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2.3	Vectorial	representaion		

A) Inertial matrix 

According to [24], inertial matrix is composed of the rigid body inertial matrix and rigid body-like hydrodynamic 
added mass 

 

𝑀  

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑚    0    0 

0       𝑚      0 
0     0      𝑚  

0 𝑚𝑧 𝑚𝑦
𝑚𝑧 0 𝑚𝑥

𝑚𝑦 𝑚𝑥 0
0 𝑚𝑧 𝑚𝑦

𝑚𝑧 0 𝑚𝑥
𝑚𝑦 𝑚𝑥 0

𝐼 𝐼 𝐼
𝐼 𝐼 𝐼
𝐼 𝐼 𝐼 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑋 𝑋 𝑋

𝑌 𝑌 𝑌
𝑍 𝑍 𝑍

𝑋 𝑋 𝑋
𝑌 𝑌 𝑌
𝑍 𝑍 𝑍

𝐾 𝐾 𝐾
𝑀 𝑀 𝑀
𝑁 𝑁 𝑁

𝐾 𝐾 𝐾
𝑀 𝑀 𝑀
𝑀 𝑀 𝑀 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

  (9) 

 

B) Coriolis and centripetal matrix 

Coriolis and centripetal matrix are derived from system inertial matrix. They combine rigid body Coriolis-
Centripetal matrix and hydrodynamic Coriolis-Centripetal matrix 

 

𝐶 𝜈  
0 𝑆 𝑀 𝜈 𝑀 𝑣

𝑆 𝑀 𝜈 𝑀 𝑣 𝑆 𝑀 𝜈 𝑀 𝑣
0 𝑆 𝐴 𝜈 𝐴 𝑣

𝑆 𝐴 𝜈 𝐴 𝑣 𝑆 𝐴 𝜈 𝐴 𝑣   (10.1) 

 

where 

𝐶 𝜈   

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 0 𝑎 𝑎
0 0 0 𝑎 0 𝑎
0 0 0 𝑎 𝑎 0
0 𝑎 𝑎 0 𝑏 𝑏

𝑎 0 𝑎 𝑏 0 𝑏
𝑎 𝑎 0 𝑏 𝑏 0 ⎦

⎥
⎥
⎥
⎥
⎤

 (10.2) 

and 

𝑎 𝑋  𝑢 𝑋  𝑣 𝑋  𝑤  𝑋 𝑝 𝑋 𝑞 𝑋 𝑟  

𝑎 𝑌  𝑢 𝑌  𝑣 𝑌  𝑤  𝑌 𝑝 𝑌 𝑞 𝑌  𝑟  

𝑎 𝑍  𝑢 𝑍  𝑣 𝑍  𝑤  𝑍 𝑝 𝑍 𝑞 𝑍 𝑟  

𝑏 𝐾 𝑢 𝐾 𝑣 𝐾 𝑤 𝐾 𝑝 𝐾 𝑞 𝐾  𝑟  

𝑏 𝑀  𝑢 𝑀  𝑣 𝑀  𝑤 𝑀 𝑝 𝑀 𝑞 𝑀  𝑟  

𝑏 𝑁 𝑢 𝑁 𝑣 𝑁 𝑤 𝑁 𝑝 𝑁 𝑞 𝑁  𝑟  

(10.3) 

 

C) Damping matrix 

Damping matrix is a collection of other hydrodynamic forces and moment which is quadratic lift and drag 

 

𝐷 𝜈  diag 𝑋 , 𝑌 , 𝑍 , 𝐾 , 𝑀 , 𝑁 diag 𝑋 | ||𝑢|, 𝑌 | ||𝑣|, 𝑍 | ||𝑤|, 𝐾 | ||𝑝|, 𝑀 | ||𝑝|, 𝑁 | ||𝑟|,  (11) 

 

D) Restoring force matrix 

A vehicle is affected by gravity and buoyancy forces 

 

𝑔 𝜂  𝑓 𝑓 𝑟 𝑓 𝑟 𝑓  (12) 
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𝑝, 𝑞, 𝑟  Angular velocity vectors about origin in the body-fixed frame 

𝑅 𝜂  Linear velocity transformation 

𝑆 ∙  Skew-symmetric matrix 

𝑇 𝜂  Angular velocity transformation 

𝑢, 𝑣, 𝑤  Translational motion vectors along the 𝑥, 𝑦, 𝑧 -axes 

𝑋, 𝑌, 𝑍  External force vectors about origin in the body-fixed frame 

𝑋  Hydrodynamic added mass coefficient, the force 𝑋 along the 𝑥-axis due to a velocity  𝑢 

𝑋  Hydrodynamic added mass coefficient, the force 𝑋 along the 𝑥-axis due to an acceleration  𝑢 

𝑋 | | Hydrodynamic damping coefficient defined using SNAME notation 

𝑅𝑒 Reynolds number 

𝛿 Boundary layer  

𝜂 Position and attitude vector 

𝜏 External force and moment input vector 

𝜈 Linear and angular velocity vector 
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