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Abstract

The full two-loop amplitudes for five massless states in Type II and Heterotic super-
strings are constructed in terms of convergent integrals over the genus-two moduli space
of compact Riemann surfaces and integrals of Green functions and Abelian differentials
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the pure spinor formulation and from chiral splitting with the help of loop momenta
and homology invariance. The o/ — 0 limit of the resulting superstring amplitude is
shown to be in perfect agreement with the previously known amplitude computed in
Type II supergravity. Investigations of the o’ expansion of the Type II amplitude and
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1 Introduction

The perturbative evaluation of superstring amplitudes in the Ramond-Neveu-Schwarz (RNS)
formulation proceeds systematically from first principles (see for example [1, 2, 3, 4] and
references therein). Space-time supersymmetry is achieved in the RNS formulation by as-
sembling the separate contributions from the NS and R sectors and integrating over super
moduli which includes a sum over spin structures. By contrast, the pure spinor formulation
[5, 6, 7] requires only an integral over bosonic moduli and is manifestly supersymmetric. It
provides a streamlined approach to the evaluation of multi-particle superstring amplitudes
with arbitrary external massless states (see for example [8, 9] and references therein). How-
ever, for genus three and greater, the pure spinor formulation faces the complication of a
composite b-ghost whose presence is required to produce a suitable measure on moduli space.
Various problems associated with the b-ghost and with the integration over pure spinor zero
modes remain incompletely resolved to date.

While the explicit calculation of higher-genus amplitudes in superstring theory is of
interest in its own right, it is also mainly motivated by the systematic study of the low
energy effective interactions induced by string theory and the derivation of associated non-
renormalization theorems, as well as by the exploration of the hidden structures of scattering
amplitudes in quantum field theory through the o/ — 0 limit, such as the perturbative re-
lations between gauge theories and supergravity. Another, more mathematical motivation
is to gain a better understanding of the higher-genus modular forms that enter multi-loop
string amplitudes.

The focus of this paper will be on genus-two amplitudes. In the RNS formulation,
amplitudes receive contributions from even and odd spin structure sectors. The measure for
the even spin structure sector was evaluated in [10, 11, 12, 13] with the help of the canonical
holomorphic projection of the genus-two even spin structure super moduli space onto moduli
space. An alternative derivation of the measure using algebraic geometry methods was given
more recently in [14, 15]. The genus-two amplitude for four external NS bosons was evaluated
for both the Type II and Heterotic strings and is given by convergent integrals over the
moduli space of genus-two compact Riemann surfaces, and integrals over each surface of
combinations of Green functions in [16, 17]. The absolute normalization of the Type IIB
amplitude and a comparison of its low energy expansion with the implications from S-duality
were obtained in [18] with further results derived in [19, 20]. A general formulation for the
even spin structure part of the genus-two amplitude for an arbitrary number of NS states
was given using Dolbeault cohomology in [21], but no explicit formulas for amplitudes with
more than 4 external states have been obtained in the RNS formulation yet.
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The genus-two results for four massless states in Type II were reproduced soon after the
RNS calculations using the pure spinor formulation, and extended to obtain the amplitudes
involving external R states and thus external fermions [22]. Agreement with the results from
RNS was verified in [23], including the precise normalization of the amplitude [24]. The
pure spinor prescription was also applied to genus-two amplitudes with five external states
in [25] and to genus-three amplitudes with four external states in [26]. In both cases, finite
expressions consistent with S-duality were obtained for the leading terms in the low energy
expansion of these amplitudes. While for the genus-two amplitude with five external states
the full expression will be derived below, the divergences in the zero-mode integrals of the
bosonic ghosts pose difficulties when attempting the same for the genus-three amplitude.

In the present paper, we shall construct the genus-two amplitudes for five massless ex-
ternal states of the supergravity multiplet for Type II superstrings, and the supergravity or
the super Yang-Mills multiplet for Heterotic strings. The extension to Type I superstrings
is expected to follow from our construction as well but will not be considered in any detail
here. We shall follow the prescription neither of the RNS formulation nor of the pure spinor
formulation. Instead we shall combine ingredients of both formulations with properties of
the corresponding maximal supergravity amplitudes. Specifically, we shall use the vertex
operator BRST cohomology (see [27] and references therein) from the pure spinor formula-
tion, and import the chiral splitting procedure and homology invariance properties of chiral
amplitudes which were developed in the context of the RNS formulation [2, 28].

It will turn out that the construction via a combination of these ingredients produces
unique amplitudes in the above theories in terms of integrals over the moduli space of compact
Riemann surfaces and, for each surface, integrals over combinations of Green functions and
meromorphic Abelian differentials. The integrals are convergent after analytic continuation
in the external momenta, as is familiar from genus-one amplitudes [29].

Our key result is the construction of the chiral amplitude K5 which is a function of
external momenta, chiral polarization vectors and spinors, loop momenta, and a complex
analytic dependence on vertex operator points and moduli of the underlying compact Rie-
mann surface X. The integration of the pairing of left and right chiral amplitudes over loop
momenta, vertex operator points, and moduli gives the physical amplitude for five external
states in the supergravity multiplet. For example, the Type II amplitudes take the form,

As) = / (K K)o L) (1.1)

The integral encompasses moduli, vertex points, and loop momenta and includes the chiral
Koba-Nielsen factor Zs), as will be explained in detail in the sequel. Furthermore, the bracket
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(...)o denotes the prescription of the pure spinor formalism [5] to integrate over spinor zero
modes, which extracts the power of 0% from the enclosed superfields. The chiral amplitude
K in (1.1) will be determined in a basis of holomorphic five-forms on ¥°,

IC(5) = A(3,4)A(5, 1)WI(2)IC{,2,3|4,5 + cycl(1,2,3,4,5) (1.2)
where A(7, j) is the bi-holomorphic combination of holomorphic one-forms w; o,
A(i, J) = wi(zi)wa(z5) — wa(zi)wi(z;) (1.3)

familiar from [16, 17]. All the dependence on the external polarization vectors and spinors
is captured by the coefficients K1, 3145 which are scalar functions on 3°,

I _ I m I I I
IC1,2,3|4,5 = 27Tme1,2,3\4,5 — 923 T23,1|4,5 — Y921 T21,3|4,5 — Y31 T31,2|4,5
I I I
— 92,4 5241512 = 3,4 S3:4/52,1 — J1,4 O1:45/2,3 (1.4)
I I I
— 925 52;5|4\3,1 — U35 S3;5|4\2,1 — 015 51;5|4\2,1

The dependence on the loop momenta p! is explicit in (1.4), while the dependence on vertex
positions and moduli enters through the following combinations of theta functions,

=gt o G= [ (1.5

The choice of odd spin structure v is immaterial as long as it is the same for all terms
in (1.4). The kinematic factors TL’@’3|4’5,T23,1|4,5, So.4j51,2 in pure spinor superspace will be
developed below, giving access to arbitrary combinations of external states from the massless
supersymmetry multiplets. These kinematic factors are independent of moduli, vertex points,
and loop momenta.

Our construction of the chiral amplitude K5 in this paper does not proceed directly from
first principles, and it is therefore important to carry out consistency checks to confirm its
validity. A first check consists in showing that those terms of the chiral amplitude which have
singularities at coincident vertex points agree with the OPEs derived from first principles
in [25]. A second check consists of comparing the o/ — 0 limit of the Type II superstring
amplitudes with the predictions from the corresponding maximal supergravity calculations.
Both checks will be carried out in this paper and demonstrate perfect agreement.

As further checks, the investigation of the low energy expansion of the amplitude for five
external states in Type II string theory and the comparison with predictions from S-duality,
carried out in [25] to lowest order, will be extended to higher orders in a companion paper
[30]. Finally, the genus-two amplitude for five external NS bosons will be evaluated through
the RNS formalism in another companion paper [31], where its form will be compared with
the amplitude obtained here.



Organization

The remainder of this paper is organized as follows. In section 2 we review and summarize
the required key ingredients of the non-minimal pure spinor formulation, its BRST cohomol-
ogy, its zero-mode counting, and its vertex operators, as well as the chiral splitting procedure
applied to pure spinors. Section 3 briefly reviews selected aspects of multi-loop computations
in the pure spinor formalism and the derivation of the amplitude with four external massless
states. In section 4, we make use of BRST cohomology and chiral splitting to construct a
chiral amplitude with five external massless states. In section 5 we shall recast this result in
various alternative representations which make manifest Bose and Fermi symmetry, homol-
ogy invariance, BRST invariance, and short distance singularities. In section 6 we continue
to use the results of chiral splitting to assemble left and right moving chiral blocks into the
full amplitudes for five external states in the Type II and Heterotic strings. In section 7
we check the worldline limit of our results to reproduce the loop integrand of the two-loop
five-point amplitude in supergravity. In section 8 we conclude and offer a perspective on
some future directions of investigation.

Various identities for the Clifford-Dirac algebra and pure spinors are collected in ap-
pendix A; basics ingredients of Riemann surfaces and their function theory are summarized
in appendix B; a detailed derivation of the chiral splitting procedure suitable for the pure
spinor formulation is presented in appendix C; and the operator product expansions of the
pure spinor worldsheet fields are gathered in appendix D.
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2 Pure spinors and chiral splitting

In this section we derive the basic building blocks for the five-point amplitude in terms of
the BRST cohomology of the pure spinor superstring and the chiral splitting procedure. The
source of these building blocks may be found in the non-minimal pure spinor superstring,
whose formulation is suited to two-loop calculations in view of the presence of its b-ghost.
Salient features of the non-minimal pure spinor superstring may be found in [7]. Throughout,
we assume Euclidean signature both on the worldsheet and in target space.

2.1 Worldsheet fields, action, and symmetries

The fields of the non-minimal pure spinor superstring on the worldsheet 3. are the world-
sheet scalar 2™ with m = 1,---,10; the left-moving worldsheet scalars 8%, A%, Ao, 7o With

@, s% and their right-moving

a=1,---,16; the left-moving worldsheet (1,0)-forms p,, W, W
counterparts suitable either for the Type II or Heterotic strings. Despite the notation,
the fields A%, A, and w,,w® are not complex conjugates of one another, but independent
fields transforming under conjugate representations of the Lorentz group. Under the SO(10)
Lorentz group, the field 2™ transforms as a vector; 6%, A%, w®, s* transform as Weyl spinors
in the 16 of SO(10); and py, Wa, A, 7o transform as Weyl spinors in the 16°. The fields 6%, p,,
are anti-commuting matter fields while A%, A, wa, W* are commuting ghosts, and s, r, are

anti-commuting spinor ghosts. The pure spinor constraints on the ghost fields are,
AN = MY = My =0 (2.1)
These identities are invariant under SO(10) and reduce the number of independent compo-
nents of each field A%, \,, 7o from 16 to 11 in an SO(10)-invariant way.*
The action for 2™ and the left-moving worldsheet fields is given by,”

1

= —
2T »

1 _ _ _ _ _
<§0xm8xm + P00 — W, ONY — W*ON, + s“@ra) (2.2)

!This counting may be seen explicitly by decomposing the fields under the U(5) maximal subgroup of
SO(10) under which the spinor representation 16 decomposes into the representations 1@ 5* @ 10 of SU(5).
The constraints (2.1) are responsible for projecting out the representation 5* from each field, leaving 11

independent components for each one of the fields A%, A\, and r,. Basic identities for the 16 x 16 Clifford-
Dirac «-matrices and pure spinor identities are given in appendix A.

2Throughout, we shall set o/ = 2 and use local complex coordinates z, Z on ¥ with 0 = 9/9z, 0 = 0/0%.
The fields pa, wq, W%, s* will denote the coefficients of the differential dz of their corresponding (1,0) form
fields expressed in local coordinates. The coordinate volume form on ¥ is d% = %dz AdZz. When no confusion
is expected to arise, the integral of a (1,1)-form v d*z on ¥ will be denoted in shorthand by [;;vd% — [; v,
while the integral of a (1,0) form w dz along a curve C will be denoted [, wdz = [,w.
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The action I is invariant under global Lorentz transformations of SO(10). It is also invariant
under global supersymmetry transformations which are generated by a constant spinor €,

oz = —1ey™ 00" = ¢ (2.3)
The corresponding translation and supersymmetry currents are given by,
I = dz™ + 107™00
doc = o = 302" (Ymb)o = §(67"09) (Ymb)a (2.4)
Both currents are invariant under supersymmetry. The stress tensor is given by,
Tiot = —%&Em@xm — Pa00% + W ON* + W*ONy — 5701, (2.5)

The matter fields ™, 6, p, are unconstrained free fields while the ghost fields are subject
to the pure spinor constraints (2.1). It will often be convenient to use the field d, instead
of p, by carrying out the field-dependent shift in (2.4). The 16 components of the spinor d,,
are unconstrained. The operator product relations are given in appendix D.

2.1.1 Gauge symmetry of the ghost fields and gauge invariant composites
In view of the pure spinor constraints (2.1) on A%, A, 7, their respective conjugates w,, 0, s*
are subject to gauge transformations,

dwe = An(7" N4

00 = N (V"N = G (y"7)*

05" = ¢m(7m)‘)a

which leave the action I invariant for arbitrary commuting A,,, A,, and anti-commuting ¢,

(2.6)

functions on Y. As a result, the number of fields w,, w*, s* modulo gauge transformations is
reduced from 16 to 11 for each field. Linear combinations of w,, w®, s* (with A and \-valued
coefficients) that are invariant under these gauge transformations are given by,

Ny = %wvmn)\ J =w

Nin = 2 (@YX = $Ymnr) J =0\ — sr

Sn = %s%m;\ S = s\ (2.7)

The composites Ny, Ny are the SO(10) currents of the ghost fields A*, w,, A, W%, 8%, T,
while J, J are U(1) currents. The ghost number current is defined by,

Jgh = WA — WA (2.8)



so that A, w have ghost number +1 and w, A have ghost number —1 while all other fields,
including the composites 11", d,, and T}, have zero ghost number. The partial stress tensors
T\ = wOX and T = wONX — sOr are also invariant but will not be needed here.

In view of the pure spinor constraints (2.1), only 11 amongst the fields (N, J) are lin-
early independent of one another (with A-valued coefficients), and similarly only 11 amongst
(Nym, J) and 11 amongst (Sy,,, S) are linearly independent (with A-valued coefficients).

2.2 Chiral splitting

The spinor-valued fields in the non-minimal pure spinor formulation, 0%, pa, A%, Wa, Aa, W%,
T, and s, are conformal primary fields whose correlators on a Riemann surface ¥ of arbi-
trary genus h are complex analytic on ¥ and on moduli. The vector-valued field ™, however,
is not a conformal primary due to the presence of translational zero modes. As a result the
inverse of the scalar Laplacian on the space orthogonal to the zero mode depends on certain
choices, including the volume form on . Choosing the volume form to be the canonical
Kahler form of unit volume (with Y77 denoting the entries of the inverse of ¥ = Im Q) ?

K(z) = %Y”w;(z) Nwy(z) = %nzgdz Ndz (2.9)

the inverse of the scalar Laplacian on the space orthogonal to the zero mode gives the
Arakelov Green function G which satisfies,

0,0:G(z,w|Q) = =76 (2, w) + 7.2 (2) /Eg(z, w|Q)k(w) =0 (2.10)

The Arakelov Green function is globally well-defined, symmetric in z,w, invariant under
conformal transformations, and gives the two-point function of 2™ as follows (z™(2)z™(w)) =
"G (z,w|2). The Arakelov Green function is related to the more familiar “string Green
function”,

z z

Glow]Q) = —In |E(z w|Q) + 27y (Im/ or) (Im/ ) (2.11)

w w

via a shift

G(z,wl) = G(z,w[Q) —~(2[Q2) =7 (w[2) (2.12)

3A summary of function theory on compact Riemann surfaces, including the definitions of meromorphic
differentials, Jacobi theta-functions, and the prime form, is given in appendix B. Throughout, we shall use
the Einstein convention for the summation over pairs of repeated upper and lower indices I,J = 1,--- | h,
where h is the genus, which we keep general in this section.
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where

v(z|Q) :/EG(z,wm) /@(w)—}/E E/@(w) G(w,w'|Q) k(w") (2.13)

2

Unlike G(z, w|Q?), the string Green function G(z,w|Q2) depends on a choice of local coordi-
nates, due to the fact that £(z, w|() is a form of weight (—3,0) in z and w, and is not globally
well-defined on ¥. However, the difference G(z, w|2) — G(z,w|Q2) cancels from correlators
upon imposing momentum conservation, so we may equally well use the two-point function
(™(2)2z™(w)) = ™G (z,w|Q) in computing correlators of ™. The use of the Arakelov
Green function will be especially important when carrying out a low-energy expansion of the
amplitudes and guarantees that individual terms are properly conformal invariant [32, 33].

By contrast, the field 02 (z) is a (1,0) form and conformal primary field. Its correlators
are meromorphic on ¥, as may be seen from the two-point function (9x™(z)0z™(w)) =
N 0,0,G (2, w|Q) = n""0,0,G(z, w|Q2) with,

0,0,G(z,w|Q) = —=0.0, In E(z,w|Q) + 7Y w;(2)ws(w) (2.14)

Note that neither the Green functions G, G nor their derivatives 0,0,G are complex analytic
in the moduli €2, as evident from the presence of Y/ in (2.14).

The chiral splitting procedure [2, 28, 34] introduces loop momenta to re-express conformal
correlators of the x™-field in terms of an integral over loop momenta whose integrand is a
product of left and right chiral blocks. Each chiral conformal block is complex analytic in
the vertex points on ¥ and in the moduli of ¥. Chiral conformal blocks have a universal
monodromy behavior as the points are moved around one another and/or moved around the
homology cycles of 3. The chiral splitting procedure is a key ingredient in the evaluation of
the genus-two measure and four-point amplitudes in the RNS formulation [3, 10, 16].

The momentum flowing through a simple closed cycle C on ¥ is given by the integral
along C of the space-time translation current 0x™(z) and is dubbed the loop momentum
through C. On a surface of genus h, there are h independent loop momenta, which we shall
denote by (p!)™ with I = 1,--- , h (not to be confused with the spinor field p, of (2.2)). The
choice of their routing is not unique but may be fixed canonically to the cycles 2; given a
choice of canonical homology basis 2A;, B,

1

Im _ & m I=1.--- 2.1
O X S (2.15)

The normalization is fixed to reproduce the momentum flowing through a cylinder.
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The construction of the chiral blocks for the correlators of the field 0x™ and the exponen-

tial e is formulated in terms of a set of effective rules, starting from a generating function

for N-point ™ correlators (see appendix C for a detailed derivation),

J = /Dl’ exp {—i /Eax -0z + ﬁ: (z'kj -x(25) + €5 - 0x(25) + 7 - 0:E(zj)>} (2.16)

Throughout we shall assume that the incoming momenta k; and the polarization vectors ¢;
and 7; are complex-valued and satisfy ka =kj-ej=k;j-n;=0forall j=1,--- N and that
the total momentum Zjvzl k; vanishes. We shall also assume that the coefficients ¢; and
n; are independent of one another so that, at a given point z;, either ¢; or 7; or both may
vanish independently. The functional integral will be understood as a generating function
for correlators which are linear in each ;- 9x(z;) and #j; - 9x(z;) so that terms of quadratic
order and higher in a given ; or n; will never be needed.

It is shown in appendix C that J may be obtained as an integral over loop momenta p7*
of a pairing of chiral conformal blocks,

N
J = 5(21@-)/ dp B(z, 1, ki, ') BGo s — k7, —p1|2) (2.17)
j:l R10A

where the chiral block is given by,
N
B(zia €iy k‘“pI|Q) = BO(ZZ" k“pI|Q) <eXpZ {gj ' (azl'+ + 27TpICU[> + Zk] ’ $+} (Z])>
j=1

N 2
Bo(zi, ki, p'|Q0) = Z(Q2) P exp {iWQUpI p’ + ZQm’pI . l{:j/ w;} (2.18)

j=1 20

Note that the dependence on the base point z; drops out by momentum conservation. The
chiral scalar partition function Z(£2) is holomorphic in €. It may be evaluated using chiral
bosonization [35] and is given explicitly in terms of J-functions for genus two in [13], however
its form will not be needed in this work. The field 27 is an effective chiral scalar field whose
Wick contraction rule is given by,

(@ (2) 2 (w)) = —n"" In E(z, w|Q) (2.19)

Recall that the field 2 is not a conformal primary field, a property which is reflected in
the non-trivial monodromy of the above correlator as z and w are swapped and as they are
moved around non-trivial homology cycles.
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2.2.1 Homology invariance

The chiral field 27(2) and, as a result, the chiral blocks B have non-trivial monodromy as a
point z; is taken around a homology cycle of the surface. The corresponding transformations
are familiar from the chiral splitting procedure [28],

B(Zi + 5ijQ’[J7 €y kUpI‘Q) = 627TipJ.ij(zi7 €y kl7pI|Q>
B(zz + 5ij%Ja €iy k‘“pI|Q) = B(zla €iy kiapj + 5:9 k]|Q) (220)

These monodromy transformations are universal in the sense that they are the same for the
chiral blocks of the bosonic string, the Type II string, and the Heterotic strings. In the RNS
formulation, they hold for each spin structure separately [28].

Alternatively, we may interpret the monodromy relations of (2.20) as an invariance under
a suitable action of the homology group of ¥ on the chiral blocks, to which we shall refer as
“homology invariance” for short. To do so, we consider a representation R of the homology
group H(X,Z) acting on both the vertex points z; and the loop momenta p’, defined by the
following transformations on the chiral block B,
R(Zj7 QlJ) B(ziv Eiy klva‘Q) = 6_27”'pJ.kj B(ZZ + 5ijQ’[J7 Eiy k“pI‘Q)
R(Zja %J) B(ZZ> Eiy k“pI|Q) = B(ZZ + 5ij%Ja €i, kiapj - 5§ k]|Q) (221)
These transformations mutually commute for arbitrary pairs of (j, J), in agreement with the

Abelian nature of the homology group. The transformation laws of (2.20) are then equivalent
to the invariance of B under the action of R,

R(Zj, Q[J)B = R(Zj, %J)B =B (222)

The full generating function J of (2.16), obtained by assembling the factors of left and
right chirality is, of course, invariant under these transformations. Upon integration over
loop momenta the resulting correlator is single-valued in the vertex points z; thanks to the
translation invariance of the loop momentum integration measure dp and its domain R

2.2.2 Summary of the chiral splitting procedure
The chiral splitting procedure may be summarized by the following prescriptions,
1. Carrying out the following replacements,
ek etk Ox™(2) — 0z (2) + 27 (p")"wi(2) (2.23)
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2. Wick contracting the chiral field 27 using (2.19);
3. Including the factor By(z;, ki, p!|Q) defined in (2.18);
4. Integrating over all loop momenta of the paired chiral blocks in (2.17).

Henceforth, we shall assume that these effective rules are used whenever the fields 0z™
or e?** occur. For example, to construct a chiral block involving the composite field II™

defined in (2.4) we shall perform the following substitution,’
1
o™ — 0z + 597’”89 + 27 (p")™w; (2.24)

and then carry out the Wick contractions of the field 27} using (2.19). To simplify notations
until the evaluation of the chiral block is needed, however, we shall retain the notations 0z™

ik-x

and €™ at intermediate stages of the evaluations. Henceforth the dependence on moduli

through Q will be understood but no longer exhibited.

2.3 BRST transformations

The BRST charge @) of the non-minimal pure spinor formalism has ghost number 1 and is
given by [7],

Q= f (A\*dy + w7, (2.25)

The operator product expansion of the worldsheet fields, given in appendix D, may be used
to evaluate their BRST transformation, and we have,’

Q2™ = Lay™d QA =0

Qo =\ QX =14

Qdo = —(A")ally, Qro=0
QII™ = M0 QNpn = =3 (dYmn) (2.26)

With the help of the pure spinor constraints (2.1) it may be verified that the relation,

Q*=0 (2.27)

4Note that the field 9™ also enters in the relation between the fields p,, and d,, in (2.4). Since throughout
we will work exclusively in terms of the field d,, this occurrence of 0x™ will be immaterial.

SThroughout, we shall use standard CFT notation and write @ f instead of [Q, f] or {Q, f} for the BRST
transformation of a bosonic or fermionic field f, respectively.
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is properly realized on all fields. The BRST transformations of w,, w®, and s* are not invari-
ant under the gauge transformations (2.6) and will not be needed, other than in the gauge
invariant combination N,,,. Throughout, the field p, will be traded for the supersymmetry
current d,, which is simply related to it by a shift given in (2.4). A convenient unified
expression may be derived from (2.26) for the BRST transformation of any local function
f(z,0), which depends only on x and 6 but not on their worldsheet derivatives,

Qf(x,0) = A*D, f(x,0) (2.28)
where D,, is the super derivative defined by,
0 1 0
Do = g + 300" G {Da; D} = YajsOm (2.29)

where we use the standard notation 0, = 0/0x™.

2.4 Vertex operators

Vertex operators for massless physical states are constructed from the plane wave solutions
to the linearized 10-dimensional super-Yang-Mills and supergravity equations. The spinor
part of the vertex operators is chirally split as it stands, and the chiral splitting for the
2™ field will be carried out in the subsequent section. The chiral vertex operators involve
chiral spinor fields and the 10-dimensional super Yang-Mills multiplet and are governed by
the linearized 10-dimensional super Yang-Mills equations. The fields of the super-multiplet
(A, A, W, F,,,,) satisfy the following equations,®

DaAB + DBAa = ’y(%Am DaWB = i(’ymn)aﬁan
DaAm - amAon = (’}/m)aﬁwﬁ Daan = (am’}/n - an’}/m)aBWB (230)

For later use, we record the field equation and Bianchi identity for W<,
"0, W =0 D,W* =0 (2.31)

The fields A,,, W<, and F},,, may be expressed in terms of the field A, which has odd grading.
A plane wave solution with momentum k is given in the gauge A, = 0 by [37, 38, 39],

Aa(w,0) = (7 ()0 = 07" (b + -+ ) €™ (2.32)

6The field equations of linearized 10-dimensional super Yang-Mills theory [36] may be expressed in terms
of the covariant derivatives D, = Do+ A, and D,,, = O, + A, subject to gauge transformations A, = D 2,
6Am = O, the Jacobi identities, and the superspace torsion constraint Fog = {Da,Dg} — 745Dm = 0.
The field strengths Fu., = [Da, D] and Fpy, = 0m Ay, — 0 Ay, satisty (2.30) with Fam = (Ym)agW?.
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where the ellipses stand for terms with higher powers of . The parameters € and x are the
polarization vector and spinor, respectively. For massless external states we have k? = 0 and
k- = k-vx = 0. The dependence of the SYM fields on k, e, x will be suppressed throughout.

Vertex operators for physical massless states are built out of chiral vertex operators
times their conjugates. A chiral vertex operator is a (1,0) form on the worldsheet which is
BRST invariant up to an exact differential. To construct such vertex operators, we begin by
obtaining the BRST variations of the linearized SYM fields,

Q A, = NDsA,
Qwa _ Z()‘ mn)aan
= (M) + N0, A5
Qan (Mn(? W) = (Am0, W) (2.33)

Some immediate consequences for composites, to be of later use, are as follows,

QM"W)=0
Q(M™W) = =5 (M™PTN) Fyy
Q(MY™TN) Frp = 0 (2.34)

The un-integrated vertex operator V' is a worldsheet (0,0) form of ghost number 1 given by,
V =X"4,(x,0) (2.35)
It satisfies QV = 0 in view of the pure spinor constraint on \. The integrated vertex operator
U is a worldsheet (1,0)-form of ghost number 0 which is built out of the basic (1, 0)-forms
00%, 11", d,, N, times the corresponding linearized on-shell SYM field and is given by,
U =00"As(z,0) + II™ Ay (3, 0) + daW* (2, 0) + 2Ny (2, 0) (2.36)
Its BRST variation is a total derivative of the un-integrated vertex V/,

QU = oV (2.37)

so that the integrals of UU over a closed worldsheet and U over a worldsheet boundary are
BRST invariant.
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2.5 The b-ghost

The RNS superstring naturally has a (b, ¢) anti-commuting ghost system which results from
gauge fixing worldsheet diffecomorphism symmetry, and a (3,v) commuting ghost system
resulting from gauge fixing worldsheet local supersymmetry. The existence of an un-gauged-
fixed formulation for the pure spinor superstring with a canonical (b,c) ghost system is
currently still under investigation [40, 41]. The non-minimal formulation of the pure spinor
string was developed to produce a composite b-ghost [7], without requiring a c-ghost com-
panion. It is this formulation that we shall use here as a guide for the construction of the
amplitude for five external states.

The key principle for the construction of the b-ghost is that it must be an anti-commuting
Lorentz scalar, and a (2,0)-form on the worldsheet ¥ whose BRST transform is the chiral
stress tensor Ty, which was given in (2.5),

Qb= Tios (2.38)

Since ) and T}, have ghost number 1 and 0, respectively, b must have ghost number —1.
There is no canonical gauge-invariant field satisfying these conditions. However, there is a
ghost number 0 composite spinor G* given by,

Go = i, (ymaye —

1 mn a 1 a 1 2 no
5 ~ N (7" 00) 100" — 20% (2.39)

4

whose BRST transform is proportional to the stress tensor,
QG = N (2.40)

The ghost field A* of the non-minimal pure spinor string allows one to formally solve (2.38)
for the b-ghost using the descent equations of BRST cohomology. The resulting b-ghost field
is unique, up to BRST closed contributions, and given by [7],

Ay G N (Ay™mPr)
(AN)  192(AN)2

(rmnpr) (rYmnpr)
—— = (MNP + ——=L (M r)N"" N, 241

b= s*ONa + (@) + 248,511,

The solution is formal because the denominators in the holomorphic field (A\) produce
singularities. A variety of regulators have been proposed in [42, 43]. For the two-loop
amplitude with five external states, positive powers of (A)) arise from the measure of the
ghost fields, thereby regularizing the singularities in the b-ghost (see section 3.3 below and
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[7] for more details). The resulting expressions were used to evaluate the two-loop four-point
amplitude [24] as well as the leading low energy limits of the two-loop five-amplitude [25]
and the three-loop four-point amplitude [26].
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3 Basics of genus-two amplitudes

In this section, we shall review and further develop those computations in the non-minimal
pure spinor formalism on genus-two Riemann surfaces that are needed for our construction
of the genus-two chiral amplitude with five external states. We re-iterate the strategy of our
construction, as already outlined in the Introduction: we shall combine ingredients from the
BRST cohomology of the pure spinor formulation and from the chiral splitting procedure
to conjecture the genus-two chiral amplitude for five external states. We shall perform
computations in the pure spinor formulation only to the extent that their outcome guides
us towards a compelling structure of the amplitude, which will turn out to be unique.

The final formula of the chiral amplitude will be derived in section 4, and different
representations will be explored in section 5. The physical amplitudes for Type II and
Heterotic strings, obtained by assembling the contributions from the left and right moving
chiral parts and integrating over loop momenta, will be presented in section 6. Along the
way, the amplitude for four external states will be re-derived in subsection 3.4.

3.1 Genus-two correlators in the pure spinor formalism

The ingredients needed to evaluate the correlators on genus-two Riemann surfaces that
arise in the non-minimal pure spinor formalism are the partition functions, the zero mode
counting, and the correlators of the non-zero mode parts of the canonical worldsheet fields.
A regulator of the ghost zero mode integration is required to resolve indeterminacy issues in
the pure spinor formulation. The discussion will be geared towards deriving the main target
of this work at the end of section 4: the chiral genus-two amplitude for five external massless
states, formulated as an integral over pure spinor superspace zero modes of a function of the
external kinematics and the zero modes of the spinor variables \* and 8%. This formulation
economically contains the amplitudes with five external states belonging to the gauge or
supergravity multiplets which may be either bosons or fermions.

3.1.1 Partition functions

All canonical chiral spinor fields in the non-minimal pure spinor formalism occur in conjugate
pairs of a (1,0)-form on ¥ and a (0,0)-form. Since the central charges of the spinor fields
along with that of the chiral boson field z, add up to zero, the holomorphic anomaly cancels,
and each field contributes an effective chiral partition function. For the chiral bosons 27, as
derived from chiral splitting, this contribution is Z(£2)~!° while for the pair of anti-commuting
fields (pqa, 0%) (or equivalently the pair (d,, %)) the contribution is Z(£2)32.
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The commuting pair of fields (A%, w,) is subject to the pure spinor constraint (2.1) and
gauge-invariance (2.6) reducing their effective number of spinor degrees of freedom from 16
to 11 for both fields and producing a partition function Z(Q)~2?2. Therefore, in combination
with the contribution Z(€)~1°"32 from the matter variables, the combined partition function
for the minimal pure spinor string is 1 [6].

Finally, the pair of commuting fields (Ao, @®) and anti-commuting fields (r,, %) are sub-
ject to the pure spinor constraints (2.1) and gauge-invariances (2.6) reducing their effective
number of spinor degrees of freedom from 16 to 11 for each field. Hence, the fields that are
specific to the non-minimal pure spinor formalism produce a combined partition function
of 1, consistent with the interpretation of this system as a topological field theory [7]".

3.1.2 Zero modes of (1,0)-form spinor fields

In this subsection, we shall discuss the zero modes of meromorphic (1, 0)-form spinor fields on
a compact worldsheet ¥ of genus h. It will be convenient to use the fields dy, Ny, J, Nyun, J
instead of p,, w,, w* as discussed at the end of subsection 2.1.1. These meromorphic (1, 0)-
form fields, on world-sheets of genus h > 1, have zero modes which are linear combinations of
the holomorphic (1, 0)-forms w; whose definition and properties are reviewed in appendix B.
An explicit parametrization is obtained as follows,

do(2) = da(2) + dL wi(2) ]2 d, =0 (3.1)

and similarly for the fields Ny, J, Ny, J, whose zero-mode coefficients will be denoted by
NL gl NI

mn? mn?

JT, respectively. The number of independent zero modes of these fields on a
compact surface of genus h is as follows,

16 x h zero modes d,,
10 x h zero modes Nonins Ny Sem (3.2)
h zero modes J, J, S

The zero modes of dy, Sy, S are anti-commuting and those of Ny, Ny, J, J commuting.

"Due to the pure spinor constraints, the ghost fields are actually not free fields on ¥.. However, decom-
position of the SO(10) spinors under the subgroup U(5) allows one to change variables to a free field plus a
(8,7) system both of which may be handled with standard methods [5].
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3.1.3 Zero modes of (0,0)-form spinor fields and pure spinor superspace

On a surface ¥ of arbitrary genus, the (0, 0)-form fields %, A*, A, and r,, have a single zero
mode for each value of a. Thus, the field 6% may be decomposed as follows,

0°(2) = 0°(2) + 63 (3.3)

where 6 is independent of z, and 9“(z) represents the non-zero mode contributions. The
fields A, A\, and r, admit analogous decompositions. The integration over the zero modes
of the fields will guarantee that full correlators are independent of the prescription used to
define %(z) from 6% (z), for example by requiring that the integral of #%(z) over & vanish.

An ubiquitous ingredient in the pure spinor formulation is the following A-dependent
tensor with ghost number 3 (see section 3.2 for its further use),

Lo -as ()‘) = ()"Vm)m ()"Vn)az ()"Vp)aa ('anp)aws (3'4)

which is manifestly anti-symmetric in aq, as, a3 as well as in ay, as. Actually, T is totally anti-
symmetric in all five spinor indices as may be established by showing that the contractions
of T with (Va)ayas and (Vabede)ayas vanish with the help of (A.4), (A.5), and (A.10). The
tensor T projects the anti-symmetric tensor product of five spinors in the 16 of SO(10) onto
the symmetric y-traceless tensor product of three spinors A in the 16 of SO(10).

By spacetime supersymmetry and BRST-cohomology arguments, the zero-mode integrals
of the fields 8% and A\* only receive contributions from the cohomology at ghost number 3,
specifically from the combination T00066 [5], or more explicitly,®

<()\,me)()\,yne)()\,ype)(e,ymnpg»o =1 (3.5)

The above normalization (sometimes chosen to be 2880 in the literature) affects the full chiral
amplitude only by an overall multiplicative factor, which is not being sought after here, and

may thus be chosen at will without loss of generality. The prescription (3.5) annihilates
BRST-exact superfields,

(Q(+))o=0 (3.6)

a property which guarantees space-time gauge-invariance and supersymmetry of the expec-
tation value of BRST-closed operators and allows us to carry out simplifications by adding
(Q-exact terms.

8Throughout, the integration over the zero mode part of the fields in the expectation value of an arbitrary
operator O will be denoted by (O)g. It will be understood that the fields which enter into O are to be
evaluated on their zero-mode part only.
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The goal of this paper is to derive the genus-two chiral amplitude for five external massless
states from the correlators of five BRST-closed vertex operators. More specifically, the
amplitude will be presented as an integral over the zero modes of ¢ and A* of a BRST-
closed integrand in pure spinor superspace that contains all the external kinematic data of
five arbitrary states in the supergravity multiplet [44]. BRST-exact contributions may be
discarded to simplify the form of the amplitude. As we shall see in section 4.4, the quest for
BRST-closed integrands will lead us to the unique construction of the genus-two five-point
amplitude.

3.1.4 The zero-mode regulator

The above ingredients for the evaluation of higher-genus correlators in the non-minimal pure
spinor formalism usually lead to an indeterminacy in the integrals over the ghost zero modes
of the type 0/0. On the one hand, the singularities that arise when (A\) vanishes in the
expression (2.41) for the b-ghost, or tends to oo, cause the functional integrals over bosonic
ghosts to diverge. On the other hand, the fermionic zero modes would cause the functional
integrals to vanish for sufficiently low genus and/or small number of external states, as is
the case for instance in the two-loop five-point amplitude under investigation.

The vanishing of the fermion zero mode integrations may be resolved by the insertion of
the following “regulator” which was introduced in [7],

E

Ny = exp {—(m — o)+ (w'w! + sfdf)} (3.7)

~
Il

1

where X\, \, r, § are restricted to their zero mode contributions, as explained in footnote 8. The
argument of the exponential has been engineered to be BRST-exact, so that N}, = 1+Q(- - -)
does not have any effect in the cohomology as long as the functional integrals converge.” It
has been argued in [7] that for genus two no singularities arise when (A\) — 0 thanks to the
A, A-dependence of the measure, and the insertion of the regulator N5 leads to convergent
zero-mode integrals. Note that the summation symbol over the index I has been kept
explicitly because both factors in the summand have upper I-indices, for which no natural
modular-invariant pairing exists.

9For the same reason, the usage of gauge-variant quantities in the exponential of (3.7) instead of the
original gauge-invariant formulation in [7] has no effect in the amplitudes [45].
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3.1.5 Wick contractions of non-zero-mode fields

The Wick contractions for the vector field 2™ were already discussed in section 2.2 on the
chiral splitting procedure. The Wick contractions of the non zero-mode part of the field §¢
with itself vanishes,

0°(2)0°(y) ~ 0 (3.8)

while the Wick contractions of the non-zero mode part of the (1,0)-form spinor fields gen-
erally produce meromorphic (1,0) forms. For example, the Wick contractions of the fields
Pa(2), do(2) and I, = II,,, — 27p! w; from (3.1) and (2.24) are given as follows,

Pal2) 07 (y) ~ 9. In E(z,y) 02
fZa(Z) f(2(y),0(y)) ~ 0. .n E(z,y) Do f(2(y),0(y)) (3.9)
IL,.(2) f(2(y),0(y)) ~ —0. I E(2,y) O f (2(y), 0(y))

where f(x,0) is an arbitrary function which depends on z and 6, but not on the worldsheet
derivatives of these fields. The meromorphic differential 0, In E(z, w) fails to be single-valued
in its variables by itself, but the associated integrations over the zero modes of these fields
will render the full correlators, into which they are inserted, properly single-valued. This
is familiar for the case of the correlators of the fields 027 with 27} thanks to momentum
conservation, but also holds true for the Wick contractions of field p, with <.

As should be expected, in the short distance limit z — y, the Wick contractions of (3.9)
reproduce the OPE singularities of the corresponding fields given in (D.1) and (D.2). While
for genus zero, the knowledge of the OPE suffices to evaluate any conformal correlator, this
is no longer true for higher genus. For the fields of the pure spinor string, the missing
information is provided by the contributions from the zero modes of the (1,0)-form fields.
One manifestation of this is that for genus two and above, one has to distinguish the forms
0,In E(z,y)w;(y) from —0, In E(z, y)w;(z), whose short-distance behaviors agree and which
coincide for the sphere (genus zero) and for the torus (genus one). Fortunately, we shall
not need the detailed evaluation of the full correlator for the genus-two five-point amplitude
as in [25], since it will suffice to extract all relevant information from the singularities at
coinciding vertex points (see section 4.5).
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3.1.6 The chiral correlator in pure spinor superspace

The chiral amplitude for N massless states at genus two is given by the correlator,

Fvy = <N2 [Tk ) HUz’(zi)> (Ha, ) = /Euab (3.10)

a=1 i=1

provided this correlator is convergent. The Beltrami differentials are denoted by pu, for
a =1,2,3, and will be specified later with the help of (3.20). The bracket notation (---) in
(3.10) is used for the complete functional integral for the zero modes and non-zero modes
of all the fields in the worldsheet action (2.2). The subscript of (...)q in (3.5), by contrast,
refers to the zero-mode integrals for the (0,0)-form fields A* and #*. The integrations over
the positions z; and the loop momenta p! will be carried out after the chiral blocks and
their conjugates have been paired.

The chiral correlator is evaluated by integrating over the chiral spinor fields and over the
effective chiral scalar field 2’7 of chiral splitting, considered at fixed loop momenta p7*. Since
each of the vertex operators include a plane wave factor, the correlator of the effective chiral
scalar field 27! produces the chiral Koba-Nielsen factor Z(y) given by (cf. (2.18)),

N . N
Iiwy :eXp{MQUpI -p‘]+22m'pl-ki/ wr _ZSU lnE(zi,zj)} (3.11)
i=1 ?

0 i<j
The dimensionless kinematic invariants s;; are given by,

O/

0 (ki + kj)° = —k; - kj (3.12)

Sij =

The second equality arises from our choice o/ = 2 and the mass-shell condition k? = ka =0.

Since the Koba-Nielsen factor (3.11) is an ubiquitous constituent of the chiral amplitude
(3.10), the main goal of this work will be to evaluate the remaining factor Ky,

Fivy = Ly (K)o (3.13)

In order to obtain an amplitude representation in pure spinor superspace and keep any
combination of external bosons and fermions accessible, the zero-mode integral (3.5) is left
to be performed. The desired superspace expression K(ny will be referred to as a chiral
correlator and encodes the dependence on the polarization vectors and spinors of bosons and
fermions, respectively, in a supersymmetric manner. Since the factor Z yy already transforms
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according to (2.21) under homology shifts, the reduced amplitude K(yy must be strictly
invariant under these shifts, without any phase factor.

In fact, chiral correlators Ky fall into equivalence classes in two respects: First, -exact
terms do not contribute within the bracket (. ..)o, and second, total derivatives 0., (Z(n)Kn))
integrate to zero after assembling the overall amplitudes. Hence, it suffices to construct a
particularly convenient representative of K(y) as we will do in the two-loop five-point case.

3.2 Zero mode counting

The large number of zero modes of the spinor fields greatly simplifies the calculations and
makes the evaluation of the correlator (3.10) with a small number N of external states
possible. We begin by observing that the vertex operators U;(z;) do not involve the fields
Ao, WY, 8%, T4. Since the b-ghost is also independent of the field @® the zero modes of w®
must be paired with those of w, via the regulator N3 of (3.7). Equivalently, the zero modes
of N,,, and J5 must be paired with the zero modes of N,,, and J,. This leaves no room
for zero modes of the fields N,,, to occur either in the vertex operators or in the b-ghost
insertions.

Next, we concentrate on the zero modes of the fields s* and d,, which add up to 22 and
32 zero modes, respectively. The vertex operators U; do not involve the field s and the
b-ghost involves s only through its first term in (2.41). Let us denote by o the number of
zero modes of the field s* absorbed by the 3 b-ghosts. Each b-ghost may absorb at most 1
zero mode of 5%, so that 0 < o < 3. The regulator N, will absorb exactly as many s zero
modes as it absorbs d,, zero modes. Therefore, the number of d, zero modes absorbed by the
integration over the s* zero modes, the regulator, and the s“-dependent part of the b-ghosts
equals 22 — o.

Further d, zero modes may be absorbed by the remaining terms in the b-ghost, but
this number is bounded from above by 6 — 20. Tallying all contributions, we conclude
that the maximal number of d, zero modes absorbed by the measure and the b-ghosts is
22 — 046 — 20 = 28 — 30, leaving at least 4 + 30 zero modes to be absorbed by the vertex
operators. Since each vertex operator is at most linear in d,, any amplitude whose number
of external states is 6 or fewer must have o = 0, leaving at least 4 zero modes of the d,, field
to be absorbed by the vertex operators U;. For amplitudes with 4 or 5 external massless
states of interest in this paper, we thus have 0 = 0, and the integration over the zero modes
of s* produces the following measure for the integration over the zero modes of the field
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11 / [dd(e-%-d" (3.14)

Here the combination (g - T - d’) for each I is given by,

(e-T-d") =0T, ad - -d (3.15)
where the A\-dependent tensor T was introduced in (3.4), and [d d!] stands for the integration
measure for the zero modes d’. Since (- - d’) involves 11 zero modes for each value of the
index I, a non-vanishing integral requires a further integrand with five d’ factors and, for a
given value of I, we have,

/ [dd'](c-T-d)dl d dl d. d\ = cTo masamas

QT a3 Ty s

/ [dd)(e - T+ d) dy, di, dg, (d'y™Pd") = 96Xy, (W) az (M) ag (3.16)
where on the right side of the second equation the indices mnp are anti-symmetrized. The
normalization ¢ can be found in [26] but is of no concern to us here, as the absolute normal-
ization of the amplitude may be fixed by other methods such as unitarity.

3.3 Zero modes absorbed by the b-ghosts

The non-vanishing of the genus-two amplitude for N massless states given in (3.10) requires
that all the 32 zero modes d’, of the field d,(z) be absorbed by a conspiracy of the b-ghost
and the vertex operators. As shown in the previous subsection, for N < 5, the sO\ term of
the b-ghost does not contribute and the vertex operators can absorb at most 5 d-zero modes.
As a result, the b-ghosts must contribute either 5 or 6 d-zero modes, which can arise only
from the terms bilinear in d or the term linear in d, in the composite spinor G defined by
(2.39). (Note that the term linear in d and linear in the field N,,, in (2.41) involves a zero
mode of the field N,,,, but this cannot contribute as argued in the preceding subsection).
In summary, the effective ghost field for N < 5 takes the form,

(\y™d) (M)

b= 2000 " 192(AN)2

(dYmnpd) + - - - (3.17)
where the ellipses stand for terms that do not contribute for N < 5.
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Parametrizing the insertion points of the b-ghosts by the variables v, for a = 1,2, 3, we
use the fact that only the zero modes of the fields \, \, r, d contribute to the b-ghost insertions
to render the v, dependence of the b-ghost explicit,

b(ve) = Z M wr(ve) L (ve) + Z % wi(vg)wy(ve) + - -+ (3.18)

where we have introduced the following convenient shorthand,
(Ard'd”) = (A1) (d"ynpd?) (3.19)

We shall choose a system of local complex coordinates, 7, with a = 1,2, 3, on moduli space
and associated Beltrami differentials p, so that,

o0
07:;] :/E,uawwa (3.20)

The chiral volume form on moduli space is given by,

081 083 099
d*Q = dQ ds? dQlys = dr, N d dr, 21
11 A alflip A dfdy Z ar. o o T A dy A d, (3.21)

a,b,c

Non-vanishing contributions from the b-ghost insertions therefore require specific arrange-
ments of the d-zero modes. Contributions from the b-ghosts with 6 and 5 d-zero modes,
respectively, are given by the arrangements,

6 zero modes (Ard'd") (Ard'd?)(\rd*d?)

5 zero modes  (Ard'd') (2(5\7md2)(5\rd1d2) - (Mmdl)(ww?))

Ord?d?) (2(5\7md1)(5\rd1d2) . (Mmcﬁ)(wwl)) (3.22)

The contribution for 6 zero modes directly produces the measure on moduli space, as the
coefficient of this term is a holomorphic quadratic differential in each insertion point of the
b-ghost. The contribution with 5 zero modes is contracted with the (1,0)-form field I1,,(v,)
and, in view of the results of the chiral splitting procedure (2.24), receives two different
types of contributions. The term linear in loop momentum p’ provides a holomorphic (1,0)
form, so that its contribution directly generates the measure on moduli space. The other
two terms of II,, exhibited in (2.24) are generally meromorphic rather than holomorphic;
it is unclear at present how to evaluate their contribution directly, but we shall infer it by
imposing various consistency conditions.
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3.4 The chiral amplitude for four external states

For four external states, the above counting shows that each b-ghost must contribute exactly
2 d-zero modes, resulting in the pattern of the first line of (3.22), and each vertex must
contribute exactly 1 d-zero mode. Omitting the overall A\-dependent normalization, the
structure of the remaining integration is as follows,

'S

H / [dd")(e - T - d")(Ard'd")(Ard'd®) (Ard®d®) T [ (dW. (3.23)

=1

where only the zero modes of the field d contribute in its pairing against the SYM fields W},

2
) — Z Ywr(z) (3.24)

I=1
By construction, the amplitude is Bose symmetric in the indices labeling the external states.

All dependence on the d-zero modes has now been made explicit, and its integral may be
carried out using (3.16). The contributions vanish unless two of the four factors (dW;) carry
the zero mode d* while the other two carry the zero mode d?. To evaluate these contributions
we shall single out one specific assignment and then sum over all permutations. Carrying
out the integral over d-zero modes, we find [24],

I1 / dd")(e - % - dD)(wrd d") wrd d?) (rd?d?) (d W) (d W) (d2Ws ) (d2TV)

= (Mabepe ) (A7) () (A7) My W) (Mg W) (MW ) (A W) (3.25)

Carrying out the integration over the zero mode of the field r converts each r into a super
derivative acting on the vertex operators, and we obtain,

(MabeptA) (MY D) (Ay ™ D) (M D) (M W1 ) (A9 W) (MgW3) (MysWa) - (3.26)

Given the choice of the zero mode assignments made here, this expression is manifestly
invariant under the permutations 1 <+ 2 and 3 <> 4 as well as under (1,2) < (3,4).

Applying a single super derivative to a field W, produces the field strength F;, while
applying more than one super derivative to the same field W, introduces bosonic derivatives
k;W; and k;F;. Still, the latter contributions are BRST equivalent to the terms of schematic
form WFFF from applying each super derivative to a single one of the W fields. See
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appendix A of [24] for further details. More specifically, carrying out the integration over A
produces a sum of four distinct terms,

1
Tio34 = 1 (f1,2\3;4 + t12143 + t3 412 + f3,4|2;1) (3.27)
where each term is given by,
t1203:4 = (ANmnpgr A T FY F5 ™ (A W) (3.28)

The manifest Symmetry properties are t1’2|3;4 = t2’1|3;4 and T1’2|3’4 = T2’1|3’4 = T3’4|1’2 Whﬂe,
as a consequence of (A.12), we also have the following cyclic symmetries,

t123:4 + to3pa + 3124 =0
Ti934 + 11342 + 14323 =0 (3.29)

To verify BRST closure of t, we use the results of (2.34) that (AysWy) and (ApnpgrA) F7™" F5?
are BRST closed, so that it remains only to apply @) to F3 which gives,

Q 231 = (Nnnpar VET FS (00 W) = (W 0'W3) ) W) =0 (3.30)

The contribution from the first and second terms in the parentheses vanishes in view of (A.7)
for pure spinors and (A.10), respectively. As a result, t; 93,4 and T} o34 are BRST closed.

The worldsheet dependence of the amplitude for four external states involves the chiral
Koba-Nielsen factor (3.11), multiplied by a combination of holomorphic (1,0)-forms. We
define the bi-holomorphic (1, 0)-form,

A(z1, 29) = wi(21)wa(z2) — walz1)wi(22) (3.31)

Recall that, following our notations and conventions spelled out in footnote 2, w;(z) is the
coefficient function of the (1,0)-form w;(z)dz in local complex coordinates, and A(z, z9) is
similarly the coefficient function of the differential A(z1, z5)dz; Adzy. With these conventions,
A(z1, z9) is manifestly antisymmetric in 21, 22, and satisfies the following cyclic permutation
sum identities, "’

wi(1)A(2,3) +wr(2)A(3,1) + wi (3)A(L, 2)
A(1,2)A(3,4) + AL, 3)A(4,2) + A1, 4)A(2, 3)

0
0

(3.32)

10Henceforth, when no confusion is expected to arise, we shall denote the points z; as arguments of
functions and forms, simply by their label ¢, and the derivative with respect to z; by 0;, so that for example
wr (@) = wr(z), A®, j) = Az, 25), and 9; In E(4, j) = 0,, In E(z;, z;).
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The chiral amplitude is given by [22],
IC(4) — T172‘374 A(l, B)A(Q, 4) —|— T173|274 A(l, 2)A(3, 4) (333)

Symmetries under the permutations (2 <> 3) and (1 <> 4) are manifest from the above
expression, while symmetry under the permutation (1 <+ 2) may be established using both
the symmetries of 7" in (3.29) and of A in (3.32). After performing the zero-mode integral
(3.5) for A and 6, the bosonic components of (K)o were shown in [23] to reproduce the
result of the RNS computation [16]. A proof of this equivalence using pure spinor superspace
cohomology techniques can be found in [46].
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4 Genus-two amplitudes for five massless states

In this section, we shall obtain the main result of this paper by carrying out the construction
of the genus-two chiral amplitude for five massless states. To do so, we use chiral splitting,
zero mode counting and BRST cohomology of the pure spinor formulation.

4.1 Structure of the chiral amplitude for five external states

The starting point is the genus-two chiral amplitude for five external massless states, given
by the correlator of (3.10) and (3.13) for the case N = 5,

Fi5) = L) (Ks))o = <Nz 110 T Ui(zz’)> (4.1)

a=1 i=1

The vertex operators U; are given by,
1
Ui =00%A;(x,0) + 11, A7 (,0) + d WV (x,0) + §NmnFim"(x, 0) (4.2)

where each superfield multiplet (A;,, A7, W, F/™™) encodes the polarization vector and
spinor of the state ¢, as made explicit in (2.32). Following the pattern for the distribu-
tion of d-zero modes for five external states of (3.22) derived in subsection 3.3, the b-ghosts
can absorb either five or six d-zero modes, leaving the vertex operators to absorb either five
or four d-zero modes, respectively. We shall now discuss each part in turn.

4.1.1 Four d-zero modes and one loop momentum from vertex operators

The contribution from the b-ghost that contains six d-zero modes is of the form,

ﬁ(b, ta) — (Ard'd")(\rd*d?)(Ard*d?) (4.3)

a=1

so that the product of five vertex operators needs to supply four d zero modes. The corre-
sponding contribution to K is given by,

<(5\7D)3(Ul(dlwg)(d1W3)(d2W4)(d2W5)>> + 14 permutations (4.4)

where we recall that D stands for the super derivative in (2.29) and we have carried out the
usual integration over r which leads to (Ayr) — (AyD). The permutations consist of all 120
permutations modulo those which swap 2 <+ 3 as well as those which swap 4 <> 5 and finally
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those which swap the pair (2,3) <> (4,5), in view of the symmetries of the distribution of d
zero modes.

We start by considering the contributions to (4.4) that are linear in loop momentum:
Decomposing the operator II,, in U; according to the rules of chiral splitting in (2.24), we
find a loop-momentum dependent term

2mp! wi(z) <(5\7D)3 (A’{”(dIWQ)(d1W3)(d2W4)(d2W5))> + 14 permutations  (4.5)

and leave the leftover contributions 927 (z1) + 3(07™90)(z1) from (2.24) for the next section.

Applying the three super derivatives D in (4.5) produces two types of terms. Applying
all three D to W; vertex operators produces terms of the form A7* times the building block
of the four-point amplitude T o34 plus permutations thereof. However, in addition to these
contributions, which are schematically of the form AFF FW  terms involving DA, and terms
in which several D act on the same W, are also produced. At four points, different partitions
of the super derivatives to the superfields WWWW turn out to be BRST equivalent [24]. We
expect that also at five points, the chiral correlator admits a cohomology representative where
the contributions of (4.5) are captured by permutations of A7"T5345. They will produce a
contribution to the “vector block”, as we will see in section 4.2. An explicit evaluation of
(4.5) may be found in section 5 of [25].

4.1.2 Four d-zero modes and one Wick contraction from vertex operators

It remains to carry out the Wick contractions of U; with the fields W;. Using the vanishing of
the Wick contractions of the non-zero modes of 8 given in (3.8), we see that the contraction
of the term proportional to 90 on the right side of U; in (4.2) with the remaining W;
operators vanishes identically, so that this term in U; may be omitted. The contribution of
the zero mode of N,,, in U; similarly cancels as a factor of N,,, would be needed to give a
non-zero contribution. The Wick contractions of the non-zero mode of N,,, with the other
fields similarly cancel. The remaining contribution is thus given by [25],

(OD)Y (T AT (,0) + daWV7 (2, 0) ) (2)(d Wa) (d Wa) (W) (dW3))  (4.6)

where IT(2;) = Oz (z1) + (67™00)(21) is obtained by removing the loop momentum from
the chiral-splitting prescription in (2.24). Wick contractions of I give rise to contributions
linear in external momenta which arise from four vertex operators of the form (dWW;), two of
which carry a d' zero mode with the other two carrying a d? zero mode.

ﬁm(Zl)VViB(ZZ'> ~ —1821 In E(Zl, ZZ)]{?ZmVVZB (47)
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Finally, the Wick contractions of cZa(zl) with Wf for i = 2,3,4,5 is given by the last formula
of (3.9), and in this case simplifies as follows,

N 1
do(2))WF(2) ~ 0., In E(21, 2) D W! = Z(ymn)aﬁFimnazl In E(z, 2) (4.8)

The two contributions (4.7) and (4.8) will produce terms in the “scalar block”, as we will
see 1n section 4.5.2.

4.1.3 Contributions with five d-zero modes from vertex operators

The contribution from the b-ghost that contains five d-zero modes is of the form,

3
[, 1) = Crd?a®)1,, (2(5\7md1)(5\rd1d2) - (S\dez)(S\rdldl)> (4.9)
a=1
plus the same term with d' and d? zero modes swapped. As a result, the product of the
vertex operators needs to supply five d zero modes, more specifically three d' zero modes
and two d? zero modes for the term written down above. The corresponding contribution of
the above term to K is given by [25],

(Ta(dd?) (200"d") (d'yd?) = (") ("))
X (MD)%lel)(dlwg)(dlwg)(fm)(d2W5>> (4.10)

plus the same contribution with the zero modes d' and d? swapped. Expanding II,, as in
(2.24), evaluated this time at one of the b-ghost insertions, produces terms linear in loop
momenta and terms which are linear in external momenta. The terms linear in loop momenta
are accompanied by a holomorphic (1, 0)-form at the b-ghost insertion point and will directly
lead to the measure on moduli space. Terms linear in external momenta will not be computed
directly but rather inferred by consistency.

For the contributions linear in loop momenta we construct an expression of the schematic
form FFWWW from cohomology arguments in the next section: Carrying out the integra-
tion over d-zero modes and r-zero modes in (4.10), we see that we now have two super
derivatives acting on the vertex operators (in contrast with the contribution with four d
zero modes from the vertex operators, where we had three super derivatives). When the
super derivatives act on two different vertex operators, the respective superfields W; will be
converted to Fj, leaving expressions of the schematic form FFWWW . Contributions of the
form WWWW D?*W are expected to be BRST equivalent to those of the form FFWWW
by analogy with the fate of the four-point contributions D3(WWWW) [24].
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4.2 The vector block for the amplitude of five external states

Summarizing the structural information gathered in the previous subsection, we have two
distinct types of contributions to the chiral amplitude for five external states. The first
contribution is linear in the loop momenta and will be referred to as the vector block, while
the second contribution is independent of loop momenta and will be referred to as the scalar
block. Our strategy will be to determine first the vector block, in part from information
obtained through its structural analysis in the previous section, and in part from enforcing
BRST invariance. The scalar block will not be computed directly, but will be determined
uniquely from the monodromy behavior of the vector block (recall that, according to (2.20),
loop momenta behave non-trivially under moving a vertex operator point z; around a *B-cycle
on the surface) combined with BRST invariance.

The vector block receives two different types of contributions, symbolically of the form
AFFFW and FFWWW  as was derived in the previous section. It will be convenient to
label the contributions to the vector block with vertex operator indices corresponding to the
distribution of d' and d? zero modes in the contribution with five d-zero modes on the vertex
operators. Thus, a contribution with three d' zero modes on vertex operators 1,2, 3 and two
d? zero modes on vertex operators 4,5 will contribute to Tlr?273\ 45 We will also include in
T1% 315
d?-zero modes on vertex operators 4, 5 with two d' zero modes and one A,, vertex distributed
amongst the points 1,2, 3. Thus, the vector block TL";’3|4’5 takes the form [47],

the contributions with four d-zero modes on the vertex operators, specifically two

T$73‘475 = Agn T273‘475 + A;ﬂ T371‘475 + Agn T172‘475 + WLm2’3|4’5 (411)

where T 345 and its permutations are the four-state blocks defined in (3.27), and W collects
all the contributions of the structural form FFWWW. The first three terms on the right
side of (4.11) are invariant under all permutations of 1,2,3 as well as under swapping 4, 5.
Our goal will be to construct WL"Z’2’3| 45 and thus T 19,3145 which are invariant under these
symmetries as well.

A crucial ingredient in our construction will be the BRST transformation property of
the vector block. Using the BRST invariance of 75 314 5 and its permutations, and the BRST
transform of A,, given in (2.33), the BRST transformation of the vector block is given by,

QT 345 = k" Vi Togjas + ik Va Tajas + ik5' Vs Th gjas (4.12)
provided the BRST transform of ergﬁ\ 45 satisfies,

QW 5105 = —(ANY"Wh) Togas — (MY W) Ty 1a5 — (A" W3) Th 2145 (4.13)
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We shall now show that this equation may be solved for WFg,3| 45 up to BRST exact contri-
butions, by a sum of terms each of which is of the structural form FFWW W as predicted
in the previous subsection. Three distinct types of contributions arise,

1
(01)5a5.2 = —g (A" Ws) {(Mpy W) F2" + (1 2 2)} {(A\syn W) ' + (3 <> 4)}
]' n T ms
(tv2)5 4510 = 6()\%W5)(>\%pqrs>\)F1 PES(Wany™' W)
1
(03)5451.2 = =5 (A Wa) {9y W) " + (1 & 2 H (A W) F° + (3 = 4)} (4.14)

The overall coefficients have been chosen for later convenience. To make a connection with
the structural analysis, the first term arises from four d-zero modes coming from the vertex
operators, and one super derivative applied to A7*. The second and third terms arise from
five d-zero modes coming from the vertex operators. Specifically, the second term arises from
the first term in the large parentheses of (4.10) while the third term arises from the second
term in the parentheses of (4.10).

The BRST transformations of these partial contributions are readily obtained using the
results of (2.33) and (2.34), as well as the following identities,

. ‘ 1 s
QUM WIEL} + (i 5 ) = =5 Mg LY
1
4

The resulting BRST transformations are then given by,

QW™ Wj) = - (MY ™ W F + (i ¢ j) (4.15)

1
Q(ml)g?4;5|1,2 = Z()\vmW5) (f1,2|3;4 +tiou3 — 34112 — f3,4|2;1)

Q(2)3'512 = —%(AWmW5)f1,2|4;3 - é(AVmW5)t1,2|3;4
SO0 W) s — 5O Wit s
SO0 g VP EL[E O 5 Oou¥5) + (3 5 4)]
Q(103)5y 51,2 = —%(Amnpqr)\)Fprferft()\%W?))()\%Ws) + (3¢ 4) (4.16)

where t; 93,4 was defined in (3.28). An immediate simplification is obtained by adding Q(tv2)
and Q(t3). The sum of all three,

03" 5110 = (01)57451.2 T (02)37512 + (03)37510 + (5 ¢ 3,4) (4.17)
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has the following BRST transform,
Qm3,4,5\1,2 = —(AVmW?)) T1,2\4;5 - ()\’YmW4) T1,2|5,3 - ()\’YmW5) T1,2|3,4 (4-18)

Thus, 107", 545 appears to provide a suitable candidate for ergﬁ\ 45 except for the fact that
it does not make the symmetries of T 1'9.314,5 manifest.

Indeed, the symmetry of T} 934 in (3.29) implies that Q17 34,5 Satisfies the symmetry,
QT 5145 = QT3 510+ QL5 513+ QT 52,3 (4.19)

The first three terms of TL”;’3| 4510 (4.11) satisfy this same relation before applying ). There-
fore, TS 305 itself satisfies the following symmetry relation,

m o m m
T1,2,3|4,5 = 1345121 T2,4,5|1,3 + T1,4,5|2,3 (4.20)

provided Wf?z,3| 45 also satisfies this relation. The candidate 107" 545 We had obtained for
Wi, 345 satisfies the appropriate BRST relation (4.18) but fails to satisfy (4.20). The fol-
lowing symmetrization of rof’, 34,57

1

m M
12345 — 5

1
Wy 93145 T 6("02,74,5\1,2 + 105" 513 T mT4,5|3,2) (4.21)

m m m m m m
_6(m1’2’4|3’5 T W o534 T Wi3425 T W1 35024 T 1035415+ m3,2,5\1,4)

produces the desired expression for W, 5, 5 which satisfies both the BRST condition (4.13)
and the cyclic symmetry (4.20).

4.3 Worldsheet dependence of the vector block

At fixed loop momenta the correlator of the field 27! produces the chiral Koba-Nielsen factor
Iny of (3.11) for N = 5, along with contributions from the insertions of the operator II"™. In
view of the substitution rule (2.24) of the chiral splitting procedure, the latter decomposes
into the operator 8%’:—1—%97”89 and the part linear in loop momenta p! which is holomorphic
in z. The contributions to the chiral correlator K5 linear in p! is captured by,

Klsy = 2mp3,T1% 514501 (2)A(3,4)A(5, 1) + cycl(1,2,3,4,5) (4.22)

where the cyclic sum renders (4.22) invariant under all permutations of the z; and external
states''. This combination has been chosen because it gives an economical expression for a

Tn the superfield formalism for the external vertex operators used here, invariance of the amplitude for
N external states under all N! permutations of the external states provides the superfield implementation of
Bose symmetry for external bosons and Fermi symmetry for external fermions. Full permutation invariance
may be verified by repeatedly using the symmetries (3.32) and (4.20) of the forms w;(2)A(3,4) and the
kinematic factor ng_’g' 15 respectively.
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fully Bose symmetric amplitude contribution in terms of cyclic permutations only, without
the need to include all 120 permutations of five points. However, (4.22) fails to obey the
homology invariance properties (2.20) and (2.21).

To obtain homology invariance of (4.22), we shall now promote the dependence on the
loop momenta to combinations which are homology invariant. As a first step, note that the
insertion of a single operator dz™ multiplies the chiral Koba-Nielsen factor (3.11) by,

P™(z) = 2mi(p")"wi(z) + Y kPO In Bz, 2) (4.23)

J#
Thanks to overall momentum conservation, the transformation law of the loop momenta
given in (2.21), and the ; and B;-cycle monodromies (B.17) of the prime form, the one-
form P™(z;) is homology invariant. Hence, any loop momentum contracting the vector
block 17", 5, 5 in (4.22) will be promoted to the combination (4.23). Since (4.22) additionally

features bi-holomorphic (1,0)-forms A(4, j) defined in (3.31), it is convenient to define the
following vector-valued meromorphic (1, 0)-form in five variables z;,

Zilaus = P (1)A(2,3)A(4,5) (4.24)
An immediate property which will be crucial soon is as follows,
K7 25T = 0 (T A2 3)A(4,5)) (4.25)
On these grounds, the homology-invariant completion of (4.22) is given by,
Kty = =i 17 345 235451 + cyel(1,2,3,4,5) (4.26)

However, the terms proportional to k717" 5, 502 In E(z2, 2;) A(3,4)A(5, 1), which are present
in (4.26) in addition to the contributions of (4.22), do not preserve the Bose permutation
invariance of (4.22). At the same time, neither (4.22) nor (4.26) are BRST closed. In the next
subsection, we shall show that both shortcomings are cured by adding a loop-momentum
independent scalar block.

4.3.1 BRST transformation of K}g)

In preparation for the construction of the scalar block in the next subsection, we begin by
calculating and then simplifying the BRST transform of the vector block ICE?)). The BRST
transform is obtained by using (4.12) and is given by,
QIC(V@ = (ki”’Vl Ty 345 + ky' Vo T3 145 + k5'Va T1,2|4,5) 235451
+ cycl(1,2,3,4,5) (4.27)
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Using the cyclic permutations to expose a single vertex operator V3, we have equivalently,

Q’C&) = T172\475 Vs kgn (ng3,4\5,1 + ZE2,3\5,1) + T2,4|5,1 Vs k‘gn Z§r4,5|1,2
+ cycl(1,2,3,4,5) (4.28)
Using the property (4.25) and the fact that by now only zero mode integrations remain for

the vertex operator V3 which depends only on A and 6, we see that the third term in QICEQ)I@
is a total derivative in z3 which vanishes upon integration over z3.

The remaining terms may be simplified as follows. We begin by focussing on the loop
momentum dependent part, which is given by,

H%%3“1+Z$mmﬂ@L:QM@-ﬁQW@ﬂM&®+wA®A@30A®Jﬂ@

— 0, (A(2,4)A(5, 1)I<5>>

= ks k05 E(3,5)A(2,4)A(5,1) I, (4.29)

J#3
where the second line has been obtained from the first by using the first identity in (3.32),
and regrouping terms under the total derivative in z3. Upon including the terms without
loop momenta in the Z-functions, and omitting the total derivative contributions, we find,

km( 2|3,4]5,1 + 4\2 3|5, 1) = _50 A( )I(S) (4-30)

where L3 is given by (recall that s;; = —Fk; - kj),

L= s35[0nB(2,5)A(3,4) + 0y In E(4,5)A(2,3) + 03 In E(3,5)A(4,2)]
+531 [0 In E(2,1)A(3,4) + 94 In E(4,1)A(2,3) + 03 In E(3,1)A(4,2)]
+532 [0 In E(4,2)A(2,3) + 95 In E(3,2)A(4, 2)]
534 (02 In E(2,4)A(3,4) + 93 In B(3,4)A(4,2)] (4.31)

The form £9 is invariant upon homology shifts of the points z; around 2 and B cycles, as
may be shown using (B.17) and with the help of momentum conservation, which implies the
relation s35+ $31 + S32+ s34 = 0. To render (4.31) manifestly invariant under homology shifts
without the need to invoke momentum conservation, it is convenient to add the following
combination which vanishes in view of momentum conservation,

1
L3 = —5 (535 + 501 + 532+ 531) [04 In E(4,2)A(2,3) + 95 In B(3,2)A(4,2)

0, In B(2,4)A(3,4) + 85 In B(3, 4)A(4, 2)] (4.32)
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In summary, we have established that, up to total differentials in the vertex operator position
points z;, the contribution from the vector chiral block ICX,,) has BRST transform,

QK5 = T3 Va L3 A(5, 1) + cyel(1,2,3,4,5) (4.33)

where £3 = L3 + £1. In particular, it is independent of loop momenta.

4.4 Construction of the scalar block

By definition, the scalar block IC%) is the part of the chiral amplitude which is independent
of loop momenta, and the full chiral amplitude is the sum of both contributions,

BRST invariance of the full amplitude imposes the following constraint on the BRST varia-
tion of the scalar block,

QK = ~Tias Va L3 A(5,1) + cycl(1,2,3,4,5) (4.35)

To render K5y BRST invariant, a solution must be found for IC(SS), which is independent of
the loop momenta, without discarding total derivative terms (which would be allowed for the
total chiral amplitude K Z(5) but not for ICE,))). In the next subsection, we shall construct
the so-called BRST ancestors, such as Ss;1j2j4,5, Which satisfy,

QSs102145 = 531V3T1 2145 (4.36)
and obey symmetry properties analogous to T3 oj45, see (3.29),
S3.11214,5 = 93;1(2/5,4 S3:11214,5 + S3:1/512,4 + S3;1j415,2 = 0 (4.37)
With these ancestors at hand, the BRST variation of IC(C‘:,’) may now be solved as follows,
K&y = LA(5,1) 4 cycl(1,2,3,4,5) (4.38)
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where
L= %(53.,;2|14,5 — Ssupsiz) [04 In E(4,2)A(2,3) + 05 In B(3,2)A(4, 2)
9y In E(2,4)A(3,4) — 9y In E(3, 4)A(4, 2)}
(

—%5”3;12|4,5 (0,1 B(4,2)A(2,3) + 05 In B(3,2)A(4,2) + 0, In B(2, )A(3,4)
L0510 E(3,4)A(4,2) — 20, In B(2, 1)A(3, 4)
28, In E(4,1)A(2,3) — 205 In E(3, 1) A(4, 2)]

—%S&Mm [84 In B(4,2)A(2,3) + 05 In E(3,2)A(4,2) + 9, In E(2,4)A(3, 4)
+051n E(3,4)A(4,2) — 28, In E(2,5)A(3,4)
—28,In E(4,5)A(2,3) — 285 In E(3,5)A(4, 2)] (4.39)

Note that £ is obtained from V3T} 945L3 by formally substituting s3; V311245 — S3.1)2/4,5
and permutations thereof, in keeping with the structure of (4.36).

4.5 Scalar block in terms of two-particle superfields

The construction of the scalar block IC(S5) in the previous section relies on the availability of a
local scalar superfield Ss;j9145 subject to the BRST variation (4.36). To prove the existence
of viable solutions to the BRST condition and obtain their explicit construction, we shall
use the multi-particle superfield formalism, which was developed for genus-zero applications
in string theory in [27] (see [8] for precursors) and tree-level applications in quantum field
theory in [48, 49] (see [50] for precursors). Moreover, multi-particle superfields recursively
capture the short-distance singularities of higher-genus correlators [26, 25, 51] and tree-level
subdiagrams of loop amplitudes in quantum field theory [52, 47].

4.5.1 Preamble

Chiral conformal field theory correlators of conformal primary operators of dimension (1, 0)
on a Riemann surface of genus zero are determined by the positions and residues of their
poles and their monodromy. In the absence of monodromy, this statement is equivalent to the
well-known result that a meromorphic (1,0) form on a sphere is completely determined by
the positions and residues of its poles. In particular, the positions of its zeros are completely
determined. In a conformal field theory, the singularity structure is determined uniquely by
the OPEs of the fields in the correlator, so that on genus-zero surfaces the correlators may
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be recovered completely from the OPEs. The chiral amplitudes F(y) of interest here are
derived from the insertion of chiral vertex operators U; of conformal dimension (1,0) and
b-ghosts of conformal dimension (2,0) whose monodromy is entirely contained in the chiral
Koba-Nielsen factor Z(y). The reduced amplitudes K(yy are monodromy-free.

By contrast, on a surface of higher genus, there exist holomorphic forms of dimension
(1,0), so that specifying the positions and the residues of the poles no longer suffices to
determine the correlator, and additional information on the contribution of the holomorphic
forms is required. Thus, the OPE is generally insufficient to reconstruct the correlators.

4.5.2 Two-particle superfield formalism

The two-particle superfield formalism is based on exploiting the OPE structure of chiral
vertex operators U;. Controlling the singularities in the OPE (and its multi-particle general-
ization) allows for a complete determination of the corresponding correlators at genus zero.
The operator product of two chiral vertex operators enjoys the following structure [53, 27,

1
Ur(z)Ua(z2) = =257 (00" Ao + T ATy + daWiy + 5 No ") (4.40)

up to total derivatives 0; and 0, of the product of z;;** times a single-valued function of z,
plus non-singular terms. Upon integration of the vertex operators over their positions, the
total derivative contributions are expected to cancel.

The prefactor z;;*? arises from the contractions of the exponentials e’ @+ with eik2@+
and is contained in the chiral Koba-Nielsen factor, where k; and ky are the momenta of the
external states. The extra factor of zj; arises from the Wick contractions of the operator
Oz in II™ with the exponentials e #+ with e*+ as well as from the pairwise Wick
contractions of the spinor fields. Double poles arise as well, but it was shown [53, 27] that
they may all be included in the total derivatives which are being omitted. The composite
fields Ajon, ATS, Wi, FI3™ are referred to as two-particle superfields. Their expressions in
terms of the one-particle superfields are given as follows,

(A12)a = %[Am(ik‘z A1)+ AP (1 Wh)a — (1 4 2)]
(A" = 2[4 B3 + A7 ko - ) + Wiy We) — (165 2)
(W) = i(%nm)a e iy - Ay) — (14 2) (4.41)

(Fia)™ = FJ™(iky - Ay) + F", FMP 4+ ik (W™ s — (1 2)
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where k75 = k7" + k3'. The BRST transforms of the two-particle superfields which will be
needed here are given as follows [27],

1
QW& = Z(A’an)aFSn + 812(V1W2a - Vnga)

QFR" = th{3 (A" Wha) — iky (A" Wha) + s12(VIEZ™ — Vo FT™)
512 (AT Wa) = AF(N"W) = AT OW"Wa) + A (\"W))  (4.42)

Using the pure spinor constraint, we also deduce the following BRST transforms, which
generalize the relations of (2.34) to the case of two-particle superfields,

Q()\’YSWU) = 512‘/1()\%”/2) - 512‘/2()\%”/1)
Q(Mmnpgr AN F15" = $12(AVimnpgr \) (VI FY™ — Vo FT™) (4.43)

Also at higher genus, the two-particle superfield formalism can be applied to determine the
singular parts of the correlators. However, since singularities of the OPE do not uniquely de-
termine correlators beyond genus zero, the regular parts of the correlator generically require
additional input beyond the multi-particle superfield formalism. In the next subsection, the
scalar block Ss.1j914,5 in the regular parts of the correlator will be obtained by solving (4.36),
i.e. taking BRST invariance and monodromies into account. Our solution for Ss.jjo4,5 turns
out to be expressible in terms of the vector (4.11) and two-particle superfields, irrespectively
of their OPE origin.

4.5.3 Two-particle superfields for the five-point function

To construct the scalar block Ssj9145 solving (4.36), we begin by defining the following
composites of ghost number three, built out of two-particle superfields in analogy with the
construction of (3.28) in the four-point case,

tio 345 = ()‘anpqr)‘)anF?{)qFf()"VSWEx)
t475‘3;12 = ()\'anpqr)\)FinnFé)ngs()\’)/SWH) (444)
tas)12,3 = ()"anpqr’)‘)anngF{;()\%Wi’»)

The three composites are obtained from t; 3,4 in (3.28) by substituting the corresponding
two-particle superfield for each single-particle field encountered in turn in (3.28). Note that
the substitution of Fi, for Fy and Fj in (3.28) lead to the same expression tjs3)s,5. Their
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BRST transforms are readily obtained from (4.43) and (2.34), and we find,

Q tiaga:5 = 512V to3a5 — s12Va ti 35
Q tysiz2 = s12Vitasze — s12Va tasi3n (4.45)

Q tyspi2:3 = s12V1 taspo3 — s12Voty )13

Upon defining the following combination by analogy with (3.27),

1
Ti23145 = 1 (f12,3|4;5 + tio35:4 + ta)12:3 + Jc4,5\3;12) (4.46)
we verify that its BRST transform is given by,
QTi23145 = S12(ViTa 315 — VaTi 345) (4.47)
The composite T19345 by itself does not yet solve (4.36), but it does exhibit a desired
kinematic factor sio, vertex operators V5, and the characteristic building block T 34 5, all of
which are key ingredients on the right side of (4.36).

4.5.4 The scalar block in terms of two-particle superfields

The BRST variation of T12 345 in (4.47), together with the expression (4.12) for Q17" 5, 5,
imply the central result of this subsection, namely that the combination,

1 - m m m m
Sti23)4,5 = 5 <Z(]f1 +ky' —ks )T1,273\475 + Tig 3145 + 1132145 + T23,1\4,5> (4.48)

yields the desired BRST variation (4.36). We note here, for later use in section 6, that the
expressions for TV 3145 0 (4.11) and T2 3145 in (4.46) have been used in [47] to propose a
BRST-invariant and manifestly local representation for the integrands of two-loop five-point
amplitudes in SYM and maximal supergravity.

The steps in deriving the symmetries (3.29) of the chiral blocks for four external states
carry over in identical form to the following relations [47],

Ti23145 = T1235,4 Tio3145 + Ti2453 + Th2534 = 0 (4.49)
As a consequence, the symmetry,
St234,5 = S1,2135,4 (4.50)
is manifest from the definition (4.48), whereas the relation,

Sto1314,5 + S12045,3 + S12p534 =0 (4.51)
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holds in the BRST cohomology, namely up to a @Q-exact superfield (an equivalence which is
denoted here and below by the symbol 22). Similarly, the vector and scalar superfields are
related via [47],

ik?(Tfﬁé,gm + Tyﬁ,5|1,2) —T13245 — T2311a5 + T3a511,2 + T35412 = 0 (4.52)

up to a QQ-exact quantity, and it would be interesting to identify its BRST ancestor. It is
easy to show via momentum conservation si3 + So3 + S34 + S35 = 0 that the left-hand side
of (4.52) is BRST-closed, and exactness follows from an explicit check that its components
(...)o vanish [54].

More generally, any BRST-closed and local combination of permutations of k:;-”Tlﬁlzvg‘ 450
and Tis345 is checked to be BRST exact as well. Only non-local expressions such as
51_2151;2|3‘475 — 31_3151;3|2‘475 can be in the BRST cohomology. The absence of local cohomol-
ogy within our alphabet of kinematic building blocks T1772,3\ 45 and Tia 345 1s crucial for the
viability of our approach.”

We will later on exploit that any contraction £j"T7" 34,5 of the vector with external
momenta is expressible via permutations of the scalar building block,

Wk TS 5145 = S2113)4,5 + S3;112)4,5 (4.53)

-7, M m
kg 1.2,3]4,5 = S15/412,3 + S2:504/1,3 + S3;5)411,2

The first identity is an immediate consequence of the definition (4.48) while the second one
is based on (4.52), i.e. only valid up to BRST-exact terms. One can similarly show that

S121314,5 — S211314,5 = T12,314,5 (4.54)
and, via momentum conservation and repeated application of (4.52), that,
Ss11213,4 + S5:2013,4 + S5:3141,2 + Ssap31,2 = 0 (4.55)

the last equality again holding up to BRST exact terms.

12For instance, for four external states it is possible to construct local pure spinor superfield expressions
in the cohomology of the BRST charge. This fact causes complications when applying the same ideas in an
attempt to obtain the non-singular completion of the three-loop four-point correlator from [26].
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5 Structure of the chiral amplitude

In this section, we shall simplify the expression for the genus-two chiral amplitude for five
external states and further explore its structure. Various re-organizations between the vector
block (4.26) and the scalar block (4.38) lead to new representations that in turn expose
manifest homology invariance, BRST invariance, or locality.

5.1 Theta functions and symmetry on the Jacobian variety

The chiral amplitude obtained in section 4 depends on the positions of the vertex operators
and the b-ghost entirely through the holomorphic Abelian differentials w;, the prime form
E(z;, z;), and single derivatives of its logarithm 0; In E(2;, 2;). At genus zero and one, the
meromorphic form 0; In E(z;, z;) is odd under swapping the points z; and z;, but this property
can no longer hold at higher genus since it is a (1,0) form in z; but a (0,0) form in z;. Under
certain conditions, which will turn out to be met for the 5-point amplitude, the meromorphic
form above can be recast directly in terms of w; and genus-two ¥-functions and their first
order derivatives, and in this form a higher-genus version of the swapping symmetry will be
recovered. The present subsection is devoted to exhibiting the associated simplifications of
the chiral amplitude.

To express the prime form in terms of genus-two J-functions we use the Abel-Jacobi map
which sends a point z; in X to a point ¢; in the Jacobian variety J(X) (see appendix B),

(G = / wr (5.1)

0
Since only differences ¢; — ¢; will be needed throughout, all dependence on the choice of the
base point zy will cancel out. By the definition of the prime form in (B.15), its logarithmic
derivative may be decomposed as follows,

0;In E(z;, 2|Q) = wI(zi)gi{j — 0;Inh,(2) (5.2)

where v is an arbitrary odd spin structure, h, is the corresponding holomorphic (%, 0) form,
and 92'[, ; is given by the derivative of the logarithm of the J-function for spin structure v,

0
ro_
93 = 3¢, In 9[v](¢|$2) e (5.3)

While each term separately on the right side of (5.2) depends on v, their sum is independent
of the choice of v. The key advantage of the combination gZ{ ; is the symmetry property,

9 =—9; (5.4)
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while the derivative of the prime form 0; In E(z;, z;) exhibits no such symmetry.

Upon substituting the decomposition (5.2) of the derivative of the prime form into the
five-point amplitude, all dependence on the holomorphic (1/2,0)-forms h, cancels between
the vector and scalar blocks, provided we choose one and the same odd spin structure for
all substitutions. This cancellation is guaranteed by the fact that the full chiral amplitude
is a well-defined (1,0) form in each vertex point z; whose monodromy is given solely by the
monodromy of the chiral Koba-Nielsen factor. It may also be verified directly on our final
expressions for the vector and scalar blocks.

The contributions involving A, in the vector block are easy to track from (4.26),

1%
K

= —i0p In o, (2) A(3, 4)A(5, )k TT 55 + cyel(1, 2,3, 4,5) (5.5)

hy

where we have used momentum conservation to simplify. A slightly longer calculation is
required to isolate the h,-dependence of the quantity (4.38) in the scalar block,

1
N = 5(53;2‘”45 — 53;4|5‘172) [82 In hy(z2)A(3’ 4) — 84 In hV(Z4)A(2, 3):|

1
— 5(53;1‘2|4,5 + 53;5|4‘172) [02 In hV(ZQ)A(B, 4) + 04 In h,,(Z4)A(2, 3)]
= 53;2|1‘475 02 In hV(ZQ) A(B, 4) + 53;4|5‘172 84 In hV(Z4) A(Q, 3) (56)

L

The last line has been obtained from the kinematic identity (4.55) in the BRST cohomology.
On these grounds, the sum of all contributions 0;In h,(z;) to the overall amplitude can be
obtained by combining (4.26) and (4.38),

K) LT Oy In hy (25) A(3,4)A(5, 1) (—ik3 TT 3145 + Ss2ptjas + S1i23j4,5)
+cyel(1,2,3,4,5) (5.7)
The sum of the terms in the parentheses on the first line cancels in view of the first kinematic

identity in (4.53) so that KC(5)|, = 0, and all dependence on h,, for all points z; cancels.

5.2 Partition into sub-correlators

In view of the results of the previous subsection, we may freely make the following substitu-
tions of all partial derivatives of the logarithm of the prime form within K5,

O In E(z, 2;) = wr(z:) g1 (5.8)
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It follows by inspection that both the contributions from the scalar and the vector blocks
may be expressed as linear combinations of holomorphic differential forms of the type
wr(i)A(j, k)A(¢, m) with coefficients given by the functions gIILq, where (i,7,k,¢,m) is a
permutation of (1,2,3,4,5). In view of the identities (3.32), the vector space spanned by all
such forms wr(i)A(j, k)A(¢, m) is five-dimensional and a basis is given by,

wr(1)A(2,3)A(4,5) and its 4 cyclic permutations of (1,2,3,4,5) (5.9)
Decomposing the correlator in the basis (5.9) we have,
IC(5) = wI(]')A(2> 3)A(4’ 5)’Cé,1,2\3,4 + CYCI(]., 2a 37 4a 5) (510)

We shall refer to the quantity lCé 1,234 and its permutations as sub-correlators.

The sub-correlators comprise all the kinematic dependence, and the free index [ is carried
by the loop momentum p! or by a function gi{ ;in (5.3). The explicit form of ICE{7172|3’ 4 resulting
from (4.26), (4.38), (4.39), even after reduction to the basis of the five-forms, produces a large
number of terms, but it drastically simplifies after use of the kinematic identities in section
4.5.4: In terms of the scalar building block Sig345 in (4.48) and their anti-symmetrized
combination Tis3a5 in (4.54), the coefficient of each function gif, ; reduces to just a single
term,

I _ I m I I I
]C5,1,2\3,4 = 27TPmT5,1,2|3,4 — 912112534 — G15T15,23.4 — 92,5125,13,4
I I I
- 91,351;3|4\2,5 - 92,352;3|4\1,5 - 95,355;3\4|1,2

I I I
- 91,451;4|3\2,5 - 92,452;4|3\1,5 - 957455;4\3|1,2 (5.11)

while the coefficient of g4, vanishes.

As reflected by the notation for its subscripts, the sub-correlator K[, 23,4 exhibits the
same symmetries as the vector building block 73"} 55, in (4.11). It is manifest from (5.11)
that ICEI’ 1,234 is symmetric with respect to labels that are separated by a comma,

I _ 1 _ 1 I _ ol
’C5,1,2\3,4 = ’C1,5,2\3,4 = ’C5,2,1\3,4 ’C5,1,2|3,4 = ’C5,1,2\4,3 (5.12)

13The number of independent such forms follows from group theory. Each w;(j) is an SL(2) doublet and
the number of doublets occurring in the five-fold tensor product of doublets is five. To see concretely that all
the forms wr(i)A(j, k)A(€,m) are linear combinations of the forms in (5.9), we first use cyclic permutations
to set ¢ = 1. There are three such forms, wr(1)A(2,3)A(4,5), wr(1)A(2,4)A(3,5) and wr(1)A(2,5)A(3,4).
The second form is a linear combination of the first and third by the second identity in (3.32) while the third
form may be decomposed using the first identity of (3.32), wr(1)A(2,5)A(3,4) = —wr(2)A(3,4)A(5,1) —
wr(5)A(1,2)A(3,4). This cyclic basis was already tacitly used for the loop-momentum dependent part (4.22)
in the opening line for the vector correlator.
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Moreover, the symmetry relation (4.20) of T , ;5 , carries over to
I I I ~ gl
Ksizat Kinzss +Ks10u5 = Kyaspe (5.13)

as can be verified from (4.54) as well as the symmetries (4.50) and (4.51) of Si.93)45.

Based on (5.12) and (5.13), one can explain from a simple analogy why the correlator
(5.10) is not only cyclically invariant but in fact Bose symmetric in the five external legs: We
have shown that T3 934 and ’Cé,1,z\3, , have identical symmetry properties, and the correlator
(51.1()) is related to its loop-momentum dependent part ICZ,’) in (4.22) via pinTETl,2|3,4 “
K124

Note that (4.48) together with (5.11) reduce the superspace components (ICEI’7172|374>0
to permutations of (73"} 53,)0 and (T51,23.4)0. The bosonic components of (137 53 4)0 and
(T51,9)3,4)0 can be found in the files available for download from [55].

Hence, permutation invariance of ’Cfs) carries over to the full correlator in (5.10).

5.3 Manifesting homology invariance

We shall now verify that the sub-correlator ICE{7172|3’ 4 in (5.11) by itself is homology invariant
as defined in (2.21), so that the full amplitude is single-valued on ¥ after integration over
the loop momenta. This statement is stronger than the statement that the sum K of all
sub-correlators is homology invariant. The result will imply that, upon multiplication by
the chiral Koba-Nielsen factor Z), the contribution of each sub-correlator ]Cé,1,2\3, 1L to
the chiral amplitude gives rise to the expected monodromies (2.20) all by itself.

The result is non-trivial because each function gif, ; has non-trivial monodromy as a point
2y 1s shifted by a B-cycle (but is invariant under an 2, shift),

zi = zi + 0u'BL, 9l = gl + 2mid] (650 — 6ie)
pt = p' =ik (5.14)
which is readily established using the transformation laws of the prime form in (B.17).

Implementing the full homology transformations of (2.21) on the loop momenta as well, we
see that ICE{7172|37 4 is invariant provided the following identities hold,

1%

2mi (T12,5\3,4 + 115234 + S1;3142,5 + 51;4\3|2,5) =21 (k1)m T35 23,4 (5.15)

—271 (51;3\4|2,5 + Sop1,5 + 55;3\4|1,2) - 27T(k3)mT5T,n1,2|3,4

I

0
0
The validity of these identities can be easily checked in the BRST cohomology by means of

(4.53), (4.54), and (4.55). As a consequence, the integral over loop momenta of the chiral
amplitude will be a single-valued function on ¥ (see section 6).
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Actually, an even stronger property may be obtained by decomposing lCé’Lz‘ 34 Into smaller
blocks, each of which will by itself be homology invariant. The key to this re-organization
of Ké,1,2|3, 4 is the following combination of gz{ ; functions,

Glin = iy T 9+ s (5.16)

for three distinct points z;, z;, z. The functions G ;, are single-valued in view of the defini-
tion of gi{ ; and (5.14), but they do depend on the spin structure v involved in defining gi{ e
We note that the combination w;(z;)G ;;, is the unique Abelian differential of the third kind
in z; having simple poles at z; and z; with residues 1, whose 2 ; period is 0y In 9[v]({;—().

The same kinematic identities (5.15) also allow us to decompose IC§1’2|3’4 into smaller
blocks each of which is homology invariant. To see this we recast Kf | 23,4 85 follows,

I ~ I : I : I ~ I : I \pm I
IC5,1,2|3,4 > (27mpy, — Zk2m91,2 - Z]f?amgl,g - Z]{?471191,4 - Zk5m91,5)T5,1,2|3,4 - G1,2,5T2571\3,4
I I I I
—G12353141,5 — G15359531412 — G1 245243115 — G15455:45301,2 (5.17)

The expressions (5.11) and (5.17) agree in the BRST cohomology. To see this, we note
that the coefficients of g3, 935, 925, 934, 954 and p], are manifestly the same, while the
differences of the coefficients of g{ ,, g{ 5,91, and g{ ; are BRST exact by permutations of
(5.15). Inspection of (5.17) reveals that the combination of p, and kjng{ ; in the first line is
homology invariant by itself thanks to momentum conservation. Indeed, it can be viewed as
the genus-two uplift of the generalized elliptic integrand E%,& 45 in the genus-one five-point
function [56, 9]. Furthermore, each remaining term in (5.17) is single-valued by itself since

I

its world-sheet dependence is through the single-valued functions G; ;.

5.4 Manifesting BRST invariance

Though the correlator K5 is BRST invariant by construction, it is instructive to see how
this is realized in the decomposition (5.10) into sub-correlators. Combining the BRST trans-
formations of the ingredients of Ké,172\3,4 from (4.12), (4.36), and (4.47), we find,

QKg,1,2\3,4 =T12534V5 (27Tipl ks — Z S5 gé,j) + 125341 <27Tipl k1 — Z 515 9{,]')
%5 £
+11 53,4V (27Tip1 + ko — Z S2; gé,j) (5.18)
j#2
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Multiplying this result by w;(1)A(2,3)A(4,5) and summing over all cyclic permutations
gives the BRST variation of K in the following form,

QKs) = (A(2,3)A(,5) o550 + A(2,5)A(4,3) D05 ) Vi
xwi(1) <27TipI k= g1, slj) + cycl(1,2,3,4,5) (5.19)
i#1
where we have used cyclic permutations and the first identity in (3.32) to regroup all terms

in wr(1). The factor on the second line is readily recognized as the logarithmic derivative
0., InZ5) of the chiral Koba-Nielsen factor (3.11)

01 InZ5) = wr(l) (2m’p1 ki — S19 9{,2 — 813 gig — 814 g{74 — S5 g{75> (5.20)
so that we find,

QK Ls) = (A(Q’ 3)A(4,5)Ta 5134 + A(2,5)A(4, 3)T2,3\475)V131I(5)
+cycel(1,2,3,4,5) (5.21)

Thus, the effect of acting by the BRST charge is to produce a total derivative in the vertex
points (recall that only the z;-independent zero mode parts of V; and T; ;. , remain).

The above steps in checking BRST invariance serve as guidance to find a manifestly
BRST invariant representation of K Zs) by adding suitable total derivatives. In the same
way as the manifestly homology-invariant representation (5.17) was constructed by adding
BRST exact terms to (5.11), we shall now add the following total derivatives,

= 1 51;234,5 51;324,5 51;452,3 51;542,3
KeZe) = Kele) — 1{( 3‘1; + 313‘ + 8‘14' + 8'15‘ )A(5, 2)A(3,4)0:,15)
Sy Sy Sy Sy
+< 1;2|5/3,4 X 1;5/2/3,4 I 1;3/4/2,5 X 1’4|3‘2’5>A(2,3)A(4, 5>8le(5)
S12 S15 513 S14
teyel(1,2, 3,4, 5)} (5.22)

to express each sub-correlator in terms of BRST invariants superfield combinations. The
factor of i arises from averaging over the four possible ancestors Si;a34,5/512, S1;3/214,5/ 5135
S1.4)5)2,3/ 514 and Sy.5)42,3/515 of the BRST variation ViT5 345. By expanding the derivatives
of the chiral Koba-Nielsen factor and expanding the five-forms in 16(5) in terms of the five-
element basis in (5.10),

~

Ky = wi(1)A(2,3)A(4,5) KL asa+ cyel(1,2,3,4,5) (5.23)
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we find that the coefficients of the sub-correlator associated with (5.22) are given by,

T _ I m I
IC5,1,2|3,4 = 27Dy, C'5,1,2|3,4 — 512012 (Cl;2l5\374 - C'2;1\5|3,4)
I I
—3S15015 (01;5|2\3,4 - C5;1\2|3,4) — 825025 (02;5|1\3,4 - C5;2\1|3,4)
I I I
— 513913 01;3|4\2,5 — 523023 02;3|4\1,5 — 835053 C5;3\4|1,2

I I I
— 514914 01;4|3\2,5 — 5240924 C2;4|3\1,5 — 8450954 C5;4\3|1,2 (5.24)

The superfields now enter through the following non-local combinations,

1 (351;34|2,5 _ 51;4\3|2,5 _ 51;2|5\3,4 _ S1;5|23,4> (5 25)

Clajazs = 1
513 S14 512 S15

and

om _ qm m Stapiza . Sts2za . Stauezs  S14302.5
51,2034 — 451,234 — + + +
512 S15 513 S14

1

Z 1

1 Ss. S5 So. So.
_Zk,zn< 2,1\5|3,4+ 2,5|1\3,4+ 2;3|4/1,5 X 2,4|3\1,5>

)

S12 525 523 524
S5:4131,2
+ bl b >
S15 525 535 S45

_iksm<55;12|3,4 N S5,2/113,4 N S5.3/41,2

Using (4.12) and (4.36), it is straightforward to verify that both the scalar and the vector
building block are BRST invariant,

QU o34 =0 QCra534 =0 (5.27)

The BRST invariants (5.25) and (5.26) can be viewed as the analogues of the homology-
invariant building blocks in (5.17) — in both cases, the respective invariance of the sub-

(5.26)

correlator is made manifest term by term. As another virtue of these BRST invariants, their
superspace components (Ciops534)0 and (Cg’7172|3’4>0 confirm the equivalence of the present
approach in the minimal pure spinor formalism with the non-minimal one: The bosonic
components are unchanged (up to identical normalization factors) when trading the building
blocks T13 34,5 and T1n,12,3\ 45 [47] in the minimal pure spinor variables for their counterparts
in the non-minimal formalism (denoted by T35 345 and Tf’f273‘475 in [25]).1

The expansion of the two-loop BRST invariants (5.25) and (5.26) in terms of gluon
polarizations is related to the one-loop invariants 0%73’475 and Cjo34,5 from [58] that com-
pletely determine the five-point correlator [56]. Using the files for the bosonic components

14 For the three-loop four-point amplitude, the building blocks in the minimal pure spinor formalism [57]
and the non-minimal one [26] turn out to be inequivalent, due to the existence of non-trivial, local expressions
in the BRST cohomology.
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of <C{’f273’475)0 and (Cij23,4,5)0 available to download from [55] one can verify,

CT2,3|4,5 = _@54501?2,3,4,5 + %(kﬁn - k‘gn)34501|45,2,3

1
ks (545(Cl|24,3,5 + Cij25,3.4) + (513 + 523)Cl|23,4,5)

720
1
+ %k‘? (845(Cl|34,2,5 + Cipzs,24) — (812 + 823)01\23,4,5))
- %(lﬁn + k5 4 k5) (s24Chypa 35 + 525C1 2534 + (2 < 3)) (5.28)

and

1
Cl;3|4\2,5 = —720 (53501\35,2,4 + 54501\45,2,3 - 2=5134C1|34,2,5 - 52301\23,4,5 - 82401\24,3,5) (5-29)

These identities reduce the components (l€é7172|37 4)0 to one-loop building blocks and will play
an important role in the discussion of S-duality in a companion paper [30]. The identities
(5.28) and (5.29) generalize the pure spinor superspace relation between the four-point kine-
matic factors at one and two loops, and it would be similarly interesting to find a superspace
proof analogous to [46].

We emphasize that the individual sub-correlators ICé 1,23 1Ly and l€é 1,23 +L5) cannot be
identified since total derivatives only arise from the interplay between different permutations.

5.5 Simultaneous homology invariance and BRST invariance

One can repeat the steps of subsection 5.3 to obtain manifestly homology invariant and
manifestly BRST invariant sub-correlators (5.24). For this purpose, we rewrite the kinematic
identities of section 4.5.4 in terms of the BRST invariants (5.26) and (5.25),

ik;”Cg’meA = 81201;2|5\3,4 + 82505;2\1|3,4
ik?,”CE’f‘l,mgA = 31301;3\4|2,5 + 52302;3\4|1,5 + 53505;3\4|1,2
0 = 5190%1153,4 + S25C25)113,4 + 523C231401,5 + 524C24)301,5
0= Cops3a + Cojags,z + Conpzias
0= Coups3.4 — Co1p5/4,3 (5.30)

These identities can be obtained formally by promoting TETl,2|3,4 — C$1,2|3,4 and Si.3425 —
513C1;3142,5 in the relations among local building blocks in section 4.5.4. Moreover, the
same operations formally map the manifestly local correlator representation (5.11) to the
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manifestly BRST invariant one in (5.24). There is an additional identity among BRST
invariants,

0= Cyp534 + Cosp1a + Cozpaps + Coupsis (5.31)

which directly follows from the definition (5.25) and does not seem to have any counterpart
for the local superfields.

It is easy to show using the identities of (5.30) that the manifestly BRST-invariant sub-
correlator (5.24) is cohomologically equivalent to,
5

I ~ I . I m I
Ks 1234 = (QWPm —i) (kj>mgl,j>05,1,2\3,4 — 525G 55(C25/113,4 — Cs2113.4)

J=2
I I I I
- 523G172,302;3\4|1,5 - 835G175,305;3|4\1,2 - 824G1,27402;4\3|1,5 - 545G1,574C5;4\3|1,2 (5-32)

This representation of the sub-correlator manifests both BRST invariance and homology

I . Moreover, one

invariance in each term, see (5.16) for the definition of the functions G, .

can verify that the symmetry property (4.20) of ’Cé,1,z\3, 4 carries over,

I T I ~ 11
K104+ Kiross +Ksioas = Ksasne (5.33)

This is most conveniently shown by repeating the steps that led to (5.13) with the above
relations between BRST invariants and using (5.30). Note that (5.32) also follows from the
formal replacements T3 55, — CF') 53, and Sysjajes — s13C13)12,5 in the manifestly local
and homology-invariant correlator representation (5.17).

Similar representations with manifest homology invariance and BRST invariance have
been studied for multi-particle correlators at one loop. The one-loop analogues of the repre-
sentation (5.30) of K5y were the starting point to unravel double-copy structures in one-loop
open-string amplitudes [56, 9]. The combinatorial structure of the one-loop correlators in
the reference is identical to those of gravitational matrix elements with an insertion of the
supersymmetrized curvature invariant R*. Accordingly, it would be interesting if the two-
loop five-point correlators based on (5.32) could be related to matrix elements of a similar
gravitational counterterm of type D*R* and D?*R5.

5.6 The simplified correlator in terms of prime forms

One can also rewrite the simplified representations of the five-point correlator in terms of
prime forms 0; In E(z;, z;) instead of the function gi{ ; of the Abel maps. Given the permu-
tation symmetric contribution IC‘?S) in (4.22) linear in the loop momentum and the scalar
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quantity,
Riz = 01 In E(1,2) [S1.2314,5A (2, 4)A(3,5) + S1a35A(2,3)A(4,5)] + (1> 2)  (5.34)

we claim that a BRST equivalent representation of the five-point correlator is given by,

5

K =Kl + Y Ry (5.35)

1<i<j

The expression (5.34) for Ri2 = Ro; is permutation symmetric in 3,4,5 up to BRST-exact
terms by the relations (3.32) and (4.37) of the forms and the superfields. The (3,0)-forms
in the decomposition (5.2) of the prime form can be easily checked to cancel from the
permutation sum in (5.35) by repeated use of the identity (4.55) in the BRST cohomology.
Hence, one can effectively substitute d; In E(z;, z;) — wr(2;)g;; within (5.35) and expand the
correlator in terms of five-forms w;(1)A(2,3)A(4,5). By matching the resulting expression
with the basis of five-forms in (5.10), we reproduce the sub-correlator in (5.11), validating
(5.35) as an alternative representation of the five-point correlator.

The building blocks R;; in (5.34) conveniently track the short-distance singularities of
the correlator as pairs of punctures collide: the simple pole as z; — zy stems solely from
setting 0y In E(1,2) — 25 as well as Oy In B(2,1) — —z3 and A(1,5) — A(2,7) in (5.34).
This leads to a simple form of the residues

Res;, .,K5) = Res,, ., Rio
= (S123145 — S2:1132,5)A(2,4)A(3,5)
+ (S1214i35 — S251143,5) A2, 3)A(4, 5)
= Th2,31450(2,4)A(3,5) + Th2435A(2,3)A(4,5) (5.36)
where (4.54) has been used in passing to the last line. On the kinematic pole (kj+ky) ™2
resulting from integration over z; — 2o, the two-particle superfields factorize correctly on the

single particle superfields of T 345 with a cubic vertex of the gauge-multiplet peeled off, see
for instance appendix A.4 of [25].

5.6.1 Comparison with the OPE correlator from [25]

The non-minimal pure spinor prescription was used in [25] to determine the genus-two five-
point correlator up to holomorphic terms, namely terms with no worldsheet singularities.
These holomorphic terms are of course essential to obtain the full amplitude and for ex-
tracting the effective interactions in the low energy expansion beyond the lowest order [30];
indeed for four-point scattering they are responsible for the entire correlator.
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The result of the OPE analysis can be written as'
K& = [27p5,T1% 5152 (5, Dwi(22)A(3,4) + cyel(1,2,3,4,5)] (5.37)
+ [81 In E(1,2)(T12,345A(2,4)A(3,5) + Tha435A(2, 3)A(4,5)) + (1,2]1,2,3,4,5)

where the notation —+(i, j|1,2,3,4,5) means a sum over all ordered choices of i and j from
the set {1,2,3,4,5} for a total of (3) terms.

In order to relate (5.37) to the full correlator (5.35) which includes regular terms we first
observe that the first line of (5.37) is equal to ICZ,’) in (4.22). To relate the scalar terms we
rewrite Rio using (4.54)

ng = 01 In E(l, 2) (T1273|475A(2, 4)A(3, 5) + T1274‘375A(2, 3)A(4, 5)) (538)
+ Sop3145 (0 In E(1,2)A(2,4)A(3,5) + 0 In E(2,1)A(1,4)A(3,5))
+ Soajap3,5 (0 In E(1,2)A(2,3)A(4,5) + 0, In E(2,1)A(1, 3)A(4,5))
The first line of (5.38) contains singularities in the worldsheet and reproduces the corre-

sponding terms in (5.37). The second and third lines are non-singular on ¥ and therefore
could not be determined in the OPE analysis of [25].

Using (5.38), the full five-point correlator at two loops (5.35) can be written as,
IC(5) = ]C(()é))e _'_ [ICE%),374,5 _'_ (17 2‘17 27 37 47 5):| (539)
where KC5F is the result (5.37) from [25] while

K15 545 = S2p3ias (01 In B(1,2)A(2,4)A(3,5) + 9y In B(2,1)A(1,4)A(3,5))
+ Soi1ja35 (01 In E(1,2)A(2,3)A(4,5) + 9. In E(2,1)A(1,3)A(4,5)) (5.40)

is a non-singular function on the worldsheet.

It is interesting to observe that the regular functions in (5.40) are natural from an OPE
perspective as they correspond to the difference in performing the OPEs as z; — 25 or as
z9 — 21, a distinction which is absent at genus zero or one. Together with the existence of
the building block Sy,9j34,5, this observation suggests a way to find the regular completion of
singular correlators such as (5.37). The relative coefficient between the singular and regular
pieces can then be fixed by imposing overall BRST invariance. In hindsight, applied to the
correlator (5.37), this procedure yields the full five-point correlator derived in the previous
sections.

5In quoting equation (5.40) from [25] we used the notation I}, — 2mpf, and replaced 712 — 01 In E(1, 2).
This last replacement rectifies the definition used in that reference in which 7;; was the derivative of the full
Green function without stripping the zero modes.
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5.7 An alternative correlator in terms of prime forms

A downside of the correlator representation (5.35) in terms of prime forms is that the loop
momentum dependence occurs via IC%) in (4.22) instead of the homology-invariant combi-
nations Zf}, 5, 5 in (4.24). As an alternative to (5.35) with more transparent monodromy
properties, the correlator can be rewritten as,

K@) = _mmnTgﬁ,2|g,4Zﬁ2,3\4,5
+01In E(1,2) (S12314,5A (2, 5) A(3,4) + Ss9134A(2, 3) A(4,5))
+01 In E(1, 3) (S1:321450(2, 5) A(3,4) + Sa31411,5A(2, 3) A(4,5) 4 Ssiaja1,2A(2, 3)A(4,5))
+01 In E(1,4) (S1,4552,3A(2, 5)A(3,4) + So.ap3n,5A(2, 3)A(4,5) + Ss.4312A(2, 3)A(4,5))
+01 In E(1,5)(S1;542,3A(2, 5)A(3,4) + So51134A(2, 3)A(4,5))

+cycl(1,2,...,5) (5.41)

Once again, the dependence on the half-differentials cancels'® between the contributions
(k1) m T3 93401 In by (1) from Zij, 5, 5 and the remaining terms in (5.41), so one can again
replace 0; In E(i, j) — w;(i)g/,;. Under this rule, Zll9345 directly reproduces the coefficient
of 13" 53,4 In the manifestly homology-invariant representation (5.17) of the sub-correlator.
The contributions proportional to Gi{ ik to (5.17) in turn can be recovered from the ex-
plicit prime forms in (5.41). For the latter class of terms, the symmetries (3.32) of the
forms and kinematic identities including (4.55) need to be used, and different terms in the
cyclic orbit of (5.41) contribute to the sub-correlator ’Cé,l,2\3,4 multiplying the basis form
wr(1)A(2,3)A(4,5).

6This cancellation is based on the kinematic identities (4.53), (4.55) and occurs separately for all five
terms in the cyclic orbit.
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6 Type II and Heterotic 5-point amplitudes

In this section, we shall use the chiral amplitude F(s), derived in the previous section, to
construct the genus-two amplitude for five external states for the Type II and Heterotic
strings. We begin by recalling the structure of the chiral amplitude,

F5) = (K)o Zis) (6.1)

where Zs) is the chiral Koba-Nielsen factor (3.11) and (K(s)), is the integral (3.5) of the
chiral correlator KC¢s) over the zero modes of A and 6. The chiral correlator ) = /ng) + IC(S5)
was initially constructed in section 4 from two terms qu) and ICé) each of which individually
is a single-valued function of the vertex points z; upon integration over loop momenta, and
whose sum is BRST closed even though neither term individually is BRST closed. Section
5 then presents various simplified forms of K5 where different subsets of its properties are
made manifest. For the purpose of integrating over loop momenta, it is the forms (5.35) and
(5.41) that will be particularly convenient.

6.1 Assembling both chiralities for closed string amplitudes

Scattering amplitudes of closed strings are obtained by pairing left-moving and right-moving
chiral blocks and integrating over loop momenta p; in R1?, over vertex operator positions
z; in X, and over the moduli space My of compact genus-two Riemann surfaces, which we
parametrize locally by the period matrix §2;; in the Siegel upper half-plane [2, 3, 28]. As
a result, the amplitude takes the following form, up to an overall numerical normalization
factor that remains to be determined by unitarity,

5
A(S) - 6( Z kl) /_/\/[ |d3Q|2 /25 /1[{20 dp ]:(5)(22" kiapI) 'F(5)(Zi> _k;f’ _pI) (6'2)
=1 2

where d*Q = d11dQ12dy, produces the holomorphic top form on Msy. For each of the
closed superstring theories, Fs) is the supersymmetric chiral amplitude given in (6.1), while
the second chiral amplitude .7:"(5) depends on the type of superstrings under consideration.
In either case, the combined integrals will be absolutely convergent for purely imaginary
values of the kinematic variables s;;. The amplitude obtained this way may be analytically
continued to values of s;; throughout the complex plane thereby producing the expected
physical poles and branch cuts, as was shown explicitly for the genus-one amplitude in [29].

The dependence on the polarization vectors, polarization spinors, or internal degrees of
freedom for the Heterotic string of both F5) and JF5) will be suppressed throughout. In all
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cases, the product .7-"(5)./%(5) includes the absolute value of the chiral Koba-Nielsen factor Zs)
as a universal factor. This factor is conveniently rearranged as follows,

‘1(5)‘2 = exp {—27TYIJ}51 p? + ZSij G(zi, z])}

i<j
5= Y S kI / w0, (6.3)
i 20

where G is the Arakelov Green function of (2.12), which may be replaced by the string Green
function (2.11) since the total momentum is conserved. In addition to the exponential factor,
both F(5) and .7:"(5) generically also have explicit dependence on the momenta p’ through a
polynomial prefactor, which it will be convenient to trade for a dependence on the shifted
momentum p’. Note that the measure dp is unaffected by this shift.

In preparation for integrating over the loop momenta, we shall recast the dependence of
the supersymmetric chiral correlator (6.1) on the loop momentum in a form that exhibits the
single-valued Arakelov Green function G. To do so, we eliminate 0;In E(i, j) from 21 3145
in favor of —0;G(,j) plus Abelian differentials, Abel-Jacobi integrals and the shifts (z;)
in (2.13). The Abelian differentials and integrals precisely combine with the loop momenta
into their shifted versions p in (6.3), and we obtain,

Mooas = (20" 0r(1) = SR OG(L ) + WO (1)) AR,3)A(4,5)  (64)

j=2
The remaining terms in the correlator representation (5.41) are independent of loop momenta
and cancel all instances of 9;7(2;). We now rearrange (5 as follows,

Ke =W+ QWiﬁTI?lV;n (6.5)
where the combinations VJ* are similar to (6.4) and W collects the scalar leftover terms,
Vit =175 505 wr(2)A(3,4)A(5,1) + cycl(1,2,3,4,5) (6.6)
5
W = z'Tsr'"b,1,2\3,4 Z k;n aG(1,7) A(2,3)A(4,5) (6.7)
j=2
—01G(1,2) (S1.21345A(2,5)A(3,4) + S5.911134A(2,3)A(4,5))
—01G(1,3) (S13214,5A(2, 5)A(3,4) + Sa3411,5A(2, 3)A(4,5) + Ss341.2A(2,3)A(4,5))
—01G(1,4) (S1452,3A(2, 5)A(3,4) + Soa31,5A(2,3)A(4,5) + Ssaj31.2A(2,3)A(4,5))
—01G(1,5) (Susjaj28A(2,5)A(3,4) + Sa5113.4A(2, 3)A(4,5))
+ cycl(1,2,3,4,5)
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and the cyclic sum in the expression for W is to be applied to all five lines. To obtain
the expression (6.7) for W, we have substituted (6.4) into (5.41) and replaced everywhere
0;In E(i,j) by —0;G(i, ) — 2miwr (i)Y !/ Im f: wy. One can then observe that all such terms
proportional to Y77/ cancel in the cyclic sum between W and 2mip? V7*. This cancellation
follows from the same manipulations that were described in section 5.7 to relate (5.41) to
(5.17). Finally, we have replaced all derivatives 0;G(i, j) of the string Green function (2.11)
by derivatives 0;G(i,j) of the Arakelov Green function (2.12), since the difference 0;v(z;)
between the two cancels in the complete chiral correlator, by the same mechanism which
ensures the cancellation of the derivatives of the half-forms 0;In h,(2;) in section 5.1. In the
new representation (6.7), both V}* and W are now manifestly single-valued in z;.

While the expression (6.7) for the scalar correlator is adapted to the representation (5.41)
of K5, we can bring the loop-momentum-independent part W into an alternative form that
is more reminiscent of representation (5.35). For this purpose, the manipulations of the
forms and kinematic factors that relate (5.35) to (5.41) can be readily repeated with p’
and —9;G(4,7) in place of p’ and 9;1n E(i,j). Hence, we can immediately rewrite (6.7) by
performing the appropriate replacements in (5.35),

wW=>" 9, (6.8)

1<i<j
where Q;; is given by the following simple combinations,

Q12 = —01G(1,2) [51;2\3|4,5A(2> 4)A(3,5) + S12435A0(2,3) A4, 5)}
—5G(2,1) [Sa1132,5A(1,4)A(3,5) + So1ja35A(1, 3)A(4,5)] (6.9)

To proceed further, we distinguish between the different string theories.

6.2 Type II amplitudes

The complete amplitudes are simplest to organize for the Type II superstrings, since the
massless sectors of these theories consist only of the unique Type IIA or Type IIB su-
pergravity multiplet. Type ITA and Type IIB amplitudes involve the chiral amplitude
.7:"(5) = <I€(5)>0% , where 16(5) is obtained from /(5 by substituting the left-moving vec-
tor and spinor polarizations by the right-moving vector and spinor polarizations of opposite
(Type ITA) or same space-time chirality (Type IIB), respectively. In either case, the structure
of 16(5) is as follows,

]6(5) =W+ QWZﬁfnf/;n (6.10)
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With the help of this expression, the loop momentum integrations may now be carried out,

= 9 1
Tl &
/R _dpKe Ke) |Ze)|" = 1= vy

o3 - F) [0 o
1<j

The full amplitude therefore becomes,

5
]_ — = ..
=5( > k) / d 7/ (WW —ayypvp) TLewse (6.2
As) Z H It @y s WW —ay vy He (6.12)
i=1 Mz 1<j
where (...)o collects the zero-mode integrals (3.5) of the #* and A in both chiral halves.
Three of the powers of det (2Y) have been regrouped to produce the modular invariant
measure on Mo, given by,
‘d3Q‘2
dp = ——— 1
H= det 2Y)3 (6.13)
The remaining two factors of det (2Y) combine with the products of bi-holomorphic forms
A of (3.31) and their complex conjugates so that the combinations,

AL, J) Ak, £)

det (2Y) (6.14)

are modular invariant. In summary, after integration over loop momenta, the resulting
integrand for the scattering amplitude is invariant under the full modular group Sp(4,7Z).
Scattering amplitudes for Type II strings compactified on a torus T are obtained as usual
by restricting the polarizations of the external particles and inserting a sum over solitonic
configurations of the compact coordinates [59], namely the Siegel-Narain theta series

Taaz(g, BIQ) = det (2Y)%2 Y~ emmVirs2miman®® X (6.15)

mé cz2d
nl,acz2d

where X = Re 2 and m!, n’* are the momenta and windings along the a-th direction of the
torus, and

LY = (ml + Bayn™)g™ (m} + Bgsn”®) + n"*gogn”’ (6.16)

where g, and B, are the constant metric and B-field along the torus, and g*” is the inverse
metric, measured in units of /. The Siegel-Narain theta series (6.15) is invariant under
modular transformations in Sp(4,Z) and T-duality transformations in O(d, d,Z) acting on
the usual way on (g, B). The prefactor det (2Y)%? cancels the part of factor det (2Y)® in
(6.11) which would have come from integrating over the loop momenta p¢.
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6.3 Heterotic string amplitudes

We shall now construct the five-point genus-two amplitude for Heterotic strings. In this case,
the massless sector in ten dimensions consists of two types of multiplets, namely the N =1
supergravity (SG) multiplet and the AN/ = 1 super Yang-Mills (SYM) multiplet with gauge
group Fg x Eg (for the HE string) or Spin(32)/Zy (for the HO string) [60, 61].

Similar to the Type II superstring, the five-point amplitude for Heterotic strings is given
as an integral (6.2) of the product of the chiral amplitude F in (6.1) for the superstring,
and the (conjugate of) the chiral amplitude f(g,) for the bosonic string, compactified on the
tori associated with the root lattice of Eg x Eg or Spin(32)/Zs, respectively. The latter is
given by the product of the chiral measure for the bosonic string at genus two, given by the
inverse of the Igusa cusp form'” W4 [62, 63], times the correlator of the right-moving vertex
operators, given by either,

VI () = Dot () e

ViSG(Zi> =& - (ax—l-(zz') + 27Tp1w1(%)> ethio+ (=) (6.17)

where t? is the gauge field polarization, j%(z;) is the corresponding holomorphic current, and
€f is the polarization vector for the right movers. For the five-point amplitude, each external
state may belong either to the SYM or the SG multiplet, thereby giving rise to six different
types of amplitudes. Schematically representing the states in the SYM multiplet by F' (the
field strength), and the states in the SG multiplet by R (including the Riemann tensor,
the anti-symmetric tensor field, and the dilaton), the six possible structures correspond to
RS, R'F,R3F? R?2F3, RF*, and F®. Since the gauge groups for both Heterotic theories are
simple, it is immediate that the amplitude corresponding to R*F vanishes.

Correlators of the chiral vertex operators VP¢ for the supergravity multiplet may be
computed straightforwardly using the Wick contractions (2.19). Although gauge invariance
under £/ — "+ ak!" is not immediately manifest, it is possible to recast the result in terms
of the gauge invariant combinations f/"" = &'k}’ — ETk]" by discarding exact differentials
which do not contribute to the integrated amplitude. This process was carried out for the
four-point amplitude in sections 12.4 and 12.5 of [16] and may be generalized to the five-
point amplitude in a straightforward, if tedious, manner which is beyond the scope of this
paper. Decomposing the resulting chiral correlator in the same way as in (6.10), in terms
of the shifted loop momenta p! in (6.3), the integral over loop momenta (6.12) produces a
term proportional to Y/(&F - V;), which has no analogue for the four-point amplitude.

"Recall that W19 = [], ¥?[x](0) where the product runs over all even spin structures.
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For scattering amplitudes of SYM multiplets, it is convenient to fermionize the 16 chiral
compact bosons into 32 chiral worldsheet fermions M (z) for I =1, -, 32 (not to be confused
with the pure spinor ghost field A%). For the case of HO, all 32 fermions transform in the
defining representation of SO(32) and have the same spin structure £ (independent, and to
be distinguished from the spin structure on the supersymmetric side). For the case of HE,
the 32 fermions are split into two groups of 16 transforming under the defining representation
of SO(16); x SO(16)2, the maximal orthogonal subgroup of Eg x Eg, and k = (K1, k) labels
the corresponding independent spin structures x; and k5. In absence of fermionic insertions,
the partition functions for the internal fermions are given by

Zno = Y I[](0)'° Zup =Y 0[K1](0)%[x] (0)° (6.18)
K K1,K2
where the sum runs over all even spin structures.

The current j*(z) appearing in the vertex operator (6.17) for either of the two Heterotic
strings is given in terms of A(z) by,

) =5 3 TN EN () (6.19)

1,J=1

Here, T}, are the anti-symmetric generators in the defining representations of the Lie algebras
of SO(32) and SO(16); x SO(16), respectively. The remaining generators of Eg X Fg
are accounted for by spin fields, which will not be needed here. The correlators of the
holomorphic fields A!(z) are given by,

NN (w)) e = =6 Se(z,w) (6.20)

where S, is the Szego kernel for the spin structure s for the HO theory, and k equals k4
or kg for the HE theory, depending on whether both I, .J belong to SO(16); or SO(16),.
Self-contractions on the current are absent so that (j%(z)), = 0. The current correlators
required for the case of the four-point amplitude [16] are,'®

(57 (20)3 (22))n = St0(TT™) S(21, 22)° (6.21)

2(22)5% (28)) = tr(TT*T) 54(1, 2) Sx(2,3) 5x(3,1)

(5 (21)5% (22)5% (23) 1% (24) ) = —tr(T T T*T*)S4(1,2)54(2, 3)5(3,4) S (4, 1)
+Zt1"(T“1T“2)tr(T““’T““)Sﬁ(l, 2)%5,(3,4) 4+ (2 <+ 3,4)

—
<
S
hn
—~
I
=
S~—
<
1=}
[\V)
—~
N

18Note that tr(T% - .- T%) = (0 whenever generators of both SO(16); and SO(16)2 occur under the trace.
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where we denote as usual S,(7,7) = S,(2;, ;). For the five-point amplitude, we require the
correlators of (6.21) as well as the following five-point correlators,

<H j“i(zi)>5:% S (TETY) e (THTT) S, (i, ) Sk, £) S (€, m) S, (m, )

(4,41k,¢,m)

+ 3 (TTOT T T) S, (1, 1)Sw(i, §)Sa(j k) Sa(k, 0)Sa(6,1)  (6.22)

(i7j7k7£)

where the first sum is over all 10 inequivalent partitions of five into 243, and the second
sum is over all 12 permutations of 2,3,4,5 modulo reversal (i, j, k,¢) — (¢, k, j,1).

The spin structure sums required for amplitudes with up to five SYM states can be
expressed in terms of the Siegel modular forms Wy, of weight 4k,

Uy, = > 9[r](0) (6.23)
and the following correlators,
(21, 29) Z I[K](0)%5,(1,2)? (6.24)
F' (2, 29, 23) Zﬁ 0)%5,(1,2)5.(2,3)5.(3,1)
Fi,f’2)(zl,22;23,z4 219 0)%5,.(1,2)25,(3,4)>
Fi:)(zl,zg,zg,z4 Zﬁ 8kS ,2)5,(2,3)54(3,4)5.(4,1)
F2 (2, 29; 23, 24, 25) Z O[K](0)% 5, (1,2)25,(3,4)Sx (4, 5)5x(5, 3)

F (21, 29, 23, 24, 25) Zﬁ 0)%5,.(1,2)5,(2,3)5(3,4)S,(4,5)5,(5,1)

The first sum F4(Z) can be computed in terms of Wy, through [16, Eq. 12.7],
Fg)(z, w) = V0,0, In E(z,w) + %W}(Z)WJ('UJ)@IJ\:[Izlk (6.25)

where Jr; is the derivative with respect to Q;; for I < .J. The product of three Szego
kernels may be decomposed onto a sum of squares of Szego kernels times functions that are
independent of spin structures [31], so that F. 4(,‘3) may be similarly decomposed onto a sum
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of F 4(,3) functions. Similarly, it will be shown in [31] that the products of four and five Szeg6
kernels may all be decomposed onto sums of the product of two squares of Szegd kernels, so
that F, 4(;:), F 4(,3’3), and F 4(,‘2) may all be decomposed onto sums of F| 4(,3’2) with known coefficients.

We end with perhaps the simplest example of a Heterotic amplitude for five external
SYM states, two belonging to the first Eg, and three belonging to the second Eg. The
corresponding chiral amplitude may be read off from the ingredients presented above, and
is given by,

- 1

Fis) = ————tr(TT ) tr (T TT%) F\ (21, 20) Fy ) (23, 24, 25) (6.26)
4W1(92)

where ay, ay refer to SO(16); while as, a4, as refer to SO(16)s.

As usual, the HE and HO Heterotic strings become indistinguishable after compactifying
on a torus Ty. The chiral integrand F (s is obtained by replacing the partition function Zpo
or Zyp in (6.18) by the Siegel-Narain theta series I' g1 16,42, with suitable insertions of lattice
momenta for each current as in the four-point amplitude discussed in [64].
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7 The supergravity limit

In this section we shall study the field theory limit of the string amplitudes for five external
massless states derived in the earlier sections of this paper. In the limit o/ — 0, keeping
the external momenta k; fixed, the Type II superstring amplitudes are expected to reduce
to the two-loop field theory amplitudes of N' = 2 supergravity, while in the Heterotic strings
the amplitudes are expected to reduce to those of N' = 1 supergravity plus super-Yang-Mills
[65]. For four-dimensional external states, the loop integrand for two-loop supergravity was
determined in [66] using the spinor-helicity formalism and color-kinematics duality [67, 68]
(see [69] for a review). This result was later extended to external states in ten dimensions
in [47] by making use of pure spinor superspace.

Whether the external states of the superstring amplitude are in a supergravity or super-
Yang-Mills multiplet, the corresponding field theory amplitudes involve a sum over the six
Feynman graph topologies depicted in Figure 1. As we shall demonstrate below for Type II
superstrings (and sketch for the Heterotic and Type I cases), the field theory limit of the
integrand over loop momenta, moduli, and vertex points of the superstring amplitude for
five external massless states, derived in earlier sections, reduces, at leading order in o/, to the
integrand over loop momenta and Feynman parameters of the corresponding supergravity
amplitude [66, 47]. The precise matching of these integrands provides a strong consistency
check on the validity of our construction. Higher-order terms in the o/ expansion of the inte-
grated amplitude produce higher-derivative effective interactions to the supergravity and/or
super-Yang-Mills Lagrangian which will be investigated in a companion paper [30].

To leading order in the o’ expansion, the amplitude is dominated by the contribution from
maximally degenerate Riemann surfaces. In order to study these degenerations systemati-
cally, it will be useful to interpret the vertex operator positions as punctures on the Riemann
surface, and use the Deligne-Mumford compactification of the moduli space of punctured Rie-
mann surfaces, in the present case of genus two with five punctures. All degenerations are
then obtained by a finite sequence of the following two elementary degenerations,

1. the separating degeneration, in which a trivial homology cycle shrinks, thereby degen-
erating the surface into two disconnected surfaces;

2. the non-separating degeneration, in which a non-trivial homology cycle shrinks, thereby
degenerating the dual cycle into a long and thin funnel.

The degeneration by which two or more punctures collide is equivalent, in the Deligne-
Mumford compactification, to a separating degeneration in which a sphere with three or more
punctures separates from the remaining surface. The maximal degeneration of the Riemann
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Figure 1: The six graphs contributing to two-loop five-point amplitudes in maximally super-
symmetric Yang-Mills and supergravity [66]. The reducible diagrams a’, ', ¢ were denoted
d,e, f respectively in [47].

surface is obtained by a maximal sequence of separating and non-separating degenerations
in which for example all the 2A-cycles of the surface shrink, and the B-cycles become long
thin funnels. These funnels are effectively connected by internal interaction vertices, just as
in field theory Feynman diagrams. A maximal degeneration may be described by a trivalent
graph I', sometimes known as a tropical Riemann surface (see e.g. [70, 71]), which reproduces
the on-shell Feynman graphs of quantum field theory. The vertices of the graph correspond to
genus zero components with three punctures, while the edges e, correspond to the long thin
funnels. The lengths L, € R™ and twists o, € [0, 27| of the funnels provide an appropriate
set of coordinates on the moduli space near the maximal degeneration locus.

In the limit where all L, are scaled to infinity at the same rate, the string integrand
is expected to reduce to the field theory integrand in the world-line formalism [72, 73, 74],
where L, is the Schwinger parameter for the propagator on edge e,. Upon using the chiral
splitting procedure in string theory, the momentum p’ is identified with the loop momentum
in field theory [75]. For the pure spinor superstring, the string integrand is expected to
reduce to the field theory integrand in pure spinor world-line formalism [76, 77] and the
double-copy structure of the loop integrand in supergravity should be manifest [78, 52, 79].
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7.1 Maximal degeneration of a genus-two Riemann surface

For a compact genus-two Riemann surface without punctures, there are two possible maximal
degenerations, corresponding to the one-particle irreducible (1PI) or one-particle reducible
(1PR) two-loop skeletons depicted in Figure 2. In principle, there can also be contact terms
supported on “figure-eight” diagrams where the length of the middle edge in either of the

<0

1PI 1PR

two skeletons shrinks to zero.'

Figure 2: 1PI versus 1PR two-loop skeletons.

For a genus-two Riemann surface with punctures, the various different maximal degener-
ations correspond to the various different ways of attaching external legs to either skeleton
of the case without punctures, possibly by forming trees, such that the resulting graph is
still connected. For five punctures, many different connected graphs may be drawn. It will
be convenient to arrange the graphs into two classes (1) graphs which contain no triangle
or bubble subgraphs; and (2) all other graphs. All graphs obtained from the 1PR vacuum
graph fall in class (2).

All the graphs in class (1) are represented in Figure 3 and, by inspection, are seen to be
in one-to-one correspondence with the field theory graphs of Figure 1. The graphs in class
(2) correspond to field theory graphs that vanish in view of the extended supersymmetry
of the corresponding supergravity or super-Yang-Mills theory, a property that is sometimes
referred to as “no bubble or triangles” [81]. In both Type II and Heterotic superstring
theories, on-shell amplitudes with one, two, or three external massless states are expected
to vanish. General arguments to this effect have been given in [82, 83] while the result was
proven by explicit calculation in the genus-two case in [16] for both Type II and Heterotic
strings. Our proof here that the genus-two five-point amplitude reduces to the corresponding
supergravity amplitude in the o/ — 0 limit, will be based on showing that the diagrams of
class (1) precisely match those of field theory and that those of class (2) vanish.

19Such contact terms are known to arise in the field theory limit of Heterotic amplitudes [64] and Type I
partition functions in a magnetic background [80].
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Figure 3: All maximal degeneration graphs of class (1), namely containing no subgraphs
with one, two, or three external edges.

D XD DA PO

Figure 4: Some of the maximal degeneration graphs of class (2), namely containing one
or several subgraphs with one, two, or three external edges, whose contributions to the
genus-two amplitude with five massless external states vanish.

The Schwinger parameters Ly, Ly, Lz for the two-loop 1PI skeleton may be identified with
the imaginary part Y = Im Q of the period matrix €2 via the relation [84, 85],

1 (Li+Ls —Ls
Y: —_— .].
Oé/ ( _L3 L2_|_L3 (7 )

in the limit o’ — 0 holding the L;’s fixed. The location of the external legs along the two
loops gives five additional parameters ¢y, .. ., t5 lying in one of the intervals [0, L,], depending
on the topology of the diagram. The topologies a’, V', ¢ where two external legs form a tree
before attaching to the skeleton are included by allowing two of these parameters to coincide.

7.2 'Tropical limit of the Abelian differentials and prime form

Before analyzing the tropical limit of the string integrand, we review some basic results
about the tropical limit of Abelian differentials and Green functions [71, 32, 33]. We choose
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a canonical homology basis of cycles 2; and B; and conjugate normalized holomorphic
Abelian differentials w; on the Riemann surface ¥ (see appendix B for a summary). First,
let by be a homology basis on the skeleton graph I' arising by degenerating the homology
basis (A7, B;) — (0,br) on X (see Figure 5). In the tropical limit, the Abelian differentials
scale as follows,

iwy (1))
/

(7.2)

wr(z;) —=

!

where wi' is equal to £dt; on the edge e, if e, belongs to the cycle by, and 0 otherwise.

The sign is fixed by the orientation of e, with respect to the cycle b;. For the choice of
parametrization and homology basis for the skeleton graph in Figure 5, we have,

+dt; : on left edge 0 : on left edge
wi'(z) = ¢ —dt; : onmiddle edge, wy(z;) =< +dt; : on middle edge (7.3)
0 : on right edge —dt; : on right edge

The imaginary part of the period matrix Y7; ~ be wY /o reproduces (7.1) above.

t
1 P1 Pg T/

Figure 5: The left panel exhibits the two-loop 1PI skeleton graph I" with a choice of homology
basis and parametrization. The right panel exhibits the simply connected graph I" =T"\ P
obtained by removing one vertex P from I, and labeling P, the endpoint of the edge e,. On
I'" each pair of points ¢;, ¢, is connected by a unique path v(t;,t;). When ¢;,¢; are on the same
edge we have 0;L(t;,t;) = sgn(t; — t;) dt;, while when ¢;,¢; are on different edges we have
0;L(t;,t;) = —dt;. For the purpose of illustration, we have displayed vertices corresponding
to (a permutation of) graph (c¢) in Figure 1, the other graphs being analogous.

In order to discuss the tropical limit of the prime form, careful account must be taken of
the fact that the prime form is a multi-valued form on ¥ x 3. A single-valued representation
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may be obtained by considering the prime form on the simply connected domain obtained by
fixing a base point P on ¥ and then cutting > along four canonical homology basis cycles 27,
B, chosen to pass through P (see e.g. Figure 12 in [2]). In the tropical limit of a genus-two
Riemann surface, the point P will lie at one of the vertices of the skeleton I' such that the
graph IV = I' \ P becomes simply connected [75], as shown in the right panel of Figure 5
where the vertex P has been replaced by endpoints P, for the open edges e,. Between any
two points t;,t; € [, corresponding to the tropical limit of z;, z; on X, there is now a single
path v(¢;, ;) lying inside I" ?° such that the Abel-Jacobi map scales like,

Z’ I I I
(G — Cj)l — —,Czt,j,l C;,j,l = _/ w} (7.4)
« 'Y(tivtj)
in the tropical limit. As explained in [71], the logarithm of the prime form then scales as
the length of the path,
In B(z;, %[Q) = = L(t;, 1) (7.5)
Q@

To establish this*' one shows that, for an adapted choice of the odd spin structure v = [r’, k"],
the theta series in (B.14) and (B.15) are dominated by a single vector n in the sum (B.9),
such that,

2 1 1
In E(z;, z;|Q?) — %\(ﬁrj K| — 3 In |w" (t;) - K| — 3 In Jw™(¢;) - | (7.6)

Here, “adapted” means that the two arguments of the logarithms, coming from the tropical
limit of the half-differentials, are non-zero. Whether a given spin structure is adapted or not
strongly depend on the positions ¢;,t;: e.g for the two paths in the right panel of Figure 5,
we have (omitting a factor dt; in the first three columns),

K| o090 03 | 04 || 2¢7 - K 208 - K 25" - K
(3,00 1 0 |-1] ti -t ty — Ly Ly —t4
(0,%) 0 -1 1 0 tz3 — L ts +ty — Lo — L3
(2,2)| =1 | 1| 0 | ts—ty |to+t3— Ly — Ly t3 — L3
(7.7)
where we have used the following abbreviations for ¢ = 1,2, 3,4 in the table,
o; = 2w (t;) - K (7.8)

20The path (t;,¢;) is not to be confused with the functions v(z|Q2) which relate the string to the Arakelov
Green functions in (2.12).

21We are grateful to Piotr Tourkine for helpful discussions on this matter.
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For the path v(t;,t;), the spin structures (%,0) and (%, 1) are both adapted, and the first

27 272
term in (7.6) is proportional to the length L(¢;,t;). For the path v(ts,13), only the spin
structure (%, %) is adapted, and the same conclusion holds.

For other spin structures, deemed “not adapted”, one of the combinations w*(¢;) - k" or
w'(t;) - K or both in the arguments of the logarithms of (7.6) may vanish in taking the
tropical limit naively. Instead, one must retain sub-leading corrections near the tropical
limit. Since the prime form E(z;, z;|Q?) is independent of the choice of odd spin structure v,
these sub-leading corrections must conspire to reproduce the behavior (7.5).

It follows from (7.5) that the one-form 0;In E(z;, z;) reduces to +mdt; /o’ in the tropical
limit, where the sign depends whether the variation dt; increases or decreases the length
L(t;,t;). With the conventions of Figure 5, the sign is always negative if the two points are
on different edges (e.g. for the path (3, ¢4)), while it depends on the sign of ¢,—t; if the two
points are on the same edge (e.g. for the path ~(¢1,t3)).

As a first application, the tropical limit of the homology-invariant one-form (4.23) is given
by,

Pr(z) — Z—” (e + % S san(t; — )k — % Sk (7.9)
jeJ J¢J

where J is the set of external legs on the same edge as ¢ (we include ¢ in the set J, but

set sgn(0) = 0), and ¢™ is the loop momentum flowing through the point i on the skeleton

diagram (in absence of other external vertices). By momentum conservation, this can be

rewritten as,

2T w1 m

= (—e 5 DL+ sen(t — )k ) dt, (7.10)
jeJ

which is recognized as the average of the momenta flowing into and out of the vertex point

t; along the graph I".

As a second application, we consider the tropical limit of the function gZ{ ; defined in (5.3),

0 s
oLy = 5o mIbIC)| G=Gli= [ e (7.11)
Unlike the derivative of the prime form it has the antisymmetry property gJIZ = —gi{ ;- For

a choice of odd spin structure v = [+', "] such that (j; - &' # 0, the tropical limit of the
theta series In ¥[v|(¢|Q2) is given by the first term in (7.6), whose derivative with respect to
I .

! gives,

27-]

gl — —2imsgn(Cl - K) K (7.12)
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One may check that this result is consistent with the relation (5.2) in the tropical limit. For
11
272
5, we conclude that the tropical limit of gi{ ; 1s independent on I and given by,

the specific choice of spin structure (3, 3) and any pair of points in the right panel of Figure

+im : t;,t; on distinct edges (L1, La), (L1, L3) or (Ls, L)
I —im : t;,t; on distinct edges (La, L1), (L3, L1) or (L, L)
95 7 in sgn(t; —t;) : t;,t; both on edge Ly (7.13)
imsgn(t; —t;) : t;,t; both on edge Ly

This conclusion would not hold for pairs of points on the middle edge of Figure 5, as the
contraction (j; - " would vanish in that case. The fact that (7.13) is independent on I makes
11

the spin structure (3, 3) particularly convenient, although one could in principle use any

other odd spin structure.

7.3 Tropical limit of the chiral integrand: pentaboxes

We shall now analyze the behavior of the chiral integrand in the regime where the Abel-
Jacobi map between the vertex points scales to infinity at the same rate ¢; — (5 ~ ¢ Ztr] /o
as the period matrix 2 ~ Y/a/. This degeneration will turn out to reproduce precisely the
pentabox diagrams (a, b, ¢) which occur both in supergravity and SYM theory. Contact terms
responsible for the double-box diagrams (o, ¥, ¢’) require a discussion of the full integrand,
which is deferred to the next subsection.

Recall that the chiral integrand is given by (5.10), which we copy for convenience after
cyclically permuting the legs,

Ky = wr(2)A3,4)A(5, 1) K 5 445+ cyel(1,2,3,4,5) (7.14)
where IC{’M‘ 4.5 18 the sub-correlator (5.11), cyclically permuted,

I _ I m I I I
K1,2,3\4,5 = 27TJUmTl,z,:’,|4,5 - 92,3T23,1\4,5 - 92,1T21,3|4,5 - 9371T31,2\4,5
I I I
- 927452;4|5\1,3 - 937453;4|5\2,1 - 917451;4\5|2,3

I I I
- 92,552;5I4\371 - 93,553;5|4\2,1 - 91,551;5\4|2,3 (7.15)

where we recall that A(i, j) is the bi-holomorphic (1,0) form (3.31).

In the tropical limit, A(z, j) vanishes by antisymmetry if the vertices ¢;, ¢; lie on the same
edge of the skeleton diagram, and reduces to +dt; dt; otherwise with the sign determined
by (7.3). This implies that the three edges of the graph can carry (3,2,0), (3,1,1) or (2,2,1)
external legs and therefore rules out the first two graphs in Figure 4 with bubble and triangle
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subdiagrams. The third and fourth graph of Figure 4 in turn involve bubble and triangle
subdiagrams within a 1PR skeleton and drop out from the field theory limit for a different
reason: Graphs obtained from the 1PR vacuum graph in the right panel of figure 2 cannot
contribute by unitarity as a consequence of the non-renormalization theorems for three-point
functions of on-shell massless states at one loop [65] and two loops [16].

We shall assign the external legs such that, for the odd spin structure ' = (%, %), the
inner product ¢}’ - " in (7.6) is non-zero for all pairs of points, so that (7.13) applies. This is
for convenience only, since the result cannot depend on the choice of £’ since the correlator
(7.14) is expressible in terms of prime forms, see (5.35) or (5.41), which are independent
of the spin structure. At the same time, the tropical limit of (7.14) is unaffected by the
vanishing of certain w(t;) - " in (7.7) since they descend from the (3, 0)-forms h,(z;) that
were shown to cancel from K in section 5.1.

Consider first the case where the external legs are distributed as in the planar pentabox

(a) of Figure 1. By (7.3), the Abelian differentials w;(z;) reduce to

t3 ty e i dt
: (%)) @ (1 11 0 0 idt,
(a) : tgtg:)ts — (wQ(zj)) = (O 00 -1 —1)% =

Thus the only non-vanishing term in the sum over cyclic permutations in (7.14) is the first
one proportional to wr(2)A(3,4)A(5,1) with w;(2) — id;1dts/a’, namely

(7.16)

(a 1 (a 21 a
K 9 oy s . di “ ——(a,)st,Q{“vs(@ dty ... dts (7.17)

with

. i 1
N1(,2),3\4,5(£) = ZpinT1,2,3‘4,5 + 2 (T23,1\4,5 + Tig 3145 + T13,2|4,5)

1
+ 3 (52;4\5|1,3 + Ss.a1512,1 + Stia5/2,3 + S25)413,1 + S3;504)2,1 + 51;5|4\2,1) (7.18)
. 1 " 1
= Z(]?in - §(k1+k2+k3)m) T75 3045 + 3 (T23,1\4,5 + Th23145 + T13,2|4,5)

One can identify p! with the loop momentum ¢ in Figure 1 (a) which is in the lower end
of the edge supporting the external particles 1,2,3. The combination (k1+k2+k3)mT1’72’3| L5
is obtained from the six permutations of Sauj513 via (4.53). Up to a global rescaling of
internal and external momenta by a factor of ¢ which was left implicit in [47], this is in
precise agreement with the numerator for the diagram (a) computed in that reference.
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Next, consider the case where the external legs are distributed as in the non-planar
pentabox (b) of Figure 1. By (7.3), the Abelian differentials w;(z;) now reduce to

(b) : t{t‘g - (Z;EZ D + ((1) (1) (1) _11 —01) Xizfj (7.19)

The only non-vanishing term in the sum over cyclic permutations in (7.14) is again the
first one proportional to wr(2)A(3,4)A(5,1) with w;(2) — idr1dta/d’, leading to the same
integrand as in (7.18) up to an overall sign from the fourth column,

K Y

b
gty dts B — N (0 dt . dts (7.20)

() ()

with
b a
N1(72)73\475(€) - _N1(,2{3\4,5(€) (7.21)

The tropical limit of IC}7273| 45 15 identical in the cases of (a) and (b) since 915 does not occur
n (7.15). The non-planar pentabox numerator (7.21) is again in precise agreement with the
numerator for the diagram (b) computed in [47].

Finally, let consider the case where the external legs are distributed as in the non-planar
pentabox (c) of Figure 1 (also see the right panel of Figure 5). The Abelian differentials
wr(zj) now reduce to,

o ~EE)S6 A A,

There are now two non-vanishing terms in the sum over cyclic permutations in (7.14), namely

wr(1)A(2,3) A(4,5) and wi(4)A(5,1) A(2,3),

K 9

G
T (IC512|34—K§74,5|1,2)dt1...dt5—; T TN s (Gr) db Lt (7.23)

with loop momenta p' = ¢ as well as p?> = —r in Figure 1 (c) and

N12\43\5( r) = Nfg),5\34() N345|12( ) N125|34()+N;>(25\1,2(7°) (7.24)

again in precise agreement with the numerator for the diagram (¢) computed in [47]. The
degenerations K} 134 27?@]\/'1(25'34(6) and IC345‘1 5 — 27?@./\/'3(45|12(7") are obtained by
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repeating the steps of (7.18) which are now sensitive to all the five cases of gi{ ; covered in
(7.13). The change of orientation in p? = —r stems from the fact that the definition (2.15) of
loop momenta via A;-cycle integrals leads to both of p! and p? pointing to the left in Figure
1 (¢), whereas r is drawn to point to the right. Moreover, note the relative sign between the
right-hand sides of (7.23) and (7.17), (7.20) in identifying the numerators: This sign reflects
the orientation of leg 5 in Figure 1 (¢) whether its external edge points to the left or right
and drops out from the gravity numerator /\/'1(02)| 4’3|5(€, T) ~1(f2)| 4’3|5(€, r) that we are deriving
from the tropical limit.

Note that the relations (7.21) and (7.24) among pentabox numerators are the kinematic
Jacobi identities which are consequences of color-kinematics duality [66]. In our setup, the
kinematic Jacobi identities among N, N'®) A follow from the degenerations of the five-
forms in the correlator (7.14) and the tropical limit (7.13) of g/ ;.

7.4 Tropical limit of the Type II string integrand: double boxes

Scattering amplitudes in Type II strings involve an integral (6.2) of the product IC(5)I€(5) Z5) |
over the loop momentum, vertex points z; and complex structure moduli parametrized by (2.
As we review in subsection 7.5 below, the tropical limit of the chiral integrand discussed in the
previous subsection reproduces exactly the contribution of the pentabox diagrams (a, b, c)
in Figure 1. However, there are additional contributions from maximal degenerations of
the genus-two Riemann surface where two punctures collide, which are responsible for the
double-box diagrams (a’, V', '), as we now show.

Due to short-distance singularities in the chiral integrand arising from derivatives of the

prime form,

1

Zi—Zj

0, InE(z,2;) = + O(z—2;) (7.25)

the integral of the product IC(5)I€(5) | Z5)|* over vertex points z; is not finite in the low energy

expansion, but rather has kinematical poles of the form
0

/ A’z 2|77 f(2) = —Wm +0(s%) (7.26)
|z|<R S

where we assume that the function f(z) is continuous at the origin. The O(s®) term depends
on the radius R > 0 used to excise the singularity at z = 0, but does not contribute to the
field theory limit at leading order and can be ignored.
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The coefficients of the kinematic poles can be computed by collecting the four possible
sources of poles of the form 1/|z;—z;|, and performing the replacement,

0., 111E(Zi,2j)|2 1 71'52(2,',2’]') .
— 0., In E(2;, 25)0., In E(2;, 2;) - |2i—2;]2 - sy (7.27)
Note that products of prime forms with different arguments 0, In E(z;, 2;)0,, In E(z;, z;) with
k # j do not lead to any kinematical pole since the resulting singularity (z; —z;) (2 — 2)
integrates to zero after integration over the phase of z;,—z;. Moreover, maximal degenerations
with three of more punctures colliding do not contribute to the field theory limit at five points
since they would require more than one prime form in the chiral correlators such that the
integration rule (7.26) can be used multiple times.
The singularities (z;—22) ™" of the chiral correlator were already extracted in (5.36) based
on the representation (5.35). The residue at s;5 = 0 of the relevant chiral contributions is
given by,

K = Res.,52,K(5) = Ti2,31a50(2,4)A(3,5) + Tiags5A(2, 3)A(4,5) (7.28)

which is permutation symmetric in 3,4, 5, by virtue of the symmetries (3.29) and (3.32).
Hence, the graphs where the vertices 1 and 2 collide are captured by applying the replacement
(7.27) to,

,C12,€12 52
GG ™0 (21, %)

- 12 12
Koke = 78 s, ek (7.29)

We will now extract the chiral contributions to double-box numerators for diagrams (a’),
(0'), (¢) in Figure 1. Given that the chiral contribution (7.28) shares the structure of the
four-point correlator (3.33), the computations below closely follow the tropical limit of the
two-loop four-point amplitude in [71].

In the planar case (a’), the abelian differentials w;(z;) with j = 2,3,4,5 reduce to (see

(7.3))
t t i a’ ; .
o KT = G s )
o ’ o o (7.30)

and (7.28) reduces to the first term A(2,4)A(3,5) — dty...dts/(a/)*. The resulting numer-
ator agrees with the result of [47] (denoted by /\/'1(;)3‘ 45(0) in the reference)

a')

(VK3 Y Tipgusdts...dts D NG, (0 dts.. . dts (7.31)
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Moreover, this expression for planar double-box numerators matches antisymmetric combi-
nations of planar pentabox numerators N in (7.18)

N12 .34, 5( ) T1273\475 = Nfg),sm,s(g) - Nz(i),sm,s(“g) (7-32)

and therefore realizes another kinematic Jacobi identity required by the color-kinematics
duality [66].

The above steps can be repeated to determine the non-planar double-box numerators for
diagrams (') and (¢’) in Figure 1. The degeneration of the Abelian differentials,

s wi(z)) ) (1 1 =1 0 id
AN
" t17t2t5 - (wz(z) oo 1 —1) " W
t i c — ] )
v Jo = QDG S )
’ o “ (7.33)

again suppresses the second term ~ A(2,3)A(4,5) in (7.28), and we obtain an extra minus
sign in A(2,4)A(3,5) — —dty...dt5/(a’)* as compared to the planar case (7.30). Hence,
the tropical limit of the correlator for diagrams (b'), (/) is

b') 4
(@)Y —Togusdts. . dts,  ()'KE Y ~Tiogusdts ... dts (7.34)
and one can read off the non-planar double-box numerators
b') c
N1(2 34, 5( )= N1(2,;\4,5(€) = —Tio3u5 = le 34, 5( ) (7.35)

They reproduce the numerators of [47] (denoted by ./\f12 3as(0), Ng )3‘ 45(0) in the reference)
and obey the color-kinematics duality when comparing with non-planar pentabox numer-
ators. Also note that the symmetry of Nf§7§‘475(€), Nl(;;‘475(€), Nf§7;‘475(€) under 4 <> 5 is
consistent with the vanishing of numerators associated with triangle-subgraphs.

7.5 Assembling the supergravity amplitude

Collecting the results in the previous two subsections, we find that the field theory limit
of the genus-two scattering amplitude in Type II strings precisely produces the complete
two-loop five-point amplitude in maximal supergravity in D dimensions, in the double-copy
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representation of [47] (with the structure of [66]),

ASG—5<ZI<;>/

a \(a (b b
N O O+ A ON O
N (CIND (0T, s + 1/\/@’) N ) (7.36)
1,2/4,3/5 1,214,355 ") 11,2345 12,3]4,5 23|45 12345 :
bl b/ ~
le 34, 5N(2 34, 511,2?3,4,5 + le 34, 5N12 34, 511 2345 T sym(1,2,3,4, 5)>0d£ dr

Here, the symmetry factors % and i ensure that the sum over 5! permutations of the external

legs does not overcount individual diagrams. The factors 11(2)737475 are the usual products of
Feynman propagators for the diagrams in Figure 1,

1

v =
1,23,4,5 €2r2(€ + 7«)2(€ — k;l)z(f — k‘12)2(€ — k’lgg)z (’f’ — k’5)2(’f’ — k‘45)2
O 1
1,2.345 = £2T2(£ + 7")2(6 — ]{51)2(6 — ]{512)2(€ — ]{7123)2 (7’ — k5)2(£ +r -+ ]{54)2
1
[(C) = .
B2 T 0202 (0 1)2(0 — Ky )2(0 — kno)2 (r — k) 2(r — kza)2(€ + 7 + ks)? (7.37)
/ 1
7@ =
1,2,3,4,5 ]{3%2€2T2(£ + 7")2(6 — ]{712)2(£ — ]{7123)2 (7" — ]{35>2(T — ]{545)2
G 1
1,2.345 = ]{3%2€2T2(£ + 7")2(6 — ]{712)2(£ — ]{7123)2 (7" — ]{35)2(7" + 0+ ]{74)2
1

](C/) =
1,2,3,4,5 ]{3%2€2T2(£ + 7")2(6 — ]{712)2(£ +r 4+ ]{?3)2 (7’ — ]{35)2(7’ — ]{345)2

The zero-mode integral (.. .)o in (3.5) yields the components of the superspace numerators for
arbitrary external states of the ten-dimensional Type-II multiplets, see [55] for the bosonic
components of T1772,3|4,5 and 1123145

The supergravity amplitude (7.36) has been given for general spacetime dimension D by
considering a compactification on a T'°~P-torus and retaining only the zero-momentum and
-winding modes in the Siegel-Narain theta series (6.15). The superspace components of the
kinematic factors in (7.36) can be dimensionally reduced to any D < 10 and integrated over
the loop momenta in D < 7, where the integrals are UV-finite. Dimensional reduction to
D = 4 does not directly reproduce the BCJ numerators of [66] in spinor-helicity variables
since their building blocks «;; involve certain inverse Levi-Civita invariants that are specific
to four dimensions. Still, the symmetry properties of the combinations of +;; in [66] match
those of the superspace building blocks in (7.36), see appendix D of [47] for details. The
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difference between the amplitude representation in [66] and the dimensionally reduced su-
perspace numerators of (7.36) should cancel when integrating the sum over all diagrams, for
instance using the recent progress on the relevant integrals in [86, 87, 88, 89].

7.6 Comments on the Heterotic and Type 1 strings

Having correctly reproduced the two-loop integrand in maximal supergravity, one would like
to also match the two-loop integrand in N' = 4 super-Yang-Mills theory, which is closely
related to the supergravity amplitude by the double-copy prescription [66]. One possible
strategy is to extract the field theory limit of the scattering amplitude of five gauge bosons
in the Heterotic strings, but this would produce the integrand for half-maximal supergravity,
where both vector multiplets and the gravitational multiplet propagate in the loops. While
the four-point two-loop amplitude in half-maximal supergravity is known [90], this is not the
case to our knowledge for the five-point amplitude. Moreover, extracting the field theory limit
of Heterotic string amplitudes is bound to be subtle, as contributions from the separating
degeneration due to the pole of 1/Wo (where Wyq is the genus-two Igusa cusp form of weight
10) are known to contribute at four points [64], and are expected for five points as well.

A more direct approach is to consider the oriented, open-string sector of Type I su-
perstrings, which precisely reduces to SYM theory at low energy, without contamination
from gravitational exchange. For open superstrings, scattering amplitudes of massless gauge
bosons are given by an integral over the moduli space of Riemann surfaces with bound-
aries, over the positions z; of the vertex operators along the boundaries [91], and over loop
momenta. Riemann surfaces with boundaries are constructed as a quotient of a closed Rie-
mann surface under an anti-holomorphic involution [92]. As a result, the period matrix
is purely imaginary, and can be parametrized by (7.1) for a genus-two Riemann surface
with three boundaries. The integrand is given by the product K5 ZCs) where Cs) is the
Chan-Paton factor, which depends only on the color indices of the external particles. For a
five-point amplitude with gauge group SU(NN,), possible choices of C5) include a single-trace
N2Ty(T0TeTeT%T%) if all 5 external particles are attached to the same boundary and
a double-trace N, Tr(T“T*T)Tr(TT%) if three particles are attached on one boundary
and two on another (recall that Tr(7*) = 0 for a simple gauge group; the overall factors of
N2 and N, arise from Tr(1) on the boundaries which do not support any external particle).

At low energies, scattering amplitudes are again dominated by degenerate Riemann sur-
faces, with long tubes replaced by strips and closed-string vertices replaced by disks 2. At

22The field theory limit of the genus-two open-superstring partition function in a magnetic field was
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two-loop, five points, they can be represented by fattened versions of the graphs in Figure
1, where the fattening keeps track of the position of the vertex operators. For the pentabox
diagrams (a, b, ¢), the same computations as in subsection 7.3 apply, and reproduce the field
theory integrands in color-kinematics dual form. Double-box diagrams, however, arise in a
different fashion than for closed strings, since the rules (7.26), (7.27) for contact diagrams
no longer apply. Instead, kinematic poles only arise from prime forms involving pairs of
neighbouring punctures on the same boundary,

L, 0z (7.38)

i Ri%1 Si(i%1)

821. In E(ZZ‘, Zi:l:l) ~

Therefore, the coefficient of a single-trace Chan-Paton factor ~ NZ2tr(T* T T %)
exhibits kinematical poles of the form 1/s1a, 1/S23, 1/834, 1/845, 1/s51, while a double-
trace Chan-Paton factor ~ N.tr(T*T%T)tr(TT%) is accompanied by poles of the form
1/812,1/823,1/s31. The numerators can be extracted in the same way as before, and turn
out to match with the prescription of [66], after converting color-ordered traces into the
color factors associated to the cubic graphs in Figure 1. All cubic graphs are accessible from
the partial amplitudes ~ N2tr(T™T T T%T%) and ~ N tr(TT2T%)tr(T*T%) since
the N 2-suppressed single-trace contribution ~ Tr(T®T%2T%T%T%) is expressible in terms
of permutations of the former [95] (see [96] for the N_2-suppressed four-point single-trace
amplitude).

investigated in [93, 94, 80] using the Schottky representation, reproducing the Feynman diagrams contributing
to the Euler-Heisenberg Lagrangian of pure Yang-Mills theory. Our interest is in scattering amplitudes in
SYM theory in Minkowski background.
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8 Conclusion and future directions

In this work, we have proposed a spacetime supersymmetric expression for the chiral two-loop
five-point amplitude relevant to massless states of Type II, Heterotic, and Type I superstring
theories. The construction of the chiral amplitude is driven by the BRST cohomology of
vertex operators in the pure spinor formalism and the constraints from homology invariance
in the chiral splitting procedure. The main result in (5.10) and (5.11) is written in pure spinor
superspace and therefore allows to address arbitrary combinations of massless external states
in the gauge and gravity supermultiplets.

The key result of this work is to obtain the full o dependence of the two-loop five-point
amplitudes, including the contributions to the correlators beyond the OPE analysis and
the low energy limit of Type I and Type II amplitudes in [25]. In doing so we provide the
starting point for a systematic study of the low energy expansion of Type II string amplitudes
beyond leading order, and comparison with predictions from string dualities, which will be
the subject of a companion paper [30]. Our result will be further validated by a derivation
from first principles in the RNS formalism of the chiral amplitude for external NS bosons
and even spin structure to be given in another companion paper [31].

We have also extracted the loop integrands for two-loop five-point amplitudes of super-
Yang—Mills and maximal supergravity in D < 10 dimensions: The worldline limit of the
string amplitudes in this work reproduce the representation of the field theory amplitudes
proposed in [47]. This form of the super-Yang-Mills and supergravity amplitudes features
the color-kinematics duality and double-copy structure [67, 68, 69]. Therefore, our work is
yet another showcase that hidden relations between gauge and gravity amplitudes may be
conveniently studied from a string-theory perspective.

Our methods should be useful to determine and organize chiral two-loop amplitudes for
higher numbers of massless states. The explicit construction of the kinematic factors will
require further cohomology studies in pure spinor superspace as for instance done at genus
one [58, 51]. The decomposition (5.10) of the chiral amplitude into a basis of differential
forms is easily extended to higher multiplicity: At six points for instance, the problem
reduces to constructing 14 sub-correlators along with the basis forms that are individually
homology-invariant functions of the punctures related by permutations of the external legs.

Given that the chiral correlators in (5.11) have no explicit o/ dependence, our results
may also be exported to the pure spinor incarnation of the ambi-twistor string [97, 98], and
should pave the way towards obtaining five-point supergravity amplitudes from correlators
on the bi-nodal sphere using the techniques of [99, 100].
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A Clifford-Dirac algebra and pure spinor identities

Weyl spinors in the 16 and 16’ representations of the Lorentz group SO(10) in ten-dimensional
space-time R'® will be denoted with an upper and a lower index, respectively, such as &%
and x, where @ = 1,---,16. The Clifford-Dirac matrices (y™),5 and (7™)*" acting on Weyl
spinors in the 16 and 16’ respectively satisfy the Clifford algebra,

(7™)as (Y7 4+ (1)as (V™) = 200" (A1)

" is the flat Minkowski metric on R and m,n = 1,---,10. The summation

where n™
convention over pairs of repeated upper and lower vectorial or spinorial indices is adopted
throughout. We shall often be led to complexifying the momenta and polarization data of
the fields, in which case space-time is C'°, the Lorentz group is SO(10;C), and the metric
7™ is the Kronecker 6™", and all formulas in this section continue to hold as stated.

A.1 Basic identities

The anti-symmetric tensor y-matrices are defined by,
ﬁ ].

(V™) = E(Vm)ay(vn)w — 1 permutation of m,n
1 .
(™) o5 = g(ym)m(yn)”’é@p)gﬁ + 5 permutation of m,n,p (A.2)
mnpqr

and so on for ™"P4 ~y , and similarly for the y-matrices with reversed spinor indices such
as (7"")%3. We shall not need y-matrices of rank 6 or higher which are related to y-matrices

of lower rank by Poincaré duality. The y-matrices have the following symmetry properties,

(Y")apg = +(7")a (") %% = —(v"")s"
(Y")ag = —(7"") pa (Y)Y = A (7T g
(" )ap = ("o (4-3)

satisfy the following product identities,

YmnYs = Ymns T VmTns — Ynllms
YmnpYs = Ymnps T YmnTps = YmpTns + YnpThms
VmnpgYs = Vmnpgs T Vmnpllgs — YmngTlps T YmpqTlns — VnpqThms (A.4)
as well as the following contraction identities,
V" Y emp = (10 = D) Yy oy
V" Yngeemy Y = (10 = 2p) (=) Ynyom, (A.5)
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As an immediate consequence for arbitrary commuting or anti-commuting spinors £%, %,
we have the following decomposition formulas,

1
5‘%5 + £ﬁ¢a = ] (g%nw)(”ym)aﬁ + 165! (£’anpqr¢)(’7mnpqr)aﬁ
g — €yt =

57 ) (") (A.6)

For an arbitrary commuting Weyl spinor &, combining the first equation of (A.6) with the
second equation of (A.5) we obtain,

(" E)alomE)s = =5 (tm)as (€97) (A7)
Finally, we have the following Fierz identity,
8057007 = 40710 — (7)o () — 26,7051 (A8)
and the famous supersymmetry Fierz identity,
0= (7")as(rm)rs + (7" sy (Ym)as + (7" )ra(Ym) g5 (A.9)

A.2 Identities involving pure spinors

A commuting pure Weyl spinor A is defined to satisfy (2.1), namely (Ay™A) = 0. Combining
(2.1) with (A.7) and with the last equation of (A.4) respectively, we see that an arbitrary
commuting pure spinor satisfies the following fundamental identities,

()‘fym)a()"ym)ﬁ =0
(AmnpgrA) (XY™ )a = 0 (A.10)
The tensor product of two identical pure Weyl spinors has the following decomposition,
mnpqr\af
32 . 5' ()‘fymnqu)O (fy P ) (A11>
The following identity holds for the tensor product of three identical pure Weyl spinors,
(AMYpmnpgrA) (AYs))a = 0 (A.12)

where the anti-symmetrization bracket is applied to all six indices. The identity may be

AN =

proven as follows. The symmetric tensor product of three arbitrary Weyl spinors in the 16 is
reducible by contracting two of the Weyl spinors with a ~-matrix. However, this contraction
vanishes for pure spinors by (2.1) and hence the symmetrized tensor product of three pure
Weyl spinors is irreducible. Its further tensor product with a 16 is readily shown not to
contain an anti-symmetric rank 6 tensor, which is Poincaré dual to an anti-symmetric rank
4 tensor, which proves the identity.
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B Functions and differentials on Riemann surfaces

In this appendix, we review the basic holomorphic and meromorphic functions, differentials,
and Green functions on a compact Riemann surface > of genus h from which all string
correlators needed here can be constructed. Standard references are [2, 101, 35].

B.1 Homology and modular transformations

A canonical basis for the homology group H;(3,Z) consists of 1-cycles 2(; and B; with
I =1, ---,h and canonical intersection pairing J,

JALA) = F(B,B,) =0
JA,By) = —=J(B,A;) =01y (B.1)

Different canonical bases (27, B;) and (U7, B;) are related by linear transformations repre-
sented by a matrix M with integer entries,

@)@

Here, 2 and ‘B stand for the column matrices with entries 2{; and B, respectively, and M is
an element of the group Sp(2h,Z) of modular transformations, which preserve the canonical
intersection matrix J,

M'IM =3 J—(Ih 0 M = c D (B.3)
where A, B, C, D are h x h matrices with integer entries. An important subgroup of Sp(2h, Z)
is the group GI(h,Z) which consists of those modular transformations M which transform 2A-
cycles into linear combinations of A-cycles and B-cycles into linear combinations of B-cycles.
It is obtained by setting B=C =0 and D = (A")~%.
B.2 Holomorphic 1-forms and the period matrix

A canonical basis of the cohomology group H"? (X, Z) consists of holomorphic (1, 0)-forms
wy with I =1,---  h whose periods on the homology basis (27, B;) are given by,*’

j{ wy =01y j{ wy =y (B.4)
91[ %I

ZFor our conventions and notations for integrals of (1,0) forms see footnote 2.
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The 2A-periods fix the canonical normalization of w;, while the 2B-periods give the period
matrix 2, which is symmetric by the Riemann bilinear relations, and for which the matrix,

Y =Im Q (B.5)

is positive definite. Under modular transformations M € Sp(2h,Z), whose parametrization
in terms of h X h matrices A, B,C, D is given in (B.3), the matrix of holomorphic Abelian
differentials w, the period matrix 2, its imaginary part Y, and the determinant thereof det Y
transform as follows,

w(CQ+ D)~

= (AQ + B)(CQ+ D)™

— (QC" + DY (CQ* + D)

= |det (CQ+ D)*det Y (B.6)

w
Q
Y
det Y

B.3 The Abel map and Jacobi ¢-functions

The Jacobian of the surface X is the Abelian variety defined by,
J(¥) =C"/{z" + 07"} (B.7)

Given a base point zy € X, the Abel map sends a divisor D of n points z; € ¥ with weights
¢ € Zfori=1,---,n, formally denoted by D = q121 + - - - ¢n2p, into C" by,

q121+"'+annEZQi/ (w1, ,wn) (B.8)
i=1 20

where the h-tuple (wy,---,wy) stands for the vector of holomorphic (1,0)-forms w;. The
Abel map into C" is multiple valued, but it is single valued as a map into J(X).

The Jacobi ¥-functions with characteristics » are defined on ¢ = ((y,- -+, ()t € CP by,

I[K](C|N) = Z exp (mr(n + &) Qn+ k) + 2mi(n + &) (¢ + Ii”)) (B.9)

nezh

Here, k = (x'| k") is a general characteristic, where /, x” € C" are both written as a column
vector. Henceforth, we shall assume that s corresponds to a spin structure, and thus be
valued in /', k" € (Z/2Z)". The parity of the spin structure is determined by the parity of
the ¥-functions which satisty,

/ "

I[k](—¢1Q) = (=1)" 0[] (¢|) (B.10)
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According to whether 4x’- k" is even or odd, « is referred to as an even or odd spin structure.
Upon shifting by full periods M, N € Z",

I[K](C + M + QN|Q) = exp ( —irN'QN — 2miN' (¢ + ') + 27rz'Mt/-€”)19[/€](C|Q) (B.11)

Under a modular transformation M € Sp(2h,Z) as given in (B.3), the characteristic K =
(k'| k") transforms as (see for example [101, 102])

O D@ mE) o

The Y-function transforms as follows,
IR ]((QCt + D')7¢|(AQ + B)(CQ + D) ) = e(k, M) (det (CQ+ D)) *9[K](C]Q) (B.13)

where ¢(k, M) is an eighth root of unity satisfying €3 = 1. Its explicit form is given in
[101, 102] but will not be needed here.

B.4 The prime form

The prime form is constructed as follows [101]. For any odd spin structure v, the 2h — 2
zeros of the holomorphic (1, 0)-form,

Zaf 1(0]Q)w; (2) o= 2 (B.14)

are double and the form admits a unique (up to an overall sign) square root h,(z) which is a
holomorphic (1/2,0) form. The prime form is a (—1/2,0) form in z, w, living in the covering
space of ¥, defined by

Vv](z — w|Q)

E(z,w|)) = —h,,(z) ()

(B.15)
where the argument z — w of the ¥-functions stands for the Abel map of (B.8) with z; = z,
29 = w and ¢ = —¢2 = 1. The form E(z,w|Q?) defined in (B.15) is independent of v,
holomorphic in z and w, odd under swapping z and w, and has a unique simple zero at
z = w. It is single valued when z is moved around 2{; cycles, but has non-trivial monodromy
around a B cycle,

E(z +B,w|?) = —exp (—iﬂ'QH — 27Ti/ w;) E(z,w|Q) (B.16)
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In terms of the first derivatives, we have,

0. mE(z+Br,w) =0, In E(z,w) — 2miw,(2)
0. InE(z,w+B) =0.In E(z,w) + 2miw,(2) (B.17)

The combination 0.0, In E(z, w|Q?) is a single valued meromorphic differential with one dou-
ble pole at z = w and no single poles. Its integrals around homology cycles are given by,

% dz0,0, In E(z,w|Q) =0

Ar

7{ 4200 In E(z, w]Q) = 2ico (w) (B.18)
By

and will be of use throughout.
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C Chiral splitting and loop momenta

In this appendix, we review chiral splitting for the x™-field in 10-dimensional space-time on
a compact Riemann surface of arbitrary genus h. The functional integrals of interest may
be obtained through a generating functional which includes both the contributions from
the Koba-Nielsen factor and from multi-linear insertions of the current dx,, required in the
vertex operators, and is given by (2.16).

The worldsheet field contents of the pure spinor string has been arranged so that their
combined Weyl and holomorphic anomalies cancel. Omitting the contribution to these
anomalies from the x-field by itself, its Gaussian functional integral evaluates to,

J = (2m)"6(k) (d|Zt|2Y exp{ Z SZ]} k= Z k; (C.1)

Here, the determinant is taken of the matrix Y with components Y;; = Im Q;;, while Z is
the chiral scalar partition function which is holomorphic in moduli, and &;; is given by,

1
gij = —51{32 . ]{Zj G(Zi, Zj) + ’L]{?Z . Ej asz(Zi, Zj) + Zkz . ’/_]j ang(Zi, Zj)

1 1
+§5i 1 €5 0,,0,,G (2, 25) + 5@' -1 05,05, G (2, 2j) + 1; - € 05,0,,G(zi, 25) - (C.2)
The Green function G is given in (2.11), but may equivalently be replaced by the Arakelov
Green function of (2.12). We split &;; into a part which involves only the holomorphic prime

form E(z;, z;), another part which involves its complex conjugate, and a part which involves
the holomorphic Abelian differentials and Y/,

Ej=EL+E;+ & (C.3)

The individual contributions are given as follows,

Ef = %k‘l -k In E(2, 2j) — ik; - €50, In E(z;, 2;) — %Ei - €;0;, 0., In E(2;, 2;)

& = %l{; ki I E(z, ;) — ik; - 7 05, n E (2, ;) — %n -1 05,0-, I E(z, 2)  (C.4)
and the sum of £ is given by,

S - Y (a-4) (6-4) (C5)

i,7=1
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where we have defined,

N %

G =3 (epwr(z) + ik / wr
— "

8 jN zj

(= Z (ﬁ]m wr(z;) + ik} / wl> (C.6)
j=1 20

Next, we shall represent the combination of the (det Y')-denominator and the exponential of
the sum of Sioj by an integral over loop momenta p7* € R,

exp {Z” g }
(det 2Y7)®

The full generating function is then given as follows,

= / dp exp {—27rY}JpI -p? +2mpl - (¢ — 51)} (C.7)
Rth

T = 8(k) / dp Bz, 0, ki, 1) Bl i~ (C.8)
Rth

where the chiral amplitude is given by,

B(zi, e, ki, p'|) = Z ¥ exp {iWQIJpI p’ + ZQWPI : (c":‘i wr(z) + Zkz/ WI)

i 20

_% Z (Zk‘z + &-(%i) (ik‘j + €j3zj> In B(;, Zj)} (C.9)
i#j

and similarly for its conjugate chiral amplitude. The chiral amplitude may be recast in the
form of a chiral correlator,

Bz, e, ki, p'|Q) = Z7%exp {iWQ[JpI -l + ZQﬂipl . kZ/ Z wl} (C.10)
i 20

X <expz {5,- . (@:m(z,-) + 27Tp1w1(2’i)) + ik - 95+(Zz)}>

The effective rule for the Wick contraction of the chiral bosonic field = is given by (2.19).
We have grouped together the various terms involving the polarization vectors, which make
it clear that the effective rule for the insertion of the derivatives in the formulation with loop
momenta is given by the following substitution,

ox™(z)  — 0T (2) + 27m(p")"wi(2) (C.11)

It is this effective rule of which we shall make use here when applying chiral splitting.
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D Operator product expansions
The short-distance behavior of the physical canonical fields is given by the following OPEs,

2™ (2)x"(y) ~ —n"™" In(z — y)

8 0o
Pa(2)0°(y) ~ — —

(D.1)

As a result, the OPEs of the composite matter fields d,,, [I"™ defined in (2.4) may be deduced
from the OPEs of the physical canonical fields,

al2) (o10).000)) ~ 22 () daly) ~ ~ 22
maﬁ
() £ (). 010) ~ 221 G~ 0

where D, is the superspace derivative defined in (2.29), from which the BRST transforma-
tions of the matter fields in (2.26) may be evaluated. The OPEs of the ghost fields are given

by,

5.8 + (Y"N)aA,
walz) W) ~ )

A - 0% + (’ij‘)a]\? - (%n?“)%?
zZ—=Y
0% + ('Vm)‘)a@%n
Z—Y

(D.3)

s%(2) ra(y) ~

The presence of the functions A2 | A?, ¢%', Y5 is required in order for the OPEs to be com-
patible with the pure spinor constraints (2.1), and specifically to cancel the singularities in
the OPE of the fields w,, W,, s with the pure spinor constraints of (2.1). To do so, A?, and
P must satisfy,

(V" Na(Any™A) + (7" A)a =0

(YN (@™ A) + (Y"A)* =0 (D.4)
while ]\? and ¢7' must satisfy the following set of coupled equations,

(A + (V"N (ApymA) = (V") (G YmA) = 0
(") + (PPN (Apy"r) — (¥Pr)* (") = 0 (D.5)
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Note that the functions A? A?, Y are commuting, while ¢ is anti-commuting. The so-
lutions to these equations are not unique as there are non-trivial kernels. For example, we
cannot solve them simply by setting (A,y™\) = —§,,"* since this would be inconsistent with
the constraint Ay A = 0. Similarly for the other equations and their solutions.

The contributions from A, A, G, ¢5" will cancel out of the OPEs of the composites
Npn, J, T, and their analogues for the ghosts w® and s®. Their OPEs with \* are given by
the corresponding linear transformations on A%,

a L (YmnA)®
Nan(z) 20(0) ~ 32220
)\a
=Y
O
=Y

Ia(z) A (y) ~

T (2) A*(y) ~ (D.6)
while their OPEs with w, are subject to extra terms due to the constraints (2.1) and will not
be needed here. The OPEs of the currents are more complicated because of the constraints,
and we quote here only the relevant results,

) -~ nnmeq - nmpqu - nnqup + nqunp
£=Y
Nmgnp — TlmpTing
-3 e (D.7)

Nonn(2) Npg(y
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