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20
21 1. Introduction
22 The Arctic region is undergoing some of the most rapid rates of climate change in the world [1], with dramatic 

23 transformations underway in terrestrial, coastal and offshore environments that have immediate and long-

24 term consequences for socio-ecological systems [e.g. 2-5]. Significant changes in the type, extent and 

25 thickness of ice cover [6], meltwater input [7], and water mass dynamics [8], coupled with warming and 

26 ocean acidification [9], have already begun to impact ecosystem processes and the flora and fauna that 

27 inhabit a range of Arctic habitats [10]. The pace of change is such that our understanding of the way in which 

28 Arctic systems are structured and function is outdated, and insufficient to inform management, mitigation and 

29 adaptation efforts across the region [11,12]. Projections indicate that, even if global stabilisation of 

30 temperature below 1.5ºC is realised, changes will continue to manifest over an extended period, perhaps 

31 even millennial timescales [13], and may include unprecedented shifts in structure [14]. Changes to key 

32 components of Arctic ecosystems are already occurring, yet the collated evidence of how changes to 

33 baseline conditions are proceeding across the Arctic Ocean is still poorly constrained [15], focused on a 

34 limited number of exemplar areas [16], and seldom adopts a holistic view that begins to provide a nuanced 

35 understanding of the modus operandi of the Arctic [17]. This is concerning because informed decision- and 

36 policy-making benefits from a broad understanding of system dynamics, including feedbacks and the 

37 likelihood of ecological surprises [18], yet the focus of study is already shifting from the natural sciences to 

38 social sciences and humanities to meet legislative and policy demands [19]. Now more than ever, 

39 foundational concepts and evidence are needed to support sustainable management and policy, 

40 preferentially with a focus on continually acquiring, interpreting, and applying new interdisciplinary knowledge 

41 to enhance understanding [20].

42
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43 2. New evidence and emerging themes
44 With the recognition of the complexity of system dynamics comes a need to synthesise evidence on how 

45 climatic forcing is changing the fundamentals of the system. It was within this spirit that this thematic section 

46 was commissioned, with interdisciplinary contributions from a range of active national and international 

47 research programmes. In doing so, we did not seek to represent all active areas of Arctic science, nor was it 

48 the intention to produce a comprehensive overview of specific topics of interest, rather our motivation was to 

49 highlight some of the emerging themes and evidence, stimulate discussion and expedite insight. The 

50 contributions received consider the mechanistic basis and consequences of change over a variety of spatio-

51 temporal scales and for a number of different Arctic regions for three research clusters: the water column, 

52 seasonality and benthic-pelagic coupling. Here, we briefly introduce the contributed papers within the context 

53 of the wider literature before offering some observations on the salient research deficiencies, challenges and 

54 opportunities that show promise in establishing a practical research agenda.

55
56 The water column
57 The waters of the Arctic Ocean respond quickly and in multiple ways to changing forcing parameters, 

58 including changes in freshwater input from land, modulations of ocean currents and water mass distribution, 

59 and shorter and more dispersed sea ice cover [8]. Of particular interest are processes in the shallowest part 

60 of the Arctic Ocean, the photic zone, where changes in primary productivity and ecosystem dynamics are 

61 expected to have significant effects on carbon sequestration from the atmosphere. The photic zone is 

62 affected most directly by changing sea ice conditions, increasing light availability, as well as stratification and 

63 nutrient limitation. A better understanding of plankton ecology and biogeochemical processes in the photic 

64 zone is therefore of critical importance to understand the role of a future Arctic Ocean as a potential 

65 atmospheric carbon sink. In this respect, the extent to which under-ice algal blooms contribute to primary 

66 production in the Arctic Ocean has become a highly topical (e.g. [21,22]) issue. Bouman et al. [23] use a 

67 spectrally-resolved model of primary production to identify the set of conditions under which subsurface 

68 chlorophyll maxima contribute to water-column productivity, a key feature that escapes detection by 

69 satellites. They conclude that the uneven distribution and sparsity of chlorophyll measurements in the Arctic 

70 Ocean means that the common practice of spatial and temporal averaging of profile data underestimates the 

71 importance of subsurface chlorophyll maxima. Next, Kostakis et al. [24] study a multitude of biogeochemical 

72 parameters in the Barents Sea water column under different ice conditions using a glider system, a 

73 technology capable of covering wide areas of the ocean autonomously and complementary to satellite-

74 derived data. Using these data, they develop and test a bio-optical model that links commonly measured 

75 parameters from glider-mounted sensors with satellite derived measurements of bulk optical properties. 

76 Combining satellite data with discrete shipboard measurements, Orkney et al. [25] adopt a similar philosophy 

77 to highlight the northward migration of certain phytoplanktonic groups (especially Phaeocystis algae) in the 

78 Barents Sea. They confirm previous suggestions of a north-eastward expansion in coccolithophore blooms, 

79 and suggest that observations of increased levels of chlorophyll a in the region may, at least in part, be 

80 explained by increasing frequencies of Phaeocystis blooms. Finally, Noethig et al. [26] use sediment traps to 

81 quantify the export of different biogenic particles from the photic zone into the deeper waters of the Arctic 

82 Ocean, a crucial aspect of pelagic-benthic coupling needed to move fixed carbon from shallow into deep 

83 waters and, ultimately, to the seafloor – and a process that is both currently impossible to resolve using 

84 remote sensing technology, and poorly constrained by most models. They observe negligible export fluxes of 
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85 particulate matter and biomarkers during the Polar night, but an increase in export fluxes under reduced sea 

86 ice cover during the summer reflecting enhanced primary production. However, export fluxes of particulate 

87 matter in the Nansen and Amundsen basins decrease with depth, indicating a strong degradation of organic 

88 matter in Arctic surface waters.

89
90 Seasonality
91 Perhaps the most characteristic feature of the Arctic region is the intense seasonality in physical, chemical, 

92 and biological features, both on land and in the sea. This seasonality results in pulses of primary productivity 

93 that largely sustain ecosystems for the entire year. Warmer air and water temperatures, however, affect 

94 timing of ecological processes via changing phenologies of plants and animals, migration/advection patterns 

95 of predators and prey, and community composition as Arctic species are replaced by advancing southern 

96 taxa [27-30]. These changes can have substantial implications for ecosystem functioning by altering carbon 

97 drawdown and storage, trophic interactions, nutrient cycling, and the integrity of Arctic assemblages. Here, 

98 Henley et al. [31] document seasonal availability of nitrate in the surface ocean on the northern Barents Sea 

99 shelf. They show that, whilst availability varies little between ice-covered and ice-free locations, the 

100 productivity season in ice-free waters is extended by advection of nutrients in Atlantic waters. Increased 

101 Atlantification in the region could contribute to prolonged uptake of atmospheric carbon in a warming Arctic. 

102 Von Jackowski et al. [32] investigate bacterioplankton dynamics that are affected by changes in the organic 

103 matter pool. They show that seasonal patterns in pelagic primary production affect availability of dissolved 

104 organic matter (DOM), and the availability of substrate has greater impact on bacterial activity than 

105 increasing temperature. Further, as Tisserand et al. [33] show, algal community composition determines the 

106 lability of DOM available for bacterial growth, and the bacterial strains that are most effective at its cycling. 

107 Thus, complex relationships within the microbial community and at the base of the food web may be 

108 profoundly altered by changes in seasonality of nutrient supply and algal community structure. The fate of 

109 fixed carbon is tightly linked to climate feedback mechanisms via sedimentary processes, such as 

110 bioturbation. Solan et al. [34] examine how invertebrate faunal activity and associated ecosystem functioning 

111 is influenced by seasonal ice-cover that affects food supply to the seafloor, and by mesoscale oceanographic 

112 features that influence benthic community structure. Their experiments, conducted over two consecutive 

113 years along a transect intersecting the Barents Sea Polar Front, reveal that whilst faunal composition reflects 

114 proximity to Arctic versus boreal conditions, faunal activity is moderated by seasonal variations in sea ice 

115 extent that influence food supply to the benthos. In a recently ice-free Arctic fjord, however, Morata et al. [35] 

116 document a reduction in seasonality in bioturbation and benthic carbon cycling, although nutrient fluxes 

117 retain a strong seasonal signal. These authors suggest that increased detrital carbon dampens the seasonal 

118 carbon signal from pelagic phytoplankton. In the only time-series study in this themed section capable of 

119 detecting climate-related changes, Al-Habahbeh et al. [36] report slow recovery times from disturbance and 

120 abrupt shifts in community structure for two shallow hard-bottom communities and conclude, based on trait 

121 analyses, that Arctic systems may be particularly vulnerable to climate-related perturbations. Food-web 

122 interactions in the Arctic are highly influenced by seasonal migrations of both predators and prey. Hutchison 

123 et al. [37] incorporate migration into a food-web model and find better approximation of predator-prey cycles 

124 than when a static model is used. Seasonal and interannual variability, therefore, modifies processes at the 

125 base of the food chain, with consequent effects through microbial and faunal processing, up to trophic 

126 interactions reaching top predators. Recent studies have indicated that seasonal paradigms of the Arctic are 
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127 not so straightforward as once thought [e.g. 38], and climate change is likely to further alter perspectives as 

128 communities and their functioning respond to multiple changing drivers.

129
130 Benthic-pelagic coupling
131 Benthic–pelagic coupling plays a major role in determining the production, biological structure and food web 

132 stability of both systems [39]. This coupling is often stronger in shallower areas compared to deeper areas, 

133 due to the shorter distance between the productive, euphotic zone and the benthic realm [40]. However, in 

134 northern Baffin Bay, Olivier et al. [41], using a bivalve, provide evidence of a strong benthic-pelagic coupling 

135 to 600 m depths. They identify a clear shift in bivalve growth variation since the late 1970s related to food 

136 supply. Over the last half-century, a more regular export of diatoms from the euphotic zone may have 

137 increased food supply to the benthos. Two hypotheses are possible to explain a more regular export of food 

138 supply: the potential temporal or spatial mismatch between the phytoplankton bloom and its pelagic 

139 consumers, and/or local changes in sea-ice dynamics that moderate phytoplankton production. Climate 

140 change leading to ice loss could result in major gains in stored (probably sequestered) carbon at the shelf 

141 seafloor adjacent to parts of Antarctica [42]. Here, Souster et al. [43] compare the stocks of zoobenthic blue 

142 carbon between the Barents Sea and shelf seas of the Western Antarctic Peninsula. They find that the blue 

143 carbon stock of the Barents Sea is twice that of the Antarctic soft sediment shelf and could have great 

144 potential for increased carbon drawdown. Their results highlight the need to investigate zoobenthic blue 

145 carbon in the Arctic to better inform global estimates of carbon budgets and climate feedbacks. Along these 

146 lines, Faust et al. [44] explore how ongoing changes in the Barents Sea will change the organic and 

147 inorganic sediment composition in the future. Their results, based on comparisons between the seasonally 

148 ice-covered north and permanently ice-free south Barents Sea, imply that continuing sea-ice reduction and 

149 the associated modification of vertical carbon fluxes might create shifts in surface sedimentary organic 

150 carbon content which, in turn, may result in overall reduced carbon sequestration. As the sea ice reduction 

151 will continue northward and modify the ocean primary production, patterns of the benthic-pelagic phosphorus 

152 cycle are also likely to change. By comparing sediments and porewaters from the Barents Sea slope and the 

153 Yermak Plateau, Tessin et al [45] conclude that increased delivery of labile organic matter in response to 

154 elevated surface productivity will increase the oxidant demand and Fe remobilization within sediments and 

155 cause the Yermak Plateau to shift towards the conditions observed in the Barents Sea slope. Increased 

156 organic carbon fluxes on the Barents Sea slope may result in large fluxes of P from sediments to bottom 

157 waters, as a large stock of P has been accumulated in surface sediments. Stevenson et al. [46] demonstrate 

158 mechanistic links between microbial processing and changes in organic and inorganic parameters that are 

159 coupled to biological mixing and the reactivity of organic material. They find direct links between aerobic 

160 processes, reactive organic carbon and highest abundances of bacteria and archaea in the uppermost 

161 sediment layer followed by dominance of microbes involved in nitrate/nitrite and iron/manganese reduction 

162 across the oxic-anoxic redox boundary and sulphate reducers at depth. Using an original approach, Freitas 

163 et al. [47] combine field observations from the Barents Sea with a Reaction-Transport model to quantify 

164 organic matter processing and its drivers. Their results indicate that, at sites influenced by Atlantic Water, 

165 there is a clear burial of highly reactive marine derived organic matter. This allows them to establish a 

166 baseline systematic understanding of seafloor geochemistry, helping to anticipate likely modifications linked 

167 to future climatic scenarios in the Arctic. From all these studies it is clear that ice reduction, alongside other 
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168 components of climate change, affects the underlying seafloor without significant delay and plays a central 

169 role in moderating and redefining benthic-pelagic coupling processes.

170
171 3. Research priorities
172 By focusing on distinguishing natural variation and/or localized responses from long term regional climatic 

173 forcing, the contributions in this thematic issue provide a sensible focus for new innovative science in the 

174 immediate future. Whilst we acknowledge that the conclusions drawn here are not based on a 

175 comprehensive review and gap analysis of the wider literature, it is clear that contrasting regional responses 

176 to climate change across multiple seasons and locations are informative and, when taken together, can 

177 hasten understanding. Based on this overview, and in no particular order of importance, we offer the 

178 following observations in the hope they will stimulate debate and novel lines of inquiry:

179
180 1. Value basic discovery and observational science, museum collections and historical archives and 

181 use this repository of information and perspectives to inform hypothesis driven investigation.

182 A cursory look at the literature cited by the contributors to this theme reveals that phenomenological 

183 observations are common and well-articulated, reflecting major investments in the recent past that 

184 stimulated much effort in establishing the basic science of the Arctic region. Emphasis is now 

185 needed to move beyond confirmatory observation and towards interrogation of system complexities, 

186 including unambiguous experimental demonstration of key mechanisms in the absence of 

187 confounding or collinear factors.

188 2. Undertake diversification in the gathering of knowledge and evidence whilst adopting a holistic pan-

189 Arctic view.

190 The major geographical and seasonal bias in knowledge needs to be addressed by diverting effort 

191 away from regionally and/or temporally constrained study and focusing on testing the generality of 

192 observations, theory and/or conceptual advances. Historical compartmentalization of disciplines [48] 

193 has compounded this problem as there are large gaps in understanding about the extent to which 

194 different landscapes are interconnected [49].

195 3. Remove over-reliance on infrequent occupancy by embracing new technology, including cultural 

196 knowledge, satellite derived information and autonomous systems, whilst extending ground-truthing 

197 and calibration efforts.

198 Synoptic efforts are required to routinely gather information at large scales and across all seasons, 

199 with a view to understanding system generalities and localized exceptions. Effort will be needed to 

200 expand capability beyond the current subset of variables, and to employ novel complex system 

201 approaches to identify inter-linkages and distinguish natural variability from directional change. Such 

202 efforts will need thorough interrogation, even relatively well-established parameters like chlorophyll 

203 concentrations in relatively accessible marginal parts of the Arctic Ocean require a more detailed 

204 deconvolution.

205 4. Establish detailed unambiguous understanding of the vulnerability and/or resilience of Arctic species 

206 and ecosystems to the type, timing, sequence and combination of multiple drivers of change.

207 Most projections of the fate of Arctic species, ecosystems and associated levels of ecosystem 

208 functioning are based on assumed or extrapolated responses to change. There is little empirical 
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209 backing for assumptions made, and little attention has been devoted to establishing the relative 

210 importance of the different components, or properties, of directional forcing [e.g. 40,50,51].

211 5. Divert effort from using bulk or integrative indicators of ecosystem response towards establishing 

212 specific mechanistic understanding of how and when specific drivers of change operate.

213 Whilst various of measures of ecosystem response are accepted and routinely used, the relative 

214 roles of specific pathways or components that underpin the bulk signal are less known, but have 

215 been summarised [52]. For carbon, for example, which degradation pathways are important, what 

216 type of carbon matters, and what are the relative roles of deposition versus burial? [53] Further, the 

217 adequacy and utility of methods for measuring and assessing the stocks and flows of various 

218 aspects of ecosystem responses have received little attention [54-56].

219 6. Transition from documenting negative impacts of change to formulating a socio-ecological, solutions-

220 based narrative that will be effective in providing evidence to support decision and policy making 

221 across the Arctic.

222 Very little attention has been devoted to formulating an integrated sustainable management plan for 

223 the Arctic, or in determining which evidence is needed to support decision and policy making. 

224 Indeed, a solutions-based narrative is not well-developed for the marine benthos [57], and there are 

225 virtually no socio-economic studies for the Arctic [58,59]. Approaches involving multiple disciplines 

226 that mobilise and build on indigenous and local knowledge are urgently required [16,60], but need to 

227 be supplemented by socio-ecological contributions to aid understanding of system dynamics. 

228
229 4. Conclusion
230 Understanding the consequences of climate change and anthropogenic activity in the Arctic requires a multi-

231 faceted approach and, as the contributions in this themed issue indicate, there has been significant 

232 progression in a number of areas. However, it is clear that Arctic science is undergoing a transition from 

233 observational and phenomenological documentation to interrogative empirical research aimed at developing 

234 theory and mechanistic understanding. Recent availability of international funding has fueled this evolution, 

235 and the extensive use of observing technology, coupled with the extended occupancy time of field 

236 researchers within the Arctic, is allowing new insights about seasonal dynamics and processes that occur 

237 over larger spatial scales. Nevertheless, investigations remain regionally constrained and compartmentalized 

238 within disciplines or domains, although an integrative comprehension is beginning to materialize. Our brief 

239 analysis here, albeit limited in scope, suggests a developing directional change in research foci towards an 

240 interdisciplinary research agenda focused on understanding how whole system changes lead to alternative 

241 outcomes. Achieving this research agenda will require the merger of perspectives, scaling up of data 

242 acquisition and analysis, and pooled initiatives that pursue the mechanistic basis of consequential change for 

243 biological communities, biogeochemical processes and ecosystems. For the moment, as this themed section 

244 illustrates, compiling new and existing data, and taking advantage of a state-of-the-art models and adopting 

245 upscaling approaches, allows generalities to be established about how Arctic systems respond to 

246 perturbation. As new data become available, model-data comparisons will highlight areas of divergence, 

247 allowing refinement of hypotheses and data needs, whilst field data and experiments will provide mechanistic 

248 information to enable the re-parameterisation of models to reflect new understanding of system complexity. It 

249 will be important to implement this knowledge to identify thresholds and feedbacks, minimise uncertainty and 
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250 provide evidence/advice for prioritizing mitigation and/or adaptation needs as the expression of climate 

251 change intensifies.
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