Woodman, Nicholas, Smethurst, Joel, Roose, Tiina, Powrie, William, Meijer, G., Knappett, J. and Dias, T. (2020) Mathematical and computational modelling of vegetated soil incorporating hydraulically-driven finite strain deformation. Computers and Geotechnics, 127, [103754]. (doi:10.1016/j.compgeo.2020.103754).
Abstract
In this paper a new model for the hydro-mechanical behaviour of rooted soils is developed. It is a physically-based model that couples finite strain soil deformation with unsaturated water and air flow, while improving on existing cohesion-based approaches to mechanical root reinforcement and empirical soil water-uptake approaches typically used to deal with rooted slopes. The model is used to show that the dynamics of soil-water pressure and soil deformation depend strongly on the physics of the root-water uptake and the elasto-plastic soil mechanics. Root water uptake can cause suctions and corresponding soil shrinkage sufficiently large to necessitate a finite-strain approach. Although this deformation can change the intrinsic permeability, hydraulic conductivity remains dominated by the water content. The model incorporates simultaneous air-flow, but this is shown to be unimportant for soil-water dynamics under the conditions assumed in example simulations. The mechanical action of roots is incorporated via a root stress tensor and a simulation is used to show how root tension is mobilised within a swelling soil. The developed model may be used to simulate both laboratory experiments and full-scale vegetated slopes.
More information
Identifiers
Catalogue record
Export record
Altmetrics
Contributors
University divisions
- Faculties (pre 2018 reorg) > Faculty of Engineering and the Environment (pre 2018 reorg) > Southampton Marine & Maritime Institute (pre 2018 reorg)
- Current Faculties > Faculty of Engineering and Physical Sciences > School of Engineering > Civil, Maritime and Environmental Engineering > Infrastructure Group
Civil, Maritime and Environmental Engineering > Infrastructure Group - Faculties (pre 2018 reorg) > Faculty of Natural and Environmental Sciences (pre 2018 reorg) > Institute for Life Sciences (pre 2018 reorg)
Current Faculties > Faculty of Environmental and Life Sciences > Institute for Life Sciences > Institute for Life Sciences (pre 2018 reorg)
Institute for Life Sciences > Institute for Life Sciences (pre 2018 reorg) - Current Faculties > Faculty of Engineering and Physical Sciences > School of Engineering > Mechanical Engineering > Bioengineering Group
Mechanical Engineering > Bioengineering Group
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.