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Abstract 
A novel computational modelling approach for prediction of environmental vibration is introduced. The model 
is formulated in both moving and fixed frames of reference, with a mixed frame of reference formulation 
introduced to couple the two frames of reference. The resulting system is able to model a vehicle travelling on 
an infinite railway track, formulated in a moving frame of reference, interacting via the soil with a structure 
(i.e. building), formulated in a fixed frame of reference. The method utilizes a semi-analytical soil model with 
the structures modelled using three-dimensional finite elements. Two solution procedures of the full system 
are proposed: partial coupling, where some secondary effects from reflected waves propagating through soil 
are disregarded, and full coupling, where the vehicle–track–soil–structure is modelled as a fully coupled 
system. Both proposed solution procedures offer a one-step approach for solving the whole system in the 
frequency–spatial domain. The usage of the model is demonstrated in two example cases: one analysing a 
simple building structure near a railway track, using the partial coupling solution procedure, and another one 
analysing the behaviour of a vehicle model traversing over a rigid block embedded inside the soil, using the 
full coupling solution procedure. The introduced modelling approach offers a computationally efficient 
solution procedure, at the same time being applicable to a wide array of application cases. 
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1. Introduction 
Railway transportation has been seeing a resurgence in popularity in the recent years, as an efficient, fast and 
environmentally friendly form of transportation. This is especially evident in urban centres, where new metro 
and tramway lines are being continuously developed. However, constructing railway lines close to existing 
buildings or new buildings near existing lines leads to a set of challenges which need to be addressed. One of 
these challenges is the environmental vibration resulting from the passing trains. It propagates through the soil 
and enters the structures, causing annoyance to the inhabitants and, in worst case, leading to structural damage.  

As shown in Connolly et al. [1], environmental vibration is a growing concern when planning new railway 
projects. The exact propagation mechanism of environmental vibration is an extremely complex phenomenon, 
and thus proper evaluation of its effects is difficult. A rough estimate of the vibration levels can be obtained 
by using the guidelines provided by, for example, the Federal Railroad Administration [2] that is commonly 
used in many countries. These estimates are generally based on empirical methods using on-site measurements. 
However, for more precise estimations, costly and time-consuming in-situ investigations need to be performed. 
Alternatively, computational models can also be used to evaluate these effects. Their use is advantageous as 
analysis can be performed even before the construction begins, and different configurations and site conditions 
can be tested. Nevertheless, detailed computational models often require sufficient engineering experience and 
long computation times, while simplified models assume significant reduction of site conditions, making their 
applications somewhat limited. 
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When modelling environmental vibration, the modelling of the soil strata is, in most cases, the highest time 
consuming and difficult task. A sizable soil domain must be modelled to account for the source–soil–structure 
interaction, and in numerical models based on, for example, the finite element method (FEM), transmitting 
boundary conditions are required to ensure radiation of waves, thus mimicking the behaviour of an unbounded 
medium. This can be avoided to a degree by using analytical and semi-analytical approaches to model the 
underlying soil. Such models, utilizing purely analytical formulations of the Green’s function, can be found in 
[3–5]. A widely used semi-analytical method, based on the soil layer transfer matrices formulated in 
frequency–wavenumber domain, was originally proposed by Thomson [6] and Haskell [7]. This semi-
analytical method offers relatively short computation times and ensures radiation without the need of special 
boundary conditions. The approach has been expanded by introducing rigid objects as described by Andersen 
and Clausen [8], or by coupling with a finite element (FE) model of external structures as described by 
Bucinskas and Andersen [9]. An analytical railway track model coupled to a semi-analytical soil model was 
introduced by Sheng et al. for a stationary load [10] and a moving load [11]. The railway track was modelled 
analytically as an infinite structure consisting of a beam and continuous springs and masses, this way 
accounting for the railway track behaviour at higher frequencies. The model was further expanded by 
introducing a multi-degree-of-freedom vehicle model and excitation from an uneven track [12]. The vehicle 
was modelled in two dimensions, accounting only for the vertical interactions between the wheels and the rails, 
with the whole system modelled in a moving frame of reference, and with the possibility to observe the 
resulting displacements at a non-moving receiver. The developed methodology offers relatively quick 
computations. However, the application range is limited by the assumptions made for the semi-analytical soil 
model (e.g. perfectly horizontal layers, homogeneity, isotropy etc.). 

When more complex systems are investigated, the modelling effort increases accordingly. Three-dimensional 
(3D) problems can be analysed using the FEM. Examples of 3D FE models including surface railways can be 
found in [13–15]. The models can be formulated to account for a fully coupled vehicle–track–soil system, as 
shown by Connolly et al. [14], or a two-step approach can be used as shown by Kouroussis and Verlinden [15]. 
The biggest challenges of fully 3D models are the long computation times and the finite boundaries of the 
modelled domain. Another popular numerical approach is the boundary-element (BE) method. Like the semi-
analytical approach, this method has an inherent ability to radiate waves. Hence, only the boundaries of the 
investigated domain need to be discretized. The boundary-element method (BEM) is commonly coupled to the 
FEM, to create FE–BE models where the structures are modelled using the FEM and the soil is modelled using 
the BEM. Examples of 3D BE analysis and its coupling with the FEM can be found in [16–18]. Similar to 
fully 3D FE models, the 3D BE models still suffer from long computation times. This can be remedied to some 
degree by using so-called ‘two-and-a-half-dimensional’ (2.5D) models, originally proposed by Aubry et al. 
[19]. The methodology assumes invariant geometry along the movement direction of the vehicle, enabling 
Fourier transformation into wavenumber domain in this direction, in essence discretizing only the two-
dimensional (2D) cross section of the investigated domain. Then the 2D sections of the model are solved for 
different wavenumbers and, after inverse Fourier transformation, the 3D response can be obtained. The 
methodology is widely adopted and various approaches have been utilized to handle the non-reflecting 
boundary conditions: FE element models [20], FE–BE models [20, 21], FE with perfectly matched layers 
models (FE–PML) [23] or finite element–scaled-boundary-finite element models (FE-SBFEM) [24]. Only a 
small part of computational approaches and models developed over the years is presented here. A much wider 
overview of the methods used can be found in review papers, i.e. [25, 26] and in the comparative study of 
models by Connolly et al. [27]. 

When modelling the environmental vibration in a building induced by railway traffic, three main parts of the 
problem need to be considered: the vehicle–track system which is the vibration source, the underlying soil 
through which the vibration propagates, and the building structure which is the vibration receiver. Ideally, all 
the parts would be combined into a single model, including all coupling terms. However, due to complex 
analytical formulation needed and the limitations of computational models, this is rarely performed. Most 
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often, parts of the model are coupled together; for example, a coupled vehicle–track–soil model is calculated, 
and the obtained results propagate to the building structure [22, 27–32]. This way, the secondary coupling 
terms are excluded from the model, such as the effect of the building structure to the response of the track and 
the vehicle. This is acceptable, as these coupling terms do not influence the system significantly in the majority 
of cases. For example, Fiala et al. [28] used a two-step approach to obtain the response of a building structure 
by splitting the problem into a vehicle–track–soil source model and a structure–soil receiver model. With a 
similar approach, François et al. [29] studied road-traffic-induced vibration. The work also proposed a 
methodology to exclude the soil-structure interaction problem for cases of soft structures resting on stiff soils. 
A so-called sub-modelling technique was proposed by Hussein et al. [31], where the response of the soil surface 
from a tunnel structure was modelled using the pipe-in-pipe method [34] to find the response of a 2D frame. 
An almost identical system assembly method was also used by Lopes et al. [23]; however, the soil surface 
response from a tunnel structure was modelled using a 2.5D FEM–PML model and a 3D building structure 
was analysed. Recently, Freisinger et al. [35] proposed a coupled Integral Transform Method (ITM) and FEM 
to model the soil structure interaction of finite spherical (3D) and length invariant cylindrical (2.5D) systems 
embedded or partly embedded in homogenous grounds.  

Overall the prediction of environmental vibration using computational methods is a wide field, with a large 
variety of solutions developed over the years. However, an overall best method for the problem does not exist, 
and the decision on which approach to use depends largely on the available computational resources and 
acceptable level of simplification. The aim of this work is modelling the full vibration propagation path from 
the vehicle up to the building structure. The proposed novel method includes a moving vehicle model that is 
directly coupled to a stationary building structure, with interaction between them through the infinite 
underlying soil. At the same time, the method offers a relatively quick and flexible solution procedure. A fully 
3D system is modelled, with structures modelled using FE, allowing a wide variety of configurations. To limit 
the computational times needed, the semi-analytical soil formulation is utilized, with a surface railway track, 
also modelled analytically as proposed by Sheng et al. [10-12]. The system is excited by a multi-body vehicle 
model passing over an irregular track. The work introduces an approach of solving the coupled vehicle–track–
soil–building system using a single step solution procedure. Two system assembly and solution methods are 
presented: partial coupling and full coupling. The partial coupling procedure disregards some effects caused 
by the reflected waves for a more computationally efficient solution. While, the full coupling procedure 
includes all the coupling terms present in the system. Additionally, the methodology for modelling rigid objects 
and FE structures interacting with the soil is described with its implementation into the proposed solution 
approaches.  

The theoretical background of semi-analytical soil modelling is given in Section 2.1, while the relation between 
fixed and moving frame of reference (FOR) solutions is given in Section 2.2. The assembly of discretized soil 
and coupling it to FE is discussed in Section 3.1. Further, creating rigid objects interacting with the soil is 
introduced in Section 3.2. The vehicle–track system with the system excitation mechanism is introduced in 
Section 3.3. Section 4 presents the two assembly and solution procedures of a full system in a mixed FOR. 
The methodology is validated, by validating the analytically derived coupling terms, in Section 5.1, and 
comparing with another solution procedure, in Section 5.2. To show the capabilities of the proposed modelling 
approach, two example cases are analysed in Section 6. Finally, the conclusions can be found in Section 7. 

2. Semi-analytical soil model 
2.1 Formulation in frequency–wavenumber domain 
A semi-analytical soil model is used in the present work. The model utilizes a well-known approach based on 
an analytical solution to the Green’s function in the frequency–wavenumber domain. For the linear hysteric 
half-space 𝑧𝑧 ≤ 0, the displacement field in time–space domain can be obtained using a convolution integral 
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𝑢𝑢𝑖𝑖(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = � � � � 𝑔𝑔𝑖𝑖𝑖𝑖(𝑥𝑥 − 𝑥𝑥′,𝑦𝑦 − 𝑦𝑦′, 𝑧𝑧, 𝑧𝑧′, 𝑡𝑡 − 𝑡𝑡′) 𝑝𝑝𝑗𝑗(𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′, 𝑡𝑡′) d𝑥𝑥′
∞

−∞

d𝑦𝑦′
∞

−∞

d𝑧𝑧′
0

−∞

d𝑡𝑡′
𝑡𝑡

−∞

 (1) 

where the Green’s function 𝑔𝑔𝑖𝑖𝑖𝑖 relates the displacement component 𝑢𝑢𝑖𝑖  at the point (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) and time 𝑡𝑡 to the 
loads 𝑝𝑝𝑗𝑗 applied in direction 𝑗𝑗 at all positions and times up to and including the time 𝑡𝑡. It should be noted that 
the Green’s function is dependent explicitly on the vertical coordinates 𝑧𝑧 and 𝑧𝑧′ of the observation and loading 
points and not only on the distance between the points in the depth direction. Thus, while the soil is assumed 
invariant and infinite in both horizontal directions, the material properties vary over depth due to stratification. 

The Green’s function is challenging to be calculated analytically in the time–space domain for a layered half-
space. Thus, a triple Fourier transformation is performed, transforming the two horizontal coordinates into the 
wavenumbers 𝑘𝑘𝑥𝑥 and 𝑘𝑘𝑦𝑦, and time into the circular frequency 𝜔𝜔. Further, introducing a discretization into a 
number of depths 𝑧𝑧𝑛𝑛, 𝑛𝑛 = 1, 2, 3, … ,𝑁𝑁𝑧𝑧 , Eq. (1) simplifies into 

𝑈𝑈�𝑖𝑖(𝑘𝑘𝑥𝑥 ,𝑘𝑘𝑦𝑦 , 𝑧𝑧,𝜔𝜔) = �𝐺̅𝐺𝑖𝑖𝑖𝑖(𝑘𝑘𝑥𝑥 ,𝑘𝑘𝑦𝑦 , 𝑧𝑧, 𝑧𝑧𝑛𝑛,𝜔𝜔) 𝑃𝑃�𝑛𝑛,𝑗𝑗(𝑘𝑘𝑥𝑥 ,𝑘𝑘𝑦𝑦 ,𝜔𝜔)
𝑁𝑁𝑧𝑧

𝑛𝑛=1

. (2) 

Here 𝑈𝑈�𝑖𝑖 and 𝐺̅𝐺𝑖𝑖𝑖𝑖 are components of the displacement vector and the Green’s function tensor, respectively, in 
the frequency–wavenumber domain. After the discretization over depth, 𝑃𝑃�𝑛𝑛,𝑗𝑗 signifies the traction applied on 
a horizontal interface placed at the depth 𝑧𝑧𝑛𝑛. In the following, upper case symbols indicate Fourier transforms 
with respect to time, whereas overbar indicates Fourier transforms with respect to the horizontal spatial 
coordinates. 

Analytical expressions for the Green’s function in frequency–wavenumber domain are available. Thomson [6] 
and Haskell [7] originally developed a transfer-matrix method, which relates the displacement and traction 
applied at the top of a single layer of material to the displacements and traction at the bottom of the same layer. 
For that purpose, it is assumed that every layer is composed of homogeneous and linear hysteretic material and 
that the layers are infinite in both horizontal directions. Further, interaction with the soil is only possible 
through the interfaces between layers or the soil surface. Using the transfer matrices, multiple layers of material 
are assembled and, after applying the boundary conditions, the expression for the Green’s function can be 
obtained analytically. When the excitation loads are inside the homogenous layers, additional interfaces are 
included at each load depth. However, the assembly of multiple layers is not a straightforward task and requires 
further consideration in order to avoid numerical instabilities.  

There are two major approaches used to assemble multiple soil layers: the flexibility approach and the stiffness 
approach. The flexibility approach is based on the original work proposed by Thomson [6] and Haskell [7]. 
The transfer matrices are multiplied together to propagate the displacements and tractions through the layers. 
Since the considered transfer matrices dimensions are never bigger than six by six (three displacement 
components and three traction components for three-dimensional wave propagation), the approach is very 
quick to compute, however it may suffer from instabilities due to ill-conditioned matrices occurring for 
problems where high frequencies or thick soil layers are considered. The stiffness approach was introduced by 
Kausel and Roesset [36] and extends the original transfer matrix, as derived by Thomson [6] and Haskell [7] 
by reordering it into a stiffness expression equivalent to those used in the FEM, assuming that the interface 
between two layers is interpreted as a connecting node. Multiple layers can be assembled by overlapping the 
stiffness matrices at the connecting interfaces. This approach leads to bigger matrices, especially when 
considering strata composed of many layers, however, the obtained system stiffness matrices are symmetric, 
and the approach does not suffer from the instability issues. The created system can then be used to obtain the 
Green’s function of the system. 
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The two methods described above perform very similarly and they can both be used to obtain the Green’s 
function in the frequency-wavenumber domain providing identical results. In this work, both methods have 
been utilized: the flexibility approach with numerical stabilization for the fixed FOR soil model and the 
stiffness approach for the moving FOR model. The reason that the flexibility approach is used for the fixed 
FOR and the soil-structure interaction is because it enables the application of structure-to-soil interaction forces 
without increasing the size of the involved matrices (that is always six by six) for foundations that are 
embedded in the ground (i.e. piled foundations). For the moving FOR problem, only the Green’s functions for 
a surface load (i.e. the track) are needed and thus the stiffness approach is used which is free of numerical 
instabilities at higher frequencies, that are more prominent due to the moving of the load.  

The numerical instabilities and modelling errors that are possible to occur in the flexibility approach are caused 
respectively: (i) by the ill-conditioned matrices because the approach relates both traction and displacements 
components to each other in the same matrix and (ii) by the round-off error caused by exponentially increasing 
and decreasing terms in the same system because of the interaction between the primary (P) and the vertically 
polarized secondary (SV) waves propagating through the layers and reflecting at the interfaces. In the proposed 
model, the stabilization technique that is based on the orthonormalization method proposed by Wang [37] is 
used for coping with the any associated instabilities. Furthermore, very thick layers (if any) should be split into 
multiple smaller layers with the same material properties to not exceed the limits of floating-point numbers. 

In the frequency-wavenumber domain, the displacements are calculated by multiplying the Green’s function 
𝐺̅𝐺𝑖𝑖𝑖𝑖  with the triple-Fourier-transformed load  𝑃𝑃�𝑛𝑛,𝑗𝑗 . Practise shows that using spatially distributed loads is 
advantageous, since such loads when transformed in wavenumber domain vanish at infinity. Contrarily, a 
concentrated force applied in a single spatial point produces a constant value of the Fourier transform for all 
wavenumbers—i.e. “white noise” in wavenumber domain—thus requiring, in principle, evaluation of the 
Green’ function and inverse Fourier transformation up to infinite wavenumbers. A further discussion about the 
load distribution used in this work can be found in Section 5.2. After the displacements 𝑈𝑈�𝑖𝑖 in the frequency-
wavenumber domain are obtained, a double inverse Fourier transformation is performed into frequency-space 
domain: 

𝑈𝑈f 𝑖𝑖(𝑥𝑥f,𝑦𝑦, 𝑧𝑧,𝜔𝜔f) =    
1

4𝜋𝜋2
� � 𝑈𝑈�𝑖𝑖(𝑘𝑘𝑥𝑥 ,𝑘𝑘𝑦𝑦, 𝑧𝑧,𝜔𝜔f) ei(𝑘𝑘𝑥𝑥𝑥𝑥f+𝑘𝑘𝑦𝑦𝑦𝑦) d𝑘𝑘𝑥𝑥

∞

−∞
d𝑘𝑘𝑦𝑦

∞

−∞
. (3) 

The above equation is used when both the load and the response in a fixed FOR is considered. The load is 
applied at a circular frequency 𝜔𝜔f and coordinate 𝑥𝑥f, with subscript ‘f’ indicating a fixed FOR. As described 
by Andersen and Clausen [8], a load applied axisymmetrically around the point (𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′) can be treated 
effectively in the fixed FOR. Here, the inverse Fourier transformation can be carried out in semi-discrete form 
by adopting polar coordinates, since the integration with respect to the azimuthal angle can be done in closed 
form, leading to Bessel functions in the components 𝐺𝐺f 𝑖𝑖𝑖𝑖 of the Green’s function. 

When the whole system is considered in a moving FOR, the Green’s function and, at the same time, the 
response in the frequency-wavenumber domain lose the polar symmetry around the origin of the wavenumber 
domain, compared to a purely fixed FOR. Hence, a fully discrete inverse Fourier transformation from 
wavenumber domain into spatial domain is necessary. Assuming that a load is moving in the positive 𝑥𝑥-
direction, the frequency used to compute the Green’s function becomes wavenumber dependent. In that case, 
the inverse double Fourier transformation into frequency–space domain is defined as 

𝑈𝑈m 𝑖𝑖(𝑥𝑥m,𝑦𝑦, 𝑧𝑧,𝜔𝜔m) =    
1

4𝜋𝜋2
� � 𝑈𝑈�𝑖𝑖�𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑦𝑦, 𝑧𝑧,𝜔𝜔m − 𝑘𝑘𝑥𝑥𝑣𝑣�ei�𝑘𝑘𝑥𝑥𝑥𝑥m+𝑘𝑘𝑦𝑦𝑦𝑦� d𝑘𝑘𝑥𝑥

∞

−∞
d𝑘𝑘𝑦𝑦

∞

−∞
 (4) 

where 𝑣𝑣 is the velocity at which the moving FOR travels through the fixed FOR. Subscript ‘m’ indicates values 
in the moving FOR.  
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2.2 Relation between fixed and moving frames of reference 
The methodology presented in this work uses both moving and fixed frames of reference. Thus, a mixed FOR 
is used, where the displacement response observed in a fixed FOR from a load applied at a stationary point in 
the moving FOR and vice versa are needed in order to obtain the coupling terms between the two frames of 
reference.  

Following a similar analysis with in [11], the displacements 𝑈𝑈f 𝑖𝑖 at 𝑥𝑥f for fixed FOR from a harmonic moving 
load of circular frequency 𝜔𝜔𝑚𝑚 can be expressed as: 

𝑈𝑈f 𝑖𝑖(𝑥𝑥f,𝑦𝑦, 𝑧𝑧,𝜔𝜔m,𝜔𝜔f) =
1
𝑣𝑣

ei𝛽𝛽𝑥𝑥f
1

2𝜋𝜋
�  𝑈𝑈�𝑖𝑖(𝛽𝛽, 𝑘𝑘𝑦𝑦, 𝑧𝑧,𝜔𝜔m − 𝛽𝛽𝑣𝑣) ei𝑘𝑘𝑦𝑦𝑦𝑦d𝑘𝑘𝑦𝑦
∞

−∞
, 𝛽𝛽 =

𝜔𝜔m − 𝜔𝜔f

𝑣𝑣
 (5) 

where 𝜔𝜔f is the receiving frequency at the fixed FOR.  

Alternatively, using an equivalent analysis with [11], for a stationary harmonic load of circular frequency 𝜔𝜔𝑚𝑚 
received in a moving FOR at 𝑥𝑥m = 𝑥𝑥f − 𝑣𝑣𝑣𝑣 the displacements 𝑈𝑈m 𝑖𝑖 can be expressed as: 

𝑈𝑈m 𝑖𝑖(𝑥𝑥m,𝑦𝑦, 𝑧𝑧,𝜔𝜔f,𝜔𝜔m) =
1
𝑣𝑣

ei𝛽𝛽𝑥𝑥m
1

2𝜋𝜋
�  𝑈𝑈�𝑖𝑖�𝛽𝛽, 𝑘𝑘𝑦𝑦 , 𝑧𝑧,𝜔𝜔f�ei𝑘𝑘𝑦𝑦𝑦𝑦d𝑘𝑘𝑦𝑦
∞

−∞
  . (6) 

Comparing Eqs. (5) and (6) it is evident that the expressions are equivalent. That is, the displacements 
originated from a moving source and observed in a fixed FOR are equivalent to the displacements caused by 
a stationary source and observed in a moving frame: 

𝑈𝑈m 𝑖𝑖(𝑥𝑥m,𝑦𝑦, 𝑧𝑧,𝜔𝜔f,𝜔𝜔m) = 𝑈𝑈f 𝑖𝑖(𝑥𝑥f,𝑦𝑦, 𝑧𝑧,𝜔𝜔m,𝜔𝜔f) (7) 
given that the horizontal coordinates 𝑥𝑥m and 𝑥𝑥f have the same numerical value. In practise, this means that 
only Eq. (5) or Eq. (6) needs to be evaluated. Then the integral part of the equation is reused for the other FOR 
combination, with changed x-coordinate. It should be noted that this is only true in the mixed frequency 
domain. When inverse Fourier transformation is performed to obtain the time-domain response, this is no 
longer true, even if the circular frequencies 𝜔𝜔m and 𝜔𝜔f are equal: 

𝑢𝑢m 𝑖𝑖(𝑥𝑥m,𝑦𝑦, 𝑧𝑧,𝜔𝜔f, 𝑡𝑡) ≠ 𝑢𝑢f 𝑖𝑖(𝑥𝑥f,𝑦𝑦, 𝑧𝑧,𝜔𝜔m, 𝑡𝑡). (8) 

3. Structures interacting with soil 
3.1 Assembly in a single frame of reference 
To couple the semi-analytical soil model to a FE model of one or more structures, the dynamic stiffness matrix 
𝐊𝐊ss(𝜔𝜔) of the soil has to be established. The desired geometry of the soil-structure interface is discretized into 
a number of ‘soil-structure interaction’ (SSI) nodes and the response is requested at a range of ‘observation’ 
nodes. Thus, two types of nodes are used to model the system; the SSI nodes that are interacting with external 
structures, and the observation nodes which are only used to analyse soil displacements without direct 
interaction. The dynamic stiffness matrix is established using the SSI nodes, which is then coupled to structures 
and used to obtain the system displacements. The displacements of the observation nodes are obtained by post-
processing the previously obtained results. 

The dynamic stiffness matrix 𝐊𝐊ss(𝜔𝜔) of the soil is calculated by inverting the global receptance matrix 𝐑𝐑ss(𝜔𝜔) 
relating all the degrees of freedom needed. For a three-dimensional case, each SSI node has three degrees of 
freedom. Therefore, the receptance matrix 𝐑𝐑ss(𝜔𝜔), also called the flexibility matrix, will be a square matrix 
with number of rows and columns three times the number of nodes in the system. To create the receptance 
matrix, a unit harmonic load is applied to a single degree of freedom 𝑠𝑠𝑗𝑗 and the resulting displacements are 
calculated at all SSI degrees of freedom. The procedure is repeated for all SSI degrees of freedom in the system. 
The receptance between degrees of freedom 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗 is given as 
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𝑅𝑅𝑠𝑠𝑖𝑖,𝑠𝑠𝑗𝑗(𝜔𝜔) = � � 𝐺̅𝐺𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗(𝑘𝑘𝑥𝑥 ,𝑘𝑘𝑦𝑦 , 𝑧𝑧𝑛𝑛𝑖𝑖 , 𝑧𝑧𝑛𝑛𝑗𝑗 ,𝜔𝜔) 𝑃𝑃�𝑛𝑛𝑗𝑗,𝑠𝑠𝑗𝑗(𝑘𝑘𝑥𝑥 ,𝑘𝑘𝑦𝑦 ,𝜔𝜔) ei�𝑘𝑘𝑥𝑥(𝑥𝑥𝑛𝑛𝑖𝑖−𝑥𝑥𝑛𝑛𝑗𝑗)+𝑘𝑘𝑦𝑦(𝑦𝑦𝑛𝑛𝑖𝑖−𝑦𝑦𝑛𝑛𝑗𝑗)� d𝑘𝑘𝑥𝑥
∞

−∞
d𝑘𝑘𝑦𝑦

∞

−∞
 (9) 

where 𝑃𝑃�𝑛𝑛𝑗𝑗,𝑠𝑠𝑗𝑗(𝑘𝑘𝑥𝑥 ,𝑘𝑘𝑦𝑦 ,𝜔𝜔)  is the double spatial Fourier transform of a distributed harmonic load 
𝑃𝑃𝑛𝑛𝑗𝑗,𝑠𝑠𝑗𝑗(𝑥𝑥𝑛𝑛𝑗𝑗 ,𝑦𝑦𝑛𝑛𝑗𝑗 , 𝑧𝑧𝑛𝑛𝑗𝑗 ,𝜔𝜔) of unit magnitude acting within the frequency domain at the depth 𝑧𝑧𝑛𝑛𝑗𝑗  in degree of 
freedom 𝑠𝑠𝑗𝑗 . Corresponding to the SSI degrees of freedom 𝑠𝑠𝑖𝑖  and 𝑠𝑠𝑗𝑗 , 𝑑𝑑𝑖𝑖  and 𝑑𝑑𝑗𝑗  signify the local degrees of 
freedom, 𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗 = 1, 2, 3 for the three-dimensional solid, while 𝑛𝑛𝑖𝑖 and 𝑛𝑛𝑗𝑗 are the node numbers of the nodes to 
which SSI degrees of freedom 𝑠𝑠𝑖𝑖  and 𝑠𝑠𝑗𝑗  belong. Thus, it is assumed that the displacement is observed in 
direction 𝑑𝑑𝑖𝑖 at a node with coordinates (𝑥𝑥𝑛𝑛𝑖𝑖 ,𝑦𝑦𝑛𝑛𝑖𝑖 , 𝑧𝑧𝑛𝑛𝑖𝑖), while the load is applied in direction 𝑑𝑑𝑗𝑗 at a node with 
coordinates  (𝑥𝑥𝑛𝑛𝑗𝑗 ,𝑦𝑦𝑛𝑛𝑗𝑗 , 𝑧𝑧𝑛𝑛𝑗𝑗) . The same procedure can be performed in both fixed and moving frames of 
reference. The obtained results are placed in a single column of the receptance matrix and the process is 
repeated for every degree of freedom.  

The receptance matrix 𝐑𝐑ss(𝜔𝜔) is a 𝑆𝑆 × 𝑆𝑆 matrix providing the flexibility of the 𝑆𝑆 SSI degrees of freedom from 
loads applied to the same 𝑆𝑆 degrees of freedom. The receptance matrix can be established for the moving and 
fixed frames of reference. However, only in the fixed FOR, the matrix is symmetric, assuming that the applied 
load 𝑃𝑃𝑛𝑛𝑗𝑗,𝑠𝑠𝑗𝑗(𝑥𝑥,𝑦𝑦,𝜔𝜔) is the same for all degrees of freedom.  

The inversion of the flexibility matrix for large systems can be computationally expensive. Thus, using as few 
as possible SSI nodes is important for an efficient solution. To find the optimum number and placement of the 
nodes a convergence analysis is often required, especially when modelling rigid structures.  

After the dynamic stiffness matrix is obtained, it can be assembled in the single frame of reference (SFOR) 
with the dynamic stiffness matrix 𝐊𝐊FE of the FE model: 

𝐊𝐊SFOR(𝜔𝜔) = �
𝐊𝐊ss(𝜔𝜔) + 𝐊𝐊FE

ss (𝜔𝜔) 𝐊𝐊FE
sn (𝜔𝜔)

𝐊𝐊FE
ns (𝜔𝜔) 𝐊𝐊FE

nn(𝜔𝜔)�, (10) 

where superscript ‘s’ denotes the degrees of freedom through which the FE model interacts with the soil, while 
superscript ‘n’ denotes the degrees of freedom that are internal to the FE model. Combinations of superscripts 
‘sn’ and ‘ns’ denote the coupling terms. Due to symmetry of the FE system matrices, 𝐊𝐊FE

ns (𝜔𝜔) = [𝐊𝐊FE
sn (𝜔𝜔)]T. 

Further, the matrix 𝐊𝐊FE
sn (𝜔𝜔) is usually sparsely populated. 

The displacements of the system can then be obtained by solving the system of equations: 

𝐊𝐊SFOR(𝜔𝜔) 𝐔𝐔SFOR(𝜔𝜔) = 𝐏𝐏SFOR(𝜔𝜔). (11) 

To obtain the displacements of the observation degrees of freedom, the flexibility matrix 𝐑𝐑os relating the SSI 
and observation degrees of freedom is needed. Assuming that the numbering of observation degrees of freedom 
is stored in a set 𝑜𝑜 = {𝑜𝑜1, 𝑜𝑜2, … , 𝑜𝑜𝑂𝑂} with the number of degrees of freedom being 𝑂𝑂, the flexibility matrix will 
have 𝑂𝑂  rows and 𝑆𝑆  columns. The displacements of the observation nodes are given by multiplying the 
observation flexibility matrix 𝐑𝐑os with the soil displacements at the SSI degrees of freedom 𝐔𝐔ss. These are 
extracted from the whole system displacement vector 𝐔𝐔SFOR: 

𝐔𝐔o(𝜔𝜔) = 𝐑𝐑os(𝜔𝜔) [𝐑𝐑ss(𝜔𝜔)]−1 𝐔𝐔s(𝜔𝜔) = 𝐑𝐑os(𝜔𝜔) 𝐊𝐊ss(𝜔𝜔) 𝐔𝐔ss(𝜔𝜔). (12) 

Since the matrix inversion involved in Eq. (12) has been already performed, the result can be reused. Thus, to 
obtain the displacements of the observation nodes no further large matrix inversion is needed, making the 
calculations more computationally efficient. Observation nodes are especially useful when the displacements 
of large fields are of interest, for example, to observe the displacement of the ground surface in a large region. 
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3.2 Rigid structures interacting with the soil 
The semi-analytical soil model allows modelling of completely rigid objects interacting with the soil. This is 
useful when modelling structures that are much stiffer than the surrounding material, as for example building 
foundations. To create a three-dimensional rigid object, the object shape is discretized into a number of SSI 
nodes. The global flexibility matrix is created in the same way as in the previous subsection and inverted to 
obtain the dynamic stiffness matrix. However, condensation of the stiffness matrix must be performed in order 
to reduce the system such that the response can be determined in terms of the rigid body modes rather than the 
original degrees of freedom of the SSI nodes. This is achieved by assuming that SSI nodes belonging to the 
same rigid object are fixed relatively to each other and move together with the degrees of freedom of a 
reference master node that defines the motion of the rigid object.  

In principle, the master node can be placed at any position. However, it is most conveniently placed in the 
point at which coupling to an FE model should be done. That is, for example, in the centre of the topside of a 
footing. This way, the rotational degrees of freedom between the two systems can be coupled directly, without 
the need to derive additional rotational coupling terms. In the most common three-dimensional case, separate 
SSI nodes have three degrees of freedom each, i.e. three lateral displacements, while each rigid object has six 
degrees of freedom: three for lateral displacements and three additional rotational degrees of freedom of the 
reference node. For a single rigid object composed of a number of SSI nodes, the transformation matrix 𝐓𝐓0,𝑖𝑖 is 
created. Multiple rigid objects can also be a part of the same system. The global transformation matrix for a 
system with 𝑁𝑁 rigid objects can be assembled as: 

𝐓𝐓s =

⎣
⎢
⎢
⎡
𝐓𝐓0,1 𝟎𝟎 ⋯ 𝟎𝟎
𝟎𝟎 𝐓𝐓0,2 ⋯ 𝟎𝟎
⋮ ⋮ ⋱ ⋮
𝟎𝟎 𝟎𝟎 ⋯ 𝐓𝐓0,𝑁𝑁⎦

⎥
⎥
⎤
. (13) 

Formulation for transformation matrix 𝐓𝐓0,𝑖𝑖 can be found in previous works by various authors, e.g. [38]. The 
system can also contain non-associated ‘free’ SSI nodes, which are not part of any rigid object. In that case, 
the local transformation matrix for such nodes will be the identity matrix with the same number of rows and 
columns as the number of degrees of freedom associated with the free nodes. The condensed stiffness matrix 
of the soil is given by left and right matrix multiplication of [𝐑𝐑ss(𝜔𝜔)]−1 with [𝐓𝐓s]T (where [ ]T is transpose 
matrix notation) and 𝐓𝐓s respectively. The resulting stiffness matrix can then be coupled to FE structures in the 
same way as described previously. Due to condensation of some SSI nodes, Eq. (12) is also modified by 
introducing the transformation matrix:  

𝐔𝐔o(𝜔𝜔) = 𝐑𝐑os(𝜔𝜔)[𝐑𝐑ss(𝜔𝜔)]−1 𝐓𝐓s 𝐔𝐔s(𝜔𝜔) = 𝐑𝐑os(𝜔𝜔) 𝐊𝐊ss(𝜔𝜔) 𝐓𝐓s 𝐔𝐔s(𝜔𝜔). (14) 

Here the vector  𝐔𝐔s  stores the already obtained displacements at the SSI degrees of freedom. The matrix 
inversion involved in Eq. (14) has been already performed  and to improve the efficiency of the calculation, 
intermediate results should be saved and reused here. The formulation outlined here can be also used, if no 
rigid objects are present in the system. In that case each SSI node is treated as a ‘free’ node, creating a 
transformation matrix which is just a square identity matrix, with a number of rows and columns equal to the 
number of degrees of freedom in the system. 

3.3 Vehicle, railway track and wheel–rail interaction 
The system is excited by one or more vehicles travelling across a railway track. The vehicles can be modelled 
using various multibody systems, with varying complexity, depending in the application case. However, in the 
described model vehicles are only modelled in two dimensions and only the vertical wheel-rail interaction 
forces are considered. The dynamic stiffness matrix of the vehicle 𝐊𝐊vv,𝑖𝑖(𝜔𝜔m) is created in a moving FOR by 
combining the vehicle stiffness, damping and mass matrices. If multiple vehicles are needed, it is assumed that 
there is no direct interaction between vehicles and the dynamic stiffness matrix becomes: 
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𝐊𝐊v(𝜔𝜔m) =

⎣
⎢
⎢
⎡𝐊𝐊vv,1(𝜔𝜔m) 𝟎𝟎 ⋯ 𝟎𝟎

𝟎𝟎 𝐊𝐊vv,2(𝜔𝜔m) ⋯ 𝟎𝟎
⋮ ⋮ ⋱ ⋮
𝟎𝟎 𝟎𝟎 ⋯ 𝐊𝐊vv,𝐼𝐼(𝜔𝜔m)⎦

⎥
⎥
⎤
, (15) 

Here it is assumed that there is a total number 𝐼𝐼 of vehicles in the system. Further, there is no coupling between 
separate vehicles through the vehicle stiffness matrix, i.e. each car of a train acts like a separate vehicle. 

A layered track structure containing the rails, rail-pads, sleepers and ballast is used. It is coupled to the 
underlying soil in the frequency-wavenumber domain as described in [39]. By using the stiffness matrix for 
the rails 𝐊𝐊r(𝜔𝜔m) and the diagonal stiffness matrix 𝐊𝐊H  for the wheel-rail contact interaction the coupled 
vehicle–track system response from a unit amplitude unevenness is given as: 

�
𝐊𝐊v
uu(𝜔𝜔m) 𝐊𝐊v

uw(𝜔𝜔m) 𝟎𝟎
𝐊𝐊v
wu(𝜔𝜔m) 𝐊𝐊v

ww(𝜔𝜔m) + 𝐊𝐊H −𝐊𝐊H
𝟎𝟎 −𝐊𝐊H 𝐊𝐊r(𝜔𝜔m) + 𝐊𝐊H

� �
𝐔𝐔vu(𝜔𝜔m)
𝐔𝐔vw(𝜔𝜔m)
𝐔𝐔r(𝜔𝜔m)

� = �
𝟎𝟎

   𝐾𝐾H 𝐝𝐝(𝜔𝜔m)
−𝐾𝐾H 𝐝𝐝(𝜔𝜔m)

�. (16) 

where 𝐝𝐝(𝜔𝜔m) = exp �𝜔𝜔m
𝑣𝑣

 𝐱𝐱w� is the vector containing the unit unevenness for all wheel positions 𝐱𝐱w in the 
moving FOR. In Eq. (16), the vehicle degrees of freedom are split into two parts: those relating to the wheels, 
denoted with the superscript ‘w’, and those that are not coupled to the track, denoted with superscript ‘u’. It is 
assumed that each vehicle wheel has the same linearized Hertzian spring stiffness 𝐾𝐾H when calculating the 
acting forces. Solving Eq. (16) for the unknown displacement vector 𝐔𝐔 produces the system behaviour. Note 
that in this case, the effects of external structures coupled to the railway track through the soil are not accounted 
for. 

The stiffness matrix for the rails in Eq. (16) can be found by inverting the flexibility matrix  𝐑𝐑rr(𝜔𝜔m) relating 
the rail displacements between all vehicle wheel sets positions is constructed. This is achieved in a similar 
manner as described in the previous section, assuming a single degree of freedom of a rail in a moving FOR 
for every wheel. The matrix is later used to establish the stiffness matrix of a coupled-domain stiffness matrix. 

4. Assembly and solution of global system 
This section describes the assembly of the global system, coupling both moving and fixed FORs. The described 
assembly procedure can be used independent of the soil modelling method, as long as the receptance matrices 
used in the formulations found in Sections 3 and 4 can be obtained. However, it is advantageous to use the 
previously described semi-analytical formulation, as it produces the receptance matrices without the need of 
inverting large matrices. In the case of using a stiffness based approach, such as the FE or BE methods, a large 
matrix inversion is required to obtain the receptance matrices. In such cases, the analytically derived coupling 
terms could still be used to couple two FORs together. 

4.1 Partly coupled global system 
Parts of the model described in the previous sections are combined into a single global system. The resulting 
system combines parts formulated in a moving FOR, such as the vehicle and the track, and parts formulated in 
the fixed FOR, such as the structures interacting with the soil. To couple the two frames of reference together, 
the theory described in Sections 2.2 and 2.3 is used. For that purpose, the receptance matrix 𝐑𝐑�sr, providing the 
interaction between the degrees of freedom of the rails and the degrees of freedom of the soil, is established. 
The matrix 𝐑𝐑�sr  couples the moving and fixed frames of reference, and it is therefore dependent on two 
frequencies: 𝜔𝜔m and 𝜔𝜔s. Accordingly, the tilde indicates that the quantity is defined in the mixed FOR. 

The receptance defining the response of degree of freedom 𝑖𝑖 in the fixed FOR to a load applied to degree of 
freedom 𝑗𝑗 in the moving FOR can be found as: 
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𝑅𝑅�f 𝑖𝑖,𝑗𝑗(𝜔𝜔m,𝜔𝜔f) =
1
𝑣𝑣

ei𝛽𝛽(𝑥𝑥f 𝑛𝑛𝑖𝑖 −𝑥𝑥m 𝑛𝑛𝑗𝑗) 1
2𝜋𝜋

�  𝐺̅𝐺𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗(𝛽𝛽, 𝑘𝑘𝑦𝑦, 𝑧𝑧𝑛𝑛𝑖𝑖 , 𝑧𝑧𝑛𝑛𝑗𝑗 ,𝜔𝜔m − 𝛽𝛽𝑣𝑣) 𝑃𝑃�𝑛𝑛𝑗𝑗,𝑠𝑠𝑗𝑗e
i(𝑦𝑦𝑛𝑛𝑖𝑖−𝑦𝑦𝑛𝑛𝑗𝑗)𝑘𝑘𝑦𝑦  d𝑘𝑘𝑦𝑦

∞

−∞
, (17) 

where 𝑑𝑑𝑖𝑖 and 𝑑𝑑𝑗𝑗 are the directions associated with degrees of freedom 𝑖𝑖 and 𝑗𝑗, while 𝑛𝑛𝑖𝑖 and 𝑛𝑛𝑗𝑗 are the node 
numbers of the nodes to which degrees of freedom 𝑖𝑖 and 𝑗𝑗 belong. In this case, all loaded degrees of freedom 
belong to the rails and are applied as unit loads on an Euler-Bernoulli beam. Therefore, the load 𝑃𝑃�𝑛𝑛𝑗𝑗,𝑠𝑠𝑗𝑗 is equal 
to one. The receptance matrix 𝐑𝐑�sr(𝜔𝜔m,𝜔𝜔f) can now be assembled and is a 𝑆𝑆 × 𝑅𝑅 matrix with 𝑅𝑅 the number of 
coupled rail degrees of freedom.Further, the receptance used for the backwards coupling from a load at degree 
of freedom 𝑖𝑖 in fixed FOR to a displacement in degree of freedom 𝑗𝑗 in a moving FOR is obtained. To avoid 
excessive additional computations, the similarity between the solutions for the two FOR combinations and the 
symmetry of the solution in the y-direction is used. Further, it is assumed that there is reciprocity of receptance 
between the rails and the soil. Thus, the coupling terms between loads applied in a stationary FOR and observed 
in a moving FOR can be found as: 

𝑅𝑅�m 𝑖𝑖,𝑗𝑗(𝜔𝜔f,𝜔𝜔m) =
1
𝑣𝑣

ei𝛽𝛽(𝑥𝑥m 𝑛𝑛𝑗𝑗−𝑥𝑥f 𝑛𝑛𝑖𝑖 )
1

2𝜋𝜋
�  𝐺̅𝐺𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗(𝛽𝛽, 𝑘𝑘𝑦𝑦, 𝑧𝑧𝑛𝑛𝑖𝑖 , 𝑧𝑧𝑛𝑛𝑗𝑗 ,𝜔𝜔m − 𝛽𝛽𝑣𝑣) 𝑃𝑃�𝑛𝑛𝑗𝑗,𝑠𝑠𝑗𝑗e

i(𝑦𝑦𝑛𝑛𝑖𝑖−𝑦𝑦𝑛𝑛𝑗𝑗)𝑘𝑘𝑦𝑦  d𝑘𝑘𝑦𝑦
∞

−∞
. (18) 

By keeping the same integrand as in Eq. (17) and only modifying the x-coordinates, additional computations 
are avoided. The modification due to the x-coordinate is unavoidable as the solution is not symmetrical in the 
x-direction. The 𝑆𝑆 × 𝑅𝑅 receptance matrix 𝐑𝐑�rs(𝜔𝜔f,𝜔𝜔m) for backwards coupling can be assembled and then 
transposed, accounting for the switched source and receiver positions. However, as the effects of the backwards 
coupling in most cases are negligible, the transpose of the forwards coupling matrix, 𝐑𝐑�sr(𝜔𝜔m,𝜔𝜔f)T can be also 
reused here with little loss of accuracy 

Further, the flexibility matrix, assembled in the fixed FOR and connecting all the degrees of freedom 
interacting with the soil, is added to the system. Using the created matrices, the full flexibility matrix for the 
so-called ‘global’ (indicated by subscript ‘g’) system can be constructed: 

𝐑𝐑�g(𝜔𝜔m,𝜔𝜔f) = � 𝐑𝐑rr(𝜔𝜔m) 𝐑𝐑�rs(𝜔𝜔f,𝜔𝜔m)
𝐑𝐑�sr(𝜔𝜔m,𝜔𝜔f) 𝐑𝐑ss(𝜔𝜔f)

�. (19) 

When no rigid bodies are present in the soil model, the global flexibility matrix may be inverted to obtain the 
stiffness matrix 𝐊𝐊�g(𝜔𝜔m,𝜔𝜔f) of the global system. 

If the system contains rigid objects, which are formulated as described in Section 3.2, the global stiffness 
matrix can be constructed using the global transformation matrix: 

𝐓𝐓g = � 𝐈𝐈 𝟎𝟎
𝟎𝟎 𝐓𝐓s

�, (20) 

where 𝐈𝐈 is the identity matrix with dimensions equal to the number of rail degrees of freedom. It is assumed 
that there are no rigid bodies modelled in the moving FOR. In theory, it is possible to model rigid bodies in 
both the moving and the fixed frames of reference, given that the reference nodes for these bodies are not 
shared between the two frames of reference. In that case, the identity matrix would be replaced with local 
transformation matrices 𝐓𝐓0,𝑖𝑖. However, for any practical applications, rigid bodies will only exist in the fixed 
FOR, where they may be used to model foundations or structures embedded in the ground. The global 
transformation matrix 𝐊𝐊�g(𝜔𝜔m,𝜔𝜔f) is produced by left and right matrix multiplication of �𝐑𝐑�g(𝜔𝜔m,𝜔𝜔s)�−1 with 

�𝐓𝐓g�
T

 and 𝐓𝐓g respectively. 

After the stiffness matrix of the system has been obtained, the vehicle and the FE structures can be also added 
to the global system. The governing equation for partial coupling in the mixed FOR becomes: 
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𝐊𝐊�(𝜔𝜔m,𝜔𝜔f)𝐔𝐔�(𝜔𝜔m,𝜔𝜔f) =  𝐅𝐅�(𝜔𝜔m,𝜔𝜔f), (21a) 
where 

𝐊𝐊�(𝜔𝜔m,𝜔𝜔f) =

⎣
⎢
⎢
⎢
⎢
⎡𝐊𝐊v

uu(𝜔𝜔m) 𝐊𝐊v
uw(𝜔𝜔m) 𝟎𝟎 𝟎𝟎 𝟎𝟎

𝐊𝐊v
wu(𝜔𝜔m) 𝐊𝐊v

ww(𝜔𝜔m) + 𝐊𝐊H −𝐊𝐊H 𝟎𝟎 𝟎𝟎
𝟎𝟎 −𝐊𝐊H 𝐊𝐊�grr(𝜔𝜔m,𝜔𝜔f) + 𝐊𝐊H 𝐊𝐊�grs(𝜔𝜔f,𝜔𝜔m) 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝐊𝐊�gsr(𝜔𝜔m,𝜔𝜔f) 𝐊𝐊�gss(𝜔𝜔m,𝜔𝜔f) + 𝐊𝐊�FEss (𝜔𝜔f) 𝐊𝐊FE

sn (𝜔𝜔f)
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝐊𝐊FE

ns (𝜔𝜔f) 𝐊𝐊FE
nn(𝜔𝜔f)⎦

⎥
⎥
⎥
⎥
⎤

, (21b) 

𝐔𝐔�(𝜔𝜔m,𝜔𝜔f) =

⎩
⎪
⎨

⎪
⎧ 𝐔𝐔
�vu(𝜔𝜔m,𝜔𝜔f)
𝐔𝐔�vw(𝜔𝜔m,𝜔𝜔f)
𝐔𝐔�gr(𝜔𝜔m,𝜔𝜔f)
𝐔𝐔�gs(𝜔𝜔m,𝜔𝜔f)
𝐔𝐔�FEn (𝜔𝜔m,𝜔𝜔f)⎭

⎪
⎬

⎪
⎫

, 𝐅𝐅�(𝜔𝜔m,𝜔𝜔f) =

⎩
⎪
⎨

⎪
⎧

𝟎𝟎
   𝐾𝐾H𝐝𝐝(𝜔𝜔m)
−𝐾𝐾H𝐝𝐝(𝜔𝜔m)

𝟎𝟎
𝟎𝟎 ⎭

⎪
⎬

⎪
⎫

. (21c) 

The superscripts relate to the degrees of freedom of: ‘w’—wheels, ‘r’—rails, ‘s’—soil in the fixed FOR, ‘n’—
parts of FE structures not coupled to the soil and ‘u’—vehicles uncoupled from the track (e.g. the vehicle 
body). Vectors 𝐔𝐔�v, 𝐔𝐔�g and 𝐔𝐔�FE store the displacements for the vehicle, global railway track–soil system and 
the FE structure, respectively. When the excitation frequency 𝜔𝜔m is equal to zero, the unevenness of the track 
does not excite the system. In that case, the loads corresponding to the deadweight of the vehicle are placed 
directly on the rails. 

Using the obtained formulation in Eq. (21) the system is solved for all combinations of moving 𝜔𝜔m and fixed 
𝜔𝜔f FOR frequency pairs. The solution for each frequency pair is assumed to be independent of other pairs, and 
can be solved separately. Thus, the computational requirements for the system are greatly reduced. As the 
frequency pairs are not solved simultaneously some coupling effects through the frequencies are lost, making 
the system only partly coupled. The coupling between the two frames of reference introduced via Eqs. (17)-
(21) only couples the two investigated frequencies and does not include further spreading through the 
frequencies. For the investigated case, this means that the effects from the waves propagating through the soil 
and being reradiated by rigid bodies or FE structures will only affect the vehicle at the frequency of excitation 
and will not spread to a wider range of frequencies. In order to account for the coupling due to the Doppler 
effect observed in the moving FOR, related to reradiated waves from footings, etc., in the fixed FOR, and vice 
versa, the problem must be solved simultaneously for a number of combinations of the frequencies 𝜔𝜔f and 𝜔𝜔m. 
This results in a system of equations that can be solved directly (see the next section) or by iteration. 

It can be seen that the whole system can be solved as a single-step solution without the need of computing the 
wheel–rail interaction forces before applying them to the system. This way, the weak coupling between the 
vehicle and external structures coupled via the soil are also included in the system. For most practical 
applications, these effects are very small. However, the increase in computational effort needed to compute 
the full system is also relatively low, as the added vehicle degrees of freedom do not increase the total size of 
the matrix by much.  

After the system has been solved, the displacement for the observation degrees of freedom in the fixed FOR 
can be obtained. For that purpose, a receptance matrix 𝐑𝐑�or(𝜔𝜔m,𝜔𝜔f) between the rails and the observation 
nodes is established. The procedure follows Eq. (17) and the receptance matrix between the observation nodes 
and global nodes is constructed as: 

𝐑𝐑�og(𝜔𝜔m,𝜔𝜔f) = [𝐑𝐑�or(𝜔𝜔m,𝜔𝜔f) 𝐑𝐑os(𝜔𝜔f)]. (22) 
The displacements can then be obtained as 
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𝐔𝐔�o(𝜔𝜔m,𝜔𝜔f) = 𝐑𝐑�og(𝜔𝜔m,𝜔𝜔f) �𝐑𝐑�gg(𝜔𝜔m,𝜔𝜔f)�
−1 𝐓𝐓g 𝐔𝐔�g(𝜔𝜔m,𝜔𝜔f). (23) 

When the displacements for both the global and the observation degrees of freedom have been obtained, the 
effects from 𝐽𝐽m discrete excitation frequencies 𝜔𝜔m can be added together to obtain the total response in the 
fixed FOR: 

𝐔𝐔FE(𝜔𝜔f) =
1

2𝜋𝜋
�𝐔𝐔�FE�𝜔𝜔m,𝑗𝑗 ,𝜔𝜔f�
𝐽𝐽m

𝑗𝑗=1

𝐷𝐷(𝑘𝑘m,𝑗𝑗) ∆𝑘𝑘m, (24) 

where 𝐷𝐷(𝑘𝑘m,𝑗𝑗)  is the rail unevenness obtained from a power spectral density (PSD) according to the 
wavenumber 𝑘𝑘m,𝑗𝑗, and ∆𝑘𝑘m is the wavenumber step size. The wavenumber can be found as 

𝑘𝑘m,𝑗𝑗 =
𝜔𝜔m,𝑗𝑗

𝑣𝑣
. (25) 

The displacement vectors 𝐔𝐔�gs  for the global-system soil displacements and 𝐔𝐔�o  for the observation node 
displacements, both relating to the fixed FOR, can be constructed using the same approach. Meanwhile, the 
displacement vectors 𝐔𝐔�gr  for the global-system rail displacements and 𝐔𝐔�v for the vehicle displacements both 
relate to the moving FOR. Hence, they should be constructed by combining the effects of the entire considered 
range of frequencies 𝜔𝜔f in the fixed FOR. 

Further, the time-domain response for the degrees of freedom associated with the fixed FOR can be obtained 
by performing an inverse discrete Fourier transformation of the displacements 𝐔𝐔FE(𝜔𝜔s): 

𝐮𝐮FE(𝑡𝑡) =
1

2𝜋𝜋
�𝐔𝐔FE�𝜔𝜔f,𝑗𝑗�ei 𝜔𝜔f,𝑗𝑗 𝑡𝑡  ∆𝜔𝜔f

𝐽𝐽f

𝑗𝑗=1

, (26) 

where 𝐽𝐽f  is the number of discrete frequencies in the fixed FOR. Note that 𝐽𝐽f  and 𝐽𝐽m  need not be equal. 
However, the step sizes ∆𝜔𝜔f and ∆𝑘𝑘m must be small enough, and the number of frequencies 𝐽𝐽f and 𝐽𝐽m large 
enough, to ensure proper discretization of peaks in the loads and resonances of the system while, at the same 
time, avoiding violation of the periodicity inherent in the frequency-domain solution. Thus, analysis of trains 
passing very slowly over a track with both short and long irregularities is computationally demanding.  

The methodology presented here can be easily expanded for a wider variety of cases. Using the established 
coupling between two frames of reference, it is also possible to add FE structures in the moving FOR in order 
to model a more complex geometry of the track or vehicle. Further, the receptance matrices can be created 
with other methods, for example FE or BE methods, with the global system being assembled and solved in the 
same manner. Finally, it is noted that the methodology is well-suited for calculation on any computer system, 
ranging from laptops to large clusters, given that parallelization is possible at many levels. 

4.2 Fully coupled global system 
Using the matrices already created for the previously described solution procedure, it is also possible to 
assemble a fully coupled global system. Such a system accounts for the frequency spreading of the reflected 
waves due to the Doppler effect and might be useful for certain cases where the full coupling between the 
vehicle (the source) and the structures (the receivers) cannot be discarded. Problems where these effects are 
important could include modelling of tunnels underneath buildings, railway stations and various structures 
nearby the tracks. Several such cases have been investigated by Coulier et al. [40], finding that while the axial 
loads are not effected significantly, the vibration insertion gain for source–receiver transmission can be 
affected up to 10 dB, when using a fully coupled solution procedure. Another set of problems could include 
the sudden change of stiffness underneath the track, e.g. when a concreate passage is constructed underneath 
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the railway track. Similar problem is investigated in Section 6.2 modelling a rigid block buried below the track 
using a fully coupled approach. 

Considering a discretized system with 𝐽𝐽f frequencies in the fixed FOR and 𝐽𝐽m frequencies in the moving FOR, 
the global receptance matrix for the fully coupled system is assembled as: 

𝐑𝐑�g =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝐑𝐑rr(𝜔𝜔m,1) 𝟎𝟎 ⋯ 𝟎𝟎 𝐑𝐑�rs(𝜔𝜔f,1,𝜔𝜔m,1) 𝐑𝐑�rs(𝜔𝜔f,2,𝜔𝜔m,1) ⋯ 𝐑𝐑�rs(𝜔𝜔f,𝐽𝐽f ,𝜔𝜔m,1)

𝟎𝟎 𝐑𝐑rr(𝜔𝜔m,2) ⋯ 𝟎𝟎 𝐑𝐑�rs(𝜔𝜔f,1,𝜔𝜔m,2) 𝐑𝐑�rs(𝜔𝜔f,2,𝜔𝜔m,2) ⋯ 𝐑𝐑�rs(𝜔𝜔f,𝐽𝐽f ,𝜔𝜔m,2)
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝟎𝟎 𝟎𝟎 ⋯ 𝐑𝐑rr(𝜔𝜔m,𝐽𝐽m) 𝐑𝐑�rs(𝜔𝜔f,1,𝜔𝜔m,𝐽𝐽m)𝐑𝐑�rs(𝜔𝜔f,2,𝜔𝜔m,𝐽𝐽m)⋯𝐑𝐑�rs(𝜔𝜔f,𝐽𝐽f ,𝜔𝜔m,𝐽𝐽m)

𝐑𝐑�sr(𝜔𝜔m,1,𝜔𝜔f,1) 𝐑𝐑�sr(𝜔𝜔m,2,𝜔𝜔f,1)⋯𝐑𝐑�sr(𝜔𝜔m,𝐽𝐽m ,𝜔𝜔f,1) 𝐑𝐑ss(𝜔𝜔f,1) 𝟎𝟎 ⋯ 𝟎𝟎
𝐑𝐑�sr(𝜔𝜔m,1,𝜔𝜔f,2) 𝐑𝐑�sr(𝜔𝜔m,2,𝜔𝜔f,2)⋯𝐑𝐑�sr(𝜔𝜔m,𝐽𝐽m ,𝜔𝜔f,2) 𝟎𝟎 𝐑𝐑ss(𝜔𝜔f,2) ⋯ 𝟎𝟎

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝐑𝐑�sr(𝜔𝜔m,1,𝜔𝜔f,𝐽𝐽f)𝐑𝐑�sr(𝜔𝜔m,2,𝜔𝜔f,𝐽𝐽f)⋯𝐑𝐑�sr(𝜔𝜔m,𝐽𝐽m ,𝜔𝜔f,𝐽𝐽f) 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝐑𝐑ss(𝜔𝜔f,𝐽𝐽f) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (27) 

The overhat notation on 𝐑𝐑�g indicates the two-way coupling, and again subscript ‘g’ stands for ‘global’. The 
matrices that depend on single frequencies are assembled into a block diagonal matrices, while the coupling 
terms that depend on pairs of frequencies are fully populated submatrices. It can be seen that the previously 
uncoupled frequencies in a single FOR are now coupled through the other FOR. To consider rigid objects, the 
transformation matrix for the considered system is also needed. However, the transformation matrices are 
frequency independent and can be assembled simply by combining the previously obtained matrices into a 
block diagonal matrix, expanding Eq. (20) into 

𝐓𝐓�g = diag {𝐈𝐈1 𝐈𝐈2 ⋯ 𝐈𝐈𝐽𝐽m 𝐓𝐓s,1 𝐓𝐓s,2 ⋯ 𝐓𝐓s,𝐽𝐽f,}, (28) 
where in total there are 𝐽𝐽m identity matrices, 𝐈𝐈, and 𝐽𝐽f local transformation matrices, 𝐓𝐓s. To obtain the stiffness 
matrix, the system is solved in the same manner as in the partly coupled system: 

𝐊𝐊�g = �𝐓𝐓�g�
T�𝐑𝐑�g�

−1𝐓𝐓�g. (29) 

In most cases, the matrix 𝐊𝐊�g will be fully populated. To add the vehicle and external FE structures to the 
system, the fully coupled stiffness matrix 𝐊𝐊�g is split into submatrices: 𝐊𝐊�g

rr,𝑗𝑗m𝑗𝑗m(𝜔𝜔m,𝑗𝑗m) corresponding to the 

rail degrees of freedom in a moving FOR at the discrete frequency 𝜔𝜔m,𝑗𝑗m , 𝐊𝐊�g
ss,𝑗𝑗f𝑗𝑗f(𝜔𝜔f,𝑗𝑗f) corresponding to the 

soil degrees of freedom at a discrete frequency 𝜔𝜔f,𝑗𝑗f  in the fixed FOR. Further, coupling terms between the 
moving FOR rails and fixed FOR soil are 𝐊𝐊�g

rs,𝑗𝑗m𝑗𝑗f(𝜔𝜔m,𝑗𝑗m ,𝜔𝜔f,𝑗𝑗f) and 𝐊𝐊�g
sr,𝑗𝑗f𝑗𝑗m(𝜔𝜔f,𝑗𝑗f ,𝜔𝜔m,𝑗𝑗m). Differently from 

the partly coupled system, the fully coupled system has terms coupling the soil degrees of freedom at one 
fixed-FOR frequency 𝜔𝜔f,𝑗𝑗f  to the soil degrees of freedom at another fixed-FOR frequency  𝜔𝜔f,𝑖𝑖f , such as 
𝐊𝐊�g
ss,𝑗𝑗f𝑖𝑖f(𝜔𝜔f,𝑗𝑗f ,𝜔𝜔f,𝑖𝑖f) and 𝐊𝐊�g

ss,𝑖𝑖f𝑗𝑗f(𝜔𝜔f,𝑖𝑖f ,𝜔𝜔f,𝑗𝑗f). Similarly, the rail degrees of freedom are coupled between  𝜔𝜔m,𝑗𝑗f  

and  𝜔𝜔m,𝑖𝑖f in the moving FOR through 𝐊𝐊�g
rr,𝑗𝑗m𝑖𝑖m(𝜔𝜔m,𝑗𝑗m ,𝜔𝜔m,𝑖𝑖m) and 𝐊𝐊�g

rr,𝑖𝑖m𝑗𝑗m(𝜔𝜔m,𝑖𝑖m ,𝜔𝜔m,𝑗𝑗m). 

Using the submatrices defined above, the vehicle is coupled to the rails at each moving-FOR frequency 𝜔𝜔m,𝑗𝑗m: 

𝐊𝐊�mm
𝑗𝑗m𝑗𝑗m(𝜔𝜔m,𝑗𝑗m) = �

𝐊𝐊v
uu(𝜔𝜔m,𝑗𝑗m) 𝐊𝐊v

uw(𝜔𝜔m,𝑗𝑗m) 𝟎𝟎
𝐊𝐊v
wu(𝜔𝜔m,𝑗𝑗m)  𝐊𝐊v

ww(𝜔𝜔m,𝑗𝑗m) + 𝐊𝐊H −𝐊𝐊H

𝟎𝟎 −𝐊𝐊H 𝐊𝐊�g
rr,𝑗𝑗m𝑗𝑗m(𝜔𝜔m,𝑗𝑗m) + 𝐊𝐊H

�, (30) 

with subscript ‘m’ referring to all degrees of freedom in the moving FOR, i.e. the combination of the uncoupled 
vehicle ‘u’, wheel ‘w’ and rail ‘r’ degrees of freedom. The force matrix from the track unevenness is also 
created: 
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𝐅𝐅�m
𝑗𝑗m�𝜔𝜔m,𝑗𝑗m� = �𝟎𝟎 𝐷𝐷(𝑘𝑘m,𝑗𝑗)∆𝑘𝑘m𝐾𝐾H�𝐝𝐝�𝜔𝜔m,𝑗𝑗m��

T −𝐷𝐷(𝑘𝑘m,𝑗𝑗)∆𝑘𝑘m𝐾𝐾H�𝐝𝐝�𝜔𝜔m,𝑗𝑗m��
T�

T
. (31) 

Note that the track unevenness 𝐷𝐷 has to be inserted in the force matrix here, as the obtained displacements will 
only depend on a single frequency. If the moving-FOR frequency 𝜔𝜔m,𝑗𝑗m is equal to zero, the deadweight of 
the vehicle is applied directly to the rails. However, the vehicle is still added to the system, since it reacts to 
the reradiated waves propagating back into the moving-FOR system from structures defined in the fixed FOR. 

External FE structures can be coupled to the soil at fixed FOR frequency 𝜔𝜔f,𝑗𝑗f: 

𝐊𝐊�ff
𝑗𝑗f𝑗𝑗f(𝜔𝜔f,𝑗𝑗f) = �

 𝐊𝐊�g
ss,𝑗𝑗f𝑗𝑗f(𝜔𝜔f,𝑗𝑗f) + 𝐊𝐊𝐊FEss (𝜔𝜔f,𝑗𝑗f) 𝐊𝐊FE

sn (𝜔𝜔f,𝑗𝑗f)
𝐊𝐊FE
ns (𝜔𝜔f,𝑗𝑗f) 𝐊𝐊FE

nn(𝜔𝜔f,𝑗𝑗f)
�, (32) 

here the subscript ‘f’ refers to all degrees of freedom in a fixed FOR in the full system, it is a combination of 
soil ‘s’ and uncoupled FE ‘u’ degrees of freedom. In this case they are all related to the building structure. 
Further, the coupling terms coupling the system through frequencies also need to be included. Nothing is 
directly coupled to them, thus only zero terms are added to the matrix to ensure the obtained matrices are sized 
correctly. For example, to include the coupling term 𝐊𝐊�g

rs,𝑗𝑗f𝑗𝑗m in the full system: 

𝐊𝐊�mf
𝑗𝑗m𝑗𝑗f(𝜔𝜔m,𝑗𝑗m ,𝜔𝜔f,𝑗𝑗f) = �

𝟎𝟎(uw×s) 𝟎𝟎(uw×n)

𝐊𝐊�g
rs,𝑗𝑗m𝑗𝑗f(𝜔𝜔m,𝑗𝑗m ,𝜔𝜔f,𝑗𝑗f) 𝟎𝟎(r×n) �, (33) 

where the superscripts of the zero matrices indicate the sizes of the submatrices, e.g. uw × n indicates that the 
submatrix has a number of rows equal to the number of degrees of freedom in the vehicle (combined uncoupled 
and wheel degrees of freedom) and a number of columns equal to the number of degrees of freedom of not 
coupled FE structure. Similarly, the matrix coupling the soil degrees of freedom between two frequencies is 
defined as 

𝐊𝐊�ff
𝑗𝑗f𝑖𝑖f�𝜔𝜔f,𝑗𝑗f ,𝜔𝜔f,𝑖𝑖f� = �𝐊𝐊

�g
ss,𝑗𝑗f𝑖𝑖f(𝜔𝜔f,𝑗𝑗f ,𝜔𝜔f,𝑖𝑖f) 𝟎𝟎

(s×n)

𝟎𝟎(n×s) 𝟎𝟎(n×n)
�. (34) 

This is repeated to create the other coupling matrices in the full system, i.e. 𝐊𝐊�fm
𝑗𝑗f𝑗𝑗m(𝜔𝜔f,𝑗𝑗f ,𝜔𝜔m,𝑗𝑗m) , 

𝐊𝐊�ff
𝑖𝑖f𝑗𝑗f(𝜔𝜔f,𝑖𝑖f ,𝜔𝜔f,𝑗𝑗f), 𝐊𝐊�mm

𝑗𝑗m𝑖𝑖m(𝜔𝜔m,𝑗𝑗m ,𝜔𝜔m,𝑖𝑖m) and 𝐊𝐊�mm
𝑖𝑖m𝑗𝑗m(𝜔𝜔m,𝑖𝑖m ,𝜔𝜔m,𝑗𝑗m). These are created from the global system 

matrices 𝐊𝐊�g
sr,𝑗𝑗f𝑗𝑗m(𝜔𝜔f,𝑗𝑗f ,𝜔𝜔m,𝑗𝑗m) , 𝐊𝐊�g

ss,𝑖𝑖f𝑗𝑗f(𝜔𝜔f,𝑖𝑖f ,𝜔𝜔f,𝑗𝑗f) , 𝐊𝐊�g
rr,𝑗𝑗m𝑖𝑖m(𝜔𝜔m,𝑗𝑗m ,𝜔𝜔m,𝑖𝑖m)  and 𝐊𝐊�g

rr,𝑖𝑖m𝑗𝑗m(𝜔𝜔m,𝑖𝑖m ,𝜔𝜔m,𝑗𝑗m) , 
respectively. 

The full system is assembled into submatrices related to the moving and fixed FORs and the coupling terms 
between them: 

𝐊𝐊�mm =

⎣
⎢
⎢
⎢
⎡ 𝐊𝐊�mm11 (𝜔𝜔m,1) 𝐊𝐊�mm12 (𝜔𝜔m,1,𝜔𝜔m,2) ⋯ 𝐊𝐊�mm

1𝐽𝐽m(𝜔𝜔m,1,𝜔𝜔m,𝐽𝐽m)
𝐊𝐊�mm21 (𝜔𝜔m,2,𝜔𝜔m,1) 𝐊𝐊�mm22 (𝜔𝜔m,2) ⋯ 𝐊𝐊�mm

2𝐽𝐽m(𝜔𝜔m,2,𝜔𝜔m,𝐽𝐽m)
⋮ ⋮ ⋱ ⋮

𝐊𝐊�mm
𝐽𝐽m1(𝜔𝜔m,1,𝜔𝜔m,𝐽𝐽m) 𝐊𝐊�mm

𝐽𝐽m2(𝜔𝜔m,2,𝜔𝜔m,𝐽𝐽m) ⋯ 𝐊𝐊�mm
𝐽𝐽m𝐽𝐽m(𝜔𝜔m,𝐽𝐽m) ⎦

⎥
⎥
⎥
⎤

, (35a) 

𝐊𝐊�ff =

⎣
⎢
⎢
⎢
⎡ 𝐊𝐊� ff11(𝜔𝜔f,1) 𝐊𝐊�ff12(𝜔𝜔f,1,𝜔𝜔f,2) ⋯ 𝐊𝐊�ff

1𝐽𝐽f(𝜔𝜔f,1,𝜔𝜔f,𝐽𝐽f)

𝐊𝐊�ff21(𝜔𝜔f,2,𝜔𝜔f,1) 𝐊𝐊�ff22(𝜔𝜔f,2) ⋯ 𝐊𝐊�ff
2𝐽𝐽f(𝜔𝜔f,2,𝜔𝜔f,𝐽𝐽f)

⋮ ⋮ ⋱ ⋮
𝐊𝐊� ff
𝐽𝐽f1(𝜔𝜔f,𝐽𝐽f ,𝜔𝜔f,1) 𝐊𝐊�ff

𝐽𝐽f2(𝜔𝜔f,𝐽𝐽f ,𝜔𝜔f,2) ⋯ 𝐊𝐊�ff
𝐽𝐽f𝐽𝐽f(𝜔𝜔f,𝐽𝐽f) ⎦

⎥
⎥
⎥
⎤

, (35b) 



15 
 

𝐊𝐊�mf =

⎣
⎢
⎢
⎢
⎡ 𝐊𝐊�mf

11 (𝜔𝜔m,1,𝜔𝜔f,1) 𝐊𝐊�mf12 (𝜔𝜔m,1,𝜔𝜔f,2) ⋯ 𝐊𝐊�mf
1𝐽𝐽f(𝜔𝜔m,1,𝜔𝜔f,𝐽𝐽f)

𝐊𝐊�mf21 (𝜔𝜔m,2,𝜔𝜔f,1) 𝐊𝐊�mf22 (𝜔𝜔m,2,𝜔𝜔f,2) ⋯ 𝐊𝐊�mf
𝐽𝐽m𝐽𝐽f(𝜔𝜔m,𝐽𝐽m ,𝜔𝜔f,𝐽𝐽f)

⋮ ⋮ ⋱ ⋮
𝐊𝐊�mf
𝐽𝐽m1(𝜔𝜔m,𝐽𝐽m ,𝜔𝜔f,1) 𝐊𝐊�mf

𝐽𝐽m1(𝜔𝜔m,𝐽𝐽m ,𝜔𝜔f,2) ⋯ 𝐊𝐊�mf
𝐽𝐽m𝐽𝐽f(𝜔𝜔m,𝐽𝐽m ,𝜔𝜔f,𝐽𝐽f)⎦

⎥
⎥
⎥
⎤

, (35c) 

𝐊𝐊�fm =

⎣
⎢
⎢
⎢
⎡𝐊𝐊� fm

11 (𝜔𝜔f,1,𝜔𝜔m,1) 𝐊𝐊�fm12 (𝜔𝜔f,1,𝜔𝜔m,2) ⋯ 𝐊𝐊�fm
1𝐽𝐽m(𝜔𝜔f,1,𝜔𝜔m,𝐽𝐽m)

𝐊𝐊�fm21 (𝜔𝜔f,2,𝜔𝜔m,1) 𝐊𝐊�fm22 (𝜔𝜔f,2,𝜔𝜔m,2) ⋯ 𝐊𝐊�fm
2𝐽𝐽m(𝜔𝜔f,2,𝜔𝜔m,𝐽𝐽m)

⋮ ⋮ ⋱ ⋮
𝐊𝐊�fm
𝐽𝐽f1(𝜔𝜔f,𝐽𝐽f ,𝜔𝜔m,1) 𝐊𝐊�fm

𝐽𝐽f2(𝜔𝜔f,𝐽𝐽f ,𝜔𝜔m,2) ⋯ 𝐊𝐊�fm
𝐽𝐽f𝐽𝐽m(𝜔𝜔f,𝐽𝐽f ,𝜔𝜔m,𝐽𝐽m)⎦

⎥
⎥
⎥
⎤

. (35d) 

Next, the full system displacement and load vectors are created: 

𝐔𝐔�m = ��𝐔𝐔�m1 �𝜔𝜔m,1��
T �𝐔𝐔�m2 �𝜔𝜔m,2��

T ⋯ �𝐔𝐔�m
𝐽𝐽m�𝜔𝜔m,𝐽𝐽m��

T�
T

, (36a) 

𝐔𝐔�f = ��𝐔𝐔�f1(𝜔𝜔f,1)�T �𝐔𝐔�f2(𝜔𝜔f,2)�T ⋯ �𝐔𝐔�f
𝐽𝐽f(𝜔𝜔f,𝐽𝐽f)�

T�
T

, (36b) 

𝐅𝐅�m = ��𝐅𝐅�m1 �𝜔𝜔m,1��
T �𝐅𝐅�m2 �𝜔𝜔m,2��

T ⋯ �𝐅𝐅�m
𝐽𝐽m�𝜔𝜔m,𝐽𝐽m��

T�
T

, (36c) 

where it is assumed that only load in a moving FOR is considered. The full system can be solved to obtain the 
displacements as: 

𝐊𝐊�  𝐔𝐔� = 𝐅𝐅�, 𝐊⃖𝐊�⃗ = �𝐊𝐊
�mm 𝐊𝐊�mf
𝐊𝐊�fm 𝐊𝐊�ff

� , 𝐔𝐔� = �𝐔𝐔
�m
𝐔𝐔�f
� , 𝐅𝐅� = �𝐅𝐅

�m
𝐅𝐅�f
�. (37) 

In this case, the vector 𝐅𝐅�f is all zeros as there are no loads acting in the fixed FOR. However, the system can 
be solved by applying loads in either FOR or both FORs at the same time. After the displacements have been 
obtained, the time-domain solution for both FORs can be obtained using Eq. (26). To obtain the displacements 
of observation nodes, a receptance matrix equivalent to the two lower quarters of the matrix in Eq. (27) should 
be constructed, relating the observation nodes to the rails and to the soil. However, for any considerable number 
of observation degrees of freedom, the matrix size becomes very large, which can be considered a 
computational drawback of the methodology. 

It is evident that the computation of the fully coupled system is an extremely computationally demanding 
process, which involves double inversion of very large matrices. Thus, it should only be used when the 
secondary coupling effects are an important factor. The fully coupled system computation greatly depends on 
the random-access memory (RAM) available in the computer system used, as the matrices are generally fully 
populated. However, if the considered system is not too large and the matrices can be stored in computer RAM, 
the computation times for the system are almost equal to those the partly coupled system. The efficiency of 
the solution procedure could be expanded by limiting the range through which the frequencies can interact 
between the two FORs.   

5. Validation 
The methodology described in this paper is validated by comparison with other computational approaches. 
Firstly, considering a system with no structures or rigid objects interacting with the soil, the described system 
assembly and solution procedures provide identical results to the approach provided by Sheng et al. [10–12]. 
This is expected, as this work utilizes the same vehicle–track–soil interaction model, and, with no other 
structures interacting with the soil, the coupling terms cancel out. Further, modelling of rigid objects interacting 
with the soil was validated by comparison with BE and FEM–PML models. It was determined that the semi-
analytical model provides a very good match, especially with the FEM–PML model, where even the secondary 
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coupling terms show very good agreement. Sections 5.1 and 5.2 provide a more in-depth descriptions of 
validating the coupling terms used in the system assembly and the solution procedure including a structure 
interacting with the soil. 

5.1 Coupling between moving and fixed frames of reference 
In order to validate the coupling terms between the two frames of reference, especially the symmetry between 
a load applied in the moving FOR and the displacements observed in a fixed FOR and vice versa, some test 
cases were set up. The previously described mixed-FOR model was simplified by removing the railway track 
together with the vehicle and the FE/rigid structures interacting with the soil. This way, the effects of a single 
load with a single excitation frequency acting directly on the soil surface can be observed. The ground was 
modelled as a homogenous elastic half-space of dense sandy-type soil, with a Young’s modulus of 250 MPa, 
a Poisson’s ratio of 0.25, a mass density of 2000 kg/m3 and a loss factor of 0.05. A stationary point in the fixed 
FOR was placed 3 m from the line along which the load was moving.  

Firstly, a moving vertical load with constant speed 𝑣𝑣  and frequency 𝑓𝑓m  was modelled. The vertical 
displacements were observed within a fixed FOR for a range of frequencies 𝑓𝑓f. The system was modelled using 
the simplified mixed-FOR model. For the analysed case, only the coupling terms between the moving and the 
fixed frames of reference, as described in Section 2.2, have an effect for the obtained results. For comparison, 
a full model was established, modelled only in the moving FOR, using the semi-analytical approach.  

Using the created model, the displacement field of the soil surface in the moving FOR and within the time 
domain was obtained for a single excitation frequency. Then, a time signal for displacements of an observation 
point moving through the displacement field with speed −𝑣𝑣 was found, considering that for every time step 
the position of the observation point changed. Fourier transforming the obtained time signal into frequencies 𝑓𝑓s, 
the displacement spectra for a stationary observation point was obtained. Two combinations of speed and 
frequency in the moving FOR were investigated: Combination 1 with 𝑣𝑣 = 20  m/s and 𝑓𝑓m = 20  Hz, and 
Combination 2 with 𝑣𝑣 = 40 m/s and 𝑓𝑓m = 10 Hz. The comparison of both approaches is shown in Figure 1 
where it can be seen that the two approaches agree, confirming the analytical derivation presented in 
Section 2.2. 

Secondly, a similar test case was created to analyse the coupling between a load in a fixed FOR and the 
resulting displacements in a moving FOR. Here, the mixed FOR model was compared to a full solution 
formulated only in a fixed FOR. In the same way as for the previous case, using the full model, the 
displacement field of the soil surface was found in time domain. Then the vertical displacements for a moving 
observation point were obtained by changing the position of the point for every time step. Fourier transforming 
the time-domain response for frequencies 𝑓𝑓m, the displacement spectra for a moving observation point were 

(a) (b)
Figure 1. Displacements in a fixed FOR from a unit load applied in a moving FOR: (a) 𝑣𝑣 = 20 m/s and 𝑓𝑓m =

20 Hz; (b) 𝑣𝑣 = 40 m/s and 𝑓𝑓m = 10 Hz. 
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obtained. Two combinations of speed and stationary frequency were again investigated: Combination 1 with 
𝑣𝑣 = 20 m/s and 𝑓𝑓s = 20 Hz; Combination 2 with 𝑣𝑣 = 40 m/s and 𝑓𝑓s = 10 Hz. Results of both approaches are 
given in Figure 2. Once again, the results agree well, this time confirming the derivation given in Section 2.3. 

Comparing the two investigated cases, it is evident that the response spreads out through the observer 
frequencies due to the Doppler effect, independently of which FOR the load was applied in. The range of 
affected frequencies are dependent on the speed of the moving FOR. However, a load applied in the fixed FOR 
produces two symmetric peaks around the excitation frequency, when observed in a moving FOR, while a load 
applied in a moving FOR produces two peaks in the fixed FOR. Further, comparing the results of 
Combination 1 for both cases, it can be observed that the result in Figure 1 at 𝑓𝑓s = 20 Hz and the result in 
Figure 2 at 𝑓𝑓m = 20 Hz show exactly the same response. This confirms the symmetry between the two frames 
of reference implied by Eq. (7). The same result is obtained by comparing the responses of Combination 2 for 
both cases. 

5.2 Validation of the modelling approach 
To validate the modelling approach presented in this paper, it was compared to a sub-modelling technique, as 
described by [31]. A similar modelling approach was also used in [23]. In both cases the sub-modelling 

(a) (b)
Figure 2. Displacements in a moving FOR from a unit load applied in a fixed FOR.: (a) 𝑣𝑣 = 20 m/s and 𝑓𝑓s =

20 Hz; (b) 𝑣𝑣 = 40 m/s and 𝑓𝑓s = 10 Hz. 
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Figure 3. Investigated case for validating the modelling approach. The vehicle is travelling from left to right, 
with magenta nodes indicating the wheel positions. The red nodes indicate the observation points, while the 

shades of colour indicate the vertical displacements (bright yellow is up, dark blue is down). Track 
unevenness is not scaled. 
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approach was used to model an underground railway tunnel with a vehicle travelling through it, in turn exciting 
a building structure above the soil. However, the solution procedure can also be applied to surface railways 
and the system analysed in this work. The method uses the free-field displacements of the soil caused by a 
passing vehicle, which are later modified by introducing the building structure. Ensuring equilibrium and 
compatibility between the degrees of freedom connecting the building and the soil, a solution for the building 
displacements can be found. Comparing the methodology proposed in this work with the sub-modelling 
technique, it becomes evident that the basic parts used for both solution procedures are identical. For example, 
the free-field displacements from a moving load used in the two-step approach are identical to the flexibility 
matrix 𝐆𝐆rs used here. However, the assembly and solution of the full system is somewhat different, with the 
proposed methodology allowing a wider range of applications, such as modelling rigid inclusions or allowing 
a two-way coupling between the two frames of reference. Further, the sub-modelling technique, as applied in 
this work, is a two-step solution approach, as the wheel–rail interaction forces are obtained in the moving FOR 
before being used to obtain the displacements in the fixed FOR. 

As, both approaches use the same basic parts, it is relatively easy to compare them. For comparison, a building 
structure, as described below in Section 6.1, was used. However, the sub-modelling technique cannot directly 
model rigid objects, thus the rigid surface footings underneath each column were replaced by a single flexible 
slab footing underneath the whole building. The foundation slab was modelled using shell finite elements with 
the same properties as the building floors. The soil is modelled as a half-space of sand, with the same properties 
as in Section 5.1. Both systems were excited by a single passing vehicle, travelling at 40 m/s, exposed to a unit 
rail unevenness, with a 4 m wavelength corresponding to an excitation frequency of 10 Hz. For analysis, only 
a single excitation frequency is used, as the effects from multiple excitations frequencies are just added together 
due to the principal of superposition. Thus, a single excitation frequency is enough to evaluate how well both 
models perform. The test case is illustrated in Figure 3. 

Figure 4 shows the displacements of the building structure obtained at the centre of the ground floor and the 
second floor. It can be observed that both approaches provide almost identical results, showing that the 
proposed method is performing well. At the same time, almost identical results indicate that the back-coupling 
of the building structure to the railway track is insignificant. It can be concluded, that at least for the considered 
case, there is no significant difference whether on or the other approach is considered. 

6. Example cases 
6.1 Partly coupled system 
To demonstrate the capabilities of the proposed partly-coupled-modelling approach, an example case was set 
up. A simple building structure that is excited by a vehicle travelling on a nearby railway track is modelled. 
The vehicle, railway track, soil and the building were all modelled in one coupled system. The soil was 

(a) (b)
Figure 4. Comparison between two system solution procedures. Displacements are shown: (a) at the centre 

of the ground floor; (b) at the centre of the second floor of the building structure. 
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modelled as a 5 m layer of soft clay sitting over a stiffer half-space of sand. The clay had a Young’s modulus 
of 80 MPa, a Poisson’s ratio of 0.48, a mass density of 2100 kg/m3, and a loss factor of 0.05. The underlying 
sand had the same properties as in Section 5. A soil stratification with two layers was chosen, as the waves 
reflecting from the interface between the two different materials can, in some cases, amplify the excitation of 
the building structure. 

Only a single vehicle was modelled in the system. It was modelled as a 10-degree-of-freedom multibody 
system. The system consists of a rigid vehicle body, two rigid bogies and four wheels, with parts of the vehicle 
connected through a two-tier spring dashpot system. The vehicle was travelling at 40 m/s over the track 
structure, with the building 10 m away from the track centreline. The properties of the vehicle and the track 
are given in Tables 1 and 2, respectively. The system was excited by the deadweight of the vehicle and by the 
dynamic wheel–rail interaction forces caused by the uneven vertical track profile. To model the unevenness of 
the rails, a German track spectrum was used to obtain the PSD function, as described by Cantero et al. [41], 
with the track quality coefficient equal to 0.59233 ∙ 10−6, corresponding to a medium quality track. From it, 
the corresponding unevenness values for every wavenumber were obtained. The track unevenness was 
considered in the range 0.5–80 m, including both positive and negative wavenumbers to allow a double-sided 
Fourier transformation. The total amount of discrete wavenumbers considered was 800. 

The modelled building structure can be seen in Figure 5. It is a simple structure with six columns supporting 
two floors. Underneath each column, a square rigid surface footing was modelled, with one side equal to 2 m. 
Each rigid footing was discretized into 100 SSI nodes. The building is facing the railway track with its narrow 
side, which is 8 m wide, and the building is supported by two columns at either side. The length of the building 
is 10 m in the direction orthogonal to the track. In addition to the four columns placed at the corners, a column 
is placed in the middle of each of the longer sides. Each storey is 4 m high. The whole building structure is 

Table 1. Vehicle properties. 

Mass of car body 40000 kg 
Mass of bogie 5000 kg 
Mass of wheel set  1800 kg 
Car body pitch moment of inertia 2.0 ∙ 106 kg·m2 
Primary suspension stiffness 2.4 ∙ 106 N/m 
Secondary suspension stiffness 6.0 ∙ 105 N/m 
Primary suspension damping 30000 N·s/m 
Secondary suspension damping 20000 N·s/m 
Distance between bogies’ centers  19.0 m 
Distance between bogie’s wheels sets  2.7 m 
Herztian constant 𝐺𝐺𝐻𝐻 5.14 ∙ 10−8 m/N2/3 

 

Table 2. Railway track properties. 

Rail mass per unit length 60.0 kg/m 
Rail bending stiffness 6.4 ∙ 106 N/m2 
Rail loss factor  0.01 - 
Railpad stiffness 5.0 ∙ 108 N/m 
Railpad loss factor 0.1 - 
Sleeper spacing  1.0 m 
Sleeper mass per unit length 542.0 kg/m 
Ballast vertical stiffness 4.64 ∙ 109 N/m2 
Ballast mass per unit length 1740 kg/m 
Ballast loss factor 0.04 - 
Track width 3.2 m 
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constructed from concreate with a Young’s modulus of 30 GPa, a Poisson’s ratio of 0.15, a mass density of 
2400 kg/m3, and loss factor of 0.03. The columns have square cross-sections, with one side equal to 0.3 m, 
while the floors are 0.25 m thick slabs. 3D beam elements were used to model the columns, using Euler-
Bernoulli beam theory to account for bending. The floors of the building were modelled using Mindlin-
Reissner shell elements, accounting for bending as well as shear. All FE parts of the model were discretized 
with mesh size of 0.5 m, resulting in 4841 degrees of freedom in the system. Three points on the building 
structure were created, where the displacements and velocities are observed, as shown in Figure 5. The 
excitation of the building structure is observed within the frequency range 1–60 Hz, with 400 discrete fixed-
FOR frequencies. The assembly of required matrices and solution of the full system takes around around 5 
hours using a computer with double Intel Xeon E5-2620 CPUs. 

Figure 5 shows the system response in time domain at the instance where the centre of the vehicle is at the 
position right in front of the centre of the building. The positions of the vehicle wheels are indicated by magenta 
coloured nodes placed on the uneven track surface. The black line shows the exaggerated track surface profile, 
and it also indicates location of the railway track centre. It can be observed that the displacements from the 
deadweight of the vehicle have the largest effect on the system, especially near the track structure. However, 
the building is further away from the track and is affected more by the lower-amplitude, higher-frequency 
excitation. This is especially evident when the velocities in the frequency domain of the first and second floors 
are investigated, as shown in Figure 6. Here, it can be observed that, while the low-frequency response is still 

Figure 5. Investigated example case. The shades of colour indicate the vertical displacements (bright yellow 
is up, dark blue is down). The red nodes are the observation points, while the magenta nodes indicate the 

positions of the vehicle wheel sets placed on the exaggerated vertical rail profile. 

(a) (b)
Figure 6. Velocities of the building structure in the frequency domain at the centre of the first and the second 

floors, (a) in x-direction; (b) in z-direction.  
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excited by the deadweight of the vehicle, higher-frequency excitation plays an important role—especially for 
the vertical velocities.  

Comparing the response on the first and the second floors of the building, it can be observed that in the vertical 
direction both floors are excited almost identically to each other, while the differences for the horizontal x-
direction (the vehicle travelling direction) are much larger. This is due to the relatively large axial stiffness of 
the columns, which propagates the excitation in the vertical direction well, exciting both floors almost equally. 
While, the bending stiffness of the columns is smaller and therefore the upper floor is isolated, especially at 
higher frequencies. This is seen on the left subfigure in Figure 6, where the high-frequency response is smaller 
for the second floor when compared to the first floor.  

The time domain response of the system is obtained by assigning random phase angles to the unevenness of 
the rail corresponding to each considered wavenumber. This way, a random vertical rail profile is created 
adding generality to the predicted system response. However, the random rail profile introduces uncertainty to 
the system input that propagates to the system response. The effect such statistical track unevenness data to 
the response predictions has been studied in [42] for the ground surface vibration. 

 Figure 7 shows the time-domain response of the soil surface and the two floors from two different profiles of 
the uneven track. It can be observed that the track profiles have a significant effect on the observed system 
displacements in time domain, especially for the observed high-frequency components. However, the low 
frequencies are dominated by the deadweight of the vehicle and not affected much by different rail profiles. 
Further, the building structure acts as a filter of higher frequency vibration, significantly reducing the observed 
displacements when compared to the soil surface. This is especially evident for the horizontal displacements, 
where different rail profiles have a much smaller effect on the time domain displacements. 

The displacements of the soil surface are also affected by the building structure. Figure 8 shows the velocities 
of the soil from a model with a building structure compared to a free-field solution. The building structure 

(a)  (b)  

(c)  (d)  

Figure 7. Displacements of the structure in the time domain generated from different rail unevenness 
profiles, (a) unevenness profile A and response in x-direction; (b) unevenness profile A, response in z-

direction; (c) unevenness profile B, response in x-direction; (d) unevenness profile B, response in z-direction. 
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reduces the observed velocities of the soil. However, the effects are not very large, with the largest change 
observed in the 10–35 Hz range. The frequency range corresponds well with the frequency range where the 
highest excitation of the building was obtained, as seen in Figure 6. Once again, these effects are more 
pronounced when analysing the horizontal displacements of the system. 

6.2 Fully coupled system 
A fully-coupled system solution approach might be necessary in cases where the modelled structures are close 
to the railway track, introducing a signifficant change of dynamic stiffness along the track. In that case, the 
rescattered waves can have an effect on the vehicle behaviour and the obtained wheel–rail interaction forces.   

To examine such a case, a test case was set up modelling a single vehicle traveling across a railway track, as 
shown in Figure 9. The speed of the vehicle was 40 m/s. The vehicle and the track properties were the same as 
introduced in Tables 1 and 2. The soil was modelled as a half-space of clay, with material properties given in 
Section 6.1. Underneath the track, at a depth of 1 m, a rigid block was embedded within the soil. The block 
was centred at the position, where the travelling vehicle centre line was located at time 0. The block was 
modelled as a 2D plate, placed in the horizontal plane with one side equal to 2 m. It was discretized into 36 
discretization nodes, with three degrees of freedom per node. The system was excited by the deadweight of 
the vehicle only applied at 𝑓𝑓m = 0 Hz, with no excitation from the rail unevenness. The system was assessed 
by the fully-coupled-modelling approach, described in Section 4.2. As only the quasi-static effects of the 
vehicle were modelled, the considered frequency ranges are reduced. The one-sided frequency range of the 

 

Figure 9. Vehicle passing over a buried rigid block, at an instance where the leading wheel of the vehicle is 
directly above the centre of the rigid block. The vehicle is travelling at 40 m/s from left to right. The black 
line indicates the vehicle traverse line, with the magenta nodes indicating the positions of the vehicle wheel 

sets. Only the two wheel sets of the front bogie are shown. 

  

(a) (b)  

Figure 8. Velocities of the soil surface underneath the building compared to the free-field response, (a) 
response in x-direction; (b) response in z-direction. 
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moving FOR was 0–30 Hz, and the one-sided frequency range of the fixed FOR is 0–25 Hz. In the 
computation, negative as well as positive frequencies were considered for either FOR, and each range was split 
into 200 discrete frequencies. The obtained global receptance matrix size for the system, Eq. (27), is 22404 by 
22404, which reduces to 4014 by 4014 global stiffness matrix, Eq. (35), when rigid structure condensation is 
performed. The solution time for the system is below 3 minutes, using a computer with double Intel Xeon E5-
2620 CPUs. 

Figure 10 shows the velocities obtained for the vehicle in the moving FOR as well as the rigid block in the 
fixed FOR. It can be observed that the vehicle passing over a rigid block introduces a significant excitation 
into the system, with the rigid block as well as the vehicle reacting to the passage. In this system, the observed 
excitation of the vehicle is purely due to the weak coupling effects that are disregarded in the two-step 
procedures. The waves generated by the passing vehicle are scattered by the rigid block in the fixed FOR and 
in turn excite a range of frequencies in the moving FOR. These effects would not be accounted for when the 
weak coupling between the vehicle and structures is not modelled. Thus, the partly coupled system assembly, 
as described in Section 4.1, would not produce any displacements to the parts of the vehicle, even though the 
rigid footing displacements would be practically the same Analysing the wheel velocities, as shown in 
Figure 10 top left, it can be seen that both leading wheels of separate bogies produce very similar results. 
However, the excitation due to the first wheel passage over the rigid block generates a wave that excites the 
third vehicle wheel, even before it reaches the rigid block. A similar effect is also observed after the third 
wheel passes over the rigid block, where the generated wave travels forward and excites the first vehicle wheel. 
A very similar behaviour is also observed on the bogies. Comparing these secondary excitations, it can be seen, 
that the reaction of the third wheel due to the first wheel passage is higher than the excitation of the first wheel 
due to third wheel passage. This is due to the Doppler effect of the wave travelling through the rail, as the third 
wheel is travelling towards the wave propagating form the first wheel, while the wave generated by the third 

(a) (b)

(c)  

Figure 10. Vertical velocities for parts of the vehicle (in moving FOR) and the rigid block underneath the 
track (in fixed FOR). The vertical dashed black lines indicate time instance when the first and third vehicle 
wheels are directly above the centre of the rigid block. The response is shown for: (a) the first and the third 

vehicle wheels; (b) both vehicle bogies; (c) rigid block underneath the track.  
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wheel must ‘catch up’ to the first wheel. Analysing the rigid block displacements, it can be observed that the 
largest velocities are reached just before the leading wheel of a bogie reaches the centre of block. Interestingly, 
to obtain the same displacements of the rigid block, a fully-coupled-system-solution approach is unnecessary, 
as the partly coupled solution provides results that are almost identical. For the analysed case, it can be 
concluded that the fully coupled solution approach is only necessary if the vehicle behaviour is of interest, for 
example for assessment of driver and passenger comfort, or if the track and wheel wear is to be assessed. 

7. Conclusions  
The paper introduced a new modelling approach for estimation of environmental vibration resulting from 
railway traffic. A model of a coupled vehicle–track–soil–building system was introduced with two approaches 
proposed for assembly and solution of the whole system: the partly-coupled approach and the fully-coupled 
approach. Both solution approaches use a single step procedure with one approach considering a fully-coupled 
system, while the other approach discards some secondary coupling effects for a more computationally 
efficient solution procedure. The presented modelling approach utilizes the commonly used moving-frame of 
reference formulation, however its capabilities are much larger. By utilizing both moving and stationary FORs, 
with analytically derived coupling terms, it allows to incorporate directly rigid and FE structures into the 
system. The obtained system is fully coupled, where it is possible to add additional structures and apply loads 
in either frame of reference simultaneously. Thus, complex phenomena, such as the effects of nearby structures 
to the wheel-rail interactions forces of a nearby passing vehicle, can be modelled, which is not possible with 
the commonly used moving-frame of reference approach. 

A semi-analytical model was utilized to model the soil to which rigid objects and structures modelled by the 
FE were coupled. The proposed modelling approach uses the frequency-domain solution with some parts, such 
as the railway track, formulated in the moving FOR and other parts, such as building structures, formulated in 
a fixed FOR. The coupling terms between the two frames of reference are found by utilizing an analytical 
formulation of receptance between the two frames of reference. It has been established that due to the coupling 
between the fixed and moving frames of reference, the previously uncoupled discrete frequencies become 
coupled through the other FOR as a result of the Doppler effect and wave scattering. Modelling the system in 
two FORs simultaneously makes it possible to account for such effects, which would be otherwise disregarded 
in systems formulated in a single FOR. Additionally, using a railway track and a vehicle models formulated in 
a moving FOR allows the usage of computationally efficient analytical and semi-analytical models, which also 
do not introduce any reflected waves from the modelled domain boundaries. 

The proposed methodology is a robust approach that does not suffer from numerical instabilities, due to the 
usage of frequency domain solutions. A wide range of cases can be assessed, including the modelling of rigid 
objects in or on the ground and flexible structures modelled by the FEM, interacting with the soil. Using the 
proposed partly-coupled-solution approach, the computations can be easily parallelized, thus providing a 
relatively fast and efficient computational method. Further, the suggested fully-coupled-solution procedure is 
useful in cases where the weak coupling between the vehicle and structures cannot be discarded. 

In this work, a railway track with a train was considered as an example case. However, the methodology can 
be easily expanded to other cases, e.g. modelling a road with road traffic exciting the system. Further, adding 
FE models to the formulation is possible in the moving FOR as well as the fixed FOR. Thus, a more detailed 
railway track model or vehicle could also be added to the system.  

The analytically derived coupling terms between the two frames of reference were validated by comparing 
with models formulated in a single FOR. Further, the partly coupled solution procedure of the full system was 
compared to a solution procedure in which the weak coupling is completely discarded. The two solution 
procedures have been found to provide almost identical results, validating the proposed partly coupled solution 
procedure while, at the same time, indicating insignificant back-coupling in the considered case.  
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Finally, to demonstrate the capabilities of the numerical model, a building structure with rigid surface footings 
was analysed. The vibration levels at different floors were determined, as well as the effect of the structure on 
the surrounding soil, compared to a free-field solution. To demonstrate the potential of the fully-coupled-
solution procedure, the response of a vehicle passing over a buried rigid block were investigated. It was been 
found that the fully coupled solution procedure can predict the weak coupling effects between the vehicle and 
the structure, producing a vehicle response distributed through frequencies, when the load is applied only at a 
single frequency. Thus, in the present example, the modes of the vehicle were excited parametrically by the 
waves scattered from the rigid inclusion as a result of the passing deadweight of the vehicle. 
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