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Ideality factors are used to identify the dominant form of recombination in many types of solar cell
and guide future development. Unusual non-integer and voltage-dependent ideality factors, which
are difficult to explain using the classical diode theory, have been reported for perovskite solar cells
and remain unexplained. Experimental measurements and theoretical simulations of the electric
potential profile across a planar perovskite solar cell show that significant potential drops occur
across each of the perovskite/transport layer interfaces. Such potential profiles are fundamentally
distinct from the single potential drop that characterises a p-n or a p-i-n junction. We propose
an analytical model, developed specifically for perovskite devices, in which the ideality factor is
replaced by a systematically derived analogue which we term the ectypal factor. In common with
the classical theory, the ectypal diode equation is derived as an approximation to a drift-diffusion
model for the motion of charges across a solar cell however, crucially, it incorporates the effects of
ion migration within the perovskite absorber layer. The theory provides a framework for analysing
the steady-state performance of a perovskite solar cell according to the value of the ectypal factor.
Predictions are verified against numerical simulations of a full set of drift-diffusion equations. An
important conclusion is that our ability to evaluate PSC performance, using standard techniques
such as the analysis of dark J-V or Suns-VOC measurements, relies on understanding how the
potential distribution varies with applied voltage. Implications of this work on the interpretation
of data from the literature are discussed.
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I. INTRODUCTION

The Shockley diode equation is commonly employed in
solar cell research to diagnose the recombination mech-
anism that limits the performance of a particular device
architecture [1]. The diode model is derived from the
theory of drift and diffusion of charge carriers across a
solar cell, including the generation and recombination of
charge carrier pairs (electrons and holes). Though ap-
proximate, this model provides a useful description of
the current-voltage (J-V ) characteristics of many types
of solar cell. The value of the diode ideality factor is
key for the diagnosis of both the type of recombination
that limits cell performance and its location within the
device. It is therefore crucial to be able to correctly eval-
uate and interpret the value of the ideality factor. How-
ever, in the case of metal halide perovskite solar cells
(PSCs), this approach has led to some unexpected re-
sults which cast doubt on its validity in assessing this
promising photovoltaic technology [2–6]. Perovskite so-
lar cells have recorded a rapid rise in power conversion
efficiency over a short but intense period of research ef-
fort [7, 8]. However, the cells currently lack long-term
stability [9]. Success in the economic market (most likely
via their incorporation into tandem devices with silicon
[10, 11]) will depend on our understanding of the funda-
mental physical mechanisms that control the behaviour
of PSCs.
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Experimental studies have reported ideality factors for
PSCs ranging from 0.9 [12] to higher than 5 [2]. Such
values lie outside the typical range of values (1-2) pre-
dicted and explained by the theory behind the classical
Shockley diode equation. Many non-integer values, for
example between 1 and 2, have also been reported [13–
17], but are difficult to explain using the classical theory.
A summary of common and uncommon interpretations
is given in [3]. In the field of dye solar cells, non-integer
ideality factors have been explained by the existence of
a broad distribution of trap states combined with trap-
limited recombination [18, 19]. Non-integer ideality fac-
tors, including values smaller than 1, can also occur as
a result of energetic misalignment between the absorber
and contact materials [20–22].

In both of the experimental studies mentioned above
[2, 12], the values of the ideality factor are calculated from
measurements of the open-circuit voltage (VOC) of a PSC
under different illumination intensities. This is often re-
ferred to as the Suns-VOC method. Interestingly, Pockett
et al. [2] report that the ideality factors for a set of 12 pla-
nar PSCs, prepared at the same time, cluster around two
distinct values (approximately 2.6 and 5.2). Tress et al.

[6] use three different experimental techniques to calcu-
late the ideality factor for four types of PSC. The value of
the ideality factor is shown to vary substantially depend-
ing on how it is measured. Values calculated from the
derivative of a J-V curve measured in the dark, referred
to as the dark J-V method, are shown to strongly depend
on the applied voltage. Tress et al. [6] conclude that the
Suns-VOC method provides the most reliable values, while
the ambiguity in the dark J-V results is attributed to
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voltage-dependent parasitic resistances, although the ex-
act origins are not known. Contreras-Bernal et al. [15, 23]
use an alternative method in which the ideality factor is
calculated from the high frequency impedance response
of a PSC measured at open-circuit under different illu-
mination intensities. Voltage-dependent ideality factors
are also published in [24, 25] and the SI of [3]. These
recent findings highlight the need for a clear picture of
the principle working mechanism of a PSC which can be
used to interpret and explain the unusual ideality factors
of PSCs. This picture can be obtained from a detailed
drift-diffusion model for a PSC based on the microscopic
properties of the device.

Combined experimental/theoretical studies which seek
to understand the performance limitations of state-of-
the-art PSCs, such as [3, 4, 16], conclude that current
techniques for analysis do not provide reliable conclu-
sions. Almora et al. [3] and Calado et al. [4] attribute
the difficulty in determining a unique value for the ide-
ality factor to the interference of undesirable hysteresis
often observed in J-V measurements [26–29]. The ori-
gin of this J-V hysteresis is most commonly attributed
to the migration of mobile ionic charge within the per-
ovskite material. Recent reviews that discuss the impact
of ion migration on the future prospects of PSCs are given
in [30, 31]. The presence of mobile ionic charge in PSCs
means that use of the classical diode theory to analyse
their behaviour is not physically justified and therefore
traditional interpretations of the ideality factor can be
misleading.

Using the hypothesis that ion migration is the ori-
gin of J-V hysteresis, Calado et al. [4] explain that it
is the evolving profile of the electric potential across
a PSC that hampers the measurement of a cell’s VOC,
and thus the ideality factor, by conventional means. It
is noted that the interpretation of a steady-state ideal-
ity factor should take into account the homogeneity of
charge carrier densities across the perovskite layer. An
alternative method for the determination and interpre-
tation of a ‘transient ideality factor’ is suggested, that
involves comparing time-dependent measurements to the
results of drift-diffusion simulations. However, the sug-
gested method depends on preconditioning the cell in a
particular initial state and determining the cell’s charac-
teristics from a transient measurement, rather than from
the steady-state conditions at which a cell is expected to
operate.

Drift-diffusion models incorporating mobile ionic
charge have been shown to be capable of reproducing
a wide variety of experimentally observed behaviour [32–
35]. In PSCs, a high density of mobile ionic charge is
predicted to exist within the perovskite material [36].
As a result, the distribution of the electric field is con-
trolled by the position of the mobile ions and evolves on a
slower timescale than that of the charge carrier dynamics
[4, 33, 37]. At steady state, ionic accumulation/depletion
at the edges of the PAL screens the electric field from
the bulk of the PAL and causes potential drops to form

across the interfaces between the PAL and each of the
transport layers (TLs). As such, the existence of mobile
ionic charge in a PSC produces a notably different po-
tential profile from that of either a p-n or p-i-n junction,
as shown in Figure 1. The electric potential across the
three core layers of a PSC displays a linear profile across
the bulk of each layer and rapid changes across narrow
regions, called Debye layers, immediately either side of
each interface. Such profiles have been measured experi-
mentally using Kelvin Probe Force Microscopy (KPFM)
and presented in [38–40]. The proportion of the total
potential difference that falls across each Debye layer de-
pends on the relative values of the permittivity and the
mean density of the majority mobile charge species of
each material layer [33].

The formation of potential drops due to charge accu-
mulation at the absorber interfaces has also been found
to be significant in the study of thin-film silicon solar cells
[41]; although in such cells, the charge accumulation is of
an electronic nature and only screens a small proportion
of the total potential drop. The model for a p-i-n solar
cell presented by Taretto [41] predicts voltage-dependent
ideality factors due to charge accumulation within the
intrinsic absorber layer and shows improved agreement
with experimental data compared to classical diode the-
ory. As such, Taretto [41] demonstrates how analytical
modelling can be used as a practical tool to elucidate the
effects of key material properties on the performance of
a solar cell.

In this work, we develop a simple analytical model ap-
propriate for planar PSCs which we term the ectypal1

diode theory. This model describes the principle work-
ing mechanism of a planar PSC operating in steady-state
conditions and can be used to quantitatively assess cell
performance in an analogous way to the classical diode
theory. The proposed model is systematically derived
from a drift-diffusion model for ion migration and charge
transport across a PSC and validated against numerical
solution of the full drift-diffusion model. In particular, we
derive a modified relationship between the current den-
sity (J) and the applied voltage (V ) for steady-state mea-
surements, that incorporates the effects of ionic charge
accumulation at the interfaces, and use it to explain the
occurrence of anomalous ideality factors in the literature.
In this model, recombination losses are controlled by the
electric potential distribution, which is dependent on the
distribution of the ions within the PAL.

Crucially, the ectypal diode model is able to explain
the unusual non-integer and voltage-dependent values of
the ‘ideality factor’ reported for PSCs without having
to resort to non-standard theories of charge carrier re-
combination. Similar to the classical diode equation, the
derived expression for J(V ) separates into a generation

1 The word ectype means a copy or reproduction made in the image
of the archetype or ideal version.
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term (which depends only on the light intensity and ab-
sorption properties of the device) subtracted by an ex-
pression for the dark current density (which depends only
on the losses due to recombination). Unlike the classical
theory, the proposed model is tailored to the distribu-
tion of the electric field that characterises a planar PSC
(see Figure 1). In contrast to [4, 41], we find that, for
PSCs, the voltage-dependence of the ‘ideality factor’ does
not originate from the spatial distribution of electronic
charge carriers within the PAL. Instead we show that the
voltage-dependence is an expected result of the nonlinear
capacitance relations that describe the accumulation of
charge in the Debye layers that exist either side of each
PAL/TL interface [33, 37]. We find that measurements
of the ‘ideality factor’ are voltage-dependent even when
measured under steady-state conditions.

In Section II, we outline the classical theory for a
solar cell and two standard methods for analysing its
performance-limiting recombination mechanism, namely
the dark J-V method and the Suns-VOC method. We
then, in Section III, describe the proposed ectypal diode
theory that is tailored to the physical properties of a
PSC. We also give details of the numerical simulations
used to verify the model. In Section IV, we analyse,
using the two standard methods, two example sets of
cell parameter values for five separate cases, in which
the cell is limited by one of five different recombination
mechanisms. The example cells are simulated using the
open-source IonMonger simulation tool [42] and the re-
sults are explained using the ectypal diode theory. Lastly,
in Section V, we discuss the implications of this work on
experimental results from the literature before drawing
our conclusions. Thus, we show that the proposed model
provides a coherent framework for analysing a PSC and
represents a significant step-forward in our understand-
ing of the steady-state characteristics of these devices.

II. BACKGROUND

The classical Shockley diode equation is derived from
drift-diffusion theory and can be used to analyse the J-V
characteristics of a solar cell with a p-n or p-i-n archi-
tecture [1]. The Shockley diode equation is derived in
the small current limit [43, 44] and holds only where the
charge carrier generation and the current extracted from
the cell are both sufficiently small that the charge carrier
distributions are in approximate quasi-equilibrium, and
therefore close to being Boltzmann-distributed. For rela-
tively efficient photovoltaic cells, the range of validity of
this approximation extends into the operating regime of
the cell (at 1 Sun) and from short circuit to open circuit,
and so can be used to fit experimental J-V curves. As
outlined below, the identification of the ideality factor
nid from the fit to the diode equation is frequently used
to infer information about the dominant recombination
in the cell.

The ideal diode equation (with ideality factor 1) de-

scribes a cell limited by bimolecular band-to-band re-
combination occurring within the absorber layer, while
the non-ideal diode equation includes an ideality factor
which extends the model to take into account losses via
different recombination pathways. The non-ideal diode
equation is given by

J(V ) = Js − Jdark(V ) , (1a)

Jdark(V ) = J0

(

exp

[

V

nidVT

]

− 1

)

, (1b)

in which Js is the photo-generated current density (inside
the cell), Jdark is the dark current density (due to recom-
bination), J0 is the saturation current density, nid is the
ideality factor and VT = kBT/q is the thermal voltage.
Here, kB is the Boltzmann constant, T is the tempera-
ture and q is the elementary charge. In the ideal case
of direct radiative recombination, nid = 1. When other
types of bulk recombination dominate, the ideality fac-
tor is expected to equal nid = 2

γ where γ is the reaction

order, i.e. nid = 2 indicates first-order bulk recombina-
tion, nid = 1 indicates bimolecular bulk recombination
and nid = 2

3
signifies trimolecular Auger recombination

[1, 20, 45]. A value of nid = 2 is typically interpreted as
trap-assisted Shockley-Read-Hall (SRH) recombination.
Meanwhile, nid = 1 can also be the result of dominant
surface recombination. Other, less common interpreta-
tions are summarised in the SI of [3], such as recombina-
tion due to a non-uniform distribution of recombination
centres. Calado et al. [4] provide multiple interpretations
of ideality factors equal to 1 or 2 which are due to either
SRH or band-to-band recombination mechanisms.

In reality, the value of an ideality factor can vary with
voltage due to a change in the dominant form of recombi-
nation. This scenario can be described using a two-diode
model. However, the associated increase in the num-
ber of fitting parameters means that this approach can
yield erroneous results. This approach is also not able
to explain the unusual values of the ideality factor that
have been reported for PSCs in the literature, in par-
ticular those outside of the range 1-2 and those which
vary slowly with applied voltage. The classical model
can also be extended by incorporating the effects of ex-
ternal series and shunt/parallel resistance into the classi-
cal diode equation [1]. However, fitting series and shunt
resistance parameters to experimental data provides lit-
tle information about the location of recombination losses
and also does not seem to explain the anomalous voltage-
dependent values of the ideality factor reported for PSCs.
So, in this work, we assume that just one recombination
mechanism controls the observed behaviour and that the
losses due to external resistances are negligible for a high-
efficiency cell operating in its power-generating regime.

The value of the ideality factor nid can be estimated us-
ing a number of different experimental procedures. Tress
et al. [6] describe how nid may be calculated from fitting
(a) measurements of dark J-V curves, (b) open-circuit
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Figure 1. A sketch showing the steady-state distributions of the electric potential across three solar cell architectures, when held
at short-circuit. The architectures are those of a p-n junction, a p-i-n junction and a planar PSC architecture in which at least
one species of mobile ionic charge exists in the perovskite absorber layer. The classical (ideal/non-ideal) diode equation is valid
for both the p-n and p-i-n solar cell architectures, however, it is not valid for a PSC held at steady state due to the effect of the
ionic charge on the distribution of the electric potential across the cell. An analogous equation for a PSC (such as the ectypal
diode equation proposed in this paper) must take into account the form of the potential around the two perovskite/transport
layer interfaces that occurs due to the accumulation/depletion of ionic charge.

voltage vs. illumination intensity measurements (known
as the Suns-VOC method), and (c) electroluminescence
measurements. The dark J-V method is also used in
[24, 25, 40], while the Suns-VOC method is also used in
[2, 4, 12, 16, 34]. We consider both the dark J-V and
Suns-VOC methods in this work.

For positive applied voltages V >> VT (usually taken
to mean V & 0.1 V), the exponential term in the dark
current density in (1b) dominates so that the Shockley
diode equation can be approximated by

J(V ) = Js − J0 exp

(

V

nidVT

)

. (2)

In the dark J-V method, the photo-generated current
density Js is zero and so the ideality factor is calculated
from the slope of the logarithm of the dark current den-
sity from (2) vs. applied voltage, via

nid =
1

VT

(

∂ ln Jdark

∂V

)−1

. (3)

Though the value of an ideality factor is expected to be
approximately constant, Wetzelaer et al. [24] show, us-
ing this method, that the value of the ideality factor for
a planar PSC is strongly voltage-dependent and varies
with temperature. Other reports of strongly voltage-
dependent ideality factors for a variety of PSC architec-
tures are given in [6, 24, 25].

The Suns-VOC method relies on the assumption that
the photo-generated current density Js is proportional
to the illumination intensity and the dominant recom-
bination mechanism does not vary with illumination. In
this case, measurements of the open-circuit voltage over a
range of illumination intensities can be used to determine
the ideality factor via

nid =
1

VT

∂VOC

∂ lnFph
, (4)

where Fph is the incident photon-flux density. The Suns-
VOC method is deemed to be more reliable than the dark

J-V method because measurements performed at open-
circuit are not affected by parasitic series resistance.

III. METHODS

A. Surface polarisation model

The fundamental difference between the classical
model and the surface polarisation model for a PSC
lies in the distribution of the electric field across a de-
vice, see Figure 1. Both models are derived from drift-
diffusion theory for the transport of mobile charges in
one-dimension across a device. In the classical model for
a p-n or p-i-n junction, there is one significant potential
drop (or diode junction) within the device which acts to
separate the photo-generated charge. However, across
a planar PSC two major potential drops have been ob-
served to exist, one at each of the interfaces between the
perovskite absorber layer (PAL) and one of the transport
layers (TLs) [38–40], as depicted in Figure 2. Such a dis-
tribution is also predicted by drift-diffusion simulations
in which the electric field across a PSC depends on the
distribution of a large density of mobile ionic charge, as
well as the electronic charge in the device. The distri-
bution of the electric potential is crucial for determin-
ing the performance of a cell because current losses (due
to recombination occurring either within the bulk or at
the interfaces) depend on both the potential energy that
must be overcome for charge carriers to recombine as well
as the local charge carrier concentrations, which in turn
also depend on the potential. Therefore, current losses
strongly depend on the location of potential drops within
a cell.

Figure 2 shows the typical form of a steady-state po-
tential profile across the three core layers of a planar
PSC. The total potential drop across the cell is entirely
taken up within four narrow Debye layers either side of
the PAL/TL interfaces. These potential drops are la-
belled V1−4. The potential is expected to take this form
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Figure 2. A sketch showing the steady-state potential distribution across a planar PSC, when held at short-circuit, alongside
a diagram of the five different recombination processes considered in this work. When an electric field exists across the bulk
of the perovskite absorber layer (PAL), the mobile ionic charge that exists within the layer migrates until sufficient charge has
accumulated adjacent to the PAL/TL interfaces to compensate the potential difference across the cell. Therefore, at steady
state, the electric field within the bulk of the PAL is zero (i.e. the potential is flat) and the potential difference across the cell
is taken up solely within the four potential drops (labelled V1−4) either side of each of the PAL/TL interfaces. For each of
the recombination processes, the downwards-pointing blue arrow represents the potential energy to be overcome by an electron
from the external circuit, while the upwards-pointing red arrow represents the same for a hole, in order for pair of charge
carriers to recombine. The larger arrows indicate the processes which limit, and therefore control, the rates of recombination.

in a PSC that satisfies the following assumptions of the
surface polarisation model [33] that: (i) a high density
of mobile ionic charge exists within the PAL, in com-
parison to the densities of electronic charge carriers that
exist under illumination intensities up to the equivalent
of 1 Sun, (ii) the Debye length associated with the ma-
jority species of mobile charge in each material layer is
much smaller than the width of that layer, and (iii) the
timescale for equilibration of the charge carriers in the
TLs is much faster than that of the mobile ionic charge
in the perovskite. For a mean ion vacancy density of
1.6 × 1025 m−3 in the PAL, the ionic Debye length is
on the order of a few nm. Such a short Debye length
means that the narrow Debye layers predicted by the
surface polarisation model may be difficult to resolve ex-
perimentally due to lower limits on the spatial resolution
of KPFM of 20-30 nm [39]. However, there is good agree-
ment between the model and published KPFM data that,
rather than a single diode junction, there are significant
potential drops across both PAL/TL interfaces in a PSC.

Previously, theoretical studies of surface polarisation
models have focused on explaining the origin of the prob-
lematic J-V hysteresis exhibited by PSCs [33, 37, 46].
Other unusual characteristics, which have been encoun-
tered when using alternative characterisation techniques
to assess PSCs, such as electrochemical impedance spec-
troscopy (EIS) have also been studied [47]. In this work,
we focus exclusively on the steady-state performance of
PSCs. Steady-state performance provides the most ac-
curate assessment of the true potential of PSCs. Here,
the term steady-state is used to describe measurements
in which changes in applied voltage are sufficiently slow
that the potential distribution is continuously in equilib-
rium with the experimental conditions, i.e. the electric
field in the bulk of the PAL is completely screened by

the potential drops V1−4 throughout the measurement.

The potential drops that lie within the perovskite (V2

and V3 in Figure 2) correspond to an accumulation of
predominantly ionic charge, while the potential drops
in the electron transport layer (ETL) and hole trans-
port layer (HTL) (V1 and V4, respectively) correspond to
an equal and opposite accumulation of electronic charge
[33]. Therefore, the potential drops V1−4 obey different
capacitance relations for each Debye layer. The capaci-
tance relations derived in [33] are restated in Appendix
A. Note that even the two Debye layers that lie within the
perovskite exhibit different capacitance relations because
ionic charge accumulates on one side of the perovskite
but becomes depleted on the other. While a high density
of ionic charge can accumulate in a narrow region, there
is a limit on the amount of charge that can be depleted
per unit volume and so the depleted Debye layer can be
much wider (resulting in a larger potential drop) than the
corresponding accumulation layer. The values of V1−4

can be determined from the four capacitance relations, a
conservation law for the amount of ionic charge and the
steady-state assumption that the sum of V1−4 equals the
total potential drop across the cell, Vbi − V (where Vbi

is the cell’s built-in voltage, defined as the difference in
workfunction between the two TLs), as detailed in Ap-
pendix A. The relative sizes of V1−4 vary depending on
the applied voltage. In Figure 3, we show how the total
potential drop across the cell is divided between the four
potential drops V1−4 during a steady state J-V scan of
Example Cell A, whose parameter values are listed in the
SI [48].

Furthermore, using KPFM, Cai et al. [40] show that
the proportion of the total potential drop that falls across
each PAL/TL interface (i.e. the relative sizes of V1−4 in
Figures 2 and 3) can vary due to changes in the physi-
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Figure 3. A comparison of the sizes of the four potential drops
V1−4 (see Figure 2) vs. applied voltage during a steady state
J-V scan of Example Cell A, calculated from numerical solu-
tion of the capacitance relations previously used in [33] and
restated in equations (A.4)-(A.6) in Appendix A. a) A stacked
line chart of V1−4 vs. applied voltage. (b) A stacked line chart
of the proportion of the total potential drop contained within
each Debye layer, calculated as Vi/(Vbi − V ) for i = 1 to 4.
The vertical black line indicates the position of V = Vbi.

cal properties of the device. This result is in agreement
with findings from device modelling by Courtier et al.

[33] which explain how the values of the permittivity and
the mean density of the majority mobile charge species in
each layer have a dominant effect on the relative sizes of
the potential drops. In particular, the larger the product
of these two values, the smaller the potential drop located
within the relevant material, and vice versa. This effect
is a consequence of Gauss’s Law for the electric poten-
tial. In Figure 3, the largest fraction of the total potential
drop lies within the HTL, in V4, because the HTL has a
lower permittivity and a lower majority carrier density
than the other two layers. This is expected to be the
case for PSCs made with an organic hole-transporting
material such as spiro-OMeTAD.

Based on the form for the potential distribution shown
in Figure 2, an analytic model for the steady-state J-
V characteristics of a PSC can be derived in an analo-
gous way to the classical diode equation. By applying
an appropriate choice of simplifications to the surface

polarisation model from [33], an analytic expression for
the steady-state current density J in terms of the po-
tential differences V1−4 can be derived. Previously, for a
single-layer model of a PSC, Richardson and co-workers
[37] derived an analytic expression for the current density
for a cell limited by hole-dominated SRH recombination
within the PAL. Here, we consider the three core layers
of a PSC and five different forms of recombination.

The simplifying assumptions applied to the surface po-
larisation model that is presented in Section 3.5 of [33] are
as follows. The assumptions are chosen in line with pa-
rameter estimates used in our previous work [33]. Firstly,
the steady-state simplification is encapsulated in the as-
sumption that the electric field within the bulk of the
PAL (Ebulk) is always equal to zero. Secondly, it is as-
sumed that the PSC is an efficient device in which the
process of diffusion across the PAL dominates over the
loss of charge carriers via recombination, when the cell is
operating at applied voltages between 0 < V < VOC. The
basis for this assumption is the exceptionally long car-
rier diffusion lengths exhibited by the types of perovskite
which are commonly employed in PSCs [49–51]. It is fur-
ther assumed that the cell is held only under a moderate
illumination intensity (up to approx. 1 Sun equivalent
intensity). Lastly, it is assumed that the rate of recombi-
nation within a PSC is dominated by just one recombi-
nation mechanism, located either at one of the PAL/TL
interfaces or in the bulk of the PAL, and that this rate
can be well-approximated by either a monomolecular or
(in the case of band-to-band recombination) a bimolecu-
lar recombination rate. A systematic application of these
assumptions to the equations that form the surface po-
larisation model in [33] is deferred to Appendix A. The
simplifications are verified against numerical simulations
of a fully-coupled charge transport model. For details of
the numerical method, see Section III B.

The result of systematically applying these assump-
tions is the following equation for the current density
which we term the ectypal diode equation for steady-state
operation:

J(V ) = Js − Jd exp

(

V − Vbi

necVT

)

, nec =
Vbi − V

F (V )
, (5)

where Js is the current density due to photo-generation,
Jd is a constant of proportionality for the current density
lost to recombination and, in analogy with the ideality
factor for the non-ideal diode equation, we introduce nec

as the ectypal factor. This voltage-dependent, dimension-
less factor depends on the dominant pathway for recom-
bination taking place within a device, via its dependence
on the function F (V ). The function F (V ) captures the
effect of ionic accumulation on the rate of recombination.

The value of Js depends only on the illumination in-
tensity Is and light absorption properties of the PAL,
while the value of Jd depends only on material proper-
ties of the device, see Table A.3. The function F (V )
depends only on the voltage-dependent Debye layer po-
tential drops V1−4, see Table I. In physical terms, F (V )
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equals the potential difference which forms a potential
barrier to the recombination of charge carriers, at a given
applied voltage. The ectypal factor nec is the reciprocal
of the proportion of the total potential drop that forms a
barrier to the dominant pathway for recombination, and
is therefore expected to take positive values greater than
1. Five example cases are listed in Table I. For details
of how to evaluate the potential drops V1−4 and hence
calculate the current density expressed in equation (5),
see Appendix A4.

Notably, equation (5) takes the same form as the ap-
proximate Shockley diode equation for positive applied
voltages (V >> VT ) stated in equation (2). However,
equation (5) incorporates an important modification in
the form of the ectypal factor, which relates the per-
formance of a PSC to the performance-limiting recom-
bination mechanism and the internal distribution of the
electric potential resulting from the accumulation of ionic
charge within the PAL.

In addition to the mathematical derivation presented
in Appendix A, a simple intuitive explanation for the re-
sults in Table I is provided as follows. When a PSC is
in operation, current is generated by electrons entering
the cell via the anode (by extracting a hole), travelling
through the HTL and into the perovskite where they can
be excited into the conduction band via the absorption of
light. Free electrons are then extracted through the ETL
and the cathode to complete the circuit. Current is also
lost due to charge carrier recombination within the cell.
Note that recombination currents flow in the opposite di-
rection to the photo-generated current. The total current
is therefore the difference between the photo-generated
current and the recombination current. The amount of
recombination depends on the number of available charge
carriers and the likelihood of recombination via a par-
ticular pathway. In the case of radiative recombination
within the PAL, the rate of recombination takes a bi-
molecular form (R ≈ βnp) as it depends on the avail-
ability of both a free electron and a hole. Therefore the
potential energy barrier to recombination F (V ) is equal
to the total potential drop across the cell and so nec = 1.
Note that this result is equivalent to the ideal case in the
classical diode theory. In contrast, non-radiative recom-
bination mechanisms (e.g. recombination via trap states)
are often modelled using monomolecular rates. This is
because the rate of recombination is limited only by the
availability of one type of charge carrier. Therefore, the
potential energy barrier to monomolecular-type recom-
bination is just the potential difference between the ex-
ternal circuit and the location at which the recombina-
tion takes place, see Figure 2. For example, for electron-
limited, trap-assisted recombination at the PAL/HTL in-
terface (Rr ≈ νn,Hn), the potential energy barrier F (V )
that the electrons must overcome2 is the sum of the po-
tential drops between the cathode and the PAL/HTL in-

2 One might argue that photo-generated electrons only have to

terface, i.e. F (V ) = V1 + V2 + V3. More examples are
given in Table I.

Informally, we here assume that the ectypal factor can
be estimated from experimental data using the standard
methods of characterisation, namely the dark J-V and
Suns-VOC methods. However, unlike the ideality factor,
the ectypal factor is by definition a function of the applied
voltage and so it is necessary to justify this approach. In
fact, analysing the dark current density in (5) using the
standard dark J-V method does not return the ectypal
factor but leads to

1

VT

(

∂ ln Jdark

∂V

)−1

= nec ×
(

1− (V − Vbi)

nec

dnec

dV

)−1

.

(6)

We will refer to the value of this expression as the mea-

sured ectypal factor. From this expression, it is clear that
the measured ectypal factor is approximately equal to the
true ectypal factor when the applied voltage is close to
the built-in voltage (i.e. when V − Vbi ≈ 0).

Similarly, the Suns-VOC method also returns the mea-
sured ectypal factor:

1

VT

∂VOC

∂ lnFph
= nec ×

(

1− (VOC − Vbi)

nec

dnec

dVOC

)−1

. (7)

As before, this method relies on the classical assumption
that the short-circuit current density is directly propor-
tional to the illumination intensity and the dominant re-
combination mechanism does not vary with illumination.

Hence, we find that both characterisation methods re-
turn values for the measured, rather than true, ectypal
factor, but that these values coincide for applied voltages
close to the built-in voltage. In Section IV, we compare
values for both the measured and true ectypal factors
(in Figure 6) in order to justify our use of the standard
methods to analyse the current-voltage characteristics of
PSCs.

Note that external series and shunt resistance can be
incorporated into the ectypal diode equation in an anal-
ogous way to how they are incorporated into the stan-
dard diode equation, see Appendix B. However, for high-
efficiency cells, parasitic resistances should have a mini-
mal influence on the J-V characteristics of a cell operat-
ing in its power-generating regime. Therefore we do not
investigate the influence of parasitic resistances in this
work.

overcome the potential drop V3 to recombine at the PAL/HTL
interface, however, the probability of a minority carrier recom-
bining depends on the competition between extraction and re-
combination and hence F (V ) must take into account the positive
effect that V1+V2 has on charge extraction, transporting photo-
generated electrons away from the PAL/HTL interface and pre-
venting recombination. At higher light intensities, when photo-
generated carriers can no longer be efficiently extracted from the
PAL, the potential barrier for this type of recombination may
reduce to V3.
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Table I. A table showing the analytic expressions for the potential barrier F (V ) and the ectypal factor nec for five different
recombination rates, see Figure 2. Note that, at steady state, each of the potential drops V1−4 is a function of the applied
voltage V (while the built-in voltage Vbi is a constant) and the sum of the four potential drops V1−4 equals the total potential
difference across the cell, Vbi−V . The ectypal factor is defined in terms of the potential barrier F (V ) in (5b). The recombination
parameters β, τp, τn, νp,E and νn,H are all constants of proportionality derived from the full forms of the recombination rates
given in Table II.

Type of recombination Abbrev. Approximate Potential barrier Ectypal factor
recombination rate F (V ) nec

Bimolecular bulk recombination Rb R ≈ βnp (m−3 s−1) V1 + V2 + V3 + V4 1

Hole-limited bulk SRH Rp R ≈

p

τp
(m−3 s−1) V3 + V4

Vbi − V

Vbi − V − V1 − V2

Electron-limited bulk SRH Rn R ≈

n

τn
(m−3 s−1) V1 + V2

Vbi − V

Vbi − V − V3 − V4

ETL/PAL interface SRH Rl Rl ≈ νp,Ep (m−2 s−1) V2 + V3 + V4

Vbi − V

Vbi − V − V1

PAL/HTL interface SRH Rr Rr ≈ νn,Hn (m−2 s−1) V1 + V2 + V3

Vbi − V

Vbi − V − V4

B. Numerical simulation method

In order to verify the results of our analytical model, we
perform numerical simulations of a fully-coupled, time-
dependent charge transport model of a PSC that includes
the migration of one type of mobile ionic charge within
the PAL. Similar models have successfully been shown to
reproduce many features of the J-V hysteresis exhibited
by PSCs [33, 34]. To perform the simulations, we use
the open-source IonMonger simulation tool described in
detail in [42]. The model consists of a full set of drift-
diffusion equations for the ion vacancy, electron and hole
densities, coupled to Poisson’s equation for the electric
potential. The numerical method upon which this code
is based is a combination of a finite element discretisa-
tion in space and the adaptive time-stepping provided
by Matlab’s differential-algebraic equation solver ode15s
[52]. The accuracy and speed of this method, in compar-
ison to two alternative methods of solution, are demon-
strated in [53]. A list of the parameter values used in this
work is provided in the SI [48].

The measurement protocol for all J-V curves in this
work consists of a 60 s preconditioning step at 1.2 V,
followed by scanning the voltage down to short-circuit
(0 V) and back. The numerical simulations use a scan
rate of 1 mV s−1 (except in Figure 4 where the rate is
100 mV s−1). A scan rate of 1 mV s−1 is assumed to be
slow enough to approximate the steady-state behaviour
modelled by the ectypal diode equation, in which the
ionic charge is in continuous equilibrium with the applied
voltage. All simulations are performed either in the dark
or in the light at an illumination intensity equal to the
equivalent of 0.25, 0.5 or 1 Sun using an incident photon
flux of 1.4× 1021 m−2 s−1.

In Figure 4, we use the IonMonger simulation tool to
demonstrate that a PSC model that includes one species
of mobile ionic charge within the PAL is able to pre-
dict voltage-dependent values for the ‘ideality factor’,

similar to those observed by experiment [3, 6, 24, 25].
These results show that the origin of this anomalous be-
haviour is not a voltage-dependent series or shunt resis-
tance, as suggested in [6], but a result of the intrinsic,
mixed electronic-ionic response of a PSC. Crucially, un-
like the standard theory, our alternative, analytic model
captures the key effects of ionic accumulation within a
PSC via the form of the voltage-dependent ectypal fac-
tor.

Figure 5(a) shows very good agreement, over many or-
ders of magnitude, between J-V curves calculated using
the ectypal diode equation and numerical solutions of
the full model, both in the dark and in the light. Note
that the ectypal diode equation depends on obtaining a
numerical solution for the value of the four Debye layer
potential drops V1−4, which depend on the capacitance
relations from [33] and restated in Appendix A. For de-
tails of how to evaluate the ectypal diode equation, see
Appendix A4. The good agreement between the ecty-
pal diode equation and the numerical simulations relies
on the accurate description of the steady-state distribu-
tion of the potential provided by these capacitance rela-
tions. Figure 5(b) also shows very good agreement be-
tween numerical solutions and the ectypal diode equation
for steady state J-V curves measured under three differ-
ent levels of illumination up to the equivalent of 1 Sun. In
particular, this figure shows that the ectypal diode equa-
tion is able to accurately predict the relationship between
the open-circuit voltage and the illumination intensity.
This accuracy justifies our use of the ectypal diode equa-
tion to analyse Suns-VOC measurements.

IV. RESULTS

In this section, we validate the ectypal diode equa-
tion against full numerical solutions to a charge trans-
port model for ion vacancy motion and charge carrier
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Figure 4. An example of the unusual J-V characteristics
of a PSC, reproduced by numerical simulations of a time-
dependent charge transport model for ion migration and
charge carrier transport using using the IonMonger simulation
tool [42]. a) The ‘ideality factor’ computed using the dark J-
V method, described in Section II, from a simulation of the
reverse scan and subsequent forward scan of a 100 mVs−1 J-
V measurement of Example Cell A limited by recombination
at the ETL/PAL interface performed in the dark. b) The re-
verse and forward scans of a 100 mVs−1 J-V scan simulated
using the same set of parameter values except that it is per-
formed in the light at an illumination intensity equivalent to
1 Sun.

transport across a PSC [33]. We illustrate how the ecty-
pal diode equation can be applied to data from numerical
simulations, which we regard as a proxy for data obtained
from real cells. Values of the ectypal factor, correspond-
ing to each of five different recombination mechanisms,
are obtained in one of the following ways:

• The true ectypal factor is the reciprocal of the pro-
portion of the total potential drop that forms a
barrier to recombination (see Figure 2), calculated
from the relevant expression for F (V ) from Table
I and the solution of (A.4)-(A.6) for the potential
drops V1−4.

• The theoretical, measured ectypal factor is calcu-
lated from the current density predicted by the ec-
typal diode equation in (5) using either the dark J-

Figure 5. Validation of the ectypal diode equation against
full numerical drift-diffusion simulations of Example Cell A
limited by recombination at the PAL/HTL interface with the
associated parameter values given in Table II. The numerical
solutions are obtained using the IonMonger simulation tool
[42] and indicated by the abbreviation ‘IM’. a) The steady-
state current density (plotted on a logarithmic scale) vs. ap-
plied voltage in the dark. b) The steady-state current density
vs. applied voltage at light intensities equivalent to 0.25, 0.5
and 1 Sun illumination.

V method via equation (6) or the Suns-VOC method
via equation (7). These values also depend on the
relevant form of F (V ) and the solution of (A.4)-
(A.6) for the potential drops V1−4 (see Appendix
A4).

• The simulated, measured ectypal factor is calcu-
lated from the current density obtained from nu-
merical simulations of the full charge transport
model, using either the dark J-V method via
equation (6) or the Suns-VOC method via equa-
tion (7). The simulations are performed using the
IonMonger simulation tool [42] (see Section III B).

In line with the classical theory of solar cells, we assume
that just one recombination mechanism dominates the
observed behaviour of a PSC. The five different recom-
bination mechanisms we consider are listed in Table II.
This table also provides a representative value of the sim-
ulated, measured ectypal factor obtained using the dark
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J-V method and Suns-VOC method for Example Cell A
in each of the five cases. These representative values cor-
respond to the values that would usually be referred to
as ideality factors.

A. Dark J-V method

In Figure 6, we show the results of our dark J-V anal-
ysis of Example Cell A (which has a mean ion vacancy
density of N0 = 1.6 × 1025 m−3 in the PAL). For each
of five recombination mechanisms, we compare the mea-
sured ectypal factor as determined from full numerical
simulations and the measured and true ectypal factors
predicted by the ectypal diode theory. The results for
the three types of bulk recombination are shown in panel
(a), while those for the two types of interface recombi-
nation are shown in panel (b). The dark J-V curves
corresponding to each of the recombination mechanisms,
for both Example Cells A and B, are shown in Figure S1
in the SI [48].

From the results in Figure 6, it becomes apparent that
the classical diode theory cannot be used to correctly di-
agnose the limiting recombination mechanism from the
dark J-V data. Even in the ideal case where a single re-
combination mechanism controls the observed behaviour,
the measured ‘ideality’ factor is not constant with respec-
tive to the applied voltage. The ectypal factor is intrinsi-
cally voltage-dependent and the values are different from
those predicted by the classical theory, with one excep-
tion. The only recombination mechanism whose char-
acteristics remain the same, between the classical diode
theory and the proposed ectypal theory, is that of bi-
molecular bulk recombination, which displays a constant
value of one. For the other four recombination mecha-
nisms, the nonlinearity of the ectypal factor leads to a
difference between the values of the measured and true
values of the ectypal factor, due to the derivative term
in equation 6. The effect of this extra derivative term
is to exaggerate the nonlinearity of the ectypal factor.
However, the measured ectypal factors still show similar
trends and values to the true nec and so the following
deductions can be made from Figure 6.

For this particular cell (Example Cell A), at applied
voltages below 1 V, the majority of the potential differ-
ence is taken up by the potential drop across the Debye
layer within the HTL (V4), as shown in Figure 3. This
means that more than half of the total potential differ-
ence across the cell acts as a barrier to recombination
mechanisms that rely on holes entering the cell from the
external circuit, e.g. Rp and Rl. Therefore (recalling that
the ectypal factor is the reciprocal of the proportion of
the total potential drop that forms a barrier to recombi-
nation) the ectypal factors corresponding to these hole-
limited recombination rates take values less than 2. On
the other hand, less than half of the total potential differ-
ence forms a barrier to electrons entering the cell from the
external circuit. Therefore the electron-limited recombi-

Figure 6. Simulated and theoretical results for the ectypal
factor vs. applied voltage, determined using the dark J-V
method, for Example Cell A limited by each of the five re-
combination mechanisms listed in Tables I and II. Panel a)
shows the ectypal factor vs. voltage corresponding to each of
the three different types of bulk recombination, while b) shows
the results of the two types of interface recombination. Simu-
lated values of the measured ectypal factor (indicated by the
abbreviation ‘IM’) are calculated* using equation (6). The-
oretical values of the true and measured ectypal factors are
calculated from (6) and (5b), respectively, using the values of
V1−4 plotted in Figure 3.

* Simulated values are shown only where the current densities at
neighbouring points on the J-V curve (with 12 mV spacing) are
between 10−6 and 10 mAcm−2 apart, or between 4× 10−3 and
10 mAcm−2 apart in the case of ‘Rn’. The deviation of the
simulated values from the theoretical measured nec at low voltages
is due to the sensitivity of the calculation on the very small and
non-steady carrier concentrations simulated at a scan rate of
1 mV s−1; except in the case of ‘Rn’, where the deviation is due to
a breakdown in the assumption that the SRH recombination rate
can be approximated by a monomolecular rate.

nation rates, Rn and Rr, return values that are greater
than 2. As the voltage is increased above 1 V, the pro-
portion of the potential drop that lies within V4 decreases
and so more than half of the total potential difference lies
in the sum of V1 + V2 + V3. As a result, the value of the
ectypal factor for Rr decreases below 2 as the voltage in-
creases above 1 V. Note that these results are not generic
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Table II. A table showing the five different recombination mechanisms, associated parameter values and representative results
obtained using the two different methods of analysis considered in this work. Only one mechanism is included in each simulation.
The full forms of the recombination ratesa are used in the numerical simulations, while the ectypal diode equation depends on
the approximate forms given in Table I. The representative values of the measured nec are those for Example Cell A, which is
described by the parameter values listed in the SI [48]. The representative value from the dark J-V analysis is the average of
the measured nec corresponding to applied voltages between 0.7-1.0 V, see Figure 6. The representative value for the Suns-VOC

technique is determined from a linear fit to the data for illumination intensities between 10−3 and 10−1 Suns, see Figure 7.

Type of recombination Abbrev. Full form of the Parameter Representative nec from
recombination rate values dark J-V | Suns-VOC

Bimolecular bulk recombination Rb R = β(np− n2
i ) β = 10−11 m3 s−1 1.0 | 1.0

Hole-limited bulk SRH Rp R =
np− n2

i

τnp+ τpn+ c1
τn = 3 × 10−11 s
τp = 3× 10−9 s

1.5 | 1.5

Electron-limited bulk SRH Rn R =
np− n2

i

τnp+ τpn+ c2
τn = 3 × 10−8 s
τp = 3× 10−10 s

2.7 | 2.8

ETL/PAL interface SRH Rl Rl =
np− n2

i
p

νn,E
+ n

νp,E
+ c3

νn,E = 105 ms−1

νp,E = 30 ms−1

1.4 | 1.4

PAL/HTL interface SRH Rr Rr =
np− n2

i
p

νn,H
+ n

νp,H
+ c4

νn,H = 30 ms−1

νp,H = 105 m s−1

2.6 | 2.7

a The definitions of the symbols are as follows: β is the constant of proportionality for bimolecular bulk recombination; ni is the
intrinsic carrier concentration in the perovskite; τn and τp are the electron and hole pseudo-lifetimes for SRH in the bulk, respectively;
νn and νp are the SRH recombination velocities for electrons on the left and holes on the right, respectively, of the interface between
the PAL and the TL denoted by the second subscript (E or H); and c1−4 are constants whose magnitudes are negligibly small. The
carrier concentrations (n and p) in the two interface recombination rates are the concentrations on opposite sides of the interface
(electrons on the left, holes on the right).

and the interpretation of ectypal factors must be guided
by accurate knowledge of the distribution of the electric
potential across the PSC under investigation.

For Example Cell A, it is notable that the potential
drops that lie within the PAL (V2 and V3) are small rel-
ative to those that lie within the TLs (V1 and V4). As a
result, it is possible to distinguish between cells that are
dominated by bimolecular bulk recombination (nec = 1),
hole-limited recombination mechanisms (1 < nec < 2)
or electron-limited recombination mechanisms (nec > 2).
However, for cells limited by the injection of one type of
carrier, it is difficult to determine the location of the re-
combination, i.e. it is difficult to distinguish between Rp

and Rl, or alternatively between Rn and Rr. Further-
more, this is not the case for all cells, as demonstrated
later with the help of Figure 8. The deductions that can
be made from the value of the ectypal factor, depend on
the distribution of the potential between the four Debye
layers.

Next we investigate whether the second standard tech-
nique for analysing the performance of solar cells, namely
the Suns-VOC method, is able to return the same diag-
nosis as the dark J-V method, for the same parameter
values, when using the ectypal diode theory.

B. Suns-VOC method

In Figure 7, we show the results of a Suns-VOC analysis
of Example Cell A in the five cases where it is limited by
one of the five recombination mechanisms listed in Ta-
ble II. This plot demonstrates that the different recombi-
nation mechanisms correspond to different values of the
representative value of the measured ectypal factor (that
which would usually be referred to as an ideality factor).
The representative value of the ectypal factor is calcu-
lated from a linear fit to the measured ectypal factor
corresponding to the 17 simulations performed at light
intensities between (and including) 10−3 and 10−1 Suns.
These values are listed alongside representative values es-
timated from our dark J-V analysis in the last column
of Table II. Reassuringly, the two methods result in very
similar values in each case. However, it can be difficult
to distinguish between the different cases. It is also clear
that, even in the ideal case where one mechanism controls
the behaviour of a cell, the ectypal factor is not constant
with respect to the voltage across the cell. Nonlinear be-
haviour can be seen in the lines corresponding to higher
values of the ectypal factor in Figure 7(b), although the
representative value obtained from the linear fit remains
a useful measure.

In Figure 8, we move on to consider a second exam-
ple: Example Cell B. The only difference between the
cell parameters for Example Cells A and B is the value
of the mean density of ion vacancies in the PAL. For A:
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Figure 7. Simulated, fitted and theoretical results for a Suns-
VOC measurement of Example Cell A for each of the five
recombination mechanisms listed in both Tables I and II.
The abbreviation ‘IM’ indicates the results obtained using the
IonMonger simulation tool [42]. The representative values of
the measured ectypal factor (shown in the labels) are obtained
from linear fits to the points corresponding to values of the
illumination intensity between 10−3 and 10−1 Suns via equa-
tion (7). Panel a) shows the results of recombination mecha-
nisms which display a representative value between 1 and 2,
while panel b) shows the results of recombination mechanisms
which exhibit values greater than 2.

N0 = 1.6 × 1025 m−3, while for B: N0 = 5 × 1023 m−3.
This difference results in a significant change to the dis-
tribution of the potential between the four Debye layers,
as shown in panels (a) and (b) of Figure 8. For Example
Cell B, around half of the potential difference is taken up
within the PAL, in the sum of V2+V3, while significantly
less than half is taken up within each of the Debye layers
in the TLs (V1 and V4). Therefore when the cell is limited
by interface recombination, it exhibits values of the ecty-
pal factor between 1 < nec < 2, while in the case of bulk
SRH recombination nec > 2. As before, nec = 1 signifies
bimolecular bulk recombination. These examples demon-
strate how, in the case of planar PSCs, the interpretation
of the results of standard techniques must be made with
careful consideration of the potential distribution across
a cell vs. applied voltage. The ectypal diode theory set
out in this work provides a framework for deducing the

performance-limiting recombination mechanism in a par-
ticular PSC architecture.

V. DISCUSSION

Here, we discuss the implications of the ectypal diode
theory proposed in this work on experimental results
published in the existing literature on planar PSCs.

Tress et al. [6] calculate voltage-dependent ‘ideality
factors’ from dark J-V measurements (measured at a
scan rate of 20 mV s−1) which show significant hys-
teresis between the forward and reverse scans. These
results cannot be interpreted using the ectypal diode
theory because they do not correspond to the steady-
state J-V characteristics of the device. A Suns-VOC

analysis is also performed (using light intensities be-
tween 10−3–10−1 Suns) from which they obtain an ‘ide-
ality factor’ of 1.6 for a planar PSC with a standard
SnO2/perovskite/Spiro-MeOTAD architecture. From
this analysis and the high open-circuit voltage of 1.2 V for
this cell, Tress et al. [6] conclude that the performance-
limiting recombination mechanism is SRH recombination
via defects in the bulk of the perovskite.

Since the distribution of the electric potential across
a PSC has a significant impact on its steady-state J-V
behaviour, it is difficult to draw conclusions from such
data without knowing the distribution of the potential
across the cell. However, the ectypal diode theory tells
us that the dominant recombination mechanism of a cell
with nec = 1.6 is one that is controlled by an energy
barrier that is more than half of the total potential drop
across the cell (because 1/nec > 50%). In order to de-
duce the location of the largest potential drop within
the SnO2/perovskite/Spiro-MeOTAD device, we have to
make some assumptions about the cell parameters. By
assuming that the inorganic SnO2 ETL has a higher per-
mittivity and effective doping density than the organic
Spiro-MeOTAD HTL, we can assume that V4 is larger
than V1 (as is the case for both Example Cells A and
B) [33]. The fact that hysteresis is observed on a slow
timescale indicates that a significant amount of ionic ac-
cumulation is likely to occur within the PAL and there-
fore that V2 and V3 are comparatively large. We therefore
suggest that the potential distribution may resemble that
of Example Cell B. If this is the case, an ectypal factor
of nec = 1.6 could be attributed to electron-limited inter-
face recombination occurring at the PAL/HTL interface.
This is a different conclusion to that made by Tress et al.

[6]. This highlights the importance of having an accurate
knowledge of the potential distribution across a PSC in
order to obtain an accurate diagnosis. Reliable diagnosis
of the dominant recombination mechanism in a PSC is
vital for informing future cell design.

In work by Caprioglio et al. [16], ‘ideality factors’ be-
tween 1.2-1.5 are calculated from Suns-VOC measure-
ments (performed at light intensities between 10−2-
1 Sun) for different types of PSC which have the inverted
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Figure 8. (a,b) Equivalent to Figure 3 and (c,d) equivalent to
Figure 7, but for Example Cell B.

architecture HTL/perovskite/C60. The cells employed
either PTAA or P3HT as the HTL material. Caprioglio
et al. [16] conclude that these values result from a single
recombination mechanism in each cell which is located at
one of the PAL/TL interfaces. This conclusion is made
despite the lack of an explanation from the classical diode
theory for the non-integer values of the ‘ideality factor’.
If the potential distribution across these cells resembles
that of Example Cell B, the results in Figure 8 indicate
that ectypal factors between 1 < nec < 2 can be at-
tributed to dominant interface recombination (for which
the energy barriers to recombination are more than half
of the total potential drop across the cell). This diagno-
sis is consistent with the conclusions of Caprioglio et al.

[16].

Cai et al. [40] present experimental results for a set
of planar PSCs which use the most common, standard
architecture: compact-TiO2/MAPI perovskite/Spiro-
OMeTAD. This study shows a clear trend between the
distribution of the electric potential and the value of the
‘ideality factor’. This trend is not explained by the classi-
cal diode theory but it can be explained using the ectypal
diode theory as follows. The distribution of the electric
field, as measured from KPFM, across a device is shown
to depend on the ratio between the amount of PbI2 and
MAI in the perovskite precursor solution. It is shown
that a cell fabricated using a PbI2-rich precursor solution
results in a large potential drop across the PAL/HTL in-
terface and a small potential drop across the ETL/PAL
interface (i.e. |V1+V2| ≪ |V3+V4|), while the opposite is
seen for a cell that uses an MAI-rich precursor solution.
A dark J-V analysis of a set of five cells with a smoothly
varying PbI2 : MAI precursor ratio shows that the ‘ideal-
ity factor’ decreases from approximately 2.5 to 1.4 as the
potential shifts from the ETL/PAL interface (V1+V2) to
the PAL/HTL interface (V3+V4). This shift corresponds
to an increase in the magnitude of V3+V4 from less than
half to more than half of the total potential drop, as
a result of the increasing PbI2 : MAI precursor ratio.
Assuming that a single recombination mechanism domi-
nates the behaviour of the cells, this trend implies that
the dominant recombination mechanism is controlled by
V3 +V4, or possibly V2 +V3 +V4. Therefore we conclude
that the performance of this PSC architecture is domi-
nated by hole-limited recombination located either in the
bulk or at the ETL/PAL interface.

The dependence of the ectypal factor on the potential
distribution across a PSC suggests that certain physical
properties of a PSC can be tuned in order to reduce losses
due to a particular type of recombination, or to change
which recombination mechanism dominates. Increasing
the permittivity or the effective doping density of one of
the TLs can shift some of the potential drop across that
layer to other layers of the cell [33], resulting in a simi-
lar trend to that observed by Cai et al. [40]. Note that
the outcome of changing the properties of a TL may be
counter-intuitive because changing the properties of one
TL may have a strong effect on the electric potential dis-
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tribution across the whole cell. For example, increasing
the doping density of the ETL reduces the potential drop
V1, but increases V2−4, and therefore the rate of hole-
limited interface recombination at the ETL/PAL inter-
face may be reduced, while the rate of electron-limited in-
terface recombination at the PAL/HTL is increased. For
the dependence of the ectypal diode equation on other
physical properties, see Table A.3 for the definitions of
the dark current density parameter Jd for the five differ-
ent recombination mechanisms considered in this work.

Finally, we note that the assumption of steady-state
conditions is also expected to be applicable to small per-
turbation measurements, such as high-frequency EIS, in
which changes in the external stimulus (applied voltage
or illumination intensity) are sufficiently small and fast
that the distribution of ions and corresponding poten-
tial drops V1−4 can be assumed to remain in constant
equilibrium with the average conditions during the mea-
surement. This prediction is in agreement with work by
Anta and co-workers [15, 23] who find that it is the high-
frequency component, rather than the low-frequency
component(s), of an impedance spectrum which charac-
terises the electrical properties of a PSC. In particular, it
is shown that analysis of the high-frequency peak, only,
can return the same value of the so-called ideality fac-
tor as the Suns-VOC method. The agreement between
these values indicates that such results should also be
interpreted in terms of the ectypal diode theory.

VI. CONCLUSIONS

In response to reports of unusual and unexplained val-
ues of the classical diode ideality factor for metal halide
perovskite solar cells, we propose an alternative analytic
model that is tailored to the unique properties of a planar
PSC. We term this the ectypal diode theory for steady-
state operation. Like the classical theory, this theory is
derived as an approximation to a charge transport model
that describes the drift and diffusion of mobile charges
across a device. While the charge transport model for a
typical p-n or p-i-n type solar cell need only describe the
motion of electrons and holes, the charge transport model
for a PSC must incorporate an additional drift-diffusion
equation for the migration of mobile ionic charge that
exists within the perovskite layer of a PSC. According to
our systematic approximation of such a model, the pres-
ence of mobile ionic charge in the perovskite layer leads
to an analogue of the classical diode equation in which
the ideality factor is replaced by a voltage-dependent
value, which we term the ectypal factor. By compari-
son to numerical simulations, we verify that the ectypal
diode equation is able to accurately reproduce the J-V
characteristics of efficient PSCs measured at sufficiently
slow scan rates.

We explain, using two example sets of cell parame-

ters and by considering five different forms of recombi-
nation, how the value of the ectypal factor can be used
to interpret the steady-state J-V characteristics of pla-
nar PSCs, using the same standard techniques that are
used to obtain values of the ideality factor. Such tech-
niques include the dark J-V method and the Suns-VOC

method. In particular, the value of the ectypal factor de-
pends on the form of the dominant recombination mech-
anism in a PSC as well as the distribution of the electric
potential across the device. We then discuss the implica-
tions of the ectypal diode theory on experimental results
presented in the literature. An important point to take
from this work is that it is necessary to understand the
distribution of the electric potential across a particular
cell before drawing any conclusions about the type and
location of its performance-limiting recombination mech-
anism, using standard techniques. However, by using the
ectypal diode theory, these techniques can still be used
to identify targets for the future development of PSCs.

Further mathematical analysis is required to determine
the extent of the validity of the ectypal diode theory.
In particular, future studies should analyse the solution
to the full set of equations at high and low voltages as
well as higher illumination intensities. The importance
of this work lies in the realisation that so-called “ideality
factors” for PSCs have a different physical origin to other
types of solar cell due to the presence of mobile ions.
As a result, the classical interpretation can no longer be
used to interpret the results of standard measurement
techniques. However, the ectypal factor is a meaningful
replacement that is intrinsically voltage-dependent and
captures the dependence of the dominant recombination
mechanism on the electric field across a PSC. As such,
it is proposed that the ectypal factor should be used in
place of the ideality factor in the field of PSCs as a first
step in analysing their complex behaviour.

By fitting steady-state experimental data to the ecty-
pal diode equation, the values of physical parameters can
be estimated and used as inputs to dynamic numerical
simulations, which should enable researchers to achieve
improved accuracy between theory and experiment for
transient J-V data. Such numerical simulations can be
carried out using our open-source PSC simulation tool
[42]. Alongside detailed numerical modelling, the ecty-
pal diode equation offers researchers in the field of PSCs
a valuable and practical tool with which to quantify the
effects of ionic accumulation and charge carrier recombi-
nation on the steady-state performance of PSCs.
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given in the work accompanying the release of the open-
source simulation tool IonMonger [42]. The three core
layers of a PSC are the electron transport layer (ETL),
the perovskite absorber layer (PAL) and the hole trans-
port layer (HTL). These three layers are sandwiched be-
tween two metal contacts. The transport layers are as-
sumed to be highly selective due to intentional doping
or a high effective doping density. The model is specified
by equations (1)-(22) in Sections 3.1-3.2 of that work and
comprises of a full set of drift diffusion equations for the
ion vacancy, electron and hole densities, coupled to Pois-
son’s equation for the electric potential. A very similar
model is also given in our previous work [33] by equations
(1)-(15). The only difference is that the model in [33] uses
a couple of extra approximations on the properties of the
TLs, reducing the number of unknown physical parame-
ters. The model in [42] forms the basis for the analysis
presented in this work.

Richardson and co-workers [32, 37] previously consid-
ered a single-layer model in which the two TLs are ap-
proximated as ideal metallic contacts and so the problem
is reduced to a model that explicitly describes only the
PAL. In [37], it is shown that the charge carrier concen-
trations have a negligible effect on the electric potential,
in comparison to the ion vacancy distribution. The accu-
mulation of ionic charge adjacent to each of the PAL/TL
interfaces leads to sharp changes in potential across nar-
row Debye layers. According to the principle of conser-
vation, the ionic charge density stored in each perovskite
Debye layer must be equal and opposite. As a result,
the behaviour of the cell depends on the evolution of the
ionic accumulation and the corresponding potential drops
across the Debye layers.

The asymptotic simplification carried out in [37] is ex-
tended to the full three-layer model for a PSC in [33].
It is found that the potential profile is predominantly
determined by the ionic distribution within the PAL in
combination with a couple of key properties of the TLs,
namely the permittivity and the effective doping density.
The effects of these TL properties are captured in the
definitions of two dimensionless parameters, which are
defined as:

ΩE =

√

εAN0

εEdE
, and ΩH =

√

εAN0

εHdH
, (A.1)

where εE,A,H are the permittivities of the ETL, PAL and
HTL, respectively, N0 is the mean density of ion vacan-
cies in the PAL, and dE,H are the effective doping den-
sities of the ETL and HTL, respectively. The effects of
varying these parameters are investigated in [33].

The dominant effect of the ionic distribution means
that, as in the single-layer model, the behaviour of the
cell is controlled by the evolution of the ionic charge in
the Debye layers. As a result, the model is reduced to the
Surface Polarisation Model for planar PSCs comprising
of a single ODE for the evolution of ionic charge in the
Debye layers coupled to a steady-state boundary value
problem (BVP) for the charge carrier concentrations at

a given time. The ODE for the evolution of ionic charge
stored in the Debye layer on the right-hand side of the
perovskite (Q(t)) is described by equations (19)-(22) in
[33]. These four equations are restated in (A.2)-(A.5)
using the notation in Tables A.1 and A.2.

The evolution of the charge density is governed by

dQ

dt
=

qDIN0

VT
Ebulk(t) , (A.2)

where Ebulk(t) is the bulk electric field, given by

Ebulk(t) =
1

b
(Vbi − V − V1 − V2 − V3 − V4) , (A.3)

in which Vbi is the cell’s built-in voltage, V is the applied
voltage and V1−4 are the potential drops across the Debye
layers illustrated in Figure 2, which obey the following
capacitance relations:

V1 = −V(−ΩEQ(t)) , V2 = −V(−Q(t)) ,

V3 = V(Q(t)) , V4 = −V(−ΩHQ(t)) . (A.4)

Here, the function V(Q) is the inverse of the function
Q(V), defined by

Q(V) = qN0LD sign(V)
√
2
(

eV/VT − V/VT − 1
)

1
2

,

(A.5)
in which LD is the perovskite Debye length defined by
√

εAVT /(qN0).
From the solution of equations (A.2)-(A.5), the electric

field in the bulk of the PAL can be calculated from (A.3).
For a steady-state problem, Ebulk ≡ 0 and therefore V1−4

satisfy:

Vbi − V = V1 + V2 + V3 + V4 . (A.6)

Therefore V1−4 can be considered to be functions of the
applied voltage which can be evaluated by numerical so-
lution of (A.4)-(A.6) for Q and then substituting Q back
into (A.4).

When the values of Ebulk and V1−4 are known, the
charge carrier concentrations (n and p) can be calculated
from equations (3)-(6) stated in the SI of [33]. To ob-
tain the J-V characteristics of a PSC, the final step is
to calculate the current density from equation (7) in the
SI of [33]. These equations are restated below with the
steady-state assumption that Ebulk = 0 and that V1−4

are known functions of the applied voltage.

2. The steady-state surface polarisation model

The steady-state surface polarisation model for the
charge carrier concentrations in the PAL of a PSC con-
sists of conservation equations for the electrons and holes
within the bulk of the PAL (0 < x < b, excluding the
narrow Debye layers). The distribution of the electric
potential between the four Debye layers is assumed to be
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Table A.1. A list of the model variables used to describe
the internal state of the bulk of the PAL in the steady-state
surface polarisation model.

Symbol Description
p(x) Bulk hole concentration
jp(x) Hole current density
n(x) Bulk electron concentration
jn(x) Electron current density

Table A.2. A list of parameters for the steady-state surface
polarisation model.

Symbol Description
q Elementary charge
VT Thermal voltage
Dp Hole diffusion coefficient
Dn Electron diffusion coefficient
εA Permittivity of perovskite

Ebulk Electric field in the bulk of the PAL
G(x) Charge carrier generation rate
R(n, p) Charge carrier recombination rate

known and governed by the distribution of mobile ionic
charge. Using the notation in Tables A.1 and A.2, the
conservation equations are:

− 1

q

∂jn

∂x
= G(x) −R(n, p) , jn = qDn

∂n

∂x
, (A.7)

1

q

∂jp

∂x
= G(x) −R(n, p) , jp = −qDp

∂p

∂x
. (A.8)

The accompanying boundary conditions (on the bulk-
facing edge of each perovskite Debye layer) are

n = nb exp

(

−V1 + V2

VT

)

, jp = −qRl , at x = 0+ ,

(A.9)

p = pb exp

(

−V3 + V4

VT

)

, jn = −qRr , at x = b− ,

(A.10)

where the constants nb and pb take into account the dis-
continuity in the relevant carrier concentration across
each interface, according to Boltzmann statistics for non-
degenerate semiconductors, and are given by

nb =
dEgc
gEc

exp

(

EE
c − Ec

VT

)

, (A.11)

pb =
dHgv
gHv

exp

(

Ev − EH
v

VT

)

. (A.12)

Since carrier concentrations are discontinuous across an
interface between two different materials, the interfacial
recombination rates Rl and Rr are defined as functions
of the electron concentration on the left-hand side of the

relevant interface and the hole concentration on the right,
i.e.

Rl(n, p) = Rl

(

dE exp

[

− V1

VT

]

, p|x=0+ exp

[

− V2

VT

])

,

(A.13)

Rr(n, p) = Rr

(

n|x=b− exp

[

− V3

VT

]

, dH exp

[

− V4

VT

])

.

(A.14)

Note that, in the boundary conditions and the expres-
sions above, the exponential factors account for the rapid
changes in the carrier concentrations across each Debye
layer.

The current density J generated by the PSC can be
obtained from a solution for n(x, t) and p(x, t) for the
PDE problem (A.7)-(A.14) as follows. By integrating the
difference between (A.7a) and (A.8a), we find that the
total current density (J = jn + jp) is uniform across the
perovskite layer. Then, by integrating the sum of (A.7a)
and (A.8a) over the width of the perovskite layer and
applying the boundary conditions (A.10b) and (A.10b),
we find that the current density is given by

J =

∫ b

0

q [G(x) −R(n, p)] dx− qRl − qRr . (A.15)

Note that, in order for an analytic expression for the
current density to be found, it is necessary to simplify
the nonlinear PDE problem.

In both the numerical simulations and the following
analysis, we use a simplified version of the Beer-Lambert
Law of light absorption, i.e. we assume that

G(x) = IsFphα exp (−αx) , (A.16)

in which Fph denotes the flux of photons incident on the
light-facing perovskite surface (after accounting for re-
flection) under the equivalent of 1 Sun illumination; α
is the light absorption coefficient of the perovskite; and,
Is is the intensity of the illumination in Sun equivalents.
Hence,

J = Js − Jdark , (A.17)

where

Js =

∫ b

0

qG(x) dx = qIsFph[1− exp(−αb)] ,

Jdark =

∫ b

0

qR(n, p) dx+ qRl + qRr .

3. Simplifying assumptions

Here, a set of three physically justifiable assumptions
are applied to the BVP for the charge carrier concentra-
tions comprising of (A.7)-(A.14). The simplified BVP is
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then solved for five different recombination rates. The re-
sult of this analysis is an expression for the steady-state
current density J which is written simply in terms of the
four Debye layer potential drops V1−4 indicated in Figure
2.

We make the following assumptions for a PSC op-
erating at applied voltages within its power-generating
regime (0 < V < VOC, as measured under the equivalent
of 1 Sun illumination):

1. the rate of charge carrier diffusion towards the
PAL/TL interfaces dominates over the rate of
charge carrier recombination via interfacial trap
states, for both holes and electrons within the PAL,
i.e.

νp,E exp

(

− V2

VT

)

≪ Dp

b
,

νn,H exp

(

− V3

VT

)

≪ Dn

b
,

2. the perovskite layer width (b) is much shorter than
the carrier diffusion lengths, meaning that the rate
of diffusion across the PAL is significantly greater
than the rate of recombination within the bulk of
the PAL, i.e.

b ≪
√

Dp

βnb
exp

(

V1 + V2

2VT

)

,

b ≪
√

Dn

βpb
exp

(

V3 + V4

2VT

)

,

b ≪
{
√

τpDp for hole-limited bulk SRH, or
√
τnDn for electron-limited bulk SRH,

3. the cell is held either in the dark or under only a
moderate illumination intensity (up to around the
equivalent of 1 Sun), such that the carrier flux den-
sities due to photo-generation are less than those
due to diffusion across the PAL, i.e.

IsFph ≪ Dppb
b

exp

(

−V3 + V4

VT

)

,

IsFph ≪ Dnnb

b
exp

(

−V1 + V2

VT

)

.

The outcome of these three assumptions is that the
rates of recombination (R, Rl, Rr) and generation (G)
have a negligible effect on the distribution of the carrier
concentrations (n and p), in the range of voltages relevant
to solar cell operation. Note that assumptions 1 and 2
place an upper bound on the voltage, while assumption
3 imposes a lower bound. In other words, we assume
that the diffusion of charge carriers across the cell is the
dominant process for determining the charge carrier dis-
tributions within the PAL and hence the rates of recom-
bination and the total current density generated during

steady-state operation of the cell. Perovskite materials
are known for their long diffusion lengths [49–51]) and
therefore we believe that this is a reasonable assumption
for any high performing planar PSC. The approxima-
tions are consistent with parameter estimates for PSCs
with low bulk recombination previously used in [33]. It
should be noted that taking these limits does not elimi-
nate any type of recombination from taking place within
the cell. However, such assumptions will not be valid for
inefficient cells with poor quality perovskite films and/or
transport layers (particularly those with low carrier mo-
bilities).

Applying the simplifying assumptions reduces the
BVP (A.7)-(A.14) to the following equations:

∂jn

∂x
= 0 , jn = qDn

∂n

∂x
, (A.18)

∂jp

∂x
= 0 , jp = −qDp

∂p

∂x
, (A.19)

with the boundary conditions

n = nb exp

(

−V1 + V2

VT

)

, jp = 0 , at x = 0+ ,

(A.20)

p = pb exp

(

−V3 + V4

VT

)

, jn = 0 , at x = b− .

(A.21)

By integrating and applying the boundary conditions,
we find that the carrier concentrations are approximately
uniform across the bulk of the PAL and given by

n = nb exp

(

−V1 + V2

VT

)

p = pb exp

(

−V3 + V4

VT

)















for 0 < x < b. (A.22)

It is therefore possible to approximate the dark current
density for each of the different types of recombination,
using these estimates for n and p.

In this work, we further assume that a typical cell is
limited predominantly by a single type of recombination
which can be well-approximated by a monomolecular or
bimolecular rate, i.e. that a cell is limited by one of the
five rates listed in Table I. This assumption is consis-
tent with our focus on modelling the power-generating
quadrant of the current-voltage characteristics of a PSC
where the product of the carrier concentrations satisfies
np > n2

i . Note that the intrinsic carrier concentration is
defined by the relation:

n2
i = gcgv exp

(

− Eg

kBT

)

, (A.23)

where Eg = Ec − Ev is the band gap of the perovskite.
According to (A.13)-(A.14), the interface recombina-

tion rates must take into account the exponential change
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in concentration due to the potential drop across the De-
bye layer adjacent to the relevant PAL/TL interface in
order to be written in terms of the charge carrier concen-
trations (n and p) within the bulk of the PAL. Therefore
the interface recombination rates in Table I are approxi-
mated by

Rl = νp,Ep exp

(

− V2

VT

)

, (A.24)

Rr = νn,Hn exp

(

− V3

VT

)

. (A.25)

The result of these assumptions is that the dark cur-
rent density (valid for a power-generating PSC) can be
approximated and written in the following form for all
five rates of recombination:

Jdark = Jd exp

(

−F (V )

VT

)

. (A.26)

The definitions of Jd (which has the units of a current
density) and the function F (V ) corresponding to each
of the five recombination mechanisms are listed in Table
A.3. These definitions provide a vital link between phys-
ical properties of the three core layers of a PSC and its
overall performance as a solar cell during steady-state op-
eration. By substituting (A.26) into (A.17), we derive the
ectypal diode equation for steady-state operation stated
in (5).

Whilst it may seem that the model has been oversim-
plified, it can be seen from Section IV that the steady-
state J-V behaviour predicted by the ectypal diode equa-
tion is in good agreement with the results of numerical
simulations of the full charge transport model. Crucially,
the model is able to capture the exponential effects of
the four characteristic potential drops V1−4 on the rates
of recombination associated with different recombination
pathways. It is also notable that the ectypal diode equa-
tion takes the same form as that of the approximate
Shockley diode equation stated in (2), in that Js is in-
dependent of the applied voltage, while Jdark is indepen-
dent of the photo-generation parameters and constitutes
the current density in the dark due to recombination for
V >> VT .

4. Evaluating the ectypal diode equation

In order to obtain results from the ectypal diode equa-
tion, the potential drops V1−4 must first be calculated,

as functions of the applied voltage, from equations (A.4)-
(A.6). For the chosen charge transport model (which in-
cludes a single, positively-charged species of mobile ionic
charge), these equations form an implicit equation for
the Debye layer charge density Q(t) which can be solved
using, for example, MATLAB’s root-finding algorithm
fsolve [52]. Once V1−4 have been determined, the cur-
rent density can then be calculated from (5) using the
relevant expressions for Jd and F (V ) for the chosen re-
combination mechanism from Table A.3. Hence, the pro-
posed model reduces the task of simulating a steady-state
J-V curve of a PSC to finding the numerical solution to
a single implicit equation for the charge density Q(t), fol-
lowed by substitution into the ectypal diode equation for
steady-state operation:

J(V ) = Js − Jd exp

(

V − Vbi

necVT

)

, nec =
Vbi − V

F (V )
.

(5 repeated)

Appendix B: Series and shunt resistance

High fill factors are a sign of the promising potential of
PSCs. However, in reality, the effects of series and shunt
resistance (arising, for example, from contact resistances
and short circuits caused by imperfections in the cell’s
construction) reduce the performance of a photovoltaic
device below its theoretical performance, as investigated
in this work. It is possible to incorporate external se-
ries and shunt resistance into the ectypal diode equation
(5) in an analogous way to in the classical theory. The
ectypal diode equation then becomes

J = Js − Jd exp

(

V − JARs − Vbi

necVT

)

− V − JARs

Rsh
,

(B.1a)

nec =
Vbi − (V − JARs)

F (V − JARs)
, (B.1b)

in which J (A cm−2) is the photo-current density, A
(cm2) is the contact area of the solar cell, Rs (Ohm)
is the series resistance and Rsh (Ohm) is the shunt (or
parallel) resistance. The equation for the distribution of
the total potential difference across the cell, to replace
equation (A.6), is

Vbi − (V − JARs) = V1 + V2 + V3 + V4 . (B.2)
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Table A.3. A table showing the analytic expressions that can be substituted into (A.26) to give the approximate dark current
density for each of the five different recombination rates considered in this work. Note that each of the potential drops V1−4 is
a function of the applied voltage V , while all other symbols are constants that are defined in the SI [48]. The ectypal factor,
introduced in this work, is defined by (Vbi − V )/F (V ), see Table I.

Type of recombination Form Jd F (V )

Bimolecular bulk recombination R ∼ βnp
qbβdHdEgvgc

gHv gEc
exp

(

Ev − EH
v − Ec + EE

c

qVT

)

V1 + V2 + V3 + V4

= qbβn2
i exp

(

Vbi

VT

)

Hole-limited bulk SRH R ∼

p

τp

qbdHgv
τpgHv

exp

(

Ev − EH
v

qVT

)

V3 + V4

Electron-limited bulk SRH R ∼

n

τn

qbdEgc
τngEc

exp

(

−

Ec −EE
c

qVT

)

V1 + V2

ETL/PAL interface SRH Rl ∼ νp,Ep
+ qνp,EdHgv

gHv
exp

(

Ev −EH
v

qVT

)

V2 + V3 + V4

PAL/HTL interface SRH Rr ∼ νn,Hn−
qνn,HdEgc

gEc
exp

(

−

Ec −EE
c

qVT

)

V1 + V2 + V3


