive
view, we interpret the system, Eq. 7, as a network (graph):
the matrix A can be interpreted as the adjacency matrix of
the cell state network. This is a weighted directed graph
in which cell states correspond to the graph’s nodes and a
link from state Xi to Xj exists where a transition is possible,
i.e. when κij > 0. The value of κij also denotes the link
weights (diagonal elements of A can be considered as self-
links). Now, we note that Eq. 7 is linear and cooperative,
i.e. the off-diagonal elements of matrix A are non-negative,
and for such systems more simple and intuitive conditions
for homeostasis exist (26), based on a decomposition into the
network’s Strongly Connected Component (SCC). An SCC is
a sub-graph that groups nodes which are strongly connected,
i.e. which are mutually connected by paths (more accurately:
two nodes, Xi and Xj are strongly connected if there exists
a path from Xi to Xj and from Xj to Xi on the network).
An example of such a decomposition, which yields an acyclic
condensed network that contains SCCs as nodes and directed
links between them, is shown in Fig. 1.

The stability of systems like Eq. 7 is then determined
by the dominant eigenvalues µk of each strongly connected
component k, for k = 1, ...,mS where mS is the number of

†We note that we consider here stability in the sense of Lyapunov. Since the system is linear, the
only asymptotically stable state is n̄∗ = 0 which does not correspond to a biological relevant
homeostatic state. For a further discussion, see the Appendix section 1.

SCCs‡, and their topological arrangement. In brief, according
to Ref. (26), the conditions for existence of a homeostatic
state are that, at the apex of each lineage (the condensed
cell state network), there must be an SCC with dominant
eigenvalue µk = 0, while all SCCs downstream of the former
must have µk < 0 (see detailed discussion in the Appendix,
section 1). Given this structure of homeostatic models, we
can define two compartments in the cell state transition net-
work: (1) the (self-)Renewing compartment (R), which is the
SCC at the apex of the lineage tree; and (2) the Committed
compartment (C), which consists of all SCCs with µk < 0,
i.e, those downstream of the apex SCC. Importantly, cells in
states forming R have the potential to return to any state
within the same compartment and this population maintains
itself. Instead, the cell population in C would vanish without
external input, since the combined dominant eigenvalue of
all those SCCs is negative (it is the maximum of all SCCs’
µk < 0), thus the progeny of each cell in the committed com-
partment will eventually be lost. We can thereby classify cells
as being of a (self-)Renewing type (R) if their state is within
R, and of a Committed type (C) if their state is in C. With
this coarse-grained classification, a generic homeostatic model
can be represented in terms of compartments R and C as,

R
λR−−→


R+R with probability rRR
R+ C with probability 1− rRR − rCC
C + C with probability rCC

,

R
ωRC−−−→ C, C

λC−−→ C + C, C
γC−−→ ∅,

[9]

where the symbols above arrows are the effective rates of those
events, denoting the average frequency at which they occur
(loss events R→ ∅ are not explicitly included, since they can be
approximated by a short lived state Xd in C, as R→ Xd → ∅).
To be compatible with a homeostatic condition, it is further
required that (i) the R-population remains on average constant
(µk = 0), i.e. λRrRR = λRrCC + ω, and (ii) the loss rate of
C must exceed its proliferation rate (µk < 0), i.e. γC > λC .
Figure 1 shows how a generic homeostatic cell state network
can be condensed into an effective model of renewing and
committed cell states, according to Eq. 9. It has to be noted,
however, that the events depicted in Eq. 9 are not Markovian,
i.e. the timing of events is not independent from each other
and depends on their history. Thus, the ‘rates’ λR, λC , ωRC ,

‡The Perron-Frobenius theorem assures that for adjacency matrices of SCCs of cooperative sys-
tems, a unique, real, maximal eigenvalue exists, which is the dominant eigenvalue (26, 27).
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and γC are not constant rates in the Markovian sense, yet we
can define them by the mean frequency of events occurring
(see Appendix sections 4.B and 6).

The formulation in terms of renewing and committed states
can help us to gain insights into potential behaviours of generic
homeostatic cell fate models. In particular, we define general-
ized asymmetric divisions as events of the type R → R + C,
and generalized symmetric divisions as events of the type
R → R + R (symmetric renewal) and R → C + C (symmet-
ric commitment). With these definitions, we can categorize
homeostatic cell fate models into two classes: Generalized In-
variant Asymmetry (GIA) models are those which only exhibit
R→ R+C divisions in the renewing compartment, while Gen-
eralized Population Asymmetry (GPA) are models for which
such restriction does not hold. We note that the two classes
are equivalently characterized by a conservation law: For GIA
models, the number of cells in R is strictly conserved, while
for GPA models, no such conservation law holds§. Naturally,
the previously discussed IA model is a GIA model and the
PA model is a GPA model. Notably, the DH model (Eq. 2) is
of the GPA category, since in that model S and D cells form
a single SCC at the apex of the lineage hierarchy, and thus
they are both part of R. Therefore, a division S → S +D in
the DH model, which is asymmetric in the conventional sense,
corresponds to R→ R+R in terms of compartments (Eq. 9)
and thus it is a generalised symmetric division. According to
this classification, PA and DH models are both in the same
category (GPA), and indeed, both predict the same type of
clone size distribution, an Exponential one (11).

Numerical simulation of random cell fate models. To check
whether the correspondence between model class, GIA vs.
GPA, and predicted clonal statistics holds in general, we ana-
lyze the clonal dynamics numerically, by generating and testing
a large number of random stochastic models, implemented
via random generation of the parameters λi, ωij , γi and rjki .
To simulate clones, we perform stochastic simulations based
on the Gillespie algorithm (28), assuming a Markov process
following the rules of Eq. 3-5. We run, for each model, a
large number of simulations with initially one cell in the com-
partment R, thus the cell population of each simulation run
represents one clone. Then we sample their outcomes, the
total cell numbers per clone (the clone size) n =

∑
i
ni, to

obtain predictions for clonal statistics, namely the frequency
distribution of clone sizes (clone size distribution) and mean
clone sizes (see Materials and Methods).

We first study the mean clone size of surviving clones
(with n > 0), n̄s = 〈n〉|n>0, shown in Figure 2, respectively,
for the GIA and GPA models, as a function of time (the
final time τ = 20/αmin where αmin is the minimal process
rate, αmin = min(λ1, ..., ω12, ..., dm)). We note that indeed
a common behaviour is seen in each case. While for every
simulated GIA model, n̄s saturates at a plateau value, it
steadily increases for every GPA model. This is expected,
and can be understood given that clones in a GPA model
can go extinct while those in a GIA model not. Assume that
there are initially a large number Nc of clones, such that the
total number of cells is ntot = Nc n̄s. Since the system is
homeostatic, it will reach a constant steady state n∗tot after a
sufficient amount of time, meaning that the mean clone size is

§Sinceµ = 0 is necessary for conservation, the only possible conserved cell states in homeostasis
are those inR

Fig. 2. Mean size of surviving clones, n̄s, as a function of time for random GIA
models (a), and GPA models (b). In (a), τ = 20/αmin, in (b), τ ia the time at
98% clone extinction. The grey shade represents the percentile of all the simulations
(black lines limit the 5-95%ile range); the blue curves correspond to some illustrative
selected simulations. Simulations for which the final mean is below 2 and where the
final condition is not achieved (due to computational limitations) are not included: this
results in 238 and 571 models, respectively for the GIA and GPA cases.

n̄s = n∗tot/Nc. If no clones go extinct, as in GIA models, Nc is
constant and thus n̄s approaches a constant. However, in non-
conserved multi-type branching processes, as GPA models are,
the clone number Nc decreases through progressive extinction
of clones (13), and therefore n̄s increases, despite the cell
population as a whole staying stationary.

The resulting clone size distributions for the two model
classes are shown in Figure 3. Here, clones sizes n are rescaled
by the mean value n̄s and compared to an Exponential dis-
tribution of unitary mean (green curve). As conjectured, all
simulated GPA models shown in panel (b) predict asymp-
totically the same rescaled clone size distribution, namely a
standard Exponential distribution. Deviations exist for small
times and small clone sizes, but these deviations vanish in
the large time limit (details on the convergence are shown in
the Appendix, section 5). This means that different models
within the GPA class cannot be distinguished in the long term
limit, since they differ only by the mean clone size, which is
a free fit parameter. In analogy to statistical physics, we can
categorize them as a universality class (5), meaning that the
details of the model do not affect the (scaled) outcomes for
assymptotic conditions, which is a form of weak convergence
of random variables (29). However, the same cannot be said
about the GIA models. In fact, we see all kind of shapes in the
clone size distributions, both peaked distributions and non-
peaked ones, and in fact, some distributions are even close to
an Exponential form, and can thus not be distinguished from
GPA models. The question is whether we can yet find other
parameters for which, when large, also GIA models exhibit
universality, i.e. yield the same rescaled clone size distribution.
For this purpose, we will in the following sections develop a
deeper theoretical understanding of the model classes.

Mathematical analysis: Markovian approximation of compart-
ment model. To obtain a deeper understanding of the numer-
ical results, we study the cell fate models in terms of the
compartment representation, Eq. 9. In this representation
models are not Markovian, yet we can study their Markovian
counterpart, as an approximation. While this is not expected
to yield accurate clone size distributions in general, the limit-
ing distributions of non-Markovian processes are commonly
well estimated by their Markovian counterparts.

For GIA models, which only feature R→ R+C transitions
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Fig. 3. Rescaled clone size distributions (expected relative frequency P of clone
sizes) for random GIA models (a), and GPA models (b), in terms of the rescaled
clone size x = n/n̄s, at final time t = τ (see Fig. 2 for definition). The grey
shade represents the percentile of all the simulations (black lines limit the 5-95%ile
range); the blue curves correspond to some selected simulations. A reference curve
corresponding to an Exponential distribution of unitary mean (’Exp(1)’) is shown in
green.

between the renewing compartment, R, and the committed
compartment, C, a corresponding Markovian model reads,

X1
λ1−→ X1 +X2, X2

λ2−→ X2 +X2, X2
γ−→ ∅, [10]

in which X1 represents a single state in R and X2 in C, and
symbols at arrows are the process rates. The number of cells
in X1, n1, is conserved, i.e., given an single X1-cell initially,
it always remains at n1 = 1. Thus, we only need to consider
the dynamics of cells in X2, n2. This Markov process can be
solved analytically, and for sufficiently large steady state mean
number of X2-cells, n̄2 = 〈n2〉 = λ1/(γ − λ2) (see Appendix,
section 4.A), the rescaled distribution of cells in X2 is,

P (x2) = (1− λ̂2)
λ̂1
λ̂2 λ̂

λ̂1x2
(1−λ̂2)
2

Γ
(
λ̂1

λ̂2
+ λ̂1

1− λ̂2
x2

)
x2Γ

(
λ̂1

λ̂2

)
Γ
(

λ̂1

1− λ̂2
x2

) , [11]

in which x2 = n2/n̄2, λ̂1 = λ1/γ and λ̂2 = λ2/γ and Γ(...)
is the Gamma function (30). We note that this distribution
exhibits a large variety of shapes: for large λ̂1 the distribution
is peaked, while for small λ̂1 is loses its peak. Notably, for
λ̂1 → 1 and λ̂2 → 1, the distribution becomes Exponential and
in this case it cannot be distinguished from the GPA case. On
the other hand, for λ̂1 →∞, i.e. when the ratio of asymmetric
divisions over the loss rate is high, this distribution tends to a
Normal distribution with unitary mean and variance equal to
1/λ̂1. These different behaviours are graphically shown in the
Appendix (see Figures A6, A7 and A8).

For the GPA models, a Markovian approximation reads,
accordingly,

X1
λ1−→


X1 +X1 with probability r1

X1 +X2 with probability 1− r1 − r2

X2 +X2 with probability r2

,

X1
ω−→ X2, X2

λ2−→ X2 +X2, X2
γ−→ ∅,

[12]

whereby for homeostasis to prevail, λ1r1 = λ1r2 + ω and
λ2 < γ must hold. We note that the dynamics of X1 are
independent of X2 and thus for the number of cells in X1 in
homeostasis holds

n1
λ1r1 n1−−−−−→ n1 ± 1, [13]

which corresponds to a simple continuous-time branching
process with two offspring, for which it is known that the
resulting distribution of cell numbers is Exponential, i.e.
P1(n1) = n̄−1

1,se
−n1/n̄1,s , where n̄1,s ' λ1r1t is the mean num-

ber of cells in the surviving clones (13).
X2 cells produced according to 12 follow the same fate as

in the 2-state GIA model above. While it is not assured that
the distribution of X2 cells is identical to that of Eq. 11 (due
to simultaneous production events of type X1 → X2 + X2),
we show in the Appendix, section 6, that for large rates of
production of C-cells, the distribution of C-cells – here: cells
in state X2 – attains a Normal distribution with mean n̄2
equal to its variance σ2

n2 = 〈(n2 − n̄2)2〉 = n̄2. As each
X1 cell contributes independently to the production of X2-
cells, we have that n̄2 ∼ n1,s ∼ t. Crucially, this means that
in terms of the rescaled variable x2 = n2/n̄s the standard
deviation σx2 = σn2

n̄s
≤ 1√

n̄2
∼ t−1/2 vanishes for large times,

since n̄2 ∼ n1,s ∼ t → ∞. Hence, given fixed x1, x2 can be
approximated by a constant random number x2|x1 ∼ x̄1 =
n1/n̄s. Therefore, the rescaled distribution of the total number
of cells is P (x) = P1(x− x2) = e−x, where x̄ = x̄1 + x̄2 ∼ x̄1.
Thus, the rescaled distribution of the total clone size, x = n/n̄s,
is as well an Exponential.

Universality of generic cell fate models. For generic GIA or
GPA models, the compartment representation, Eq. 9, is not
Markovian and one would not expect exactly the distributions
we found in the previous section. Fortunately, the limiting
distributions of non-Markovian processes and their Markovian
counterparts are often, under certain conditions on the param-
eters, the same. While we reserve the technical arguments for
the Appendix (section 6), we note that this independence of
the limiting distribution on the Markov property related to
the central limit theorem, which does not rely on the Markov
property.

To identify the correct limiting parameters for more complex
cell fate models, we need to express the effective non-Markovian
rates (i.e. the mean frequency of events) of representation
9 in terms of the original model, 3-5. As discussed in the
Appendix (sections 4.B and 6), we identify those effective
rates by the total rates of cell divisions, λR =

∑
i∈R λiP

R
i ,

γC =
∑

i∈C γiP
C
i , and ωRC =

∑
i∈R,j∈C ωijP

R
i where, for
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each compartment, PR,Ci = n̄i/
∑

j∈R,C n̄j is the probability
of a single cell being in state Xi of R, C, respectively (n̄i are
the solutions to Eq. 6). In the Appendix, section 6, we reason
that all GPA models are expected to generate Exponential
clone size distributions for large times t. This is indeed what
is observed in Fig. 3(b). Correspondingly, for GIA models we
expect that for large λ̂R = λR/γC the clone size distribution
of GIA models would tend to a Normal distribution. To test
this prediction we simulated the same GIA models as for Fig.
3 before, but we tuned parameters in R such that the effective
parameter λ̂R becomes large (see details in the Appendix,
section 4.C). The result is shown in Fig. 4: for an illustrative
case shown in panel (a), increasing λ̂R changes the distribution
from an exponential form to a peaked form akin to a Normal
distribution, and for all simulated random GIA models, shown
in panel (b), a Normal distribution is approached when λ̂R
becomes large.

We note that when taking the limit of large λ̂R, as shown
in Fig. 4, also all other process rates ωij with i, j within R
increased as well. What if instead some process rates in R do
not scale to become large with λ̂R? To assess this situation we
studied a simple test case similar to model 10 but containing
two states in R, connected via direct state transition (see
Appendix, section 4.D). As discussed there, if all rates within
R are large compared to the rates in C then indeed we observe
a Normal clone size distribution, as expected. However, if
the direct transition rates between the states of R are smaller
or of equal magnitude as γC , and in addition, one of the
two division rates is higher then the other, then we observe
a bimodal clone size distribution. The reason is that if the
transitions between the two states in R are rare compared to
the life time of cells, 1/γC , they become essentially separated
and each of those states generate separate Normal distributions
with different mean (due to different cell division rates in those
two states) which, when overlaid, generate a bimodal clone size
distribution (see detailed arguments in the Appendix, section
6).

Finally, from those considerations follows:

1. GPA models attain an Exponential clone size distribution
for time t→∞.

2. GIA models attain a Normal clone size distribution if all
process rates within R are much larger than the inverse
lifetime of C-cells, γC .

Hence, the GIA and GPA model classes, each represent a
universality class, i.e. a scaling limit exists in which all models
of the same class yield the same rescaled clonal statistics.

Discussion

Our analysis shows that intrinsic limitations exist for identi-
fying strategies of stem cell self-renewal through clonal data
from cell lineage tracing experiments. This is due to different
models of cell fate choice generating the same type of clonal
statistics (clone size distributions), so that model inference
based on clonal statistics – currently still the most prevalent
method to determine stem cell self-renewal strategies – fails to
distinguish them. The feature that different models asymptoti-
cally generate the same statistics is a form of weak convergence
of random variables (29) and corresponds to universality, as
known from statistical physics.

Fig. 4. Rescaled clone size distributions (expected relative frequency P of clone
sizes) for random GIA models as in Fig. 3, at time t = τ (see definition in Fig. 2).
Sensitivity to parameter λ̂R is shown for one illustrative case in panel (a), and all
GIA models for λ̂R = 30 in panel (b). The distributions are shown in terms of the
rescaled variables x = n/n̄s for panel (a) and x̃ = (n− n̄s)/σn, where σn is the
distributions variance, in panel (b). In (b), the grey shade represents the percentile of
all simulations (black lines limit the 5-95%ile range); the blue curves correspond to
some selected simulations. A reference curve corresponding to a Normal distribution
of zero mean and unitary variance is shown in green. Simulations for which t = τ

is not reached (due to computational limitations) are not included, resulting in 922
model instances.

Cell fate models can in principle be very complex, with a
plethora of cell (sub-)types in a tissue. We introduced a new
categorization of cell types, distinguishing between cell states
that are committed (C-cells), whose progeny is inevitably lost
eventually, and non-committed or (self-)renewing cell states
(R-cells), which retain the potential to remain or return to the
apex of the lineage hierarchy. According to this categorization
we classified generic models of cell fate choice as Generalized
Invariant Asymmetry (GIA), if only generalized asymmetric
divisions of the form R→ R+C occur for R-cells, and Gener-
alized Population Asymmetry (GPA), when all kind of divisions
can occur, as long as gain and loss of R-cells are balanced.
Models of the GIA category are also characterized by a con-
servation law, since the number of R-cells is strictly conserved,
while GPA models do not exhibit such a conservation law.

We found that the classification in GIA and GPA models
mirrors the clonal statistics generated by them: models of
the GPA class all generate clonal statistics which with time
converge to an Exponential clone size distribution. Thus, two
GPA models can therefore not be distinguished through clonal
data, once some time has passed after induction of clones. For
GIA models, distributions can generally vary, but if the rates
of divisions and transitions in the R compartment are much
larger that the rate of cell loss, the clone size distribution of all
those models becomes a Normal distribution. In that case, two
GIA models can not be distinguished by the clonal data. While
here we do not explicitly consider cell-extrinsic regulation of
cell fate, this kind of regulation does not affect long-term
clone size distributions, except when cells are arranged one-
dimensionally (5, 24). Thus, our results cover cell dynamics in
most renewing tissues, such as epithelial sheets or volumnar
organs, but not (quasi-)one-dimensional arrangements of stem
cells, as found in the seminiferous tubule, or in intestinal
crypts, where clonal statistics may differ. Hence, our analysis
shows that models of cell fate choice cannot in general be
distinguished with further resolution beyond the R vs. C
categorization of cell types. The universality of the model
dynamics also shows that effective, simplistic models are often
equally accurate to model experimental data, yet with a higher
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statistical power due to less free parameters.
While at first glance this analysis seems to discourage ef-

forts to unravel details of cell fate dynamics, room remains in
regimes where the limiting conditions for asymptotic distribu-
tions are not fulfilled. In particular, if fast cycling committed
progenitor cells are present, while stem cells are slow cycling,
then the condition that the division rate of R-cells is much
larger than the cell loss rate is not fulfilled. In that case, de-
tails of the model dynamics may affect the shape of the clone
size distribution and thus allow distinction between models.
However, caution should be given when an Exponential clone
size distribution is observed, since this could indicate either a
GIA model with high activity of committed progenitor cells,
or a GPA model. In that case, the mean clone size needs to be
consulted to distinguish models (see Fig. 2). Differentiating
between models within the GPA category is more difficult,
since the predicted statistics from different models always be-
come more similar over time. Short term measurements would
in principle allow such a distinction, but since in reality the
underlying processes are not truly Markovian (as assumed for
the modelling purpose) they are not necessarily a good rep-
resentation of the real cell dynamics at short times. At long
times however, Markovian approximations are increasingly
accurate, precisely because of the feature of universality.

How could the resolution of cell fate modelling be improved?
The state-of-the-art approach to determine cell fate trajectories
is via analysis and modelling of single-cell RNA-sequencing
(scRNA-seq) data. However, many limitations to this method
exist, discussed in Ref. (31), and neither reversible trajectories
nor the modes of cell division, such as asymmetric vs symmetric
divisions, can be inferred. Intravital live imaging, on the other
hand, allows to trace individual clones over time (32–35),
and thus can obtain details of cell fate trajectories, yet this
technique is limited to few tissue types which are accessible for
invasive long-term imaging. Nonetheless, while each of those
experimental assays alone is prone to limitations in defining
self-renewal strategies, advanced model inference schemes, that
integrate data from different experimental sources, might be
the way forward in the future to finally reveal the details of
stem cell self-renewal strategies.

Materials and Methods

The numerical analysis of the random cell fate model was imple-
mented in Matlab. The description of the stochastic models defini-
tion, the random model generation and the simulation campaign is
detailed in the Appendix, section 2. Additionally, as a validation of
the implemented simulator, based on the Gillespie algorithm (28),
the IA and PA models were simulated and the results analyzed in
the Appendix, section 3.A.
Analytical solutions were partially obtained using Mathematica.
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