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1. Conditions for homeostasis

Here we “translate” the generic conditions for the existence of a Lyapunov stable stationary state for Linear Cooperative Systems
(LCS) (26) into the biological context of clonal dynamics. A linear cooperative system is one of the form d

dt
x(t) = Ax(t) where

x(t) = (x1(t), x2(t), ..., xm(t)) are functions of time t and A is a constant m×m matrix for which all off-diagonal elements
are non-negative (the latter condition defines the cooperativity of the system) (26, 36). We note that the dynamics of mean
cell numbers, Eq. 6 and 7 in the main text, indeed describe an LCS according to this definition. Now we use the following
definitions:

• G(A) is the graph of A, i.e. the graph for which A is the adjacency matrix, whose elements aij give the weight of the
links from i to j (aij = 0 means that no link exists). In the following we use the terms graph and network synonymously.

• If in G(A) there exists a path from node i to node j and from j to i, then we call those nodes strongly connected, i ≡ j,
which is an equivalence relation. A maximal set of nodes which are are strongly connected with each other are called a
Strongly Connected Component (SCC) of the graph (the equivalence class of the equivalence relation “≡”).

• The graph G(A) can be decomposed into its NS SCCs, Sk, k = 1, ..., NS (37), which are sub-graphs associated with an
adjacency matrix Ak, such that G(Ak) = Sk. Since the Ak have non-negative off-diagonal elements, they are Metzler
matrices for which the Perron-Frobenius theorem ensures that a unique, simple and real maximal eigenvalue µk exists
(27). The eigenvalue µk is called the dominant eigenvalue of Sk. Associated with this eigenvalue, there is, for all k, a
positive eigenvector x(k) = (x(k)

1 , x
(k)
2 , ...), i.e. one with all entries x(k)

i > 0.

• The condensed graph of G(A) is the graph where nodes are the SCCs of G(A) and a link from SCC Sk to SCC Sl
(k, l = 1, ..., NS) exists if there is is at least one link from a node (in G(A)) in Sk to a node in Sl.

• If there is a path from SCC Sk to SCC Sl, then we call Sk upstream of Sl and accordingly Sl downstream of Sk. We note
that there can never exist paths from Sk to Sl and from Sl to Sk, since otherwise, by definition, their nodes would be
strongly connected and both together would form a single SCC (37). Thus, there is a unique hierarchy of SCCs.

• A stationary state x∗ of a dynamical system is Lyapunov stable if a small initial deviation from x∗ leads to a small final
deviation x(t) (i.e. x∗ is not unstable). More accurately: there exists a constant C > 0 such that |x(t)−x∗| < C|x0−x∗|
for all times t, where x0 = x(t = t0) is the initial condition, sufficiently close to x∗. A stationary state of a linear system
that is Lyapunov stable, yet neither asymptotically stable nor has a limit cycle, is neutrally stable.

• Homeostasis means that the cell numbers in each state, n = (n1, ..., nm), stay on average constant, dn̄
dt

= 0 (where
n̄ = 〈n〉), and that this state is not unstable towards perturbations. This condition corresponds to a Lyapunov-stable
stationary state. Note that a linear system, as the one described by Eqs. 6 and 7, main text, cannot have an asymptotically
stable state except for the trivial state n̄∗ = 0, which corresponds to a vanishing cell population∗. We therefore use
Lyapunov stability, a weaker form of stability, to define homeostasis, since an asymptotically stable vanishing state is not
a biologically viable state.

∗We note that when considering the tissue cell population as a whole, dynamics can be non-linear through interactions between cells and a non-vanishing asymptotically stable state may then exist.
However, since single clones do not significantly affect the total configuration of cells in a tissue, the clones compete neutrally, when embedded in a homeostatic cell population, which corresponds to a
Lyapunov stable, but not asymptotically stable state.
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Now, for an LCS holds, according to Ref. (26),

Theorem 1 An LCS, ẋ = Ax, possesses a non-trivial Lyapunov stable stationary state (x∗ > 0), if and only if,
1. G(A) does not contain any SCC, Sk, with µk > 0.
2. There is at least one SCC, Sk, with µk = 0.
3. There is no path between any two SCCs, Sk and Sl, which have µk = 0 and µl = 0.

Furthermore holds,

Theorem 2 all nodes i upstream of an SCC Sl with µl = 0 must be empty in the the stationary state, i.e. x∗i = 0, if i is
upstream of the SCC Sl.

Since Eq. 7, main text, is an LCS, we can apply theorems 1 and 2 to find conditions for homeostasis, defined by a
Lyapunov-stable configuration of mean cell numbers n̄∗ = (n̄1, n̄2, ...). According to theorem 1 at least one SCC with µk = 0
must then exist, and according to theorem 2 the stationary state of nodes upstream of it must be empty, i.e. they do not exist
in homeostasis. Since the condensed graph of the SCCs does not have cyclic paths, an SCC Sk with µk = 0 must therefore
always reside at the apex of all non-vanishing cell types. In principle, an acyclic graph may have more than one apex, however,
since, by definition, a stem cell clone always starts with a single stem cell, and no other SCC with µ = 0 may be downstream of
the latter, we only consider one apex SCC with one initial cell when studying clonal dynamics.

Hence, in the context of homeostatic clonal dynamics, we can assume that there is a single SCC, Sk with µk = 0 at the
apex of the cell state graph, while all other SCCs, Sl are downstream of it and have µl < 0. Since there are no paths from the
non-apex SCC to the apex SCC (as the condensed graph is acyclic) we can distinguish the two separate compartments R (the
renewing compartment) consisting of all nodes of the apex SCC, Sk, and C (the committed compartment), consisting of all
other nodes, whereby due to µl < 0 for all SCCs in C, all progeny of cells in C will vanish in the long term.

2. Stochastic process modelling

A. Model Description. Since clonal dynamics start, by definition, with a single cell, we use stochastic dynamics to model clones.
Thus, we model cell fate dynamics as a continuous-time multi-type branching process (13), a Markov process following the
rules of Eq. 3-5, main text. As shown later, without losing generality, here only two types of events are modelled; considering
an arbitrary number m of cell states, Xi, for i = 1, ...m, the model includes

• Cell divisions: a cell in state Xi divides in two cells respectively in state Xj and Xk at a given rate λi.

Xi
λi−→ Xj +Xk, i, j, k = 1, ...,m, [1]

where λi = 0 if state Xi does not allow division. In this formulation of cell division events, which we use for the generation
and numerical simulations of random models, only one division outcome is possible upon division of a particular cell state
Xi. Nonetheless, multiple division outcomes per state can be implemented as single outcomes if additional metastates
are introduced, which represent priming of a state Xi towards a certain division outcome option. For example, if in
the original model, state Xi has different outcome options, Xj1 + Xk1 , Xj2 + Xk2 , ..., we can substitute this by, first,
transitions from Xi to (new) states Xm1 , Xm2 , ... and subsequent divisions Xml → Xjl +Xkl . The use of metastates to
model more complex processes is discussed in detail in Section 3.B.

• Direct state transitions: a cell in state Xi changes to state Xj at a given rate ωij .

Xi
ωij−→ Xj , i, j = 1, ...,m; i 6= j, [2]

where ωij = 0 means that no transition from Xi to Xj is possible. Additionally, we include cell loss in this scheme, by
treating it as a transition to an additional special state, called hereafter death and denoted by ∅ (cells in this state do not
enter in the counting of the total number of cells). In that formulation, the loss rates of the original model are di = ωi∅.

These events define a Markov process, which can be represented as a stochastic network (38). In this view, each node can be
related to a cell state, while the links represent transitions between states via cell divisions and the direct state transitions. It
is noted that this stochastic network is different from the network defined in the main text and in section 1 of this SI, which
describes the dynamics of mean cell number instead. Here, for the stochastic modelling, let us define the adjacency matrix K
of this network, through the elements κij = λi2rji + ωij i, j = 1, ...,m, in which κij are the total transition rates as defined in
the main text. We note that K is related to the matrix A used in the main text by A = KT −∆, where ∆ is the diagonal
matrix with entries δi, i = 1, ...,m, as defined in the main text, with the slight difference that here the loss state ∅ is treated as
a separate state. Additionally, it is remarked that in this model interpretation, where only one division option for each state is
possible, the term rji ≤ 1 is not a continuum value, but instead it can only take the values 0, 1/2, 1 depending on the specific
outcome of the division of the cells in state Xi. Notably, more than one stochastic network may result in the same matrix K,
therefore, to uniquely define a process, we distinguish a matrix D which describes cell division events (note that this is possible
with just a single matrix as there is only one division option per state) and a matrix T which describes direct transition events.
The matrix K is the sum of both, K = N + T .
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B. Generation of Random Models. To test the behaviour of the clonal dynamics in a generic homeostatic model, a large number
of random stochastic networks was generated, whereby each stochastic network corresponds to a distinct set of parameters
λ1, ..., λm, ω12, ..., ωm∅ for the stochastic stem cell fate choice model. The strategy detailed below is based on the following
considerations which summarize the key requirements to achieve homeostasis detailed in section 1: a) each network is composed
of Strongly Connected Components (SCCs) that are randomly connected; b) only one SCC, the one at the apex of the network,
forms the renewing compartment, R, (i.e. it is characterized by a dominant eigenvalue µ = 0 with respect to A) and all the
others form the committed compartment, C, (i.e. they are characterized by a dominant eigenvalues µ < 0). It is further noted
that the SCCs of the stochastic network G(K) are the same as those of the matrix G(A), where A = KT −∆ defines the
dynamics of mean cell numbers. This is, since transposition of an adjacency matrix and altering of diagonal elements does not
affect the network topology.

To generate the stochastic network, a two-step process is followed: 1) a large number of (random) SCCs are generated; 2) a
condensed network is randomly constructed and filled with randomly picked SCC from step 1.

It is noted that unitary rates are assumed in step 1) and they are successively randomly modified in step 2) to achieve the
desired properties of the dominant eigenvalue µ while ensuring randomness.

Focusing now on step 1), that is, the generation of single SCCs, the following procedure is used.
(1.a) The total number of states composing the SCC is defined, indicated as mS . An additional state is added to represent

whatever is outside the SCC. In the current analysis we set 1 ≤ mS ≤ 4.

(1.b) We build separately all the possible combinations of transition and division matrices, indicated hereafter respectively
with MT and MD. These matrices are ordered for increasing number of transitions NT and divisions ND. In case GIA
networks are generated, the MD and MT combinations are filtered, to remain just with those where the division outcome
is one cell inside the SCC and one outside the SCC, and where there are only transitions between states within the SCC
(i.e. where cell numbers are conserved). From a computational point of view, this process is feasible up to mS = 4.

(1.c) The matrices stored in MD and MT are then combined together to form a model (which is completely defined by one
matrix in MD and one in MT ); MDT indicates the pool of possible models. This process is done considering separately
each mS , NT and ND. In this step, due to technical limitations given by the high number of possible combinations, if the
total number of combinations exceed 5 · 104 then only 104 random matrices from MD and MT are combined.

(1.d) Each model in MDT is then processed to check if the corresponding network is a SCC in the first mS states. If not, then
this model is discarded. In case GPA networks are generated, a further check is performed to discard also those models
consistent with a GIA network (they cannot be a priori excluded as done in point (1.b) for the GIA ones). These pools of
models are indicated as MGIA and MGPA respectively for the GIA and GPA models.

(1.e) For each SCC in MGIA and MGPA, the dominant eigenvalue µ is estimated. For construction, the generated GIA networks
are all characterized by µ = 0, while in general any value can be obtained within MGPA.

(1.f) The SCCs in MGPA are additionally processed to check whether the network is compatible with homeostasis by tuning
the rates. Networks satisfying this condition are additionally stored under a new pool of SCCs, called M∗GPA. If not, then
they are discarded when µ > 0 (i.e. for any combination of rates the number of cells in these networks is expected to
grow).

This process results in three pools of SCCs classified for mS , NT and ND (i.e. number of states, transitions and divisions): 1)
MGIA contains GIA models; 2) M∗GPA contains GPA models that can be tuned to have µ = 0 and 3) MGPA contains GPA
models characterized by µ < 0 or that can be tuned to meet this condition.

In step 2), the generation of random networks starting from the individual SCCs is implemented as follows.
(2.a) A number of committed SCCs, Nc, between 1 and 3 is randomly chosen.

(2.b) Nc SCCs are randomly picked from the pool of models MGPA. The selection is done considering equal probability in mS ,
NT and ND. For each SCC, the unitary rates α (where α stands for any rate λi or ωij) are modified by multiplying them
for random numbers (exponentially distributed with mean ᾱ = 1 and minimum αm = 0.3). Additionally, a threshold
on the dominant eigenvalue is set, µmax = −1; if this condition is not satisfied, then the rates are tuned to meet this
requirement while maintaining the rates above the minimum.

(2.c) The committed compartment of the condensed network is generated by randomly connecting all the outgoing components
of the k-SCC with states in the l-SCC for l = k + 1, .., Nc. In this way, the transposed adjacency matrix of the stochastic
network has triangular block form:

KT =


B1
C12 B2 0

...
C1,Nc C2,Nc BNc
C1∅ C2∅ CNc,∅ 0

 . [3]

The last SCC is forced to be linked to a single death state.
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(2.d) With a similar procedure described in point (2.b), two SCCs are randomly picked respectively from the pool of SCCs in
M∗GPA and MGIA; the unitary rates are modified (exponentially distributed with mean ᾱ = 1 and minimum αm = 0.3)
and, in the GPA case, tuned to meet the condition µ = 0. They represent the renewing part of the network.

(2.e) Two networks (one for the GIA and one for the GPA models) are produced by attaching the selected renewing network
upstream the committed one; this is done based on an analogous procedure as described in step (2.c).

At the end of this process we have two networks which are different in just the renewing part, being one consistent with the
GIA model and the other with the GPA one. In total 2000 networks were built and analysed.

C. Simulation campaign. An extensive simulation campaign was run to model the clone dynamics. The code implemented to
numerically simulate the stochastic process defined by events of type 1 and 2 is based on the Gillespie algorithm (28). Since a
clone is by definition the progeny of a single cell, we choose as initial condition a single cell put randomly in a state within R.
Concerning the final condition, given the substantial difference in the dynamics in the two models, the final time, indicated by
τ , is set equal to 20 times the inverse of the minimum process rate, αmin = min(λ1, ..., λm, ω12, ..., ωm,∅), in the GIA models,
and to the time at which the fraction of extinct clones reaches 98% in the GPA models †.

To determine the clone size distribution, 103 and 5 · 104 simulations were run respectively in for each GIA and GPA model
(in this way, both models result in the same final number of clones when 98% extinction is taken into account).

3. Numerical Simulation Test Cases

A. Invariant Asymmetry and Population Asymmetry Models. To validate the simulation approach, we tested the procedure on
simple cell fate models for which analytical results are known, the Invariant Asymmetry (IA) and Population Asymmetry (PA)
models. As described in the main text, in the simplest version, these are defined as

S
λ−→


S + S Pr. r
S +D Pr. 1− 2r
D +D Pr. r

,D
γ−→ ∅. [4]

In these processes, cells of type S represent the stem cells (called hereafter also progenitor), which divide with stochastic rate λ,
and cells of type D are the differentiated cells, which are shed with rate γ. While in the PA model the three possible outcomes
of the division of a progenitor are controlled by a probability parameter 0 < r ≤ 1/2, in the IA model r = 0, meaning that
there are strictly asymmetric division and the number of S-cells is conserved. It is remarked that in the definition of the
stochastic networks given in section 2.A only one division option for each state is modelled; however, the code implemented for
the numerical simulations of the stochastic process allows for an arbitrary number of division options for each state as well (see
section 3.B).

Considering the dynamics at tissue level, the system of ODEs describing the average number of cell n̄S and n̄D respectively
of type S and D is 

dn̄S
dt

= 0

dn̄D
dt

= λn̄S − γn̄D
. [5]

It is clear that, on average, the number of S-cells remains constant. Additionally, in homeostasis, the average total number
of D-cells stabilizes around a constant value n̄∗D = (λ/γ) n̄S that uniquely depends on the number of stem cells, n̄S which
equals the initial number of stem cells n̄S,0 = n̄S(t = 0), Thus, the (Lyapunov stable) stationary state of total cell numbers
n̄ = n̄S + n̄D is given by

n̄∗ =
(

1 + λ

γ

)
n̄S,0. [6]

Based on Eq. 6, the process rates λ and γ determine the proportion of cells of type D with respect to cells of type S.
Importantly, there is no difference at tissue level between the IA and PA models.

A distinction is instead evident when we look at the dynamics at the single cell level, and study the clone size distribution,
that is, the distribution of the progeny of a single cell. For the IA model, the number of S-cells is strictly constant, and thus the
joint probability distribution P (nS , nD) of both S-cells and D-cells, respectively indicated as nS and nD, is fully determined
by the distribution of D-cells, P (nD). The IA model’s master equation for P (nD), considering a single initial cell of type S, is
given by,

dP (nD)
dt

= λP (nD − 1) + γ(nD + 1)P (nD + 1)− (λ+ γnD)P (nD). [7]

This corresponds to a simple birth-and-death process for which the distribution is Poissonian with mean λ/γ, (39).
†Note that all critical branching processes, as homeostatic clonal dynamics are, will go extinct almost surely at some point in time (13).
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Considering now the PA model, the master equation is instead given by
dP (nS , nD)

dt
=λ(r(nS − 1)P (nS − 1, nD) + (1− 2r)nSP (nS , nD − 1) + r(nS + 1)P (nS + 1, nD − 2))

+ γ(nD + 1)P (nS , nD + 1)
− (λnS + γnD)P (nS , nD).

[8]

In Ref. (18), an exact result for the distribution of total cell numbers n = nS + nD is found when λ = γ and r = 1/4. For
different values of the process parameters, the long-term distribution is shown to be Exponential.

Numerical simulations for the clonal dynamics were run, considering the above models and three different sets of test
parameters each, indicated as IA#i and PA#i for i = 1, 2, 3, which are reported in Table 1. It is noted that the time unit is
arbitrary and therefore omitted. Simulations are based on 104 and 5 · 104 runs respectively for the IA and PA test cases. The
initial condition is a single stem cell and the final simulation time, indicated as τ , is equal to 10: this value is well representative
of a steady state condition (for the IA test cases) and at which the total extinction of the process is not yet achieved (for
PA test cases only). The clone size distribution at τ in the IA test cases is shown in Figure A1: in this figure, each profile is
compared to the corresponding Poisson distribution shifted by one (i.e. plus the stem cell). Concerning the results for the PA
test cases, they are shown in Figure A2. In this case, the profiles are compared to the numerical integration of the master
equation 8. Additionally, for the PA#1 test case, where λ = γ and r = 1/4, the reference analytic solution provided in Ref.
(18) is also shown. In general, a good agreement is obtained in all of the cases.

B. Population Asymmetry Model Using Metastates. As argued before, we assume in the random model generation that cell
division in state Xi has a unique outcome, Xi → Xj +Xk (Eq. 1), since thereby the stochastic process can be uniquely defined
by the two matrices D and T . To accommodate for the possibility of different division outcomes from the same state Xi, as in
Eq. 4 and Eqs. 3-5 in the main text, we introduce metastates, which represent short-lived states that indicate priming for
either outcome, from which the cell division outcomes are unique. This is a small modification of the original model, which,
however, does not lead to significant deviations if the metastates are traversed sufficiently quickly (which can be assured by a
choice of high direct state transition rates in the metastates).

To illustrate this, let us consider the PA model described by 4; instead of having three different outcomes upon division of
an S-cell we define the corresponding Metastate (MS) model with three primed states, M1,2,3, as

S
ω1−→M1, M1

λ1−→ S + S,

S
ω2−→M2, M2

λ2−→ S +D,

S
ω3−→M3, M3

λ3−→ D +D,

D
γ−→ ∅,

[9]

in which S and D correspond to the same cell type of the PA model (i.e. respectively the stem and the differentiated cells),
while Mi, for i = 1, 2, 3, represent the metastates. These states are temporary states that are used to model each one of the
three different possible division options of the S-cells. The rates λi and ωi, for i = 1, 2, 3, are chosen such that the time scales
of division and outcome probabilities are the same as in the original PA model:

ω1/ω2 = r/(1− 2r), ω2/ω3 = (1− 2r)/r, [10]
1

(1/ω1 + 1/λ1) = λr, 1
(1/ω2 + 1/λ2) = λ(1− 2r), 1

(1/ω3 + 1/λ3) = λr. [11]

Eqs. 10 assure that outcome probabilities are the same as in the original model, while Eqs. 11 are needed to have the same
total average time between two consecutive events. As there are six unknowns and only five relations, the following additional
equation is added

λ1 = ω1∆, [12]
in which ∆ is an additional parameter that is used to control how fast cells in metastate M1 divide. Low values of ∆ imply
that as soon as an S-cell transits to the metastate M1, it divides in two S-cells. Globally, this results in

ω1 = ω3 = λr(∆ + 1)/∆
ω2 = λ(1− 2r)(∆ + 1)/∆
λi = ωi∆ for i = 1, 2, 3

. [13]

Numerical simulations for the two models were run and compared, based on the parameters reported in Table 1, and
specifically the PA#1 and PA#3 test cases. The time unit, which is arbitrary, is omitted. The process rates for the corresponding
MS model, which are indicated in the figures as MS#1 and MS#3, are computed based on Eq. 13 and ∆ = 1/500. As well as
for the PA test cases, the initial condition is one cell of type S and the final time, τ , is equal to 10; simulations are based on
5 · 104 trajectories.

The mean number of cells in the surviving clones and the extinction probability as function of time (scaled by τ) are
shown in Figure A3. The clone size distribution at τ is shown in Figure A4. Both MS simulations agree very well with the
corresponding PA ones, which justifies the use of metastates for our simulation campaign.
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4. Analysis of the Generalized Invariant Asymmetry Model

A. GIA0 Test Case: Steady State Distribution and Limiting Behaviour. A simple Generalized Invariant Asymmetric model,
indicated hereafter as GIA0, was analyzed to identify the causes of the different clone size distribution behaviours observed in
the randomly generated models (see main text). Thus, in this section, we study the Markov process defined by

X1
λ1−→ X1 +X2, X2

λ2−→ X2 +X2, X2
γ−→ ∅. [14]

Here, the renewing compartment is composed of just a single state X1 and cells in this state asymmetrically divide with rate
λ1. The committed compartment is formed of state X2; cells in this state can either divide to duplicate, with rate λ2, or die,
with rate γ. It is noted that for λ2 = 0, this model is reduced to the previously analyzed Invariant Asymmetric (IA) model (see
section 3.A).

As for the IA model, here the number of cells in state X1, indicated as n1, is conserved. It is therefore sufficient to determine
the statistics of n2, defined by the master equation for P (n2), the probability of having n2 cells in state X2, provided that
there are n1 cells in state X1. The master equation is given by

dP (n2)
dt

=− (λ1n1 + λ2n2 + γn2)P (n2)

+ (λ1n1 + λ2(n2 − 1))P (n2 − 1)
+ γ(n2 + 1)P (n2 + 1),

[15]

also written as
dP (n2)
dt

=− (g(n2) + r(n2))P (n2)

+ g(n2 − 1)P (n2 − 1) + r(n2 + 1)P (n2 + 1),
[16]

in which r(n2) = γn2 and g(n2) = λ1n1 + λ2n2. Considering that we are interested in clonal dynamics, meaning that we start
from a single stem cell, n1 is equal to one.

In this simple case, the steady state distribution P ∗(n2), corresponding to the solution of dP (n2)/dt = 0, can be analytically
derived. Defining the net flux between states n2 and n2 − 1 as

In2 = r(n2)P ∗(n2)− g(n2 − 1)P ∗(n2 − 1), [17]

and considering that In2+1 = In2 for every n2, it follows that In2 = I0 = r(0)P ∗(0)− g(−1)P ∗(−1) = 0, which means that

P ∗(n2) = g(n2 − 1)
r(n2) P ∗(n2 − 1) =

n2−1∏
l=0

g(l)
r(l + 1)P

∗(0), [18]

where P ∗(0) is the steady state probability of having 0 cells in state X2. Finally, by applying the conservation of the total
probability,

∑∞
n2=0 P

∗(n2) = 1, and rearranging the terms we obtain

P ∗(n2) =
(

1− λ2

γ

)λ1/λ2 (
λ2

γ

)n2 Γ
(
λ1

λ2
+ n2

)
Γ(n2 + 1)Γ

(
λ1

λ2

) . [19]

In the main text we defined the dimensionless parameters λ̂1 = λ1/γ and λ̂2 = λ2/γ, representing the rescaled division rates
respectively for cells in state X1 and X2. For clarity and readability, in this section, we simplify the notation using p = λ̂1 and
q = λ̂2. Eq. 19 is then rewritten as

P ∗(n2) = (1− q)p/q qn2

Γ
(
p

q
+ n2

)
Γ(n2 + 1)Γ

(
p

q

) . [20]

It is noted that while p varies between 0 and ∞, q is defined between 0 and 1.
The mean number of cells in each state, indicated respectively as n̄1 and n̄2, satisfies the system of ODEs

dn̄1

dt
= 0

dn̄2

dt
= λ1n̄1 + (λ2 − γ)n̄2

. [21]

Based on this, the steady state average number of cells is{
n̄∗1 = 1

n̄∗2 = λ1

γ − λ2
= p

1− q
. [22]
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When the mean number of cells in state X2 is sufficiently large, i.e. for large p or in case q is close to one, the discrete
distribution given by equation 20, can be approximated by a continuous probability density function P ∗(x2), given by

P ∗(x2) = (1− q)p/qqpx2/(1−q)
Γ
(
p

q
+ p

1− q x2

)
x2Γ

(
p

q

)
Γ
(

p

1− q x2

) , [23]

in which x2 = n2/n̄
∗
2. We note that Eq. 23 corresponds to Eq. 11 in the main text.

To better understand the distribution for different values of the parameters p and q, the limit behaviour are analysed below.

1. q→ 0 (i.e. λ̂2 → 0)
When q → 0, Eq. 20 can be simplified considering that

lim
q→0

Γ
(
p

q
+ n2

)
Γ
(
p

q

) (
q

p

)n2

= 1, [24]

lim
q→0

(1− q)p/q = e−p [25]

and
Γ(n2 + 1) = n2!. [26]

Thus, the distribution results in

lim
q→0

P ∗(n2) = pn2e−p

n2! = Poisson(p), [27]

that is a Poisson distribution with mean equal to p. This agrees with what we were expecting considering that when
q = 0 the model is reduced to the IA model for which the distribution in n2 is known to be poissonian.
Additionally, for large mean number of cells, which are obtained for large p (when q = 0, then n̄∗2 = p), the Poisson
distribution tends to a Normal distribution with mean and variance equal to p. Therefore,

lim
(q,p)→(0,∞)

P ∗(n2) = 1√
2πp

e
−

(n2 − p)2

2p = Normal(p, p). [28]

Rescaling the distribution, and considering x2 = n2/n̄
∗
2, results in

lim
(q,p)→(0,∞)

P ∗(x2) = Normal(1, 1/p), [29]

that is a Normal distribution with unitary mean and variance equal to 1/p.

2. q→ 1 (i.e. λ̂2 → 1)
For q → 1 the steady state mean number of cells n̄∗2 →∞ and Eq. 23 holds. This equation can be rewritten as

P ∗(x2) = qp/(1−q)x2+1 (1− q)p/q
q(x2 − 1) + 1

Γ
(
p
q(x2 − 1) + 1
q(1− q) + 1

)
Γ
(
p

q

)
Γ
(

p

1− q x2 + 1
) . [30]

If the Stirling’s approximation is applied
Γ(z + 1) =

√
2πz

(
z

e

)z
, [31]

we obtain
P ∗(x2) = pp/qe−p/qq(q−2p)/(2q)(q(x2 − 1) + 1)p/(1−q)(x2−1+1/q)−1/2

Γ
(
p

q

)
x
x2p/(1−q)+1/2
2

. [32]

Considering now that

lim
q→1

(q(x2 − 1) + 1)p/(1−q)(x2−1+1/q)−1/2

x
x2p/(1−q)+1/2
2

= ep(1−x2)xp−1
2 , [33]
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it follows that
lim
q→1

P ∗(x2) = pp

Γ(p)x
p−1
2 e−px2 = Gamma(p, 1/p), [34]

that is a Gamma distribution with unitary mean and shape parameter given by p. Importantly, the Gamma distribution
for p→∞ tends to a Normal distribution with unitary mean and variance 1/p. For p = 1, it corresponds instead to an
Exponential distribution with unitary mean.

3. p→∞ (i.e. λ̂1 →∞)

When p is large, the mean number of cells is large for any value of q. Thus, Eq. 32 is valid. By applying the Stirling’s
approximation also to the term Γ(p/q), we obtain

P ∗(x2) =
√

p

2πx
−p/(1−q)x2−1/2
2 (q(x2 − 1) + 1)p/(1−q)(x2−1+1/q)−1/2. [35]

This expression can be also rewritten as

P ∗(x2) =
√

p

2π e
p/(1−q)((x2−1+1/q) log(q(x2−1)+1)−x2 log(x2))−1/2(log(x2)+log(q(x2−1)+1)). [36]

Considering now that p is large, then −1/2(log(x2) + log(q(x2 − 1) + 1))� p/(1− q)((x2 − 1 + 1/q) log(q(x2 − 1) + 1)−
x2 log(x2)), so the term on the right can be neglected. Additionally, for x2 → 1 the following expansions can be applied

log(q(x2 − 1) + 1) =
∞∑
k=1

(
(−1)k+1 (q(x2 − 1))k

k

)
, [37]

and

log(x2) =
∞∑
k=1

(
(−1)k+1 (x2 − 1)k

k

)
. [38]

Finally if we consider that(
x2 − 1 + 1

q

)∑∞
k=1

(
(−1)k+1 (q(x2 − 1))k

k

)
− x2

∑∞
k=1

(
(−1)k+1 (x2 − 1)k

k

)
(x2 − 1)2 = − 1

2(1− q) , [39]

then Eq. 36 results in

lim
p→∞

P ∗(x2) '
√

p

2π e
−1/2p(x2−1)2 = Normal(1, 1/p), [40]

that is a Normal distribution with unitary mean and variance equal to 1/p.

Importantly, it is noted that the limiting behaviour of P ∗(x2) for q → 0 and q → 1 in case of large p, are both consistent
with the results obtained for p → ∞ and any q. In other words, remembering that p = λ̂1 and q = λ̂2, the steady state
distribution for λ̂1 →∞ and any value of λ̂2 is a Normal distribution of unitary mean and variance equal to 1/λ̂1.

To globally verify these results, numerical simulations of the stochastic process associated with model 14 for different values
of λ̂1 and λ̂2 were run. The following curves were compared:

• Stochastic simulation: distribution at the final simulation time, τ , of the number of cells in state X2. The final time
was chosen here as τ = 20/αmin, where αmin = min(λ1, λ2, γ); this value is well representative of a steady state condition.
Furthermore, the process rates considered are based on a unitary γ (i.e. λ1 = λ̂1, λ2 = λ̂2 and γ = 1). It is noted that
the time unit is arbitrary and therefore omitted.

• Analytic distribution: based on Eqs. 20, for low mean values, and 23, for large mean values.

• Approximate distributions: Poisson, Gamma and Normal distributions respectively given by Eqs. 27, 34 and 40.

The tested parameters λ̂1 and λ̂2 are graphically shown in Figure A5 a contour map showing the expected steady state mean
number of cells n̄∗2 over the (λ̂1, λ̂2)-parameter plane. The curves from the numerical simulations and the corresponding exact
and approximated solutions are shown in Figure A6, Figure A7 and Figure A8: the tested conditions are divided into three
groups (one figure each) representing the limiting behaviours discussed above. Generally, analytical and numerical results agree
very well. This also demonstrates that GIA models can show both peaked and non-peaked distributions, depending on the
model parameters.
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B. Approximation of generic GIA Models. As shown in the main text, a generic GIA model can be expressed in terms of
the compartments R and C (Eq. 9 in the main text). We note that the the GIA0 model discussed in the previous section
corresponds to the general compartment dynamics of GIA models, Eq. 9, main text, if the dynamics of compartments are
assumed to be Markovian. Thus, we can treat the GIA0 model as a Markovian approximation of generic GIA models. In this
section, we test this approximation numerically.

To this end, we first wish to relate the effective (non-Markovian) rates λR,C and γC of a generic GIA model to the rates of
the Markovian approximation, the GIA0 model. We refer to this model – the GIA0 model matched to the effective rates of a
particular more complex GIA model – as the equivalent model to the latter. The equivalent rates λR, λC and γC are computed
considering the same steady state condition in terms of mean number of cells. To this aim, we rewrite the dynamics of mean
cell numbers, Eq. 7 in the main text, in block form as

dn̄R
dt

= ARRn̄R

dn̄C
dt

= ACRn̄R +ACC n̄C

dn̄∅
dt

= A∅C n̄C

, [41]

in which n̄R,C denote the vectors of mean cell numbers of states restricted to compartments R, C, respectively, and n∅ the
number of lost cells (not considered for total cell numbers and homeostasis condition). It is noted that ARC = 0, since there
cannot be links from C to R. Also A∅R = 0 as we do not consider loss from R (see main text for the arguments).

Thus, summing up all the components in each compartment, n̄R =
∑

i
(n̄R)i = 1 and n̄C =

∑
i
(n̄C)i, results in

dn̄R
dt

= 0

dn̄C
dt

=
∑

i
(ACRn̄R)i +

∑
i
(ACC n̄C)i

dn̄∅
dt

= A∅C n̄C

. [42]

The equivalent parameters are then estimated from the steady state condition n̄∗X and n̄∗X , for X = R,C, ∅, as

λR =
∑
i

(ACRn̄∗R)i, γC =
∑

i
(A∅C n̄∗C)i
n̄∗C

and λC = γC −
λR
n̄∗C

. [43]

The applicability of this approximation was evaluated by comparing the clone size distribution obtained from the random
GIA models (generated as described in 2.B and analyzed in the main text) with that from the corresponding equivalent GIA0

model with parameters λ̂1 = λ̂R = λR/γC and λ̂2 = λ̂C = λC/γC . The values of λ̂1 and λ̂2 for all the GIA random models
are shown in Figure A9 in the contour map of the expected mean number of cells in C (in compartment R there is always
one single cell). In general, λ̂1 remains below five and λ̂2 is spread between zero and one. As measure of the error of the
equivalent model, ε, we choose the maximum difference between the distributions of a particular random GIA model and
that of the corresponding equivalent model, relative to the peak of the distribution of the random model. For low mean cell
numbers, the distribution is compared to Eq. 20; for large mean number instead, the rescaled distribution is compared to Eq.
23. A threshold on the mean cell number equal to 10 was chosen to distinguish between the two cases. This relative error ε
as function of λ̂2 is presented in Figure A10, where it is evident that large errors are obtained only for large values of this
parameters. Some illustrative cases, representative of different value of λ̂2, were selected and their distribution is shown in
Figure A11, Figure A12 and Figure A13. The following considerations are made:

• Two cases for λ̂2 < 0.2 are presented in A11. In these cases, the distribution obtained from the random models agrees
with the analytic solution from the equivalent model, which in turn is well approximated by a Poisson distribution.
As expected, larger deviations between the equivalent model’s analytic solution and the approximation are noted for
increasing values of λ̂2. In general, all the models in this range are well approximated by the equivalent model.

• The two cases presented in Figure A12 have λ̂2 > 0.8, for which the Gamma distribution is an approximation of the
equivalent model’s analytic solution. The distribution in some cases (see for instance the top figure), presents some
deviations with respect to the equivalent model. However, globally a good agreement is obtained in most of the cases
(failing ratio, based on a 0.5 maximum error is 21.7%).

• Two cases in an intermediate range 0.2 < λ̂2 < 0.8 are shown in Figure A13. Again, the equivalent model’s analytic
solution is well representative of the distribution (failing ratio, based on a 0.5 maximum error is 3.2%). It is noted that
for such values of λ̂2 an approximation of the equivalent model analytic solution is not available.

Thus, in most of the tested cases the equivalent model is able to catch the behaviour of a generic random GIA model, and
thus represents a good approximation (global failing ratio, based on a 0.5 maximum error is 6%). In the cases where the
equivalent model does not yield a good approximation, the internal structure of the R and C compartments become relevant
and subsequent events that affect nR and nC become dependent on each other, and thus are non-Markovian.
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C. GIA Model for Large λ̂R. To test the behaviour of a generic GIA model in case of large λ̂R, the GIA random models
(generated as described in 2.B and analyzed in the main text) were modified by changing the process rates associated to the
renewing compartment to achieve λ̂R = 30. To this aim, considering that infinite solutions are possible, we applied a global
search method, and more specifically a Genetic Algorithm (40). We therefore setup an optimization problem, where the process
parameters are the optimization variables and the cost function is the error of the current λ̂R with respect to the target.

The envelope of curves obtained in all the random models and some illustrative profiles are shown in Figure A14. A
reference Normal distribution, characterized by unitary mean and variance equal to 1/λ̂R = 1/30 is also reported: this curve
corresponds to the distribution expected in the equivalent model for which λ̂1 = λ̂R. Deviations become relevant, when the
internal structure of compartments in a random model leads to subsequent events that are not independent from each other.
These effects alter the variance of the Normal distribution. In fact, Figure 4 in the main text is based on the same simulation
results, but in this case the rescaling is done considering both the mean number of cells and its variance (a Normal distribution
is a two-parameter distribution).

D. GIAB Test Case: bimodal distribution. In the previous subsection we increased λR in a way which assures that other
parameters within R stay of the same order of magnitude. Here, we address the question what happens if some parameters
within R are much smaller than parameters of C, such as γC . For that purpose, we study another simple GIA model, let us call
it GIAB , as a modification of the GIA0 test model defined by 14. In the GIAB model the renewing compartment is composed
by two states X1 and X2, instead of only one. Cells in these states divide asymmetrically (i.e. one daughter cell remains within
the renewing compartment while the other enters the committed compartment) or change state between X1 and X2 (cell state
switching) while still remaining within the renewing compartment. The committed compartment of the system is composed
just by a single state, X3, and cells in this state either duplicate or die (as the previous state X2 in Eq. 14). This corresponds
to the model

X1
λ1−→ X1 +X3, X2

λ2−→ X2 +X3, X1
ω12−→ X2, X2

ω21−→ X1, X3
λ3−→ X3 +X3, X3

γ−→ ∅. [44]

In this model, the effective parameters as defined in section 4.B, λR = λ1P
∗
1 + λ2P

∗
2 , where P ∗i = ωji

ωij+ωji
, i, j = 1, 2, i 6= j,

and γC = γ. As before, we define the non-dimensionalized parameters λ̂R = λR/γC and here we also define ω̂ = ω12/γC , and
further the parameter ratios a = λ1/λ2 and b = ω12/ω21. In the following we test this model for different values of a and ω̂ as
reported in Table 2, while fixing λ̂R = 30, which is our main scaling parameter, as well as λ̂C = 0 and b = 1.

The rescaled distribution of the number of cells in the committed compartment C (i.e. in state X3), nC , obtained at the final
simulation time τ , is shown in Figure A15. A value of τ equal to 20/αmin (where αmin is the minimum of all rate parameters)
was chosen to assure that the steady state is reached. Considering first the test cases GIAB#1 and GIAB#2 according to
Table 2, which are characterized by a = 1 (i.e. there is no difference in the division timescales for the two renewing states),
they both lead to a Normal distribution, independently on the value assumed by ω̂. Test cases GIAB#3 to GIAB#7 instead
are all characterized by a = 10, and different orders of magnitude for ω̂ are tested. The distribution in these cases is Normal
until ω̂ ≥ λ̂R/10 (see cases GIAB#3 to GIAB#5); when ω̂ is significantly lower than λ̂R, then bimodality emerges (see cases
GIAB#6 and GIAB#7). Looking at the extreme case, GIAB#7, cells in each renewing state, if analyzed independently, would
result in a Poisson distribution in the committed compartment with different mean values (low for the slow-dividing state and
large for the fast-dividing one). Thus, globally the distribution is in line with a bimodal distribution computed as

P (n) = βPoisson(λ̂(1)
R ) + (1− β)Poisson(λ̂(2)

R ), [45]

in which β is the mixing parameter, computed as
β = n̄− n̄2

n̄1 − n̄2
, [46]

and the parameters λ̂(i)
R and n̄i for i = 1, 2 correspond to the parameter λ̂R and to the mean number of cells of a system in

which the renewing compartment would be composed just by state Xi. The total mean number of cells is instead indicated by
n̄. The bimodal distribution given by Eq. 45 is indicated as a black dashed-dotted line in Figure A15.

5. Analysis of the Generalized Population Asymmetry Model

In the main text it is shown that GPA models predict asymptotically, for large times t, the same rescaled clone size distribution,
that is, an Exponential distribution of unitary mean.

In Figure A16 the 50%tile distribution of all the GPA models analysed is shown at different levels of extinction (which are
related to the different time points), showing a gradual convergence to the expected Exponential distribution.

Thus, the Markov approximation to all GPA models, Eq. 12 in the main text (the equivalent model of GPA models), becomes
accurate for sufficiently large t and no significant deviations are observed. This also means that for large t, the distribution is
independent of the choice of parameters, since only the mean value of surviving clones, n̄s, depends on parameters, which
however, does not affect the rescaled distribution in terms of x = n

n̄s
. We can therefore abstain from an extended study of

different parameter regimes. This is in contrast to the GIA model class where distributions depend sensitively in the choice of
parameters if we are not in the scaling regime of large λ̂R, and the non-Markovian nature of GIA models can become relevant,
as we showed in the previous section.
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6. Asymptotic clone size distributions: Mathematical analysis

In the previous two sections we studied numerically how a Markovian representation can approximate general cell fate models
(GIA and GPA) models. Here we study from an analytical view point how generic GIA and GPA models converge to the
respective limiting distributions, for large time t (GPA models) and large λ̂R (GIA models).

Similar to section 4.B, we define nR and nC as the cell number vectors (here: actual cell numbers of the stochastic model,
not mean cell numbers) restricted to the states of compartments R and C, respectively. We further define the accumulated
cell numbers nR =

∑
i
(nR)i and nC =

∑
i
(nC)i in R and C, respectively. Considering nR and nC as observables of our

compartment model, this corresponds to a Hidden Markov Model in that the dynamics of the observables are not Markovian,
yet they are entirely determined by a set of states which follow a Markov process.

A. General dynamics of C-cells for GIA and GPA models.

Comments on the effective rate parameter λR. For general GIA and GPA models in the compartment representation of Eq. 9,
main text, the effective rate parameter λR (i.e. the frequency of cell divisions in R per cell), is defined similar as in section
4.B, yet, here we take into account that λR can depend on time via the – not necessarily stationary – distribution of cells
within R (since the process is non-Markovian). Hence, in these more general terms, we define λR(t) =

∑
i∈R λiP

R
i (t) where

PRi (t) = n̄i(t)
n̄R(t) is the probability of a single cell to be in state i at time t. PRi (t) may variate after each event E, as the

conditional probability PR|E , provided that an event E has just occurred, differs from the stationary state distribution.
In homeostasis, where the number of R-cells must on average stay constant, λR is also the rate, per R-cell, at which C-cells

are created from R-cells, via events R → R + C,R → C + C, or direct transition, R → C. Thus, the total rate of C-cells
being created from the R-cells by such events – let us call them RC-events – is λRnR. While the non-Markovian nature of the
process does not assure that such events are distributed exponentially, we can state that, by definition, the number of such
creation events in a time period ∆t, NRC , has mean value 〈NRC(∆t)〉 =

∫ ∆t
0 λR(t)nR(t) dt.

While, λR(t) may in principle depend on time, we note that when internal rates of R are fast compared to the time period
∆t above (an internal rate of R is a rate ωij where states i, j are both in R), then λR(t) fluctuates quickly and we can make
an adiabatic approximation, replacing λR(t) by its average λ̄R =

∑
i∈R λiP

R
i , where PR∗i = n̄∗

i
n̄∗
R

is the steady state value of
PRi (t) (this corresponds for GIA models to the definition of λR in section 4.B). This is fulfilled in our simulations of large
λ̂R, since internal rates, such as ω̂ defined in section 4.D, scale with λ̂R when λR → ∞ (see section 4.C). Hence, the time
scales of internal rates are substantially smaller than the relevant time scale ∆t = 1/γ̄C , the lifetime of generated C-cells.
Therefore, when comparing with simulation results, it is generally appropriate to assume that λR(t) ≈ λ̄R is constant. In the
following subsection, we will discuss this case. The case when internal rates are slower than the time scale γC is discussed in
the subsequent subsection.

Asymptotic distributions of C-cells Each C-cell created by an RC-event initiates a sub-clone within C, defined through its
progeny, which then follows the dynamics of C. Such sub-clones evolve independently of each other (a defining characteristic of
branching processes (13)). Let us call the number of cells of a sub-clone created by an RC-event at time ti, which evolves over
time t, as ξi(t)‡. Therefore, the total number of cells in C is the sum of independent random numbers ξi,

nC(t) =
NRC∑
i=1

ξi(t) [47]

Note that the random numbers ξi(t) are not identically distributed, since their statistics depend on the time point of the i-th
RC-event. In particular, the mean value, ξ̄i(t− ti) = 〈ξi(t)〉 and variance σ2

ξ (t− ti) = 〈(ξi(t)− ξ̄i)2〉 depend on the time passed
since the respective RC-event at time ti. Thus, we cannot apply the central limit theorem in its original form to the sum of
random numbers, Eq. 47. However, a variation of the central limit theorem states that sums of non-identically distributed
random variables,

∑
i
ξi, converge to normally distributed random variables, if mean and variance of ξi are finite, and they

fulfill Lindeberg’s condition (41).
The (strict) Lindeberg’s condition is said to be fulfilled for a sequence of random numbers ξi, i = 1, ..., N , if

max
i

σ2
i

σ2
N

→ 0, for N →∞ [48]

where σ2
i = 〈(ξi − ξ̄i)2〉 and σ2

N =
∑N

i=1 σ
2
i . If this is fulfilled, then nC =

∑N

i=1 ξi converges for N →∞ to a random variable
that is normal distributed.

To show that the ξi fulfill Lindeberg’s condition, we note that ξi(t− ti) follow a sub-critical multi-type branching process,
for which ξ̄i(t) → 0 for t → ∞, which is assured since the eigenvalues of the adjacency matrix of C are all negative (since
dominant eigenvalues of all SCCs in C are negative (25)). For multi-type branching processes the variance σ2 is proportional to
the mean value, hence σ2

i (t− ti) ∼ ξ̄(t− ti). Therefore, σ2
i → 0 for t→∞, hence it is bounded, i.e there exists C > 0 such

that σ2
i (t) < C for all t. Furthermore, since initially, at t = ti, ξ̄i(ti) = 1, we know that there exist t1 > 0 and δ > 0 such that

ξ̄i(t) > δ for t− ti < t1. Now we recall that, since here we assume the validity of the adiabatic approximation discussed in the
‡We denote twoRC-events which happen at the same time via a symmetric division of typeR→ C + C by different indices i and i + 1, yet with ti = ti+1
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previous subsection, the number of RC-events within a time period ∆t is NRC(∆t) ∼ λR
∫ ∆t

0 nR(t′) dt′. For generic λR, NRC
is finite and thus is σN , since all σi(t)→ 0 for large t. However, for λR →∞ or nR →∞, we get that NRC(t1) ∼ λ̄RnR →∞
and thus σ2

N =
∑NRC

i=1 σ2
i (t) > NRCδ →∞. On the other hand, all σ2

i < C, which means that all σ2
i

σ2
N

< C
σ2
N

→ 0 for λR →∞
or nR →∞. Hence, Lindeberg’s condition is fulfilled if λR →∞ or nR →∞ and thus, nC becomes normally distributed,

nC(t) =
NRC∑
i

ξi(t)→ Normal(mean = n̄C , variance ∼ n̄C) [49]

The variance scales with nC since variances of independent random numbers add linearly and each σ2
i ∼ ξ̄i. The exact value of

n̄C and the pre-factor of the variance of nC in this limit depend on the (non-Markovian) model details.

Deviations from a Normal distribution in the asymptotic case The arguments leading to Eq. 49 hold for large λ̂R if the internal
rates of R are comparable to λ̄R =

∑
i
λi

n̄∗
i

n̄∗
R
, which is satisfied for all cases we sampled randomly for numerical simulations,

see section 4.C. However, if internal rates of R are much smaller than λR, then the adiabatic approximation PRi (t) ≈ n̄∗
i

n̄∗
R

does not apply and λR(t) may vary slower than the time scale 1/γ̄C . For example, consider a GIA model in which R can be
decomposed into two sub-compartments, say R1 and R2, whereby any rates ωij , ωji with i ∈ R1, j ∈ R2 have ωij , ωji � λ̄R,
as the example discussed in section 4.D. Then, the single cell in R (note that always nR = 1 in GIA models) may spend long
time periods in R1 and R2 respectively. Now, if λ̄R1 =

∑
i∈R1

λi
n̄i
n̄R1
6=
∑

i∈R2
λi

n̄i
n̄R2

= λ̄R2 , then, for time periods exceeding
1/γ̄C , the effective asymmetric division rates are λ̄R1 and λ̄R2 respectively, and during these time periods the distribution
of nC cells has mean n̄(1)

C ∼ λ̄R1 and n̄(2)
C ∼ λ̄R2 respectively. Hence, the total clone size distribution will be the mix of two

Normal distributions with mean n̄(1)
C and n̄(2)

C , respectively, i.e. a bimodal distribution. This scenario is discussed in section
4.D, for the specific case of two states in R.

B. GIA models. In GIA models, the number of R-cells is conserved, and in particular, for clones, we have nR = 1 for all times.
Hence, the rate of RC-events is simply λR. Now, if internal rates are fast and λR →∞, then nC becomes normally distributed,
as argued above. Hence, also n = nR + nC = 1 + nC follows a Normal distribution, with mean nC + 1 instead.

Nonetheless, if internal rates are less than γC then bimodal distributions may be observed, as discussed in section 4.D.

C. GPA models. The dynamics of GPA models read, in compartment formulation,

R
λR−→


R+R Pr. rRR
R+ C Pr. 1− rRR − rCC
C + C Pr. rCC

, [50]

R
ωRC−→ C, C

λC−→ C + C, C
γC−→ ∅ [51]

Since the dynamics of R-cells do not depend on C-cells, we can first consider the formers’ dynamics separately. In homeostasis,
where λRrRR = λRrCC + ωRC , we have thus for R-cells,

nR
λRrRRnR−−−−−−−→ nR ± 1 [52]

This is a simple continuous time branching process with two offspring; yet it is non-Markovian: subsequent events may be
correlated, since each event imbalances the internal distribution PRi of cells in the compartment R. Yet, as for C-cells, we can
write the number of R-cells as a sum of independent (but not identically distributed) random variables. Let us consider for
each R-cells, born at time ti, the random variable ξRi describing its “survival” state, i.e. ξRi = 1 if that cell is still in R, and
ξRi = 0 if that cell has left R via symmetric differentiation, R→ C +C or direct transition, R→ C§. Since these events do not
depend on other cells, the random numbers ξRi are independent of each other, and thus,

nR(t) =
Nb(t)∑
i=1

ξRi (t) , [53]

is a sum of independent, not identically distributed random variables. Here, Nb(t) is the total number of birth events occurring
at rate λRrRRnR, R → R + R, up to time t. Since ξRi (t) ≤ 1 and ξRi (t = ti) = 1, we can argue analogue to above for Eq.
49 that the sequence of ξRi fulfills Lindeberg’s condition and thus nR converges to a Normal distribution, whereby the mean
value n̄R = 1 (since due to homeostasis the mean number is constant and the initial condition is nR(t = 0) = 1). Hence, the
probability to have nR cells in R is

P (nR) ∝ e
− (nR−1)2

2σ2
R ∼ e

−
n2
R

2σ2
R for nR � 1 . [54]

§Essentially, the random numbers ξRi are the ‘branches’ of the branching process

12 Parigini et al.



However, here, the variance σ2
R is a random variable itself: Since the ξRi are independent, σ2

R =
∑Nb(t)

i=1 σ2
i , where σ2

i =
〈(ξRi − ξ̄R)2〉, and where Nb(t) is a random variable. The random numbers ξRi can only have the values ξi = 1 or ξRi = 0 and
they follow a simple death process, so for ξR = 0, it must be σ2

i = 0, while for ξRi = 1, the variance must be finite, let’s say,
σ2
i = β(t) > 0 where β can in principle depend on time, yet is not known (it depends on the non-Markovian details of the

model). Hence,

σ2
R =

Nb(t)∑
i=1

β(t)ξRi = β(t)nR [55]

since the number of summands with ξRi = 1 is the number of surviving R-cells, i.e. nR. Substituting σ2
R = β(t)nR into Eq. 54

gives,

P (nR) ∼ e−
n2
R

2β(t)nR = e
− nR

2β(t) [56]

This is an Exponential distribution with mean value n̄R = 〈nR〉 = 2β(t). Finally, when we enforce normalisation of the
probability distribution, we get,

P (nR) = 1
n̄R(t)e

− nR
n̄R(t) for nR � 1 . [57]

Eventually, we also have to “add” the C-cells. Since for t � 1, also nR � 1, individual events nR → nR ± 1 do not
significantly affect the distribution of R-cells, PRi = n̄i

n̄R
(in contrast to the case of nR = 1 for GIA models), and hence we

can assume the adiabatic approximation discussed above, where PRi ≈ PR∗i and thus λR ≈ const.. Therefore, C-cells are
distributed according to a Normal distribution with mean n̄C and variance σ2

n2 ∼ n̄C ∼ λRnR. As argued in the main text, the
mean value of nR, conditionend on survival of a clone, nR > 0, must grow over time, without bound if t → ∞. Therefore,
we can generally assume that nR � 1, and hence both n̄C ∼ nR →∞ and σ2

C ∼ nR →∞. However, if we express the clone
size in form of a rescaled variable x = n

n̄s
(n̄s is the mean of surviving clones) we can write x = xR + xC with xR = nR

n̄s
and

xC = nC
n̄s

, and note that the rescaled standard width of the distribution of xC , σxC = σC
n̄
∼

√
n̄C

n̄R+n̄C
∼
√
nR
nR

vanishes for t→∞.
Therefore, xC is effectively a constant in that limit, xC ≈ x̄C ∝ xR. Hence, also x = xR + xC ∝ xR and thus, the rescaled
clone size, x = n

n̄s
, is distributed according to an Exponential distribution (here: a probability density function) with unit

mean, and after renormalisation, we get that

P (x) = e−x for t→∞. [58]

This distribution is indeed observed in all our simulations of GPA models for large t.

Parigini et al. 13
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Fig. A1. Invariant Asymmetry (IA) test cases clone size distribution P (n), that is the distribution of the total number of cells n forming the progeny of a single initial cell inR.
For each case, the distribution is shown at τ , which is well representative of the steady state condition. Tested parameters for cases IA#1-3 are provided in Table 1; the
numerical simulation results are compared to the expected Poisson distribution. The detailed discussion is reported in section 3.A.
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Fig. A2. Population Asymmetry (PA) test cases clone size distribution P (n), that is the distribution of the total number of cells n forming the progeny of a single initial stem cell.
For each case, the distribution is shown at the final time τ , at which the total extinction of the process is not yet achieved. Tested parameters for cases PA#1-3 are provided in
Table 1; the numerical simulation results are compared to the solution of the numerical integration of the master equation 8 and, for test case PA#1, also to the reference
analytic solution from Ref. (18). The detailed discussion is reported in section 3.A.
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Fig. A3. Metastate (MS) test cases simulation results in terms of mean number of cells in the surviving clones n̄s and extinction probability P (n = 0) as function of time
(scaled by the final simulation time τ ). As well as for the PA test cases, at τ the total extinction of the process is not yet achieved. Profiles from the numerical simulation for
cases MS#1,3 are compared to the corresponding PA#1,3 test cases which are based on parameters provided in Table 1. The detailed discussion is reported in section 3.B.
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Fig. A4. Metastate (MS) test cases simulation results in terms clone size distribution P (n), that is the distribution of the total number of cells n forming the progeny of a single
initial stem cell. As well as for the PA test cases, the distribution is shown at the final time, τ , at which the total extinction of the process is not yet achieved. Profiles from the
numerical simulation for cases MS#1,3 are compared to the corresponding PA#1,3 test cases which are based on parameters provided in Table 1. The detailed discussion is
reported in section 3.B.
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Fig. A5. GIA0 test case parameters λ̂1 and λ̂2 over the contour map of the expected steady state mean number of cells in state X2, n̄∗
2 . The tested conditions are divided in

three groups representing the limiting behaviours discussed in in section 4.A, and for which the steady state distribution is shown respectively in Figure A6, Figure A7 and
Figure A8.
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Fig. A6. GIA0 test case (see section 4.A) results in terms of steady state distribution P∗(n2) of the the number of cells in state X2, n2. The tested parameters correspond to
the condition λ̂2 = 0.01, as representative of the limiting case λ̂2 → 0, and to different values of λ̂1. The results from the numerical simulations are compared to the analytic
solution (Eq. 20), and its approximation, that is, the Poisson distribution (Eq. 27).
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Fig. A7. GIA0 test case (see section 4.A) results in terms of steady state rescaled distribution P∗(x2) of the the number of cells in state X2, where x2 = n2/n̄
∗
2 . The tested

parameters correspond to the condition λ̂2 = 0.99, as representative of the limiting case λ̂2 → 1, and to different values of λ̂1. The results from the numerical simulations
are compared to the analytic solution (Eq. 23), and its approximation that is the Gamma distribution (Eq. 34).
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Fig. A8. GIA0 test case (see section 4.A) results in terms of steady state rescaled distribution P∗(x2) of the the number of cells in state X2, where x2 = n2/n̄
∗
2 . The tested

parameters correspond to the condition λ̂1 = 60, as representative of the limiting case λ̂1 →∞, and to different values of λ̂2. The results from the numerical simulations are
compared to the analytic solution (Eq. 23), and its approximation that is the Normal distribution (Eq. 40).
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Fig. A9. GIA random models (generated as described in 2.B and analyzed in the main text) equivalent parameters λ̂1 = λ̂R and λ̂2 = λ̂C (see section 4.B) over the contour
map of the expected steady state mean number of cells in the committed compartment, n̄∗

C . Some illustrative cases, for which the steady state distribution is shown in Figure
A11, Figure A12 and Figure A13, are highlighted.
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Fig. A10. Relative error of the the equivalent model approximation, ε, (see definition in section 4.B) as function of λ̂2 = λ̂C for the GIA random models (generated as
described in 2.B and analyzed in the main text). The selected cases correspond to some illustrative cases for which the steady state distribution is shown in Figure A11, Figure
A12 and Figure A13.
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Fig. A11. GIA random models selected cases (see Figure A9 and A10) where λ̂2 < 0.2: the steady state distribution P∗(nC) of the number of cells in the committed
compartment, nC , is compared to that of the equivalent model (Eq. model in the legend) analytic solution and its approximation for low λ̂2 (i.e. the Poisson distribution,
Poisson(λ̂1)). Results discussion is reported in section 4.B.
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Fig. A12. GIA random models selected cases (see Figure A9 and A10) where λ̂2 > 0.8: the steady state rescaled distribution P∗(xC) of the number of cells in the committed
compartment, where xC = nC/n̄

∗
C , is compared to that of the equivalent model (Eq. model in the legend) analytic solution and its approximation for high λ̂2 (i.e. the Gamma

distribution, Gamma(λ̂1, 1/λ̂1)). Results discussion is reported in section 4.B.
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Fig. A13. GIA random models selected cases (see Figure A9 and A10) where 0.2 < λ̂2 < 0.8: the steady state distribution P∗(nC) (or the rescaled distribution P∗(xC))
of the number of cells in the committed compartment, nC (or in the rescaled case xC = nC/n̄

∗
C ), is compared to that of the equivalent model (Eq. model in the legend)

analytic solution. Results discussion is reported in section 4.B.
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Fig. A14. Rescaled clone size distribution for the random GIA models when λ̂R = 30 at the final simulation time, which corresponds to 20/αmin (αmin is the minimum
process rate). The grey shade represents the percentile of all the simulations (black lines limit the 5-95%ile range); the blue curves correspond to some illustrative selected
simulations. A reference curve corresponding to a Normal distribution of unitary mean and variance equal to 1/λ̂R = 1/30 is shown in green. Distributions of the total number
of cells n are scaled by the mean number of cells n̄, being x = n/n̄. Simulations for which the final condition (20 times the inverse of the minimum process rate) is not
achieved (due to computational limitations) are not included, resulting in 922 models. Results discussion in provided in section 4.C.
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Fig. A15. Rescaled distribution of the cells number in the committed compartment in the GIAB test cases at time τ , which is 20/αmin (αmin is the minimum process rate).
The distributions P (x̃C) of the number of cells in the committed compartment nC is rescaled considering that x̃c = (nC − n̄C)/σnc , where σnc is the variance of nc. In
addition to the stochastic simulation results for different settings (see Table 2), the reference Normal and bimodal distributions are also shown. Results discussion is provided in
section 4.D.
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Fig. A16. Clonal size distribution (corresponding to the 50%ile curve) in the GPA random models at different extinction fraction (i.e. different time). The curves are compared to
the expected Exponential distribution (see section 5).
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Table 1. IA and PA test cases simulation parameters (see section 3.A)

Case λ γ r

IA#1 1.0 1.0 -
IA#2 2.0 1.0 -
IA#3 5.0 1.0 -
PA#1 1.0 1.0 1/4
PA#2 2.0 1.0 1/4
PA#3 2.0 1.0 1/6

Table 2. GIAB test case simulation parameters (see section 4.D)

Case ω̂ λ1/λ2

GIAB#1 3 101 1
GIAB#2 3 10−2 1
GIAB#3 3 102 10
GIAB#4 3 101 10
GIAB#5 3 100 10
GIAB#6 3 10−1 10
GIAB#7 3 10−2 10
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