Marimon Giovannetti, Laura, Charalampopoulos, O., Banks, Joseph, Boyd, Stephen and Turnock, Stephen (2020) Developing fluid structure interaction experimental methodologies For dynamic foil measurements. In Proceedings of the 5th International Conference on Innovation in High Performance Sailing Yachts and Sail-Assisted Ship Propulsion. 11 pp . (In Press)
Abstract
The ability to validate computational predictions of either passive adaptive or dynamic response of deformable foils is essential when seeking to optimise high performance yachts. This requires time-accurate and synchronised measurements of the flow field and the shape of the deformable foil. It is important to understand the accuracy with which the onset of dynamic effects such as flutter or stall can influence the structural design and planform. Examples of such design challenges are present in the design of hydrofoils, wing sails and other propulsion systems such as composite propellers. The current research aims to demonstrate the capability of an experimental methodology that can be used as a validation for numerical investigations of dynamic fluid-structure interaction problems. The presented methodology provides high-speed full-field experimental data of: the structural deformations, by means of Digital Image Correlation (DIC), the tip vortex flow field, by means of Particle Image Velocimetry (PIV) and the forces and moments acting on a flexible aerofoil. A comparison between static and dynamic lift coefficients is presented for unsteady dataset and the effect of dynamic loads are analysed both at structural deformation and flow features level. Overall it is found that it is possible to capture synchronised structural deformation and flow field data at reasonable data rates that allow validation assessment of unsteady CFD.
More information
Identifiers
Catalogue record
Export record
Contributors
University divisions
- Faculties (pre 2018 reorg) > Faculty of Engineering and the Environment (pre 2018 reorg) > Southampton Marine & Maritime Institute (pre 2018 reorg)
- Current Faculties > Faculty of Engineering and Physical Sciences > School of Engineering > Civil, Maritime and Environmental Engineering
Civil, Maritime and Environmental Engineering - Current Faculties > Faculty of Engineering and Physical Sciences > School of Engineering > Civil, Maritime and Environmental Engineering > Fluid Structure Interactions Group
Civil, Maritime and Environmental Engineering > Fluid Structure Interactions Group
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.