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Abstract Iterative learning control (ILC) is a well-

established methodology which has proven successful in

achieving accurate tracking control for repeated tasks.

However, the majority of ILC algorithms require a nom-

inal plant model and are sensitive to modelling mis-

match. This paper focuses on the class of gradient-

based ILC algorithms and proposes a data-driven ILC

implementation applicable to a general class of nonlin-

ear systems, in which an explicit model of the plant

dynamics is not required. The update of the control

signal is generated by an additional experiment exe-

cuted between ILC trials. The framework is further

extended by allowing only specific reference points to

be tracked, thereby enabling faster convergence. Nec-

essary convergence conditions and corresponding con-

vergence rates for both approaches are derived theoreti-
cally. The proposed data-driven approaches are demon-

strated through application to a stroke rehabilitation

problem requiring accurate control of nonlinear artificially-

stimulated muscle dynamics.
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1 Introduction

Iterative learning control (ILC) is a control paradigm

which enables high-performance tracking of tasks which

are executed repeatedly over a time interval, each at-

tempt termed a ‘trial’. Distinct from traditional feed-

back control, standard ILC algorithms can be regarded

as implementations of open-loop feedforward control,

in which the historical set of tracking error sequences

are used to modify the control signal for the next trial

[29]. The tracking error over the finite time interval

has potential to converge to zero after sufficient tri-

als. Although initially proposed as a model-free ap-

proach [3], practical application has been limited by

difficulties in tuning control parameters and sensitivity

to noise and uncertainty. As a specific class of model-

based ILC, gradient based algorithms have drawn con-

siderable attention in both theoretical and application

domains due to their well-defined convergence and ro-

bustness properties [30]. This class includes gradient

ILC [34,31], inverse ILC [32] and norm optimal ILC [9,

1], which have been applied to diverse applications in-

cluding gantry robots [35], multi-axis robotic testbeds

[5], rehabilitation platforms [36] and pneumatic muscle

actuators [39].

Gradient-based ILC approaches have been applied

to nonlinear systems, following linearization via feed-

back linearization [7], input-output linearization [18],

and piecewise linearization [2]. Newton-based ILC al-

gorithms were also proposed for a class of nonlinear

system in [24,40] based on linearizing the system about

an operating point which was modified for each ILC

trial. In traditional ILC, the system is required to track

the given reference trajectory at all sample times. How-

ever, in some applications only a few prescribed points

need to be considered, such as point-to-point rehabilita-
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tion movements [33] and ‘pick and place’ robotic tasks

[11]. To address this need, point-to-point ILC methods

have been proposed in [19,14], and have proven effective

in improving control performance (e.g. reducing control

effort, increasing convergence speed and reducing com-

putational load).

The aforementioned ILC approaches require an ac-

curate plant model to achieve rapid and monotonic con-

vergence, and their tolerance to model uncertainty is

limited [30]. This is reflected in applications where con-

trol performance has significantly deteriorated for sys-

tems with complex dynamics, coupled dynamics and

multivariate, nonlinear or time-varying systems [15]. To

address these cases, data-driven ILC control approaches

were proposed, in which the control signal is updated by

the input and output data without explicit plant infor-

mation. These approaches can be classified into two cat-

egories: system approximation methods and additional

experiment methods. In system approximation meth-

ods, input and output data are used to approximate sys-

tem dynamics via Fourier series [26], neutral networks

[25], fuzzy basis functions [13], dynamic linearization

data models [12], or finite impulse response filters [23].

Although such methods do not require a model, the

approximate precision of the system dynamics affects

the control performance. The second approach updates

the control signal directly using outputs of extra exper-

iments designed to capture the system characteristics

over a region of interest. This concept was first proposed

for ILC in [17], and subsequently [10] used additional

experiments to estimate the gradient and proved that

the estimation is unbiased in the presence of noise. This

data-driven approach was then extended to multivari-

ate linear systems in [6] and its convergence conditions

and connections to other common ILC forms were de-

rived.

In this paper, we propose a new data-driven gradient-

based ILC framework suitable for nonlinear systems

and further extend the result to point-to-point tasks

to improve the convergence rate and design flexibility.

The main contributions of this paper are:

1. a new data-driven approach for nonlinear systems

is proposed in Section 3 based on the additional ex-

periment method. Conditions to guarantee conver-

gence to zero error are derived, as well as bounds on

the convergence rate. Distinct from the online ap-

proximation methods of [26,25,13,12,23], there is

no need to estimate a data model and the control

signals are updated using the outputs of additional

experiments directly.

2. the proposed approach is further extended to point-

to-point tasks in Section 5. Distinct from traditional

ILC algorithms, only prescribed points are tracked.

It is proved that, as the number of tracked points is

reduced, the convergence rate increases.

3. the proposed approaches are verified by application

to a rehabilitation problem involving a time-varying

nonlinear electrically stimulated upper limb system

in Section 6.

The paper is arranged as follows. The next section

extends gradient ILC for use with a general class of

nonlinear system, with Section 3 then showing how the

required update can be generated in a model-free man-

ner. Convergence conditions and bounds are derived in

Section 4, and the framework is extended in Section 5

to support ‘point-to-point’ tracking at only a subset of

reference points. In Section 6 the proposed approaches

are applied to a rehabilitation problem, with conclu-

sions then given in Section 7.

The notation is standard: the set of real numbers

is denoted R, the set of natural numbers is denoted N,

and the norm of any column vector x ∈ Rn is given

by ‖x‖ =
√
x>x. The minimum and maximum singular

values of a matrix X ∈ Rn×n are denoted σ(·) and σ(·)
respectively. For a time-indexed signal x(t) ∈ Rn, with

t = 0, 1, · · ·N − 1, bold is used to denote the so-called

‘lifted’ supervector x = [x(0)>, x(1)>, · · · , x(N−1)>]>.

2 Gradient-based ILC for Nonlinear systems

In this section, we construct the gradient iterative learn-

ing control algorithm for nonlinear systems.

Consider the following single-input-single-output (SISO)

discrete time nonlinear system

x(i+ 1) = f (x(i), u(i)) , x(0) = x0,

y(i) = h (x(i), u(i)) , i = 0, 1, . . . , N − 1
(1)

where x(i) ∈ Rn, u(i) and y(i) are the state vector,

input and output respectively, f(·) and h(·) are non-

linear functions which are continuously differentiable, i

is sampled time index of a trial, N is the trial length.

Then, the output y could be represented by the input

u series and the initial state x(0)

y(0) =h(x(0), u(0)) = g0(x(0), u(0))

y(1) =h(x(1), u(1)) = h(f(x(0), u(0)), u(1))

:=g1(x(0), u(0), u(1))

...

y(N − 1) =h(x(N − 1), u(N − 1))

=h(f(x(N − 2), u(N − 2)), u(N − 1))

:=gN−1(x(0), u(0), u(1), . . . , u(N − 1)) (2)
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so the system (1) can be transformed into a vector form

y =


g0(x(0), u(0))

g1(x(0), u(0), u(1))

g2(x(0), u(0), u(1), u(2))
...

gN−1(x(0), u(0), u(1), . . . , u(N − 1))

 := g(u)

(3)

where u = [u(0), u(1), . . . , u(N − 1)]> ∈ RN ,y = [y(0),

y(1), . . . , y(N − 1)]> ∈ RN and the dependence of g(·)
on x(0) is not explicitly stated since it is not a con-

trolled variable. The reference trajectory is similarly

constructed as

r = [r(0), r(1), . . . , r(N − 1)]> ∈ RN .

2.1 ILC Problem Definition

The ILC problem involves repeated trials at the track-

ing problem. After the kth trial system (1) is reset to

initial state x0. The next input uk+1 is then formed

using the previous error within update law

uk+1 = uk + l(ek) (4)

where l(·) is a vector function and the tracking error is

ek = r−yk. The aim is for convergence to the solutions

lim
k→∞

uk = u∞, lim
k→∞

ek = 0. (5)

2.2 Gradient-based ILC

Within the ILC framework, the gradient descent method

is applied to minimise the error norm on trial k,

J(uk) := ‖ek‖2, ek = r − g(uk), (6)

subject to dynamics (1). As ∇J(uk) = −25g(uk)>ek,

the gradient ILC update law can be formulated as

uk+1 = uk + β 5 g(uk)>ek (7)

where scalar β > 0 is the step length.

The term 5g(uk) can be regarded as the system

linearization around an operating point uk. Without

loss of generality, uk is replaced by ū. As shown in (3),

the system is causal, thus 5g(ū) is represented as

5g(ū) =



∂g0

∂u(0)

∂g0

∂u(1)
. . .

∂g0

∂u(N − 1)
∂g1

∂u(0)

∂g1

∂u(1)
. . .

∂g1

∂u(N − 1)
...

...
. . .

...
∂gN−1

∂u(0)

∂gN−1

∂u(1)
. . .

∂gN−1

∂u(N − 1)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
u=ū

=



∂g0

∂u(0)
0 . . . 0

∂g1

∂u(0)

∂g1

∂u(1)
. . . 0

...
...

. . .
...

∂gN−1

∂u(0)

∂gN−1

∂u(1)
. . .

∂gN−1

∂u(N − 1)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
u=ū

(8)

Then, the linearized system y = 5g(ū)u is equivalent

to a linear time-varying (LTV) system

x(i+ 1) = A(i)x(i) +B(i)u(i), x(0) = x0, (9)

y(i) = C(i)x(i) +D(i)u(i), i = 0, 1, 2, . . . , N − 1

where A(i) ∈ Rn×n, B(i) ∈ Rn, C(i) ∈ R1×n, and

D(i) ∈ R. In particular,

A(i)=
∂f

∂x

∣∣∣∣u = ū(i)
x = x̄(i)

, B(i)=
∂f

∂u

∣∣∣∣u = ū(i)
x = x̄(i)

C(i)=
∂h

∂x

∣∣∣∣u = ū(i)
x = x̄(i)

, D(i)=
∂h

∂u

∣∣∣∣u = ū(i)
x = x̄(i)

(10)

in which x̄ is generated by x̄(i + 1) = f(x̄(i), ū(i)),

x̄(0) = x0. It follows that 5g(ū) =



D(0) 0 · · · 0

C(1)B(0) D(1) · · · 0
...

...
. . .

...

C(N−1)

N−2∏
i=1

A(i)B(0) C(N−1)

N−2∏
i=2

A(i)B(1) · · · D(N−1)


(11)

which equates to (8) via the identity

∂gi
∂u(j)

∣∣∣∣
u=ū

=

C(i)

i−1∏
l=j+1

A(l)B(j), j = 0, 1, . . . i− 1

D(i), j = i

(12)
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3 Data-driven Gradient-based ILC for

nonlinear systems

To apply the data-driven approach proposed for linear

systems in [17], the gradient ILC update law (7) has to

be reformed as

uk+1 = uk + β 5 g(ûk)>ek (13)

where ûk is a fixed operating point to be determined.

One particular choice that will be justified by the con-

vergence analysis in Section 4 is

ûk(i) = ûk, ûk := min
ûk∈R

‖uk − ûk‖2

where scalar ûk is the average value of the control se-

quence ûk, i.e.

ûk =
1

N

N−1∑
i=0

uk(i), (14)

with corresponding fixed x̂k. This simplifies (10) to

A(i)=
∂f

∂x

∣∣∣∣u(i) = ûk
x(i) = x̂k

:= Âk, B(i)=
∂f

∂u

∣∣∣∣u(i) = ûk
x(i) = x̂k

:= B̂k

C(i)=
∂h

∂x

∣∣∣∣u(i) = ûk
x(i) = x̂k

:= Ĉk, D(i)=
∂h

∂u

∣∣∣∣u(i) = ûk
x(i) = x̂k

:= D̂k

(15)

and then (11) can be rewritten as 5g(ûk) =
D̂k 0 0 · · · 0

ĈkB̂k D̂k 0 · · · 0

ĈkÂkB̂k ĈkB̂k D̂k · · · 0
...

...
...

. . .
...

ĈkÂ
N−2
k B̂k ĈkÂ

N−3
k B̂k ĈkÂ

N−4
k B̂k · · · D̂k

 , (16)

where 5g(ûk) ∈ RN×N . The first-order Taylor expan-

sion of g(u) around ûk is used to produce 5g(ûk)>ek
in (13) through the relation

g(u) ≈ g(ûk) +5g(ûk)(u− ûk). (17)

Definition 1 A time reversal operator is now defined

to flip the elements of a vector, i.e. the time reversal

of s = [s(0), s(1), . . . , s(N − 1)]> ∈ RN is s̃ = [s(N −
1), s(N−2), . . . , s(0)]>. For any vectors s1, s2 ∈ RN and

any scalar α ∈ R, the time reversal operator satisfies

︷ ︸
s1 + s2 = s̃1 + s̃2 and

︷ ︸
αs1 = αs̃1.

Selecting u = ûk+αẽk with sufficiently small α > 0,

gives rise to the approximation

g(ûk + αẽk) ≈ g(ûk) +5g(ûk)(ûk + αẽk − ûk)

so that

5g(ûk)ẽk ≈
1

α
(g(ûk + αẽk)− g(ûk)) . (18)

Using the definition of the time reversal operator

and the Taylor expansion of the system dynamics, the

following proposition holds, with the proof given in Ap-

pendix A.

Proposition 1 Using symbols defined above, the time

reversal of equation (18) is︷ ︸
5g(ûk)ẽk = 5g(ûk)>ek. (19)

Then, the gradient ILC update law (13) can be rewritten

as

uk+1 = uk +
β

α

(︷ ︸
g(ûk + αẽk)−

︷ ︸
g(ûk)

)
. (20)

Remark 1 The attractive performance of gradient-based

ILC approaches derives from utilizing model informa-

tion within the update law. According to the above

proposition, the model information can be substituted

by the outputs of two extra experiments, the first of

which involves applying the fixed operating point ûk to

the system and the second involves applying the sum

of the operating point and the time reversal of the last

tracking error. Thus, the gradient ILC update is real-

ized in a data-driven manner.

The overall algorithm can be summarised as:

Algorithm 1 data-driven ILC for nonlinear sys-

tems

1. At trial k, uk is applied to the system to generate

yk
2. ûk is calculated following equation (14) and is

applied to the system to generate output g(ûk)

3. Tracking error ek = r − yk is computed, ûk +

αẽk is then applied to the system to generate the

corresponding output is g(ûk + αẽk)

4. The input for trial k + 1 is updated using (20)

5. Increment k and go to (1).

4 Convergence Analysis

In this section, the convergence conditions for the pro-

posed data-driven gradient ILC approach are estab-

lished. The main results are as follows.

For the system model (1) with the input update law

(20), the following theorem holds.
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Theorem 1 Assuming the system dynamics g(·) and

the error norm J(·) are Lipschitz continuous gradient

with constants M , L respectively. The tracking error

norm J(uk) = ‖ek‖2 monotonically converges, if the

operating point deviation ud = ûk − uk is bounded by

‖ud‖ ≤
‖ 5 g(uk)‖

M
(21)

and the step length satisfies

β <
2

L

(
1− c
1 + 2c

)
, (22)

where c = ‖ud‖M
‖5g(uk)‖ .

Proof Expanding J(uk+1) around J(uk) gives

J(uk+1) ≤J(uk) +5J(uk)>(uk+1 − uk)

+
1

2
52 J(uk)‖uk+1 − uk‖2 (23)

As J(·) is Lipschitz continuous gradient with constant

L, we have 52J(x) � LI, and recalling the update law

(13) of

uk+1 = uk + β(5g(ûk))>ek.

Using the two equations, we get

J(uk+1) ≤J(uk)

+5J(uk)>(uk + β(5g(ûk))>ek − uk)

+
1

2
L‖uk + β(5g(ûk))>ek − uk‖2

=J(uk) + β 5 J(uk)>(5g(ûk))>ek

+
Lβ2

2
‖(5g(ûk))>ek‖2. (24)

Similarly for J(·), we have 52g(uk) � MI. Then ex-

panding 5g(ûk) about 5g(uk) gives

5g(ûk) ≤ 5g(uk) +M‖ûk − uk‖
= 5g(uk) +M‖ud‖,

which yields

J(uk+1) ≤J(uk) + β 5 J(uk)>(5g(uk))>ek

+
Lβ2

2
‖(5g(uk))>ek‖2

+ β 5 J(uk)>Mek‖ud‖

+
Lβ2

2
e>k 5 g(uk)Mek‖ud‖

+
Lβ2

2
e>kM(5g(uk))>ek‖ud‖

=J(uk)− β
(
‖ 5 J(uk)‖2

− ‖5 J(uk)‖‖ek‖M‖ud‖
)

+ β2
(1

2
L‖ 5 J(uk)‖2

+ L‖ 5 J(uk)‖‖ek‖M‖ud‖
)
. (25)

To ensure monotonic convergence of the tracking error

norm, that is J(uk+1) < J(uk) for any k ∈ N+, we first

require

0 < ‖ 5J(uk)‖2−‖5J(uk)‖‖ek‖M‖ud‖

which is guaranteed by (21), and then we require

β2L
(1

2
‖ 5J(uk)‖2 + ‖ 5J(uk)‖‖ek‖M‖ud‖

)
< β

(
‖ 5 J(uk)‖2 − ‖5J(uk)‖‖ek‖M‖ud‖

)
so that

β <
2

L

‖ 5 J(uk)‖2 − ‖5 J(uk)‖‖ek‖M‖ud‖
‖ 5J(uk)‖2 +2‖ 5 J(uk)‖‖ek‖M‖ud‖

(26)

which yields (22).

Remark 2 Satisfying (21) is not always possible since it

contains no directly tuneable parameters. However, the

designer can seek to satisfy it indirectly in two ways:

– In many applications there is freedom available in

the choice of reference trajectory, for example em-

ploying smoother or slower choices can always en-

able it to be satisfied. This approach is not dissimilar

to the standard use of ‘learning filters’ in ILC that

prevent learning at higher frequencies, see e.g. [8].

– Another route is to maintain the reference, but in-

stead add a feedback controller around the plant.

Often called a pre-stablizing controller, this is also

common practice in ILC to improve baseline distur-

bance rejection and initial tracking [8]. In our case

it can be used to modify g(·) and M and so enable

(21) to be satisfied.
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System nonlinearities have the effect of reducing the

value of β in (22) due to the truncation employed in

inequalities (23), (24). Note that β and c are computed

every trial to reduce conservatism (which scales with

the size of higher order terms in the Taylor expansion).

However, to reduce computational effort (22) can be

replaced using a fixed value of c given by

c = max
k∈N

‖ud‖M
‖ 5 g(uk)‖

(27)

Alternatively, β may be chosen heuristically and fixed

for all trials. When applying the update law (20) to

linear systems, Theorem 1 can be specialised to the

following lemma.

Lemma 1 If system g(·) is linear and5g(uk) = G ∀ k ∈
N+ where G ∈ RN×N is constant, then Theorem 1 holds

with M = 0 and L = ‖G‖2. Step length bound (22)

therefore becomes

β <
2

‖G‖2

and coincides with the convergence condition of model-

based gradient ILC for linear systems in [34].

Proof Note that L captures the system nonlinearity as

52J(uk) =5 (−5 g(uk)ek)

=− (52g(uk))ek −5g(uk)(5g(uk)>) (28)

so if the system is linear, we have 52g(uk) = 0, and

then

52J(uk) = −5 g(uk)(5g(uk)>) (29)

so L can be selected as ‖ 5 g(uk)(5g(uk)>)‖.

The next lemma shows that the Lipschitz condition

of J(·) could be replaced by a more conservative value

which only relates to the system dynamics g(·).
Lemma 2 Theorem 1 holds if the Lipschitz constant L

replaced by

max
u∈RN

{‖ 5 g(u)‖2}+M‖e0‖. (30)

Proof Follows from equation (28) and noting that ‖e0‖
is the maximum value of ‖ek‖.

If ‖ûk − uk‖ = 0 can be guaranteed for all trials

through the selection of fixed operating points, or if

the system is linear, that is M = 0, then Theorem 1

holds with step length bound (22) replaced by

β <
2

L
. (31)

For a specific choice of step length β satisfying (26),

the monotonic tracking error bound is given by the fol-

lowing theorem.

Theorem 2 Under the conditions of Theorem 1, if the

step length β in update (20) is selected as

β =
1

L

(
1− c
1 + 2c

)
. (32)

then the tracking error norm is bounded monotonically

as

‖ek+1‖2 ≤
k∏
i=0

(
1− β

2
(1− c)σ

(
5 g(ui)(5g(ui))

>))‖e0‖2

(33)

and

1

2
≤
(

1− β

2
(1− c)σ

(
5 g(ui)(5g(ui))

>)) < 1. (34)

Proof First recall (25)

J(uk+1) ≤ J(uk)− β
(
‖ 5 J(uk)‖2

− ‖5 J(uk)‖‖ek‖M‖ûk − uk‖
)

+ β2L
(1

2
‖ 5 J(uk)‖2

+ ‖ 5 J(x)‖ek‖M‖ûk − uk‖
)

=J(uk)−β
(
‖5J(uk)‖2 − c‖5J(uk)‖2

)
+ β2L

(1

2
‖ 5 J(uk)‖2 + c‖ 5 J(uk)‖2

)
=J(uk)− β

(
1− c

)
‖ 5 J(uk)‖2

+ β2L
(1

2
+ c
)
‖ 5 J(uk)‖2. (35)

Therefore it is necessary that

β2L
(1

2
+ c
)
‖ 5 J(uk)‖2 < β

(
1− c

)
‖ 5 J(uk)‖2

which corresponds to

β <
2

L

(
1− c
1 + 2c

)
. (36)

Selecting half this maximum value, i.e. β is given by

(32), means that (35) becomes

J(uk+1) ≤ J(uk)− β
(

1− c
)
‖ 5 J(uk)‖2

+ β2L
(1

2
+ c
)
‖ 5 J(uk)‖2

= J(uk)− β
(

1− c
)
‖ 5 J(uk)‖2

+ 2β

(
1− c
1 + 2c

)(1

2
+ c
)
‖ 5 J(uk)‖2

= J(uk)− β
(

1− c
)
‖ 5 J(uk)‖2

+ β

(
1− c

2

)
‖ 5 J(uk)‖2

= J(uk)− β

2

(
1− c

)
‖ 5 J(uk)‖2. (37)
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Writing

‖ 5 J(uk)‖2 = ‖(5g(ûk))>ek‖2

≥ σ
(
5 g(uk)(5g(uk))>

)
‖ek‖2 (38)

so that (37) becomes

J(uk+1) ≤J(uk)−
β

2

(
1− c

)
σ
(
5 g(uk)(5g(uk))>

)
‖ek‖2.

Thus, we have

‖ek+1‖2 ≤
(

1− β

2
(1− c)σ

(
5 g(uk)(5g(uk))>

))
‖ek‖2

≤
k∏
i=0

(
1− β

2
(1− c)σ

(
5 g(ui)(5g(ui))

>))‖e0‖2.

Relation (34) follows from (32), and since 0 ≤ c < 1

and 0 < σ
(
5 g(ui)(5g(ui))

>) ≤ L.

As noted, system nonlinearities have the effect of

reducing the maximum value of β that can be used.

This in turn reduces the convergence rate since each

term in the product within (33) becomes closer to unity.

Lemma 3 If system g(·) is linear (i.e.5g(uk) = G ∀ k)

then Theorem 2 holds with c = 0 and 5g(ui) = G. In

particular the error is monotonically bounded as(
1− β

2
σ
(
GG>

))k
≤ ‖ek‖

2

‖e0‖2
≤
(
1− β

2
σ
(
GG>

))k
. (39)

This coincides with the bounds derived in [15] for model-

based gradient ILC.

5 Data-driven Gradient-based Point-to-point

ILC

A limitation of data-driven gradient ILC is that it may

converge slowly. To address this, suppose that the plant

output is only required to track a reference trajectory

at a fixed number, M ≤ N , of sample instants along

the trial duration. Denote these sample instants by 0 ≤
n1 < n2 < · · · < nM < N and the corresponding ‘point-

to-point’ reference locations as r1, r2, · · · , rM . To define

the point-to-point tracking problem it is first necessary

to remove the points that do not need to be tracked

from the original reference or output. This is achieved

by defining matrix Φ ∈ RM×N with elements

Φi,j =

{
1 if j = ni
0 otherwise

. (40)

When any output vector is pre-multiplied by Φ, it ex-

tracts the components that correspond to prescribed

point-to-point locations, while retaining the order in

which they appear. For example, Φr = [r1, r2, · · · , rM ]>

∈ RM . For simplicity, denote the point-to-point refer-

ence by rΦ := Φr and the point-to-point outputs as

yΦ := Φy. We then modify the task (6) as

JΦ(uk) := ‖eΦk ‖2, eΦk = rΦ − Φg(uk) (41)

and the ILC problem (5) becomes

lim
k→∞

uk = u∞, lim
k→∞

eΦk = 0. (42)

Let the update law (7) be replaced by

uk+1 = uk + β
(
Φ5 g(uk)

)>
Φek (43)

= uk + β 5 g(uk)>Φ>Φek (44)

then it can be shown that relation (59) becomes

5g(ûk)>Φ>Φek =
1

α


︷ ︸
g(ûk + α

︷ ︸
Φ>Φek)−

︷ ︸
g(ûk)


(45)

so Algorithm 1 changes to

Algorithm 2 point-to-point data-driven ILC

1. At trial k, uk is applied to the system to generate

yk
2. ûk is calculated using equation (14) and is applied

to the system to generate output g(ûk)

3. Tracking error Φ>eΦk = Φ>(r − yk) is computed,

ûk+α
︷ ︸
Φ>eΦk is applied to the system and the cor-

responding output is g(ûk + α
︷ ︸
Φ>eΦk )

4. the input for trial k+1 is updated using (44) and

(45), i.e.

uk+1 = uk+
β

α


︷ ︸
g(ûk + α

︷ ︸
Φ>eΦk )−

︷ ︸
g(ûk)

 (46)

5. Increment k and go to (1).

Our previous results are hence modified as:

Theorem 3 Assuming the system dynamics g(·) and

the error norm JΦ(·) are Lipschitz continuous gradi-

ent with constants M , LΦ respectively. The error norm

JΦ(uk) = ‖eΦk ‖2 monotonically converges, if the oper-

ating point deviation ud = ûk − uk is bounded by

‖ud‖ ≤
‖ 5 g(uk)‖

M
(47)

and the step length satisfies

β <
2

LΦ

(
1− c
1 + 2c

)
, (48)

where c = ‖ud‖M
‖5g(uk)‖ .
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Note (47) is the same as condition (21) in Theo-

rem 1. However β will be significantly larger due to the

smaller value of LΦ, as illustrated next.

Lemma 4 If system g(·) is linear and5g(uk) = G ∀ k ∈
N+ where G ∈ RN×N is constant, then Theorem 3 holds

with M = 0 and LΦ = ‖ΦG‖2. In particular LΦ de-

creases as each point-to-point location is removed.

Proof In the linear case

LΦ = ‖Φ5 g(uk)(5g(uk)>)Φ>‖ = σ
(
ΦG(ΦG)>

)
.

Let the M eigenvalues of the matrix A = (ΦG)(ΦG)>

be denoted λM ≤ λM−1 · · · ≤ λ2 ≤ λ1, which also

equal the singular values since A is Normal. Suppose Φ̃

corresponds to Φ but with one row (i.e, point-to-point

location) removed. Let the M − 1 eigenvalues of the

matrix B = (Φ̃G)(Φ̃G)> be denoted µM ≤ µM−1 · · · ≤
µ3 ≤ µ2, which also equal the singular values since B

is Normal. Then λM ≤ µM · · · ≤ µ3 ≤ λ2 ≤ µ2 ≤ λ1

by Cauchy’s interlace theorem. If the eigenvalues of B

are distinct and no eigenvector of B is orthogonal to

the ith column of A with the ith element removed, then

λM < µM · · · < µ3 < λ2 < µ2 < λ1. It follows that

σ
(
ΦG(ΦG)>

)
< σ

(
Φ̃G(Φ̃G)>

)
<

σ
(
Φ̃G(Φ̃G)>

)
< σ

(
ΦG(ΦG)>

)
(49)

Theorem 4 Under the conditions of Theorem 3, the

tracking error norm is bounded monotonically as

‖eΦk+1‖2 ≤
k∏
i=0

(
1− β

2
(1− c)σ

(
Φ5 g(ui)(Φ5 g(ui))

>))
× ‖eΦ0 ‖2

if the step length β in update (46) is selected as

β =
1

LΦ

(
1− c
1 + 2c

)
. (50)

The convergence rate increases as each point-to-point

location is removed.

Proof From relations (49) we have(
1− β

2
(1− c)σ

(
Φ5 g(ui)(Φ5 g(ui))

>))
<
(
1− β

2
(1− c)σ

(
Φ̃5 g(ui)(Φ̃5 g(ui))

>)) (51)

Lemma 5 If system g(·) is linear (i.e.5g(uk) = G ∀ k)

then Theorem 4 holds with c = 0 and 5g(ui) = G. In

particular the error is monotonically bounded as(
1− β

2
σ
(
ΦG(ΦG)>

))k
≤ ‖e

Φ
k ‖2

‖eΦ0 ‖2
≤
(
1− β

2
σ
(
ΦG(ΦG)>

))k
.

(52)

Moreover, if initial input u0 = 0, the input will converge

to the minimum input solution that satisfies the point-

to-point tracking task, i.e.

lim
k→∞

uk = u∞,

u∞ := min
u∈RN

‖u‖2 such that rΦ = ΦGu. (53)

Proof Note
(
1− β

2σ
(
ΦG(ΦG)>

))
reduces as points are

removed.
(
1 − β

2σ
(
ΦG(ΦG)>

))
increases as points are

removed. Repeated application of the input update (44)

yields the relation

uk+1 =

k∑
j=0

(I − β(ΦG)>ΦG)jβ(ΦG)>rΦ (54)

so that

u∞ =

∞∑
j=0

(I − β(ΦG)>ΦG)jβ(ΦG)>rΦ

= (β(ΦG)>ΦG)−1β(ΦG)>rΦ

= ((ΦG)>ΦG)−1(ΦG)>rΦ (55)

which is the solution to (53).

6 Experimental Application to Rehabilitation

Every year fifteen million people suffer a stroke world-

wide and only 5% of survivors with severe paralysis re-

gain upper limb function [4]. Functional electrical stim-

ulation (FES) is a well-established intervention for mo-

tor rehabilitation and involves artificially stimulating

muscles to enable patients to practice functional task

training. In recent clinical reviews FES has shown sig-

nificant benefit in improving upper-limb performance

of activities of daily living [16].

Effective rehabilitation requires that FES coincides

with voluntary intention and therefore must accurately

support the intended movement [37]. Commercial FES

systems use open loop or triggered stimulation, and

therefore do not provide effective therapy. ILC is one

of the few control schemes that has been clinically ap-

plied to stroke participants, and has led to statistically

significant improvements in outcome measures in sev-

eral clinical trials with both stroke [21,28,27] and mul-

tiple sclerosis participants [38]. However, the need for a

dynamic model of the system meant that identification

tests were required at the beginning of each treatment

session, reducing the time available for therapy and in-

creasing fatigue. This is a primary factor severely lim-

iting more widespread use of FES in rehabilitation.
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The data-driven approach developed in this paper

therefore has substantial potential to solve this prob-

lem. It will be applied to the specific problem of elbow

flexion/extension, since this is a fundamental compo-

nent of upper limb rehabilitation and is critical to func-

tional recovery of patients.

6.1 Hardware System

The FES-based upper-limb rehabilitation system is shown

in Fig. 1. Elbow extension/flexion is performed in the

horizontal plane, matching previous clinical applications

[21], and the elbow angle y is measured by a electro-

goniometer (Biometric Ltd., UK). Stimulation is pro-

duced using a commercial system (Odstock Medical

Limited, UK) and FES pulsewidth is the controlled

variable. Biceps and triceps muscles are stimulated syn-

ergistically (with respective pulsewidths uBI , uTR) us-

ing the co-activation function

(uTR, uBI) = hC(u) :

uTR =

{
−u, u ≤ 0

0, u > 0
, uBI =

{
u, u > 0

0, u ≤ 0
. (56)

The dynamics of each stimulated muscle comprise a

Hammerstein structure consisting of a nonlinear iso-

metric recruitment curve (IRC), hIRC(u), and linear

activation dynamics (LAD), HLAD(s). The output of

the Hammerstein blocks are multiplied by two nonlin-

ear functions gTR(y, ẏ), gBI(y, ẏ) to capture the po-

sition and velocity dependence of stimulated muscle.

The resulting models are nonlinear and vary rapidly

due to effects of fatigue and spasticity [20]. The gener-

ated torque feeds into the forearm rigid body dynamics

which comprise forearm inertia and a nonlinear damp-

ing and friction, ga(y, ẏ). The resulting system structure

Biceps

Triceps

𝑦
Sensor signal

Control signal

Controller (NI  
MyRIO 1900)

Stimulator

Goniometer

Fig. 1 FES-based elbow rehabilitation system.

ℎ𝐼𝑅𝐶,𝑇𝑅(𝑢)

ℎ𝐼𝑅𝐶,𝐵𝐼(𝑢)

𝐻𝐿𝐴𝐷,𝑇𝑅(𝑠)

𝐻𝐿𝐴𝐷,𝐵𝐼(𝑠)

𝑔𝑇𝑅(𝑦, ሶ𝑦)

𝑔𝐵𝐼(𝑦, ሶ𝑦)

𝑔𝑎(𝑦, ሶ𝑦)

1

𝐼

1

s

1

s𝜏 ሷ𝑦 ሶ𝑦
𝑦

-
-

+

Elbow Dynamics

Muscle Dynamics

𝑢𝑇𝑅

𝑢𝐵𝐼

ℎ𝐶(𝑢)𝑢

Fig. 2 FES assisted elbow dynamics.

is shown in Fig. 2, with subscripts denoting triceps and

biceps components.

6.2 Data-driven Algorithms

The proposed data-driven ILC algorithms are compared

with the existing linear data-driven ILC approach of

[10,6]. This approach, termed Algorithm 3, is equivalent

to setting ûk = 0 within Algorithm 1. It is important

to note that this update guarantees convergence to zero

error not only for linear systems, but also for classes of

nonlinear systems with sufficiently mild non-linearities.

It is therefore the most direct choice of approach for

comparison, and indeed no other data-driven gradient-

based ILC algorithms exist for nonlinear systems. The

ILC methods used can therefore be summarised as

Algorithm 1 : data-driven gradient ILC approach given

by Algorithm 1,

Algorithm 2 : data-driven point-to-point gradient ILC

approach given by Algorithm 2,

Algorithm 3 : existing data-driven gradient ILC for lin-

ear systems from [10], which is a special

case of Algorithm 1 and is described by:

Algorithm 3 linear data-driven ILC

1. At trial k, uk is applied to the system to generate

yk
2. Tracking error ek = r−yk is computed and time-

reversed to produce ẽk, then ẽk is applied to the

system and the corresponding output is measured

and denoted sk
3. The input for trial k + 1 is updated according to

uk+1 = uk + βs̃k (57)

4. Increment k and go to (1).

6.3 Reference Trajectories

The reference trajectory r corresponds to smooth func-

tional elbow extension/flexion with duration 10s, mov-

ing the elbow from 0 and to 40 degrees and then re-

turning to 0. This is similar to movements employed
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clinically in [21]. The sample frequency is 20Hz so that

N = 200. The tracking error used by Algorithms 1

and 3 is e = r − y, where y is the elbow angle de-

fined in Fig. 1. The data-driven point-to-point ILC al-

gorithm instead selects sample indices n1 = 0, n2 = 40,

n3 = 100, n4 = 160 and n5 = 200. The corresponding

reference points are r1 = 0, r2 = 0, r3 = 40, n4 = 0 and

n5 = 0. The point-to-point error is measured only at

the M = 5 sample times and is denoted eΦ = Φ(r−y).

6.4 Experimental Results and Discussion

Five healthy participants (P1 to P5) were recruited to

the study, following Ethics protocol ERGO/FEPS/47701

(more information about the Ethics protocol is given in

the ‘Research involving Human Participants’ section).

Each attended a single session of two hour duration.

In each session 20 trials were conducted for each

of the three Algorithms. A gain of β = 0.2 was used

in Algorithms 1 and 3, and a gain of β = 8 was used

in Algorithm 2. A value of α = 1 was used through-

out: in the analysis of Section 3 it was assumed that

this perturbation term was negligibly small, however in

practice a larger value is required to compensate for the

presence of external disturbances and system dynamics

that are not continuously differentiable.

A 20 minute rest period was provided between al-

gorithms to ameliorate the effect of fatigue. For every

trial, the trajectory tracking error norm ‖ek‖ is calcu-

lated, representing the tracking performance. For each

session, the mean and minimum of error norms are com-

puted and shown in Table 1, representing the perfor-

mance of the algorithm and the best result respectively.

Compared with Algorithm 3, the means and minimums

‖ek‖ of Algorithm 1 are reduced by more than a half

for the five participants, indicating that Algorithm 1

produces far superior results compared to Algorithm 3.

The results of Algorithm 2 are partitioned in the table

to reflect the fact that its tracking error, ‖eΦk ‖, com-

prises only 5 points.

The data in Table 1 vary for different participants

due to their diverse musculoskeletal characteristics and

the presence of external disturbances (including mea-

surement error, FES signal interference, and involun-

tary muscle activation unconsciously applied by the par-

ticipant). Superior performance could be obtained by

tuning the learning gain β for each participant, how-

ever a uniform value has been selected to aid compari-

son between participants.

The error norm convergence for the five participants

similarly varies, but all show a similar tendency. To il-

lustrate the convergence process clearly, representative

Table 1 Mean and minimum of 2-norm of trajectory track-
ing error

Participant
P1 P2 P3 P4 P5

Alg 1
mean ‖ek‖ 54.38 47.21 43.45 65.23 48.63
min ‖ek‖ 26.34 25.67 21.88 27.43 12.74

Alg 3
mean ‖ek‖ 109.32 112.54 108.04 123. 34 92.61
min ‖ek‖ 67.10 72.98 62.49 79.01 53.89

Alg 2
mean ‖eΦk ‖ 4.86 5.11 4.70 7.57 4.72
min ‖eΦk ‖ 0.67 1.23 1.19 2.48 1.85

tracking error norms for participant P5 are shown in

Fig. 3. Similarly, representative output signals for final

trials are shown in Fig. 4. From the results collected it

can be concluded that:

– The proposed data-driven gradient ILC for nonlin-

ear system (Algorithm 1, shown by black line in fig-

ures) converges but is relatively slow. The conver-

gence is not generally monotonic due to iteration-

varying disturbances. However the effect of fatigue

is compensated by the controller.

– The proposed data-driven point-to-point gradient

ILC for nonlinear system (Algorithm 2, shown by

the blue line in the figures) has far faster conver-

gence, reflecting the theoretical property established

in Theorem 4 that the convergence rate increases

as point-to-point locations are removed. As previ-

ously noted, the error norm for Algorithm 2 is much

smaller than the others as it only contains 5 points.

– The existing data-driven gradient ILC for linear sys-

tems (Algorithm 3, shown by the red dash line in the

figures) cannot converge to a low error, which re-

flects the fact that the stimulated elbow rehabilita-

tion system has significant nonlinearity. The track-

ing of Algorithm 3 in Fig. 4 may appear reasonable,

however this level of accuracy is not satisfactory for

the current application where high precision is re-

quired to maximise rehabilitation outcomes.

These results therefore confirm the ability of the

new data-driven ILC algorithms to provide effective as-

sistance of stroke patients’ movement within a clinically

relevant setting.

7 Conclusions

In this paper, a data-driven gradient ILC algorithm is

developed for a general class of nonlinear systems. Pre-

cise tracking control is realized by the proposed algo-

rithm without knowledge of the system dynamics. To

achieve this goal, two additional attempts between each

trial are required compared to the standard case where
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Fig. 3 Error norm convergence results of the three algo-
rithms for participant P5.
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Fig. 4 Final trial of data-driven gradient ILC for linear sys-
tems (Algorithm 3) and nonlinear systems (Algorithm 1,2)
for participant P5.

the model dynamics are known and no additional at-

tempts are used. Each additional attempt is generated

according to the tracking error of the last trial. The-

oretical results confirm it monotonically converges to

zero error. The algorithm is further extended to pro-

vide tracking control only at isolated points in the tra-

jectory, thereby increasing convergence speed while still

supporting the objective of many processes. The data-

driven algorithms are experimentally evaluated by ap-

plying them to upper limb rehabilitation using electrical

muscle stimulation. Results confirm they achieve high

performance while avoiding the need for model identi-

fication which is impractical in a clinical setting. The

approaches in this paper naturally extend to m-input,

p-output MIMO systems, but require m × p interme-

diate trials within step 3 of both Algorithms 1 and 2.

Future work will consider self-adaptive learning gain

selection using input and output data. This will avoid

the need for manual tuning and is expected to improve

the convergence rate.
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Appendix

A. Proof of Proposition 1

Proof Using equation (16),
︷ ︸
5g(ûk)ẽk =

︷ ︸
D̂k 0 · · · 0

ĈkB̂k D̂k · · · 0
...

...
. . .

...

ĈkÂ
N−2
k B̂k ĈkÂ

N−3
k B · · · D̂k



ek(N − 1)

ek(N − 2)
...

ek(0)



=

︷ ︸
D̂kek(N − 1)

D̂kek(N − 2) + ĈkB̂kek(N − 1)
...

D̂kek(1) + · · ·+ ĈkÂ
N−3
k B̂kek(N − 1)

D̂kek(0) + · · ·+ ĈkÂ
N−2
k B̂kek(N − 1)


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=


D̂kek(0) + · · ·+ ĈkA

N−2B̂kek(N − 1)

D̂kek(1) + · · ·+ ĈkÂ
N−3
k B̂kek(N − 1)

...

D̂kek(N − 2) + ĈkB̂kek(N − 1)

D̂kek(N − 1)



=


D̂k ĈkB̂k · · · ĈkÂN−2

k B̂k
0 D̂k · · · ĈkÂN−3

k B̂k
...

...
. . .

...

0 0 · · · D̂k




ek(0)

ek(1)
...

ek(N − 1)

 (58)

= 5g(ûk)>ek.

Further, employing the properties of the time rever-

sal operator and combining (58) with (18), we see

5g(ûk)>ek =

︷ ︸
1

α
(g(ûk + αẽk)− g(ûk))

=
1

α

︷ ︸
(g(ûk + αẽk)− g(ûk))

=
1

α

(︷ ︸
g(ûk + αẽk)−

︷ ︸
g(ûk)

)
(59)

Thus, the gradient ILC update law (20) is obtained.
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