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1 Introduction

In this paper we develop further the perturbative continuum limit of quantum gravity be-

gun in refs. [1–4]. The theory is perturbative in κ ∼
√
G, the natural coupling constant

(where G is Newton’s coupling), but non-perturbative in ~. It is the logical consequence

of combining the Wilsonian RG (renormalization group) with the action for free gravitons,

while respecting the wrong-sign kinetic term that then naturally appears in the conformal

sector. Although this renders the partition function meaningless without further rework-

ing [5], the Wilsonian RG remains well defined and provides us with an alternative and

actually more powerful route to defining the quantum field theory. As such it then has

all the usual desired properties (locality, microcausality, unitarity, gauge invariance etc.)

built in. Nevertheless what we are led to is something conceptually different from all other

approaches to quantum gravity, and indeed a construction crucially different from all other

constructions of quantum field theories.

The basic structure of this continuum limit is illustrated in figure 1, where we sketch

the ‘theory space’ of effective actions. In order to implement the Wilsonian RG structure

one introduces a physical cutoff Λ which sets the scale down to which modes are integrated
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Figure 1. The continuum limit is described by a renormalized trajectory that shoots out of the

Gaussian fixed point (free gravitons) along relevant directions that cannot respect diffeomorphism

invariance for Λ > aΛp, where Λp is a characteristic of the renormalized trajectory and is called

the amplitude suppression scale (or amplitude decay scale), and a is a non-universal number. By

appropriate choice of the underlying couplings gσn, diffeomorphism invariance is then recovered at

scales Λ, ϕ� Λp where also we recover an expansion in the effective coupling κ ∼
√
G.

out and allows us to define the Wilsonian effective action at this scale. Näıvely one thinks

of this cutoff as breaking the diffeomorphism invariance. However the Slavnov-Taylor

identities get replaced by modified Slavnov-Taylor identities (mST), “Σ = 0”, that reduce

to the usual ones in the limit that we integrate out all the modes [6, 7]. This limit is

Λ → 0, which is the limit we need, in order to compute the desired physical observables.

Now, because the mST are compatible with the flow equation, if the effective action enters

this “diffeomorphism invariant” theory subspace at some (finite) scale Λ, i.e. such that Σ

vanishes there, it never leaves this subspace, and physical quantities are then guaranteed

to be diffeomorphism invariant.

So far so standard. However, what we find is that the ultraviolet fixed point which

supports the continuum limit (at Λ → ∞ and which for us is just the Gaussian fixed

point, hence perturbatively describable), is located outside the diffeomorphism invariant

subspace, so that interactions constructed from the relevant operators cannot be made

to satisfy Σ = 0 there. Instead, by appropriate choice of the associated couplings gσn, the

renormalized trajectory joins the diffeomorphism invariant subspace in the limit as Λ � Λp

(and also the conformal mode must have amplitude ϕ � Λp) where Λp is a dynamically

generated scale determined by the underlying couplings, called the amplitude suppression

scale [1]. Equivalently, in the limit in which this new scale Λp → ∞, we have Σ → 0

and diffeomorphism invariance is recovered. Here we recover Newton’s constant as another

dynamically generated scale determined by these underlying couplings, and as we’ll see

also the cosmological constant.

– 2 –
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Let us emphasise that this structure follows inevitably from imposing the principles of

the Wilsonian RG about the Gaussian fixed point, while taking seriously the consequences

of the wrong-sign kinetic term in the conformal sector and requiring that in physical am-

plitudes we recover diffeomorphism invariance [4]. It is therefore well grounded and indeed

thus may not seem so different from the usual picture. However all other quantum field

theories have Wilsonian RG flows that can be defined within the gauge invariant subspace.

For example for (non-Abelian) gauge theories the continuum solution can be chosen to

respect the corresponding Σ = 0 identities at all scales, e.g. [7], in fact the gauge invariance

can even be manifestly respected through e.g. lattice regularisation [8] or directly in the

continuum (e.g. [9–11]).

In all other approaches to quantum gravity, it has been assumed that the Wilsonian

RG properties defining the continuum limit, and the diffeomorphism gauge invariance, can

coexist in the same region of the renormalized trajectory. This tacit assumption for ex-

ample lies behind intuitive arguments against the existence of an ultraviolet fixed point in

quantum gravity, based on black hole entropy considerations [12, 13]. We see that these ar-

guments are actually inapplicable in this case.1 To put it pithily, such tensions in quantum

gravity are resolved since a crucial element of quantum gravity is constructed off space-

time. This is to be contrasted with classical General Relativity which is a construction of

space-time, and with normal quantum field theories which are constructed on space-time.

There are other important properties, which are key to a complete understanding of

figure 1, especially the fact that the operators are not those of the usual expansion but non-

polynomial in ϕ, that infinitely many of these are relevant, that the expansion in terms of

these operators actually only makes sense at scales above aΛp, and that flows in the confor-

mal sector go in the reverse direction (from infrared to ultraviolet). In ref. [4] we highlighted

how these novelties lead to differences that need careful treatment. These include differ-

ences in limiting procedures, in particular ultraviolet divergences are now absorbed by the

underlying couplings, while at low scales outside the diffeomorphism invariant subspace

new infrared divergences appear [1]. For these reasons, in this paper we develop further

the properties at first order, and provide a tight characterisation of the most general form

of the continuum limit at this order as needed for the higher order computations.

The first order continuum limit was formulated in ref. [4] in terms of the Wilsonian

effective action and a regularised Quantum Master Equation. Although this allows for an

elegant analysis since the latter effectively leaves BRST invariance unmodified, in section 2

we switch to an equivalent [15, 16] description in terms of the infrared regulated Legendre

effective action [15, 17, 18] and the mST [6, 7]. Although more cumbersome, this then

gives us direct access to the one-particle irreducible amplitudes in the physical limit, and

leads to useful simplifications at higher orders [1, 19, 20]. Furthermore it can still be

solved in terms of the total free quantum BRST charge ŝ0 [7] that naturally incorporates

a regularised Batalin-Vilkovisky measure operator ∆ [21, 22].

1It has been argued that they do not apply in the asymptotic safety scenario either, but for different

reasons [14].
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In sections 2 and 3 we review the development of this free BRST algebra and how

computations can be couched in minimal gauge invariant basis [7]. Then in section 3.1, we

choose the first order non-trivial quantum BRST cohomology representative on which to

build the continuum limit to first order (in the new quantisation these two are not the same).

In order to simplify the higher order computations [20], we choose one that corresponds to

expressing diffeomorphism invariance as a Lie derivative, and demonstrate that this differs

from the previous choice [4, 23] by an ŝ0-exact piece, such that the regularised measure

term ∆ provides a contribution crucial for consistency.

In section 4 we review how the wrong sign kinetic term in the conformal sector pro-

foundly alters RG properties that are central to defining the continuum limit, however

framing the discussion now in terms of the Legendre effective action. In particular we

recall how this leads to all interactions σ being dressed with a coefficient function fσΛ(ϕ).

This latter is parametrised by the underlying couplings gσn. At the linearised level only

those couplings of non-negative mass dimension must be non-vanishing. Here we work

with the most general such coefficient functions that are consistent with the RG properties

as determined by the flow equation, and such that the renormalized trajectory enters the

diffeomorphism invariant subspace as sketched in figure 1. We do so in order to verify the

universality of this continuum limit, here at first order, and later at higher orders [19, 20].

We tighten and further develop the arguments from refs. [1, 4], that show how the RG

properties determine the form of the dressed interactions and their coefficient functions. In

doing so, we demonstrate once again that these results follow inevitably from combining

the Wilsonian RG and the Gaussian fixed point action for free gravitons, after taking seri-

ously the consequences of the resulting wrong-sign kinetic term in the conformal sector. In

particular we give closed expressions for the tadpole corrections appearing in the dressed

interactions, prove that there exists a dynamically generated amplitude suppression scale

Λσ that determines the large ϕ behaviour of each coefficient function fσΛ(ϕ) for all Λ≥0 and

prove that fσΛ(ϕ) itself is determined uniquely by its physical limit. Finally we show that

these are given in conjugate momentum space by an entire function fσ(π) whose Taylor

expansion coefficients are the underlying couplings gσn.

In section 4 and section 5 we show that in turn the amplitude suppression scale char-

acterises the asymptotic behaviour of the underlying couplings gσn at large n. In section 5

we define what it means for the coefficient functions to trivialise in the the large Λσ limit.

From ref. [4] we know that the underlying couplings must be chosen so that this triviali-

sation happens, in order to enter the diffeomorphism invariant subspace at the linearised

level. In the simplest case this means that the coefficient function must tend to a constant

in this limit; more generally we show that it must tend to a Hermite polynomial of degree

α, whose functional form is then fixed.

In section 5.1 we show how to derive new solutions for coefficient functions from a

given one, and derive formulae for their underlying couplings, either by multiplying the

physical coefficient by a power of ϕ or by differentiating with respect to ϕ. These tricks

prove useful later.

Then in section 5.2 we characterise the most general form of coefficient functions

that trivialise in the large Λσ limit. This is most efficiently expressed in terms of their
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Fourier transform. In particular we show that fσ(π) must tend to (the αth derivative

of) a Dirac δ-function. We make two powerful simplifying assumptions which still leave

us with an infinite dimensional function space of solutions flexible enough to encompass

the higher order computations. Firstly we specialise to coefficient functions that have

definite parity (are even or odd functions). Secondly we insist that at the linearised level

the coefficient functions contain only one amplitude suppression scale.2 Putting all these

properties together, allows us to give a complete characterisation of fσ(π) in terms of its

large and small π behaviour, its normalisation, and limiting behaviour of key integrals at

large Λσ. In particular we use this to characterise the approach to the trivialisation limit.

In section 5.3 we verify all these general properties on a series of instructive examples.

Finally in section 6 we construct a very general continuum limit to first order, and verify

that its renormalization group trajectory fulfills the properties sketched in figure 1. We

finish the paper in section 7 by discussing the meaning and implications of this construction

and its relation to other approaches.

2 Legendre effective action, mST, and quantum gravity

We begin by briefly recalling some key steps from refs. [1, 4, 7]. This will also serve to set

out our choice of notation and formulation for this paper. In ref. [4], we worked with the

continuum Wilsonian effective action. Here we will work directly with the renormalized

infrared cutoff Legendre effective action Γ, which is also in fact the one-particle irreducible

part of the continuum Wilsonian effective action [15]. However it will mean that BRST

invariance is no longer expressed as unbroken through the Quantum Master Equation but

rather through modified Slavnov-Taylor identities (mST) [6, 7], so that we recover (off-

shell) nilpotency at the interacting level, only in the limit Λ→0. The free charges are still

nilpotent however, and it is their cohomology that is central to solving for the effective

action [7]. In any case the loss of some elegance is outweighed by the advantages: the

simplification that comes from not computing also the one-particle reducible parts and

especially the fact that the limit then gives us direct access to the physical amplitudes:

Γphys = lim
Λ→0

Γ . (2.1)

The flow equation for the interacting part thus takes the form [15, 17, 18] (see

also [16, 24–27]):

Γ̇I = −1

2
Str

(
4̇Λ4−1

Λ

[
1 +4ΛΓ

(2)
I

]−1
)
, (2.2)

where the over-dot is ∂t = −Λ∂Λ. The BRST invariance is expressed through the mST [6, 7]:

Σ :=
1

2
(Γ,Γ)− Tr

(
CΛ Γ

(2)
I∗

[
1 +4ΛΓ

(2)
I

]−1
)

= 0 . (2.3)

These equations are both ultraviolet (UV) and infrared (IR) finite thanks to the presence

of the UV cutoff function CΛ(p) ≡ C(p2/Λ2) which, since it is multiplicative, satisfies

2However in appendix A, we also develop their properties when there is a spectrum of amplitude sup-

pression scales.
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C(0) = 1, and its associated IR cutoff CΛ = 1 − CΛ, which appears in the IR regulated

propagators as 4AB
Λ = CΛ4AB. The cutoff function is chosen so that C(p2/Λ2) → 0

sufficiently fast as p2/Λ2 → ∞ to ensure that all momentum integrals are indeed UV

regulated (faster than power fall off is necessary and sufficient). It is also required to be

smooth (differentiable to all orders), corresponding to a local Kadanoff blocking. It thus

permits for Λ>0, a quasi-local solution for ΓI , namely one that has a space-time derivative

expansion to all orders. We insist on this: it is equivalent to imposing locality on a bare

action.

The two equations are compatible: if Σ = 0 at some generic scale Λ, it remains so

on further evolution, in particular as Λ → 0. The second term in the mST (2.3) is a

quantum modification due to the cutoff Λ>0. At non-exceptional momenta (i.e. such that

no internal particle in a vertex can go on shell) it remains IR finite, and thus vanishes

as Λ → 0, thanks to the UV regularisation. We are then left with just the Zinn-Justin

equation 1
2(Γ,Γ) = 0 [28, 29], which gives us the standard realisation of quantum BRST

invariance through the Slavnov-Taylor identities for the corresponding vertices.

In the above equations we have introduced StrM = (−)AMA
A and TrM = MA

A,

and set

Γ
(2)
I AB =

∂l
∂ΦA

∂r
∂ΦB

ΓI ,
(

Γ
(2)
I∗

)A
B

=
∂l
∂Φ∗A

∂r
∂ΦB

ΓI , (2.4)

Here Φ and Φ∗ are the collective notation for the classical fields and antifields (sources of

BRST transformations) respectively, while Γ is the “effective average action” [18] part of

the infrared cutoff Legendre effective action [7, 15]:

Γtot = Γ +
1

2
ΦARABΦB , 4−1

ΛAB = 4−1
AB +RAB , (2.5)

where RAB is the infrared cutoff expressed in additive form. Γ is expressed in terms of

a free part, Γ0, which includes the free BRST transformations, plus the interaction part

ΓI [Φ,Φ
∗]:

Γ = Γ0 + ΓI , Γ0 =
1

2
ΦA4−1

ABΦB − (Q0ΦA)Φ∗A . (2.6)

Note that the free part carries no regularisation. The antibracket in the mST is similarly

expressed without regularisation. For arbitrary functionals of the classical (anti)fields,

Ξ[Φ,Φ∗] and Υ[Φ,Φ∗], it is given by

(Ξ,Υ) =
∂rΞ

∂ΦA

∂lΥ

∂Φ∗A
− ∂rΞ

∂Φ∗A

∂lΥ

∂ΦA
. (2.7)

Notice that in Γ0 we have chosen left-acting BRST transformations [4] (see also appendix

A2 of [7]) so that the free BRST transformation is given by the first of the following

equations:

Q0 ΦA := (Γ0,Φ
A) , Q−0 Φ∗A := (Γ0,Φ

∗
A) . (2.8)

Here we have taken the opportunity also to define the free Koszul-Tate operator Q−0 .

– 6 –
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We will be interested in expanding ΓI perturbatively in its interactions, assuming the

existence of an appropriate small parameter ε:

ΓI =
∞∑
n=1

Γn ε
n/n! . (2.9)

Importantly, in the quantisation established in [1, 4], we need however to work non-

perturbatively in ~, so there will be no loop expansion. In the above, ε is a formal

perturbation-order counting parameter, which we set to ε = 1 at the end. The actual

small physical parameter,

κ =
√

32πG (2.10)

(where G is Newton’s gravitational constant) will properly make its appearance in the

theory only in section 6, where it arises as a collective effect of all the underlying couplings.

At first order the flow equation (2.2) and mST (2.3) become

Γ̇1 =
1

2
Str 4̇ΛΓ

(2)
1 , (2.11)

0 = (Γ0,Γ1)− Tr
(
CΛ Γ

(2)
1∗

)
= (Q0 +Q−0 −∆)Γ1 =: ŝ0 Γ1 , (2.12)

where the first equation is the flow equation satisfied by eigenoperators: their RG time

derivative is given by the action of the tadpole operator [4]. In the second equation we

recognise that we recover the Batalin-Vilkovisky measure operator [21, 22]:

∆ = (−)A
∂l
∂ΦA

CΛ ∂l
∂Φ∗A

, (2.13)

UV regulated as in refs. [4, 7], and we have defined the corresponding full free quantum

BRST charge ŝ0. Note that ∆ thus generates Λ-dependent tadpole integral corrections to

the full free classical BRST transformations. Thanks to compatibility, these corrections

are as required in order to find simultaneous solutions of the linearised flow equation (2.11)

and linearised mST (2.12). Indeed, as shown in [4], the ŝ0-cohomology can then be defined

within the space spanned by the eigenoperators with constant coefficients (a.k.a. couplings).

In this paper, any explicit expression for an action functional should be understood

as integrated over four flat Euclidean spacetime dimensions and determined only up to

integration by parts. As we will explain shortly, we can in effect work in minimal gauge

invariant basis [7] where

Γ0 =
1

2
(∂λHµν)2 − 2 (∂λϕ)2 − (∂µHµν)2 + 2 ∂αϕ∂βHαβ − 2 ∂µcνH

∗
µν (2.14)

is the action for free graviton fields Hµν , plus the fermionic antifield H∗µν source term for

Q0Hµν = ∂µcν + ∂νcµ , (2.15)

the only non-vanishing free linearised BRST transformation in this basis, this matching

the general form (2.6), cµ being the (fermionic) ghost fields. Contraction is with the flat

– 7 –
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metric δµν , and we write ϕ = 1
2 Hµµ. Since raising an index makes no difference we will

usually leave all indices as subscripts.

We note in passing that the free action (2.14) is also the action one gets from the

Einstein-Hilbert Lagrangian

LEH = −2
√
gR/κ2 , (2.16)

if one expands the metric as

gµν = δµν + κHµν . (2.17)

Similarly the free BRST invariance (2.15) follows from expanding diffeomorphisms (regard-

ing κcµ as the small diffeomorphism).

The only extra (anti)field we will need is the bosonic c∗µ, the source for BRST trans-

formations of cµ that will appear at the interacting level. From the general definition (2.8)

and the free action (2.14), the non-vanishing free Kozsul-Tate differentials are:

Q−0 H
∗
µν = −2G(1)

µν , Q−0 c
∗
ν = −2∂µH

∗
µν , (2.18)

where G
(1)
µν is the linearised Einstein tensor:

G(1)
µν = −R(1)

µν +
1

2
R(1)δµν =

1

2
�Hµν − δµν�ϕ+ ∂2

µνϕ+
1

2
δµν∂

2
αβHαβ − ∂(µ∂

αHν)α , (2.19)

the linearised curvatures being3

R
(1)
µανβ =−2∂[µ| ∂[νHβ] |α] , R

(1)
µν =−∂2

µνϕ+ ∂(µ∂
αHν)α −

1

2
�Hµν , R

(1) = ∂2
αβHαβ − 2�ϕ .

(2.20)

It is evident that the Koszul-Tate transformations (2.18) are invariances of the free ac-

tion (2.14), the former by the linearised Bianchi identity and the latter trivially so.

In order to derive the propagators, which are used in both the flow equation (2.2)

and the mST (2.3), we need to introduce gauge fixing. To do this we first extend to

the non-minimal basis by adding the bosonic auxiliary field bµ that allows off-shell BRST

invariance, and c̄∗µ which sources BRST transformations of the antighost c̄µ. Then the free

effective action is written as [4]:

Γ0|gi = Γ0 +
1

2α
b2µ − ibµc̄∗µ , (2.21)

where α is our gauge fixing parameter. Gauge fixing is implemented by a finite quantum

canonical transformation [30, 31] that takes us to gauge fixed basis Φ∗A|gf = Φ∗A|gi + ∂rAΨ,

where Ψ is the gauge fixing fermion. Choosing Ψ = c̄µFµ, where Fµ = ∂νHνµ − ∂µϕ is De

Donder gauge, the canonical transformation only changes c̄∗µ |gi = c̄∗µ |gf − Fµ and:4

H∗µν |gi = H∗µν |gf + ∂(µc̄ν) −
1

2
δµν ∂ ·c̄ . (2.22)

The free action in gauge fixed basis is therefore:

Γ0|gf = Γ0 − c̄µ� cµ − ibµFµ +
1

2α
b2µ − ibµc̄∗µ . (2.23)

3Defining symmetrisation as: t(µν) = 1
2
(tµν + tνµ), and antisymmetrisation as t[µν] = 1

2
(tµν − tνµ).

4Defining vector contraction as u·v = uµvµ.

– 8 –
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It has kinetic operators that can be inverted. The Hµν propagator simplifies in “Feynman

gauge” α = 2, which as in ref. [4] we set from now on. Splitting Hµν into its SO(4)

irreducible parts,

Hµν = hµν +
1

2
ϕ δµν (2.24)

(thus h µ
µ = 0 is traceless), in this gauge the two parts decouple. The propagators we

need are

〈hµν(p)hαβ(−p)〉 =
δµ(αδβ)ν − 1

4δµνδαβ

p2
, (2.25)

〈ϕ(p)ϕ(−p)〉 = − 1

p2
, (2.26)

〈cµ(p) c̄ν(−p)〉 = −〈c̄µ(p) cν(−p)〉 = δµν/p
2 , (2.27)

where we have written

4AB = 〈ΦA ΦB〉 , ΦA(x) =

∫
p

e−ip·x ΦA(p) ,

∫
p
≡
∫

d4p

(2π)4
. (2.28)

Note that hµν propagates with the right sign, and that the numerator is just the projector

onto traceless tensors, while ϕ propagates with wrong sign.

There is a propagator involving bα [4] but it is not needed. Indeed, we will later

confirm that the first order interaction Γ1 can be constructed just from the minimal set.

Then in gauge fixed basis, Γ1 still does not depend on bµ or c̄∗µ and will depend on c̄µ only

through the combination on the right hand side (r.h.s. ) of the transformation to gauge

fixed basis (2.22). By iteration, using the flow equation (2.2), these properties are inherited

by all the higher order interactions Γn>1. Mapping back to gauge invariant basis using the

equations above, we therefore see that ΓI will not depend on bµ, c̄∗µ or c̄µ. This means in

particular that the full ΓI remains in minimal gauge invariant basis.

Therefore we can most simply express the calculation in this basis [7] as we will do from

now on. What this means is that when we compute corrections from the flow equation (2.2)

or from the quantum correction part of the mST (2.3), we temporarily make the shift to

gauge fixed basis using (2.22), which in particular then allows corrections computed using

the ghost propagator (2.27), after which we absorb the antighost by shifting back to minimal

gauge invariant basis using the inverse of (2.22). Notice that since the transformation is

canonical, it has no effect on the antibracket part of the mST (2.3) which thus can be

computed whilst remaining in (minimal) gauge invariant basis.

3 Free quantum BRST cohomology

Following Henneaux et al. [32], we can simplify finding solutions of the ŝ0-cohomology by

splitting the problem up (a.k.a. grading) by antighost, a.k.a. antifield, number. We thus

have the weights H∗µν [−1, 1, 2], c∗µ [−2, 2, 2], Hµν [0, 0, 1] and cµ [1, 0, 1], where the first

entry is the ghost number, the second entry the antighost/antifield number, and the final

entry the mass dimension. (A full table of weights is given in ref. [4].) Thus all parts

– 9 –
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of ŝ0 increase ghost number and mass dimension by one. While ghost number and mass

dimension are respected, antighost number is not, but it is chosen so that the free BRST

charges have definite antighost number. We anticipated this with our labelling: Q0 leaves

antighost number unchanged, while Q−0 lowers it by one. Under this grading, the measure

operator splits into two parts that lower antighost number by one or two respectively (∆−

simplifies to this in minimal basis [4]):

∆ = ∆− + ∆= , ∆− =
∂

∂Hµν
CΛ ∂l

∂H∗µν
, ∆= = − ∂l

∂cµ
CΛ ∂

∂c∗µ
. (3.1)

The point of this extra grading is that Γ itself does not have definite antifield number

but splits into parts of definite antifield number n: Γ =
∑

n=0 Γn . This means that an

(integrated) operator O =
∑n

m=0Om with some maximum antighost number n, that is

annihilated by ŝ0, must satisfy the descent equations:

Q0On = 0 , Q0On−1 = (∆− −Q−0 )On , Q0On−2 = (∆− −Q−0 )On−1 + ∆=On , · · · .
(3.2)

Starting with the top (left-most) equation, these are often easier to analyse than trying to

work with ŝ0O = 0 directly. Grading the square we also have the useful identities [4, 7]:5

Q2
0 = 0 , (Q−0 )2 = 0 , (∆−)2 = 0 , (∆=)2 = 0 ,

{Q0, Q
−
0 } = 0 , {Q0,∆

−} = 0 , {Q−0 ,∆
=} = 0 , {∆−,∆=} = 0 ,

{Q−0 ,∆
−}+ {Q0,∆

=} = 0 . (3.3)

3.1 Non-trivial free quantum BRST cohomology representatives

As we will review in section 6, our choice of non-trivial ŝ0-cohomology representative, Γ̌1,

will lead us to the solution for the first order interactions Γ1. (The latter is not simply κ Γ̌1

as it would be in standard quantisation [4].) In order to get a theory that is consistent with

unitarity and causality, we restrict Γ̌1 to have a maximum of two space-time derivatives.

Then Γ̌1 must be a linear combination of a term involving space-time derivatives and a

unique non-derivative piece:

Γ̌1 = Γ̌0
1 = ϕ . (3.4)

This latter is nothing but the O(κ) part of
√
g, i.e. what one gets from a classical cosmo-

logical constant term, using the first order expansion of the metric in terms of fluctuation

field (2.17). The derivative part has a unique expression with maximum antighost number

two [4, 23], up to addition of ŝ0-exact pieces. Previously we followed [23] in using the

simplest form for this ŝ0-cohomology representative, which corresponds to treating cµ as a

covariant vector field [4]. At higher orders the formulae will simplify however if we treat cµ

as a contravariant vector field since diffeomorphisms can then be expressed through the Lie

5In ref. [4] we incorrectly assumed that the interacting BRST charges have definite antighost number

(see footnote 10 of [7]), and thus that these identities hold in general, although we actually applied them

only at the free level.
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derivative and thus be independent of the metric. Then the maximum antighost number

piece is

Γ̌2
1 = − (cµ∂µc

ν) c∗ν = cµ∂νcµc
∗
ν +Q0 (Hµνcµc

∗
ν) , (3.5)

where the first bracketed term is half the Lie bracket as required [4], and in the second

equality we use the free diffeomorphism BRST transformation (2.15) to express it as the

old choice plus a Q0-exact piece (the first term on the ŝ0-exact addition (3.7)’s r.h.s. ).

Now we could use the second expression and descend via the descendent equations (3.2)

using the nilpotency relations (3.3), but since we know that the expression is unique up to

addition of ŝ0-exact pieces, we see immediately that our new choice must be

Γ̌1 = Γ̌1|old + ŝ0 (Hµνcµc
∗
ν) , (3.6)

up to possible further ŝ0-exact terms of lower antighost number. Using also the Koszul-Tate

transformation (2.18) and the explicit formula for the Batalin-Vilkovisky measure (3.1),

ŝ0 (Hµνcµc
∗
ν) = (∂µcν + ∂νcµ) cµc

∗
ν + 2Hµνcµ∂αH

∗
αν + 2bΛ4ϕ , (3.7)

where we note that ∆− trivially annihilates, but ∆= yields a UV regulated quartically

divergent contribution, b being the non-universal number already introduced in refs. [1, 4]:

b =

∫
d4p̃

(2π)4
C(p̃2) . (3.8)

From the relation between the new and old choices (3.6) and the antighost level one part

of the ŝ0-exact addition (3.7), we have

Γ̌1
1 = 2cαΓ

(1)α
µνH

∗
µν + 2Hµνcµ∂αH

∗
αν = − (cα∂αHµν + 2 ∂µc

αHαν)H∗µν , (3.9)

where the previous choice involves the linearised connection Γ
(1)α

µν =
1
2 (∂µHαν+∂νHαµ−∂αHµν). Integrating by parts we get the second expression, and

we recognise that inside the brackets we already have the desired Lie derivative form.

Combining it with the last term of the free action (2.14), the expression for the Lie

derivative of the metric is given exactly, provided that the metric is taken to be exactly

the definition (2.17) in terms of Hµν . In other words at the classical level neither the

first-order antighost level two part (3.5) nor the first-order antighost level one part (3.9)

receives corrections at higher order in perturbation theory. Finally, from the relation

between the new and old choices (3.6) and the expression for ŝ0-exact addition (3.7),

we have

Γ̌0
1 = Γ̌0

1|old + 2bΛ4ϕ (3.10)

= 2ϕ∂βHβα∂αϕ− 2ϕ(∂αϕ)2 − 2Hαβ∂γHγα∂βϕ+ 2Hαβ∂αϕ∂βϕ− 2Hβγ∂γHαβ∂αϕ

+
1

2
ϕ(∂γHαβ)2 − 1

2
Hγδ∂γHαβ∂δHαβ −Hβµ∂γHαβ∂γHαµ + 2Hµα∂γHαβ∂µHβγ

+Hβµ∂γHαβ∂αHγµ−ϕ∂γHαβ∂αHγβ−Hαβ∂γHαβ∂µHµγ+2Hαβ∂γHαβ∂γϕ+
7

2
bΛ4ϕ .
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Γ̌0
1|old coincides with the classical three-graviton vertex that one would get from expansion

of the Einstein-Hilbert action (2.16) using the first order expansion of the metric (2.17),

except for a quantum correction,6 3
2bΛ

4ϕ, which is generated by the action of the tadpole

operator, the r.h.s. of the linearised flow equation (2.11), on this triple-graviton vertex [4].

This quantum correction turns Γ̌1|old into a (dimension five) eigenoperator in standard

quantisation.

Around the Gaussian fixed point and in dimensionful variables, as in our case, an eigen-

operator in standard quantisation is a local solution of the linearised flow equation (2.11)

which contains no dimensionful parameters and is polynomial in the fields. Since Hµνcµc
∗
ν

is trivially such an eigenoperator (it has no tadpole corrections) and ŝ0 maps the vector

space of eigenoperators into itself, as recalled below (2.13) [4], we know that the ŝ0-exact

addition (3.7) is an eigenoperator. Indeed the last term of the ŝ0-exact addition (3.7) is

exactly right to balance the action of the (ghost) tadpole operator on 2Hµνcµ∂αH
∗
αν . Since

the relation between new and old choices (3.6) is thus the sum of two eigenoperators of the

same dimension, our new Γ̌1 is also an eigenoperator (which of course one can also confirm

by direct calculation).

4 Renormalization group properties at the linearised level

The wrong sign ϕ propagator (2.26) reflects the wrong sign kinetic term for ϕ in this

gauge, which in turn is a reflection of the instability caused by the unboundedness of the

Euclidean Einstein-Hilbert action (see [1, 3, 4] for further discussion). The Euclidean par-

tition function is then more than usually ill-defined, which the authors of ref. [5] proposed

to solve by analytically continuing the ϕ integral along the imaginary axis. However this

wrong sign does not invalidate the Wilsonian renormalization group (RG) flow equations,

for example as realised by the Legendre effective action flow equation (2.2), which provide

an alternative and anyway more powerful route to defining a continuum limit (see [1–4]

and e.g. ref. [33] for further discussion). As shown in refs. [1, 4], the wrong sign then

profoundly alters the RG properties that are central to defining such a continuum limit.

(For earlier observations see refs. [34, 35].) We review and refine some of those discoveries

in this section.

Consider some arbitrary infinitesimal perturbation around the Gaussian fixed

point (2.14), whose ϕ-amplitude dependence7 is given by fΛ(ϕ). Recalling the wrong

sign in the ϕ propagator (2.26), and using ĊΛ = −ĊΛ, the linearised flow equation (2.11)

implies that this coefficient function must satisfy

ḟΛ(ϕ) =
1

2
Ω̇Λ f

′′
Λ(ϕ) , (4.1)

where prime is ∂ϕ, and

ΩΛ = |〈ϕ(x)ϕ(x)〉| =
∫
q

C(q2/Λ2)

q2
=

Λ2

2a2
(4.2)

6This thus combines with the 2bΛ4ϕ to give the final term above.
7I.e. its ϕ dependence other than any dependence through space-time derivatives as in ∂mϕ.
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is the modulus of the ϕ tadpole integral regularised by the UV cutoff (a > 0 is a dimen-

sionless non-universal constant). With the now positive sign on the right hand side of this

parabolic equation, the first dramatic conclusion is that the natural direction of RG flow

in this sector reverses: solutions are guaranteed to exist only when flowing from the IR

towards the UV. This property will play an important rôle here and in later papers [19, 20].

Most importantly, the perturbation can be written as a convergent sum over eigenoper-

ators and their couplings only if the coefficient function is square-integrable under the

corresponding Sturm-Liouville measure:∫ ∞
−∞
dϕ eϕ

2/2ΩΛf2
Λ(ϕ) <∞ , (4.3)

where the measure is now a growing exponential. We call L−, the (Hilbert) space of such

coefficient functions. If fΛ ∈ L−, then it can be written as a (typically infinite) linear

combination over the operators:

δ
(n)
Λ (ϕ) :=

∂n

∂ϕn
δ
(0)
Λ(ϕ) , where δ

(0)
Λ(ϕ) :=

1√
2πΩΛ

exp

(
− ϕ2

2ΩΛ

)
(4.4)

(integer n ≥ 0) with convergence of the sum being in the square-integrable sense under the

Sturm-Liouville measure (4.3), under which also the operators are orthonormal:∫ ∞
−∞
dϕ eϕ

2/2ΩΛ δ
(n)
Λ (ϕ) δ

(m)
Λ (ϕ) =

n!

Ω
n+1/2
Λ

√
2π

δnm . (4.5)

These δ
(n)
Λ (ϕ) are solutions of the linearised flow equation for the coefficient function (4.1),

and are nothing but the tower of non-derivative eigenoperators in the ϕ sector that span L−,

the general solution of the linearised flow equation in this space being a linear combination

of these eigenoperators with constant coefficients, a.k.a. couplings. The δ
(n)
Λ (ϕ) are all

relevant, their scaling dimensions being equal to their engineering dimensions in mass units,

namely −1−n. Since ΩΛ ∝ ~, the δ
(n)
Λ (ϕ) are non-perturbative in ~. It is for this reason

that we must develop the theory whilst remaining non-perturbative in ~. We mention

also that they are also evanescent, i.e. vanish as Λ → ∞, and have the property that the

physical operators, gained by sending Λ → 0, are δ
(n)

(ϕ), the nth-derivatives of the Dirac

delta function.

In the hµν sector and the ghost sector, convergent sums are over eigenoperators that

are polynomials in the fields, justifying the usual form of expansion. Altogether, the general

eigenoperator can be expressed as [4]

δ
(n)
Λ (ϕ)σ(∂, ∂ϕ, h, c,Φ∗) + · · · , (4.6)

(in gauge invariant minimal basis) where we have displayed the ‘top term’, σ being a Λ-

independent Lorentz invariant monomial involving some or all of the components indicated,

in particular the arguments ∂ϕ, h, c,Φ∗ can appear as they are, or differentiated any number

of times. If dσ = [σ] is its engineering dimension, then the scaling dimension of the

corresponding eigenoperator is just the sum of the engineering dimensions, namely dσ−1−n.
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Figure 2. The eigenoperator is equal to its physical limit σ δ(n)(ϕ), plus all possible tadpole cor-

rections. Those corrections generated by attaching to σ, terminate eventually (since the monomial

will run out of fields), while ϕ-tadpole corrections to δ(n)(ϕ) go on forever but resum to δ
(n)
Λ (ϕ). We

do not draw the external legs, an infinite number of which attach to δ
(n)
Λ (ϕ).

Notice that undifferentiated ϕ does not appear in σ but only in δ
(n)
Λ (ϕ). The tadpole

operator in the linearised flow equation (2.11) generates a finite number of Λ-dependent UV

regulated tadpole corrections involving less fields in σ. These are the terms we indicate with

the ellipses. They are formed by attaching the propagators (2.25)–(2.27) (in gauge fixed

basis) in all possible ways according to the usual rules of Wick contraction, but excluding

ϕ tadpoles connected only to δ
(n)
Λ (ϕ), since these are already accounted for through the flow

equation for the coefficient function (4.1).

In fact we can give the general eigenoperator (4.6) in closed form. Note that the

linearised flow equation (2.11) implies

Γ̇1 = −1

2
4̇ΛAB ∂2

l

∂ΦB∂ΦA
Γ1 , (4.7)

where 4ΛAB = CΛ4AB is the UV regulated propagator. The solution we need is therefore

exp

(
−1

2
4ΛAB ∂2

l

∂ΦB∂ΦA

)
Γ1 phys , where Γ1 phys = σ δ(n)(ϕ) , (4.8)

since at Λ = 0, δ
(n)
Λ (ϕ) = δ(n)(ϕ) and all the tadpole corrections vanish. The exponential

operator then just generates all the Wick contractions8 for the propagator which appears

here as −4Λ, as illustrated in figure 2. For each functional derivative we can write by the

Leibniz rule
∂l
∂ΦA

=
∂Ll
∂ΦA

+
∂Rl
∂ΦA

(4.9)

where ∂L acts only on the left-hand factor, here σ, and ∂R acts only the right-hand factor,

here δ(n)(ϕ). Thus (factoring out −CΛ for later convenience):

1

2
4AB ∂2

l

∂ΦB∂ΦA
=

1

2
4AB ∂Ll

2

∂ΦB∂ΦA
+4AB ∂Ll

∂ΦB

∂Rl
∂ΦA

+
1

2
4AB ∂Rl

2

∂ΦB∂ΦA
. (4.10)

The exponential in the eigenoperator solution (4.8) therefore factors into three exponentials.

Since δ(n)(ϕ) only depends on ϕ, the third exponential collapses to [1]:

exp

(
−1

2
4ΛAB ∂Rl

2

∂ΦB∂ΦA

)
δ(n)(ϕ) = e

1
2

ΩΛ∂
2
ϕ δ(n)(ϕ) = ∂nϕ

∫ ∞
−∞

dπ

2π
e−

1
2
π2ΩΛ+iπϕ = δ

(n)
Λ (ϕ) ,

(4.11)

8In particular ghost propagators count an overall 1
2
× (−2)=−1 through 〈cc̄〉 and 〈c̄c〉 and statistics.
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where we used the ϕ propagator (2.26), giving the tadpole integral (4.2) and derivatives

∂ϕ with respect to the amplitude (i.e. no longer functional), and expressed the result in

conjugate momentum π space, after which the integral evaluates to the expression (4.4)

for the δ
(n)
Λ (ϕ) operators. Thus the entire eigenoperator can be written as

exp

(
−4Λϕϕ ∂

L

∂ϕ

∂R

∂ϕ

){
exp

(
−1

2
4ΛAB ∂2

l

∂ΦB∂ΦA

)
σ

}
δ
(n)
Λ (ϕ) , (4.12)

where the term in braces expresses all the tadpole corrections acting purely on σ, and the

left-most term generates ϕ-propagator (2.26) corrections that attach to both σ and δ
(n)
Λ (ϕ)

(each such attachment will increase n 7→n+1).

A simple example eigenoperator [4] will prove useful later:

− ∂µcνH∗µνδ
(n)
Λ (ϕ) + 2bΛ4δ

(n)
Λ (ϕ) . (4.13)

The second term has the ghost tadpole correction to the top monomial σ=−∂µcνH∗µν , that

we already derived in the ŝ0-exact addition (3.7). (To see this immediately, substitute the

SO(4) decomposition (2.24) into the ŝ0-exact addition, integrate by parts, and recall the

remark at the end of section 3.1.)

The continuum limit is described by the renormalized trajectory [33, 36], the RG tra-

jectory that shoots out of the (Gaussian) fixed point, parametrised by (marginally) relevant

couplings that are finite at physical scales. Close to the fixed point, the linearised approxi-

mation is justified. The interaction there is therefore expanded only over the marginal and

relevant eigenoperators (4.6) with constant couplings gσn whose mass-dimensions

[gσn] = 4− (dσ−1−n) = 5 + n− dσ , (4.14)

must all be non-negative. Every monomial σ is therefore associated to an infinite tower of

operators, which can be subsumed into

fσΛ(ϕ)σ(∂, ∂ϕ, h, c,Φ∗) + · · · = exp

(
−4Λϕϕ ∂

L

∂ϕ

∂R

∂ϕ

){
exp

(
−1

2
4ΛAB ∂2

l

∂ΦB∂ΦA

)
σ

}
fσΛ(ϕ) ,

(4.15)

where the coefficient function of the top term is given by (at the linearised level)

fσΛ(ϕ) =
∞∑

n=nσ

gσnδ
(n)
Λ (ϕ) , (4.16)

and the tadpole corrections are the same as before (now with fσΛ differentiated according

to the number of times the left-most operator acts on it). In general all the (marginally)

relevant couplings [gσn] ≥ 0 will be needed [1] and thus at the linearised level

nσ = max(0, dσ − 5) . (4.17)

For dσ ≥ 5, we are thus including the marginal coupling [gσnσ ] = 0.
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The eigenoperators (4.6), (4.12) span the complete (Hilbert) space L of interactions

whose combined amplitude dependence is square integrable under the Sturm-Liouville

measure

exp
1

2ΩΛ

(
ϕ2 − h2

µν − 2 c̄µcµ
)
. (4.18)

At the bare level we require that ΓI is inside L, so that expansion over eigenoperators is

meaningful. We can interpret this as a ‘quantisation condition’ that is thus both natural

and necessary for the Wilsonian RG. However, since we will be solving for ΓI directly in

the continuum, our bare cutoff is already sent to infinity. Then this condition is replaced

by the requirement that ΓI ∈ L for sufficiently large Λ, where as a consequence we also

have fσΛ ∈ L−.

We define the amplitude suppression scale Λσ ≥ 0 to be the smallest scale such that

for all Λ>aΛσ, the coefficient function is inside L−. The coefficient function exits L− as

Λ falls below aΛσ, either because it develops singularities after which the flow to the IR

ceases to exist, or because it decays too slowly at large ϕ.

We need to choose the gσn so that the flow all the way to Λ→ 0 does exist, so that all

modes can be integrated over and so that the physical Legendre effective action (2.1) can be

defined. Note that we mean by Γphys the resulting Λ→ 0 limit, thus removing the infrared

cutoff (limΛ→0CΛ = 0). The results are not yet physical in terms of properly incorporating

diffeomorphism invariance. That requires another limit as we will shortly see.

Since the coefficient function thus exits L− by decaying too slowly, we know from the

square-integrability condition (4.3) that asymptotically:

fσaΛσ(ϕ) ∝ Aσ e−ϕ
2/4ΩaΛσ+o(ϕ2) = Aσ e−ϕ

2/2Λ2
σ+o(ϕ2) , (4.19)

for at least one of ϕ→ ±∞, with the other side decaying at the same rate or faster, where

[Aσ] = 4− dσ (4.20)

is a dimensionful constant, and o(· · ·) is a dimensionless term of either sign that grows slower

than its argument. (Because of the presence of such undetermined terms, the asymptotic

formula (4.19) only yields Aσ up to a dimensionless proportionality constant.)

The asymptotic behaviour (4.19) gives us a boundary condition which then fixes the

solution of the linearised flow equation (4.1) at large ϕ. Thus we find (at the linearised

level) the asymptotic behaviour for any Λ:

fσΛ(ϕ) ∝ Aσ exp

(
− a2ϕ2

Λ2 + a2Λ2
σ

+ o(ϕ2)

)
(4.21)

(on at least one side with the other side being the same rate or faster). From the require-

ment for square-integrability under the Sturm-Liouville measure, cf. (4.3), our definition

of Λσ is verified: fσΛ∈L− for all Λ>aΛσ, while fσΛ /∈L− for Λ<aΛσ (in fact for all such Λ).

Setting Λ = 0 shows that the physical coefficient function fσphys(ϕ), which following [4]

we write simply as fσ(ϕ), is characterised by the decay (on at least one side with the other

side being the same rate or faster):

fσ(ϕ) ∝ Aσ e−ϕ
2/Λ2

σ+o(ϕ2) . (4.22)

– 16 –



J
H
E
P
0
6
(
2
0
2
0
)
1
3
8

It appears as

fσ(ϕ)σ(∂, ∂ϕ, h, c,Φ∗) (4.23)

in the (physical) Legendre effective action, the regularised tadpole corrections in the Λ>0

solution (4.15) having all vanished, since they are all proportional to positive powers of Λ.

The asymptotic property for the physical coefficient function (4.22) is the motivation for

calling Λσ the amplitude suppression scale, or amplitude decay scale [1, 4].

From the linearised flow equation for the coefficient function (4.1), this solution can

be written in terms of the Fourier transform over π:

fσΛ(ϕ) =

∫ ∞
−∞

dπ

2π
fσ(π) e−

π2

2
ΩΛ+iπϕ , (4.24)

where fσ is Λ-independent and is thus the Fourier transform of the physical fσ(ϕ). From the

expansion of the coefficient function in terms of δ
(n)
Λ (ϕ) operators (4.16) and the Fourier

transform expression for these operators (4.11), the couplings are its Taylor expansion

coefficients:

fσ(π) =
∞∑

n=nσ

gσn(iπ)n . (4.25)

Since the asymptotic behaviour of the physical coefficient function (4.22) ensures that

the inverse Fourier transform exists for all complex π, fσ is an entire holomorphic func-

tion (Paley-Wiener theorem).9 The asymptotic behaviour of the physical coefficient func-

tion (4.22) is reproduced by setting fσ(π) proportional to

AσΛσ e−π
2Λ2

σ/4+o(π2) , (4.26)

which also reproduces the asymptotic behaviour (4.21) at Λ>0. However at this stage it

needs to be interpreted with care since it captures only the fastest decaying part, corre-

sponding to the slowest decaying behaviour in ϕ-space. (See appendix A for an example.

This corrects part of the characterisation given in ref. [4].) It does however control the

large-n behaviour of the couplings:

gσn ∝ Aσ
( e

2n

)n
2
Λn+1
σ e o(n) as n→∞ , (4.27)

where we Taylor expanded the asymptotic formula for the Fourier transform (4.26) and used

Stirling’s approximation. Indeed from the expansion of the coefficient function in terms

of the δ
(n)
Λ (ϕ) operators (4.16), square integrability under the Sturm-Liouville measure, as

in (4.3), and the orthonormality relations (4.5), we see that∫ ∞
−∞
dϕ eϕ

2/2ΩΛ (fσΛ)2 =
1√
2π

∞∑
n=nσ

n! (gσn)2/Ω
n+ 1

2
Λ <∞ for Λ > aΛσ . (4.28)

By its definition, Λ = aΛσ marks the radius of convergence, and thus we see that gσn
must at large n behave roughly like

√
Ωn
aΛσ

/n!. Using Stirling’s approximation we regain

9Then since fσ is also square integrable, the exponential decay part in the Fourier integral solution (4.24)

ensures that the Fourier integral converges for all complex ϕ provided Λ > 0, and thus that fσΛ>0(ϕ) is also

an entire holomorphic function.
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the asymptotic formula for the couplings (4.27) (up to sign dependence). This large-n

behaviour also verifies that fσ is entire.

As mentioned already below (4.1), flows in the ϕ-sector are guaranteed to exist in

the reverse direction, i.e. from the IR towards the UV. In particular, the linearised fσΛ(ϕ)

exists for all Λ ≥ 0 and is unique, once the coefficient function at Λ = 0 is specified, as is

also clear from the Fourier integral representation (4.24). Given the asymptotic behaviour

for the physical coefficient function (4.22), this is also clear from the Green’s function

representation:

fσΛ(ϕ) =

∫ ∞
−∞
dϕ0 f

σ(ϕ0) δ
(0)
Λ(ϕ−ϕ0) . (4.29)

It is clear that this is the Green’s function representation since it satisfies the linearised flow

equation for the coefficient function (4.1) by virtue of the fact that the shifted eigenoperator

δ
(0)
Λ(ϕ−ϕ0) does, and returns the boundary condition in the limit Λ→0, since in this limit

δ
(0)
Λ(ϕ−ϕ0) → δ(ϕ−ϕ0) [1]. Thus δ

(0)
Λ(ϕ−ϕ0) is in fact the Heat kernel for the diffusion

equation (4.1). By Taylor expanding δ
(0)
Λ(ϕ−ϕ0) about ϕ, we recover the expansion of the

coefficient function over δ
(n)
Λ (ϕ) operators (4.16) (and the series converges for Λ > aΛσ),

and read off a formula for the couplings in terms of the moments of the physical coefficient

function [1]:

gσn =
(−)n

n!

∫ ∞
−∞
dϕϕn fσ(ϕ) (4.30)

We see therefore that the general form of the solution is given by specifying the physical

coefficient function. At this stage it is subject only to the constraints that it satisfy the

asymptotic condition (4.22) and be such that its Taylor expanded Fourier transform (4.25)

has vanishing coefficients for πn<nσ , equivalently that its moments (4.30) vanish for n<

nσ. Indeed the asymptotic property (4.22) of this Λ = 0 boundary condition, implies the

asymptotic solution (4.21) at Λ>0, which verifies that Λ=aΛσ marks the point above which

fσΛ ∈ L−. Substituting the Taylor expansion formula (4.25) for the Fourier transform into

the Fourier transform solution (4.24) gives back the expansion of the coefficient function

in terms of δ
(n)
Λ (ϕ) operators (4.16) which converges for Λ > aΛσ and describes a valid

renormalized trajectory in the linearised regime.

5 Trivialisation in the limit of large amplitude suppression scale

All of the above properties for the linearised solutions are inevitable consequences of re-

specting the wrong sign kinetic term for the conformal factor ϕ, while insisting that the

Wilsonian RG remains meaningful. However this general form must now be married with

the first order BRST constraint (2.12). In ref. [4], we proved that this is possible only if

the coefficient function trivialises in the sense defined below,10 and we showed that such

trivialisations are possible if we now send Λσ to infinity. In other words, we can arrange

for violations of BRST to be as small as desired by taking sufficiently large Λσ. In this

10In the final two paragraphs of section 7.2 of [4] we referred to “non-constant” coefficient functions,

where we should have written “non-trivial” as in the current sense.
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way, at first order, we get both the continuum limit and diffeomorphism invariance of the

renormalized solution.

In the majority of cases the coefficient function has to become ϕ-independent, i.e. we

need linearised renormalized trajectories that satisfy:

fσΛ(ϕ)→ Aσ as Λσ →∞ , (5.1)

(where we hold Λ, ϕ and Aσ fixed and finite) such that also its ϕ-derivatives have a limit,

which is thus that they vanish. However if BRST invariance demands a physical vertex

of the same dimension but containing an undifferentiated ϕα factor (α a positive integer),

then this would appear as

σ = ϕα σα(∂, ∂ϕ, h, c,Φ∗) (5.2)

in the physical vertex (4.23), where thus the new monomial σα has

dσα = dσ − α , (5.3)

and the ϕα amplitude dependence must be absorbed by the physical coefficient function.

This will correspond to linearised renormalized trajectories satisfying

fσαΛ (ϕ)→ Aσ (Λ/2ia)αHα(aiϕ/Λ) as Λσα →∞ , (5.4)

such that also their ϕ-derivatives have a limit, where Hα is the αth Hermite polynomial.

This follows because

(Λ/2ia)αHα(aiϕ/Λ) = ϕα + α(α− 1) ΩΛϕ
α−2/2 + · · · (5.5)

is the unique solution of the linearised flow equation for the coefficient function (4.1) with

the boundary condition that it just becomes ϕα at Λ = 0.11

Notice that the above conditions (5.4), (5.5) actually apply also at α = 0, where they

just give back the original limit (5.1) as a special case. Since we require the ϕ-derivatives to

have a limit, by l’Hôpital’s rule this limit is given by the ϕ-derivative of the right hand side.

We say that a coefficient function trivialises in the limit of large amplitude suppression

scale if it satisfies the limiting condition (5.4) for some α. Since at finite Λσα (with σ=σα),

the coefficient functions satisfy the asymptotic formula (4.21), they are non-trivial, in

particular they cannot be polynomial in ϕ.

From the asymptotic formula for the couplings (4.27) we see that the gσn must diverge in

the limit Λσ →∞. However the vertices are nevertheless well behaved since the coefficient

function goes smoothly over to Aσ as in the limiting condition (5.1), or more generally to

the finite polynomial in (5.4). What is happening is that the Λ = aΛσ boundary, above

which fσΛ(ϕ) enters L−, is being sent to ever higher scales. In this sense we are taking a

limit towards the boundary of this Hilbert space (and thus also L) [3, 4].

11These polynomials are nothing but the eigenoperators in the standard quantisation of a scalar

field [1, 37], analytically continued along the imaginary ϕ axis [5], which destroys their Hilbert space

properties [35].
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Actually, from the asymptotic formula for the couplings (4.27), we can keep gσn per-

turbative in this limit if we choose Aσ to vanish fast enough with Λσ. For example if we

set Aσ = aσ e−Λσ/µ for fixed aσ and µ, then for any finite n, the couplings gσn → 0 as

Λσ → ∞. Although this means that the coefficient function, and thus the vertex itself,

vanishes in the limit, this does not stop us from computing perturbative corrections in the

usual way [4], as reviewed in section 6. We can also choose Aσ to vanish fast enough to

ensure that couplings remain uniformly perturbative (as opposed to pointwise in n as in

the above example). From the asymptotic formula for the couplings (4.27) one sees that for

large Λσ, they first grow with n and then decay once the n−n/2 factor dominates. Thus we

can estimate the maximum size coupling by differentiating with respect to n and finding

the stationary point. We find

gσnmax
∝ AσΛσ eΛ2

σ/4 at n = nmax = Λ2
σ/2 , (5.6)

which implies that we can keep the couplings uniformly perturbative if we set Aσ to vanish

faster than Λ−1
σ e−Λ2

σ/4. The above result already suggests that it is the large-n gσn couplings

that should be important in the limit of large amplitude suppression scale. We will see this

more dramatically from a different point of view in ref. [20].

5.1 Relations

In this subsection, we pause the main development to explore two rather natural ways

for generating new solutions. The first increases α, while the second decreases it. We

will see however that the maps are not inverses of each other, but rather when combined

generate yet further solutions. This illustrates that there are infinitely many solutions for

coefficient functions, with the same trivialisation. The formulae we will derive are then

used in the next section to arrive at the general form, in section 5.3 and appendix A to

generate examples with illustrative properties, and in section 6 to explain the properties

of special limiting cases.

On the one hand, we can convert any solution to flat trivialisation limit (5.1), into one

satisfying the polynomial trivialisation limit (5.4), by multiplying the physical coefficient

function by ϕα and using the fact that the flow to all Λ > 0 then exists and is unique.

Recalling that we defined o(· · ·) to be dimensionless, we thus identify from the asymptotic

formula for the physical coefficient function (4.22):

Λσα = Λσ and Aσα = AσΛασ , (5.7)

where Λσα is the amplitude suppression scale, and Aσα the dimensionful constant, in the

asymptotic behaviour of the physical coefficient function associated to the new monomial

σα. Using the Fourier representation of the solution (4.24) at Λ = 0, and integration by

parts, we see that the new physical coefficient function is given by setting:

fσα(π) = (i∂π)α fσ(π) . (5.8)

We confirm that fσα(π) thus satisfies the same general Taylor expansion formula (4.25), with

nσα = max(0, dσα − 5) , (5.9)
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i.e. defined as in the previous minimum index (4.17), since

nσα = nσ − α = dσ − α− 5 = dσα − 5 , (5.10)

unless dσα < 5 in which case nσα = 0. Reading off the couplings from the Taylor expansion

formula (4.25) and the Fourier transform of the new physical coefficient function (5.8),

we have

gσαn = (−)α(n+ 1)(n+ 2) · · · (n+ α) gσn+α = (−)α
(n+ α)!

n!
gσn+α . (5.11)

Using this, the asymptotic formula for the couplings (4.27) and the conversion formulae

from σ to σα (5.7), we confirm that in terms of the appropriate σα-labelled quantities,

these couplings have the expected limiting behaviour at large n.

On the other hand, thanks to the recurrence relation H ′α(x) = αHα−1(x), one easily

verifies that taking the ϕ-derivative of the polynomial trivialisation (5.4) just maps it to (α

times) the (α−1)th case, as it must since the derivative is still a solution of the flow equation

for the coefficient function (4.1) and the result is determined by the physical (Λ → 0) limit,

in this case αAσϕ
α−1. Of course this does not mean in general that fσα ′Λ (ϕ) = αf

σα−1

Λ (ϕ),

since there are infinitely many solutions with these limits. Indeed while fσα satisfies the

minimum index property (5.9) for each α in general, the coefficient function defined by

f
σ′α−1

Λ (ϕ) :=
1

α
fσα ′Λ (ϕ) (5.12)

is more restricted. From the Fourier transform representation of the solution (4.24) and

its Taylor expansion (4.25) we see that it has couplings

g
σ′α−1
n =

1

α
gσαn−1 , (5.13)

with the lowest n in the sum thus being

nσ′α−1
= max(1, dσα − 4) = max(1, dσα−1 − 5) , (5.14)

where in the last step we use the minimum index formula (5.3) for the (α−1)th case. Thus

for dσα−1 ≤ 5, fσ
′
α−1 has no g

σ′α−1

0 coupling in contrast to the general case for fσα−1 viz.

the minimum index formula (5.9).

5.2 Simplifications and general form

In order to check the universal nature of the final result, we want to work with very

general solutions for linearised coefficient functions satisfying the required trivialisation

constraints (5.1), (5.4). These not only determine the form of the interactions at the lin-

earised level, but then contribute at the non-linear level through higher order contributions

in the perturbative expansion (2.9). As will become clear [19], the most powerful way to

handle these higher order contributions is to express the solutions in conjugate momen-

tum space. Thus we use the fact that the linearised coefficient functions are given by the
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Fourier transform solution (4.24) via a Λ-independent fσ(π) which, from its Taylor expan-

sion (4.25) and the discussion below it, we know can be written as an entire function times

a πnσ factor. The flat trivialisation constraint (5.1) is equivalent to

fσ(π)→ 2πAσ δ(π) as Λσ →∞ , (5.15)

understood in the usual distributional sense (see also below) while more generally from the

polynomial trivialisation constraint (5.4):

fσα(π)→ 2πAσ i
αδ(α)(π) as Λσ →∞ , (5.16)

as we see immediately from the Fourier transform flat trivialisation constraint (5.15) and the

map to a Fourier transform for a coefficient function satisfying the polynomial trivialisation

constraint (5.8), and which includes the flat one (5.15) as the special case α= 0. (From

here on for notational simplicity, we use the conversion formulae (5.7) to write Λσα = Λσ.)

These constraints evidently still leave us with a huge (infinite dimensional) function

space of renormalized trajectories. We now make two further restrictions that do not result

in any significant loss of generality but greatly strengthen and streamline the analysis.

Firstly, we insist that the coefficient functions are of definite parity, i.e. even or odd

functions of ϕ. Thus those satisfying the flat trivialisation constraint (5.1) will be even

parity, and those satisfying the polynomial trivialisation constraint (5.4) will be even or

odd, depending on whether α is even or odd respectively. This also implies the same of

fσα(π) in the Fourier transform trivialisation constraints (5.15), (5.16), and enforces that

the asymptotic estimates for the coefficient function and its physical limit (4.21), (4.22)

apply for both limits ϕ→ ±∞. We see from either the expansion of the coefficient function

in terms of δ
(n)
Λ (ϕ) operators (4.16) or the Taylor expansion of its Fourier transform (4.25),

that the couplings gσαn will be indexed by an integer of the same parity, and in particular the

minimum index (5.9) required in order that the coefficient function represents a linearised

renormalized trajectory, actually has this parity, so now nσα is the smallest index of the

same parity as α such that

nσα ≥ max(0, dσα − 5) . (5.17)

Secondly we insist that such linearised solutions contain only one amplitude suppression

scale, so that the asymptotic estimate for their Fourier transform (4.26) now genuinely

captures their large π behaviour.12 Then for cases satisfying flat trivialisation (5.15) we

have that

fσ(π) = 2πAσ Λσ π̄
nσ f̄σ(π̄2) , (5.18)

where nσ is even i.e. satisfies the minimum index nσα formula (5.17) for α=0, π̄ = Λσπ is

dimensionless, and f̄σ is a dimensionless entire function which from the asymptotic formula

for the Fourier transform (4.26) takes the form

f̄σ(π̄2) = e−π̄
2/4+o(π̄2) , (5.19)

12Examples where a spectrum of amplitude suppression scales appear were considered in ref. [4], and are

further developed in appendix A.
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at large π̄. Likewise for general α,

fσα(π) = 2π iαAσ Λα+1
σ ∂απ̄

[
π̄n̄σα f̄σα(π̄2)

]
, (5.20)

where π̄ has the same definition, and f̄σα is also a dimensionless entire function satisfying the

reduced asymptotic formula (5.19). Note that the Λα+1
σ factor is fixed by dimensions, e.g.

using the polynomial trivialisation formula (5.16). Together with Aσ, these factors appear

in the same form as cases satisfying flat trivialisation (5.18) if we use the identifications in

the conversion formula (5.7).

Note that the parity is carried by ∂απ̄ , and thus n̄σα is even. If α is even and nσα =0 we

do not require a separate π̄ power, likewise if α is odd and nσα =1 since the ∂π̄ differentials

will generate a Taylor expansion with only odd powers of π̄. However if the minimum index

nσα defined in (5.17), is larger than these absolute minima, then the Taylor expansion of

the term in square brackets must be such that all powers π̄n>α are missing up to the point

where we are left with an overall factor of π̄nσα after differentiation by ∂απ̄ . Without loss

of generality we capture this by factoring out this power, leaving behind a function that is

still entire. Thus we see that

n̄σα = 0 if nσα = ε , otherwise n̄σα = nσα+ α , (5.21)

where we define ε = 0 or 1 according to whether the coefficient function is even or odd.

The flat trivialisation constraint in Fourier transform space (5.16) is then satisfied (on

finite smooth functions) provided that (for n≥0)∫ ∞
−∞

dπ

2π

(iπ)n

n!
fσα(π)→ Aσ δnα as Λσ →∞ (5.22)

(or we get these constraints directly from the physical limit Aσ ϕ
α, by Taylor expanding the

Fourier representation (4.24) in ϕ), and from the general formula for cases satisfying the

polynomial trivialisation constraint (5.20) these are in turn satisfied if f̄σα is normalised as∫ ∞
−∞
dπ̄ π̄n̄σα f̄σα(π̄2) = 1 , (5.23)

and provided that for any integer p > 0, we have

1

Λ2p
σ

∫ ∞
−∞
dπ̄ π̄n̄σα+2p f̄σα(π̄2) → 0 , as Λσ →∞ . (5.24)

(These integrals converge for large π̄ by virtue of the asymptotic formula (5.19).)

At first order in the perturbation theory (2.9), f̄σα can be chosen to be a finite function

and independent of Λσ, and thus the vanishing limits (5.24) follow trivially. At second

order in perturbation theory, we will find that we need linearised coefficient functions for

which f̄σα depends on Λσ. In the majority of cases we can choose it to tend to a finite

function as Λσ →∞, but exceptionally it will prove useful to allow it to contain terms

with coefficients that diverge logarithmically with Λσ. Clearly this mild divergence is well

within the bounds implied by the vanishing limits (5.24).
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Substituting the general formula for cases satisfying flat trivialisation (5.18) into the

Fourier transform representation of the solution (4.24) gives

fσΛ(ϕ) = Aσ

∫ ∞
−∞
dπ̄ π̄n̄σ f̄σ(π̄2) exp

(
− π̄2

4

Λ2

a2Λ2
σ

+ iπ̄
ϕ

Λσ

)
. (5.25)

Using the normalisation limit (5.23) and the vanishing limits (5.24) we thus confirm that flat

trivialisation (5.1) is satisfied, and see that at large but finite Λσ the remaining dependence

is on Λ2 and ϕ2 as dictated (at leading order) by dimensions and parity viz. as a Taylor

series in Λ2/Λ2
σ and ϕ2/Λ2

σ, except for those cases at second order where such a Taylor

series of corrections will also include a single factor of ln(Λσ).

Now define the polynomial function Hα(π,ΩΛ, ϕ) by

(−i∂π)α
(

e−
π2

2
ΩΛ+iπϕ

)
= Hα(π,ΩΛ, ϕ) e−

π2

2
ΩΛ+iπϕ . (5.26)

Substituting the Fourier transform polynomial trivialisation constraint (5.16) into the

Fourier transform representation of the solution (4.24), integrating by parts, and using

the polynomial trivialisation definition in ϕ-space (5.4), we see that

Hα(0,ΩΛ, ϕ) = (Λ/2ia)αHα(aiϕ/Λ) , (5.27)

where the r.h.s. expands as given in the formula for the Hermite polynomial (5.5). Thus

substituting the general formula for cases satisfying the polynomial trivialisation (5.20)

into the Fourier transform representation for the solution (4.24), we have that

fσαΛ (ϕ) = Aσ

∫ ∞
−∞
dπ̄ π̄n̄σα f̄σα(π̄2)Hα

(
π̄

Λσ
,ΩΛ, ϕ

)
exp

(
− π̄2

4

Λ2

a2Λ2
σ

+ iπ̄
ϕ

Λσ

)
. (5.28)

Using the normalisation limit (5.23) and the vanishing limits (5.24) we thus confirm that

polynomial trivialisation (5.4) is satisfied, and see again that the corrections are dictated

by dimensions ([Hα]=α) and parity to be a Taylor series in Λ2/Λ2
σ and ϕ2/Λ2

σ, except for

those cases at second order where these corrections also include a single factor of ln(Λσ).

We see that the difference between the left and right hand sides in polynomial triviali-

sation (5.4) is bounded by a term of order 1/Λ2
σ. Furthermore this is true for every relation

obtained by differentiating with respect to ϕ on both sides until the r.h.s. vanishes. At

this point successive differentials will bring down further powers of 1/Λ2
σ from the general

finite Λσ formula (5.28) via ϕ2/Λ2
σ. Thus we have for large Λσ:

∂pϕ
[
fσαΛ (ϕ)−Aσ (Λ/2ia)αHα(aiϕ/Λ)

]
= O

(
1/Λ2

σ

)
for p ≤ α ,

∂pϕf
σα
Λ (ϕ) = O

(
1/Λ

2d p−α
2
e

σ

)
for p > α , (5.29)

which since this applies for p = 0, refines the earlier trivialisation characterisa-

tions (5.1), (5.4), and where again one should understand that the r.h.s. is corrected by a

factor of ln(Λσ) in some cases at second order.
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5.3 Examples

For example if there is no o(π̄2) correction in the reduced asymptotic formula (5.19), then

the normalisation limit (5.23) fixes the normalisation of the dimensionless entire function

so that13

f̄σα(π̄2) =
e−π̄

2/4

(n̄σα− 1)!! 2
n̄σα

2
+1√π

. (5.30)

In the general formula for cases satisfying flat trivialisation (5.18), solutions to flat trivial-

isation (5.1) that keep all possible couplings, so nσ=0, take the form

fσ(π) = 2πAσ Λσ f̄
σ(π̄2) . (5.31)

Using the simplest reduced Fourier transform (5.30) with α = 0 to generate an explicit

example, we have:

f̄σ(π̄2) =
e−π̄

2/4

2
√
π
, (5.32)

which just gives us our previously well-worked specimen [1, 4]:

fσΛ(ϕ) =
aAσΛσ√
Λ2 + a2Λ2

σ

e
− a2ϕ2

Λ2+a2Λ2
σ , fσ(ϕ) = Aσ e−ϕ

2/Λ2
σ , gσ2n =

√
π

n!4n
Aσ Λ2n+1

σ (5.33)

(n = 0, 1, · · · ), where the first expression follows from performing the integral in the Fourier

transform representation (4.24), the second is its Λ→0 limit, and the couplings follow from

the Taylor expansion relation (4.25). Similarly linearised coefficient functions satisfying

fσ1
Λ (ϕ)→Aσ ϕ, with nσ1 = 1, have

fσ1(π) = 2πiAσ Λ2
σ ∂π̄ f̄

σ1(π̄2) (5.34)

from the formula for the general case (5.20) and the reduced minimum index (5.21) with

α= 1. The explicit example for the simplest reduced Fourier transform (5.30) again gives

the special case (5.32), and thus

fσ1
Λ (ϕ) =

a3Λ3
σAσ

(Λ2 + a2Λ2
σ)3/2

ϕ e
− a2ϕ2

Λ2+a2Λ2
σ , fσ1(ϕ) = Aσ ϕ e−ϕ

2/Λ2
σ ,

gσ1
2n+1 = −

√
π

2

1

n!4n
Aσ Λ2n+3

σ , (5.35)

(n = 0, 1, · · · ), in agreement with coupling constant mapping formula (5.11) and our pre-

viously well-worked specimen (5.33). For α=2 and nσ2 = 0 one gets

fσ2
Λ (ϕ) = Aσ

{
a5Λ5

σ

(Λ2 + a2Λ2
σ)5/2

ϕ2 +
aΛ3

σΛ2

2 (Λ2 + a2Λ2
σ)3/2

}
e
− a2ϕ2

Λ2+a2Λ2
σ (5.36)

from the simplest reduced Fourier transform (5.30), which gives the physical coefficient

function and couplings:

fσ2(ϕ) = Aσ ϕ
2 e−ϕ

2/Λ2
σ , gσ2

2n =

√
π

2

2n+1

n!4n
AσΛ2n+3

σ (n = 0, 1, · · · ) . (5.37)

13In the case n̄σα = 0 one has (−1)!! = 1.
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Its large Λσ limit, fσ2
Λ (ϕ) → Aσ(ϕ2 + ΩΛ), is in agreement with polynomial trivialisa-

tion (5.4).

Differentiating the α=1 example (5.35) with respect to ϕ:

f̌σΛ(ϕ) = fσ1′
Λ (ϕ) (5.38)

gives an alternative example solution for flat trivialisation (5.1):

f̌σΛ(ϕ) =
a3Λ3

σAσ

(Λ2 + a2Λ2
σ)3/2

(
1− 2a2ϕ2

Λ2 + a2Λ2
σ

)
e
− a2ϕ2

Λ2+a2Λ2
σ , f̌σ(ϕ) = Aσ

(
1− 2ϕ2

Λ2
σ

)
e−ϕ

2/Λ2
σ

(5.39)

as is clear from the large amplitude suppression scale limit. However this solution has

ǧσ0 =0 as is immediately clear from integrating the f̌ relation (5.38) and using the moment

relation (4.30). In section 5.1 we showed that nσ = 1 — or rather nσ = 2 since it is

even, cf. the general nσα definition (5.17). Indeed differentiating the Fourier transform

representation (4.24), and using the general α=1 Fourier transform (5.34) and the simplest

normalised reduced form (5.32), we see that the corresponding f̌σ(π) takes the general form

for cases satisfying flat trivialisation (5.18):

f̌σ(π) = 2πAσ Λσ π̄
2 ˇ̄fσ(π̄2) , ǧσ2n = − 2

√
π

(n−1)! 4n
Aσ Λ2n+1

σ , (5.40)

if ˇ̄fσ = f̄σ/2, cf. the α= 1 example (5.32), in agreement with the simplest reduced Fourier

transform (5.30). Expanding in π and using the Taylor expansion formula (4.25) then yields

the displayed couplings, in agreement with the coupling constant mapping formula (5.11)

(and actually the above formula holds also for n = 0 if we interpret (−1)! as the Euler

Γ(0) = ∞). Finally, notice that in all these examples, the approach to the trivialisation

limits (5.1), (5.4) is as described at the end of section 5.2.

6 Continuum limit at first order in perturbation theory

We will treat the first order cosmological constant term, associated to its BRST cohomology

representative (3.4), at the end of this section. The remaining parts of Γ̌1 that we computed

in (3.5), (3.9) and (3.10) will provide us with the top monomials σ that we need to construct

the derivative part. In order to be supported on the renormalized trajectory, such that

Γ1 is constructed, these σ need to be ‘dressed’ with coefficient functions fσΛ(ϕ) as in the

general closed formula for the eigenoperator (4.15). In the most general case we should give

each top term its own coefficient function. This would provide the most complete test of

universality of the continuum limit, however at the expense of carrying around a lot more

terms and labels. At sufficiently high order of perturbation theory in the perturbative

expansion (2.9), we expect to have to do this because these Γ1 couplings will then run

independently [4]. In fact we will show in ref. [19] that as a consequence of specialising

to coefficient functions of definite parity, the Γ1 couplings do not run at second order but

they can be expected to run at third order.
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Here it is not necessary to treat the general case, since we will see that the passage to

universality is very generic such that it is clear that this will continue to work when we give

each top monomial in Γ1 its own coefficient function. We thus find that for our purposes

just two coefficient functions are sufficient for constructing Γ1, the first of which we label as

f1
Λ(ϕ), setting the superscript to σ = 1 i.e. the perturbation level index, and in the second

case choose the label σ = 11 as in α=1 trivialisation (5.4) to indicate that f11
Λ (ϕ) absorbs

a factor of ϕ. Thus f1
Λ(ϕ) is even, while f11

Λ (ϕ) is odd. Although in principle every vertex

can have its own amplitude suppression scale Λσ, we will find that we can choose them

all to be equal. To make clear that it is independent of σ, we set this common amplitude

suppression scale to Λσ = Λp (borrowing the notation already used in [1]).

Now since Γ̌1 is a dimension d1 = 5 operator, we have by dimensions (4.20) that the

dimensionful coefficient [A1] = −1. As the remaining factor in front Γ̌1, after taking the

limit Λp → ∞, we recognise that it is actually A1 = κ, where the latter was defined

in (2.10), i.e. we have

f1
Λ(ϕ)→ κ , f11

Λ (ϕ)→ κϕ , as Λp →∞ , (6.1)

where whenever we now write the limit of large amplitude suppression scale, we mean also

the more refined regularity properties (5.29), in particular in these cases the limits are

reached at least as fast as 1/Λ2
p. We see that Newton’s constant therefore arises only as a

kind of collective effect of all the renormalizable couplings {g1
2n, g

11
2n+1}, these latter being

responsible for forming the continuum limit. Indeed A1 =κ is not an underlying coupling in

its own right but rather appears as the overall proportionality constant when the couplings

are expressed in terms of Λp, through their asymptotic formula (4.27).

Examples of such coefficient functions were given in [4] and appear in equations (5.33)

and (5.35). We stress however that we are working here with very general solutions for

these coefficient functions. From the definition of the minimum index nσα (5.17) and the

expansion of the coefficient function over the operators δ
(n)
Λ (ϕ) (4.16), we have that in

general all eigenoperators will be involved:

f1
Λ(ϕ) =

∞∑
n=0

g1
2n δ

(2n)
Λ (ϕ) , f11

Λ (ϕ) =
∞∑
n=0

g11
2n+1 δ

(2n+1)
Λ (ϕ) , (6.2)

where these sums converge (in the square integrable sense) for Λ > aΛp. From the general

dimension formulae (4.14), and (5.3):

[g1
2n] = 2n , [g11

2n+1] = 2n+ 2 . (6.3)

Thus all these couplings are relevant, with the exception of g1
0 which is marginal. Up

to second order it does not run [19] and thus behaves as though it is exactly marginal,

parametrising a line of fixed points.

From the antighost level two free BRST cohomology representative (3.5), we thus set

at antighost level two:

Γ2
1 = −cν ∂νcµ c∗µ f1

Λ(ϕ) . (6.4)
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Since f1
Λ is taken to satisfy the linearised flow equation for coefficient functions (4.1) and

there is no other opportunity to attach tadpoles to (6.4), Γ2
1 already satisfies the linearised

flow equation (2.11), and thus appears correctly as a sum over eigenoperators. Evidently at

this antighost level, the linearised mST (2.12) is satisfied in the limit (by the more refined

limits (5.29) at least as fast as 1/Λ2
p) since:

Q0 Γ2
1 = −cν ∂νcµ c∗µ ∂ ·c f1′

Λ (ϕ)→ 0 as Λp →∞ , (6.5)

and Γ2
1 → κ Γ̌2

1 then coincides with a legitimate choice in the usual perturbative quanti-

sation.

As discussed above section 5.1, if we keep κ fixed in the large amplitude suppression

scale limit, all the couplings {g1
2n, g

11
2n+1} diverge. As we noted however, we can stay

perturbative by requiring instead that κ vanish fast enough. Although this makes the

vertex vanish, we can still extract the same results by phrasing the limit more carefully as

Γ2
1/κ→ Γ̌2

1. From here on we will take this phrasing as tacitly understood.14

In the antighost level one free BRST cohomology representative (3.9) we need to sub-

stitute the SO(4) decomposition (2.24) into the last term to isolate the factor of ϕ, and

thus the dressed antighost-level-one piece appears as

Γ1
1 = − (cα∂αHµν + 2 ∂µcαhαν)H∗µν f

1
Λ(ϕ)− ∂µcνH∗µν f

11
Λ (ϕ) . (6.6)

This time the result does not yet satisfy the linearised flow equation (2.11), unlike with

the previous choice in ref. [4], because it requires the tadpole correction in the ŝ0-exact

eigenoperator (3.7) or rather as formulated for the new quantisation in (4.13).15 In other

words the sum over eigenoperators is actually Γ1
1 + 2bΛ4f11

Λ (ϕ). Since ∆− Γ2
1 trivially

vanishes, the descendant equation (3.2) that relates Γ2
1 to Γ1

1 reads:

Q−0 Γ2
1 +Q0 Γ1

1 =− ∂µcν ∂ ·cH∗µν
(
f1

Λ − f
11′
Λ

)
− 2(cα∂αcµ)H∗µν∂νϕf

1′
Λ − (cα∂αHµν + 2 ∂µcαhαν)H∗µν ∂ ·c f1′

Λ , (6.7)

where we used the Koszul-Tate charge (2.18) and note from the free BRST transforma-

tion (2.15) that

Q0 hµν = ∂µcν + ∂νcµ −
1

2
δµν ∂ ·c . (6.8)

It is clear from the first-order coefficient function trivialisation formulae (6.1) that as re-

quired Q−0 Γ2
1 + Q0 Γ1

1 → 0 (at least as fast as 1/Λ2
p). At the expense of some generality,

we could eliminate the first term on the r.h.s. of the descendant equation (6.7) by setting

f1
Λ = f11′

Λ . (6.9)

14This is in conformity with the reasonable assumption that the expansion in κ is only asymptotic [4].

Then strictly speaking the expansion only anyway makes sense in the κ→ 0 limit, i.e. as Taylor expansion

coefficients in κ.
15Tadpole contributions from the first term in the dressed antighost-level-one piece (6.6) all vanish, either

because the tadpole integral is odd in momentum or because hαα = 0.
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By the minimum index map (5.14) this would also eliminate δ
(0)
Λ(ϕ), i.e. set g1

0 = 0. We

would still be left with the Λp<∞ violations on the second line however.

Finally, extracting the undifferentiated ϕ pieces from the antighost level zero free

BRST cohomology representative (3.10) by using the SO(4) decomposition (2.24), we have

as in [4] that the first order graviton interaction is made up of twelve top terms and one

tadpole contribution:

Γ0
1 =

(
1

4
hαβ∂αϕ∂βϕ− hαβ∂γhγα∂βϕ−

1

2
hγδ∂γhαβ∂δhαβ − hβµ∂γhαβ∂γhαµ

+ 2hµα∂γhαβ∂µhβγ + hβµ∂γhαβ∂αhγµ − hαβ∂γhαβ∂µhµγ +
1

2
hαβ∂γhαβ∂γϕ

)
f1

Λ

+

(
3

8
(∂αϕ)2 − 1

2
∂βhβα∂αϕ−

1

4
(∂γhαβ)2 +

1

2
∂γhαβ∂αhγβ

)
f11

Λ +
7

2
bΛ4f11

Λ , (6.10)

except that the tadpole contribution now appears with coefficient 7
2 = 2+ 3

2 . The final

descendant equation (3.2) is satisfied in the limit:

Q0 Γ0
1 +

(
Q−0 −∆−

)
Γ1

1 −∆= Γ2
1 → 0 , (6.11)

at least as fast as 1/Λ2
p, since the individual limits are also reached at least as fast as 1/Λ2

p :

Γn1 → κ Γ̌n1 , as Λp →∞ . (6.12)

It is straightforward to verify the above descendant equation (6.11) directly. To evaluate

e.g. ∆− Γ1
1, one inverts the SO(4) decomposition (2.24) to give hµν = Hµν − 1

4δµνHαα and

ϕ = 1
2Hµµ, or recognises that [4]

∂

∂Hαβ
=

∂hµν
∂Hαβ

∂

∂hµν
+

∂ϕ

∂Hαβ

∂

∂ϕ
=

∂

∂hαβ
+

1

2
δαβ

∂

∂ϕ
. (6.13)

Note that although these measure terms give contributions proportional to some positive

power of Λ, thanks to UV regularisation by C, for example

−∆= Γ2
1 = −bΛ4∂ ·cf1

Λ , (6.14)

it does not alter the speed at which they vanish in the limit of large Λp (as can be verified

here by integration by parts).

In the opposing limits there is no sense in which a non-trivial diffeomorphism invariance

holds because the dependence on the conformal factor forbids it [4]. For example if ϕ �
Λp,Λ, the coefficient functions are no longer given approximately by κ and κϕ, but rather

take the exponentially decaying form demanded by the asymptotic formula (4.21).

These statements hold also if we express everything in dimensionless variables using

Λ, as needed to clearly see the Wilsonian RG behaviour [1, 33]. We write dimensionless

variables with a tilde, so e.g. q̃µ = qµ/Λ, ϕ̃ = ϕ/Λ, whilst we write δn(ϕ̃) = Λ1+n δ
(n)
Λ (ϕ) for

the scaled operator [1]. The dimensionless couplings run with Λ according to their mass

dimensions (6.3):

g̃1
2n(Λ) = g1

2n/Λ
2n , g̃11

2n+1(Λ) = g11
2n+1/Λ

2n+2 . (6.15)
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We thus confirm that Γ approaches the Gaussian fixed point (g1
0 = 0) or more generally the

line of fixed points g1
0 = g̃1

0 6= 0, as Λ→∞. In particular all the relevant parts of Γ1 vanish

as negative powers of Λ, with non-trivial ϕ̃ dependent coefficients being the corresponding

scaled operator δ2n+ε(ϕ̃). In the limit only the marginal contribution f̃1
Λ(ϕ̃)→ g1

0 δ0(ϕ̃) in

this sole coefficient function survives (and still carries non-trivial ϕ̃ dependence).

In dimensionful variables, if Λ is much larger than the other scales Λp, ϕ, the situation

is a little obscured but it is still the case that there is no sense in which a non-trivial

diffeomorphism invariance is recovered. The coefficient functions are again dominated

by the lowest terms in the expansion (6.2). Using the explicit formulae for the δ
(n)
Λ (ϕ)

operators (4.4) we have in the current case

f1
Λ =

a

Λ
√
π
g1

0 −
a3

Λ3
√
π

(
g1

0ϕ
2 + 2g1

2

)
+

a5

2Λ5
√
π

(
g1

0ϕ
4 + 12g1

2ϕ
2 + 24g1

4

)
+O

(
1

Λ7

)
f11

Λ = − 2a3

Λ3
√
π
g11

1 ϕ+
2a5

Λ5
√
π

(
g11

1 ϕ
3 + 6g11

3

)
+O

(
1

Λ7

)
. (6.16)

The leading terms, and only the leading terms, have the correct ϕ dependence to allow

BRST invariance to be recovered, however with g1
0 6= 0 they have the wrong ratio. (They

should have equal coefficients, but this is impossible at diverging Λ since g1
0 and g11

1 must

be fixed and finite.) By setting g1
2 = g11

1 , and g1
0 = 0, (only) the leading terms have both

the correct ϕ dependence and the correct ratio, as in fact would result from the identifica-

tion (6.9) of the two coefficient functions, cf. the coupling constant mapping formula (5.13),

although with an effective κ that then vanishes as κeff ∼ 1/Λ3. Meanwhile the measure

terms in the above descendant formula (6.11) provide divergent obstructions to satisfying

ŝ0 Γ1 = 0, if g1
0 6= 0. Thus evaluating the measure term formula (6.14) tells us that

−∆= Γ2
1 = Λ

ba3

√
π
g1

0 ∂ ·c ϕ2 +O

(
1

Λ

)
, (6.17)

(dropping total derivative terms), and ∆−Γ1
1 provides also such a term but with coefficient

−9
2 and also a g1

0Λ(cα∂αϕ + ∂αcβhαβ)ϕ piece arising from the contribution containing

∆−(H∗µνf
1
Λ). Setting g1

0 = 0 removes these divergences but leaves us with subleading

terms that violate BRST invariance, as is also true of the subleading terms in the large Λ

expansion of the coefficient functions (6.16) in this case.

This completes the demonstration at first order. The result fits the picture we sketched

in the Introduction, cf. figure 1. In particular for Λp � Λ, ϕ, diffeomorphism invariance

holds in the sense that

ŝ0Γ1 = ŝ0 (Γ2
1 + Γ1

1 + Γ0
1) = O(1/Λ2

p) . (6.18)

This means in particular in the limit Λp →∞ and the physical limit (Λ → 0), we recover

diffeomorphism invariance precisely in terms of satisfying the standard Slavnov-Taylor

(Zinn-Justin) identities, namely at first order (Q0 +Q−0 )Γ1 = (Γ0,Γ1) = 0, where we used

the general definition of the charges (2.8), the linearised mST (2.12) and noted that from

the definition of the measure operator (2.13) that ∆→ 0 as Λ→ 0.
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Finally, we remark that including a cosmological constant is straightforward at first

order. We need to dress its BRST cohomology representative (3.4) with its own coefficient

function. Since we must absorb the factor of ϕ, the monomial σ = 1 is simply the unit

operator, whilst we must choose an odd coefficient function f ccΛ (ϕ) with the trivialisation

f ccΛ (ϕ)→ λ , as Λp →∞ , (6.19)

where κ2λ/4 is the standard cosmological constant. At this order we do not need a whole

separate odd coefficient function and can by the trivialisation property (6.1) for f11 , just

set f ccΛ = λf11
Λ /κ. The linearised mST (2.12) is satisfied in the limit because Q0f

cc
Λ (ϕ) =

∂ ·c f cc ′Λ (ϕ) → 0 at least as fast as 1/Λ2
p, as follows by integration by parts and using the

refined limits (5.29), or directly by the observation that the first order vertex tends to κ

times its free BRST cohomology representatives, viz. (6.12). Indeed these properties were

already used in proving the invariance (in the limit) of the last term in the antighost level

zero part of the first order vertex (6.10).

7 Discussion

In this section we discuss further the meaning and implications of this construction and

draw out its relation to other approaches. As recalled at the beginning of section 4,

the Euclidean signature Einstein-Hilbert action is unbounded below. From sign of the

action (2.16), the instability is towards manifolds of arbitrarily positive curvature. Whilst

this conformal factor instability [5] means that the partition function is not well defined,

the Wilsonian exact RG flow equation remains well defined [1, 38], and anyway provides

a more powerful route towards constructing the continuum limit. However the wrong sign

propagator (2.26) for the conformal factor (ϕ), has a profound effect on RG properties.

Close to the UV Gaussian fixed point, cf. figure 1, the requirement that expansion over

eigenoperators converges, picks out the Hilbert space L− defined by the Sturm-Liouville

measure (4.3), which is spanned by the novel set of eigenoperators (4.4), the δ
(n)
Λ (ϕ).

We must emphasise that the requirement that one works within L− (more generally

L defined by (4.18), when the other fields are included) is crucial for the Wilsonian RG

to make sense in an otherwise unrestricted space of functions (of ϕ). Without this re-

striction the eigenoperator spectrum degenerates, becoming continuous, and it is no longer

possible to unambiguously divide a perturbation into its relevant and irrelevant parts [35].

This problem lay unnoticed until ref. [35] and as yet has only been further addressed in

refs. [1–4, 39]. The reason that it lay undiscovered is primarily because to see this problem

of convergence one must work with solutions involving an infinite number of operators (the

exact solution being also of this type). However, with few prior exceptions [34, 40, 41],

quantum gravity investigations using exact RG flow equations worked within truncations

(model ansätze) where only a finite number of operators are retained.

Restricting flows to the diffeomorphism invariant subspace, cf. figure 1, might be ex-

pected to solve the problem since diffeomorphism invariance at the classical level restricts

the functional dependence on the conformal factor to just a few operators at any given

order in the derivative expansion. However when carefully analysed, the so-called f(R)
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approximations [42–52], which are diffeomorphism invariant model ansätze that keep an

infinite number of operators, also show the problem that the eigenoperator spectrum degen-

erates [39, 41], and furthermore it is now clear that the underlying cause is the conformal

factor instability [35, 41]. Indeed it was these problems that motivated the studies [35, 53].

Within standard perturbation theory the problem can be ignored, the wrong sign ϕ

propagator (2.26) being apparently harmless. As recalled in section 4, the conformal fac-

tor instability was identified in ref. [5], where they proposed to solve it by analytically

continuing the ϕ integral along the imaginary axis. This does not alter final perturbative

results, but non-perturbatively it is less clear that this treatment makes sense [54]. Some

other approaches keep, and seek to cope with, the conformal factor instability (but do

not treat the convergence problems whose solution leads uniquely to our proposal). In

ref. [55] a model truncation to a finite set of operators, “−R+R2” gravity, was considered

within the non-perturbative asymptotic safety scenario [38]. The right-sign R2 term sta-

bilises the conformal sector, resulting in an unsuppressed non-perturbative Planckian scale

modulated phase which breaks Lorentz symmetry. If physical, this would be phenomeno-

logically challenging [56–58]. A somewhat similar effect is seen in the Causal Dynamical

Triangulations approach to quantum gravity [59]. Although a restriction here to a global

time foliation leads to an encouraging phase structure, the conformal instability towards a

crumpled phase remains, and this programme has yet to succeed in furnishing an acceptable

continuum limit [60].

Returning to our paper, the fact that [δ
(n)
Λ (ϕ)] = −1−n form a tower of increasingly

relevant operators, implies that all interactions are dressed with coefficient functions fσΛ(ϕ)

which contain an infinite number of relevant underlying couplings, gσn. Close to the Gaus-

sian fixed point, the linearised flow equation (4.1) is justified. Then, as we showed in

section 4, and also in [1], if fσΛ(ϕ) ∈ L−, it is guaranteed to remain there at all higher

scales. Thus the requirement that for sufficiently high Λ we have fσΛ(ϕ) ∈ L−, can be seen

as a quantisation condition that is both natural and necessary for the Wilsonian RG.

Note that in this step we are relying on the fact that the Cauchy initial value problem

itself is well defined in the UV direction [1, 34, 35], i.e. the property that the RG flow

is guaranteed to exist to all higher scales. This is the reverse direction from normal:

another consequence of the wrong sign ϕ-propagator. However the fact that the well

defined flow direction is now opposite to the one defined by integrating out microscopic

degrees of freedom, is an example where, even for the Wilsonian RG equation, the wrong

sign ϕ-propagator forces us to reassess some of the usual physical intuition. We emphasise

that this property does not alter the fact that the bare action determines, eventually

after integration over all momentum modes, and up to universality, the physical effective

action (2.1). Rather it throws obstacles in the path towards constructing this, that have

not been previously encountered or recognised as such. Thus for example for a generic

choice of bare coefficient function fσΛ0
(ϕ) at an initial UV scale Λ=Λ0, the flow to the IR

will almost certainly fail at some finite critical scale 0<Λ=Λcr<Λ0 after which it ceases to

exist [1]. Since one is then unable to complete the integration over all modes, the quantum

field theory as a physical entity itself ceases to exist in this case [1].
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As we saw the coefficient functions that do survive all the way to the IR have a physical

limit (4.22) which decays for large ϕ with some characteristic amplitude suppression scale,

Λσ. Even for such coefficient functions, if Λσ is finite, the complete flow and thus also the

physical theory, can cease to exist on sufficiently small and asymmetrical manifolds [1, 2].

Tantalising as this seems [1, 2], in order to recover diffeomorphism invariance we need

the coefficient functions to trivialise, cf. section 5, and in practice this requires taking the

limit Λσ→∞ in the continuum theory [4] (holding everything else fixed). Then the above

restrictions on the allowed manifold [1, 2] appear to be ruled out except possibly to rule out

manifolds with singularities [4]. The amplitude suppression scale per se should therefore

be seen as part of the procedure for forming the continuum limit and not as having direct

influence on the physical theory. Nevertheless it is the cross-over scale that matches the

RG flow in the diffeomorphism invariant subspace to the upper part of the renormalized

trajectory, cf. figure 1, and as such plays a rôle in determining which of these RG flows

actually correspond to a valid perturbative continuum limit. It may also leave behind

certain finite logarithmic corrections at higher order in perturbation theory [4].

Importantly, notice that the reduction of parameters that takes place on trivialisa-

tion (6.1) from the infinitely many underlying couplings (6.2) to the effective coupling

κ (2.10) (Newton’s constant) and a cosmological constant (2.27) at first order is not the

result of imposing infinitely many relations between these underlying couplings, but rather

a dramatic demonstration of universality resulting from the large amplitude suppression

scale limit. This reduction of parameters occurs provided only that the underlying cou-

plings are chosen from some loosely specified infinite dimensional domain. Thus f1
Λ(ϕ) is

given in general by specifying its Fourier transform as (5.18) (with nσ = 0, Aσ = κ and

Λσ=Λp, as explained in section 6). Similar remarks follow for f11
Λ following (5.20). These

Fourier transforms are proportional to the reduced Fourier transform f̄σ(π̄2). As we noted,

at first order this latter function can be chosen to be independent of Λσ, then the only

constraints on it,16 are that it is a dimensionless entire function, that it has asymptotic

behaviour (5.19) as π̄→∞, and that its integral (5.23) is normalised. This still leaves an in-

finite dimensional function space. In particular any number of underlying couplings (4.25)

can still take any value. A key result of this paper is the demonstration that the same re-

sults are then nevertheless recovered [4], thus confirming universality. Indeed it is only the

underlying couplings’ asymptotic behaviour for large n that is constrained through (4.27),

and it is only these values that ultimately influence the physical results, as discussed in

deriving their uniform bound (5.6).

This observation was also emphasised at the end of appendix A when discussing coef-

ficient functions with a spectrum of amplitude suppression scales. However in the body of

the paper we recognised that we can make three simplifications to the most general case.

As explained in section 5.2, firstly we can work only with coefficient functions of definite

parity, i.e. even or odd under ϕ 7→−ϕ, and secondly with coefficient functions containing

only one amplitude suppression scale. Finally in section 6, we also recognised that we can

set all amplitude suppression scales to a common value Λσ = Λp. This still leaves us to

16At higher orders the only other constraints are the mild convergence conditions (5.24).

– 33 –



J
H
E
P
0
6
(
2
0
2
0
)
1
3
8

choose, for each coefficient function, a reduced Fourier transform function f̄σ(π̄2) with its

own domain of infinitely many underlying couplings, and thus is more than sufficient again

to demonstrate universality of the continuum and large amplitude suppression scale limits.

As we have seen, in the end at first order we are left with just the two effective couplings,

Newton’s constant and the cosmological constant. A key question [1, 4] is how many

(effective) couplings are left once higher order quantum corrections are included. After all,

it is at this point operationally, that one meets in standard perturbative quantisation an

apparent obstruction to defining quantum gravity since new couplings get introduced to

absorb divergences, order by order in perturbation theory. Given the importance of this

question, we finish by commenting on this, although we cannot do better than make some

remarks, since substantiation requires developments that go well beyond what we report

in this paper. Although in refs. [19, 20] we will establish that this continuum limit can

be extended to second order for pure quantum gravity, this does not yet seem enough to

settle the above question since, although we find that the new divergences can be absorbed

by wave-function-like renormalization, this is also famously true of pure quantum gravity

in its standard quantisation at this order [61]. A priori in this quantisation a continuum

limit with an infinite number of couplings seems logically consistent [20]. However as we

will show, there are indications that the quantisation is more restrictive at higher orders,

where the underlying couplings introduced here becoming running couplings [19, 20]. In

particular, note again that so far we have been relying on the fact that the renormalized

trajectory can be constructed in the ϕ-sector by flowing upwards from the IR to the UV.

At the linearised level this was set out precisely, together with its proof, at the end of

section 4. At higher orders this kind of ‘reverse’ flow construction is also key [19]. However

the flow in the hµν (graviton) sector is guaranteed only in the usual direction from the UV

to the IR. Put together we are actually dealing with a flow equation that does not have

a well-defined Cauchy initial value problem in either direction. In other words, a generic

‘initial’ effective action will lead to singular flows in both directions. This does not mean

that there are no solutions (after all we just established one to first order here) but we

find [20] that it does appear at higher orders to require solutions to depend ultimately on

only the two parameters, Newton’s constant and the cosmological constant.
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A Further examples of coefficient functions

A.1 Examples with multiple amplitude suppression scales

Here we develop some of the properties of linearised coefficient functions that are con-

structed from a spectrum of amplitude suppression scales γkΛσ. For example for symmetric
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coefficient functions satisfying flat trivialisation (5.1), we can take [4]

fσ(π) = Aσ

N∑
k=0

ak f(π, γkΛσ) , (A.1)

where N ≥ dnσ2 e will allow us to ensure that couplings gσ2n<nσ vanish, and we define the

function

f(π, Λ̄) =
√
π Λ̄ e−π

2Λ̄2/4 , (A.2)

which is just the simplest choice of reduced Fourier transform (5.32), where for convenience

we have absorbed the factor of 2πΛσ from the example (5.31). The dimensionless param-

eters γk > 0 are chosen unequal, and without loss of generality we order them and set the

greatest to unity:

0 < γN < γN−1 < · · · < γ0 = 1 , (A.3)

and the dimensionless coefficients ak are chosen to satisfy

N∑
k=0

ak = 1 , and (A.4)

N∑
k=0

ak γ
2n+1
k = 0 for 0 ≤ n <

⌈nσ
2

⌉
. (A.5)

Performing the integral in the Fourier transform representation (4.24) we get

fσΛ(ϕ) =

N∑
k=0

ak fΛ(ϕ, γkΛσ) , (A.6)

where fΛ(ϕ, γkΛσ) is just the α=1 example (5.33) with Λσ rescaled by γk.

From the definition of the amplitude suppression scale, see above (4.19), we see that fσΛ
has overall amplitude suppression scale Λσ, corresponding to the maximum one γ0Λσ = Λσ.

We verify that it also characterises the exponential decay of the physical coefficient function:

setting Λ = 0,

fσ(ϕ) = Aσ

N∑
k=0

ak e−ϕ
2/γ2

kΛ2
σ ∼ a0Aσ e−ϕ

2/Λ2
σ , (A.7)

where the last equation holds at large ϕ. Thus we satisfy the asymptotic formula for the

physical coefficient function (4.22), but we have here an example where the asymptotic be-

haviour is fixed by Aσ only up to an undetermined dimensionless proportionality constant,

as already commented below (4.20). Importantly note that the large π behaviour in the

sum over a spectrum of amplitude suppression scales (A.1) is however set by the smallest

amplitude suppression scale:

fσ(π) ∼
√
π aN γN Aσ Λσ e−π

2γ2
NΛ2

σ/4 , (A.8)

and thus the asymptotic formula for the Fourier transform (4.26) does not hold, hence the

comments below it. The couplings in the Taylor expansion of the Fourier transform (4.25)
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are given by

gσ2n =

√
π

n!4n
AσΛ2n+1

σ

N∑
k=0

ak γ
2n+1
k ∼ a0Aσ

√
π

n!4n
Λ2n+1
σ , (A.9)

and satisfy the constraint that they vanish for 2n < nσ, thanks to the vanishing summation

constraint (A.5). The last equation holds at large n, which thus verifies that the asymptotic

formula for couplings (4.27) nevertheless holds, although again we see the presence of

an undetermined proportionality. Finally, since fΛ(ϕ, γkΛσ) → 1 as Λσ → ∞, we have

from the sum normalisation constraint (A.4) that flat trivialisation (5.1) is satisfied, while

since
√

Λ2 + a2γ2
kΛ2

σ sets the scale for ϕ-variation in the components, we see that the

flat limit (5.1) is reached at least as fast as O(1/γNΛσ) and more generally the refined

limit (5.29) is satisfied. Notice however that it is the smallest amplitude suppression scale

that controls the corrections here.

Since the summation constraints (A.4), (A.5) provide dnσ2 e + 1 linearly independent

conditions on N + 1 ≥ dnσ2 e+ 1 coefficients ak, they can always be satisfied. By choosing

N > dnσ2 e large enough, we can go on to fix the numerical coefficient of finitely many of

any of the surviving gσ2n (with n finite) to any value we wish, including forcing them also

to vanish. We also have the freedom to alter couplings through changing the 0 < γk>0 < 1

provided they remain unequal. We see that the flat trivialisation limit (5.1) is independent

of the value of any finite set of finite-n couplings or indeed of any finite number of relations

between these couplings [19]. Therefore, apart from confirming that we can ensure that

gσ2n<nσ = 0, the universal information on the couplings is that captured in the large n

asymptotic estimate (4.27), which indeed holds for any linearised solution.

For examples satisfying polynomial trivialisation (5.4), we can still use the sum over a

spectrum of amplitude suppression scales (A.1), where by the map to a Fourier transform

for a coefficient function satisfying the polynomial trivialisation constraint (5.8), we replace

f(π, Λ̄) with (i∂π)α f(π, Λ̄) along the lines already discussed in section 5.3.

A.2 Other examples with only one amplitude suppression scale

As explained in section 5.2 we insist in this paper on using only one amplitude suppression

scale, and our examples are all expressible in conjugate momentum space as an exponential

decay factor times a polynomial as in sections 5.3. Other examples with only one amplitude

suppression scale could be generated, e.g.

fσ(π) = Aσ

N∑
k=0

ak f(π, γk,Λσ) , (A.10)

for appropriate choices of ak, where we choose the function to be

f(π, γ, Λ̄) =
√
π Λ̄ e−(π2Λ̄2+γ2)/4 cosh(γΛ̄π/2) , (A.11)

corresponding to the physical coefficient function

f(ϕ, γ, Λ̄) = e−ϕ
2/Λ̄2

cos(γϕ/Λ̄) , (A.12)
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which thus gives the Λ > 0 solution

fΛ(ϕ, γ, Λ̄) =
aΛ̄√

Λ2 + a2Λ̄2
exp

(
−a

2ϕ2 + γ2Λ2/4

Λ2 + a2Λ̄2

)
cos

(
a2γΛ̄ϕ

Λ2 + a2Λ̄2

)
, (A.13)

which clearly again has the right limiting properties to satisfy flat trivialisation (5.1) and

the refined limits (5.29). These functions have the same amplitude suppression scale Λ̄

irrespective of the choice of γ. Further examples can be generated by exchanging cosh with

cos in the above, or for odd functions, replacing these with sinh and sine.

Open Access. This article is distributed under the terms of the Creative Commons
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