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Abstract: The spectroscopic properties and laser operation of thulium-doped tantalum 
pentoxide (Tm:Ta2O5) waveguides are reported in this paper. Fluorescence ranging from 1600 
nm to 2200 nm, corresponding to the 3F4 → 3H6 transition was observed from 3 wt% 
Tm:Ta2O5 waveguides pumped at a wavelength of 795 nm. Measurements of excited-state 
lifetime, the emission and absorption spectra, with subsequent calculation of the cross-
sections for the deposited films, reveal its potential as a gain medium. Laser operation at a 
wavelength of 1865 nm was obtained with feedback from the polished end faces alone, 
demonstrating gain of >9 dB/cm.  
© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

 
1. Introduction 
Optical sources and amplifiers operating at wavelengths near 2 µm are important for 
applications from remote sensing and LIDAR [1], medical diagnostics and surgical systems 
[2], to free-space and optical fiber communications [3]. Thulium-doped crystals and glasses 
are of significant interest for these applications, potentially offering low noise, high 
efficiency, and high-power operation. They can be optically pumped in-band at ~1.6 µm or 
using a “two-for-one” cross-relaxation process by pumping at ∼800 nm, where high-power 
low-cost semiconductor laser diodes are readily available. Tm-doped silicate glass optical 
fiber devices exhibit high efficiency and high power (>1 kW CW [4]) and high gain 
(5.8 dB/cm [5]) leading to excellent performance as individual fiber components.  

In comparison with fiber devices, integrated photonics offers the potential for enhanced 
functionality combined with a robust construction, good thermal management, and low-cost 
mass-production of complex optical circuits. Glass and crystalline waveguide lasers operating 
at ~2 µm have been demonstrated based on various fabrication methods, for example by: ion-
implantation in Tm-doped germanate glasses [6],  Ti-diffusion into Tm-doped LiNbO3 [7], 
direct bonding of Tm:YAG and sapphire [8], pulsed-laser-deposition growth of crystalline 
Tm:Y2O3 [9], and liquid-phase epitaxy in Tm-doped potassium double tungstates [9, 10]. A 
combination of high Tm concentration and the well-confined waveguide structure leads to a 
high gain coefficient as required for compact integrated devices.  

In the last ten years, silicon photonics has grown to become the favored option for the 
wide deployment of photonic circuit technology, harnessing silicon micro/nanofabrication 
capabilities. However, as silicon is an indirect bandgap semiconductor it is an inefficient light 
emitter, leading to intensive investigation into ways to integrate laser sources and amplifiers 
on a silicon platform such as flip-chip bonding, transfer printing and heterogeneous epitaxy of 
III-V materials [11]. An alternative approach is to integrate rare-earth-doped laser sources 
directly in a CMOS compatible material on the silicon platform, allowing for monolithic 
integration and wafer scale manufacturing. Integrated rare-earth-doped lasers at wavelengths 
from 1 to 1.6 µm have been demonstrated on silicon with rare-earth doping using ytterbium 
and erbium [12, 13, 14, 15, 16]. While such systems require optical pumping with a 
semiconductor light source rather than the preferred electrical pumping, they have potential 
for high efficiency, low noise and low thermal load [13].  
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2. Waveguide design and fabrication 
Tm-doped tantalum pentoxide waveguides on oxidized silicon wafers were designed to 
enable spectroscopic measurements of absorption and emission spectra, fluorescence lifetime, 
and conduct studies of laser operation. The fabrication was based on processes developed for 
Er:Ta2O5 waveguides on silicon [24] and ellipsometer data for refractive index from that 
work.  
 
2.1 Waveguide geometry 
While low-threshold lasing, and gain with low pump power, can be achieved with tightly-
confined “nanowire” waveguides [25], thicker slab and rib waveguides are more appropriate 
for spectroscopic measurements and determination of material properties because a larger 
proportion of the propagating mode is confined within the core material. Slab waveguides 
were fabricated for fluorescence measurements, while rib waveguides were produced for 
absorption measurements and laser action. The slab waveguides used were 2 µm thick and 
had a refractive index of 2.1±0.04 at 1.55 μm. Rib waveguides for lasing were designed, 
using COMSOL Multiphysics, for monomode operation at a wavelength of 1.85 µm. 
Defining ribs in the 2-µm-thick Tm:Ta2O5 film, with an etch-depth of 330 nm, demonstrated 
that waveguides of widths less than 3 µm were found to support the fundamental mode only. 
The design and mode intensity profile in the TE polarization for the 3-μm-wide waveguide 
are shown in Fig 2. The theoretical FW1/e2 spot size at a wavelength of 1.866 μm was 4.6 μm 
in the x-direction and 1.1 μm in the y-direction, and at the pump wavelength of 795 nm the 
spot size was 3.8 μm by 1.0 μm. Rib waveguides of 20 µm width were used for absorption 
measurements, ensuring strong mode confinement within the core to give an accurate 
measurement for the doped material only. The larger waveguide also offers reasonable input-
coupling efficiency of white light from an SMF28 optical fiber.  

 

 
Fig. 2. 3-μm rib waveguide laser a) dimensions, and simulated mode intensity profile in TE 

polarization at b) 795 nm and c) 1866 nm.  

 
2.2 Waveguide fabrication  
Tm:Ta2O5 films, 2 μm thick, were deposited by radio-frequency (RF) sputtering on top of a 
2.5-μm-thick thermal oxide layer on 4” silicon wafers. The 150mm diameter pressed ceramic 
sputtering target was made from powder or Ta2O5 with a nominal 3 wt% of Tm2O3. 
Deposition was performed at a pressure of 10 mTorr in an oxygen (5 sccm) and argon 
(20 sccm) atmosphere, at an RF power of 300W, resulting in a deposition rate of 



~3.33 nm/min. After deposition, the wafers were annealed in an oxygen atmosphere to reduce 
oxygen deficiency and stress in the film. Annealing times of 2 and 12 hours with temperatures 
between 500°C to 650°C were used, to study the respective influence on fluorescence lifetime 
and intensity. The composition of the annealed films was measured using EDX to verify the 
Tm concentration, which was found to be (1.1±0.1) × 1021 Tm ions/cm3. 

Rib waveguides ranging from 2 to 20 μm in width were fabricated on wafers annealed at 
650°C for 12 hours. The waveguides were patterned using conventional photolithography and 
etched to a depth of 330 nm by Ar ion-beam milling, using optimized parameters determined 
for Er:Ta2O5 waveguides [24], and then annealed in oxygen at 650°C for a further 2 hours.  

The wafers were diced and the end-facets were mechanically polished to optical quality to 
yield chips of length 4.5 mm to 10 mm. 

 
3. Spectroscopic properties of Tm:Ta2O5 
In order to assess the potential of Tm:Ta2O5 for gain and lasing, and to provide parameters for 
input to simulations, accurate measurement of material properties was required. The excited-
state lifetime, emission spectrum and cross-section, and the absorption spectrum and cross-
section were experimentally determined for the fabricated Tm:Ta2O5 waveguides as described 
below.  

 
3.1 Excited-state lifetime measurements 
Fluorescence measurements were performed on the 2-μm-thick Tm:Ta2O5 slab waveguides 
using the apparatus shown in Fig. 3. The optimum pump wavelength had previously been 
determined to be 795 nm, where the highest fluorescence power was achieved [26]. Output 
from a Ti:sapphire laser, tuned to the pump wavelength of 795 nm, was mechanically 
chopped at 170 Hz and then end-fire coupled into the slab waveguide using an aspheric lens 
(Lens 3). Fluorescence was collected at 90° to the plane of the waveguide using a proximity-
coupled fiber with a 1-mm-diameter core (Thorlabs SM2000), after which the light was 
collimated with an aspheric lens (Thorlabs C230TMD-C), passed through a long-pass filter to 
remove pump light (Schott RG1000, cut-off 1 µm), before being focused onto an InGaAs 
detector (DET10D/M) by a second aspheric lens (Thorlabs A260TM-C). The collected 
fluorescence signal was recorded on an oscilloscope and its decay after the pumping pulse is 
shown on a logarithmic scale in Fig. 4a.  

 

 
Fig. 3. Apparatus for excited-state lifetime measurements. 

The effect of annealing temperature on the collected fluorescence power and excited-state 
lifetime were determined, as shown in Fig. 4. The highest fluorescence power and longest 
lifetime were attained with the sample annealed at 650°C for 12 hours. Fitting of the 
fluorescence decay to a single exponential yielded a lifetime of 477 ± 40 μs for this sample, 
with negligible residuals.  

As with erbium-doped Ta2O5 waveguides [24], it is believed that replenishing of oxygen 
during annealing reduces non-radiative transitions and improves the efficiency of the 
emission from the excited state.  
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6. Conclusion 
The spectroscopic characteristics of Tm:Ta2O5 waveguides on silicon were investigated in 
this paper. A broad emission from 1450 to 2100 nm was observed when pumped at 795 nm 
and the corresponding excited-state lifetime was measured to be (477±40) μs. The absorption 
spectrum of Tm:Ta2O5 from 600 to 2000 nm was measured, and the peak absorption cross-
section at 792 nm was found to be (5.0±0.6) × 10-21 cm2 and at 1682 nm it was 
(4.1±0.4) × 10-21 cm2. The peak emission cross-section was found to be (5.7±0.7) × 10-21 cm2 
at 1772 nm, significantly higher than silicate glasses. The potential as a laser material was 
evaluated by pumping the waveguides at 795 nm and achieving lasing from the Fresnel 
reflection of the polished end facets alone. These results confirm that a gain of at least 9 
dB/cm has been achieved. While low pump power threshold and high slope efficiency for 
efficient operation will require further optimization of the materials and waveguide properties 
including background loss and Tm concentration, and an optimized laser cavity. Tm:Ta2O5 is 
a promising material for realizing integrated lasers and amplifiers compatible with silicon 
photonics. 
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