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Abstract

When choosing an alternative that has multiple attributes, it is common to
form a weighted sum ranking. In this paper, we provide an axiomatic analysis
of the weighted sum criterion using a general choice framework. We show that a
preference order has a weak weighted sum representation if it satisfies three basic
axioms: Monotonicity, Translation Invariance, and Substitutability. Further, these
three axioms yield a strong weighted sum representation when the preference order
satisfies a mild condition, which we call Partial Representability. A novel form
of non-representable preference order shows that partial representability cannot
be dispensed in establishing our strong representation result. We consider several
related conditions each of which imply a partial representation, and therefore a strong
weighted sum representation when combined with the three axioms. Unlike many
available characterizations of weighted sums, our results directly construct a unique
vector of weights from the preference order, which makes them useful for economic
applications.
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1 Introduction

In many economic applications, choices are made by ranking alternatives based on their
sum of weighted attributes. These weights typically reflect relative importance and
determine how much a unit of each attribute contributes to the weighted sum ranking.
For instance, public policies may be compared by summing expert scores after weighing
each expert’s score by seniority; or political candidates can be ranked by summing items
in their agendas after scaling each item by its urgency; or social plans may be ranked by
summing individual payoffs after dividing each payoff by individual’s wealth. In addition
to its simplicity, what are the underlying common themes that justify weighted sum as
a prevalent decision-making criterion? Relatedly, and perhaps more importantly, how
can we elicit the weights, so as to make the weighted sum criterion more applicable in
economic problems?

In this paper, using a general choice framework, we aim to shed some light on these
questions by investigating the axiomatic foundations of the weighted sum. We take
the primitive of our analysis as the preference order (i.e., a complete transitive binary
relation) of a decision maker (DM, henceforth) over a set of alternatives X, where each
alternative x ∈ X represents a vector in the finite dimensional Euclidean space Rn. Our
objective is to identify testable implications of the weighted sum on the DM’s preferences,
as well as to elicit the weights associated with these preferences. In accomplishing these
objectives, our approach is minimalistic; that is, we invoke relatively less demanding
conditions induced by the weighted sum representation, which allow us to better clarify
the role of each underlying principle.

We identify three basic implications of the weighted sum on the DM’s preferences, namely
Monotonicity, Translation Invariance, and Substitutability. Monotonicity requires that
the DM be better off whenever every attribute of an alternative is improved. For instance,
if each expert assigns a higher score to public plan x than plan y, then the policy-maker
strictly prefers x over y. Translation Invariance means that in expressing the DM’s
preferences between two alternatives x and y, account is taken only of how much each
attribute changes.1 Thus, the preference between x and y in X is the same as that
between two other alternatives x′ and y′, if the change of each attribute is the same in
both comparisons; that is, if (xi − yi) = (x′i − y′i) for all i ∈ {1, 2, ..., n}. For example, if
the positions of two candidates shift equal amount for each item, then relative desirability

1While we call this axiom (similar to Weibull [1985] and many others) Translation Invariance, it is
also called Invariance with respect to individual origins of utilities (see, e.g., d’Aspremont and Gevers
[1977]), Zero Independence (see, e.g., Moulin [1988]), or Linearity (see, e.g., Segal and Sobel [2002]).
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of these candidates do not change. Substitutability, which is a key condition in our
analysis, intuitively suggests that no attribute should be infinitely desirable relative to
another attribute. In particular, Substitutability allows for a decrease in an attribute to
be compensated by an increase in another attribute while keeping the DM indifferent.
For instance, the social-planner remains indifferent between two actions when there is
a certain payoff loss by an individual against a payoff gain by another individual while
there is no change for other individuals.

The first main result of our analysis (Theorem 1) shows that if the DM’s preferences
satisfy the three axioms, then it must have a weak weighted sum representation. In
particular, given the preference order, a vector q of weights can be constructed by using
the axiom of Substitutability. When the preference order also satisfies the Monotonicity
and Translation Invariance axioms, we then show that whenever qx > qy, it must be
the case that x is strictly preferred to y. In fact, we show the weights q of this weak
representation must be unique. As such, except for the case when alternatives x and y
have exactly the same valuation (in terms of these unique weights q), the result provides
an easily verifiable criterion for ranking the alternatives x and y.2

Given that the three axioms derive a weak representation for the order, a natural question
is to ask if in fact they imply a strong weighted sum representation. That is, is it true
that q provides (in addition to a weak representation) a partial representation, so that
qx > qy whenever x is strictly preferred over y?3 Our second main result shows that in
general q does not possess this property. Specifically, we construct an example of a novel
preference order which satisfies the three axioms, but also allows for a strict preference
between x and y even when qx = qy. As a result, an additional axiom is needed if one
wants to ensure that the unique vector of weights q yields a strong representation.4

Our third main result (Theorem 2) shows that when the preference order satisfying
the three axioms has a partial representation (which can be in any form), the vector q

2Further, a strength of this result is that it relies only on intuitive axioms imposed on the preference
order, and not on any technical continuity axioms, which are often used in the literature in obtaining
representation results. For a discussion of partial characterizations of some other aggregation rules within
the context of social choice theory, see Fleurbaey and Maniquet [2011]. Other excellent surveys can be
found in d’Aspremont and Gevers [2002] and Mongin and d’Aspremont [1998].

3There are many related representation concepts used in the literature, such as Richter-Peleg
representation, Aumann utility, quasi-representation, or weak utility. In particular, we use the term
partial representation since we reserve “weak representation” for the converse implication. For a formal
definition of partial representability, see Section 2.

4Strong representation can be desirable in applications since when q provides a partial representation
(in addition to a weak representation), it can be used to find maximal elements of the preference order
since in that case an alternative x becomes a maximal element in a set if (and only if) it maximizes qx
over the given set.
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provides a partial representation, and therefore a strong weighted sum representation.
Partial representability is a general property, which can be implied by many different
conditions when supplied together with our three basic axioms. Regarding this, we
consider several related conditions implied by the weighted sum representation (e.g.,
continuity, scale invariance, substitution, and anonymity) and discuss how alternative
characterizations of the weighted sum representation can be established by using our
main representation results.

Our way of obtaining weighted sum representation differs from available characterizations.
While we construct the weights by linking them directly to the preference order, the
weights are not constructed in the literature; only their existence is shown by employing
some non-constructive methods. For instance, by appealing to a separating hyperplane
argument, d’Aspremont and Gevers [2002, Theorem 4.1] establish that the Monotonicity
and Translation Invariance axioms imply a weak weighted sum representation. Or
using a functional equation argument, Segal and Sobel [2002, Lemma 4] show that the
Monotonicity axiom and a weakening of the Translation Invariance axiom, together with
a Separability and a Scale Invariance axiom imply a strong weighted sum representation.5

Constructing the weights of the representation can be quite important, however, especially
when the objective is to apply the weighted sum criterion in decision-making. In this
regard, the Substitutability axiom allows us to directly elicit the weights from the
preference order. Moreover, we show that these weights must be unique. As a result, our
characterization results can be utilized with choice data when conducting policy relevant
applications, as well as comparative statics exercises of the weighted sum representation.

There are also other important preferences within the general class considered by
d’Aspremont and Gevers [2002].6 For instance, Hausner and Wendel [1952, Theorem 2.5]
show that if a preference order satisfies, in addition to the Monotonicity and Translation
Invariance axioms, the Scale Invariance axiom, then it has a “lexicographically ordered”
weighted sum representation. Candeal [2013, Theorem 2] generalizes this result by drop-
ping the Monotonicity axiom. Finally, d’Aspremont and Gevers [1977, Theorem 3] derive
a weighted sum representation with equal weights by imposing an Anonymity axiom

5Segal and Sobel [2002, Lemma 4]’s characterization of a strong weighted sum representation is
logically equivalent to our Theorem 2. However, the axioms they use and the proof methods they apply
substantially differ from ours. In particular, while we first construct a weak weighted sum representation
from the three basic axioms, and then derive a strong representation by imposing partial representability,
Segal and Sobel [2002] first obtain a strong representation in an additively separable form, and then
argue that this strong representation has to be a weighted sum.

6For an earlier account of related results on weak weighted sum representation, see Blackwell and
Girshick [1954, Theorem 4.3.1], Roberts [1980, Theorem 2], Gevers [1979, Theorem 2] or d’Aspremont
[1985, Theorem 3.3.3].
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together with the Monotonicity, Translation Invariance, and Scale Invariance axioms. In
addition to their practical relevance, our results help to clarify the relation of various
weighted sum representations in this prior literature.

The rest of the paper is organized as follows. In Section 2, we introduce the framework
and the three main axioms we use in our representation results. In Section 3, we show
how to obtain the weights associated with a preference order, and provide our weighted
sum representation results (weak and strong) using these weights. In this section, we also
present our example of a preference order which satisfies the set of three basic axioms but
fails to have a representation (and therefore in particular a weighted sum representation).
Section 4 considers some related axioms and alternative characterizations of weighted
sum representation, and we discuss how these characterizations follow from our results.
Proofs of the main results (stated in Section 3) are provided in an Appendix.

2 Preliminaries

Framework. Let X denote the set of alternatives, which is an open convex subset of
Rn (including the 0 vector) for some given n ≥ 2 , equipped with the usual topology.7

Let I denote the set {1, 2, ..., n} and J denote the set {2, ..., n}. For any x ∈ X and
i, j ∈ I with i ≤ j, let x[i,j] ∈ Rj−i+1 denote the vector z ∈ Rj−i+1 such that zk = xi+k−1

for all k = 1, ..., j − i + 1. For any x ∈ X and i ∈ I, let x−i ∈ Rn−1 denote the vector
z ∈ Rn−1 such that zk = xk for all k < i and zk = xk+1 for all k ≥ i. For each i ∈ I, let
ei be the i-th unit vector (0, ..., 1, ..., 0) in Rn.

Let ∆ denote the n− 1 simplex {q ∈ Rn : qi ≥ 0 for all i ∈ I and
∑n
i=1 qi = 1}, and ∆̊

denote its interior. For any x, y ∈ X write x � y if there exists some permutation σ of I
such that xi = yσ(i) for all i ∈ I. We denote by N the set of natural numbers, by Q the
rationals in R (including 0, by convention), and by Q++ the subset of positive rationals.
Finally, let I denote the set of irrational numbers in R.

Representation. For any given binary relation % over X, let � denote the asymmetric
part, and ∼ denote the symmetric part. If there exist some x, y ∈ X such that x � y or

7These alternatives could represent, for instance, environmental actions, which can have different
degrees of endorsements from n-many experts; or they could represent political candidates, who may
have certain positions on each of the n-many political issues; or they could denote vectors consisting of
n-many people’s payoffs associated with different social plans.
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y � x, we say % is non-trivial. For any x, y ∈ X, when x � y or y � x holds, we also
write x � y and when neither x % y nor y % x holds, we may write x ./ y.

Let % be a non-trivial binary relation over X. We say that % has a weak representation
if there exists a non-constant real valued function v : X → R such that for all x, y ∈ X,
v(x) > v(y) implies x � y. We say that v is a partial representation for % if for all
x, y ∈ X, x � y implies v(x) > v(y). The function v is called a strong representation of
% if for all x, y ∈ X, x � y if and only if v(x) > v(y); that is, v is a strong representation
if it is both a weak and a partial representation.8

A (resp., weak; partial; strong) representation v of % is called a (resp., weak; partial;
strong) weighted sum representation if there exists some q ∈ ∆ such that v(x) = qx for
all x ∈ X. We call such a q ∈ ∆ a vector of weights and say that q provides a (resp.,
weak; partial; strong) weighted sum representation for %.

Given any alternative x ∈ X and vector of weights q ∈ ∆, let Lq(x) denote the
set of points in X whose weighted sum with respect to q is equal to qx; that is,
Lq(x) = {y ∈ X : qy = qx}. Finally, given any x ∈ X and binary relation % over
X, let I%(x) denote the indifference curve passing through the alternative x ∈ X; that
is, I%(x) = {y ∈ X : y ∼ x}.

Examples. In order to clarify the nature of different representation concepts defined
above, consider the following examples of binary relations, where each one of them lacks
either a weak or a partial representation, and therefore a strong representation.9

Example 1. For all x, y ∈ X, let x % y if x ≥L y, where ≥L denotes the lexicographic
order on Rn. We claim that % has a weak representation, but it has no partial rep-
resentation. To see this, note that whenever x1 > y1, by definition x � y. Hence,
v(x) = x1 for all x ∈ X is a weak (weighted sum) representation for %. Now assume, for
contradiction, that there is some partial representation u : X → R for %; that is, x � y
implies u(x) > u(y) for all x, y ∈ X. Notice that u(x) must be independent of any xj for
j 6= 1 since whenever x1 > y1, then u(x) > u(y) regardless of x−1 and y−1. In that case,
however, we must have u(x) = u(y) whenever x1 = y1, but also u(x) 6= u(y) whenever
x 6= y, a contradiction. �

8Whenever % is a complete binary relation, function v becomes a strong representation for % if for
all x, y ∈ X, x % y if and only if v(x) ≥ v(y).

9For an example of a binary relation that has a weak and a partial representation, but has no strong
representation, see footnote 18.
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Example 2. For all x, y ∈ X, let x % y if x ≥D y, where ≥D denotes the vector
dominance on Rn. We claim that % has a partial representation, but it has no weak
representation. To see this, note that whenever x � y,

∑
i∈I xi >

∑
i∈I yi. Hence,

v(x) =
∑
i∈I xi for all x ∈ X is a partial (weighted sum) representation for %. Now

assume, for contradiction, that there is some weak representation u : X → R for %; that
is, there exists a non-constant function u such that u(x) > u(y) implies x � y for all
x, y ∈ X. Notice that whenever x � y, then u(x) ≥ u(y) and whenever x ∼ y or x ./ y,
then u(x) = u(y). Let x, y ∈ X such that x � y. By definition, there must exist some
i ∈ I such that xi > yi and xj ≥ yj for all j 6= i. Let z ∈ X such that yi > zi and
zj > xj for all j 6= i. Then we have x ./ z and y ./ z, and so u(x) = u(z) and u(y) = u(z)
implying that u must be a constant function, a contradiction. �

Example 3. For all x, y ∈ X, let x % y if x[1,k] ≥L y[1,k] and x[k+1,n] ≥D y[k+1,n]

where 1 < k < n, while ≥L denotes the lexicographic order on Rk and ≥D denotes the
vector dominance on Rn−k. Then, % has neither a partial representation nor a weak
representation since the impossibility arguments given in Examples 1 and 2 both apply
in this case. �

Basic axioms. The primitive of our analysis is a binary relation % over X, which
we assume to be a preference order (i.e., a complete and transitive binary relation)
indicating the DM’s preferences. It is straightforward to verify that a strong weighted
sum representation with positive weights induces the following three axioms on the DM’s
preferences.

Axiom 1. [Monotonicity] For all x, y ∈ X, if xi > yi for all i ∈ I, then x � y.

Axiom 2. [Translation Invariance] For all x, y, z ∈ X with x+ z, y + z ∈ X, if x % y,
then x+ z % y + z.

Axiom 3. [Substitutability] For all i, j ∈ I and x ∈ X, there exists y ∈ X such that
xi > yi, xj < yj , xk = yk for all k ∈ I \ {i, j}, and x ∼ y.

When the DM forms preferences for binary comparisons of alternatives, Monotonicity
expresses that more of each attribute leads to a better alternative, while Translation Invari-
ance means that not absolute, but relative values of attributes matter and Substitutability
says that it is possible to exchange each attribute with any other attribute.

Notice that the binary relations defined in Examples 1-3, all of which have no strong
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representation, satisfy Axioms 1 and 2, but not Axiom 3.10 In the next section, we will
analyze the implications of imposing Axiom 3 in addition to Axioms 1 and 2 in terms of
representability of the DM’s preferences by a weighted sum.

3 Analysis

This section contains our main results on weighted sums; a weak representation result, a
counter example on representability and a strong representation result.

3.1 Weights of the attributes

Using the axiom of Substitutability (Axiom 3), we can associate the DM’s preference
order % directly with a vector of weights q ∈ ∆̊.

To see this, note that by Substitutability, we can find for each j ∈ J, some αj , βj ∈ R++,

such that
0 ∼ αje1 − βjej (3.1)

Define γ1 = 1, and for each j ∈ J, define γj ≡ (αj/βj). Then, denoting (γ1 + · · ·+ γn) by
σ, we see that q ∈ ∆̊, where:

q = (γi/σ), ∀i ∈ I (3.2)

We will show that these weights will be precisely the weights placed on the attributes
of the alternatives in the representation, when the preference order has a weighted sum
representation.

3.2 Weak representation by a weighted sum

We now show that the vector q defined in Eq.(3.2) provides an easily verifiable criterion
for ranking alternatives in X. Specifically, Theorem 1 establishes that whenever the
DM’s preference order satisfies Axioms 1-3, then any two alternatives can be directly
ranked by using q as long as these two alternatives do not provide exactly the same
valuation in terms of q.

10If a complete transitive binary relation satisfies Monotonicity, then it must have a weak representation
(see Mitra and Ozbek [2013, Proposition 1]). As such, to illustrate some examples of a monotone relation
with no weak representation, in Examples 2 and 3 above, we consider transitive, but incomplete binary
relations.
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Theorem 1. Let % be a preference order satisfying Axioms 1-3. Then, for all x, y ∈ X,
qx > qy implies x � y. Moreover, q is the unique vector in ∆̊ providing such a weak
representation for %.

Our way of obtaining a weak weighted sum representation differs from available charac-
terizations since we directly link the weights to the preference order.11 In the available
characterizations, rather than constructing the weights, only their existence is shown by
invoking a non-constructive method.12 By contrast, we construct the weights uniquely
allowing for policy motivated applications, as well as related comparative statics analysis
using choice data.

To see that q is the only vector in ∆̊ providing a weak representation, suppose on
the contrary there is some p ∈ ∆̊ with p 6= q, which also provides a weak weighted
sum representation for the preference order; that is, assume that for all x, y ∈ X, we
have px > py implies x � y. In that case, clearly we can find some i, j ∈ I such
that qi > pi and qj < pj . Note then that r ≡ qipj − qjpi > 0, and define x ∈ X as
xi = (pj+qj)

r , xj = − (pi+qi)
r , xk = 0 for all k ∈ I \ {i, j} and y = 0. Then, qx = 1 while

px = −1, while qy = py = 0. Thus, qx > qy and so x � y and further px < py so that
y � x, a contradiction. �

3.3 A preference order with no partial representation

Theorem 1 shows that whenever the DM’s preference order % satisfies the three axioms
(Axioms 1-3), the unique vector q obtained in Eq.(3.2) yields a weak weighted sum
representation. However, does this necessarily imply that q should also yield a partial
representation, and therefore a strong representation when the three basic axioms hold?
That is, is it also true that qx > qy whenever x is strictly preferred over y? Our second
main result provides a negative answer to this question by showing that a preference order
that satisfies the three axioms, but has no partial representation can be constructed.

11One might think that the proof of Theorem 1 could easily follow from a standard separation argument,
where each point is separated from its strict upper (or lower) contour set with a hyperplane. As we
demonstrate with an example in the next section, however, this is not the case in our setting. The reason
is that, since we impose weaker axioms, the strict contour sets of the preference order % may not be open
or convex. As a result, to establish the form of separation given in Theorem 1, one needs to consider a
different proof method. We do this by first constructing the weights in q by Axiom 3 and then showing
that the sets {z ∈ X : qz > 0} and {z ∈ X : 0 % z} must be disjoint by Axioms 1 and 2. As such, since
our proof method requires relatively minimal, it can be applied in many more general settings.

12These methods typically concern the existence of separating hyperplanes, functional equation
solutions, or supremum/infimum points. See, for instance, d’Aspremont and Gevers [2002, Theorem 4.1],
Segal and Sobel [2002, Lemma 4], or Hausner and Wendel [1952, Theorem 2.5] utilizing such methods.
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To gain some intuition on why the three basic axioms are not enough to guarantee a
partial representation for the preference order, consider the sets Lq(x) and I%(x) for
some given x ∈ X, where q is the unique vector defined in Eq.(3.2). Notice that whenever
the preference order has a strong weighted sum representation, then the set Lq(x) must
coincide with the indifference curve I%(x). Theorem 1 shows that whenever the order
satisfies Axioms 1-3, then I%(x) ⊂ Lq(x).13 However, Axioms 1-3 do not necessarily
guarantee that Lq(x) ⊂ I%(x) also holds. That is, there can be many y ∈ Lq(x) such
that y is not indifferent to x, and so y /∈ I%(x). In other words, indifference curves
of a preference order satisfying Axioms 1-3 can have arbitrarily many gaps in them.
Our example below shows that it is indeed for this very reason that a preference order
satisfying all three basic axioms may not have a partial representation at all.

Definition of the preference order. Let % be a binary relation on X = Rn which
satisfies for all x, y ∈ Rn,

x % y if
(

n∑
i=1

(xi − yi) , ϕ(x1 − y1)
)
≥L (0, 0) (3.3)

where ≥L is the lexicographic order defined on R2 and ϕ(.) is an indicator function on R
defined as: ϕ(r) = 1 if r ∈ A, ϕ(r) = 0 if r ∈ Q, and ϕ(r) = −1 if r ∈ B, where A and B
are subsets of the set of irrationals I with the following four properties: (i) A ∩ B = ∅
and A ∪ B = I, (ii) A = −B, (iii) a, a′ ∈ A implies a+ a′ ∈ A, and (iv) a ∈ A and r ∈ Q
implies a+ r ∈ A.14 �

Notice that the lexicographic order, which is the pre-eminent example of non-representability
of a preference order (since Debreu [1954]), satisfies the Monotonicity and Translation
Invariance axioms, but it violates the Substitutability axiom, since it does not allow for
any substitution possibilities. By contrast, the preference order we construct in Eq.(3.3)
satisfies all three of these axioms (and therefore allows for substitutions), yet it has no
partial representation, and therefore it has no strong representation. We believe this
novel finding can be useful in deriving similar impossibility results.15

13Since % is complete, Theorem 1 shows that x % y implies qx ≥ qy for all x, y ∈ X, which in turn
implies I%(x) ⊂ Lq(x) for all x ∈ X.

14For the existence of this particular decomposition of the set irrational numbers, see Theorem 3 in
Appendix A.3.

15For an account of the literature, and for the key references on the representability of preference
orderings, see, e.g., Bridges and Mehta [1995], Mehta [1998], and Banerjee and Mitra [2018].
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Verifying the axioms. Clearly, % is complete. We check transitivity of % as fol-
lows. For any x, y, z ∈ X with x % y and y % z, we have

∑
i∈I xi ≥

∑
i∈I yi and∑

i∈I yi ≥
∑
i∈I zi . Thus, we must have

∑
i∈I xi ≥

∑
i∈I zi. If

∑
i∈I xi >

∑
i∈I zi, then

by Eq.(3.3) we have x % z. If
∑
i∈I xi =

∑
i∈I zi, then both (x1 − y1) and (y1 − z1)

must belong to A ∪ Q by Eq.(3.3) and so, (x1 − z1) ∈ A ∪ Q, showing that x % z.
Hence, % is a preference order. Let x, y ∈ X such that xi > yi for all i ∈ I. Then∑
i∈I xi >

∑
i∈I yi and so we must have x � y by Eq.(3.3). Thus, % satisfies Axiom 1.

For any x, y, z ∈ X,
∑
i∈I xi ≥

∑
i∈I yi is equivalent to

∑
i∈I(xi + zi) ≥

∑
i∈I(yi + zi).

We also have ϕ(x1 − y1) = ϕ((x1 + z1)− (y1 + z1)). Therefore by Eq.(3.3), x % y if and
only if x+ z % y + z, showing that % satisfies Axiom 2. For any i, j ∈ I, with i 6= j, and
x ∈ X, let y ∈ X be such that yi = xi − ε, yj = xj + ε for some ε ∈ Q++ and yk = xk

for every k ∈ I \ {i, j}. We have
∑
r∈I xr =

∑
r∈I yr and x1 − y1 ∈ Q. Thus by Eq.(3.3),

x ∼ y establishing that % satisfies Axiom 3. �

No partial representation. Clearly, the vector q = (1/n) ∈ ∆̊ provides a weak
representation for %. We now claim that % has no partial representation. Suppose, for
contradiction, that there exists a real-valued function v : X → R which yields a partial
representation for %. Associate with each pair of numbers (c, d) ∈ R2, a non-empty
subset of X, D(c, d) = {x ∈ X :

∑
i∈I xi = c and x1 = d}. Fix two numbers d1, d2 ∈ R

with (d2 − d1) ∈ A. Given any c ∈ R, pick a unique element g(c) from D(c, d1) and a
unique element h(c) from D(c, d2), by using the Axiom of Choice. Define α(c) = v(g(c))
and β(c) = v(h(c)). It follows from Eq.(3.3) that h(c) � g(c) for every c ∈ R, and
g(c′) � h(c) whenever c, c′ ∈ R and c′ > c. Thus, we have (i) α(c) < β(c) for every
c ∈ R, and (ii) β(c) < α(c′) for all c, c′ ∈ R satisfying c < c′. Define for all c ∈ R, the
interval E(c) = [α(c), β(c)]. Then, whenever c, c′ ∈ R with c 6= c′, we must have E(c) to
be disjoint from E(c′). Thus, there is a one to one correspondence between the set of real
numbers (which is uncountable) and a set of non-degenerate pairwise disjoint intervals
(which is countable), a contradiction, establishing our claim. �

3.4 Strong representation by a weighted sum

In this section, we turn to the issue of providing a strong representation for the preference
order satisfying the three axioms.

The counter example given in Eq.(3.3) demonstrates that the set of three axioms is not
sufficient to yield a partial representation for the preference order. This naturally raises
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the following question: if a preference order has a partial representation and satisfies
Axioms 1-3, does the order necessarily have a strong weighted sum representation? The
answer to this question turns out to be affirmative as shown by the following result.

Theorem 2. Let % be a preference order on X with a partial representation. If % satisfies
Axioms 1-3, then the unique vector q provides a strong weighted sum representation for
%; that is, x % y if and only if qx ≥ qy.

In establishing Theorem 2, we first note that whenever the preference order % has some
partial representation v (which can be in any form), then Axioms 1-3 imply that the
vector of weights q defined in Eq.(3.2) provides a partial representation too; that is, for
all x, y ∈ X, x � y implies qx > qy.16 Since we know by Theorem 1 that under these
three axioms q already yields a weak representation and therefore qx > qy implies x � y,
we then derive a strong weighted sum representation with vector q.17

Theorem 2 suggests that one way of obtaining a strong weighted sum representation for
a given preference order (satisfying Axioms 1-3) is to add an axiom to ensure that a
partial representation for the preference order exists.18 In the next section, we consider
several axioms which serve this purpose.

4 Related axioms and characterizations

In this section, we consider some related axioms (which are all implied by the weighted
sum representation) and discuss how alternative characterizations of the weighted sum
can be obtained by using our main results.

16Since % is a complete binary relation, q becomes a partial representation if and only if for all
x, y ∈ X, qx = qy implies x ∼ y; that is, whenever Lq(x) ⊂ I%(x) for all x ∈ X. This means a preference
order %, which has a partial representation and satisfies Axioms 1-3, cannot have gaps in its indifference
curves.

17Note that if a given binary relation % has some weak representation v1 : X → R and partial
representation v2 : X → R, then there must exist a weakly increasing function f : R → R such that
v1(x) = f(v2(x)) for all x ∈ X. As such, Theorem 2 shows that whenever the preference order % satisfies
Axioms 1-3, then f can be taken as the identity map, which is strictly increasing.

18If a given binary relation % has a weak representation v1 and a partial representation v2 such that
v1(x) = f(v2(x)) for some strictly increasing function f : R → R, then clearly both v1 and v2 must
provide a strong representation for %. In general, however, f may not be strictly increasing. In such cases,
it is possible to have the underlying binary relation % without a strong representation. For instance,
this is the case for the preference relation % defined for all x, y ∈ X by x % y if f(

∑
xi) > f(

∑
yi) or

[f(
∑

xi) = f(
∑

yi) and x ≥D y], where f is the floor function (i.e., the rounding down function) and ≥D

denotes the vector dominance on Rn. Here v1(x) = f(
∑

xi) is a weak representation and v2(x) =
∑

xi

is a partial representation for %, but clearly this binary relation has no strong representation.
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4.1 Continuity

A weak continuity axiom for the preference order can be given as follows.

Axiom 4. [Archimedean] For all x, y ∈ X, if x � 0 and y � 0, then λx � y for some
λ ∈ R++.

Imposing the Archimedean axiom allows us to rule out non-representable preferences
satisfying Axioms 1-3 (e.g., the preference order given in Eq.(3.3)). In fact, if % satisfies
Axiom 4 (in addition to Axioms 1-3), then the vector q constructed in Eq.(3.2) must also
yield a partial representation for %; that is, qx > qy whenever x � y.19

Corollary 1. Let % be a preference order on X satisfying Axioms 1-3 and Axiom 4.
Then, for all x, y ∈ X, x % y if and only if qx ≥ qy.

To see that q provides a partial representation for %, assume on the contrary that we
could find some x, y ∈ X with x � y and qx ≤ qy. In that case, qx = qy by Theorem 1,
and so for any z ∈ X with qz > 0 we have qz > q(x− y) = 0 implying z � λ(x− y) for
all λ ∈ R++. But then since z � 0 by Theorem 1 and x− y � 0 by Axiom 2, we have a
violation of Axiom 4.20

4.2 Scale invariance

An invariance axiom with respect to scale can be given as follows.

Axiom 5. [Scale Invariance] For all x, y ∈ X and λ ∈ R++ with λx, λy ∈ X, if x % y

then λx % λy.

Hausner and Wendel [1952] show that whenever the preference order % satisfies Mono-
tonicity (Axiom 1), Translation Invariance (Axiom 2) and Scale Invariance (Axiom 5),
the preference order has a lexicographically ordered weighted sum representation.21 That

19There are also other weak continuity axioms implied by the strong weighted sum representation,
such as Scalar Continuity (see Mitra and Ozbek [2013]) or Wold Condition (see Banerjee and Mitra
[2018]), which imply partial representation for monotone preferences.

20Another strand of literature derives weighted sum representations by using stronger forms of
continuity (closed upper or lower contour sets) together with Translation Invariance, while dispensing
monotonicity altogether; see, for instance, Trockel [1992]; Candeal and Indurain [1995]; Neuefeind and
Trockel [1995].

21For the statement of Hausner and Wendel [1952]’s result in the context of expected utility theory,
see Hara, Ok, and Riella [2019]. See also Birkoff [1948, p.240] and Krause [1995, Theorem 2] who use a
vector basis argument for the characterization of lexicographically ordered weighted sum preferences.
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is, there exists a multi-valued real function V : X → Rn such that for all x, y ∈ X, x % y
if and only if V (x) ≥L V (y), where for all i ∈ I, Vi(x) = qix for some qi ∈ ∆ and ≥L is
the lexicographic binary relation defined over Rn.22

Clearly, when we add the Substitutability axiom, we must have qi = qj for all i, j ∈ I.
As such, when % satisfies Axiom 5 in addition to Axioms 1-3, q1 ≡ q ∈ ∆̊ yields a strong
weighted sum representation for % as stated in the following result.23

Corollary 2. Let % be a preference order on X satisfying Axioms 1-3 and Axiom 5.
Then, for all x, y ∈ X, x % y if and only if qx ≥ qy.

Corollary 2 shows that whenever the DM’s preference order % satisfies Axiom 5, the vector
q constructed in Eq.(3.2) provides not only a weak, but also a partial representation for
%.24 By contrast, to derive the existence of weights Hausner and Wendel [1952, Theorem
2.5] use a supremum argument, which makes their result non-constructive. We also
note that Hausner and Wendel [1952] obtain their characterization of weighted sum by
imposing the Archimedean axiom (Axiom 4) instead of Substitutability (Axiom 3).25

4.3 Substitutability

The Substitutability axiom, by which we directly obtain the vector of weights q (as
defined in Eq.(3.2)), is crucial for our study of weighted sum representations. To better

22Intuitively, the DM first uses the weights in q1 ∈ ∆ as a weak representation; if q1x = q1y for some
x, y ∈ X, the DM then uses the weights in q2 to rank x and y; if, however, it is the case that q2x = q2y,
the DM then uses the weights in q3 to rank x and y and so on.

23In a related work, Yoshihara and Veneziani [2018] consider evaluation of labor content, and charac-
terize the weighted sum of labor amounts using axioms formally similar to Monotonicity, Substitutability
(which they call Labor Trade-offs), and a consistency requirement named Mixture Invariance (which is
equivalent to a combination of Translation Invariance and Scale Invariance). Our proof method differs
from theirs since we first obtain a weak representation.

24To see this more directly, note that whenever qx = qy for x, y ∈ X, we can find some (λ2, ..., λn) ∈ RJ

such that y = x +
∑n

j=2 λj(αje
1 − βje

j), where αj , βj are defined as in Eq.(3.1). Thus, by iterative
application of Axioms 5 and 2, we obtain x ∼ y showing that q provides a partial representation for %.

25Relatedly, by appealing to the Axiom of Choice, Chipman [1960, Theorem 3.2] obtains a lexicograph-
ically ordered multi-valued real representation f : X → RΩ for a given preference order % defined over an
abstract choice space X. Moreover, Chipman [1960, Theorem 3.4] shows that f must provide a real-valued
representation for % whenever % satisfies two additional axioms, which he calls “Axiom of Density” and
“Axiom of Substitution”. While Axiom of Density is a richness condition for the choice space X with
respect to the given order %, Axiom of Substitution is essentially a continuity property for the preference
order % over X requiring X to be connected with respect to a topology induced by f ; in fact, Chipman
[1960, Theorem 3.5] shows that Axiom of Substitution is equivalent to an Archimedean property. By
contrast, our choice space X is rich enough and our Substitutability axiom is not a continuity property
since, for instance, the preference order % defined in Eq.(3.3) satisfies Substitutability, but obviously fails
to satisfy any continuity property.
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understand its role in our analysis, consider the following list of five related conditions
which are all implied by the strong weighted sum representation with positive weights.

1. (S1) For all x ∈ X, there exists y ∈ I%(x) such that x 6= y.

2. (S2) For all x ∈ X, there exists y ∈ I%(x) such that y = x − aei + bej for some
i, j ∈ I with i 6= j and a, b > 0.

3. (S3) For all x ∈ X, there exists y ∈ I%(x) for each i ∈ I such that y = x− aei + bej

for some j ∈ I with i 6= j and a, b > 0.

4. (S4) For all x ∈ X, there exists y ∈ I%(x) for each i, j ∈ I with i 6= j such that
y = x− aei + bej for some a, b > 0.

5. (S5) For all x ∈ X, there exists y ∈ I%(x) for each i, j ∈ I with i 6= j and a > 0
such that y = x− aei + bej for some b > 0.

Condition (S4) is a re-formulation of Substitutability (Axiom 3). Notice also that
conditions above are given in an increasing order of strength. In particular, (S1) is the
weakest while (S5) is the strongest condition. Since (S1) and (S2) are weaker than other
substitution conditions, they can accommodate many preference orders that the stronger
substitution conditions do not permit.

Example 4. Let 1 ≤ k ≤ n and define % over X such that for all x, y ∈ X, x % y

if x[1,k] ≥L y[1,k] , where ≥L is the lexicographic order over Rk. Then, clearly % is a
preference order which satisfies Axioms 1 and 2. Moreover, % can satisfy (S1) or (S2), but
not other substitution conditions listed above. In particular, if (S1) (resp., (S2)) holds,
then k ≤ n− 1 (resp., k ≤ n− 2) to allow for indifferences between alternatives. However,
these indifferences hold only due to the insensitivity the order % exhibits towards some
attributes, and not due to any substitutability between these attributes. �

In view of Example 4, we see that (S1) or (S2)’s plausibility as a substitution condition
is questionable. Now consider a related preference order % which can satisfy any of the
substitution conditions listed above.

Example 5. Let 1 ≤ m ≤ k ≤ n and define % over X such that for all x, y ∈ X,
x % y if (

∑m
i=1 xi/k ,

∑k
i=m+1 xi/k ) ≥L (

∑m
i=1 yi/k ,

∑k
i=m+1 yi/k ), where ≥L is the

lexicographic order over R2. Then, clearly % is a preference order which satisfies Axioms
1 and 2. Moreover, if (S3) holds, then m ≥ 2 (with k ≥ m+ 2 if already k > m). Also
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notice that when (S3) holds, it is possible to have k ≤ n − 2, and so % can exhibit
indifferences due to the insensitivity towards some attributes. As such, plausibility of
(S3) as a substitution condition is questionable. On the other hand, when the preference
order % satisfies at least (S4), insensitivity towards attributes cannot happen since in
this case it has to be k = n. Moreover, when (S4) holds, any two attributes i, j ∈ I must
be substitutable, and so m = k yielding a strong weighted sum representation. �

We see from Examples 4 and 5 that in order to guarantee substitutability between all
attributes, at least condition (S4) should be imposed. Finally, note that since (S5) is a
stronger condition than (S4), there may be preferences which satisfy condition (S4), but
which are incompatible with condition (S5). For instance, the preference order % defined
by Eq.(3.3) satisfies Axioms 1 and 2, and condition (S4), but violates condition (S5). To
see this, let x ∈ X and a ∈ I. Then ϕ(a) 6= 0 leading to x � x− ae1 + be2 for any b ∈ R.
In fact, the following result shows that condition (S5) can eliminate all non-representable
orders satisfying Axioms 1 and 2.26

Corollary 3. Let % be a preference order on X satisfying Axioms 1 and 2, and Condition
(S5). Then, for all x, y ∈ X, x % y if and only if qx ≥ qy.

Corollary 3 shows that in conjunction with Axioms 1 and 2, condition (S5) implies that
the preference order % has a strong representation given by the vector of weights q derived
in Eq.(3.2). The fact that q provides a weak representation for % directly follows from
Theorem 1 since condition (S5) allows for a wider range of substitutions than condition
(S4) (or equivalently Axiom 3) does. To see that q also yields a partial representation
for % in this case, let x, y ∈ X such that qx = qy and x 6= y. For simplicity, assume
that xi > yi and xj < yj for some i, j ∈ I, and xk = yk for all k 6= i, j. Notice that we
can write y as y = x− (xi − yi)ei + (yj − xj)ej in this case.27 By condition (S5), there
must exist some b > 0 such that x ∼ z ≡ x − (xi − yi)ei + bej . Since q is the unique
vector of weights providing a weak representation for %, we have qi

qj
= b

xi−yi
. As a result,

we obtain b = qi
qj

(xi − yi), and so qz = qx implying that y = z. As such, we must have
x ∼ y showing that q yields a partial representation, and therefore a strong weighted
sum representation for %.28

26In general, substitutability, even in the weakest form of condition (S1), is not necessary for repre-
sentability. This is the case, for instance, when the preference order has a representation and all of its
indifference sets are singletons (see, e.g., Banerjee and Mitra [2018, Example 3]).

27In general, to relate any x and y with qx = qy and x 6= y, we can apply a similar argument iteratively
considering at each step a distinct pair of attributes i, j ∈ I with xi > yi and xj < yj . Since there are
finitely many attributes, the procedure would end after finitely many iterations.

28Recall that when q provides a weak representation for the DM’s preference order %, then q yields a
partial representation for % if and only if for all x, y ∈ X, qx = qy implies x ∼ y.
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4.4 Anonymity

A form of equity axiom, which expresses equal treatment of attributes, is known as the
Anonymity axiom.

Axiom 6. [Anonymity] For all x, y ∈ Rn, if x � y, then x ∼ y.

Anonymity can be used to characterize the weighted sum representation with equal
weights; that is, qi = 1/n for all i ∈ I.29

Corollary 4. Let % be a preference order on X satisfying Axioms 1-2 and Axiom 6.
Then, for all x, y ∈ X, x % y if and only if qx ≥ qy, where qi = 1/n for all i ∈ I.

To see this, note that Axiom 6 directly implies the argument given above showing that
Corollary 3 holds. As such, by Corollary 3, the vector of weights q derived in Eq.(3.2)
provides a strong weighted sum representation for % whenever the preference order %
satisfies Axiom 6 in addition to Axioms 1 and 2. Moreover, by Axiom 6, ei ∼ ej for all
i, j ∈ I. Hence, it must be the case that qi = qj for all i, j ∈ I.30

A Appendix

A.1 Preliminaries

The following lemma, which we invoke in proving our main results, shows that Translation
Invariance implies a weaker form of Scale Invariance, in which the common multiplicative
factor b is a positive rational.

Lemma 1. Let % be a preference order on X satisfying Axiom 2. Then, for all x, y ∈ X,
x % y implies λx % λy for all λ ∈ Q++ with λx, λy ∈ X.

Proof. By Axiom 2, we can easily extend the preference order % to Rn. As such, assume
without loss of generality that X = Rn. We first show that for all x, y ∈ X,

x % y implies mx % my ∀m ∈ N (A.1)
29In an earlier work, d’Aspremont and Gevers [2002] note that adding Anonymity to Monotonicity

and Translation Invariance would make all weights of the weak weighted sum representation equal, and
therefore strictly positive. By contrast, Corollary 4 not only constructs the weights, but also shows that
these weights would provide a strong weighted sum representation, and not just weak representation.

30Notice that Substitutability (Axiom 3) is not needed for Corollary 4 since Anonymity (Axiom 6)
provides a particular form of substitution across different attributes.
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Clearly, (A.1) is true for m = 1. Assume that it is true for m = k. Then, we have
kx % ky. By Axiom 2, we have kx+ x % ky+ x. Also, using Axiom 2 and x % y we have
ky + x % ky + y. Combining these, we have (k + 1)x % (k + 1)y by transitivity of % .
This proves (A.1) by induction.

Next, we show that for all x, y ∈ X,

x % y implies rx % ry ∀r ∈ Q++ (A.2)

Given r ∈ Q++, we can find positive integers s and t such that r = (s/t). Define x′ = (x/t)
and y′ = (y/t). Note that x′, y′ ∈ X. We claim that x′ % y′. For if this does not hold,
then by (A.1) we have t > 1, and by completeness of %, we must have y′ � x′. Then
(t−1) ∈ N and by applying (A.1), we have (t−1)y′ % (t−1)x′. Also, using y′ � x′ we have
ty′ ≡ y′+(t−1)y′ � x′+(t−1)y′ and x′+(t−1)y′ % x′+(t−1)x′ ≡ tx′ by Axiom 2. Then,
by transitivity of %, we obtain y = ty′ � tx′ = x contradicting the fact that x % y. Thus,
x′ % y′ must hold. Now, applying (A.1), we have rx = (s/t)x = sx′ % sy′ = (s/t)y = ry

which establishes (A.2).

A.2 Proofs of the main results in the text

Proof of Theorem 1. Let % be a given preference order satisfying Axioms 1-3. We
show that vector q ∈ ∆̊ defined in Eq.(3.2) yields a weak weighted sum representation
for the preference order.

To this end, let z ∈ X, with qz > 0, where q is defined in Eq.(3.2). We have to show that
z � 0. Define δ ≡ qz and:

P = {j ∈ J : zj > 0} ; N = {j ∈ J : zj ≤ 0} (A.3)

Next, we define:

z′j = zj + λjβj for j ∈ N ; z′j = zj − λjβj for j ∈ P (A.4)

where βj is defined as in Eq.(3.1) for all j ∈ J, and:

λj ≡ (−zj/βj) for j ∈ N ; λj ≡ (zj/βj) for j ∈ P (A.5)

Note that λj ≥ 0 for all j ∈ N, while λj > 0 for all j ∈ P. Clearly, with the definitions in
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(A.5) we have:
z′j = 0 for all j ∈ J (A.6)

We now proceed to pick positive rationals rj which are sufficiently close to the corre-
sponding λj , for each j ∈ J. To this end, define:

ρ = min{λjβj : j ∈ P} ; µ = min{ρ, δ/2} (A.7)

Note that ρ > 0 by (A.3) and (A.5), and so µ > 0. Let ε ∈ (0, µ). Then, for each j ∈ N,
one can choose rj ∈ Q++, with rj ∈ (λj , λj + (ε/βj)), since λj ≥ 0 and (ε/βj) > 0. For
each j ∈ P, one can choose a rational rj ∈ (λj − (ε/βj), λj). Note that for each j ∈ P, we
have (by using the definitions in (A.7)) (ε/βj) < (µ/βj) ≤ (ρ/βj) ≤ (λjβj/βj) = λj so
that rj ∈ (λj − (ε/βj), λj) is necessarily positive; that is rj ∈ Q++ for each j ∈ P.

For the positive rationals rj for j ∈ J defined above, we can now proceed to define z′′j by
replacing λj by rj in the definitions of z′j in (A.4), and ensure that these z′′j ∈ (0, ε) for
each j ∈ J. To this end, define:

z′′j = zj + rjβj for j ∈ N ; z′′j = zj − rjβj for j ∈ P (A.8)

Note that (by (A.4) and (A.6)), for each j ∈ N, we have z′′j = (rj − λj)βj so that, since
rj > λj while (rj − λj) < (ε/βj) for each j ∈ N,

0 < z′′j < ε for all j ∈ N (A.9)

Similarly, note that (by (A.4) and (A.6)), for each j ∈ P, we have z′′j = (λj − rj)βj so
that, since rj < λj while (λj − rj) < (ε/βj) for each j ∈ P,

0 < z′′j < ε for all j ∈ P (A.10)

We now complete the definition of z′′ ∈ X, by defining:

z′′1 = z1 +
∑
j∈P

rjαj −
∑
j∈N

rjαj (A.11)

where αj is defined as in Eq.(3.1) for each j ∈ J.

We will now demonstrate that (i) z′′ ∼ z, and (ii) z′′ � 0. The latter, by Monotonicity
(Axiom 1) will imply that z′′ � 0, so that the former will imply z � 0, completing the
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proof. It is convenient for this demonstration to define for each i ∈ I,

z(i) = zie
i , z(i)′′ = z′′i e

i (A.12)

where ei is the i-th unit vector in Rn.

Step 1: [z′′ ∼ z] For each j ∈ N, we have (using (A.8) and (A.12)):

z(j)′′ = z′′j e
j = (zj + rjβj)ej = z(j) + rjβje

j

= z(j) + rj [βjej − αje1] + rjαje
1 (A.13)

We know from Eq.(3.1) that [αje1 − βjej ] ∼ 0, and so rj [βjej − αje1] ∼ 0 by Axiom 2
and Lemma 1. Then by Axiom 2, and (A.13) we can infer that:

z(j)′′ ∼ z(j) + rjαje
1 for each j ∈ N (A.14)

Similarly, using (A.8) and (A.12),

z(j)′′ ∼ z(j)− rjαje1 for each j ∈ P (A.15)

Since
z′′ =

∑
j∈N

z′′(j) +
∑
j∈P

z′′(j) + z′′(1)

we can write, using (A.14) and (A.15) and Axiom 2,

z′′ ∼
∑
j∈N

[z(j) + rjαje
1] +

∑
j∈P

[z(j)− rjαje1 ] + [z1 +
∑
j∈P

rjαj −
∑
j∈N

rjαj ]e1

=
∑
j∈N

[z(j)] +
∑
j∈P

[z(j)] + [z1]e1 = z (A.16)

This completes Step 1 of the demonstration.

Step 2 [ z′′ � 0] Using the definitions of z′′ in (A.8) and (A.11), we can write (noting
the definition of q in Eq.(3.2)):

qz′′ =
∑
j∈N

qj [zj + rjβj ] +
∑
j∈P

qj [zj − rjβj ] + q1[z1 +
∑
j∈P

rjαj −
∑
j∈N

rjαj ]

= qz +
∑
j∈N

rj(αj/σ)−
∑
j∈P

rj(αj/σ) + (1/σ)
∑
j∈P

rjαj − (1/σ)
∑
j∈N

rjαj

= qz
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Since qz = δ > 0, we then have qz′′ = δ. Thus, using (A.9) and (A.10), we can write:

δ = qz′′ =
∑
j∈N

qjz
′′
j +

∑
j∈P

qjz
′′
j + q1z

′′
1

< ε[
∑
j∈N

qj +
∑
j∈P

qj ] + q1z
′′
1

< ε+ q1z
′′
1 ≤ (δ/2) + q1z

′′
1 (A.17)

Clearly, (A.17) implies that q1z
′′
1 ≥ (δ/2) > 0, and so (using Eq.(3.2)), we have z′′1 > 0.

Combining this fact with (A.9) and (A.10), we have z′′ � 0, completing Step 2 of the
demonstration. By Axiom 1 and Step 2, we infer that z′′ � 0, and by Step 1 we then
infer that z � 0 as desired. �

Proof of Theorem 2. In view of Axiom 2, it is sufficient to show that:

z ∈ X : z � 0 implies qz > 0 (A.18)

Suppose, contrary to (A.18), that there is z ∈ X with z � 0, and qz ≤ 0. By Theorem 1,
we have in fact qz = 0. Let r be an arbitrary positive real number. Define z(r) = z + re

where e = (1, 1, ..., 1) ∈ Rn. Since z � 0, by Axiom 2 we also have:

z + re � 0 + re ≡ re (A.19)

Let v : X → R be a partial representation of the preference order % . Then, by (A.19),
we have:

v(z(r)) ≡ v(z + re) > v(re) (A.20)

We denote:
I(r) = [v(re), v(z(r))] (A.21)

and note that, by (A.20), I(r) is a non-degenerate interval in R. Now let ρ, ρ′ be arbitrary
positive real numbers with ρ′ > ρ. Then, since qz = 0, we have:

qρ′e = q(ρ′ − ρ)e+ qρe+ qz = q(ρ′ − ρ)e+ qz(ρ) > qz(ρ)

so that:
q(ρ′e− z(ρ)) > 0 (A.22)
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Using (A.22) and Theorem 1, we can infer that ρ′e − z(ρ) � 0, so that by Axiom 2,
ρ′e � z(ρ) and since v : X → R is a partial representation of the preference order %,

v(ρ′e) > v(z(ρ)) (A.23)

From (A.21) and (A.23), we see that the interval I(ρ′) is entirely on the right of the
interval I(ρ) on the real line. Thus, we have a one-to-one correspondence between R++

(which is uncountable) and the collection of non-overlapping intervals {I(r)}r∈R++ , which
is countable. This contradiction establishes (A.18) and hence the Theorem. �

A.3 A decomposition of the set of irrational numbers

Using the Hausdorff Maximal Principle, we show that the following result on the decom-
position of the set of irrational numbers I holds.31

Theorem 3. There exist subsets A and B of the set of irrationals I in R, satisfying the
following four properties: (i) A ∪ B = I, and A ∩ B = ∅, (ii) A = −B, (iii) if a ∈ A and
a′ ∈ A, then (a+ a′) ∈ A, and (iv) if a ∈ A and q ∈ Q, then (a+ q) ∈ A.

We add a few remarks to clarify the nature of the decomposition. By (i) and the
uncountability of irrationals, at least one of the two sets must be uncountable. By (ii),
both must be uncountable. But, properties (i) and (ii) by themselves are not of particular
interest. For example, the set of positive irrationals and the set of negative irrationals
will also provide a decomposition of I satisfying properties (i) and (ii). The properties of
interest arise from (iii) and (iv), when taken in conjunction with (i) and (ii). Because
of (ii), these properties hold of course for the set B as well; that is, we also have (iii’) if
b, b′ ∈ B, then (b+ b′) ∈ B and (iv’) if b ∈ B and q ∈ Q, then (b+ q) ∈ B.

To appreciate (iii), note that this property is clearly not satisfied by the set of positive
irrationals. For instance, π and (4− π) are positive irrationals, but their sum is not an
irrational. Further, even though π and e are positive irrationals, the present state of
knowledge about the theory of numbers does not indicate whether (π + e) is irrational or
not.32 However, the above decomposition manages to avoid these problems: if a and a′

are in the set A, then not only is their sum an irrational, but it is also in the set A. To
appreciate (iv), note that given any a ∈ A, the set {a+ q : q ∈ Q} is a countable dense

31We would like to thank Professor Shankar Sen of the Department of Mathematics at Cornell
University for his input on the decomposition result.

32See Morandi [1996, p.174] for a discussion of this observation.
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subset of the reals, R. Since A is uncountable, A must contain the uncountable union
of all such sets. This means the elements of the (disjoint) sets A and B are very finely
interlaced along the entire real line.

In proving Theorem 3 below, we will be considering semigroups (G, ∗), where G will be a
non-empty subset of the reals, and ∗ will be the binary operation of addition of reals
(denoted as usual by + ).33 Moreover, we shall refer to the set itself as the semigroup, it
being understood that + is the associative binary operation on the set.

Proof of Theorem 3. Consider the collection of sets:

F = {M ⊂ I : M is a semigroup} (A.24)

Note that F is a non-empty collection of sets. To see this, let a be any irrational and
define:

A(a) = {z ∈ R : z = ma+ q for some m ∈ Q++ and q ∈ Q}

It is straightforward to verify that A(a) ⊂ I and (A(a),+) is a semigroup.

Set inclusion ⊂ is a partial ordering on F . By the Hausdorff Maximal Principle (see
Royden [1988, p.25], there is a maximal linearly ordered sub-collection F of F .34 Define:

A =
⋃
M∈F

M (A.25)

and:
B = −A (A.26)

We will verify that the sets A and B defined by (A.25) and (A.26) satisfy the four
properties stated in Theorem 1.

Property (ii) follows directly from (A.26). We proceed with the verification of Property
(iii).

Let a, a′ ∈ A. Then by (A.25), there exist M,M ′ ∈ F such that a ∈ M and a′ ∈ M ′.
Since F is linearly ordered, we can assume without loss of generality that both a and

33A semigroup is an ordered pair (G, ∗) where G is a non-empty set and ∗ is an associative binary
operation on G; that is, a semigroup is a ordered pair (G, ∗) such that (i) given any two elements a, b ∈ G,
there is a unique element a∗ b ∈ G and (ii) given any three elements a, b, c ∈ G, then (a∗ b)∗ c = a∗ (b∗ c).
For basic concepts of semigroup theory, see Howie [1995].

34The Hausdorff Maximal Principle is equivalent to Zorn’s Lemma (see, e.g., Kaplansky [1972, p.60]).
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a′ belong to M . But then, since M is a semigroup, (a + a′) ∈ M and thus by (A.25)
(a+ a′) ∈ A which establishes Property (iii).

Property (iii) shows that A is a groupoid and therefore a semigroup. Since A is the union
of sets which are subsets of I, it is a subset of I and thus by (A.24), A belongs to F .
But then, since M ⊂ A for all M ∈ F by (A.25) and F is a maximal linearly ordered
sub-collection of F, A is in F . Further, A is a maximal element of F. That is:

S ∈ F with A ⊂ S implies that S = A (A.27)

We now verify Property (iv). Consider the set A + Q = {z ∈ R : z = a + q for some
a ∈ A and q ∈ Q}. Since addition of an irrational with a rational gives an irrational,
the set A+Q is a subset of I. Furthermore, since sets A and Q are semigroups, the set
A+Q is a semigroup. Thus A+Q belongs to F. Note that since 0 ∈ Q (by convention),
A ⊂ A+Q and therefore by (A.27), A+Q = A,establishing property (iv).

Finally, we show that Property (i) holds. The sets A and B are disjoint. Otherwise, there
would exist some z ∈ A∩B. So, z ∈ A and by property (ii), (−z) ∈ A. But then, since A
is a semigroup, z + (−z) = 0 ∈ A, a contradiction.

It remains to show that A∪B = I. Since A ⊂ I (by (A.25)), we have B = −A ⊂ I, and so
A ∪ B ⊂ I. Suppose that there exists x ∈ I \ (A ∪ B). We claim that (a) there is some
m̄ ∈ N such that m̄x ∈ B, and (b) there is some n̄ ∈ N such that n̄x ∈ A.

To establish (a), define the set H = {mx : m ∈ N}. Clearly, H ⊂ I and H is a semigroup;
thus, H is in F. Since A and H are semigroups, so is (A + H). Next, define the set
A′ = A ∪ (A+H). By property (iii), A+ (A+ H) = (A+ A) +H ⊂ (A+H) ⊂ A′, and
since A and (A+H) are semigroups, A′ is also a semigroup.

If A′⊂ I then A′ ∈ F. And, since A ⊂ A′, we must have:

A′ = A (A.28)

by (A.27). Define G = A ∪H. Since A and H belong to I, G also belongs to I. Since A
and H are semigroups and (A+H) ⊂ A′ = A ⊂ G, the equality following from (A.28), G
is a semigroup. Therefore G is in F . Since A ⊂ G, (A.27) implies that:

G = A

Since x ∈ H ⊂ G, we must therefore have x ∈ A, a contradiction. Thus, A′ cannot be a
subset of I. This means there is some q ∈ Q which belongs to A′. Thus, there is some
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a ∈ A and m̄ ∈ N, such that (a+ m̄x) = q. By property (iv), (−m̄x) = a− q ∈ A, and so
m̄x ∈ B by property (ii). This establishes claim (a).

We can establish claim (b) by applying a similar argument on B once we show that B is
also a maximal element of F. It is straightforward to verify that for any S ∈ F, we have
(−S) ∈ F. Since B = −A by property (ii) and A ∈ F, we have B ∈ F. Now consider any
S ∈ F satisfying B ⊂ S. Then we have, A ⊂ (−S) by property (ii) and thus (−S) = A by
(A.27). That is, S = −A = B by property (ii). This shows that B is a maximal element
of F. Now, applying the argument leading to claim (a), there exist q ∈ Q, b ∈ B and
n̄ ∈ N such that b+ n̄x = q. By property (iv’), n̄x = −b+ q ∈ A, by properties (ii) and
(iv). This establishes claim (b).

To complete the proof of property (i), note that since A and B are semigroups, we must
have (m̄n̄)x ∈ A ∩ B. This, however, contradicts the fact that A and B are disjoint sets.
Thus, we must have A ∪ B = I. �
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