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Abstract

The high usage of castor oil in industrial applications and bio-diesel production has led to an increase in castor bean (Ricinus communis L.) cultivation in many countries. Wild species present a source of genetic variation for germplasm improvement, often important because of their adaptation to a wide range of habitats and stresses. Chloroplast genomes are widely used in population genetics and evolutionary studies. Herein, we carried out plastome genome sequencing of 20 wild and cultivated castor bean accessions to examine plastome structural variations (PSVs). Further, single nucleotide polymorphisms (SNPs) and insertions and deletions (InDels), were identified and plastome sequences used to infer phylogenetic relationships. All the chloroplast genomes were quadripartite, with a length between 162,673 bp and 163,210 bp, with 112 genes (78 protein coding genes; PCGs, 30 tRNAs, and four rRNAs). The chloroplast genomes where conserved in terms of structure and content, with no significant PSVs detected except for a slight inverted repeat (IR) contraction in one accession. A total of 162 SNPs and 92 InDels were uncovered across the plastomes, with an average SNP and InDel density of 0.99 and 0.56 per kb respectively. Some of the non-synonymous mutations caused amino acid changes in functional domains. Intergenic spacers trnE-UUC-trnT-GGU and AccD-psaI were identified as potential barcoding regions. The phylogenetic analyses and neighbor-joining network supported three distinct lineages in castor bean. Genetic diversity was greater in one clade than the other, with implications for identifying adaptive germplasm in the wild. These results demonstrate the genetic variations and phylogenetic relationships between the wild and cultivated lineages and add insights into the origin of cultivation and spread of castor bean.
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1. Introduction
Exploring the relationships between wild and cultivated germplasm is important to guide breeding programs through introduction of novel genetic diversity, as well as to safeguard wild germplasm (Brozynska et al., 2016). Castor bean (Ricinus communis L., Euphorbiaceae), a seed propagated annual oilseed crop, was domesticated from a tropical perennial tree through human selection (Xu et al. 2019). Castor bean is currently cultivated across the warmer regions of the world. Although the origin of castor bean has been masked by widespread distribution, aided by the easy establishment in different environmental conditions, castor bean is thought to have originated in Eastern Africa (specifically Ethiopia). Naturalized populations are present throughout the African continent, from Tunisia to South Africa, from the West African coast to the Red Sea and the Indian Ocean Islands (Govaerts 2014; PROTA, 2014). Earlier studies suggested that castor bean has polyphyletic origins in Eastern Africa, Palestine, Iran-Afghanistan region, India, and Arabian Peninsula (Weiss, 1971; Moshkin, 1986), but with Eastern Africa recognized as containing the greatest wild progenitors. The worldwide spread of castor bean as an agronomic crop was initially due to its high seed oil content originally used in making lubricants, ink and soaps, and more recently nylon, plastics, adhesives, dyes, cosmetics and in biodiesel production (Brigham, 1993; Qiu et al., 2010). This high utility is facilitated by the presence of ricinoleic acid in castor oil, a fatty acid with the highest viscosity index among all vegetable oils. As a result, there has been an increased demand for castor bean in many countries, prompting the need to breed and genetically improve castor bean (Sujath et al., 2008).
Despite its economic importance, the genetic differentiations between wild and cultivated castor germplasm remain uncertain. Wild castor bean found in Ethiopia and Kenya are perennial trees with small seeds and shattering pods, unlike their herbaceous cultivated counterparts that possess large seeds and non-shattering pods, typical of the domestication syndrome found in a number of crops (Doebley et al., 2006). In perennial plants, a slight domestication bottleneck is often witnessed due to significant outcrossing, extensive hybridization, long juvenile phases, reduced population structure combined with multiple origins, clonal propagation and continuous crop – wild gene flow (Miller and Gross, 2011; Cornille et al., 2012).  Foster et al. (2010) and Rivarola et al. (2011) found low levels of genetic diversity in cultivated castor bean using genome-wide single nucleotide polymorphisms (SNPs). These studies were however limited to cultivated germplasm owing to unavailability of wild germplasm. A recent study based on nuclear genomes revealed presence of substantial genomic differentiation between wild and cultivated castor bean (Xu et al., 2019). Therefore, knowledge of evolutionary relationships of the entire spectrum of the castor bean germplasm using chloroplast genomes will be important in guiding selection criteria in breeding programs (Thatikunta et al., 2016). 
Plastomes (chloroplast genomes) are circular with size range of approximately 75-200kbp (Green, 2011) encoding chloroplast-specific proteins involved in photosynthesis, gene expression, fatty acid biosynthesis and other developmental processes in plants (Hagemann, 2010; Yagi and Shiina, 2014). They are usually quadripartite with two inverted repeat (IR) sequences separating a large single copy (LSC) and a small single copy (SSC) region (Raubeson and Jansen, 2005; Zhang et al., 2018). Whole chloroplast genomes have often been used to investigate the genetic differentiation, phylogeny and evolution of plant lineages (Wu et al., 2012), due to their uniparental inheritance and low frequency of recombination (Smith, 2015), that results in a smaller effective population size and lesser coalescent time than nuclear genomes (Birky, 1996). According to He et al. (2019), plastome structural variations (PSVs) not only occur among genera but also in individuals of the same species. The study of PSVs that include IR contraction/expansion, inversion, gene duplication and loss arising during evolution, may help unravel genetic variations between wild and cultivated castor bean. Rivarola et al. (2011) reported a cultivated castor bean chloroplast genome of length of 163,161 bp, providing a basis of performing a comprehensive study on comparative chloroplast genome in castor bean. The main objective of this study is to investigate the genetic variations and phylogenetic relationships between castor bean’s wild and cultivated germplasm, as well as comparing the structural variations of chloroplast genomes, serving the resource exploration of wild germplasm for genetic breeding and improvement in agriculture.
2. Materials and methods
2.1. Sample collection and whole genome sequencing
Wild accessions were collected in their natural habitats (forests and shrub lands) in Kenya and Ethiopia, reported to be the origin of castor bean (permits were obtained courtesy of the World Agroforestry Center). Wild germplasm was identified as having small seeds (not more than ca. 0.8 cm length, 0.3 cm width, and 0.4 cm height), shattering pods and woody tree structure. Leaf samples from eight wild accessions (four from Kenya and four from Ethiopia), three Chinese cultivated accessions (grown in Kunming Institute of Botany greenhouse) and one cultivated accession from India (Supplementary Table S1) were sampled for sequencing. Eight castor bean plastome sequences were downloaded from National Center for Biotechnology Information (NCBI) and included in the downstream analysis. These sequences were from cultivated castor bean accessions collected in Ethiopia, Greece, Mexico, Puerto Rico, India, El Salvador, and U.S. Virgin Islands (Supplementary Table S1). A DNA sample from a leaf of Speranskia tuberculata (Bunge) Baill., of the family Euphorbiaceae, known to be the closest relative of castor bean (Govaerts et al. 2000; Riina and Berry, 2016), was also sequenced and introduced as an outgroup in the study.
Young leaves from the castor bean accessions were stored in silica gel prior to DNA extraction using the CTAB method (Doyle and Doyle, 1987). High molecular weight DNA was sheared using Covaris S220 (Covaris Inc., Woburn, MA, USA) into ca. 500 bp fragments, and sequencing libraries constructed following the NEBNext UltraTM II DNA Library Prep Kit for Illumina protocol (NEB, Massachusetts, U.S.A). Paired-end sequencing was then carried out on the HiSeq 2000 platform at Beijing Genomics Institute (BGI), China. Raw sequence data were preprocessed at BGI to remove adapter sequences, contaminated sequences, and low quality reads using Trimmomatic ver. 0.36 (Bolger, Lohse, and Usadel, 2014), with the following parameters: ILLUMINACLIP: TruSeq3 PE.fa:2:30:10:8 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:75 AVGQUAL:20. FastQC software was used to check for the quality of clean data. 
2.2 De novo assembly and annotation
Clean paired-end (PE) reads were used to assemble contigs through de novo assembly using GetOrganelle ver. 1.6.3a (Jin et al., 2018) with K-mer values 21, 45, 65, 85, and 105 calling SPAdes ver. 3.10 (Bankevich et al., 2012). To visualize and filter out the assembled contigs in order to generate a complete circular plastome, Bandage ver. 0.80 (Wick et al., 2015) was used. Plastid Genome Annotator (Qu et al., 2019) was used to annotate the newly assembled plastomes and manually verified using Geneious ver. 8.0.2 (Kearse et al., 2012). Geneious was also used to manually check the consistency of start/stop codons against the reference genome. tRNAscanSE web service (Lowe and Chan, 2016) was used to confirm the tRNA genes. Finally, the physical genomic maps were drawn on OrganellarGenomeDRAW (OGDRAW) ver 1.3.1 (Greiner et al., 2019). The 12 newly assembled plastomes were deposited in GenBank under accession numbers MT555090-MT555101.
2.3 Plastome structural analysis

To determine the genomic evolutionary pattern between wild and cultivated castor bean, we compared the structural features of the 12 annotated plastomes that include: plastome size (bp), LSC length (bp), SSC length (bp), IR length (bp), and GC content (%). The IR/SC boundaries of the plastomes were examined to address IR expansion-contraction with IRscope web service (Amiryousefi et al., 2018). ProgressiveMauve algorithm (Darling et al., 2004) was applied to check for inversions across the plastomes, maintaining default settings of seed weight (15) and the minimum locally collinear block (LCB) score of 30,000. Structural similarity of plastomes were evaluated using LAGAN mode alignment program in mVISTA (Frazer et al., 2004).
2.4 Simple Sequence Repeats Analysis

Chloroplast simple sequence repeats (cpSSRs) were detected using MISA perl script (Thiel et al., 2003), with parameters set to ≥10 repeat units for mononucleotide, ≥6 repeat units for dinucleotide and ≥5 repeat units for trinucleotide, tetranucleotide, pentanucleotide and hexanucleotide SSRs.

2.5 SNP and InDel calling
The genome skimming PE clean reads used in the aforementioned de novo assembly step, were mapped onto the ‘Hale’ chloroplast genome reference (GenBank accession number JF937588; Rivarola et al., 2011) using Burrows-Wheeler Aligner (BWA) ver. 0.5.9 with default settings (Li and Durbin, 2009). SAMtools ver. 1.3.1 (Li et al., 2009) was used to convert mapping results from Sequence Alignment Map (SAM) file to binary SAM (BAM) file, deduplicate and sort. The sorted BAM files for each of the 12 accessions were together used as input to call for raw SNP and InDels using BCFtools ver. 1.8 (Li, 2011) mpileup command. Subsequently, low quality SNPs and InDels (QUAL values <20, depth <10) were filtered out and the remaining SNPs and InDels stored in a Variant Call Format (VCF) file. SNPs were separated from InDels and heterozygous SNPs were manually removed. The program SnpEff ver. 4.3T (Cingolani et al., 2012) was used to annotate, determine amino acid changes and predict the effects of SNPs and InDels in the castor bean chloroplast genomes. In addition, the VCF file with the high-quality set of SNPs for the 12 sequenced accessions was converted into a concatenated sequence alignment of variable positions in fasta format using PGDSpider ver. 2.1.1.5 (Lischer and Excoffier, 2012). The SNP fasta file was merged to SNP matrices from the eight GenBank accessions (Rivarola et al., 2011) to make a single file. The final fasta file of the 20 accessions was used to determine transitions (Ts) and transversions (Tv) and their ratio (Ts/Tv) using BCFtools. 
2.6 Conserved functional domain analysis

Coding sequences of genes containing non-synonymous SNPs and InDels were translated to protein sequences on Expasy server (Gasteiger et al., 2003) counterchecking on Geneious ver. 8.0.2 (Kearse et al., 2012), while noting the position of the altered amino acid in the protein sequences. The protein sequences were used to predict the domain region on SMART tools (Letunic et al., 2015) against Swiss-Prot, SP-TrEMBL and stable Ensembl proteomes databases, where the location of the changed amino acid was determined. NCBI blast (Johnson et al., 2008) protein alignment was also carried out to confirm position of the altered amino acids.
2.7 Phylogenetic analysis
Maximum likelihood (ML) and Bayesian inference (BI) methods were applied to construct the phylogenetic trees of the 20 castor bean accessions using the whole plastomes. Briefly, the plastomes were aligned using MAFFT (Katoh and Standley, 2013) and DAMBE (Xia and Xie, 2001) was used to test for substitution saturation of the aligned sequences. The appropriate nucleotide substitution model was then selected using Modeltest (Posada and Crandall, 1998) applying the Akaike Information Criterion (AIC). The BI tree was computed using MrBayes ver. 3.2.6 (Ronquist et al., 2012) for 2×105 generations sampled for each 1000 generations using two runs and four chains, until the average standard deviation of split frequencies became less than 0.01. ML tree was constructed using the RAxML (Stamatakis, 2014) applying the GTR-GAMMA model with a bootstrap value of 1000 replicates, on Cipres science gateway. Tree editing was computed on Figtree ver. 1.4.3 (Rambaut, 2012). To further examine the phylogenetic relationships, a haplotype network was constructed in PopART (Leigh and Bryant, 2015), applying the neighbor joining network (Bandelt et al., 1999). Based on the phylogenetic relationships, analysis of plastome nucleotide diversity (π) and Tajima’s D were performed for sub-groups of accessions in DnaSP ver. 5.10.0 (Librado and Rozas, 2009) with a sliding window of 100-bp length and 25-bp step size.
3. Results
3.1 Plastome features and structural variations


The mean coverage for the 12 assembled castor bean plastomes was 187 ×, with typical quadripartite structures (Supplementary Figure S1). The plastome lengths were approximately 163,161 bp in most accessions. However, two accessions had smaller chloroplast genome sizes (wild accessions E25 and K314; 162,673 bp and 162,737 bp, respectively), and three slightly larger (E571, K411 and K32; Supplementary Table S2). These size variations were largely due to differences in LSC lengths (for example 89,182 bp and 89,295 bp in E25 and K314, respectively, compared to the 89,659 bp in other plastomes). GC content across the plastomes varied between 35.7 and 35.8% (Supplementary Table S2). Overall, each plastome contained 112 genes including 78 protein coding genes (PCGs), 30 tRNAs, and four rRNAs (Supplementary Table S3). Each of the IR had 17 genes. Seventeen genes contained introns, two of these genes (ycf3 and clpP) had 2 introns. The rps12 gene was trans-spliced into three exons (two exons in the IR regions and one exon in the LSC region).
The locations of IR-SC junctions were conserved in all the plastomes relative to the reference chloroplast genome ‘Hale’, with slight variation (Figure 1). Mostly, at the junction of LSC/IRb (JLB), rpl22 gene lies about 28 bp inside the IR, resulting in the duplication of 3’-ends of this gene at the junction of LSC/IRa (JLA). However, only the plastome of E25 experienced contraction of 26 bp to contain the most of rpl22 gene in the LSC. On the other hand, in all plastomes, junction of SSC/IRb (JSB) is located within the ycf1 gene with partial duplication of this gene ranging from 1176 to 1191 bp in the IR. As a result, the partial ycf1 gene is duplicated at the junction of SSC/IRa (JSA; Figure 1).

Typically, both structural homology analyses using the ‘Hale’ castor bean chloroplast genome yielded identical results and supported that the plastomes of all the castor bean studied are largely conserved (Supplementary Figure S2; Figure 2). The MAUVE alignment revealed similar gene order and no inversions (Supplementary Figure S2). Likewise, the sequence identity of almost 100% indicated similarities within the plastomes except for the E25, E314 and K411 accessions, where the intergenic spacer between the genes trnE-UUC and trnT-GGU had high degree of divergence with about 50% similarity. It also observed that the IR regions were conserved than the SC regions, while coding regions more conserved than non-coding regions (Figure 2).
3.2 SSR polymorphism


A total of 93-101 cpSSRs were detected inside the 12 castor bean plastomes. Further mining in non-coding sequences yielded 81 and 77 SSRs in E25 and K314 respectively while the remaining accessions recorded 75 SSRs each. Equally in coding sequences, E25 and K314 contained more SSRs at 20 and 19 respectively than the rest of the plastomes at 18 each (Supplementary Figure S3a). Mononucleotide and dinucleotide SSRs were present in non-coding sequences (Supplementary Figure S3b) while coding sequences only recorded mononucleotide SSRs (Supplementary Figure S3c). Specifically, mononucleotide repeat units (A/T) were the most abundant, representing 86-87% of the SSRs (Supplementary Table S4). Only repeat units A/T, C/G and AT/AT were present across the 12 castor bean plastomes.

3.2 Chloroplast genomic SNP and InDel variations 
Clean PE reads of the 12 accessions (and outgroup) were mapped onto the ‘Hale’ castor bean chloroplast genome reference. An average of 313,822 reads per accession were mapped to the reference genome (Supplementary Table S5), with a read coverage of 189 ×. A combination of the sequenced accessions and NCBI genomes yielded a total of 162 high quality SNPs (Supplementary Figure S4; Supplementary Table S6) and 92 InDels (Supplementary Table S7); with an overall SNP and InDel density of 0.99 and 0.56 per kb respectively (Table 1). The LSC and SSC had an SNP density of 1.46 and 1.65per kb respectively, while the IR regions were conserved with no SNPs detected, similar to the de novo assembly results. 41 SNPs out of 162 (25%) were found within coding regions (Table 1), spread out in 23 of the chloroplast genes (Figure 3a). Most of these genes contained one or two SNPs, three contained three SNPs (rpoC1, rpl20, and ndhF), one contained four (rpoB) and one contained six (ycf1; Figure 3a; Supplementary Table S8). The ratio of non-synonymous to synonymous mutations was 20:21 (Table 1). All non-synonymous SNPs caused amino acid changes (i.e. not start or stop codon variants; Table 2). The 20 non-synonymous mutations affected rpoC1, rpoB, rbcl, accD, cemA, rpl20, petD, rps3, ndhF, ndhD, ndhG, ndhI and ycf1 genes, 12 of these SNPs caused amino acid changes in conserved protein functional domains (in rpoB, rbcl, accD, cemA, rpl20, petD, ndhF, ndhD, ndhG and ycf1; Table 3). The remaining 121 SNPs (75%) were found in intergenic spacers (103; 64%), introns (13; 8%) and tRNAs (5; 3%) with intergenic spacers trnE-UUC-trnT-GGU (4.91 SNP/kb) and AccD-psaI (6.17 SNP/kb) being the most variable (Figure 3b; Supplementary Table S8). Only one InDel out of the 92 (1%) was found in a coding region (a frameshift in ribosomal protein L32, rpl32 gene in accession E25). However, the frameshift mutation was not present in the conserved domain of ribosomal_L32 protein (Figure 4). The 91 non-coding InDels (99%) were found in intergenic spacers (86; 93%) and introns (5; 5%) where intergenic spacers AccD-psaI (13.21 Indels/kb) and trnE-UUC-trnT-GGU (5.89 Indel/kb) had the greatest number of InDels (Supplementary Figure S5; Supplementary Table S8).
 The overall Ts/Tv (Transition/Transversion) ratio was 0.51, reflecting the greater number of transversions (Tv=107) than transitions (Ts=55). Among transversions, TG variants were the most common (n=43) and CG the least common (n=1), while among transitions, GA variants were the most abundant (n=30; Supplementary Figure S6).
3.3 Phylogenetic relationships
BI and ML trees were constructed using castor bean complete plastomes. The test for substitution saturation for all the aligned sequences showed a substantially lower observed index of substitution saturation (Iss = 0.003) compared to the critical index of substitution saturation (Iss.c = 0.8282) thus, validated the reliability in phylogenetic analysis. Both trees showed identical topology (Figure 5a; Supplementary Figure S7) with three major lineages formed (clades A, B and sample K314). Clade A and B contained both wild and cultivated individuals. In clade A, nine cultivars and six wild individuals were located, split into a large group of cultivars closely related to four wild accessions and a pair of slightly distant wild accessions (K32 and E571). All the individuals in this clade had no notable amino acid changes based on non-synonymous mutations, identical to ‘hale’ reference genome, except for K411 on cemA gene where valine changed to isoleucine in the cemA protein domain (Figure 5a). The second clade (clade B) comprised three cultivated accessions and wild individual E25. There were amino acid changes in some of the genes in these four individuals relative to clade A (asparagine to threonine in rbcl in the rubisco-large-N domain, isoleucine to arginine in rpl20 in the ribosomal-L20 domain, glutamic acid to aspartic acid in rps3, leucine to phenylalanine in ndhF, threonine to asparagine in ndhG in the oxidored-q3 domain, and asparagine to lysine in ndhI). Individual K314 formed a distinct lineage from the clade A and B due to presence of unique amino acid changes (lysine to glutamine in accD in the carboxyl-trans domain, phenylalanine to leucine in cemA in the cemA domain, valine to isoleucine in ndhF and arginine to lysine in ycf1 in the ycf1 domain; Figure 5a). The topology of the haplotype network (Figure 5b) is largely comparable to the phylogenetic trees as it clusters similar castor bean accessions based on chlorotypes. For instance, the accessions TB5 and E5112 shared the same chlorotype while 8BW001 and India_C belong to a separate chlorotype.
3.4 Diversity estimate evaluation
Nucleotide diversity (π) and Tajima’s D were computed for the whole collection, as well as for clades A and B (Figure 5a). Individual K314 was not included for these analyses (clade A and B) since it represents a different lineage. Nucleotide diversity was higher in clade B (π = 0.0002) than clade A (π = 0.0001; Supplementary Figure S8a). Tajima’s D values of the chloroplast genomes were also computed to examine potential selection pressures. A positive value infers selection maintaining variation or a recent contraction in the clade, while a negative value indicated selection removing variation or expansion of the clade. Taking all accessions together, Tajima’s D = -1.160, with clades A and B exhibiting a Tajima’s D of -2.068 and -0.179, respectively (Supplementary Figure S8b).
4. Discussion
4.1 Conserved plastome structure and SSRs in R. communis


Wang et al. (2018) reported that the plastome structure within a species is conserved. Such was the case in this study where the plastomes of all wild and cultivated germplasm contained the same quadripartite structure, with identical number of protein coding genes, tRNAs and rRNA genes. Moreover, whole-genome alignments indicate that the 12 castor bean plastomes do not display genome rearrangement (inversions), thus had a high degree of synteny. 

Some variation in the total chloroplast genome length was observed, for example wild accessions E25 and K314 were 488 and 424 bp lesser in size than ‘Hale’. Similar plastome size variation within a single species has been reported in Eucommia ulmoides Oliver (Wang et al., 2018), Persea americana (Ge et al., 2019) and Utricularia amethystine (Silva et al., 2019). Chloroplast genome size in plants is mainly influenced by the size of the IRs (Bock, 2007; Wang et al., 2008). Contraction or expansion of these IRs through intramolecular recombination is thought to be the main cause of size variation (Kaila et al., 2017). Evident in this study was the IR contraction in accession E25 by 26 bp, which caused the rpl22 gene at the LSC/IRb junction to move to LSC contrary to the other accessions (Figure 1). 
Sequence identity alignment plot of the 12 chloroplast genomes revealed an overall conserved nature in both wild and cultivated accessions, with coding regions more conserved than non-coding regions probably due to natural selection forces (Shaw et al., 2007). The IR regions were the most conserved, similar to other angiosperms studies (Yao et al., 2015; Kaila et al., 2017; Silva et al., 2019; Oyebanji et al., 2020). This could be as a result of abundance of conserved rRNA genes in the IRs and the occurrence of copy correction (Khakhlova and Bock, 2006). The intergenic spacer between gene trnE-UUC and trnT-GGU in the LSC was divergent in wild accession E25, E314 and K411, due to high numbers insertion and deletions in the region, as confirmed by SNP/InDel calling results (Figure 3b; Supplementary Figure S5). The region could be useful as a DNA barcode for intraspecific identification of castor bean germplasm.
Microsatellites or SSRs represent tandem repeats of 1–6 base pairs units long distributed in plant nuclear and plastid genomes. They are often applied as genetic markers in population genetics and evolutionary studies due to their polymorphism and co-dominant nature. The majority of the SSRs were identified in non-coding regions similar to SNPs and InDels. This distribution of SSRs was in agreement with other angiosperms (Song et al., 2017; Zhou et al., 2018; Ge et al., 2019). The slightly more SSR loci recorded in plastomes of E25 and E314 than the rest of the plastomes could also possibly explain the chloroplast genome size variation and divergence of the two accessions (Wu et al., 2018).  Therefore, cpSSR loci provide additional avenues to study population genetic structure of castor bean.
4.2 Chloroplast genomic variation in the castor bean 
The advent of High Throughput Sequencing (HTS) technology has enabled accurate chloroplast sequencing for extensive use in population genetics studies, as well as, resolving evolutionary relationships in plants (Melodelima and Lobréaux, 2013; Rogalski et al., 2015). To date, fewer studies have applied whole chloroplast genome data to access intraspecific diversity in plants. The assessment of chloroplast genome variation in 20 castor bean accessions identified 162 SNPs, giving an average SNP density of 0.99 per kb. The average nucleotide diversity (π) for the whole collection was low (0.00046), consistent with previous reports using both chloroplast and nuclear DNA (Allan et al., 2008; Foster et al., 2010; Rivarola et al., 2011). SNP density was highest in the SSC region (1.65 SNPs per kb, compared to 1.46 SNPs per kb in LSC). These results are akin to those reported in Panax ginseng (Zhao et al., 2015) and Macadamia integrifolia (Nock et al., 2019). Five genes with three or more SNPs were identified, two in the SSC (ndhF and ycf1, which exhibited 1.33 and 1.11 SNP per kb, respectively) and three in the LSC (1.25 – 8.50 SNPs per kb). These findings agreed with a study in Brassica napus, which also identified rpoB, ndhF and ycf1 genes as the most polymorphic (Qiao et al., 2017). Moreover, 12 out of 21 non-synonymous SNPs caused amino acid changes in protein functional domains with the potential to affect gene activity (transcription and translation in rpoB and rpl20 genes respectively, photosynthesis process in rbcl, petD genes, fatty-acid biosynthesis in accD gene, ATP (Adenosine triphosphate) energy production in ndhF, ndhD and ndhG genes, and also cell membrane integrity in cemA and ycf1 genes). The only InDel located in a gene (rpl32 that codes for ribosomal protein L32) was in wild individual (E25 from Ethiopia).  Regardless of the Indel being a frameshift mutation, it did not cause amino acid changes in the ribosomal_L32p domain of rpl32 gene. Therefore, it may not disrupt the gene function.
The larger percentage of SNPs (121, 75%) and InDels (91, 99%) were located in non-coding regions, consistent with Arabis alpina (Melodelima and Lobréaux, 2013), rice (Tong et al., 2016) and comparative studies among Vernicia fordii, Jatropha curcas, and Manihot esculenta (Li et al., 2017). Intergenic spacers trnE-UUC-trnT-GGU and AccD-psaI present in the LSC, stood out as the most polymorphic with the highest number of both SNPs and InDels among intergenic spaces and introns. These spacers could be of particular interest as potential regions to use in the study of intraspecies variation in castor bean, phylogenetics of the Euphorbiaceae, or for DNA barcoding more broadly.
The number of chloroplast SNPs reported in this study was fewer than in other plant species such as rice, 180 SNPs, 30 accessions (Tong et al., 2015); rapeseed Brassica napus, 294 SNPs, 488 accessions (Qiao et al., 2016) and Macadamia integrifolia, 407 SNPs, 63 accessions (Nock et al., 2019); however, these studies had larger sample sizes. The genetic variation in the samples of wild and cultivated castor bean partly result from the presence of three genetically divergent lineages, especially the large amount of genetic diversity identified in clade B (E25, PI193851, PI280219, and PI255238) and Individual K314. Specifically, Clade B of only four individuals exhibited more than two times the nucleotide diversity (π = 0.0002) of the other group (15 individuals; π = 0.0001). Tajima’s D for clade B was -0.175, close to zero value and therefore inferring minimal occurrence of selection. Clade A Tajima’s D was considerably more negative (-2.068) which suggests the effect of selection removing genetic variation, similar to other studies (Tong et al., 2016; Xu et al., 2019). Possible bottleneck accompanied by a population expansion produce a negative Tajima’s D (Cheng et al., 2019).
4.3 Phylogenetic relationships 
Despite the major morphological differences being between wild and cultivated castor bean, both BI and ML analyses showed the major genetic split were between three lineages (clade A, B and individual K314), with A and B composed of a mixture of wild and cultivars. This deep genetic split in castor bean was also resolved by Rivarola et al. (2011) who only studied cultivated castor bean and we extend this by including wild individuals to the survey. Clade A had a large group of cultivars closely related to four wild accessions (E5112, E4103, K67, and K411), an indication that these wild germplasms could be the putative progenitors of the cultivars in clade A. Also, this low diversity is consistent with the low genetic variation reported widely for castor bean (Allan et al., 2008; Foster et al., 2010; Rivarola et al., 2011). It is noteworthy that wild accession E5112 shared a chlorotype with a cultivar, suggesting that they share a very recent common ancestral lineage or that continued gene flow, potentially from cultivated into wild accessions, is occurring. In Clade B, accessions E25, PI193851 (from Ethiopia), PI280219 (from Greece), and PI255238 (from Mexico) showed greater diversity, long branch lengths (Figure 5a) and are therefore not only genetically distinct from clade A but also divergent from each other, thus are potential sources of divergent parental material in castor bean breeding programs. Individual K314 formed the third distinct lineage with a long branch length. The presence of three castor bean clades point to possibility of multiple progenitors, although this would need to be followed up. Recent analysis has established that Eastern Africa is where genetically and phenotypically divergent wild accessions are found (Xu et al., 2019). An alternate hypothesis is that the cultivated accessions in clade B have been bred with diverse, potentially wild, germplasm more recently and thus exhibit ‘chloroplast capture’ (Tsitrone, Kirkpatrick and Levin, 2003) from divergent individuals. Parallel analysis of the nuclear genome will help to confirm which of these hypotheses is true.
The general absence of geographic structure amongst the cultivated accessions represents the outcome of continued movement and breeding of castor bean. Absence of phylogeographic structure was also reported by Foster et al. (2010), and can be explained by a recent and rapid expansion of the species with strong involvement of anthropogenic mediated migrations (Yin et al., 2010). About 4000BC, castor seeds were traded in Ancient Egypt (Hayes, 1953), where exchange of germplasm may have occurred. The earliest botanical records of castor bean in Eastern Africa is in the early Holocene period in the Central Sudan (borders Ethiopia from the East and Kenya from the North) that dated to approximately 7700 - 7200 bp (Magid, 2014). However, archeological material culture remains are absent pointing to the possibility of being imported. Most of the ancient uses of castor bean plant are strikingly similar notwithstanding their being practiced in different times and regions. For example in Greece and Africa (Ethiopia and Kenya) where this study found greater cp genomic variation in some accessions, castor bean was used for pharmacological purposes, that is as a laxative, diuretic, anti-inflammatory, to heal burns and varicose veins in Greece (Gunther, 1934) and to treat arthritis, ocular and cutaneous diseases in Africa, by applying oil or crushed seeds on affected body parts (Polito et al., 2019). 

5. Conclusion
Through comprehensive analyses we found that the chloroplast genome of castor bean is conserved in terms of structure and content. However, heterogeneous sequence divergence in terms of SNPs and InDels were discovered. By sampling wild castor bean for chloroplast variation for the first time we found additional genetic variation. A total of 162 SNPs and 92 InDels were identified and shown to be distributed across the plastomes. We identified trnE-UUC-trnT-GGU and AccD-psaI loci with SNP and InDel density greater than the average for the chloroplast genome and these may be useful in follow-up studies as DNA barcodes in castor bean and Euphorbiaceae family. The phylogenetic relationship results revealed three distinct lineages backed by distinct amino acid change in genes. Clade B had more nucleotide diversity than clade A, possibly due to genetic drift and the maintenance of variation in clade B. These results demonstrate the genetic variations and phylogenetic relationships between the wild and cultivated lineages and add insights into the origin of cultivation and spread of castor bean.
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Figure captions

Figure 1: Comparison of LSC, IRs, and SSC boundaries among the castor bean plastomes. The colored boxes denote the genes. JLB, JSB, JSA, JLA refer to junction boundary between LSC/IRb, SSC/IRb, SSC/IRa and LSC/IRa respectively
Figure 2: Sequence alignment of castor bean chloroplast genomes, with ‘Hale’ R. communis chloroplast genome as the reference using mVISTA. Position and transcriptional direction of each gene is indicated by gray arrows. The exonic and intergenic regions are indicated by blue and red colors, respectively. Sequence identity between the plastomes is highlighted on the y axis as a percentage between 50% to 100%. The x axis represents coordinates on the cp genomes.
Figure 3: (a) Distribution of SNPs across protein coding genes (b) Distribution of SNPs across Intergenic spacers, introns and tRNA. LSC, Large Single Copy; SSC, Small Single Copy  
Figure 4: Blast protein alignment sequence of rpl32 gene from individual E25 containing a frameshift mutation. The mutation did not cause an amino acid change in the ribosomal_L32p domain. The red colored abbreviation C (cysteine) and V (valine) indicate amino acid change.
Figure 5: (a) BI phylogenetic tree of castor bean chloroplast genomes rooted on the outgroup Speranskia tuberculata, against amino acid changes in genes. Accessions marked in red color represent cultivars while blue indicated wild accessions (b) Haplotype network of the 20 plastomes. Each circle represents a haplotype sequence with circle size proportional to the number of individuals possessing that haplotype. The numbers above connections indicate mutations while the black colored dots indicate reticulation events of sister/ancestral sequences.

