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Abstract

The full two-loop amplitudes for five massless states in Type II and Heterotic super-
strings are constructed in terms of convergent integrals over the genus-two moduli space
of compact Riemann surfaces and integrals of Green functions and Abelian differentials
on the surface. The construction combines elements from the BRST cohomology of
the pure spinor formulation and from chiral splitting with the help of loop momenta
and homology invariance. The α′ → 0 limit of the resulting superstring amplitude is
shown to be in perfect agreement with the previously known amplitude computed in
Type II supergravity. Investigations of the α′ expansion of the Type II amplitude and
comparisons with predictions from S-duality are relegated to a first companion paper.
A construction from first principles in the RNS formulation of the genus-two amplitude
with five external NS states is relegated to a second companion paper.
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1 Introduction

The perturbative evaluation of superstring amplitudes in the Ramond-Neveu-Schwarz (RNS)

formulation proceeds systematically from first principles (see for example [1, 2, 3, 4] and

references therein). Space-time supersymmetry is achieved in the RNS formulation by as-

sembling the separate contributions from the NS and R sectors and integrating over super

moduli which includes a sum over spin structures. By contrast, the pure spinor formulation

[5, 6, 7] requires only an integral over bosonic moduli and is manifestly supersymmetric. It

provides a streamlined approach to the evaluation of multi-particle superstring amplitudes

with arbitrary external massless states (see for example [8, 9] and references therein). How-

ever, for genus three and greater, the pure spinor formulation faces the complication of a

composite b-ghost whose presence is required to produce a suitable measure on moduli space.

Various problems associated with the b-ghost and with the integration over pure spinor zero

modes remain incompletely resolved to date.

While the explicit calculation of higher-genus amplitudes in superstring theory is of

interest in its own right, it is also mainly motivated by the systematic study of the low

energy effective interactions induced by string theory and the derivation of associated non-

renormalization theorems, as well as by the exploration of the hidden structures of scattering

amplitudes in quantum field theory through the α′ → 0 limit, such as the perturbative re-

lations between gauge theories and supergravity. Another, more mathematical motivation

is to gain a better understanding of the higher-genus modular forms that enter multi-loop

string amplitudes.

The focus of this paper will be on genus-two amplitudes. In the RNS formulation,

amplitudes receive contributions from even and odd spin structure sectors. The measure for

the even spin structure sector was evaluated in [10, 11, 12, 13] with the help of the canonical

holomorphic projection of the genus-two even spin structure super moduli space onto moduli

space. An alternative derivation of the measure using algebraic geometry methods was given

more recently in [14, 15]. The genus-two amplitude for four external NS bosons was evaluated

for both the Type II and Heterotic strings and is given by convergent integrals over the

moduli space of genus-two compact Riemann surfaces, and integrals over each surface of

combinations of Green functions in [16, 17]. The absolute normalization of the Type IIB

amplitude and a comparison of its low energy expansion with the implications from S-duality

were obtained in [18] with further results derived in [19, 20]. A general formulation for the

even spin structure part of the genus-two amplitude for an arbitrary number of NS states

was given using Dolbeault cohomology in [21], but no explicit formulas for amplitudes with

more than 4 external states have been obtained in the RNS formulation yet.
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The genus-two results for four massless states in Type II were reproduced soon after the

RNS calculations using the pure spinor formulation, and extended to obtain the amplitudes

involving external R states and thus external fermions [22]. Agreement with the results from

RNS was verified in [23], including the precise normalization of the amplitude [24]. The

pure spinor prescription was also applied to genus-two amplitudes with five external states

in [25] and to genus-three amplitudes with four external states in [26]. In both cases, finite

expressions consistent with S-duality were obtained for the leading terms in the low energy

expansion of these amplitudes. While for the genus-two amplitude with five external states

the full expression will be derived below, the divergences in the zero-mode integrals of the

bosonic ghosts pose difficulties when attempting the same for the genus-three amplitude.

In the present paper, we shall construct the genus-two amplitudes for five massless ex-

ternal states of the supergravity multiplet for Type II superstrings, and the supergravity or

the super Yang-Mills multiplet for Heterotic strings. The extension to Type I superstrings

is expected to follow from our construction as well but will not be considered in any detail

here. We shall follow the prescription neither of the RNS formulation nor of the pure spinor

formulation. Instead we shall combine ingredients of both formulations with properties of

the corresponding maximal supergravity amplitudes. Specifically, we shall use the vertex

operator BRST cohomology (see [27] and references therein) from the pure spinor formula-

tion, and import the chiral splitting procedure and homology invariance properties of chiral

amplitudes which were developed in the context of the RNS formulation [2, 28].

It will turn out that the construction via a combination of these ingredients produces

unique amplitudes in the above theories in terms of integrals over the moduli space of compact

Riemann surfaces and, for each surface, integrals over combinations of Green functions and

meromorphic Abelian differentials. The integrals are convergent after analytic continuation

in the external momenta, as is familiar from genus-one amplitudes [29].

Our key result is the construction of the chiral amplitude K(5) which is a function of

external momenta, chiral polarization vectors and spinors, loop momenta, and a complex

analytic dependence on vertex operator points and moduli of the underlying compact Rie-

mann surface Σ. The integration of the pairing of left and right chiral amplitudes over loop

momenta, vertex operator points, and moduli gives the physical amplitude for five external

states in the supergravity multiplet. For example, the Type II amplitudes take the form,

A(5) =

∫
〈K(5)K̃(5)〉0 |I(5)|

2 (1.1)

The integral encompasses moduli, vertex points, and loop momenta and includes the chiral

Koba-Nielsen factor I(5), as will be explained in detail in the sequel. Furthermore, the bracket
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〈. . .〉0 denotes the prescription of the pure spinor formalism [5] to integrate over spinor zero

modes, which extracts the power of θ5θ̃5 from the enclosed superfields. The chiral amplitude

K(5) in (1.1) will be determined in a basis of holomorphic five-forms on Σ5,

K(5) = ∆(3, 4)∆(5, 1)ωI(2)K
I
1,2,3|4,5 + cycl(1, 2, 3, 4, 5) (1.2)

where ∆(i, j) is the bi-holomorphic combination of holomorphic one-forms ω1,2,

∆(i, j) = ω1(zi)ω2(zj)− ω2(zi)ω1(zj) (1.3)

familiar from [16, 17]. All the dependence on the external polarization vectors and spinors

is captured by the coefficients KI
1,2,3|4,5 which are scalar functions on Σ5,

KI
1,2,3|4,5 = 2πpImT

m
1,2,3|4,5 − gI2,3 T23,1|4,5 − gI2,1 T21,3|4,5 − gI3,1 T31,2|4,5

− gI2,4 S2;4|5|1,2 − gI3,4 S3;4|5|2,1 − gI1,4 S1;4|5|2,3 (1.4)

− gI2,5 S2;5|4|3,1 − gI3,5 S3;5|4|2,1 − gI1,5 S1;5|4|2,1

The dependence on the loop momenta pIm is explicit in (1.4), while the dependence on vertex

positions and moduli enters through the following combinations of theta functions,

gIi,j =
∂

∂ζI
lnϑ[ν](ζ |Ω) for ζI =

∫ zi

zj

ωI (1.5)

The choice of odd spin structure ν is immaterial as long as it is the same for all terms

in (1.4). The kinematic factors Tm
1,2,3|4,5, T23,1|4,5, S2;4|5|1,2 in pure spinor superspace will be

developed below, giving access to arbitrary combinations of external states from the massless

supersymmetry multiplets. These kinematic factors are independent of moduli, vertex points,

and loop momenta.

Our construction of the chiral amplitude K(5) in this paper does not proceed directly from

first principles, and it is therefore important to carry out consistency checks to confirm its

validity. A first check consists in showing that those terms of the chiral amplitude which have

singularities at coincident vertex points agree with the OPEs derived from first principles

in [25]. A second check consists of comparing the α′ → 0 limit of the Type II superstring

amplitudes with the predictions from the corresponding maximal supergravity calculations.

Both checks will be carried out in this paper and demonstrate perfect agreement.

As further checks, the investigation of the low energy expansion of the amplitude for five

external states in Type II string theory and the comparison with predictions from S-duality,

carried out in [25] to lowest order, will be extended to higher orders in a companion paper

[30]. Finally, the genus-two amplitude for five external NS bosons will be evaluated through

the RNS formalism in another companion paper [31], where its form will be compared with

the amplitude obtained here.
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Organization

The remainder of this paper is organized as follows. In section 2 we review and summarize

the required key ingredients of the non-minimal pure spinor formulation, its BRST cohomol-

ogy, its zero-mode counting, and its vertex operators, as well as the chiral splitting procedure

applied to pure spinors. Section 3 briefly reviews selected aspects of multi-loop computations

in the pure spinor formalism and the derivation of the amplitude with four external massless

states. In section 4, we make use of BRST cohomology and chiral splitting to construct a

chiral amplitude with five external massless states. In section 5 we shall recast this result in

various alternative representations which make manifest Bose and Fermi symmetry, homol-

ogy invariance, BRST invariance, and short distance singularities. In section 6 we continue

to use the results of chiral splitting to assemble left and right moving chiral blocks into the

full amplitudes for five external states in the Type II and Heterotic strings. In section 7

we check the worldline limit of our results to reproduce the loop integrand of the two-loop

five-point amplitude in supergravity. In section 8 we conclude and offer a perspective on

some future directions of investigation.

Various identities for the Clifford-Dirac algebra and pure spinors are collected in ap-

pendix A; basics ingredients of Riemann surfaces and their function theory are summarized

in appendix B; a detailed derivation of the chiral splitting procedure suitable for the pure

spinor formulation is presented in appendix C; and the operator product expansions of the

pure spinor worldsheet fields are gathered in appendix D.
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2 Pure spinors and chiral splitting

In this section we derive the basic building blocks for the five-point amplitude in terms of

the BRST cohomology of the pure spinor superstring and the chiral splitting procedure. The

source of these building blocks may be found in the non-minimal pure spinor superstring,

whose formulation is suited to two-loop calculations in view of the presence of its b-ghost.

Salient features of the non-minimal pure spinor superstring may be found in [7]. Throughout,

we assume Euclidean signature both on the worldsheet and in target space.

2.1 Worldsheet fields, action, and symmetries

The fields of the non-minimal pure spinor superstring on the worldsheet Σ are the world-

sheet scalar xm with m = 1, · · · , 10; the left-moving worldsheet scalars θα, λα, λ̄α, rα with

α = 1, · · · , 16; the left-moving worldsheet (1, 0)-forms pα, wα, w̄
α, sα; and their right-moving

counterparts suitable either for the Type II or Heterotic strings. Despite the notation,

the fields λα, λ̄α and wα, w̄
α are not complex conjugates of one another, but independent

fields transforming under conjugate representations of the Lorentz group. Under the SO(10)

Lorentz group, the field xm transforms as a vector; θα, λα, w̄α, sα transform as Weyl spinors

in the 16 of SO(10); and pα, wα, λ̄α, rα transform as Weyl spinors in the 16’. The fields θα, pα
are anti-commuting matter fields while λα, λ̄α, wα, w̄

α are commuting ghosts, and sα, rα are

anti-commuting spinor ghosts. The pure spinor constraints on the ghost fields are,

λγmλ = λ̄γmλ̄ = λ̄γmr = 0 (2.1)

These identities are invariant under SO(10) and reduce the number of independent compo-

nents of each field λα, λ̄α, rα from 16 to 11 in an SO(10)-invariant way.1

The action for xm and the left-moving worldsheet fields is given by,2

I =
1

2π

∫

Σ

(
1

2
∂xm∂̄xm + pα∂̄θ

α − wα∂̄λ
α − w̄α∂̄λ̄α + sα∂̄rα

)
(2.2)

1This counting may be seen explicitly by decomposing the fields under the U(5) maximal subgroup of
SO(10) under which the spinor representation 16 decomposes into the representations 1⊕5

∗⊕10 of SU(5).
The constraints (2.1) are responsible for projecting out the representation 5

∗ from each field, leaving 11
independent components for each one of the fields λα, λ̄α and rα. Basic identities for the 16 × 16 Clifford-
Dirac γ-matrices and pure spinor identities are given in appendix A.

2Throughout, we shall set α′ = 2 and use local complex coordinates z, z̄ on Σ with ∂ = ∂/∂z, ∂̄ = ∂/∂z̄.
The fields pα, wα, w̄

α, sα will denote the coefficients of the differential dz of their corresponding (1, 0) form
fields expressed in local coordinates. The coordinate volume form on Σ is d2z = i

2
dz∧dz̄. When no confusion

is expected to arise, the integral of a (1, 1)-form v d2z on Σ will be denoted in shorthand by
∫
Σ
v d2z →

∫
Σ
v,

while the integral of a (1, 0) form ω dz along a curve C will be denoted
∫
C
ω dz →

∫
C
ω.
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The action I is invariant under global Lorentz transformations of SO(10). It is also invariant

under global supersymmetry transformations which are generated by a constant spinor ǫα,

δxm = −1
2
ǫγmθ δθα = ǫα (2.3)

The corresponding translation and supersymmetry currents are given by,

Πm = ∂xm + 1
2
θγm∂θ

dα = pα − 1
2
∂xm(γmθ)α − 1

8
(θγm∂θ)(γmθ)α (2.4)

Both currents are invariant under supersymmetry. The stress tensor is given by,

Ttot = −1
2
∂xm∂xm − pα∂θ

α + wα∂λ
α + w̄α∂λ̄α − sα∂rα (2.5)

The matter fields xm, θα, pα are unconstrained free fields while the ghost fields are subject

to the pure spinor constraints (2.1). It will often be convenient to use the field dα instead

of pα by carrying out the field-dependent shift in (2.4). The 16 components of the spinor dα
are unconstrained. The operator product relations are given in appendix D.

2.1.1 Gauge symmetry of the ghost fields and gauge invariant composites

In view of the pure spinor constraints (2.1) on λα, λ̄α, rα, their respective conjugates wα, w̄
α, sα

are subject to gauge transformations,

δwα = Λm(γ
mλ)α

δw̄α = Λ̄m(γ
mλ̄)α − φm(γ

mr)α

δsα = φm(γ
mλ̄)α (2.6)

which leave the action I invariant for arbitrary commuting Λm, Λ̄m and anti-commuting φm

functions on Σ. As a result, the number of fields wα, w̄
α, sα modulo gauge transformations is

reduced from 16 to 11 for each field. Linear combinations of wα, w̄
α, sα (with λ and λ̄-valued

coefficients) that are invariant under these gauge transformations are given by,

Nmn = 1
2
wγmnλ J = wλ

N̄mn = 1
2
(w̄γmnλ̄− sγmnr) J̄ = w̄λ̄− sr

Smn = 1
2
sγmnλ̄ S = sλ̄ (2.7)

The composites Nmn, N̄mn are the SO(10) currents of the ghost fields λα, wα, λ̄α, w̄
α, sα, rα,

while J, J̄ are U(1) currents. The ghost number current is defined by,

Jgh = wλ− w̄λ̄ (2.8)
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so that λ, w̄ have ghost number +1 and w, λ̄ have ghost number −1 while all other fields,

including the composites Πm, dα, and Ttot, have zero ghost number. The partial stress tensors

Tλ = w∂λ and Tλ̄ = w̄∂λ̄− s∂r are also invariant but will not be needed here.

In view of the pure spinor constraints (2.1), only 11 amongst the fields (Nmn, J) are lin-

early independent of one another (with λ-valued coefficients), and similarly only 11 amongst

(N̄mn, J̄) and 11 amongst (Smn, S) are linearly independent (with λ̄-valued coefficients).

2.2 Chiral splitting

The spinor-valued fields in the non-minimal pure spinor formulation, θα, pα, λ
α, wα, λ̄α, w̄

α,

rα, and s
α, are conformal primary fields whose correlators on a Riemann surface Σ of arbi-

trary genus h are complex analytic on Σ and on moduli. The vector-valued field xm, however,

is not a conformal primary due to the presence of translational zero modes. As a result the

inverse of the scalar Laplacian on the space orthogonal to the zero mode depends on certain

choices, including the volume form on Σ. Choosing the volume form to be the canonical

Kähler form of unit volume (with Y IJ denoting the entries of the inverse of Y = ImΩ),3

κ(z) =
i

4
Y IJωI(z) ∧ ω̄J(z) =

i

2
κzz̄dz ∧ dz̄ (2.9)

the inverse of the scalar Laplacian on the space orthogonal to the zero mode gives the

Arakelov Green function G which satisfies,

∂z∂̄z̄G(z, w|Ω) = −πδ(2)(z, w) + πκzz̄(z)

∫

Σ

G(z, w|Ω)κ(w) = 0 (2.10)

The Arakelov Green function is globally well-defined, symmetric in z, w, invariant under

conformal transformations, and gives the two-point function of xm as follows 〈xm(z)xn(w)〉 =

ηmnG(z, w|Ω). The Arakelov Green function is related to the more familiar “string Green

function”,

G(z, w|Ω) = − ln |E(z, w|Ω)|2 + 2πY IJ
(
Im

∫ z

w

ωI

)(
Im

∫ z

w

ωJ

)
(2.11)

via a shift

G(z, w|Ω) = G(z, w|Ω)− γ(z|Ω)− γ(w|Ω) (2.12)

3A summary of function theory on compact Riemann surfaces, including the definitions of meromorphic
differentials, Jacobi theta-functions, and the prime form, is given in appendix B. Throughout, we shall use
the Einstein convention for the summation over pairs of repeated upper and lower indices I, J = 1, · · · , h,
where h is the genus, which we keep general in this section.
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where

γ(z|Ω) =

∫

Σ

G(z, w|Ω) κ(w)−
1

2

∫

Σ×Σ

κ(w)G(w,w′|Ω) κ(w′) (2.13)

Unlike G(z, w|Ω), the string Green function G(z, w|Ω) depends on a choice of local coordi-

nates, due to the fact that E(z, w|Ω) is a form of weight (−1
2
, 0) in z and w, and is not globally

well-defined on Σ. However, the difference G(z, w|Ω) − G(z, w|Ω) cancels from correlators

upon imposing momentum conservation, so we may equally well use the two-point function

〈xm(z)xn(w)〉 = ηmnG(z, w|Ω) in computing correlators of xm. The use of the Arakelov

Green function will be especially important when carrying out a low-energy expansion of the

amplitudes and guarantees that individual terms are properly conformal invariant [32, 33].

By contrast, the field ∂xm(z) is a (1, 0) form and conformal primary field. Its correlators

are meromorphic on Σ, as may be seen from the two-point function 〈∂xm(z)∂xn(w)〉 =

ηmn∂z∂wG(z, w|Ω) = ηmn∂z∂wG(z, w|Ω) with,

∂z∂wG(z, w|Ω) = −∂z∂w lnE(z, w|Ω) + πY IJωI(z)ωJ (w) (2.14)

Note that neither the Green functions G, G nor their derivatives ∂z∂wG are complex analytic

in the moduli Ω, as evident from the presence of Y IJ in (2.14).

The chiral splitting procedure [2, 28, 34] introduces loop momenta to re-express conformal

correlators of the xm-field in terms of an integral over loop momenta whose integrand is a

product of left and right chiral blocks. Each chiral conformal block is complex analytic in

the vertex points on Σ and in the moduli of Σ. Chiral conformal blocks have a universal

monodromy behavior as the points are moved around one another and/or moved around the

homology cycles of Σ. The chiral splitting procedure is a key ingredient in the evaluation of

the genus-two measure and four-point amplitudes in the RNS formulation [3, 10, 16].

The momentum flowing through a simple closed cycle C on Σ is given by the integral

along C of the space-time translation current ∂xm(z) and is dubbed the loop momentum

through C. On a surface of genus h, there are h independent loop momenta, which we shall

denote by (pI)m with I = 1, · · · , h (not to be confused with the spinor field pα of (2.2)). The

choice of their routing is not unique but may be fixed canonically to the cycles AI given a

choice of canonical homology basis AI ,BI ,

(pI)m =
1

2π

∮

AI

∂xm I = 1, · · · , h (2.15)

The normalization is fixed to reproduce the momentum flowing through a cylinder.
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The construction of the chiral blocks for the correlators of the field ∂xm and the exponen-

tial eik·x is formulated in terms of a set of effective rules, starting from a generating function

for N -point xm correlators (see appendix C for a detailed derivation),

J =

∫
Dx exp

{
−

1

4π

∫

Σ

∂x · ∂̄x+
N∑

j=1

(
ikj · x(zj) + εj · ∂x(zj) + η̄j · ∂̄x(zj)

)}
(2.16)

Throughout we shall assume that the incoming momenta kj and the polarization vectors εj
and ηj are complex-valued and satisfy k2j = kj · εj = kj · ηj = 0 for all j = 1, · · · , N and that

the total momentum
∑N

j=1 kj vanishes. We shall also assume that the coefficients εj and

ηj are independent of one another so that, at a given point zj , either εj or ηj or both may

vanish independently. The functional integral will be understood as a generating function

for correlators which are linear in each εj · ∂x(zj) and η̄j · ∂̄x(zj) so that terms of quadratic

order and higher in a given εj or ηj will never be needed.

It is shown in appendix C that J may be obtained as an integral over loop momenta pmI
of a pairing of chiral conformal blocks,

J = δ
( N∑

j=1

kj

) ∫

R10h

dpB(zi, εi, ki, p
I |Ω)B(zi, ηi,−k∗i ,−p

I |Ω) (2.17)

where the chiral block is given by,

B(zi, εi, ki, p
I |Ω) = B0(zi, ki, p

I |Ω)

〈
exp

N∑

j=1

{
εj ·

(
∂zx+ + 2πpIωI

)
+ ikj · x+

}
(zj)

〉

B0(zi, ki, p
I |Ω) = Z(Ω)−10 exp

{
iπΩIJp

I · pJ +
N∑

j=1

2πipI · kj

∫ zj

z0

ωI

}
(2.18)

Note that the dependence on the base point z0 drops out by momentum conservation. The

chiral scalar partition function Z(Ω) is holomorphic in Ω. It may be evaluated using chiral

bosonization [35] and is given explicitly in terms of ϑ-functions for genus two in [13], however

its form will not be needed in this work. The field xm+ is an effective chiral scalar field whose

Wick contraction rule is given by,

〈xm+ (z) x
n
+(w)〉 = −ηmn lnE(z, w|Ω) (2.19)

Recall that the field xm+ is not a conformal primary field, a property which is reflected in

the non-trivial monodromy of the above correlator as z and w are swapped and as they are

moved around non-trivial homology cycles.
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2.2.1 Homology invariance

The chiral field xm+ (z) and, as a result, the chiral blocks B have non-trivial monodromy as a

point zi is taken around a homology cycle of the surface. The corresponding transformations

are familiar from the chiral splitting procedure [28],

B(zi + δijAJ , εi, ki, p
I |Ω) = e2πipJ ·kjB(zi, εi, ki, p

I |Ω)

B(zi + δijBJ , εi, ki, p
I |Ω) = B(zi, εi, ki, p

I + δIJ kj|Ω) (2.20)

These monodromy transformations are universal in the sense that they are the same for the

chiral blocks of the bosonic string, the Type II string, and the Heterotic strings. In the RNS

formulation, they hold for each spin structure separately [28].

Alternatively, we may interpret the monodromy relations of (2.20) as an invariance under

a suitable action of the homology group of Σ on the chiral blocks, to which we shall refer as

“homology invariance” for short. To do so, we consider a representation R of the homology

group H1(Σ,Z) acting on both the vertex points zj and the loop momenta pI , defined by the

following transformations on the chiral block B,

R(zj ,AJ )B(zi, εi, ki, p
I |Ω) = e−2πipJ ·kj B(zi + δijAJ , εi, ki, p

I |Ω)

R(zj ,BJ)B(zi, εi, ki, p
I |Ω) = B(zi + δijBJ , εi, ki, p

I − δIJ kj|Ω) (2.21)

These transformations mutually commute for arbitrary pairs of (j, J), in agreement with the

Abelian nature of the homology group. The transformation laws of (2.20) are then equivalent

to the invariance of B under the action of R,

R(zj ,AJ)B = R(zj ,BJ)B = B (2.22)

The full generating function J of (2.16), obtained by assembling the factors of left and

right chirality is, of course, invariant under these transformations. Upon integration over

loop momenta the resulting correlator is single-valued in the vertex points zi thanks to the

translation invariance of the loop momentum integration measure dp and its domain R
10h.

2.2.2 Summary of the chiral splitting procedure

The chiral splitting procedure may be summarized by the following prescriptions,

1. Carrying out the following replacements,

eik·x → eik·x+ ∂xm(z) → ∂xm+ (z) + 2π(pI)mωI(z) (2.23)
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2. Wick contracting the chiral field xm+ using (2.19);

3. Including the factor B0(zi, ki, p
I |Ω) defined in (2.18);

4. Integrating over all loop momenta of the paired chiral blocks in (2.17).

Henceforth, we shall assume that these effective rules are used whenever the fields ∂xm

or eik·x occur. For example, to construct a chiral block involving the composite field Πm

defined in (2.4) we shall perform the following substitution,4

Πm → ∂xm+ +
1

2
θγm∂θ + 2π(pI)mωI (2.24)

and then carry out the Wick contractions of the field xm+ using (2.19). To simplify notations

until the evaluation of the chiral block is needed, however, we shall retain the notations ∂xm

and eik·x at intermediate stages of the evaluations. Henceforth the dependence on moduli

through Ω will be understood but no longer exhibited.

2.3 BRST transformations

The BRST charge Q of the non-minimal pure spinor formalism has ghost number 1 and is

given by [7],

Q =

∮ (
λαdα + w̄αrα

)
(2.25)

The operator product expansion of the worldsheet fields, given in appendix D, may be used

to evaluate their BRST transformation, and we have,5

Qxm = 1
2
λγmθ Qλα = 0

Qθα = λα Q λ̄α = rα

Qdα = −(λγm)αΠm Qrα = 0

QΠm = λγm∂θ QNmn = −1
2
(dγmnλ) (2.26)

With the help of the pure spinor constraints (2.1) it may be verified that the relation,

Q2 = 0 (2.27)

4Note that the field ∂xm also enters in the relation between the fields pα and dα in (2.4). Since throughout
we will work exclusively in terms of the field dα, this occurrence of ∂xm will be immaterial.

5Throughout, we shall use standard CFT notation and write Qf instead of [Q, f ] or {Q, f} for the BRST
transformation of a bosonic or fermionic field f , respectively.
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is properly realized on all fields. The BRST transformations of wα, w̄
α, and sα are not invari-

ant under the gauge transformations (2.6) and will not be needed, other than in the gauge

invariant combination Nmn. Throughout, the field pα will be traded for the supersymmetry

current dα, which is simply related to it by a shift given in (2.4). A convenient unified

expression may be derived from (2.26) for the BRST transformation of any local function

f(x, θ), which depends only on x and θ but not on their worldsheet derivatives,

Qf(x, θ) = λαDαf(x, θ) (2.28)

where Dα is the super derivative defined by,

Dα =
∂

∂θα
+

1

2
γmαβθ

β ∂

∂xm
{Dα, Dβ} = γmαβ∂m (2.29)

where we use the standard notation ∂m = ∂/∂xm.

2.4 Vertex operators

Vertex operators for massless physical states are constructed from the plane wave solutions

to the linearized 10-dimensional super-Yang-Mills and supergravity equations. The spinor

part of the vertex operators is chirally split as it stands, and the chiral splitting for the

xm field will be carried out in the subsequent section. The chiral vertex operators involve

chiral spinor fields and the 10-dimensional super Yang-Mills multiplet and are governed by

the linearized 10-dimensional super Yang-Mills equations. The fields of the super-multiplet

(Aα, Am,W
α, Fmn) satisfy the following equations,6

DαAβ +DβAα = γmαβAm DαW
β = 1

4
(γmn)α

βFmn

DαAm − ∂mAα = (γm)αβW
β DαFmn = (∂mγn − ∂nγm)αβW

β (2.30)

For later use, we record the field equation and Bianchi identity for W α,

γm∂mW
α = 0 DαW

α = 0 (2.31)

The fields Am,W
α, and Fmn may be expressed in terms of the field Aα which has odd grading.

A plane wave solution with momentum k is given in the gauge θαAα = 0 by [37, 38, 39],

Aα(x, θ) =
(

1
2
εm(γmθ)α − 1

3
(χγmθ)(γmθ)α + · · ·

)
eik·x (2.32)

6The field equations of linearized 10-dimensional super Yang-Mills theory [36] may be expressed in terms
of the covariant derivatives Dα = Dα+Aα and Dm = ∂m+Am subject to gauge transformations δAα = DαA,
δAm = ∂mA, the Jacobi identities, and the superspace torsion constraint Fαβ = {Dα,Dβ} − γm

αβDm = 0.

The field strengths Fαm = [Dα,Dm] and Fmn = ∂mAn − ∂nAm satisfy (2.30) with Fαm = (γm)αβW
β .
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where the ellipses stand for terms with higher powers of θ. The parameters ε and χ are the

polarization vector and spinor, respectively. For massless external states we have k2 = 0 and

k ·ε = k ·γχ = 0. The dependence of the SYM fields on k, ε, χ will be suppressed throughout.

Vertex operators for physical massless states are built out of chiral vertex operators

times their conjugates. A chiral vertex operator is a (1, 0) form on the worldsheet which is

BRST invariant up to an exact differential. To construct such vertex operators, we begin by

obtaining the BRST variations of the linearized SYM fields,

QAα = λβDβAα

QW α = 1
4
(λγmn)αFmn

QAm = (λγmW ) + λβ∂mAβ

QFmn = (λγn∂mW )− (λγm∂nW ) (2.33)

Some immediate consequences for composites, to be of later use, are as follows,

Q (λγmW ) = 0

Q (λγmnγrW ) = −1
4
(λγmnpqrλ)Fpq

Q (λγmnpqrλ)Fmn = 0 (2.34)

The un-integrated vertex operator V is a worldsheet (0, 0) form of ghost number 1 given by,

V = λαAα(x, θ) (2.35)

It satisfies QV = 0 in view of the pure spinor constraint on λ. The integrated vertex operator

U is a worldsheet (1, 0)-form of ghost number 0 which is built out of the basic (1, 0)-forms

∂θα,Πm, dα, Nmn times the corresponding linearized on-shell SYM field and is given by,

U = ∂θαAα(x, θ) + ΠmAm(x, θ) + dαW
α(x, θ) + 1

2
NmnF

mn(x, θ) (2.36)

Its BRST variation is a total derivative of the un-integrated vertex V ,

QU = ∂V (2.37)

so that the integrals of UŪ over a closed worldsheet and U over a worldsheet boundary are

BRST invariant.
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2.5 The b-ghost

The RNS superstring naturally has a (b, c) anti-commuting ghost system which results from

gauge fixing worldsheet diffeomorphism symmetry, and a (β, γ) commuting ghost system

resulting from gauge fixing worldsheet local supersymmetry. The existence of an un-gauged-

fixed formulation for the pure spinor superstring with a canonical (b, c) ghost system is

currently still under investigation [40, 41]. The non-minimal formulation of the pure spinor

string was developed to produce a composite b-ghost [7], without requiring a c-ghost com-

panion. It is this formulation that we shall use here as a guide for the construction of the

amplitude for five external states.

The key principle for the construction of the b-ghost is that it must be an anti-commuting

Lorentz scalar, and a (2, 0)-form on the worldsheet Σ whose BRST transform is the chiral

stress tensor Ttot which was given in (2.5),

Qb = Ttot (2.38)

Since Q and Ttot have ghost number 1 and 0, respectively, b must have ghost number −1.

There is no canonical gauge-invariant field satisfying these conditions. However, there is a

ghost number 0 composite spinor Gα given by,

Gα =
1

2
Πm(γ

md)α −
1

4
Nmn(γ

mn∂θ)α −
1

4
Jλ∂θ

α −
1

4
∂2θα (2.39)

whose BRST transform is proportional to the stress tensor,

QGα = λαTtot (2.40)

The ghost field λ̄α of the non-minimal pure spinor string allows one to formally solve (2.38)

for the b-ghost using the descent equations of BRST cohomology. The resulting b-ghost field

is unique, up to BRST closed contributions, and given by [7],

b = sα∂λ̄α +
λ̄αG

α

(λλ̄)
+

(λ̄γmnpr)

192(λλ̄)2

(
(dγmnpd) + 24NmnΠp

)

−
(rγmnpr)

16(λλ̄)3
(λ̄γmd)Nnp +

(rγmnpr)

128(λλ̄)4
(λ̄γpqrr)NmnNqr (2.41)

The solution is formal because the denominators in the holomorphic field (λλ̄) produce

singularities. A variety of regulators have been proposed in [42, 43]. For the two-loop

amplitude with five external states, positive powers of (λλ̄) arise from the measure of the

ghost fields, thereby regularizing the singularities in the b-ghost (see section 3.3 below and
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[7] for more details). The resulting expressions were used to evaluate the two-loop four-point

amplitude [24] as well as the leading low energy limits of the two-loop five-amplitude [25]

and the three-loop four-point amplitude [26].
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3 Basics of genus-two amplitudes

In this section, we shall review and further develop those computations in the non-minimal

pure spinor formalism on genus-two Riemann surfaces that are needed for our construction

of the genus-two chiral amplitude with five external states. We re-iterate the strategy of our

construction, as already outlined in the Introduction: we shall combine ingredients from the

BRST cohomology of the pure spinor formulation and from the chiral splitting procedure

to conjecture the genus-two chiral amplitude for five external states. We shall perform

computations in the pure spinor formulation only to the extent that their outcome guides

us towards a compelling structure of the amplitude, which will turn out to be unique.

The final formula of the chiral amplitude will be derived in section 4, and different

representations will be explored in section 5. The physical amplitudes for Type II and

Heterotic strings, obtained by assembling the contributions from the left and right moving

chiral parts and integrating over loop momenta, will be presented in section 6. Along the

way, the amplitude for four external states will be re-derived in subsection 3.4.

3.1 Genus-two correlators in the pure spinor formalism

The ingredients needed to evaluate the correlators on genus-two Riemann surfaces that

arise in the non-minimal pure spinor formalism are the partition functions, the zero mode

counting, and the correlators of the non-zero mode parts of the canonical worldsheet fields.

A regulator of the ghost zero mode integration is required to resolve indeterminacy issues in

the pure spinor formulation. The discussion will be geared towards deriving the main target

of this work at the end of section 4: the chiral genus-two amplitude for five external massless

states, formulated as an integral over pure spinor superspace zero modes of a function of the

external kinematics and the zero modes of the spinor variables λα and θα. This formulation

economically contains the amplitudes with five external states belonging to the gauge or

supergravity multiplets which may be either bosons or fermions.

3.1.1 Partition functions

All canonical chiral spinor fields in the non-minimal pure spinor formalism occur in conjugate

pairs of a (1, 0)-form on Σ and a (0, 0)-form. Since the central charges of the spinor fields

along with that of the chiral boson field x+ add up to zero, the holomorphic anomaly cancels,

and each field contributes an effective chiral partition function. For the chiral bosons xm+ , as

derived from chiral splitting, this contribution is Z(Ω)−10 while for the pair of anti-commuting

fields (pα, θ
α) (or equivalently the pair (dα, θ

α)) the contribution is Z(Ω)32.
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The commuting pair of fields (λα, wα) is subject to the pure spinor constraint (2.1) and

gauge-invariance (2.6) reducing their effective number of spinor degrees of freedom from 16

to 11 for both fields and producing a partition function Z(Ω)−22. Therefore, in combination

with the contribution Z(Ω)−10+32 from the matter variables, the combined partition function

for the minimal pure spinor string is 1 [6].

Finally, the pair of commuting fields (λ̄α, w̄
α) and anti-commuting fields (rα, s

α) are sub-

ject to the pure spinor constraints (2.1) and gauge-invariances (2.6) reducing their effective

number of spinor degrees of freedom from 16 to 11 for each field. Hence, the fields that are

specific to the non-minimal pure spinor formalism produce a combined partition function

of 1, consistent with the interpretation of this system as a topological field theory [7]7.

3.1.2 Zero modes of (1, 0)-form spinor fields

In this subsection, we shall discuss the zero modes of meromorphic (1, 0)-form spinor fields on

a compact worldsheet Σ of genus h. It will be convenient to use the fields dα, Nmn, J, N̄mn, J̄

instead of pα, wα, w̄
α as discussed at the end of subsection 2.1.1. These meromorphic (1, 0)-

form fields, on world-sheets of genus h ≥ 1, have zero modes which are linear combinations of

the holomorphic (1, 0)-forms ωI whose definition and properties are reviewed in appendix B.

An explicit parametrization is obtained as follows,

dα(z) = d̂α(z) + dIα ωI(z)

∮

AI

d̂α = 0 (3.1)

and similarly for the fields Nmn, J, N̄mn, J̄ , whose zero-mode coefficients will be denoted by

N I
mn, J

I , N̄ I
mn, J̄

I , respectively. The number of independent zero modes of these fields on a

compact surface of genus h is as follows,

16× h zero modes dα

10× h zero modes Nmn, N̄mn, Smn (3.2)

h zero modes J, J̄ , S

The zero modes of dα, Smn, S are anti-commuting and those of Nmn, N̄mn, J, J̄ commuting.

7Due to the pure spinor constraints, the ghost fields are actually not free fields on Σ. However, decom-
position of the SO(10) spinors under the subgroup U(5) allows one to change variables to a free field plus a
(β, γ) system both of which may be handled with standard methods [5].
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3.1.3 Zero modes of (0, 0)-form spinor fields and pure spinor superspace

On a surface Σ of arbitrary genus, the (0, 0)-form fields θα, λα, λ̄α and rα have a single zero

mode for each value of α. Thus, the field θα may be decomposed as follows,

θα(z) = θ̂α(z) + θα0 (3.3)

where θα0 is independent of z, and θ̂α(z) represents the non-zero mode contributions. The

fields λα, λ̄α and rα admit analogous decompositions. The integration over the zero modes

of the fields will guarantee that full correlators are independent of the prescription used to

define θ̂α(z) from θα(z), for example by requiring that the integral of θ̂α(z) over Σ vanish.

An ubiquitous ingredient in the pure spinor formulation is the following λ-dependent

tensor with ghost number 3 (see section 3.2 for its further use),

Tα1···α5
(λ) = (λγm)α1

(λγn)α2
(λγp)α3

(γmnp)α4α5
(3.4)

which is manifestly anti-symmetric in α1, α2, α3 as well as in α4, α5. Actually, T is totally anti-

symmetric in all five spinor indices as may be established by showing that the contractions

of T with (γa)α1α4
and (γabcde)α1α4

vanish with the help of (A.4), (A.5), and (A.10). The

tensor T projects the anti-symmetric tensor product of five spinors in the 16 of SO(10) onto

the symmetric γ-traceless tensor product of three spinors λ in the 16 of SO(10).

By spacetime supersymmetry and BRST-cohomology arguments, the zero-mode integrals

of the fields θα and λα only receive contributions from the cohomology at ghost number 3,

specifically from the combination Tθθθθθ [5], or more explicitly,8

〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉0 = 1 (3.5)

The above normalization (sometimes chosen to be 2880 in the literature) affects the full chiral

amplitude only by an overall multiplicative factor, which is not being sought after here, and

may thus be chosen at will without loss of generality. The prescription (3.5) annihilates

BRST-exact superfields,

〈Q(· · · )〉0 = 0 (3.6)

a property which guarantees space-time gauge-invariance and supersymmetry of the expec-

tation value of BRST-closed operators and allows us to carry out simplifications by adding

Q-exact terms.

8Throughout, the integration over the zero mode part of the fields in the expectation value of an arbitrary
operator O will be denoted by 〈O〉0. It will be understood that the fields which enter into O are to be
evaluated on their zero-mode part only.
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The goal of this paper is to derive the genus-two chiral amplitude for five external massless

states from the correlators of five BRST-closed vertex operators. More specifically, the

amplitude will be presented as an integral over the zero modes of θα and λα of a BRST-

closed integrand in pure spinor superspace that contains all the external kinematic data of

five arbitrary states in the supergravity multiplet [44]. BRST-exact contributions may be

discarded to simplify the form of the amplitude. As we shall see in section 4.4, the quest for

BRST-closed integrands will lead us to the unique construction of the genus-two five-point

amplitude.

3.1.4 The zero-mode regulator

The above ingredients for the evaluation of higher-genus correlators in the non-minimal pure

spinor formalism usually lead to an indeterminacy in the integrals over the ghost zero modes

of the type 0/0. On the one hand, the singularities that arise when (λλ̄) vanishes in the

expression (2.41) for the b-ghost, or tends to ∞, cause the functional integrals over bosonic

ghosts to diverge. On the other hand, the fermionic zero modes would cause the functional

integrals to vanish for sufficiently low genus and/or small number of external states, as is

the case for instance in the two-loop five-point amplitude under investigation.

The vanishing of the fermion zero mode integrations may be resolved by the insertion of

the following “regulator” which was introduced in [7],

Nh = exp
{
−(λλ̄)− (rθ) +

h∑

I=1

(wIw̄I + sIdI)
}

(3.7)

where λ, λ̄, r, θ are restricted to their zero mode contributions, as explained in footnote 8. The

argument of the exponential has been engineered to be BRST-exact, so that Nh = 1+Q(· · · )

does not have any effect in the cohomology as long as the functional integrals converge.9 It

has been argued in [7] that for genus two no singularities arise when (λλ̄) → 0 thanks to the

λ, λ̄-dependence of the measure, and the insertion of the regulator N2 leads to convergent

zero-mode integrals. Note that the summation symbol over the index I has been kept

explicitly because both factors in the summand have upper I-indices, for which no natural

modular-invariant pairing exists.

9For the same reason, the usage of gauge-variant quantities in the exponential of (3.7) instead of the
original gauge-invariant formulation in [7] has no effect in the amplitudes [45].
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3.1.5 Wick contractions of non-zero-mode fields

The Wick contractions for the vector field xm were already discussed in section 2.2 on the

chiral splitting procedure. The Wick contractions of the non zero-mode part of the field θα

with itself vanishes,

θ̂α(z)θ̂β(y) ∼ 0 (3.8)

while the Wick contractions of the non-zero mode part of the (1, 0)-form spinor fields gen-

erally produce meromorphic (1, 0) forms. For example, the Wick contractions of the fields

p̂α(z), d̂α(z) and Π̂m = Πm − 2πpImωI from (3.1) and (2.24) are given as follows,

p̂α(z) θ
β(y) ∼ ∂z lnE(z, y) δ

β
α

d̂α(z) f
(
x(y), θ(y)

)
∼ ∂z lnE(z, y)Dαf

(
x(y), θ(y)

)
(3.9)

Π̂m(z) f
(
x(y), θ(y)

)
∼ −∂z lnE(z, y) ∂mf

(
x(y), θ(y)

)

where f(x, θ) is an arbitrary function which depends on x and θ, but not on the worldsheet

derivatives of these fields. The meromorphic differential ∂z lnE(z, w) fails to be single-valued

in its variables by itself, but the associated integrations over the zero modes of these fields

will render the full correlators, into which they are inserted, properly single-valued. This

is familiar for the case of the correlators of the fields ∂xm+ with xm+ thanks to momentum

conservation, but also holds true for the Wick contractions of field pα with θα.

As should be expected, in the short distance limit z → y, the Wick contractions of (3.9)

reproduce the OPE singularities of the corresponding fields given in (D.1) and (D.2). While

for genus zero, the knowledge of the OPE suffices to evaluate any conformal correlator, this

is no longer true for higher genus. For the fields of the pure spinor string, the missing

information is provided by the contributions from the zero modes of the (1, 0)-form fields.

One manifestation of this is that for genus two and above, one has to distinguish the forms

∂z lnE(z, y)ωI(y) from −∂y lnE(z, y)ωI(z), whose short-distance behaviors agree and which

coincide for the sphere (genus zero) and for the torus (genus one). Fortunately, we shall

not need the detailed evaluation of the full correlator for the genus-two five-point amplitude

as in [25], since it will suffice to extract all relevant information from the singularities at

coinciding vertex points (see section 4.5).
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3.1.6 The chiral correlator in pure spinor superspace

The chiral amplitude for N massless states at genus two is given by the correlator,

F(N) =

〈
N2

3∏

a=1

(µa, b)

N∏

i=1

Ui(zi)

〉
(µa, b) =

∫

Σ

µab (3.10)

provided this correlator is convergent. The Beltrami differentials are denoted by µa for

a = 1, 2, 3, and will be specified later with the help of (3.20). The bracket notation 〈· · · 〉 in

(3.10) is used for the complete functional integral for the zero modes and non-zero modes

of all the fields in the worldsheet action (2.2). The subscript of 〈. . .〉0 in (3.5), by contrast,

refers to the zero-mode integrals for the (0, 0)-form fields λα and θα. The integrations over

the positions zi and the loop momenta pIm will be carried out after the chiral blocks and

their conjugates have been paired.

The chiral correlator is evaluated by integrating over the chiral spinor fields and over the

effective chiral scalar field xm+ of chiral splitting, considered at fixed loop momenta pmI . Since

each of the vertex operators include a plane wave factor, the correlator of the effective chiral

scalar field xm+ produces the chiral Koba-Nielsen factor I(N) given by (cf. (2.18)),

I(N) = exp

{
iπΩIJp

I · pJ +
N∑

i=1

2πipI · ki

∫ zi

z0

ωI −
N∑

i<j

sij lnE(zi, zj)

}
(3.11)

The dimensionless kinematic invariants sij are given by,

sij = −
α′

4
(ki + kj)

2 = −ki · kj (3.12)

The second equality arises from our choice α′ = 2 and the mass-shell condition k2i = k2j = 0.

Since the Koba-Nielsen factor (3.11) is an ubiquitous constituent of the chiral amplitude

(3.10), the main goal of this work will be to evaluate the remaining factor K(N),

F(N) = I(N) 〈K(N)〉0 (3.13)

In order to obtain an amplitude representation in pure spinor superspace and keep any

combination of external bosons and fermions accessible, the zero-mode integral (3.5) is left

to be performed. The desired superspace expression K(N) will be referred to as a chiral

correlator and encodes the dependence on the polarization vectors and spinors of bosons and

fermions, respectively, in a supersymmetric manner. Since the factor I(N) already transforms
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according to (2.21) under homology shifts, the reduced amplitude K(N) must be strictly

invariant under these shifts, without any phase factor.

In fact, chiral correlators K(N) fall into equivalence classes in two respects: First, Q-exact

terms do not contribute within the bracket 〈. . .〉0, and second, total derivatives ∂zi(I(N)K(N))

integrate to zero after assembling the overall amplitudes. Hence, it suffices to construct a

particularly convenient representative of K(N) as we will do in the two-loop five-point case.

3.2 Zero mode counting

The large number of zero modes of the spinor fields greatly simplifies the calculations and

makes the evaluation of the correlator (3.10) with a small number N of external states

possible. We begin by observing that the vertex operators Ui(zi) do not involve the fields

λ̄α, w̄
α, sα, rα. Since the b-ghost is also independent of the field w̄α the zero modes of w̄α

must be paired with those of wα via the regulator N2 of (3.7). Equivalently, the zero modes

of N̄mn and Jλ̄ must be paired with the zero modes of Nmn and Jλ. This leaves no room

for zero modes of the fields Nmn to occur either in the vertex operators or in the b-ghost

insertions.

Next, we concentrate on the zero modes of the fields sα and dα, which add up to 22 and

32 zero modes, respectively. The vertex operators Ui do not involve the field sα and the

b-ghost involves sα only through its first term in (2.41). Let us denote by σ the number of

zero modes of the field sα absorbed by the 3 b-ghosts. Each b-ghost may absorb at most 1

zero mode of sα, so that 0 ≤ σ ≤ 3. The regulator N2 will absorb exactly as many sα zero

modes as it absorbs dα zero modes. Therefore, the number of dα zero modes absorbed by the

integration over the sα zero modes, the regulator, and the sα-dependent part of the b-ghosts

equals 22− σ.

Further dα zero modes may be absorbed by the remaining terms in the b-ghost, but

this number is bounded from above by 6 − 2σ. Tallying all contributions, we conclude

that the maximal number of dα zero modes absorbed by the measure and the b-ghosts is

22− σ + 6− 2σ = 28− 3σ, leaving at least 4 + 3σ zero modes to be absorbed by the vertex

operators. Since each vertex operator is at most linear in dα, any amplitude whose number

of external states is 6 or fewer must have σ = 0, leaving at least 4 zero modes of the dα field

to be absorbed by the vertex operators Ui. For amplitudes with 4 or 5 external massless

states of interest in this paper, we thus have σ = 0, and the integration over the zero modes

of sα produces the following measure for the integration over the zero modes of the field
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dα(z) = d̂α(z) + dIα ωI(z),

2∏

I=1

∫
[d dI ](ε · T · dI) (3.14)

Here the combination (ε · T · dI) for each I is given by,

(ε · T · dI) = εα1···α16Tα1···α5
dIα6

· · · dIα16
(3.15)

where the λ-dependent tensor T was introduced in (3.4), and [d dI ] stands for the integration

measure for the zero modes dI . Since (ε ·T · dI) involves 11 zero modes for each value of the

index I, a non-vanishing integral requires a further integrand with five dI factors and, for a

given value of I, we have,

∫
[d dI ](ε · T · dI) dIα1

dIα2
dIα3

dIα4
dIα5

= cTα1α2α3α4α5

∫
[d dI ](ε · T · dI) dIα1

dIα2
dIα3

(dIγmnpdI) = 96c(λγ[m)α1
(λγn)α2

(λγp])α3
(3.16)

where on the right side of the second equation the indices mnp are anti-symmetrized. The

normalization c can be found in [26] but is of no concern to us here, as the absolute normal-

ization of the amplitude may be fixed by other methods such as unitarity.

3.3 Zero modes absorbed by the b-ghosts

The non-vanishing of the genus-two amplitude for N massless states given in (3.10) requires

that all the 32 zero modes dIα of the field dα(z) be absorbed by a conspiracy of the b-ghost

and the vertex operators. As shown in the previous subsection, for N ≤ 5, the s∂λ̄ term of

the b-ghost does not contribute and the vertex operators can absorb at most 5 d-zero modes.

As a result, the b-ghosts must contribute either 5 or 6 d-zero modes, which can arise only

from the terms bilinear in d or the term linear in dα in the composite spinor Gα defined by

(2.39). (Note that the term linear in d and linear in the field Nmn in (2.41) involves a zero

mode of the field Nmn, but this cannot contribute as argued in the preceding subsection).

In summary, the effective ghost field for N ≤ 5 takes the form,

b =
(λ̄γmd)

2(λλ̄)
Πm +

(λ̄γmnpr)

192(λλ̄)2
(dγmnpd) + · · · (3.17)

where the ellipses stand for terms that do not contribute for N ≤ 5.
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Parametrizing the insertion points of the b-ghosts by the variables va for a = 1, 2, 3, we

use the fact that only the zero modes of the fields λ, λ̄, r, d contribute to the b-ghost insertions

to render the va dependence of the b-ghost explicit,

b(va) =
∑

I

(λ̄γmdI)

2(λλ̄)
ωI(va)Πm(va) +

∑

I,J

(λ̄rdIdJ)

192(λλ̄)2
ωI(va)ωJ(va) + · · · (3.18)

where we have introduced the following convenient shorthand,

(λ̄rdIdJ) = (λ̄γmnpr)(dIγmnpd
J) (3.19)

We shall choose a system of local complex coordinates, τa with a = 1, 2, 3, on moduli space

and associated Beltrami differentials µa so that,

∂ΩIJ

∂τa
=

∫

Σ

µaωIωJ (3.20)

The chiral volume form on moduli space is given by,

d3Ω = dΩ11 ∧ dΩ12 ∧ dΩ22 =
∑

a,b,c

∂Ω11

∂τa

∂Ω12

∂τb

∂Ω22

∂τc
dτa ∧ dτb ∧ dτc (3.21)

Non-vanishing contributions from the b-ghost insertions therefore require specific arrange-

ments of the d-zero modes. Contributions from the b-ghosts with 6 and 5 d-zero modes,

respectively, are given by the arrangements,

6 zero modes (λ̄rd1d1)(λ̄rd1d2)(λ̄rd2d2)

5 zero modes (λ̄rd1d1)
(
2(λ̄γmd2)(λ̄rd1d2)− (λ̄γmd1)(λ̄rd2d2)

)

(λ̄rd2d2)
(
2(λ̄γmd1)(λ̄rd1d2)− (λ̄γmd2)(λ̄rd1d1)

)
(3.22)

The contribution for 6 zero modes directly produces the measure on moduli space, as the

coefficient of this term is a holomorphic quadratic differential in each insertion point of the

b-ghost. The contribution with 5 zero modes is contracted with the (1, 0)-form field Πm(va)

and, in view of the results of the chiral splitting procedure (2.24), receives two different

types of contributions. The term linear in loop momentum pIm provides a holomorphic (1, 0)

form, so that its contribution directly generates the measure on moduli space. The other

two terms of Πm exhibited in (2.24) are generally meromorphic rather than holomorphic;

it is unclear at present how to evaluate their contribution directly, but we shall infer it by

imposing various consistency conditions.

27



3.4 The chiral amplitude for four external states

For four external states, the above counting shows that each b-ghost must contribute exactly

2 d-zero modes, resulting in the pattern of the first line of (3.22), and each vertex must

contribute exactly 1 d-zero mode. Omitting the overall λλ̄-dependent normalization, the

structure of the remaining integration is as follows,

2∏

I=1

∫
[ddI ](ε · T · dI)(λ̄rd1d1)(λ̄rd1d2)(λ̄rd2d2)

4∏

i=1

(dWi) (3.23)

where only the zero modes of the field d contribute in its pairing against the SYM fields Wi,

(dWi) →
2∑

I=1

(dIWi)(zi)ωI(zi) (3.24)

By construction, the amplitude is Bose symmetric in the indices labeling the external states.

All dependence on the d-zero modes has now been made explicit, and its integral may be

carried out using (3.16). The contributions vanish unless two of the four factors (dWi) carry

the zero mode d1 while the other two carry the zero mode d2. To evaluate these contributions

we shall single out one specific assignment and then sum over all permutations. Carrying

out the integral over d-zero modes, we find [24],

2∏

I=1

∫
[ddI ](ε · T · dI)(λ̄rd1d1)(λ̄rd1d2)(λ̄rd2d2)(d1W1)(d

1W2)(d
2W3)(d

2W4)

= (λγabcptλ)(λ̄γ
mnpr)(λ̄γqstr)(λ̄γabcr)(λγmW1)(λγnW2)(λγqW3)(λγsW4) (3.25)

Carrying out the integration over the zero mode of the field r converts each r into a super

derivative acting on the vertex operators, and we obtain,

(λγabcptλ)(λ̄γ
mnpD)(λ̄γqstD)(λ̄γabcD)(λγmW1)(λγnW2)(λγqW3)(λγsW4) (3.26)

Given the choice of the zero mode assignments made here, this expression is manifestly

invariant under the permutations 1 ↔ 2 and 3 ↔ 4 as well as under (1, 2) ↔ (3, 4).

Applying a single super derivative to a field Wi produces the field strength Fi, while

applying more than one super derivative to the same field Wi introduces bosonic derivatives

kiWi and kiFi. Still, the latter contributions are BRST equivalent to the terms of schematic

form WFFF from applying each super derivative to a single one of the W fields. See
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appendix A of [24] for further details. More specifically, carrying out the integration over λ̄

produces a sum of four distinct terms,

T1,2|3,4 =
1

4

(
t1,2|3;4 + t1,2|4;3 + t3,4|1;2 + t3,4|2;1

)
(3.27)

where each term is given by,

t1,2|3;4 = (λγmnpqrλ)F
mn
1 F pq

2 F rs
3 (λγsW4) (3.28)

The manifest symmetry properties are t1,2|3;4 = t2,1|3;4 and T1,2|3,4 = T2,1|3,4 = T3,4|1,2 while,

as a consequence of (A.12), we also have the following cyclic symmetries,

t1,2|3;4 + t2,3|1;4 + t3,1|2;4 = 0

T1,2|3,4 + T1,3|4,2 + T1,4|2,3 = 0 (3.29)

To verify BRST closure of t, we use the results of (2.34) that (λγsW4) and (λmnpqrλ)F
mn
1 F pq

2

are BRST closed, so that it remains only to apply Q to F3 which gives,

Q t1,2|3;4 = (λγmnpqrλ)F
mn
1 F pq

2

(
(λγs∂rW3)− (λγr∂sW3)

)
(λγsW4) = 0 (3.30)

The contribution from the first and second terms in the parentheses vanishes in view of (A.7)

for pure spinors and (A.10), respectively. As a result, t1,2|3;4 and T1,2|3,4 are BRST closed.

The worldsheet dependence of the amplitude for four external states involves the chiral

Koba-Nielsen factor (3.11), multiplied by a combination of holomorphic (1, 0)-forms. We

define the bi-holomorphic (1, 0)-form,

∆(z1, z2) = ω1(z1)ω2(z2)− ω2(z1)ω1(z2) (3.31)

Recall that, following our notations and conventions spelled out in footnote 2, ωI(z) is the

coefficient function of the (1, 0)-form ωI(z)dz in local complex coordinates, and ∆(z1, z2) is

similarly the coefficient function of the differential ∆(z1, z2)dz1∧dz2. With these conventions,

∆(z1, z2) is manifestly antisymmetric in z1, z2, and satisfies the following cyclic permutation

sum identities,10

ωI(1)∆(2, 3) + ωI(2)∆(3, 1) + ωI(3)∆(1, 2) = 0

∆(1, 2)∆(3, 4) + ∆(1, 3)∆(4, 2) + ∆(1, 4)∆(2, 3) = 0 (3.32)

10Henceforth, when no confusion is expected to arise, we shall denote the points zi as arguments of
functions and forms, simply by their label i, and the derivative with respect to zi by ∂i, so that for example
ωI(i) = ωI(zi), ∆(i, j) = ∆(zi, zj), and ∂i lnE(i, j) = ∂zi lnE(zi, zj).
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The chiral amplitude is given by [22],

K(4) = T1,2|3,4∆(1, 3)∆(2, 4) + T1,3|2,4∆(1, 2)∆(3, 4) (3.33)

Symmetries under the permutations (2 ↔ 3) and (1 ↔ 4) are manifest from the above

expression, while symmetry under the permutation (1 ↔ 2) may be established using both

the symmetries of T in (3.29) and of ∆ in (3.32). After performing the zero-mode integral

(3.5) for λ and θ, the bosonic components of 〈K(4)〉0 were shown in [23] to reproduce the

result of the RNS computation [16]. A proof of this equivalence using pure spinor superspace

cohomology techniques can be found in [46].
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4 Genus-two amplitudes for five massless states

In this section, we shall obtain the main result of this paper by carrying out the construction

of the genus-two chiral amplitude for five massless states. To do so, we use chiral splitting,

zero mode counting and BRST cohomology of the pure spinor formulation.

4.1 Structure of the chiral amplitude for five external states

The starting point is the genus-two chiral amplitude for five external massless states, given

by the correlator of (3.10) and (3.13) for the case N = 5,

F(5) = I(5) 〈K(5)〉0 =

〈
N2

3∏

a=1

(b, µa)
5∏

i=1

Ui(zi)

〉
(4.1)

The vertex operators Ui are given by,

Ui = ∂θαAiα(x, θ) + ΠmA
m
i (x, θ) + dαW

α
i (x, θ) +

1

2
NmnF

mn
i (x, θ) (4.2)

where each superfield multiplet (Aiα, A
m
i ,W

α
i , F

mn
i ) encodes the polarization vector and

spinor of the state i, as made explicit in (2.32). Following the pattern for the distribu-

tion of d-zero modes for five external states of (3.22) derived in subsection 3.3, the b-ghosts

can absorb either five or six d-zero modes, leaving the vertex operators to absorb either five

or four d-zero modes, respectively. We shall now discuss each part in turn.

4.1.1 Four d-zero modes and one loop momentum from vertex operators

The contribution from the b-ghost that contains six d-zero modes is of the form,

3∏

a=1

(b, µa) → (λ̄rd1d1)(λ̄rd1d2)(λ̄rd2d2) (4.3)

so that the product of five vertex operators needs to supply four d zero modes. The corre-

sponding contribution to K(5) is given by,

〈
(λ̄γD)3

(
U1(d

1W2)(d
1W3)(d

2W4)(d
2W5)

)〉
+ 14 permutations (4.4)

where we recall that D stands for the super derivative in (2.29) and we have carried out the

usual integration over r which leads to (λ̄γr) → (λ̄γD). The permutations consist of all 120

permutations modulo those which swap 2 ↔ 3 as well as those which swap 4 ↔ 5 and finally
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those which swap the pair (2, 3) ↔ (4, 5), in view of the symmetries of the distribution of d

zero modes.

We start by considering the contributions to (4.4) that are linear in loop momentum:

Decomposing the operator Πm in U1 according to the rules of chiral splitting in (2.24), we

find a loop-momentum dependent term

2πpImωI(z1)
〈
(λ̄γD)3

(
Am

1 (d
1W2)(d

1W3)(d
2W4)(d

2W5)
)〉

+ 14 permutations (4.5)

and leave the leftover contributions ∂xm+ (z1)+
1
2
(θγm∂θ)(z1) from (2.24) for the next section.

Applying the three super derivatives D in (4.5) produces two types of terms. Applying

all three D to Wi vertex operators produces terms of the form Am
1 times the building block

of the four-point amplitude T1,2|3,4 plus permutations thereof. However, in addition to these

contributions, which are schematically of the form AFFFW , terms involving DA1 and terms

in which several D act on the same Wi are also produced. At four points, different partitions

of the super derivatives to the superfieldsWWWW turn out to be BRST equivalent [24]. We

expect that also at five points, the chiral correlator admits a cohomology representative where

the contributions of (4.5) are captured by permutations of Am
1 T2,3|4,5. They will produce a

contribution to the “vector block”, as we will see in section 4.2. An explicit evaluation of

(4.5) may be found in section 5 of [25].

4.1.2 Four d-zero modes and one Wick contraction from vertex operators

It remains to carry out the Wick contractions of U1 with the fieldsWi. Using the vanishing of

the Wick contractions of the non-zero modes of θα given in (3.8), we see that the contraction

of the term proportional to ∂θα on the right side of U1 in (4.2) with the remaining Wi

operators vanishes identically, so that this term in U1 may be omitted. The contribution of

the zero mode of Nmn in U1 similarly cancels as a factor of N̄mn would be needed to give a

non-zero contribution. The Wick contractions of the non-zero mode of Nmn with the other

fields similarly cancel. The remaining contribution is thus given by [25],
〈
(λ̄γD)3

(
Π̂mA

m
1 (x, θ) + d̂αW

α
1 (x, θ)

)
(z1)(d

1W2)(d
1W3)(d

2W4)(d
2W5)

〉
(4.6)

where Π̂m(z1) = ∂xm+ (z1) +
1
2
(θγm∂θ)(z1) is obtained by removing the loop momentum from

the chiral-splitting prescription in (2.24). Wick contractions of Π̂m give rise to contributions

linear in external momenta which arise from four vertex operators of the form (dWi), two of

which carry a d1 zero mode with the other two carrying a d2 zero mode.

Π̂m(z1)W
β
i (zi) ∼ −i∂z1 lnE(z1, zi)k

m
i W

β
i (4.7)
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Finally, the Wick contractions of d̂α(z1) with W
β
i for i = 2, 3, 4, 5 is given by the last formula

of (3.9), and in this case simplifies as follows,

d̂α(z1)W
β
i (zi) ∼ ∂z1 lnE(z1, zi)DαW

β
i =

1

4
(γmn)α

βFmn
i ∂z1 lnE(z1, zi) (4.8)

The two contributions (4.7) and (4.8) will produce terms in the “scalar block”, as we will

see in section 4.5.2.

4.1.3 Contributions with five d-zero modes from vertex operators

The contribution from the b-ghost that contains five d-zero modes is of the form,

3∏

a=1

(b, µa) → (λ̄rd2d2)Πm

(
2(λ̄γmd1)(λ̄rd1d2)− (λ̄γmd2)(λ̄rd1d1)

)
(4.9)

plus the same term with d1 and d2 zero modes swapped. As a result, the product of the

vertex operators needs to supply five d zero modes, more specifically three d1 zero modes

and two d2 zero modes for the term written down above. The corresponding contribution of

the above term to K(5) is given by [25],
〈
Πm(d

2γd2)
(
2(λ̄γmd1)(d1γd2)− (λ̄γmd2)(d1γd1)

)

×(λ̄γD)2(d1W1)(d
1W2)(d

1W3)(d
2W4)(d

2W5)
〉

(4.10)

plus the same contribution with the zero modes d1 and d2 swapped. Expanding Πm as in

(2.24), evaluated this time at one of the b-ghost insertions, produces terms linear in loop

momenta and terms which are linear in external momenta. The terms linear in loop momenta

are accompanied by a holomorphic (1, 0)-form at the b-ghost insertion point and will directly

lead to the measure on moduli space. Terms linear in external momenta will not be computed

directly but rather inferred by consistency.

For the contributions linear in loop momenta we construct an expression of the schematic

form FFWWW from cohomology arguments in the next section: Carrying out the integra-

tion over d-zero modes and r-zero modes in (4.10), we see that we now have two super

derivatives acting on the vertex operators (in contrast with the contribution with four d

zero modes from the vertex operators, where we had three super derivatives). When the

super derivatives act on two different vertex operators, the respective superfields Wi will be

converted to Fi, leaving expressions of the schematic form FFWWW . Contributions of the

form WWWWD2W are expected to be BRST equivalent to those of the form FFWWW

by analogy with the fate of the four-point contributions D3(WWWW ) [24].
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4.2 The vector block for the amplitude of five external states

Summarizing the structural information gathered in the previous subsection, we have two

distinct types of contributions to the chiral amplitude for five external states. The first

contribution is linear in the loop momenta and will be referred to as the vector block, while

the second contribution is independent of loop momenta and will be referred to as the scalar

block. Our strategy will be to determine first the vector block, in part from information

obtained through its structural analysis in the previous section, and in part from enforcing

BRST invariance. The scalar block will not be computed directly, but will be determined

uniquely from the monodromy behavior of the vector block (recall that, according to (2.20),

loop momenta behave non-trivially under moving a vertex operator point zi around aB-cycle

on the surface) combined with BRST invariance.

The vector block receives two different types of contributions, symbolically of the form

AFFFW and FFWWW , as was derived in the previous section. It will be convenient to

label the contributions to the vector block with vertex operator indices corresponding to the

distribution of d1 and d2 zero modes in the contribution with five d-zero modes on the vertex

operators. Thus, a contribution with three d1 zero modes on vertex operators 1, 2, 3 and two

d2 zero modes on vertex operators 4, 5 will contribute to Tm
1,2,3|4,5. We will also include in

Tm
1,2,3|4,5 the contributions with four d-zero modes on the vertex operators, specifically two

d2-zero modes on vertex operators 4, 5 with two d1 zero modes and one Am vertex distributed

amongst the points 1, 2, 3. Thus, the vector block Tm
1,2,3|4,5 takes the form [47],

Tm
1,2,3|4,5 = Am

1 T2,3|4,5 + Am
2 T3,1|4,5 + Am

3 T1,2|4,5 +Wm
1,2,3|4,5 (4.11)

where T2,3|4,5 and its permutations are the four-state blocks defined in (3.27), and W collects

all the contributions of the structural form FFWWW . The first three terms on the right

side of (4.11) are invariant under all permutations of 1, 2, 3 as well as under swapping 4, 5.

Our goal will be to construct Wm
1,2,3|4,5 and thus Tm

1,2,3|4,5 which are invariant under these

symmetries as well.

A crucial ingredient in our construction will be the BRST transformation property of

the vector block. Using the BRST invariance of T2,3|4,5 and its permutations, and the BRST

transform of Am given in (2.33), the BRST transformation of the vector block is given by,

QTm
1,2,3|4,5 = ikm1 V1 T2,3|4,5 + ikm2 V2 T3,1|4,5 + ikm3 V3 T1,2|4,5 (4.12)

provided the BRST transform of Wm
1,2,3|4,5 satisfies,

QWm
1,2,3|4,5 = −(λγmW1) T2,3|4,5 − (λγmW2) T3,1|4,5 − (λγmW3) T1,2|4,5 (4.13)
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We shall now show that this equation may be solved for Wm
1,2,3|4,5, up to BRST exact contri-

butions, by a sum of terms each of which is of the structural form FFWWW , as predicted

in the previous subsection. Three distinct types of contributions arise,

(w1)
m
3,4;5|1,2 = −

1

8
(λγmW5) {(λγpqγ

rW1)F
pq
2 + (1 ↔ 2)}

{
(λγstγrW3)F

st
4 + (3 ↔ 4)

}

(w2)
m
3,4;5|1,2 =

1

6
(λγtW5)(λγnpqrsλ)F

np
1 F qr

2 (W3γ
mstW4)

(w3)
m
3,4;5|1,2 = −

1

3
(λγrW5) {(λγpqγ

mW1)F
pq
2 + (1 ↔ 2)} {(λγsW3)F

rs
4 + (3 ↔ 4)} (4.14)

The overall coefficients have been chosen for later convenience. To make a connection with

the structural analysis, the first term arises from four d-zero modes coming from the vertex

operators, and one super derivative applied to Am
5 . The second and third terms arise from

five d-zero modes coming from the vertex operators. Specifically, the second term arises from

the first term in the large parentheses of (4.10) while the third term arises from the second

term in the parentheses of (4.10).

The BRST transformations of these partial contributions are readily obtained using the

results of (2.33) and (2.34), as well as the following identities,

Q{(λγpqγrWi)F
pq
j }+ (i↔ j) = −

1

2
(λγstpqrλ)F

st
i F

pq
j

Q(Wiγ
mstWj) =

1

4
(λγpqγ

mstWj)F
pq
i + (i↔ j) (4.15)

The resulting BRST transformations are then given by,

Q(w1)
m
3,4;5|1,2 =

1

4
(λγmW5)

(
t1,2|3;4 + t1,2|4;3 − t3,4|1;2 − t3,4|2;1

)

Q(w2)
m
3,4;5|1,2 = −

1

6
(λγmW5)t1,2|4;3 −

1

6
(λγmW5)t1,2|3;4

−
1

3
(λγmW3)t1,2|4;5 −

1

3
(λγmW4)t1,2|3;5

+
1

6
(λγmnpqrλ)F

np
1 F qr

2

[
F st
4 (λγsW3)(λγtW5) + (3 ↔ 4)

]

Q(w3)
m
3,4;5|1,2 = −

1

6
(λmnpqrλ)F

np
1 F qr

2 F
st
4 (λγsW3)(λγtW5) + (3 ↔ 4) (4.16)

where t1,2|3;4 was defined in (3.28). An immediate simplification is obtained by adding Q(w2)

and Q(w3). The sum of all three,

wm
3,4,5|1,2 = (w1)

m
3,4;5|1,2 + (w2)

m
3,4;5|1,2 + (w3)

m
3,4;5|1,2 + (5 ↔ 3, 4) (4.17)
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has the following BRST transform,

Qw3,4,5|1,2 = −(λγmW3) T1,2|4;5 − (λγmW4) T1,2|5,3 − (λγmW5) T1,2|3,4 (4.18)

Thus, wm
1,2,3|4,5 appears to provide a suitable candidate for Wm

1,2,3|4,5, except for the fact that

it does not make the symmetries of Tm
1,2,3|4,5 manifest.

Indeed, the symmetry of T1,2|3,4 in (3.29) implies that QTm
1,2,3|4,5 satisfies the symmetry,

QTm
1,2,3|4,5 = QTm

3,4,5|1,2 +QTm
2,4,5|1,3 + QTm

1,4,5|2,3 (4.19)

The first three terms of Tm
1,2,3|4,5 in (4.11) satisfy this same relation before applying Q. There-

fore, Tm
1,2,3|4,5 itself satisfies the following symmetry relation,

Tm
1,2,3|4,5 = Tm

3,4,5|1,2 + Tm
2,4,5|1,3 + Tm

1,4,5|2,3 (4.20)

provided Wm
1,2,3|4,5 also satisfies this relation. The candidate wm

1,2,3|4,5 we had obtained for

Wm
1,2,3|4,5 satisfies the appropriate BRST relation (4.18) but fails to satisfy (4.20). The fol-

lowing symmetrization of wm
1,2,3|4,5,

Wm
1,2,3|4,5 =

1

2
wm

1,2,3|4,5 +
1

6
(wm

3,4,5|1,2 +wm
2,4,5|1,3 +wm

1,4,5|3,2) (4.21)

−
1

6
(wm

1,2,4|3,5 +wm
1,2,5|3,4 +wm

1,3,4|2,5 +wm
1,3,5|2,4 +wm

3,2,4|1,5 +wm
3,2,5|1,4)

produces the desired expression for Wm
1,2,3|4,5 which satisfies both the BRST condition (4.13)

and the cyclic symmetry (4.20).

4.3 Worldsheet dependence of the vector block

At fixed loop momenta the correlator of the field xm+ produces the chiral Koba-Nielsen factor

I(N) of (3.11) for N = 5, along with contributions from the insertions of the operator Πm. In

view of the substitution rule (2.24) of the chiral splitting procedure, the latter decomposes

into the operator ∂xm++ 1
2
θγm∂θ and the part linear in loop momenta pIm which is holomorphic

in z. The contributions to the chiral correlator K(5) linear in p
I
m is captured by,

Kp
(5) = 2πpImT

m
1,2,3|4,5ωI(2)∆(3, 4)∆(5, 1) + cycl(1, 2, 3, 4, 5) (4.22)

where the cyclic sum renders (4.22) invariant under all permutations of the zi and external

states11. This combination has been chosen because it gives an economical expression for a

11In the superfield formalism for the external vertex operators used here, invariance of the amplitude for
N external states under all N ! permutations of the external states provides the superfield implementation of
Bose symmetry for external bosons and Fermi symmetry for external fermions. Full permutation invariance
may be verified by repeatedly using the symmetries (3.32) and (4.20) of the forms ωI(2)∆(3, 4) and the
kinematic factor Tm

1,2,3|4,5, respectively.
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fully Bose symmetric amplitude contribution in terms of cyclic permutations only, without

the need to include all 120 permutations of five points. However, (4.22) fails to obey the

homology invariance properties (2.20) and (2.21).

To obtain homology invariance of (4.22), we shall now promote the dependence on the

loop momenta to combinations which are homology invariant. As a first step, note that the

insertion of a single operator ∂xm multiplies the chiral Koba-Nielsen factor (3.11) by,

Pm(zi) = 2πi(pI)mωI(zi) +
∑

j 6=i

kmj ∂i lnE(zi, zj) (4.23)

Thanks to overall momentum conservation, the transformation law of the loop momenta

given in (2.21), and the AI and BI-cycle monodromies (B.17) of the prime form, the one-

form Pm(zi) is homology invariant. Hence, any loop momentum contracting the vector

block Tm
1,2,3|4,5 in (4.22) will be promoted to the combination (4.23). Since (4.22) additionally

features bi-holomorphic (1, 0)-forms ∆(i, j) defined in (3.31), it is convenient to define the

following vector-valued meromorphic (1, 0)-form in five variables zi,

Zm
1|2,3|4,5 = Pm(1)∆(2, 3)∆(4, 5) (4.24)

An immediate property which will be crucial soon is as follows,

km1 Z
m
1|2,3|4,5I(5) = ∂1

(
I(5) ∆(2, 3)∆(4, 5)

)
(4.25)

On these grounds, the homology-invariant completion of (4.22) is given by,

KV
(5) = −i Tm

1,2,3|4,5Z
m
2|3,4|5,1 + cycl(1, 2, 3, 4, 5) (4.26)

However, the terms proportional to kmj T
m
1,2,3|4,5∂2 lnE(z2, zj)∆(3, 4)∆(5, 1), which are present

in (4.26) in addition to the contributions of (4.22), do not preserve the Bose permutation

invariance of (4.22). At the same time, neither (4.22) nor (4.26) are BRST closed. In the next

subsection, we shall show that both shortcomings are cured by adding a loop-momentum

independent scalar block.

4.3.1 BRST transformation of KV
(5)

In preparation for the construction of the scalar block in the next subsection, we begin by

calculating and then simplifying the BRST transform of the vector block KV
(5). The BRST

transform is obtained by using (4.12) and is given by,

QKV
(5) =

(
km1 V1 T2,3|4,5 + km2 V2 T3,1|4,5 + km3 V3 T1,2|4,5

)
Zm

2|3,4|5,1

+ cycl(1, 2, 3, 4, 5) (4.27)
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Using the cyclic permutations to expose a single vertex operator V3, we have equivalently,

QKV
(5) = T1,2|4,5 V3 k

m
3 (Zm

2|3,4|5,1 + Zm
4|2,3|5,1) + T2,4|5,1 V3 k

m
3 Zm

3|4,5|1,2

+ cycl(1, 2, 3, 4, 5) (4.28)

Using the property (4.25) and the fact that by now only zero mode integrations remain for

the vertex operator V3 which depends only on λ and θ, we see that the third term in QKV
(5)I(5)

is a total derivative in z3 which vanishes upon integration over z3.

The remaining terms may be simplified as follows. We begin by focussing on the loop

momentum dependent part, which is given by,

km3 (Z
m
2|3,4|5,1 + Zm

4|2,3|5,1)I(5)

∣∣∣
p
= 2πik3 · p

I
(
ωI(2)∆(3, 4) + ωI(4)∆(2, 3)

)
∆(5, 1)I(5)

= ∂3

(
∆(2, 4)∆(5, 1)I(5)

)

−
∑

j 6=3

k3 · kj ∂3 lnE(3, j)∆(2, 4)∆(5, 1) I(5) (4.29)

where the second line has been obtained from the first by using the first identity in (3.32),

and regrouping terms under the total derivative in z3. Upon including the terms without

loop momenta in the Z-functions, and omitting the total derivative contributions, we find,

km3 (Z
m
2|3,4|5,1 + Zm

4|2,3|5,1)I(5) = −L0
3∆(5, 1) I(5) (4.30)

where L0
3 is given by (recall that sij = −ki · kj),

L0
3 = s35

[
∂2 lnE(2, 5)∆(3, 4) + ∂4 lnE(4, 5)∆(2, 3) + ∂3 lnE(3, 5)∆(4, 2)

]

+s31
[
∂2 lnE(2, 1)∆(3, 4) + ∂4 lnE(4, 1)∆(2, 3) + ∂3 lnE(3, 1)∆(4, 2)

]

+s32
[
∂4 lnE(4, 2)∆(2, 3) + ∂3 lnE(3, 2)∆(4, 2)

]

+s34
[
∂2 lnE(2, 4)∆(3, 4) + ∂3 lnE(3, 4)∆(4, 2)

]
(4.31)

The form L0
3 is invariant upon homology shifts of the points zi around A and B cycles, as

may be shown using (B.17) and with the help of momentum conservation, which implies the

relation s35+s31+s32+s34 = 0. To render (4.31) manifestly invariant under homology shifts

without the need to invoke momentum conservation, it is convenient to add the following

combination which vanishes in view of momentum conservation,

L1
3 = −

1

2
(s35 + s31 + s32 + s34)

[
∂4 lnE(4, 2)∆(2, 3) + ∂3 lnE(3, 2)∆(4, 2)

+∂2 lnE(2, 4)∆(3, 4) + ∂3 lnE(3, 4)∆(4, 2)
]

(4.32)
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In summary, we have established that, up to total differentials in the vertex operator position

points zi, the contribution from the vector chiral block KV
(5) has BRST transform,

QKV
(5) = T1,2|4,5 V3 L3∆(5, 1) + cycl(1, 2, 3, 4, 5) (4.33)

where L3 = L0
3 + L1

3. In particular, it is independent of loop momenta.

4.4 Construction of the scalar block

By definition, the scalar block KS
(5) is the part of the chiral amplitude which is independent

of loop momenta, and the full chiral amplitude is the sum of both contributions,

K(5) = KV
(5) +KS

(5) (4.34)

BRST invariance of the full amplitude imposes the following constraint on the BRST varia-

tion of the scalar block,

QKS
(5) = −T1,2|4,5 V3 L3∆(5, 1) + cycl(1, 2, 3, 4, 5) (4.35)

To render K(5) BRST invariant, a solution must be found for KS
(5), which is independent of

the loop momenta, without discarding total derivative terms (which would be allowed for the

total chiral amplitude K(5)I(5) but not for K
S
(5)). In the next subsection, we shall construct

the so-called BRST ancestors, such as S3;1|2|4,5, which satisfy,

QS3;1|2|4,5 = s31V3T1,2|4,5 (4.36)

and obey symmetry properties analogous to T1,2|4,5, see (3.29),

S3;1|2|4,5 = S3;1|2|5,4 S3;1|2|4,5 + S3;1|5|2,4 + S3;1|4|5,2 = 0 (4.37)

With these ancestors at hand, the BRST variation of KS
(5) may now be solved as follows,

KS
(5) = L∆(5, 1) + cycl(1, 2, 3, 4, 5) (4.38)
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where

L =
1

2
(S3;2|1|4,5 − S3;4|5|1,2)

[
∂4 lnE(4, 2)∆(2, 3) + ∂3 lnE(3, 2)∆(4, 2)

−∂2 lnE(2, 4)∆(3, 4)− ∂3 lnE(3, 4)∆(4, 2)
]

−
1

2
S3;1|2|4,5

[
∂4 lnE(4, 2)∆(2, 3) + ∂3 lnE(3, 2)∆(4, 2) + ∂2 lnE(2, 4)∆(3, 4)

+∂3 lnE(3, 4)∆(4, 2)− 2∂2 lnE(2, 1)∆(3, 4)

−2∂4 lnE(4, 1)∆(2, 3)− 2∂3 lnE(3, 1)∆(4, 2)
]

−
1

2
S3;5|4|1,2

[
∂4 lnE(4, 2)∆(2, 3) + ∂3 lnE(3, 2)∆(4, 2) + ∂2 lnE(2, 4)∆(3, 4)

+∂3 lnE(3, 4)∆(4, 2)− 2∂2 lnE(2, 5)∆(3, 4)

−2∂4 lnE(4, 5)∆(2, 3)− 2∂3 lnE(3, 5)∆(4, 2)
]

(4.39)

Note that L is obtained from V3T1,2|4,5L3 by formally substituting s31V3T1,2|4,5 → S3;1|2|4,5

and permutations thereof, in keeping with the structure of (4.36).

4.5 Scalar block in terms of two-particle superfields

The construction of the scalar block KS
(5) in the previous section relies on the availability of a

local scalar superfield S3;1|2|4,5 subject to the BRST variation (4.36). To prove the existence

of viable solutions to the BRST condition and obtain their explicit construction, we shall

use the multi-particle superfield formalism, which was developed for genus-zero applications

in string theory in [27] (see [8] for precursors) and tree-level applications in quantum field

theory in [48, 49] (see [50] for precursors). Moreover, multi-particle superfields recursively

capture the short-distance singularities of higher-genus correlators [26, 25, 51] and tree-level

subdiagrams of loop amplitudes in quantum field theory [52, 47].

4.5.1 Preamble

Chiral conformal field theory correlators of conformal primary operators of dimension (1, 0)

on a Riemann surface of genus zero are determined by the positions and residues of their

poles and their monodromy. In the absence of monodromy, this statement is equivalent to the

well-known result that a meromorphic (1, 0) form on a sphere is completely determined by

the positions and residues of its poles. In particular, the positions of its zeros are completely

determined. In a conformal field theory, the singularity structure is determined uniquely by

the OPEs of the fields in the correlator, so that on genus-zero surfaces the correlators may
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be recovered completely from the OPEs. The chiral amplitudes F(N) of interest here are

derived from the insertion of chiral vertex operators Ui of conformal dimension (1, 0) and

b-ghosts of conformal dimension (2, 0) whose monodromy is entirely contained in the chiral

Koba-Nielsen factor I(N). The reduced amplitudes K(N) are monodromy-free.

By contrast, on a surface of higher genus, there exist holomorphic forms of dimension

(1, 0), so that specifying the positions and the residues of the poles no longer suffices to

determine the correlator, and additional information on the contribution of the holomorphic

forms is required. Thus, the OPE is generally insufficient to reconstruct the correlators.

4.5.2 Two-particle superfield formalism

The two-particle superfield formalism is based on exploiting the OPE structure of chiral

vertex operators Ui. Controlling the singularities in the OPE (and its multi-particle general-

ization) allows for a complete determination of the corresponding correlators at genus zero.

The operator product of two chiral vertex operators enjoys the following structure [53, 27],

U1(z1)U2(z2) → −z−s12−1
12

(
∂θαA12α +ΠmA

m
12 + dαW

α
12 +

1

2
NmnF

mn
12

)
(4.40)

up to total derivatives ∂1 and ∂2 of the product of z−s12
12 times a single-valued function of z2

plus non-singular terms. Upon integration of the vertex operators over their positions, the

total derivative contributions are expected to cancel.

The prefactor z−s12
12 arises from the contractions of the exponentials eik1·x+ with eik2·x+

and is contained in the chiral Koba-Nielsen factor, where k1 and k2 are the momenta of the

external states. The extra factor of z−1
12 arises from the Wick contractions of the operator

∂xm+ in Πm with the exponentials eik1·x+ with eik2·x+ as well as from the pairwise Wick

contractions of the spinor fields. Double poles arise as well, but it was shown [53, 27] that

they may all be included in the total derivatives which are being omitted. The composite

fields A12α, A
m
12,W

α
12, F

mn
12 are referred to as two-particle superfields. Their expressions in

terms of the one-particle superfields are given as follows,

(A12)α =
1

2

[
A2α(ik2 · A1) + Am

2 (γmW1)α − (1 ↔ 2)
]

(A12)
m =

1

2

[
A1pF

pm
2 + Am

2 (ik2 · A1) + (W1γ
mW2)− (1 ↔ 2)

]

(W12)
α =

1

4
(γmnW2)

αFmn
1 +W α

2 (ik2 · A1)− (1 ↔ 2) (4.41)

(F12)
mn = Fmn

2 (ik2 · A1) + F
[m
2 pF

n]p
1 + ik

[m
12 (W1γ

n]W2)− (1 ↔ 2)
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where km12 = km1 + km2 . The BRST transforms of the two-particle superfields which will be

needed here are given as follows [27],

QW α
12 =

1

4
(λγmn)

αFmn
12 + s12(V1W

α
2 − V2W

α
1 )

QFmn
12 = ikm12(λγ

nW12)− ikn12(λγ
mW12) + s12(V1F

mn
2 − V2F

mn
1 )

+s12

(
An

1 (λγ
mW2)−An

2 (λγ
mW1)−Am

1 (λγ
nW2) + Am

2 (λγ
nW1)

)
(4.42)

Using the pure spinor constraint, we also deduce the following BRST transforms, which

generalize the relations of (2.34) to the case of two-particle superfields,

Q(λγsW12) = s12V1(λγsW2)− s12V2(λγsW1)

Q(λγmnpqrλ)F
mn
12 = s12(λγmnpqrλ)(V1F

mn
2 − V2F

mn
1 ) (4.43)

Also at higher genus, the two-particle superfield formalism can be applied to determine the

singular parts of the correlators. However, since singularities of the OPE do not uniquely de-

termine correlators beyond genus zero, the regular parts of the correlator generically require

additional input beyond the multi-particle superfield formalism. In the next subsection, the

scalar block S3;1|2|4,5 in the regular parts of the correlator will be obtained by solving (4.36),

i.e. taking BRST invariance and monodromies into account. Our solution for S3;1|2|4,5 turns

out to be expressible in terms of the vector (4.11) and two-particle superfields, irrespectively

of their OPE origin.

4.5.3 Two-particle superfields for the five-point function

To construct the scalar block S3;1|2|4,5 solving (4.36), we begin by defining the following

composites of ghost number three, built out of two-particle superfields in analogy with the

construction of (3.28) in the four-point case,

t12,3|4;5 = (λγmnpqrλ)F
mn
12 F pq

3 F
rs
4 (λγsW5)

t4,5|3;12 = (λγmnpqrλ)F
mn
4 F pq

5 F
rs
3 (λγsW12) (4.44)

t4,5|12;3 = (λγmnpqrλ)F
mn
4 F pq

5 F
rs
12 (λγsW3)

The three composites are obtained from t1,2|3;4 in (3.28) by substituting the corresponding

two-particle superfield for each single-particle field encountered in turn in (3.28). Note that

the substitution of F12 for F1 and F2 in (3.28) lead to the same expression t12,3|4;5. Their
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BRST transforms are readily obtained from (4.43) and (2.34), and we find,

Q t12,3|4;5 = s12V1 t2,3|4;5 − s12V2 t1,3|4;5

Q t4,5|3;12 = s12V1 t4,5|3;2 − s12V2 t4,5|3;1 (4.45)

Q t4,5|12;3 = s12V1 t4,5|2;3 − s12V2t4,5|1;3

Upon defining the following combination by analogy with (3.27),

T12,3|4,5 =
1

4

(
t12,3|4;5 + t12,3|5;4 + t4,5|12;3 + t4,5|3;12

)
(4.46)

we verify that its BRST transform is given by,

QT12,3|4,5 = s12(V1T2,3|4,5 − V2T1,3|4,5) (4.47)

The composite T12,3|4,5 by itself does not yet solve (4.36), but it does exhibit a desired

kinematic factor s12, vertex operators V2, and the characteristic building block T1,3|4,5, all of

which are key ingredients on the right side of (4.36).

4.5.4 The scalar block in terms of two-particle superfields

The BRST variation of T12,3|4,5 in (4.47), together with the expression (4.12) for QTm
1,2,3|4,5,

imply the central result of this subsection, namely that the combination,

S1;2|3|4,5 =
1

2

(
i(km1 +k

m
2 −k

m
3 )T

m
1,2,3|4,5 + T12,3|4,5 + T13,2|4,5 + T23,1|4,5

)
(4.48)

yields the desired BRST variation (4.36). We note here, for later use in section 6, that the

expressions for Tm
1,2,3|4,5 in (4.11) and T12,3|4,5 in (4.46) have been used in [47] to propose a

BRST-invariant and manifestly local representation for the integrands of two-loop five-point

amplitudes in SYM and maximal supergravity.

The steps in deriving the symmetries (3.29) of the chiral blocks for four external states

carry over in identical form to the following relations [47],

T12,3|4,5 = T12,3|5,4 T12,3|4,5 + T12,4|5,3 + T12,5|3,4 = 0 (4.49)

As a consequence, the symmetry,

S1;2|3|4,5 = S1;2|3|5,4 (4.50)

is manifest from the definition (4.48), whereas the relation,

S1;2|3|4,5 + S1;2|4|5,3 + S1;2|5|3,4
∼= 0 (4.51)
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holds in the BRST cohomology, namely up to a Q-exact superfield (an equivalence which is

denoted here and below by the symbol ∼=). Similarly, the vector and scalar superfields are

related via [47],

ikm3 (T
m
1,2,3|4,5 + Tm

3,4,5|1,2)− T13,2|4,5 − T23,1|4,5 + T34,5|1,2 + T35,4|1,2 ∼= 0 (4.52)

up to a Q-exact quantity, and it would be interesting to identify its BRST ancestor. It is

easy to show via momentum conservation s13 + s23 + s34 + s35 = 0 that the left-hand side

of (4.52) is BRST-closed, and exactness follows from an explicit check that its components

〈. . .〉0 vanish [54].

More generally, any BRST-closed and local combination of permutations of kmj T
m
1,2,3|4,5,

and T12,3|4,5 is checked to be BRST exact as well. Only non-local expressions such as

s−1
12 S1;2|3|4,5 − s−1

13 S1;3|2|4,5 can be in the BRST cohomology. The absence of local cohomol-

ogy within our alphabet of kinematic building blocks Tm
1,2,3|4,5 and T12,3|4,5 is crucial for the

viability of our approach.12

We will later on exploit that any contraction kmj T
m
1,2,3|4,5 of the vector with external

momenta is expressible via permutations of the scalar building block,

ikm1 T
m
1,2,3|4,5 = S2;1|3|4,5 + S3;1|2|4,5 (4.53)

ikm5 T
m
1,2,3|4,5

∼= S1;5|4|2,3 + S2;5|4|1,3 + S3;5|4|1,2

The first identity is an immediate consequence of the definition (4.48) while the second one

is based on (4.52), i.e. only valid up to BRST-exact terms. One can similarly show that

S1;2|3|4,5 − S2;1|3|4,5 = T12,3|4,5 (4.54)

and, via momentum conservation and repeated application of (4.52), that,

S5;1|2|3,4 + S5;2|1|3,4 + S5;3|4|1,2 + S5;4|3|1,2
∼= 0 (4.55)

the last equality again holding up to BRST exact terms.

12For instance, for four external states it is possible to construct local pure spinor superfield expressions
in the cohomology of the BRST charge. This fact causes complications when applying the same ideas in an
attempt to obtain the non-singular completion of the three-loop four-point correlator from [26].
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5 Structure of the chiral amplitude

In this section, we shall simplify the expression for the genus-two chiral amplitude for five

external states and further explore its structure. Various re-organizations between the vector

block (4.26) and the scalar block (4.38) lead to new representations that in turn expose

manifest homology invariance, BRST invariance, or locality.

5.1 Theta functions and symmetry on the Jacobian variety

The chiral amplitude obtained in section 4 depends on the positions of the vertex operators

and the b-ghost entirely through the holomorphic Abelian differentials ωI , the prime form

E(zi, zj), and single derivatives of its logarithm ∂i lnE(zi, zj). At genus zero and one, the

meromorphic form ∂i lnE(zi, zj) is odd under swapping the points zi and zj , but this property

can no longer hold at higher genus since it is a (1, 0) form in zi but a (0, 0) form in zj . Under

certain conditions, which will turn out to be met for the 5-point amplitude, the meromorphic

form above can be recast directly in terms of ωI and genus-two ϑ-functions and their first

order derivatives, and in this form a higher-genus version of the swapping symmetry will be

recovered. The present subsection is devoted to exhibiting the associated simplifications of

the chiral amplitude.

To express the prime form in terms of genus-two ϑ-functions we use the Abel-Jacobi map

which sends a point zi in Σ to a point ζi in the Jacobian variety J(Σ) (see appendix B),

(ζi)I =

∫ zi

z0

ωI (5.1)

Since only differences ζi − ζj will be needed throughout, all dependence on the choice of the

base point z0 will cancel out. By the definition of the prime form in (B.15), its logarithmic

derivative may be decomposed as follows,

∂i lnE(zi, zj|Ω) = ωI(zi)g
I
i,j − ∂i ln hν(zi) (5.2)

where ν is an arbitrary odd spin structure, hν is the corresponding holomorphic (1
2
, 0) form,

and gIi,j is given by the derivative of the logarithm of the ϑ-function for spin structure ν,

gIi,j =
∂

∂ζI
lnϑ[ν](ζ |Ω)

∣∣∣∣
ζ=ζi−ζj

(5.3)

While each term separately on the right side of (5.2) depends on ν, their sum is independent

of the choice of ν. The key advantage of the combination gIi,j is the symmetry property,

gIj,i = −gIi,j (5.4)
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while the derivative of the prime form ∂i lnE(zi, zj) exhibits no such symmetry.

Upon substituting the decomposition (5.2) of the derivative of the prime form into the

five-point amplitude, all dependence on the holomorphic (1/2, 0)-forms hν cancels between

the vector and scalar blocks, provided we choose one and the same odd spin structure for

all substitutions. This cancellation is guaranteed by the fact that the full chiral amplitude

is a well-defined (1, 0) form in each vertex point zi whose monodromy is given solely by the

monodromy of the chiral Koba-Nielsen factor. It may also be verified directly on our final

expressions for the vector and scalar blocks.

The contributions involving hν in the vector block are easy to track from (4.26),

KV
(5)

∣∣∣
hν

= −i∂2 ln hν(z2)∆(3, 4)∆(5, 1)km2 T
m
1,2,3|4,5 + cycl(1, 2, 3, 4, 5) (5.5)

where we have used momentum conservation to simplify. A slightly longer calculation is

required to isolate the hν-dependence of the quantity (4.38) in the scalar block,

L
∣∣∣
hν

=
1

2
(S3;2|1|4,5 − S3;4|5|1,2)

[
∂2 lnhν(z2)∆(3, 4)− ∂4 ln hν(z4)∆(2, 3)

]

−
1

2
(S3;1|2|4,5 + S3;5|4|1,2)

[
∂2 ln hν(z2)∆(3, 4) + ∂4 ln hν(z4)∆(2, 3)

]

∼= S3;2|1|4,5 ∂2 ln hν(z2)∆(3, 4) + S3;4|5|1,2 ∂4 ln hν(z4)∆(2, 3) (5.6)

The last line has been obtained from the kinematic identity (4.55) in the BRST cohomology.

On these grounds, the sum of all contributions ∂i ln hν(zi) to the overall amplitude can be

obtained by combining (4.26) and (4.38),

K(5)

∣∣∣
hν

= ∂2 ln hν(z2)∆(3, 4)∆(5, 1)
(
−ikm2 T

m
1,2,3|4,5 + S3;2|1|4,5 + S1;2|3|4,5

)

+cycl(1, 2, 3, 4, 5) (5.7)

The sum of the terms in the parentheses on the first line cancels in view of the first kinematic

identity in (4.53) so that K(5)|hν
= 0, and all dependence on hν for all points zi cancels.

5.2 Partition into sub-correlators

In view of the results of the previous subsection, we may freely make the following substitu-

tions of all partial derivatives of the logarithm of the prime form within K5,

∂i lnE(zi, zj) → ωI(zi) g
I
i,j (5.8)
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It follows by inspection that both the contributions from the scalar and the vector blocks

may be expressed as linear combinations of holomorphic differential forms of the type

ωI(i)∆(j, k)∆(ℓ,m) with coefficients given by the functions gIp,q, where (i, j, k, ℓ,m) is a

permutation of (1, 2, 3, 4, 5). In view of the identities (3.32), the vector space spanned by all

such forms ωI(i)∆(j, k)∆(ℓ,m) is five-dimensional and a basis is given by,13

ωI(1)∆(2, 3)∆(4, 5) and its 4 cyclic permutations of (1, 2, 3, 4, 5) (5.9)

Decomposing the correlator in the basis (5.9) we have,

K(5) = ωI(1)∆(2, 3)∆(4, 5)KI
5,1,2|3,4 + cycl(1, 2, 3, 4, 5) (5.10)

We shall refer to the quantity KI
5,1,2|3,4 and its permutations as sub-correlators.

The sub-correlators comprise all the kinematic dependence, and the free index I is carried

by the loop momentum pIm or by a function gIi,j in (5.3). The explicit form ofKI
5,1,2|3,4 resulting

from (4.26), (4.38), (4.39), even after reduction to the basis of the five-forms, produces a large

number of terms, but it drastically simplifies after use of the kinematic identities in section

4.5.4: In terms of the scalar building block S1;2|3|4,5 in (4.48) and their anti-symmetrized

combination T12,3|4,5 in (4.54), the coefficient of each function gIi,j reduces to just a single

term,

KI
5,1,2|3,4 = 2πpImT

m
5,1,2|3,4 − gI1,2T12,5|3,4 − gI1,5T15,2|3,4 − gI2,5T25,1|3,4

− gI1,3S1;3|4|2,5 − gI2,3S2;3|4|1,5 − gI5,3S5;3|4|1,2

− gI1,4S1;4|3|2,5 − gI2,4S2;4|3|1,5 − gI5,4S5;4|3|1,2 (5.11)

while the coefficient of gI3,4 vanishes.

As reflected by the notation for its subscripts, the sub-correlator KI
5,1,2|3,4 exhibits the

same symmetries as the vector building block Tm
5,1,2|3,4 in (4.11). It is manifest from (5.11)

that KI
5,1,2|3,4 is symmetric with respect to labels that are separated by a comma,

KI
5,1,2|3,4 = KI

1,5,2|3,4 = KI
5,2,1|3,4 KI

5,1,2|3,4 = KI
5,1,2|4,3 (5.12)

13The number of independent such forms follows from group theory. Each ωI(j) is an SL(2) doublet and
the number of doublets occurring in the five-fold tensor product of doublets is five. To see concretely that all
the forms ωI(i)∆(j, k)∆(ℓ,m) are linear combinations of the forms in (5.9), we first use cyclic permutations
to set i = 1. There are three such forms, ωI(1)∆(2, 3)∆(4, 5), ωI(1)∆(2, 4)∆(3, 5) and ωI(1)∆(2, 5)∆(3, 4).
The second form is a linear combination of the first and third by the second identity in (3.32) while the third
form may be decomposed using the first identity of (3.32), ωI(1)∆(2, 5)∆(3, 4) = −ωI(2)∆(3, 4)∆(5, 1) −
ωI(5)∆(1, 2)∆(3, 4). This cyclic basis was already tacitly used for the loop-momentum dependent part (4.22)
in the opening line for the vector correlator.
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Moreover, the symmetry relation (4.20) of Tm
5,1,2|3,4 carries over to

KI
5,1,2|3,4 +KI

4,1,2|3,5 +KI
3,1,2|4,5

∼= KI
3,4,5|1,2 (5.13)

as can be verified from (4.54) as well as the symmetries (4.50) and (4.51) of S1;2|3|4,5.

Based on (5.12) and (5.13), one can explain from a simple analogy why the correlator

(5.10) is not only cyclically invariant but in fact Bose symmetric in the five external legs: We

have shown that Tm
5,1,2|3,4 and KI

5,1,2|3,4 have identical symmetry properties, and the correlator

(5.10) is related to its loop-momentum dependent part Kp
(5) in (4.22) via pImT

m
5,1,2|3,4 ↔

KI
5,1,2|3,4. Hence, permutation invariance of Kp

(5) carries over to the full correlator in (5.10).

Note that (4.48) together with (5.11) reduce the superspace components 〈KI
5,1,2|3,4〉0

to permutations of 〈Tm
5,1,2|3,4〉0 and 〈T51,2|3,4〉0. The bosonic components of 〈Tm

5,1,2|3,4〉0 and

〈T51,2|3,4〉0 can be found in the files available for download from [55].

5.3 Manifesting homology invariance

We shall now verify that the sub-correlator KI
5,1,2|3,4 in (5.11) by itself is homology invariant

as defined in (2.21), so that the full amplitude is single-valued on Σ after integration over

the loop momenta. This statement is stronger than the statement that the sum K(5) of all

sub-correlators is homology invariant. The result will imply that, upon multiplication by

the chiral Koba-Nielsen factor I(5), the contribution of each sub-correlator KI
5,1,2|3,4 I(5) to

the chiral amplitude gives rise to the expected monodromies (2.20) all by itself.

The result is non-trivial because each function gIi,j has non-trivial monodromy as a point

zℓ is shifted by a BL-cycle (but is invariant under an AL shift),

zi → zi + δiℓBL gIi,j → gIi,j + 2πiδIL(δjℓ − δiℓ)

pI → pI − δILkℓ (5.14)

which is readily established using the transformation laws of the prime form in (B.17).

Implementing the full homology transformations of (2.21) on the loop momenta as well, we

see that KI
5,1,2|3,4 is invariant provided the following identities hold,

2πi
(
T12,5|3,4 + T15,2|3,4 + S1;3|4|2,5 + S1;4|3|2,5

)
− 2π(k1)mT

m
5,1,2|3,4

∼= 0 (5.15)

−2πi
(
S1;3|4|2,5 + S2;3|4|1,5 + S5;3|4|1,2

)
− 2π(k3)mT

m
5,1,2|3,4

∼= 0

The validity of these identities can be easily checked in the BRST cohomology by means of

(4.53), (4.54), and (4.55). As a consequence, the integral over loop momenta of the chiral

amplitude will be a single-valued function on Σ (see section 6).
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Actually, an even stronger property may be obtained by decomposing KI
5,1,2|3,4 into smaller

blocks, each of which will by itself be homology invariant. The key to this re-organization

of KI
5,1,2|3,4 is the following combination of gIi,j functions,

GI
i,j,k = gIi,j + gIj,k + gIk,i (5.16)

for three distinct points zi, zj, zk. The functions G
I
i,j,k are single-valued in view of the defini-

tion of gIi,j and (5.14), but they do depend on the spin structure ν involved in defining gIi,j.

We note that the combination ωI(zi)G
I
i,j,k is the unique Abelian differential of the third kind

in zi having simple poles at zj and zk with residues ±1, whose AJ period is ∂J lnϑ[ν](ζj−ζk).

The same kinematic identities (5.15) also allow us to decompose KI
5,1,2|3,4 into smaller

blocks each of which is homology invariant. To see this we recast KI
5,1,2|3,4 as follows,

KI
5,1,2|3,4

∼= (2πpIm − ik2mg
I
1,2 − ik3mg

I
1,3 − ik4mg

I
1,4 − ik5mg

I
1,5)T

m
5,1,2|3,4 −GI

1,2,5T25,1|3,4

−GI
1,2,3S2;3|4|1,5 −GI

1,5,3S5;3|4|1,2 −GI
1,2,4S2;4|3|1,5 −GI

1,5,4S5;4|3|1,2 (5.17)

The expressions (5.11) and (5.17) agree in the BRST cohomology. To see this, we note

that the coefficients of gI2,5, g
I
2,3, g

I
5,3, g

I
2,4, g

I
5,4 and pIm are manifestly the same, while the

differences of the coefficients of gI1,2, g
I
1,3, g

I
1,4 and gI1,5 are BRST exact by permutations of

(5.15). Inspection of (5.17) reveals that the combination of pIm and kjmg
I
1,j in the first line is

homology invariant by itself thanks to momentum conservation. Indeed, it can be viewed as

the genus-two uplift of the generalized elliptic integrand Em
1|2,3,4,5 in the genus-one five-point

function [56, 9]. Furthermore, each remaining term in (5.17) is single-valued by itself since

its world-sheet dependence is through the single-valued functions GI
i,j,k.

5.4 Manifesting BRST invariance

Though the correlator K(5) is BRST invariant by construction, it is instructive to see how

this is realized in the decomposition (5.10) into sub-correlators. Combining the BRST trans-

formations of the ingredients of KI
5,1,2|3,4 from (4.12), (4.36), and (4.47), we find,

QKI
5,1,2|3,4 = T1,2|3,4V5

(
2πipI · k5 −

∑

j 6=5

s5j g
I
5,j

)
+ T2,5|3,4V1

(
2πipI · k1 −

∑

j 6=1

s1j g
I
1,j

)

+T1,5|3,4V2

(
2πipI · k2 −

∑

j 6=2

s2j g
I
2,j

)
(5.18)
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Multiplying this result by ωI(1)∆(2, 3)∆(4, 5) and summing over all cyclic permutations

gives the BRST variation of K(5) in the following form,

QK(5) =
(
∆(2, 3)∆(4, 5)T2,5|3,4 +∆(2, 5)∆(4, 3)T2,3|4,5

)
V1

×ωI(1)
(
2πipI · k1 −

∑

j 6=1

gI1,j s1j

)
+ cycl(1, 2, 3, 4, 5) (5.19)

where we have used cyclic permutations and the first identity in (3.32) to regroup all terms

in ωI(1). The factor on the second line is readily recognized as the logarithmic derivative

∂z1 ln I(5) of the chiral Koba-Nielsen factor (3.11)

∂1 ln I(5) = ωI(1)
(
2πipI · k1 − s12 g

I
1,2 − s13 g

I
1,3 − s14 g

I
1,4 − s15 g

I
1,5

)
(5.20)

so that we find,

Q(K(5)I(5)) =
(
∆(2, 3)∆(4, 5)T2,5|3,4 +∆(2, 5)∆(4, 3)T2,3|4,5

)
V1∂1I(5)

+cycl(1, 2, 3, 4, 5) (5.21)

Thus, the effect of acting by the BRST charge is to produce a total derivative in the vertex

points (recall that only the z1-independent zero mode parts of V1 and Ti,j|k,ℓ remain).

The above steps in checking BRST invariance serve as guidance to find a manifestly

BRST invariant representation of K(5)I(5) by adding suitable total derivatives. In the same

way as the manifestly homology-invariant representation (5.17) was constructed by adding

BRST exact terms to (5.11), we shall now add the following total derivatives,

K̂(5)I(5) = K(5)I(5) −
1

4

{(S1;2|3|4,5

s12
+
S1;3|2|4,5

s13
+
S1;4|5|2,3

s14
+
S1;5|4|2,3

s15

)
∆(5, 2)∆(3, 4)∂z1I(5)

+
(S1;2|5|3,4

s12
+
S1;5|2|3,4

s15
+
S1;3|4|2,5

s13
+
S1;4|3|2,5

s14

)
∆(2, 3)∆(4, 5)∂z1I(5)

+cycl(1, 2, 3, 4, 5)
}

(5.22)

to express each sub-correlator in terms of BRST invariants superfield combinations. The

factor of 1
4
arises from averaging over the four possible ancestors S1;2|3|4,5/s12, S1;3|2|4,5/s13,

S1;4|5|2,3/s14 and S1;5|4|2,3/s15 of the BRST variation V1T2,3|4,5. By expanding the derivatives

of the chiral Koba-Nielsen factor and expanding the five-forms in K̂(5) in terms of the five-

element basis in (5.10),

K̂(5) = ωI(1)∆(2, 3)∆(4, 5) K̂I
5,1,2|3,4 + cycl(1, 2, 3, 4, 5) (5.23)
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we find that the coefficients of the sub-correlator associated with (5.22) are given by,

K̂I
5,1,2|3,4 = 2πpImC

m
5,1,2|3,4 − s12 g

I
1,2 (C1;2|5|3,4 − C2;1|5|3,4)

− s15 g
I
1,5 (C1;5|2|3,4 − C5;1|2|3,4)− s25 g

I
2,5 (C2;5|1|3,4 − C5;2|1|3,4)

− s13 g
I
1,3C1;3|4|2,5 − s23 g

I
2,3C2;3|4|1,5 − s35 g

I
5,3C5;3|4|1,2

− s14 g
I
1,4C1;4|3|2,5 − s24 g

I
2,4C2;4|3|1,5 − s45 g

I
5,4C5;4|3|1,2 (5.24)

The superfields now enter through the following non-local combinations,

C1;3|4|2,5 =
1

4

(3S1;3|4|2,5

s13
−
S1;4|3|2,5

s14
−
S1;2|5|3,4

s12
−
S1;5|2|3,4

s15

)
(5.25)

and

Cm
5,1,2|3,4 = Tm

5,1,2|3,4 −
i

4
km1

(S1;2|5|3,4

s12
+
S1;5|2|3,4

s15
+
S1;3|4|2,5

s13
+
S1;4|3|2,5

s14

)

−
i

4
km2

(S2;1|5|3,4

s12
+
S2;5|1|3,4

s25
+
S2;3|4|1,5

s23
+
S2;4|3|1,5

s24

)

−
i

4
km5

(S5;1|2|3,4

s15
+
S5;2|1|3,4

s25
+
S5;3|4|1,2

s35
+
S5;4|3|1,2

s45

)
(5.26)

Using (4.12) and (4.36), it is straightforward to verify that both the scalar and the vector

building block are BRST invariant,

QCm
5,1,2|3,4 = 0 QC1;2|5|3,4 = 0 (5.27)

The BRST invariants (5.25) and (5.26) can be viewed as the analogues of the homology-

invariant building blocks in (5.17) – in both cases, the respective invariance of the sub-

correlator is made manifest term by term. As another virtue of these BRST invariants, their

superspace components 〈C1;2|5|3,4〉0 and 〈Cm
5,1,2|3,4〉0 confirm the equivalence of the present

approach in the minimal pure spinor formalism with the non-minimal one: The bosonic

components are unchanged (up to identical normalization factors) when trading the building

blocks T12,3|4,5 and Tm
1,2,3|4,5 [47] in the minimal pure spinor variables for their counterparts

in the non-minimal formalism (denoted by T12,3|4,5 and Tm
1,2,3|4,5 in [25]).14

The expansion of the two-loop BRST invariants (5.25) and (5.26) in terms of gluon

polarizations is related to the one-loop invariants Cm
1|2,3,4,5 and C1|23,4,5 from [58] that com-

pletely determine the five-point correlator [56]. Using the files for the bosonic components

14 For the three-loop four-point amplitude, the building blocks in the minimal pure spinor formalism [57]
and the non-minimal one [26] turn out to be inequivalent, due to the existence of non-trivial, local expressions
in the BRST cohomology.
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of 〈Cm
1|2,3,4,5〉0 and 〈C1|23,4,5〉0 available to download from [55] one can verify,

Cm
1,2,3|4,5

∼= −
1

180
s45C

m
1|2,3,4,5 +

1

360
(km4 − km5 )s45C1|45,2,3

+
1

720
km2

(
s45(C1|24,3,5 + C1|25,3,4) + (s13 + s23)C1|23,4,5

)

+
1

720
km3

(
s45(C1|34,2,5 + C1|35,2,4)− (s12 + s23)C1|23,4,5)

)

−
1

720
(km1 + km2 + km3 )

(
s24C1|24,3,5 + s25C1|25,3,4 + (2 ↔ 3)

)
(5.28)

and

C1;3|4|2,5
∼=

1

720

(
s35C1|35,2,4 + s45C1|45,2,3 − 2s34C1|34,2,5 − s23C1|23,4,5 − s24C1|24,3,5

)
(5.29)

These identities reduce the components 〈K̂I
5,1,2|3,4〉0 to one-loop building blocks and will play

an important role in the discussion of S-duality in a companion paper [30]. The identities

(5.28) and (5.29) generalize the pure spinor superspace relation between the four-point kine-

matic factors at one and two loops, and it would be similarly interesting to find a superspace

proof analogous to [46].

We emphasize that the individual sub-correlators KI
5,1,2|3,4I(5) and K̂I

5,1,2|3,4I(5) cannot be

identified since total derivatives only arise from the interplay between different permutations.

5.5 Simultaneous homology invariance and BRST invariance

One can repeat the steps of subsection 5.3 to obtain manifestly homology invariant and

manifestly BRST invariant sub-correlators (5.24). For this purpose, we rewrite the kinematic

identities of section 4.5.4 in terms of the BRST invariants (5.26) and (5.25),

ikm2 C
m
5,1,2|3,4 = s12C1;2|5|3,4 + s25C5;2|1|3,4

ikm3 C
m
5,1,2|3,4

∼= s13C1;3|4|2,5 + s23C2;3|4|1,5 + s35C5;3|4|1,2

0 ∼= s12C2;1|5|3,4 + s25C2;5|1|3,4 + s23C2;3|4|1,5 + s24C2;4|3|1,5

0 ∼= C2;1|5|3,4 + C2;1|4|5,3 + C2;1|3|4,5

0 = C2;1|5|3,4 − C2;1|5|4,3 (5.30)

These identities can be obtained formally by promoting Tm
5,1,2|3,4 → Cm

5,1,2|3,4 and S1;3|4|2,5 →

s13C1;3|4|2,5 in the relations among local building blocks in section 4.5.4. Moreover, the

same operations formally map the manifestly local correlator representation (5.11) to the
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manifestly BRST invariant one in (5.24). There is an additional identity among BRST

invariants,

0 = C2;1|5|3,4 + C2;5|1|3,4 + C2;3|4|1,5 + C2;4|3|1,5 (5.31)

which directly follows from the definition (5.25) and does not seem to have any counterpart

for the local superfields.

It is easy to show using the identities of (5.30) that the manifestly BRST-invariant sub-

correlator (5.24) is cohomologically equivalent to,

K̂I
5,1,2|3,4

∼=
(
2πpIm − i

5∑

j=2

(kj)mg
I
1,j

)
Cm

5,1,2|3,4 − s25G
I
1,2,5(C2;5|1|3,4 − C5;2|1|3,4)

− s23G
I
1,2,3C2;3|4|1,5 − s35G

I
1,5,3C5;3|4|1,2 − s24G

I
1,2,4C2;4|3|1,5 − s45G

I
1,5,4C5;4|3|1,2 (5.32)

This representation of the sub-correlator manifests both BRST invariance and homology

invariance in each term, see (5.16) for the definition of the functions GI
a,b,c. Moreover, one

can verify that the symmetry property (4.20) of KI
5,1,2|3,4 carries over,

K̂I
5,1,2|3,4 + K̂I

4,1,2|3,5 + K̂I
3,1,2|4,5

∼= K̂I
3,4,5|1,2 (5.33)

This is most conveniently shown by repeating the steps that led to (5.13) with the above

relations between BRST invariants and using (5.30). Note that (5.32) also follows from the

formal replacements Tm
5,1,2|3,4 → Cm

5,1,2|3,4 and S1;3|4|2,5 → s13C1;3|4|2,5 in the manifestly local

and homology-invariant correlator representation (5.17).

Similar representations with manifest homology invariance and BRST invariance have

been studied for multi-particle correlators at one loop. The one-loop analogues of the repre-

sentation (5.30) of K(5) were the starting point to unravel double-copy structures in one-loop

open-string amplitudes [56, 9]. The combinatorial structure of the one-loop correlators in

the reference is identical to those of gravitational matrix elements with an insertion of the

supersymmetrized curvature invariant R4. Accordingly, it would be interesting if the two-

loop five-point correlators based on (5.32) could be related to matrix elements of a similar

gravitational counterterm of type D4R4 and D2R5.

5.6 The simplified correlator in terms of prime forms

One can also rewrite the simplified representations of the five-point correlator in terms of

prime forms ∂i lnE(zi, zj) instead of the function gIi,j of the Abel maps. Given the permu-

tation symmetric contribution Kp
(5) in (4.22) linear in the loop momentum and the scalar
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quantity,

R12 = ∂1 lnE(1, 2)
[
S1;2|3|4,5∆(2, 4)∆(3, 5) + S1;2|4|3,5∆(2, 3)∆(4, 5)

]
+ (1 ↔ 2) (5.34)

we claim that a BRST equivalent representation of the five-point correlator is given by,

K(5) = Kp
(5) +

5∑

1≤i<j

Rij (5.35)

The expression (5.34) for R12 = R21 is permutation symmetric in 3, 4, 5 up to BRST-exact

terms by the relations (3.32) and (4.37) of the forms and the superfields. The (1
2
, 0)-forms

in the decomposition (5.2) of the prime form can be easily checked to cancel from the

permutation sum in (5.35) by repeated use of the identity (4.55) in the BRST cohomology.

Hence, one can effectively substitute ∂i lnE(zi, zj) → ωI(zi)g
I
i,j within (5.35) and expand the

correlator in terms of five-forms ωI(1)∆(2, 3)∆(4, 5). By matching the resulting expression

with the basis of five-forms in (5.10), we reproduce the sub-correlator in (5.11), validating

(5.35) as an alternative representation of the five-point correlator.

The building blocks Rij in (5.34) conveniently track the short-distance singularities of

the correlator as pairs of punctures collide: the simple pole as z1 → z2 stems solely from

setting ∂1 lnE(1, 2) → z−1
12 as well as ∂2 lnE(2, 1) → −z−1

12 and ∆(1, j) → ∆(2, j) in (5.34).

This leads to a simple form of the residues

Resz1→z2K(5) = Resz1→z2R12

= (S1;2|3|4,5 − S2;1|3|4,5)∆(2, 4)∆(3, 5)

+ (S1;2|4|3,5 − S2;1|4|3,5)∆(2, 3)∆(4, 5)

= T12,3|4,5∆(2, 4)∆(3, 5) + T12,4|3,5∆(2, 3)∆(4, 5) (5.36)

where (4.54) has been used in passing to the last line. On the kinematic pole (k1+k2)
−2

resulting from integration over z1− z2, the two-particle superfields factorize correctly on the

single particle superfields of Tx,3|4,5 with a cubic vertex of the gauge-multiplet peeled off, see

for instance appendix A.4 of [25].

5.6.1 Comparison with the OPE correlator from [25]

The non-minimal pure spinor prescription was used in [25] to determine the genus-two five-

point correlator up to holomorphic terms, namely terms with no worldsheet singularities.

These holomorphic terms are of course essential to obtain the full amplitude and for ex-

tracting the effective interactions in the low energy expansion beyond the lowest order [30];

indeed for four-point scattering they are responsible for the entire correlator.
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The result of the OPE analysis can be written as15

Kope
(5) =

[
2πpImT

m
1,2,3|4,5∆(5, 1)ωI(z2)∆(3, 4) + cycl(1, 2, 3, 4, 5)

]
(5.37)

+
[
∂1 lnE(1, 2)(T12,3|4,5∆(2, 4)∆(3, 5) + T12,4|3,5∆(2, 3)∆(4, 5)) + (1, 2|1, 2, 3, 4, 5)

]

where the notation +(i, j|1, 2, 3, 4, 5) means a sum over all ordered choices of i and j from

the set {1, 2, 3, 4, 5} for a total of
(
5
2

)
terms.

In order to relate (5.37) to the full correlator (5.35) which includes regular terms we first

observe that the first line of (5.37) is equal to Kp
(5) in (4.22). To relate the scalar terms we

rewrite R12 using (4.54)

R12 = ∂1 lnE(1, 2)
(
T12,3|4,5∆(2, 4)∆(3, 5) + T12,4|3,5∆(2, 3)∆(4, 5)

)
(5.38)

+ S2;1|3|4,5

(
∂1 lnE(1, 2)∆(2, 4)∆(3, 5) + ∂2 lnE(2, 1)∆(1, 4)∆(3, 5)

)

+ S2;1|4|3,5

(
∂1 lnE(1, 2)∆(2, 3)∆(4, 5) + ∂2 lnE(2, 1)∆(1, 3)∆(4, 5)

)

The first line of (5.38) contains singularities in the worldsheet and reproduces the corre-

sponding terms in (5.37). The second and third lines are non-singular on Σ and therefore

could not be determined in the OPE analysis of [25].

Using (5.38), the full five-point correlator at two loops (5.35) can be written as,

K(5) = Kope
(5) +

[
Kreg

(12),3,4,5 + (1, 2|1, 2, 3, 4, 5)
]

(5.39)

where Kope
(5) is the result (5.37) from [25] while

Kreg
(12),3,4,5 ≡ S2;1|3|4,5

(
∂1 lnE(1, 2)∆(2, 4)∆(3, 5) + ∂2 lnE(2, 1)∆(1, 4)∆(3, 5)

)

+ S2;1|4|3,5

(
∂1 lnE(1, 2)∆(2, 3)∆(4, 5) + ∂2 lnE(2, 1)∆(1, 3)∆(4, 5)

)
(5.40)

is a non-singular function on the worldsheet.

It is interesting to observe that the regular functions in (5.40) are natural from an OPE

perspective as they correspond to the difference in performing the OPEs as z1 → z2 or as

z2 → z1, a distinction which is absent at genus zero or one. Together with the existence of

the building block S1;2|3|4,5, this observation suggests a way to find the regular completion of

singular correlators such as (5.37). The relative coefficient between the singular and regular

pieces can then be fixed by imposing overall BRST invariance. In hindsight, applied to the

correlator (5.37), this procedure yields the full five-point correlator derived in the previous

sections.

15In quoting equation (5.40) from [25] we used the notation ΠI
m → 2πpIm and replaced η12 → ∂1 lnE(1, 2).

This last replacement rectifies the definition used in that reference in which ηij was the derivative of the full
Green function without stripping the zero modes.
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5.7 An alternative correlator in terms of prime forms

A downside of the correlator representation (5.35) in terms of prime forms is that the loop

momentum dependence occurs via Kp
(5) in (4.22) instead of the homology-invariant combi-

nations Zm
1|2,3|4,5 in (4.24). As an alternative to (5.35) with more transparent monodromy

properties, the correlator can be rewritten as,

K(5) = −iηmnT
m
5,1,2|3,4Z

n
1|2,3|4,5

+∂1 lnE(1, 2)
(
S1;2|3|4,5∆(2, 5)∆(3, 4) + S5;2|1|3,4∆(2, 3)∆(4, 5)

)

+∂1 lnE(1, 3)
(
S1;3|2|4,5∆(2, 5)∆(3, 4) + S2;3|4|1,5∆(2, 3)∆(4, 5) + S5;3|4|1,2∆(2, 3)∆(4, 5)

)

+∂1 lnE(1, 4)
(
S1;4|5|2,3∆(2, 5)∆(3, 4) + S2;4|3|1,5∆(2, 3)∆(4, 5) + S5;4|3|1,2∆(2, 3)∆(4, 5)

)

+∂1 lnE(1, 5)
(
S1;5|4|2,3∆(2, 5)∆(3, 4) + S2;5|1|3,4∆(2, 3)∆(4, 5)

)

+cycl(1, 2, . . . , 5) (5.41)

Once again, the dependence on the half-differentials cancels16 between the contributions

(k1)mT
m
5,1,2|3,4∂1 ln hν(1) from Zn

1|2,3|4,5 and the remaining terms in (5.41), so one can again

replace ∂i lnE(i, j) → ωI(i)g
I
i,j. Under this rule, Zn

1|2,3|4,5 directly reproduces the coefficient

of Tm
5,1,2|3,4 in the manifestly homology-invariant representation (5.17) of the sub-correlator.

The contributions proportional to GI
i,j,k to (5.17) in turn can be recovered from the ex-

plicit prime forms in (5.41). For the latter class of terms, the symmetries (3.32) of the

forms and kinematic identities including (4.55) need to be used, and different terms in the

cyclic orbit of (5.41) contribute to the sub-correlator KI
5,1,2|3,4 multiplying the basis form

ωI(1)∆(2, 3)∆(4, 5).

16This cancellation is based on the kinematic identities (4.53), (4.55) and occurs separately for all five
terms in the cyclic orbit.
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6 Type II and Heterotic 5-point amplitudes

In this section, we shall use the chiral amplitude F(5), derived in the previous section, to

construct the genus-two amplitude for five external states for the Type II and Heterotic

strings. We begin by recalling the structure of the chiral amplitude,

F(5) =
〈
K(5)

〉
0
I(5) (6.1)

where I(5) is the chiral Koba-Nielsen factor (3.11) and
〈
K(5)

〉
0
is the integral (3.5) of the

chiral correlator K(5) over the zero modes of λ and θ. The chiral correlator K(5) = KV
(5)+KS

(5)

was initially constructed in section 4 from two terms KV
(5) and KS

(5) each of which individually

is a single-valued function of the vertex points zi upon integration over loop momenta, and

whose sum is BRST closed even though neither term individually is BRST closed. Section

5 then presents various simplified forms of K(5) where different subsets of its properties are

made manifest. For the purpose of integrating over loop momenta, it is the forms (5.35) and

(5.41) that will be particularly convenient.

6.1 Assembling both chiralities for closed string amplitudes

Scattering amplitudes of closed strings are obtained by pairing left-moving and right-moving

chiral blocks and integrating over loop momenta pI in R
10, over vertex operator positions

zi in Σ, and over the moduli space M2 of compact genus-two Riemann surfaces, which we

parametrize locally by the period matrix ΩIJ in the Siegel upper half-plane [2, 3, 28]. As

a result, the amplitude takes the following form, up to an overall numerical normalization

factor that remains to be determined by unitarity,

A(5) = δ
( 5∑

i=1

ki

)∫

M2

|d3Ω|2
∫

Σ5

∫

R20

dpF(5)(zi, ki, p
I) F̃(5)(zi,−k∗i ,−p

I) (6.2)

where d3Ω = dΩ11dΩ12dΩ22 produces the holomorphic top form on M2. For each of the

closed superstring theories, F(5) is the supersymmetric chiral amplitude given in (6.1), while

the second chiral amplitude F̃(5) depends on the type of superstrings under consideration.

In either case, the combined integrals will be absolutely convergent for purely imaginary

values of the kinematic variables sij. The amplitude obtained this way may be analytically

continued to values of sij throughout the complex plane thereby producing the expected

physical poles and branch cuts, as was shown explicitly for the genus-one amplitude in [29].

The dependence on the polarization vectors, polarization spinors, or internal degrees of

freedom for the Heterotic string of both F(5) and F̃(5) will be suppressed throughout. In all
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cases, the product F(5)F̃(5) includes the absolute value of the chiral Koba-Nielsen factor I(5)

as a universal factor. This factor is conveniently rearranged as follows,

∣∣I(5)

∣∣2 = exp

{
−2πYIJ p̂

I · p̂J +
∑

i<j

sij G(zi, zj)

}

p̂I = pI + Y IJ
∑

i

ki Im

∫ zi

z0

ωJ (6.3)

where G is the Arakelov Green function of (2.12), which may be replaced by the string Green

function (2.11) since the total momentum is conserved. In addition to the exponential factor,

both F(5) and F̃(5) generically also have explicit dependence on the momenta pI through a

polynomial prefactor, which it will be convenient to trade for a dependence on the shifted

momentum p̂I . Note that the measure dp is unaffected by this shift.

In preparation for integrating over the loop momenta, we shall recast the dependence of

the supersymmetric chiral correlator (6.1) on the loop momentum in a form that exhibits the

single-valued Arakelov Green function G. To do so, we eliminate ∂i lnE(i, j) from Zm
1|2,3|4,5

in favor of −∂iG(i, j) plus Abelian differentials, Abel-Jacobi integrals and the shifts γ(zi)

in (2.13). The Abelian differentials and integrals precisely combine with the loop momenta

into their shifted versions p̂ in (6.3), and we obtain,

Zm
1|2,3|4,5 =

(
2πi(p̂I)mωI(1)−

5∑

j=2

kmj ∂1G(1, j) + km1 ∂1γ(z1)
)
∆(2, 3)∆(4, 5) (6.4)

The remaining terms in the correlator representation (5.41) are independent of loop momenta

and cancel all instances of ∂iγ(zi). We now rearrange K(5) as follows,

K(5) = W + 2πip̂ImV
m
I (6.5)

where the combinations Vm
I are similar to (6.4) and W collects the scalar leftover terms,

Vm
I = Tm

1,2,3|4,5 ωI(2)∆(3, 4)∆(5, 1) + cycl(1, 2, 3, 4, 5) (6.6)

W = iTm
5,1,2|3,4

5∑

j=2

kmj ∂1G(1, j)∆(2, 3)∆(4, 5) (6.7)

−∂1G(1, 2)
(
S1;2|3|4,5∆(2, 5)∆(3, 4) + S5;2|1|3,4∆(2, 3)∆(4, 5)

)

−∂1G(1, 3)
(
S1;3|2|4,5∆(2, 5)∆(3, 4) + S2;3|4|1,5∆(2, 3)∆(4, 5) + S5;3|4|1,2∆(2, 3)∆(4, 5)

)

−∂1G(1, 4)
(
S1;4|5|2,3∆(2, 5)∆(3, 4) + S2;4|3|1,5∆(2, 3)∆(4, 5) + S5;4|3|1,2∆(2, 3)∆(4, 5)

)

−∂1G(1, 5)
(
S1;5|4|2,3∆(2, 5)∆(3, 4) + S2;5|1|3,4∆(2, 3)∆(4, 5)

)

+ cycl(1, 2, 3, 4, 5)
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and the cyclic sum in the expression for W is to be applied to all five lines. To obtain

the expression (6.7) for W, we have substituted (6.4) into (5.41) and replaced everywhere

∂i lnE(i, j) by −∂iG(i, j)−2πiωI(i)Y
IJIm

∫ zi
zj
ωJ . One can then observe that all such terms

proportional to Y IJ cancel in the cyclic sum between W and 2πip̂ImV
m
I . This cancellation

follows from the same manipulations that were described in section 5.7 to relate (5.41) to

(5.17). Finally, we have replaced all derivatives ∂iG(i, j) of the string Green function (2.11)

by derivatives ∂iG(i, j) of the Arakelov Green function (2.12), since the difference ∂iγ(zi)

between the two cancels in the complete chiral correlator, by the same mechanism which

ensures the cancellation of the derivatives of the half-forms ∂i ln hν(zi) in section 5.1. In the

new representation (6.7), both Vm
I and W are now manifestly single-valued in zi.

While the expression (6.7) for the scalar correlator is adapted to the representation (5.41)

of K(5), we can bring the loop-momentum-independent part W into an alternative form that

is more reminiscent of representation (5.35). For this purpose, the manipulations of the

forms and kinematic factors that relate (5.35) to (5.41) can be readily repeated with p̂I

and −∂iG(i, j) in place of pI and ∂i lnE(i, j). Hence, we can immediately rewrite (6.7) by

performing the appropriate replacements in (5.35),

W =

5∑

1≤i<j

Qij (6.8)

where Qij is given by the following simple combinations,

Q12 = −∂1G(1, 2)
[
S1;2|3|4,5∆(2, 4)∆(3, 5) + S1;2|4|3,5∆(2, 3)∆(4, 5)

]

−∂2G(2, 1)
[
S2;1|3|4,5∆(1, 4)∆(3, 5) + S2;1|4|3,5∆(1, 3)∆(4, 5)

]
(6.9)

To proceed further, we distinguish between the different string theories.

6.2 Type II amplitudes

The complete amplitudes are simplest to organize for the Type II superstrings, since the

massless sectors of these theories consist only of the unique Type IIA or Type IIB su-

pergravity multiplet. Type IIA and Type IIB amplitudes involve the chiral amplitude

F̃(5) = 〈K̃(5)〉0I(5), where K̃(5) is obtained from K(5) by substituting the left-moving vec-

tor and spinor polarizations by the right-moving vector and spinor polarizations of opposite

(Type IIA) or same space-time chirality (Type IIB), respectively. In either case, the structure

of K̃(5) is as follows,

K̃(5) = W̃ + 2πi p̂ImṼ
m
I (6.10)
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With the help of this expression, the loop momentum integrations may now be carried out,
∫

R20

dpK(5) K̃(5)

∣∣I(5)

∣∣2 = 1

det (2Y )5

(
W W̃ − πY IJ Vm

I Ṽm
J

) ∏

i<j

esijG(i,j) (6.11)

The full amplitude therefore becomes,

A(5) = δ
( 5∑

i=1

ki

)∫

M2

dµ
1

det (2Y )2

∫

Σ5

〈
W W̃ − πY IJ Vm

I Ṽm
J

〉
0

∏

i<j

esijG(i,j) (6.12)

where 〈. . .〉0 collects the zero-mode integrals (3.5) of the θα and λα in both chiral halves.

Three of the powers of det (2Y ) have been regrouped to produce the modular invariant

measure on M2, given by,

dµ =
|d3Ω|2

det (2Y )3
(6.13)

The remaining two factors of det (2Y ) combine with the products of bi-holomorphic forms

∆ of (3.31) and their complex conjugates so that the combinations,

∆(i, j)∆(k, ℓ)

det (2Y )
(6.14)

are modular invariant. In summary, after integration over loop momenta, the resulting

integrand for the scattering amplitude is invariant under the full modular group Sp(4,Z).

Scattering amplitudes for Type II strings compactified on a torus T d are obtained as usual

by restricting the polarizations of the external particles and inserting a sum over solitonic

configurations of the compact coordinates [59], namely the Siegel-Narain theta series

Γd,d,2(g, B|Ω) = det (2Y )d/2
∑

mI
α∈Z2d

nI,α∈Z2d

e−πLIJYIJ+2πimI
αn

J,αXIJ , (6.15)

where X = ReΩ and mI
α, n

I,α are the momenta and windings along the α-th direction of the

torus, and

LIJ = (mI
α +Bαγn

I,γ)gαβ(mJ
β +Bβδn

J,δ) + nI,αgαβn
J,β (6.16)

where gαβ and Bαβ are the constant metric and B-field along the torus, and gαβ is the inverse

metric, measured in units of α′. The Siegel-Narain theta series (6.15) is invariant under

modular transformations in Sp(4,Z) and T-duality transformations in O(d, d,Z) acting on

the usual way on (g, B). The prefactor det (2Y )d/2 cancels the part of factor det (2Y )5 in

(6.11) which would have come from integrating over the loop momenta pαI .
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6.3 Heterotic string amplitudes

We shall now construct the five-point genus-two amplitude for Heterotic strings. In this case,

the massless sector in ten dimensions consists of two types of multiplets, namely the N = 1

supergravity (SG) multiplet and the N = 1 super Yang-Mills (SYM) multiplet with gauge

group E8 × E8 (for the HE string) or Spin(32)/Z2 (for the HO string) [60, 61].

Similar to the Type II superstring, the five-point amplitude for Heterotic strings is given

as an integral (6.2) of the product of the chiral amplitude F(5) in (6.1) for the superstring,

and the (conjugate of) the chiral amplitude F̃(5) for the bosonic string, compactified on the

tori associated with the root lattice of E8 × E8 or Spin(32)/Z2, respectively. The latter is

given by the product of the chiral measure for the bosonic string at genus two, given by the

inverse of the Igusa cusp form17 Ψ10 [62, 63], times the correlator of the right-moving vertex

operators, given by either,

VSYM
i (zi) =

∑

a

tai j
a(zi) e

iki·x+(zi)

VSG
i (zi) = ε̃∗i ·

(
∂x+(zi) + 2πpIωI(zi)

)
eiki·x+(zi) (6.17)

where tai is the gauge field polarization, ja(zi) is the corresponding holomorphic current, and

ε̃∗i is the polarization vector for the right movers. For the five-point amplitude, each external

state may belong either to the SYM or the SG multiplet, thereby giving rise to six different

types of amplitudes. Schematically representing the states in the SYM multiplet by F (the

field strength), and the states in the SG multiplet by R (including the Riemann tensor,

the anti-symmetric tensor field, and the dilaton), the six possible structures correspond to

R5, R4F,R3F 2, R2F 3, RF 4, and F 5. Since the gauge groups for both Heterotic theories are

simple, it is immediate that the amplitude corresponding to R4F vanishes.

Correlators of the chiral vertex operators VSG
i for the supergravity multiplet may be

computed straightforwardly using the Wick contractions (2.19). Although gauge invariance

under ε̃mi → ε̃mi +αkmi is not immediately manifest, it is possible to recast the result in terms

of the gauge invariant combinations fmn
i = ε̃mi k

n
i − ε̃ni k

m
i by discarding exact differentials

which do not contribute to the integrated amplitude. This process was carried out for the

four-point amplitude in sections 12.4 and 12.5 of [16] and may be generalized to the five-

point amplitude in a straightforward, if tedious, manner which is beyond the scope of this

paper. Decomposing the resulting chiral correlator in the same way as in (6.10), in terms

of the shifted loop momenta p̂Im in (6.3), the integral over loop momenta (6.12) produces a

term proportional to Y IJ(ε̃∗i · VJ), which has no analogue for the four-point amplitude.

17Recall that Ψ10 =
∏

κ ϑ
2[κ](0) where the product runs over all even spin structures.
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For scattering amplitudes of SYM multiplets, it is convenient to fermionize the 16 chiral

compact bosons into 32 chiral worldsheet fermions λI(z) for I = 1, · · · , 32 (not to be confused

with the pure spinor ghost field λα). For the case of HO, all 32 fermions transform in the

defining representation of SO(32) and have the same spin structure κ (independent, and to

be distinguished from the spin structure on the supersymmetric side). For the case of HE,

the 32 fermions are split into two groups of 16 transforming under the defining representation

of SO(16)1×SO(16)2, the maximal orthogonal subgroup of E8×E8, and κ = (κ1, κ2) labels

the corresponding independent spin structures κ1 and κ2. In absence of fermionic insertions,

the partition functions for the internal fermions are given by

ZHO =
∑

κ

ϑ[κ](0)16 ZHE =
∑

κ1,κ2

ϑ[κ1](0)
8ϑ[κ2](0)

8 (6.18)

where the sum runs over all even spin structures.

The current ja(z) appearing in the vertex operator (6.17) for either of the two Heterotic

strings is given in terms of λI(z) by,

ja(z) =
1

2

32∑

I,J=1

T a
IJ λ

I(z)λJ(z) (6.19)

Here, T a
IJ are the anti-symmetric generators in the defining representations of the Lie algebras

of SO(32) and SO(16)1 × SO(16)2, respectively. The remaining generators of E8 × E8

are accounted for by spin fields, which will not be needed here. The correlators of the

holomorphic fields λI(z) are given by,

〈λI(z)λJ(w)〉κ = −δIJ Sκ(z, w) (6.20)

where Sκ is the Szegö kernel for the spin structure κ for the HO theory, and κ equals κ1
or κ2 for the HE theory, depending on whether both I, J belong to SO(16)1 or SO(16)2.

Self-contractions on the current are absent so that 〈ja(z)〉κ = 0. The current correlators

required for the case of the four-point amplitude [16] are,18

〈ja1(z1)j
a2(z2)〉κ = 1

2
tr(T a1T a2)Sκ(z1, z2)

2 (6.21)

〈ja1(z1)j
a2(z2)j

a3(z3)〉κ = tr(T a1T a2T a3)Sκ(1, 2)Sκ(2, 3)Sκ(3, 1)

〈ja1(z1)j
a2(z2)j

a3(z3)j
a4(z4)〉κ = −tr(T a1T a2T a3T a4)Sκ(1, 2)Sκ(2, 3)Sκ(3, 4)Sκ(4, 1)

+1
4
tr(T a1T a2)tr(T a3T a4)Sκ(1, 2)

2Sκ(3, 4)
2 + (2 ↔ 3, 4)

18Note that tr(T a1 · · ·T an) = 0 whenever generators of both SO(16)1 and SO(16)2 occur under the trace.
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where we denote as usual Sκ(i, j) = Sκ(zi, zj). For the five-point amplitude, we require the

correlators of (6.21) as well as the following five-point correlators,

〈 5∏

i=1

jai(zi)
〉
κ
= 1

2

∑

(i,j|k,ℓ,m)

tr(T aiT aj )tr(T akT aℓT am)Sκ(i, j)
2Sκ(k, ℓ)Sκ(ℓ,m)Sκ(m, k)

+
∑

(i,j,k,ℓ)

tr(T a1T aiT ajT akT aℓ)Sκ(1, i)Sκ(i, j)Sκ(j, k)Sκ(k, ℓ)Sκ(ℓ, 1) (6.22)

where the first sum is over all 10 inequivalent partitions of five into 2+3, and the second

sum is over all 12 permutations of 2,3,4,5 modulo reversal (i, j, k, ℓ) → (ℓ, k, j, i).

The spin structure sums required for amplitudes with up to five SYM states can be

expressed in terms of the Siegel modular forms Ψ4k of weight 4k,

Ψ4k =
∑

κ

ϑ[κ](0)8k (6.23)

and the following correlators,

F
(2)
4k (z1, z2) =

∑

κ

ϑ[κ](0)8kSκ(1, 2)
2 (6.24)

F
(3)
4k (z1, z2, z3) =

∑

κ

ϑ[κ](0)8kSκ(1, 2)Sκ(2, 3)Sκ(3, 1)

F
(2,2)
4k (z1, z2; z3, z4) =

∑

κ

ϑ[κ](0)8kSκ(1, 2)
2Sκ(3, 4)

2

F
(4)
4k (z1, z2, z3, z4) =

∑

κ

ϑ[κ](0)8kSκ(1, 2)Sκ(2, 3)Sκ(3, 4)Sκ(4, 1)

F
(2,3)
4k (z1, z2; z3, z4, z5) =

∑

κ

ϑ[κ](0)8kSκ(1, 2)
2Sκ(3, 4)Sκ(4, 5)Sκ(5, 3)

F
(5)
4k (z1, z2, z3, z4, z5) =

∑

κ

ϑ[κ](0)8kSκ(1, 2)Sκ(2, 3)Sκ(3, 4)Sκ(4, 5)Sκ(5, 1)

The first sum F
(2)
4k can be computed in terms of Ψ4k through [16, Eq. 12.7],

F
(2)
4k (z, w) = Ψ4k∂z∂w lnE(z, w) +

πi

2
ωI(z)ωJ(w)∂

IJΨ4k (6.25)

where ∂IJ is the derivative with respect to ΩIJ for I ≤ J . The product of three Szegö

kernels may be decomposed onto a sum of squares of Szegö kernels times functions that are

independent of spin structures [31], so that F
(3)
4k may be similarly decomposed onto a sum
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of F
(2)
4k functions. Similarly, it will be shown in [31] that the products of four and five Szegö

kernels may all be decomposed onto sums of the product of two squares of Szegö kernels, so

that F
(4)
4k , F

(2,3)
4k , and F

(5)
4k may all be decomposed onto sums of F

(2,2)
4k with known coefficients.

We end with perhaps the simplest example of a Heterotic amplitude for five external

SYM states, two belonging to the first E8, and three belonging to the second E8. The

corresponding chiral amplitude may be read off from the ingredients presented above, and

is given by,

F̃(5) =
1

4Ψ10(Ω)
tr(T a1T a2)tr(T a3T a4T a5)F

(2)
4 (z1, z2)F

(3)
4 (z3, z4, z5) (6.26)

where a1, a2 refer to SO(16)1 while a3, a4, a5 refer to SO(16)2.

As usual, the HE and HO Heterotic strings become indistinguishable after compactifying

on a torus Td. The chiral integrand F(5) is obtained by replacing the partition function ZHO

or ZHE in (6.18) by the Siegel-Narain theta series Γd+16,d,2, with suitable insertions of lattice

momenta for each current as in the four-point amplitude discussed in [64].
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7 The supergravity limit

In this section we shall study the field theory limit of the string amplitudes for five external

massless states derived in the earlier sections of this paper. In the limit α′ → 0, keeping

the external momenta ki fixed, the Type II superstring amplitudes are expected to reduce

to the two-loop field theory amplitudes of N = 2 supergravity, while in the Heterotic strings

the amplitudes are expected to reduce to those of N = 1 supergravity plus super-Yang-Mills

[65]. For four-dimensional external states, the loop integrand for two-loop supergravity was

determined in [66] using the spinor-helicity formalism and color-kinematics duality [67, 68]

(see [69] for a review). This result was later extended to external states in ten dimensions

in [47] by making use of pure spinor superspace.

Whether the external states of the superstring amplitude are in a supergravity or super-

Yang-Mills multiplet, the corresponding field theory amplitudes involve a sum over the six

Feynman graph topologies depicted in Figure 1. As we shall demonstrate below for Type II

superstrings (and sketch for the Heterotic and Type I cases), the field theory limit of the

integrand over loop momenta, moduli, and vertex points of the superstring amplitude for

five external massless states, derived in earlier sections, reduces, at leading order in α′, to the

integrand over loop momenta and Feynman parameters of the corresponding supergravity

amplitude [66, 47]. The precise matching of these integrands provides a strong consistency

check on the validity of our construction. Higher-order terms in the α′ expansion of the inte-

grated amplitude produce higher-derivative effective interactions to the supergravity and/or

super-Yang-Mills Lagrangian which will be investigated in a companion paper [30].

To leading order in the α′ expansion, the amplitude is dominated by the contribution from

maximally degenerate Riemann surfaces. In order to study these degenerations systemati-

cally, it will be useful to interpret the vertex operator positions as punctures on the Riemann

surface, and use the Deligne-Mumford compactification of the moduli space of punctured Rie-

mann surfaces, in the present case of genus two with five punctures. All degenerations are

then obtained by a finite sequence of the following two elementary degenerations,

1. the separating degeneration, in which a trivial homology cycle shrinks, thereby degen-

erating the surface into two disconnected surfaces;

2. the non-separating degeneration, in which a non-trivial homology cycle shrinks, thereby

degenerating the dual cycle into a long and thin funnel.

The degeneration by which two or more punctures collide is equivalent, in the Deligne-

Mumford compactification, to a separating degeneration in which a sphere with three or more

punctures separates from the remaining surface. The maximal degeneration of the Riemann
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Figure 1: The six graphs contributing to two-loop five-point amplitudes in maximally super-
symmetric Yang-Mills and supergravity [66]. The reducible diagrams a′, b′, c′ were denoted
d, e, f respectively in [47].

surface is obtained by a maximal sequence of separating and non-separating degenerations

in which for example all the A-cycles of the surface shrink, and the B-cycles become long

thin funnels. These funnels are effectively connected by internal interaction vertices, just as

in field theory Feynman diagrams. A maximal degeneration may be described by a trivalent

graph Γ, sometimes known as a tropical Riemann surface (see e.g. [70, 71]), which reproduces

the on-shell Feynman graphs of quantum field theory. The vertices of the graph correspond to

genus zero components with three punctures, while the edges ea correspond to the long thin

funnels. The lengths La ∈ R+ and twists σa ∈ [0, 2π[ of the funnels provide an appropriate

set of coordinates on the moduli space near the maximal degeneration locus.

In the limit where all La are scaled to infinity at the same rate, the string integrand

is expected to reduce to the field theory integrand in the world-line formalism [72, 73, 74],

where La is the Schwinger parameter for the propagator on edge ea. Upon using the chiral

splitting procedure in string theory, the momentum pI is identified with the loop momentum

in field theory [75]. For the pure spinor superstring, the string integrand is expected to

reduce to the field theory integrand in pure spinor world-line formalism [76, 77] and the

double-copy structure of the loop integrand in supergravity should be manifest [78, 52, 79].
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7.1 Maximal degeneration of a genus-two Riemann surface

For a compact genus-two Riemann surface without punctures, there are two possible maximal

degenerations, corresponding to the one-particle irreducible (1PI) or one-particle reducible

(1PR) two-loop skeletons depicted in Figure 2. In principle, there can also be contact terms

supported on “figure-eight” diagrams where the length of the middle edge in either of the

two skeletons shrinks to zero.19

1PI 1PR

Figure 2: 1PI versus 1PR two-loop skeletons.

For a genus-two Riemann surface with punctures, the various different maximal degener-

ations correspond to the various different ways of attaching external legs to either skeleton

of the case without punctures, possibly by forming trees, such that the resulting graph is

still connected. For five punctures, many different connected graphs may be drawn. It will

be convenient to arrange the graphs into two classes (1) graphs which contain no triangle

or bubble subgraphs; and (2) all other graphs. All graphs obtained from the 1PR vacuum

graph fall in class (2).

All the graphs in class (1) are represented in Figure 3 and, by inspection, are seen to be

in one-to-one correspondence with the field theory graphs of Figure 1. The graphs in class

(2) correspond to field theory graphs that vanish in view of the extended supersymmetry

of the corresponding supergravity or super-Yang-Mills theory, a property that is sometimes

referred to as “no bubble or triangles” [81]. In both Type II and Heterotic superstring

theories, on-shell amplitudes with one, two, or three external massless states are expected

to vanish. General arguments to this effect have been given in [82, 83] while the result was

proven by explicit calculation in the genus-two case in [16] for both Type II and Heterotic

strings. Our proof here that the genus-two five-point amplitude reduces to the corresponding

supergravity amplitude in the α′ → 0 limit, will be based on showing that the diagrams of

class (1) precisely match those of field theory and that those of class (2) vanish.

19Such contact terms are known to arise in the field theory limit of Heterotic amplitudes [64] and Type I
partition functions in a magnetic background [80].
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(a) (b) (c)

(a′) (b′) (c′)

Figure 3: All maximal degeneration graphs of class (1), namely containing no subgraphs
with one, two, or three external edges.

Figure 4: Some of the maximal degeneration graphs of class (2), namely containing one
or several subgraphs with one, two, or three external edges, whose contributions to the
genus-two amplitude with five massless external states vanish.

The Schwinger parameters L1, L2, L3 for the two-loop 1PI skeleton may be identified with

the imaginary part Y = ImΩ of the period matrix Ω via the relation [84, 85],

Y =
1

α′

(
L1 + L3 −L3

−L3 L2 + L3

)
(7.1)

in the limit α′ → 0 holding the Li’s fixed. The location of the external legs along the two

loops gives five additional parameters t1, . . . , t5 lying in one of the intervals [0, La], depending

on the topology of the diagram. The topologies a′, b′, c′ where two external legs form a tree

before attaching to the skeleton are included by allowing two of these parameters to coincide.

7.2 Tropical limit of the Abelian differentials and prime form

Before analyzing the tropical limit of the string integrand, we review some basic results

about the tropical limit of Abelian differentials and Green functions [71, 32, 33]. We choose
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a canonical homology basis of cycles AI and BI and conjugate normalized holomorphic

Abelian differentials ωI on the Riemann surface Σ (see appendix B for a summary). First,

let bI be a homology basis on the skeleton graph Γ arising by degenerating the homology

basis (AI ,BI) → (0, bI) on Σ (see Figure 5). In the tropical limit, the Abelian differentials

scale as follows,

ωI(zj) →
i ωtr

I (tj)

α′
(7.2)

where ωtr
I is equal to ±dtj on the edge ea if ea belongs to the cycle bI , and 0 otherwise.

The sign is fixed by the orientation of ea with respect to the cycle bI . For the choice of

parametrization and homology basis for the skeleton graph in Figure 5, we have,

ωtr
1 (zj) =





+dtj : on left edge
−dtj : on middle edge ,

0 : on right edge
ωtr
2 (zj) =





0 : on left edge
+dtj : on middle edge
−dtj : on right edge

(7.3)

The imaginary part of the period matrix YIJ ∼
∫
bI
ωtr
J /α

′ reproduces (7.1) above.

b1 b2

ti ∈ [0, L1] ti ∈ [0, L2]

ti∈[0, L3]

•
P Γ

•t2

•
t1γ(t1, t2)

•
t3

•t4 γ(t3, t4)

•t5

•P3

•
P2

•
P1

Γ′

Figure 5: The left panel exhibits the two-loop 1PI skeleton graph Γ with a choice of homology
basis and parametrization. The right panel exhibits the simply connected graph Γ′ = Γ \ P
obtained by removing one vertex P from Γ, and labeling Pa the endpoint of the edge ea. On
Γ′ each pair of points ti, tj is connected by a unique path γ(ti, tj). When ti, tj are on the same
edge we have ∂iL(ti, tj) = sgn(ti − tj) dti, while when ti, tj are on different edges we have
∂iL(ti, tj) = −dti. For the purpose of illustration, we have displayed vertices corresponding
to (a permutation of) graph (c) in Figure 1, the other graphs being analogous.

In order to discuss the tropical limit of the prime form, careful account must be taken of

the fact that the prime form is a multi-valued form on Σ×Σ. A single-valued representation
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may be obtained by considering the prime form on the simply connected domain obtained by

fixing a base point P on Σ and then cutting Σ along four canonical homology basis cycles AI ,

BI chosen to pass through P (see e.g. Figure 12 in [2]). In the tropical limit of a genus-two

Riemann surface, the point P will lie at one of the vertices of the skeleton Γ such that the

graph Γ′ = Γ \ P becomes simply connected [75], as shown in the right panel of Figure 5

where the vertex P has been replaced by endpoints Pa for the open edges ea. Between any

two points ti, tj ∈ Γ′, corresponding to the tropical limit of zi, zj on Σ, there is now a single

path γ(ti, tj) lying inside Γ′ 20, such that the Abel-Jacobi map scales like,

(ζi − ζj)I →
i

α′
ζ tri,j,I ζ tri,j,I = −

∫

γ(ti,tj)

ωtr
I (7.4)

in the tropical limit. As explained in [71], the logarithm of the prime form then scales as

the length of the path,

lnE(zi, zj |Ω) →
π

α′
L(ti, tj) (7.5)

To establish this21 one shows that, for an adapted choice of the odd spin structure ν = [κ′, κ′′],

the theta series in (B.14) and (B.15) are dominated by a single vector n in the sum (B.9),

such that,

lnE(zi, zj|Ω) →
2π

α′
|ζ tri,j · κ

′| −
1

2
ln |ωtr(ti) · κ

′| −
1

2
ln |ωtr(tj) · κ

′| (7.6)

Here, “adapted” means that the two arguments of the logarithms, coming from the tropical

limit of the half-differentials, are non-zero. Whether a given spin structure is adapted or not

strongly depend on the positions ti, tj : e.g for the two paths in the right panel of Figure 5,

we have (omitting a factor dti in the first three columns),

κ′ σ1, σ2 σ3 σ4 2ζ tr1,2 · κ
′ 2ζ tr2,3 · κ

′ 2ζ tr3,4 · κ
′

(1
2
, 0) 1 0 −1 t1 − t2 t2 − L1 L2 − t4

(0, 1
2
) 0 −1 1 0 t3 − L3 t3 + t4 − L2 − L3

(1
2
, 1
2
) −1 1 0 t1 − t2 t2 + t3 − L1 − L3 t3 − L3

(7.7)

where we have used the following abbreviations for i = 1, 2, 3, 4 in the table,

σi = 2ωtr(ti) · κ
′ (7.8)

20The path γ(ti, tj) is not to be confused with the functions γ(z|Ω) which relate the string to the Arakelov
Green functions in (2.12).

21We are grateful to Piotr Tourkine for helpful discussions on this matter.
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For the path γ(t1, t2), the spin structures (1
2
, 0) and (1

2
, 1
2
) are both adapted, and the first

term in (7.6) is proportional to the length L(ti, tj). For the path γ(t2, t3), only the spin

structure (1
2
, 1
2
) is adapted, and the same conclusion holds.

For other spin structures, deemed “not adapted”, one of the combinations ωtr(ti) · κ′ or

ωtr(tj) · κ′ or both in the arguments of the logarithms of (7.6) may vanish in taking the

tropical limit naively. Instead, one must retain sub-leading corrections near the tropical

limit. Since the prime form E(zi, zj|Ω) is independent of the choice of odd spin structure ν,

these sub-leading corrections must conspire to reproduce the behavior (7.5).

It follows from (7.5) that the one-form ∂i lnE(zi, zj) reduces to ±πdti/α
′ in the tropical

limit, where the sign depends whether the variation dti increases or decreases the length

L(ti, tj). With the conventions of Figure 5, the sign is always negative if the two points are

on different edges (e.g. for the path γ(t3, t4)), while it depends on the sign of ti−tj if the two

points are on the same edge (e.g. for the path γ(t1, t2)).

As a first application, the tropical limit of the homology-invariant one-form (4.23) is given

by,

Pm(zi) −→
2π

α′

(
−ℓm +

1

2

∑

j∈J

sgn(ti − tj)k
m
j −

1

2

∑

j /∈J

kmj

)
dti (7.9)

where J is the set of external legs on the same edge as i (we include i in the set J , but

set sgn(0) = 0), and ℓm is the loop momentum flowing through the point i on the skeleton

diagram (in absence of other external vertices). By momentum conservation, this can be

rewritten as,

2π

α′

(
−ℓm +

1

2

∑

j∈J

(1 + sgn(ti − tj))k
m
j

)
dti (7.10)

which is recognized as the average of the momenta flowing into and out of the vertex point

ti along the graph Γ′.

As a second application, we consider the tropical limit of the function gIi,j defined in (5.3),

gIi,j =
∂

∂ζI
lnϑ[ν](ζ |Ω)

∣∣∣
ζ=ζi−ζj

(ζi − ζj)I =

∫ zi

zj

ωI (7.11)

Unlike the derivative of the prime form it has the antisymmetry property gIj,i = −gIi,j. For

a choice of odd spin structure ν = [κ′, κ′′] such that ζ tri,j · κ
′ 6= 0, the tropical limit of the

theta series lnϑ[ν](ζ |Ω) is given by the first term in (7.6), whose derivative with respect to

ζIi,j gives,

gIi,j → −2iπ sgn(ζ tri,j · κ
′) κ′I (7.12)
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One may check that this result is consistent with the relation (5.2) in the tropical limit. For

the specific choice of spin structure (1
2
, 1
2
) and any pair of points in the right panel of Figure

5, we conclude that the tropical limit of gIi,j is independent on I and given by,

gIi,j →





+iπ : ti, tj on distinct edges (L1, L2), (L1, L3) or (L3, L2)
−iπ : ti, tj on distinct edges (L2, L1), (L3, L1) or (L2, L3)

iπ sgn(tj − ti) : ti, tj both on edge L1

iπ sgn(ti − tj) : ti, tj both on edge L2

(7.13)

This conclusion would not hold for pairs of points on the middle edge of Figure 5, as the

contraction ζ tri,j ·κ
′ would vanish in that case. The fact that (7.13) is independent on I makes

the spin structure (1
2
, 1
2
) particularly convenient, although one could in principle use any

other odd spin structure.

7.3 Tropical limit of the chiral integrand: pentaboxes

We shall now analyze the behavior of the chiral integrand in the regime where the Abel-

Jacobi map between the vertex points scales to infinity at the same rate ζi − ζj ∼ iζ tri,j/α
′

as the period matrix Ω ∼ Y/α′. This degeneration will turn out to reproduce precisely the

pentabox diagrams (a, b, c) which occur both in supergravity and SYM theory. Contact terms

responsible for the double-box diagrams (a′, b′, c′) require a discussion of the full integrand,

which is deferred to the next subsection.

Recall that the chiral integrand is given by (5.10), which we copy for convenience after

cyclically permuting the legs,

K(5) = ωI(2)∆(3, 4)∆(5, 1)KI
1,2,3|4,5 + cycl(1, 2, 3, 4, 5) (7.14)

where KI
1,2,3|4,5 is the sub-correlator (5.11), cyclically permuted,

KI
1,2,3|4,5 = 2πpImT

m
1,2,3|4,5 − gI2,3T23,1|4,5 − gI2,1T21,3|4,5 − gI3,1T31,2|4,5

− gI2,4S2;4|5|1,3 − gI3,4S3;4|5|2,1 − gI1,4S1;4|5|2,3

− gI2,5S2;5|4|3,1 − gI3,5S3;5|4|2,1 − gI1,5S1;5|4|2,3 (7.15)

where we recall that ∆(i, j) is the bi-holomorphic (1, 0) form (3.31).

In the tropical limit, ∆(i, j) vanishes by antisymmetry if the vertices ti, tj lie on the same

edge of the skeleton diagram, and reduces to ±dti dtj otherwise with the sign determined

by (7.3). This implies that the three edges of the graph can carry (3,2,0), (3,1,1) or (2, 2, 1)

external legs and therefore rules out the first two graphs in Figure 4 with bubble and triangle
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subdiagrams. The third and fourth graph of Figure 4 in turn involve bubble and triangle

subdiagrams within a 1PR skeleton and drop out from the field theory limit for a different

reason: Graphs obtained from the 1PR vacuum graph in the right panel of figure 2 cannot

contribute by unitarity as a consequence of the non-renormalization theorems for three-point

functions of on-shell massless states at one loop [65] and two loops [16].

We shall assign the external legs such that, for the odd spin structure κ′ = (1
2
, 1
2
), the

inner product ζ tri,j ·κ
′ in (7.6) is non-zero for all pairs of points, so that (7.13) applies. This is

for convenience only, since the result cannot depend on the choice of κ′ since the correlator

(7.14) is expressible in terms of prime forms, see (5.35) or (5.41), which are independent

of the spin structure. At the same time, the tropical limit of (7.14) is unaffected by the

vanishing of certain ω(tj) · κ′ in (7.7) since they descend from the (1
2
, 0)-forms hν(zj) that

were shown to cancel from K(5) in section 5.1.

Consider first the case where the external legs are distributed as in the planar pentabox

(a) of Figure 1. By (7.3), the Abelian differentials ωI(zj) reduce to

(a) :
•t1
•t2
•t3 •t4

•t5
=⇒

(
ω1(zj)
ω2(zj)

)
(a)
−→

(
1 1 1 0 0
0 0 0 −1 −1

)
×
i dtj
α′

(7.16)

Thus the only non-vanishing term in the sum over cyclic permutations in (7.14) is the first

one proportional to ωI(2)∆(3, 4)∆(5, 1) with ωI(2) → iδI,1dt2/α
′, namely

K(5)
(a)
→ −

i

(α′)5
K1

1,2,3|4,5 dt1 . . . dt5
(a)
→ −

2π

(α′)5
N (a)

1,2,3|4,5(ℓ) dt1 . . . dt5 (7.17)

with

N (a)
1,2,3|4,5(ℓ) = ip1mT

m
1,2,3|4,5 +

1

2

(
T23,1|4,5 + T12,3|4,5 + T13,2|4,5

)

+
1

2

(
S2;4|5|1,3 + S3;4|5|2,1 + S1;4|5|2,3 + S2;5|4|3,1 + S3;5|4|2,1 + S1;5|4|2,1

)
(7.18)

= i
(
p1m −

1

2
(k1+k2+k3)m

)
Tm
1,2,3|4,5 +

1

2

(
T23,1|4,5 + T12,3|4,5 + T13,2|4,5

)

One can identify p1m with the loop momentum ℓ in Figure 1 (a) which is in the lower end

of the edge supporting the external particles 1, 2, 3. The combination (k1+k2+k3)mT
m
1,2,3|4,5

is obtained from the six permutations of S2;4|5|1,3 via (4.53). Up to a global rescaling of

internal and external momenta by a factor of i which was left implicit in [47], this is in

precise agreement with the numerator for the diagram (a) computed in that reference.
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Next, consider the case where the external legs are distributed as in the non-planar

pentabox (b) of Figure 1. By (7.3), the Abelian differentials ωI(zj) now reduce to

(b) :
•t1
•t2
•t3

•t5•t4 =⇒

(
ω1(zj)
ω2(zj)

)
(b)
→

(
1 1 1 −1 0
0 0 0 1 −1

)
×
i dtj
α′

(7.19)

The only non-vanishing term in the sum over cyclic permutations in (7.14) is again the

first one proportional to ωI(2)∆(3, 4)∆(5, 1) with ωI(2) → iδI,1dt2/α
′, leading to the same

integrand as in (7.18) up to an overall sign from the fourth column,

K(5)
(b)
→

i

(α′)5
K1

1,2,3|4,5 dt1 . . . dt5
(b)
→ −

2π

(α′)5
N (b)

1,2,3|4,5(ℓ) dt1 . . . dt5 (7.20)

with

N (b)
1,2,3|4,5(ℓ) = −N (a)

1,2,3|4,5(ℓ) (7.21)

The tropical limit of K1
1,2,3|4,5 is identical in the cases of (a) and (b) since gI4,5 does not occur

in (7.15). The non-planar pentabox numerator (7.21) is again in precise agreement with the

numerator for the diagram (b) computed in [47].

Finally, let consider the case where the external legs are distributed as in the non-planar

pentabox (c) of Figure 1 (also see the right panel of Figure 5). The Abelian differentials

ωI(zj) now reduce to,

(c) :
•t2
•t1

•t4
•t3

•t5 =⇒

(
ω1(zj)
ω2(zj)

)
(c)
→

(
1 1 0 0 −1
0 0 −1 −1 1

)
×
i dtj
α′

(7.22)

There are now two non-vanishing terms in the sum over cyclic permutations in (7.14), namely

ωI(1)∆(2, 3)∆(4, 5) and ωI(4)∆(5, 1)∆(2, 3),

K(5)
(c)
→

i

(α′)5
(K1

5,1,2|3,4 −K2
3,4,5|1,2) dt1 . . . dt5

(c)
→

2π

(α′)5
N (c)

1,2|4,3|5(ℓ, r) dt1 . . . dt5 (7.23)

with loop momenta p1 = ℓ as well as p2 = −r in Figure 1 (c) and

N (c)
1,2|4,3|5(ℓ, r) = N (a)

1,2,5|3,4(p
1) +N (a)

3,4,5|1,2(−p
2) = N (a)

1,2,5|3,4(ℓ) +N (a)
3,4,5|1,2(r) (7.24)

again in precise agreement with the numerator for the diagram (c) computed in [47]. The

degenerations K1
5,1,2|3,4 → −2πiN (a)

1,2,5|3,4(ℓ) and K2
3,4,5|1,2 → 2πiN (a)

3,4,5|1,2(r) are obtained by
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repeating the steps of (7.18) which are now sensitive to all the five cases of gIi,j covered in

(7.13). The change of orientation in p2 = −r stems from the fact that the definition (2.15) of

loop momenta via AI -cycle integrals leads to both of p1 and p2 pointing to the left in Figure

1 (c), whereas r is drawn to point to the right. Moreover, note the relative sign between the

right-hand sides of (7.23) and (7.17), (7.20) in identifying the numerators: This sign reflects

the orientation of leg 5 in Figure 1 (c) whether its external edge points to the left or right

and drops out from the gravity numerator N (c)
1,2|4,3|5(ℓ, r)Ñ

(c)
1,2|4,3|5(ℓ, r) that we are deriving

from the tropical limit.

Note that the relations (7.21) and (7.24) among pentabox numerators are the kinematic

Jacobi identities which are consequences of color-kinematics duality [66]. In our setup, the

kinematic Jacobi identities among N (a), N (b), N (c) follow from the degenerations of the five-

forms in the correlator (7.14) and the tropical limit (7.13) of gIi,j.

7.4 Tropical limit of the Type II string integrand: double boxes

Scattering amplitudes in Type II strings involve an integral (6.2) of the productK(5)K̃(5)|I(5)|
2

over the loop momentum, vertex points zi and complex structure moduli parametrized by Ω.

As we review in subsection 7.5 below, the tropical limit of the chiral integrand discussed in the

previous subsection reproduces exactly the contribution of the pentabox diagrams (a, b, c)

in Figure 1. However, there are additional contributions from maximal degenerations of

the genus-two Riemann surface where two punctures collide, which are responsible for the

double-box diagrams (a′, b′, c′), as we now show.

Due to short-distance singularities in the chiral integrand arising from derivatives of the

prime form,

∂zi lnE(zi, zj) =
1

zi−zj
+O(zi−zj) (7.25)

the integral of the product K(5)K̃(5)|I(5)|2 over vertex points zi is not finite in the low energy

expansion, but rather has kinematical poles of the form

∫

|z|<R

d2z |z|−2s−2 f(z) = −π
f(0)

s
+O(s0) (7.26)

where we assume that the function f(z) is continuous at the origin. The O(s0) term depends

on the radius R > 0 used to excise the singularity at z = 0, but does not contribute to the

field theory limit at leading order and can be ignored.
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The coefficients of the kinematic poles can be computed by collecting the four possible

sources of poles of the form 1/|zi−zj |
2, and performing the replacement,

|∂zi lnE(zi, zj)|
2

− ∂zi lnE(zi, zj)∂zj lnE(zj , zi)



 ∼

1

|zi−zj |2
→ −

πδ2(zi, zj)

sij
(7.27)

Note that products of prime forms with different arguments ∂zi lnE(zi, zj)∂zi lnE(zi, zk) with

k 6= j do not lead to any kinematical pole since the resulting singularity (zi−zj)
−1(z̄i− z̄k)

−1

integrates to zero after integration over the phase of zi−zj . Moreover, maximal degenerations

with three of more punctures colliding do not contribute to the field theory limit at five points

since they would require more than one prime form in the chiral correlators such that the

integration rule (7.26) can be used multiple times.

The singularities (z1−z2)−1 of the chiral correlator were already extracted in (5.36) based

on the representation (5.35). The residue at s12 = 0 of the relevant chiral contributions is

given by,

K12
(5) = Resz1→z2K(5) = T12,3|4,5∆(2, 4)∆(3, 5) + T12,4|3,5∆(2, 3)∆(4, 5) (7.28)

which is permutation symmetric in 3, 4, 5, by virtue of the symmetries (3.29) and (3.32).

Hence, the graphs where the vertices 1 and 2 collide are captured by applying the replacement

(7.27) to,

K(5)K̃(5) →
K12

(5)K̃
12
(5)

|z1−z2|2
→ −

πδ2(z1, z2)

s12
K12

(5)K̃
12
(5) (7.29)

We will now extract the chiral contributions to double-box numerators for diagrams (a′),

(b′), (c′) in Figure 1. Given that the chiral contribution (7.28) shares the structure of the

four-point correlator (3.33), the computations below closely follow the tropical limit of the

two-loop four-point amplitude in [71].

In the planar case (a′), the abelian differentials ωI(zj) with j = 2, 3, 4, 5 reduce to (see

(7.3))

(a′) :
•t3
•t1,t2

•t4
•t5

=⇒

(
ω1(zj)
ω2(zj)

)
(a′)
→

(
1 1 0 0
0 0 −1 −1

)
×
i dtj
α′

(7.30)

and (7.28) reduces to the first term ∆(2, 4)∆(3, 5) → dt2 . . . dt5/(α
′)4. The resulting numer-

ator agrees with the result of [47] (denoted by N (d)
12,3|4,5(ℓ) in the reference)

(α′)4K12
(5)

(a′)
→ T12,3|4,5 dt2 . . . dt5

(a′)
→ N (a′)

12,3|4,5(ℓ) dt2 . . . dt5 (7.31)
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Moreover, this expression for planar double-box numerators matches antisymmetric combi-

nations of planar pentabox numerators N (a) in (7.18)

N (a′)
12,3|4,5(ℓ) = T12,3|4,5 = N (a)

1,2,3|4,5(ℓ)−N (a)
2,1,3|4,5(ℓ) (7.32)

and therefore realizes another kinematic Jacobi identity required by the color-kinematics

duality [66].

The above steps can be repeated to determine the non-planar double-box numerators for

diagrams (b′) and (c′) in Figure 1. The degeneration of the Abelian differentials,

(b′) :
•t3
•t1,t2

•t5•t4 =⇒

(
ω1(zj)
ω2(zj)

)
(b′)
→

(
1 1 −1 0
0 0 1 −1

)
×
i dtj
α′

(c′) : •t1,t2
•t4
•t5

•t3 =⇒

(
ω1(zj)
ω2(zj)

)
(c′)
→

(
1 −1 0 0
0 1 −1 −1

)
×
i dtj
α′

(7.33)

again suppresses the second term ∼ ∆(2, 3)∆(4, 5) in (7.28), and we obtain an extra minus

sign in ∆(2, 4)∆(3, 5) → −dt2 . . . dt5/(α′)4 as compared to the planar case (7.30). Hence,

the tropical limit of the correlator for diagrams (b′), (c′) is

(α′)4K12
(5)

(b′)
→ −T12,3|4,5 dt2 . . . dt5 , (α′)4K12

(5)

(c′)
→ −T12,3|4,5 dt2 . . . dt5 (7.34)

and one can read off the non-planar double-box numerators

N (b′)
12,3|4,5(ℓ) = N (c′)

12,3|4,5(ℓ) = −T12,3|4,5 = −N (a′)
12,3|4,5(ℓ) (7.35)

They reproduce the numerators of [47] (denoted by N (e)
12,3|4,5(ℓ), N

(f)
12,3|4,5(ℓ) in the reference)

and obey the color-kinematics duality when comparing with non-planar pentabox numer-

ators. Also note that the symmetry of N (a′)
12,3|4,5(ℓ), N

(b′)
12,3|4,5(ℓ), N

(c′)
12,3|4,5(ℓ) under 4 ↔ 5 is

consistent with the vanishing of numerators associated with triangle-subgraphs.

7.5 Assembling the supergravity amplitude

Collecting the results in the previous two subsections, we find that the field theory limit

of the genus-two scattering amplitude in Type II strings precisely produces the complete

two-loop five-point amplitude in maximal supergravity in D dimensions, in the double-copy
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representation of [47] (with the structure of [66]),

ASG
5 = δ

( 5∑

j=1

kj

)∫

R2D

〈1
2
N (a)

1,2,3|4,5(ℓ)Ñ
(a)
1,2,3|4,5(ℓ)I

(a)
1,2,3,4,5 +

1

4
N (b)

1,2,3|4,5(ℓ)Ñ
(b)
1,2,3|4,5(ℓ)I

(b)
1,2,3,4,5

+
1

4
N (c)

1,2|4,3|5(ℓ, r)Ñ
(c)
1,2|4,3|5(ℓ, r)I

(c)
1,2,3,4,5 +

1

2
N (a′)

12,3|4,5Ñ
(a′)
12,3|4,5I

(a′)
1,2,3,4,5 (7.36)

+
1

4
N (b′)

12,3|4,5Ñ
(b′)
12,3|4,5I

(b′)
1,2,3,4,5 +

1

4
N (c′)

12,3|4,5Ñ
(c′)
12,3|4,5I

(c′)
1,2,3,4,5 + sym(1, 2, 3, 4, 5)

〉
0
dℓ dr

Here, the symmetry factors 1
2
and 1

4
ensure that the sum over 5! permutations of the external

legs does not overcount individual diagrams. The factors I
(x)
1,2,3,4,5 are the usual products of

Feynman propagators for the diagrams in Figure 1,

I
(a)
1,2,3,4,5 ≡

1

ℓ2r2(ℓ+ r)2(ℓ− k1)2(ℓ− k12)2(ℓ− k123)2 (r − k5)2(r − k45)2

I
(b)
1,2,3,4,5 ≡

1

ℓ2r2(ℓ+ r)2(ℓ− k1)2(ℓ− k12)2(ℓ− k123)2 (r − k5)2(ℓ+ r + k4)2

I
(c)
1,2,3,4,5 ≡

1

ℓ2r2(ℓ+ r)2(ℓ− k1)2(ℓ− k12)2 (r − k3)2(r − k34)2(ℓ+ r + k5)2
(7.37)

I
(a′)
1,2,3,4,5 ≡

1

k212ℓ
2r2(ℓ+ r)2(ℓ− k12)2(ℓ− k123)2 (r − k5)2(r − k45)2

I
(b′)
1,2,3,4,5 ≡

1

k212ℓ
2r2(ℓ+ r)2(ℓ− k12)2(ℓ− k123)2 (r − k5)2(r + ℓ+ k4)2

I
(c′)
1,2,3,4,5 ≡

1

k212ℓ
2r2(ℓ+ r)2(ℓ− k12)2(ℓ+ r + k3)2 (r − k5)2(r − k45)2

The zero-mode integral 〈. . .〉0 in (3.5) yields the components of the superspace numerators for

arbitrary external states of the ten-dimensional Type-II multiplets, see [55] for the bosonic

components of Tm
1,2,3|4,5 and T12,3|4,5.

The supergravity amplitude (7.36) has been given for general spacetime dimension D by

considering a compactification on a T 10−D-torus and retaining only the zero-momentum and

-winding modes in the Siegel-Narain theta series (6.15). The superspace components of the

kinematic factors in (7.36) can be dimensionally reduced to any D ≤ 10 and integrated over

the loop momenta in D < 7, where the integrals are UV-finite. Dimensional reduction to

D = 4 does not directly reproduce the BCJ numerators of [66] in spinor-helicity variables

since their building blocks γij involve certain inverse Levi-Civita invariants that are specific

to four dimensions. Still, the symmetry properties of the combinations of γij in [66] match

those of the superspace building blocks in (7.36), see appendix D of [47] for details. The

78



difference between the amplitude representation in [66] and the dimensionally reduced su-

perspace numerators of (7.36) should cancel when integrating the sum over all diagrams, for

instance using the recent progress on the relevant integrals in [86, 87, 88, 89].

7.6 Comments on the Heterotic and Type I strings

Having correctly reproduced the two-loop integrand in maximal supergravity, one would like

to also match the two-loop integrand in N = 4 super-Yang-Mills theory, which is closely

related to the supergravity amplitude by the double-copy prescription [66]. One possible

strategy is to extract the field theory limit of the scattering amplitude of five gauge bosons

in the Heterotic strings, but this would produce the integrand for half-maximal supergravity,

where both vector multiplets and the gravitational multiplet propagate in the loops. While

the four-point two-loop amplitude in half-maximal supergravity is known [90], this is not the

case to our knowledge for the five-point amplitude. Moreover, extracting the field theory limit

of Heterotic string amplitudes is bound to be subtle, as contributions from the separating

degeneration due to the pole of 1/Ψ10 (where Ψ10 is the genus-two Igusa cusp form of weight

10) are known to contribute at four points [64], and are expected for five points as well.

A more direct approach is to consider the oriented, open-string sector of Type I su-

perstrings, which precisely reduces to SYM theory at low energy, without contamination

from gravitational exchange. For open superstrings, scattering amplitudes of massless gauge

bosons are given by an integral over the moduli space of Riemann surfaces with bound-

aries, over the positions zi of the vertex operators along the boundaries [91], and over loop

momenta. Riemann surfaces with boundaries are constructed as a quotient of a closed Rie-

mann surface under an anti-holomorphic involution [92]. As a result, the period matrix

is purely imaginary, and can be parametrized by (7.1) for a genus-two Riemann surface

with three boundaries. The integrand is given by the product K(5)I(5)C(5) where C(5) is the

Chan-Paton factor, which depends only on the color indices of the external particles. For a

five-point amplitude with gauge group SU(Nc), possible choices of C(5) include a single-trace

N2
cTr(T

a1T a2T a3T a4T a5) if all 5 external particles are attached to the same boundary and

a double-trace NcTr(T
a1T a2T a3)Tr(T a4T a5) if three particles are attached on one boundary

and two on another (recall that Tr(T a) = 0 for a simple gauge group; the overall factors of

N2
c and Nc arise from Tr(1) on the boundaries which do not support any external particle).

At low energies, scattering amplitudes are again dominated by degenerate Riemann sur-

faces, with long tubes replaced by strips and closed-string vertices replaced by disks 22. At

22The field theory limit of the genus-two open-superstring partition function in a magnetic field was
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two-loop, five points, they can be represented by fattened versions of the graphs in Figure

1, where the fattening keeps track of the position of the vertex operators. For the pentabox

diagrams (a, b, c), the same computations as in subsection 7.3 apply, and reproduce the field

theory integrands in color-kinematics dual form. Double-box diagrams, however, arise in a

different fashion than for closed strings, since the rules (7.26), (7.27) for contact diagrams

no longer apply. Instead, kinematic poles only arise from prime forms involving pairs of

neighbouring punctures on the same boundary,

∂zi lnE(zi, zi±1) ∼
1

zi−zi±1

→ ∓
δ(zi, zi±1)

si(i±1)

(7.38)

Therefore, the coefficient of a single-trace Chan-Paton factor ∼ N2
c tr(T

a1T a2T a3T a4T a5)

exhibits kinematical poles of the form 1/s12, 1/s23, 1/s34, 1/s45, 1/s51, while a double-

trace Chan-Paton factor ∼ Nctr(T
a1T a2T a3)tr(T a4T a5) is accompanied by poles of the form

1/s12, 1/s23, 1/s31. The numerators can be extracted in the same way as before, and turn

out to match with the prescription of [66], after converting color-ordered traces into the

color factors associated to the cubic graphs in Figure 1. All cubic graphs are accessible from

the partial amplitudes ∼ N2
c tr(T

a1T a2T a3T a4T a5) and ∼ Nctr(T
a1T a2T a3)tr(T a4T a5) since

the N−2
c -suppressed single-trace contribution ∼ Tr(T a1T a2T a3T a4T a5) is expressible in terms

of permutations of the former [95] (see [96] for the N−2
c -suppressed four-point single-trace

amplitude).

investigated in [93, 94, 80] using the Schottky representation, reproducing the Feynman diagrams contributing
to the Euler-Heisenberg Lagrangian of pure Yang-Mills theory. Our interest is in scattering amplitudes in
SYM theory in Minkowski background.
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8 Conclusion and future directions

In this work, we have proposed a spacetime supersymmetric expression for the chiral two-loop

five-point amplitude relevant to massless states of Type II, Heterotic, and Type I superstring

theories. The construction of the chiral amplitude is driven by the BRST cohomology of

vertex operators in the pure spinor formalism and the constraints from homology invariance

in the chiral splitting procedure. The main result in (5.10) and (5.11) is written in pure spinor

superspace and therefore allows to address arbitrary combinations of massless external states

in the gauge and gravity supermultiplets.

The key result of this work is to obtain the full α′ dependence of the two-loop five-point

amplitudes, including the contributions to the correlators beyond the OPE analysis and

the low energy limit of Type I and Type II amplitudes in [25]. In doing so we provide the

starting point for a systematic study of the low energy expansion of Type II string amplitudes

beyond leading order, and comparison with predictions from string dualities, which will be

the subject of a companion paper [30]. Our result will be further validated by a derivation

from first principles in the RNS formalism of the chiral amplitude for external NS bosons

and even spin structure to be given in another companion paper [31].

We have also extracted the loop integrands for two-loop five-point amplitudes of super-

Yang–Mills and maximal supergravity in D ≤ 10 dimensions: The worldline limit of the

string amplitudes in this work reproduce the representation of the field theory amplitudes

proposed in [47]. This form of the super-Yang–Mills and supergravity amplitudes features

the color-kinematics duality and double-copy structure [67, 68, 69]. Therefore, our work is

yet another showcase that hidden relations between gauge and gravity amplitudes may be

conveniently studied from a string-theory perspective.

Our methods should be useful to determine and organize chiral two-loop amplitudes for

higher numbers of massless states. The explicit construction of the kinematic factors will

require further cohomology studies in pure spinor superspace as for instance done at genus

one [58, 51]. The decomposition (5.10) of the chiral amplitude into a basis of differential

forms is easily extended to higher multiplicity: At six points for instance, the problem

reduces to constructing 14 sub-correlators along with the basis forms that are individually

homology-invariant functions of the punctures related by permutations of the external legs.

Given that the chiral correlators in (5.11) have no explicit α′ dependence, our results

may also be exported to the pure spinor incarnation of the ambi-twistor string [97, 98], and

should pave the way towards obtaining five-point supergravity amplitudes from correlators

on the bi-nodal sphere using the techniques of [99, 100].
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A Clifford-Dirac algebra and pure spinor identities

Weyl spinors in the 16 and 16’ representations of the Lorentz group SO(10) in ten-dimensional

space-time R10 will be denoted with an upper and a lower index, respectively, such as ξα

and χα where α = 1, · · · , 16. The Clifford-Dirac matrices (γm)αβ and (γm)αβ acting on Weyl

spinors in the 16 and 16’ respectively satisfy the Clifford algebra,

(γm)αβ (γ
n)βγ + (γn)αβ (γ

m)βγ = 2ηmnδα
γ (A.1)

where ηmn is the flat Minkowski metric on R10 and m,n = 1, · · · , 10. The summation

convention over pairs of repeated upper and lower vectorial or spinorial indices is adopted

throughout. We shall often be led to complexifying the momenta and polarization data of

the fields, in which case space-time is C10, the Lorentz group is SO(10;C), and the metric

ηmn is the Kronecker δmn, and all formulas in this section continue to hold as stated.

A.1 Basic identities

The anti-symmetric tensor γ-matrices are defined by,

(γmn)α
β =

1

2!
(γm)αγ(γ

n)γβ − 1 permutation of m,n

(γmnp)αβ =
1

3!
(γm)αγ(γ

n)γδ(γp)δβ ± 5 permutation of m,n, p (A.2)

and so on for γmnpq, γmnpqr, and similarly for the γ-matrices with reversed spinor indices such

as (γmn)αβ. We shall not need γ-matrices of rank 6 or higher which are related to γ-matrices

of lower rank by Poincaré duality. The γ-matrices have the following symmetry properties,

(γm)αβ = +(γm)βα (γmn)αβ = −(γmn)β
α

(γmnp)αβ = −(γmnp)βα (γmnpq)αβ = +(γmnpq)β
α

(γmnpqr)αβ = +(γmnpqr)βα (A.3)

satisfy the following product identities,

γmnγs = γmns + γmηns − γnηms

γmnpγs = γmnps + γmnηps − γmpηns + γnpηms

γmnpqγs = γmnpqs + γmnpηqs − γmnqηps + γmpqηns − γnpqηms (A.4)

as well as the following contraction identities,

γmγmn1 ···np
= (10− p)γn1 ···np

γmγn1···np
γm = (10− 2p)(−)pγn1···np

(A.5)
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As an immediate consequence for arbitrary commuting or anti-commuting spinors ξα, ψα,

we have the following decomposition formulas,

ξαψβ + ξβψα =
1

8
(ξγmψ)(γ

m)αβ +
1

16 · 5!
(ξγmnpqrψ)(γ

mnpqr)αβ

ξαψβ − ξβψα =
1

8 · 3!
(ξγmnpψ)(γ

mnp)αβ (A.6)

For an arbitrary commuting Weyl spinor ξ, combining the first equation of (A.6) with the

second equation of (A.5) we obtain,

(γmξ)α(γmξ)β = −
1

2
(γm)αβ(ξγ

mξ) (A.7)

Finally, we have the following Fierz identity,

8δβ
γδα

δ = 4(γm)αβ(γm)
γδ − (γmn)α

γ(γmn)β
δ − 2δα

γδβ
δ (A.8)

and the famous supersymmetry Fierz identity,

0 = (γm)αβ(γm)γδ + (γm)βγ(γm)αδ + (γm)γα(γm)βδ (A.9)

A.2 Identities involving pure spinors

A commuting pure Weyl spinor λ is defined to satisfy (2.1), namely (λγmλ) = 0. Combining

(2.1) with (A.7) and with the last equation of (A.4) respectively, we see that an arbitrary

commuting pure spinor satisfies the following fundamental identities,

(λγm)α(λγm)β = 0

(λγmnpqrλ)(λγ
m)α = 0 (A.10)

The tensor product of two identical pure Weyl spinors has the following decomposition,

λαλβ =
1

32 · 5!
(λγmnpqrλ)(γ

mnpqr)αβ (A.11)

The following identity holds for the tensor product of three identical pure Weyl spinors,

(λγ[mnpqrλ)(λγs])α = 0 (A.12)

where the anti-symmetrization bracket is applied to all six indices. The identity may be

proven as follows. The symmetric tensor product of three arbitrary Weyl spinors in the 16 is

reducible by contracting two of the Weyl spinors with a γ-matrix. However, this contraction

vanishes for pure spinors by (2.1) and hence the symmetrized tensor product of three pure

Weyl spinors is irreducible. Its further tensor product with a 16 is readily shown not to

contain an anti-symmetric rank 6 tensor, which is Poincaré dual to an anti-symmetric rank

4 tensor, which proves the identity.
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B Functions and differentials on Riemann surfaces

In this appendix, we review the basic holomorphic and meromorphic functions, differentials,

and Green functions on a compact Riemann surface Σ of genus h from which all string

correlators needed here can be constructed. Standard references are [2, 101, 35].

B.1 Homology and modular transformations

A canonical basis for the homology group H1(Σ,Z) consists of 1-cycles AI and BI with

I = 1, · · · , h and canonical intersection pairing J,

J(AI ,AJ) = J(BI ,BJ) = 0

J(AI ,BJ) = −J(BI ,AJ) = δIJ (B.1)

Different canonical bases (AI ,BI) and (ÃI , B̃I) are related by linear transformations repre-

sented by a matrix M with integer entries,
(
B̃

Ã

)
=M

(
B

A

)
(B.2)

Here, A and B stand for the column matrices with entries AI and BI , respectively, andM is

an element of the group Sp(2h,Z) of modular transformations, which preserve the canonical

intersection matrix J,

M tJM = J J =

(
0 −Ih
Ih 0

)
M =

(
A B
C D

)
(B.3)

where A,B,C,D are h×h matrices with integer entries. An important subgroup of Sp(2h,Z)

is the group Gl(h,Z) which consists of those modular transformationsM which transform A-

cycles into linear combinations of A-cycles andB-cycles into linear combinations ofB-cycles.

It is obtained by setting B = C = 0 and D = (At)−1.

B.2 Holomorphic 1-forms and the period matrix

A canonical basis of the cohomology group H(1,0)(Σ,Z) consists of holomorphic (1, 0)-forms

ωI with I = 1, · · · , h whose periods on the homology basis (AI ,BI) are given by,23

∮

AI

ωJ = δIJ

∮

BI

ωJ = ΩIJ (B.4)

23For our conventions and notations for integrals of (1, 0) forms see footnote 2.
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The A-periods fix the canonical normalization of ωI , while the B-periods give the period

matrix Ω, which is symmetric by the Riemann bilinear relations, and for which the matrix,

Y = Im Ω (B.5)

is positive definite. Under modular transformations M ∈ Sp(2h,Z), whose parametrization

in terms of h × h matrices A,B,C,D is given in (B.3), the matrix of holomorphic Abelian

differentials ω, the period matrix Ω, its imaginary part Y , and the determinant thereof det Y

transform as follows,

ω̃ = ω(CΩ+D)−1

Ω̃ = (AΩ +B)(CΩ+D)−1

Ỹ = (ΩCt +Dt)−1Y (CΩ∗ +D)

det Ỹ = |det (CΩ+D)|2 det Y (B.6)

B.3 The Abel map and Jacobi ϑ-functions

The Jacobian of the surface Σ is the Abelian variety defined by,

J(Σ) = C
h/{Zh + ΩZh} (B.7)

Given a base point z0 ∈ Σ, the Abel map sends a divisor D of n points zi ∈ Σ with weights

qi ∈ Z for i = 1, · · · , n, formally denoted by D = q1z1 + · · · qnzn, into Ch by,

q1z1 + · · ·+ qnzn ≡
n∑

i=1

qi

∫ zi

z0

(ω1, · · · , ωh) (B.8)

where the h-tuple (ω1, · · · , ωh) stands for the vector of holomorphic (1, 0)-forms ωI . The

Abel map into Ch is multiple valued, but it is single valued as a map into J(Σ).

The Jacobi ϑ-functions with characteristics κ are defined on ζ = (ζ1, · · · , ζh)t ∈ Ch by,

ϑ[κ](ζ |Ω) ≡
∑

n∈Zh

exp
(
iπ(n + κ′)tΩ(n + κ′) + 2πi(n+ κ′)t(ζ + κ′′)

)
(B.9)

Here, κ = (κ′| κ′′) is a general characteristic, where κ′, κ′′ ∈ Ch are both written as a column

vector. Henceforth, we shall assume that κ corresponds to a spin structure, and thus be

valued in κ′, κ′′ ∈ (Z/2Z)h. The parity of the spin structure is determined by the parity of

the ϑ-functions which satisfy,

ϑ[κ](−ζ |Ω) = (−1)4κ
′·κ′′

ϑ[κ](ζ |Ω) (B.10)
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According to whether 4κ′ ·κ′′ is even or odd, κ is referred to as an even or odd spin structure.

Upon shifting by full periods M, N ∈ Z
h,

ϑ[κ](ζ +M + ΩN |Ω) = exp
(
− iπN tΩN − 2πiN t(ζ + κ′) + 2πiM tκ′′

)
ϑ[κ](ζ |Ω) (B.11)

Under a modular transformation M ∈ Sp(2h,Z) as given in (B.3), the characteristic κ =

(κ′| κ′′) transforms as (see for example [101, 102])
(
κ̃′

κ̃′′

)
=

(
D −C
−B A

)(
κ′

κ′′

)
+

1

2
diag

(
C Dt

ABt

)
(B.12)

The ϑ-function transforms as follows,

ϑ[κ̃]
(
(ΩCt +Dt)−1ζ

∣∣(AΩ+B)(CΩ +D)−1
)
= ǫ(κ,M)

(
det (CΩ +D)

) 1

2

ϑ[κ](ζ |Ω) (B.13)

where ǫ(κ,M) is an eighth root of unity satisfying ǫ8 = 1. Its explicit form is given in

[101, 102] but will not be needed here.

B.4 The prime form

The prime form is constructed as follows [101]. For any odd spin structure ν, the 2h − 2

zeros of the holomorphic (1, 0)-form,

h2ν(z) =
∑

I

∂Iϑ[ν](0|Ω)ωI(z) ∂I =
∂

∂ζI
(B.14)

are double and the form admits a unique (up to an overall sign) square root hν(z) which is a

holomorphic (1/2, 0) form. The prime form is a (−1/2, 0) form in z, w, living in the covering

space of Σ, defined by

E(z, w|Ω) =
ϑ[ν](z − w|Ω)

hν(z) hν(w)
(B.15)

where the argument z − w of the ϑ-functions stands for the Abel map of (B.8) with z1 = z,

z2 = w and q1 = −q2 = 1. The form E(z, w|Ω) defined in (B.15) is independent of ν,

holomorphic in z and w, odd under swapping z and w, and has a unique simple zero at

z = w. It is single valued when z is moved around AI cycles, but has non-trivial monodromy

around a BI cycle,

E(z +BI , w|Ω) = − exp

(
−iπΩII − 2πi

∫ z

w

ωI

)
E(z, w|Ω) (B.16)
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In terms of the first derivatives, we have,

∂z lnE(z +BI , w) = ∂z lnE(z, w)− 2πiωI(z)

∂z lnE(z, w +BI) = ∂z lnE(z, w) + 2πiωI(z) (B.17)

The combination ∂z∂w lnE(z, w|Ω) is a single valued meromorphic differential with one dou-

ble pole at z = w and no single poles. Its integrals around homology cycles are given by,

∮

AI

dz∂z∂w lnE(z, w|Ω) = 0

∮

BI

dz∂z∂w lnE(z, w|Ω) = 2πiωI(w) (B.18)

and will be of use throughout.
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C Chiral splitting and loop momenta

In this appendix, we review chiral splitting for the xm-field in 10-dimensional space-time on

a compact Riemann surface of arbitrary genus h. The functional integrals of interest may

be obtained through a generating functional which includes both the contributions from

the Koba-Nielsen factor and from multi-linear insertions of the current ∂xm required in the

vertex operators, and is given by (2.16).

The worldsheet field contents of the pure spinor string has been arranged so that their

combined Weyl and holomorphic anomalies cancel. Omitting the contribution to these

anomalies from the x-field by itself, its Gaussian functional integral evaluates to,

J = (2π)10 δ(k)
|Z|−20

(det 2Y )5
exp

{ N∑

i,j=1

Eij
}

k =

N∑

i=1

ki (C.1)

Here, the determinant is taken of the matrix Y with components YIJ = ImΩIJ , while Z is

the chiral scalar partition function which is holomorphic in moduli, and Eij is given by,

Eij = −
1

2
ki · kj G(zi, zj) + iki · εj ∂zjG(zi, zj) + iki · η̄j ∂z̄jG(zi, zj)

+
1

2
εi · εj ∂zi∂zjG(zi, zj) +

1

2
η̄i · η̄j ∂z̄i∂z̄jG(zi, zj) + η̄i · εj ∂z̄i∂zjG(zi, zj) (C.2)

The Green function G is given in (2.11), but may equivalently be replaced by the Arakelov

Green function of (2.12). We split Eij into a part which involves only the holomorphic prime

form E(zi, zj), another part which involves its complex conjugate, and a part which involves

the holomorphic Abelian differentials and Y IJ ,

Eij = E+
ij + E−

ij + E0
ij (C.3)

The individual contributions are given as follows,

E+
ij =

1

2
ki · kj lnE(zi, zj)− iki · εj ∂zj lnE(zi, zj)−

1

2
εi · εj∂zi ∂zj lnE(zi, zj)

E−
ij =

1

2
ki · kj lnE(zi, zj)− iki · η̄j ∂z̄j lnE(zi, zj)−

1

2
η̄i · η̄j ∂z̄i∂z̄j lnE(zi, zj) (C.4)

and the sum of E0
ij is given by,

N∑

i,j=1

E0
ij =

π

2
Y IJ

(
ζI − ζ̃I

)
·
(
ζJ − ζ̃J

)
(C.5)
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where we have defined,

ζmI =

N∑

j=1

(
εmj ωI(zj) + ikmj

∫ zj

z0

ωI

)

ζ̃mI =

N∑

j=1

(
η̄mj ωI(zj) + ikmj

∫ zj

z0

ωI

)
(C.6)

Next, we shall represent the combination of the (det Y )-denominator and the exponential of

the sum of E0
ij by an integral over loop momenta pmI ∈ R,

exp
{∑

i,j E
0
ij

}

(det 2Y )5
=

∫

R10h

dp exp
{
−2πYIJ p

I · pJ + 2πpI · (ζI − ζ̃I)
}

(C.7)

The full generating function is then given as follows,

J = δ(k)

∫

R10h

dpB(zi, εi, ki, p
I |Ω)B(zi, ηi,−k∗i ,−p

I |Ω) (C.8)

where the chiral amplitude is given by,

B(zi, εi, ki, p
I |Ω) = Z−10 exp

{
iπΩIJ p

I · pJ +
∑

i

2πpI ·
(
εi ωI(zi) + iki

∫ zi

z0

ωI

)

−
1

2

∑

i 6=j

(
iki + εi∂zi

)(
ikj + εj∂zj

)
lnE(zi, zj)

}
(C.9)

and similarly for its conjugate chiral amplitude. The chiral amplitude may be recast in the

form of a chiral correlator,

B(zi, εi, ki, p
I |Ω) = Z−10 exp

{
iπΩIJp

I · pJ +
∑

i

2πipI · ki

∫ zi

z0

ωI

}
(C.10)

×

〈
exp

∑

i

{
εi ·

(
∂zx+(zi) + 2πpIωI(zi)

)
+ iki · x+(zi)

}〉

The effective rule for the Wick contraction of the chiral bosonic field x+ is given by (2.19).

We have grouped together the various terms involving the polarization vectors, which make

it clear that the effective rule for the insertion of the derivatives in the formulation with loop

momenta is given by the following substitution,

∂xm(z) −→ ∂xm+ (z) + 2π(pI)mωI(z) (C.11)

It is this effective rule of which we shall make use here when applying chiral splitting.
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D Operator product expansions

The short-distance behavior of the physical canonical fields is given by the following OPEs,

xm(z)xn(y) ∼ −ηmn ln(z − y)

pα(z)θ
β(y) ∼

δα
β

z − y
(D.1)

As a result, the OPEs of the composite matter fields dα,Π
m defined in (2.4) may be deduced

from the OPEs of the physical canonical fields,

dα(z) f
(
x(y), θ(y)

)
∼

Dαf

z − y
dα(z) dβ(y) ∼ −

γmαβ Πm

z − y

Πm(z) f
(
x(y), θ(y)

)
∼ −

∂mf

z − y
dα(z) Π

m(y) ∼
γmαβ ∂θ

β

z − y
(D.2)

where Dα is the superspace derivative defined in (2.29), from which the BRST transforma-

tions of the matter fields in (2.26) may be evaluated. The OPEs of the ghost fields are given

by,

wα(z) λ
β(y) ∼

δα
β + (γmλ)αΛ

β
m

z − y

w̄α(z) λ̄β(y) ∼
δαβ + (γmλ̄)

αΛ̄m
β − (γmr)

αφm
β

z − y

sα(z) rβ(y) ∼
δαβ + (γmλ̄)

αψm
β

z − y
(D.3)

The presence of the functions Λβ
m, Λ̄

m
β , φ

m
β , ψ

m
β is required in order for the OPEs to be com-

patible with the pure spinor constraints (2.1), and specifically to cancel the singularities in

the OPE of the fields wα, w̄α, s
α with the pure spinor constraints of (2.1). To do so, Λβ

m and

ψβ
m must satisfy,

(γnλ)α(Λnγ
mλ) + (γmλ)α = 0

(γnλ̄)α(ψnγ
mλ̄) + (γmλ̄)α = 0 (D.4)

while Λ̄m
β and φm

β must satisfy the following set of coupled equations,

(γmλ̄)
α + (γnλ̄)α(Λ̄nγmλ̄)− (γnr)α(φnγmλ̄) = 0

(γnr)α + (γpλ̄)α(Λ̄pγ
nr)− (γpr)α(φpγ

nr) = 0 (D.5)
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Note that the functions Λβ
m, Λ̄

m
β , ψ

m
β are commuting, while φm

β is anti-commuting. The so-

lutions to these equations are not unique as there are non-trivial kernels. For example, we

cannot solve them simply by setting (Λnγ
mλ) = −δnm since this would be inconsistent with

the constraint λγmλ = 0. Similarly for the other equations and their solutions.

The contributions from Λm, Λ̄m, φm, ψ
m
β will cancel out of the OPEs of the composites

Nmn, J, Tλ, and their analogues for the ghosts w̄α and sα. Their OPEs with λα are given by

the corresponding linear transformations on λα,

Nmn(z) λ
α(y) ∼

1

2

(γmnλ)
α

z − y

Jλ(z) λ
α(y) ∼

λα

z − y

Tλ(z) λ
α(y) ∼

∂λα

z − y
(D.6)

while their OPEs with wα are subject to extra terms due to the constraints (2.1) and will not

be needed here. The OPEs of the currents are more complicated because of the constraints,

and we quote here only the relevant results,

Nmn(z)Npq(y) ∼
ηnpNmq − ηmpNnq − ηnqNmp + ηmqNnp

z − y

−3
ηmqηnp − ηmpηnq

(z − y)2
(D.7)
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