
Parisi-Sourlas supergravity

Matthew Kellett and Tim R. Morris

STAG Research Centre & Department of Physics and Astronomy,

University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.

M.P.Kellett@soton.ac.uk, T.R.Morris@soton.ac.uk

Abstract

A manifestly diffeomorphism invariant exact renormalization group requires extra diffeo-

morphism invariant ultraviolet regularisation at some effective cutoff scale Λ. This motivates

construction of a ‘Parisi-Sourlas’ supergravity, in analogy with the gauge theory case, where the

superpartner fields have the wrong spin-statistics such that they can become Pauli-Villars regu-

lator fields after spontaneous symmetry breaking. We show that in contrast to gauge theory, the

free theory around flat space is already non-trivial and in a sense already displays some spon-

taneous symmetry breaking. We show that the fluctuating fields form multiplets whose mass

matrices imply that the fields propagate into each other not only with the expected 1/p2 but

also through propagators with improved ultraviolet properties, namely 1/p4 and 1/p6, despite

the fact that the action contains a maximum of two space-time derivatives.
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1 Introduction and Motivation

The renormalization group (RG) structure of quantum gravity is surely of importance, see e.g.

[1–14], and central to this is the rôle of diffeomorphism invariance. In ref. [15] the first step was

taken in combining these two properties transparently, by developing a manifestly diffeomorphism

invariant Wilsonian exact RG1 for gravity. Such a framework should allow both conceptual and

computational advances. On the one hand it would allow computations to be done whilst keeping

exact diffeomorphism invariance at every stage, i.e. without gauge fixing, and on the other hand,

these computations should be possible without first choosing the space-time manifold, in particular

without introducing a separate background metric dependence. Indeed in ref. [15] such a framework

was developed at the classical level where these properties were shown to hold.

However in order to compute quantum corrections, extra ultraviolet regularisation has to be in-

corporated into the exact RG [15] so that the integration is properly cut off in some diffeomorphism

invariant way at the effective cutoff scale Λ.

1The name “exact RG” was introduced in both refs. [16, 17], for their continuum versions of the Wilsonian RG.

1



In developments over a period of years this problem was solved for gauge field theory [18–44],

where it was proved to work to all orders in perturbation theory. (For a short summary see ref. [15],

and for reviews and further advances see refs. [45–48].2) In gauge theory, this extra regularisation

is provided by generalising the gauge group from SU(N) to SU(N |N) and then spontaneously

breaking the fermionic gauge fields at the effective cutoff scale Λ. The resulting massive fields behave

as gauge invariant Pauli-Villars fields with masses set by Λ and interactions that are naturally

incorporated into the flow equation, in such a way that they continue to regulate for all scales

Λ [19, 23–25]. The reason these provide the needed extra regularisation can be understood as

follows. The extra structure introduces as many wrong-statistics fermionic fields as there are

bosonic degrees of freedom.3 For the gauge fields themselves, the original gauge field A1
µ is joined

by a copy gauge field A2
µ (with wrong-sign kinetic term but which decouples in the continuum limit

in dimensions D ≤ 4 [28]) and a complex pair of fermionic gauge fields Bµ, B̄µ. At high energies

these degrees of freedom cancel each other, as happens with Parisi-Sourlas supersymmetry [49], at

least sufficiently that, together with appropriately chosen covariant cutoff functions, the theory is

then regularised to all orders in perturbation theory [26–28].

Given the developments just described it is natural to conjecture that the extra regularisation

for gravity can be incorporated by introducing wrong-statistics fermionic components to the metric

in a way that extends the diffeomorphism invariance along fermionic directions [15].4 Working in

Euclidean signature (so that the Wilsonian RG makes sense), we are therefore naturally led to

consider extending the coordinates themselves to

xA = (xµ, θa) , (1.1)

such that the D-dimensional bosonic coordinates, xµ, are supplemented by D-dimensional real

fermionic coordinates, θa. Note that unlike for supergravity [52,53], we want (the associated vector

bundle to) the Grassmann θa to be vectorial in their own separate D-dimensional space rather

than be spinorial under the (bosonic) Lorentz group. This is so that superfields of the θa contain

wrong-statistics fermionic fields whose interactions mimic as closely as possible the bosonic fields,

thus implementing Parisi-Sourlas-type cancellations [49] in a similar way to that just described for

2In particular in ref. [48] the construction was generalised to curved backgrounds and used to compute the gauge

field conformal anomaly, without gauge fixing.
3Actually for the counting to work exactly at finite N , it is first necessary to extend the group to U(N |N) after

which one sees that two vector bosons decouple [28].
4Manifestly diffeomorphism invariant exact RGs are proposed in [50,51] that avoid introducing Pauli-Villars fields.
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gauge theory. Writing the invariant interval as

ds2 ∼ dxAgAB dxB (1.2)

(the precise definition will be given later), we have introduced D2 wrong-statistics fermionic degrees

of freedom gµa = gaµ, the right number to cancel the D2 bosonic degrees freedom, namely the

D(D+1)/2 degrees of freedom in the original metric gµν and the D(D−1)/2 bosonic degrees of

freedom in the antisymmetric components gab [15].

We are thus led to consider a novel type of supergravity, which we might reasonably christen

Parisi-Sourlas supergravity. Fortunately, very general supermanifolds have been extensively de-

veloped in ref. [54], and our construction will build on this. Obviously, for the construction to

be successful, we need to verify that it does actually provide the desired cancellation of quantum

corrections. The first step, which we take in this paper, is to understand more carefully the prop-

agating degrees of freedom around a flat background supermetric. After suitable supercoordinate

transformations, the latter must take the form:

gAB = δ̄AB =

δµν 0

0 εab

 , (1.3)

where we write the flat metric in the fermionic directions as the constant antisymmetric D×D

matrix εab. For the metric to be non-singular, εab must be invertible. The dimension D must

therefore be even. By supercoordinate transformations we can (and will from now on) set

det ε = 1 . (1.4)

To understand what new degrees of freedom have been introduced (i.e. over and above the

graviton), we decompose the superfields into their component fields and analyse their transforma-

tion properties under linearised superdiffeomorphisms. After appropriate gauge fixing, we isolate

the propagating degrees of freedom, and by diagonalising their kinetic terms, determine whether

they have the right sign, or wrong sign (and thus are ghost-like).

We will need these extra propagating degrees of freedom to decouple at energies much lower

than Λ. In gauge theory this is achieved by incorporating a U(N |N) ‘Higgs’ superfield, which

gains an expectation value of magnitude Λ, spontaneously breaking the fermionic directions and

providing Bµ, B̄µ with masses [24, 25]. We therefore expect to have to introduce some analogous

symmetry breaking, but we leave this step to a future paper.

In fact we already find that around the background metric (1.3), there is a sense in which some

spontaneous symmetry breaking takes place. The kinetic terms are diagonalised only with the help
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of an arbitrary mass scale M . These fields are then seen to have mass terms proportional to M .

However thanks to signs in the kinetic terms, the mass matrices do not behave in the normal way.

Instead expansion in M2/p2 terminates after a few powers (p being momentum). This behaviour

is explained by working in the alternative basis in which M does not appear. Here the fields are

seen to propagate into each other via propagators with a fixed power (1/p2)n. Despite the fact that

the action for the kinetic terms has a maximum of two space-time derivatives, the powers involve

not only the expected n= 1, but also higher powers n= 2, 3, these latter propagators thus having

improved ultraviolet behaviour.

The structure of the paper is as follows. In sec. 2, following closely ref. [54] we review the

notation and key formulae we will need, in particular giving the precise definition of (1.2). In sec.

3 we set up the action and expansion around the flat background (1.3). In sec. 4 we introduce

the mass-scale M and decompose superfields into components, with the help of the Hodge dual. In

sec. 5 we fix the gauge first by algebraic elimination, and then to a radiation gauge. Then finally

in sec. 6 we are ready to analyse the propagating degrees of freedom and their properties. In sec.

7 we summarise and draw our conclusions.

2 Supermanifolds: a review

We collect together here the basic material we will need to formulate Parisi-Sourlas supergravity.

We will mostly use notation, nomenclature and definitions from ref. [54]. For the moment we

work in D dimensions, although after we expand in component fields in sec. 4, it will be useful to

specialise the physically interesting case of D=4. Although ref. [54] allows for different numbers of

fermionic and bosonic coordinates we want the same number for reasons already explained, thus we

work on a superspace RDc ×RDa , and with indices A,B,C, . . . , such that A = (α, a) etc. The index

α labels c-type (commuting / bosonic) Euclidean coordinates, and a labels a-type (anticommuting

/ fermionic) partners.

A “c-type” supervector X has c-numbers in the first D places and a-numbers in the last D

places (with respect to a standard basis). Similarly, an “a-type” supervector has a-numbers in the

first D places and c-numbers in the last D places. In addition, we take indices to be on the left

or right, as well as up or down [54]. This denotes slightly different transformation properties (see

below). We use notations such as

(−1)A, (−1)X, (−1)XA (2.1)
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In this notation, A is not meant to be read as an index (in the sense of the Einstein convention) but

as a label which is 0 for A = α and 1 for A = a. For the supervector, we say (−1)X = 1 for X c-type,

and (−1)X = −1 for X a-type. In general, when an object or index appears in a power of (−1),

this is to be read as the value of its Z2 Grassmann grading (either 1 or 0). If X is c-type or a-type,

it is said to be a “pure” supervector. The above definitions only apply for pure supervectors, but

for our purposes we can extend formulae linearly since all supervectors can be expressed (uniquely)

as the sum of a c-type and an a-type supervector. When dealing with contractions, we take the

usual convention that we can only contract up indices with down indices, however also that the

“natural” contraction is between adjacent indices (with no object, index, supervector or otherwise

between them) or an index-dependent sign will appear.

A supervector space is defined in the same way as a vector space, except that it is a space

over RDc ×RDa and with left/right multiplication in general being different maps. In general we use

what DeWitt [54] calls a “standard basis” {Ae}, which has the following behaviour under complex

conjugation:

Ae∗ = (−1)AAe (2.2)

This means that a “real” supervector X = XA
Ae = X∗ has components which satisfy

XA∗ = (−1)XAXA. (2.3)

As a simple example let us spell this out. Using the fact that the degree of XA with respect to the

Z2 grading is given by (−1)X+A, and (2.2) in the final step,

XA
Ae = (XA

Ae)∗ = Ae∗XA∗ = (−1)A(X+A)XA∗
Ae∗ = (−1)AXXA∗

Ae . (2.4)

Normally, the index is enough to define the transformation when we change coordinates. For

example for a transformation purely in the bosonic sector:

Xµ 7→ X ′
µ

= XνKµ
ν = Xν ∂x

µ

∂xν
. (2.5)

However for supermanifolds, we need to distinguish whether the Jacobian matrix K acts from the

left or the right since we are dealing with non-commuting fields. Suppose we change basis:

Ae = AK
B
B ē . (2.6)

Since X has an independent meaning, it must be left unchanged. We are thus led to define

X̄A = XB
BK

A . (2.7)
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If {Ae} and {Aē} are both standard bases, it follows that if we write K in block form

K =

A B

C D

 , (2.8)

the entries of A and D are all c-numbers, and the entries of B and C are all a-numbers. Thus the

degree of AK
B is (−1)A+B.

With indices defined as both prefixes and suffixes, it begs the question as to what is meant by

AX. We note that:

X̄A = XB
BK

A = (−1)(X+B)(A+B)
BK

AXB = (−1)XA(−1)B(A+B)
BK

A(−1)XBXB , (2.9)

and thus we are led to define

AX = (−1)XAXA and AK∼B = (−1)B(A+B)
BK

A , so that AX̄ = AK∼B
BX , (2.10)

where we have defined the supertranspose of K. In order to have XA
Ae = eA

AX, we then have

eA = (−1)AAe (2.11)

as a definition for basis vectors with index on the left. The supertranspose can also be defined for

other index placements, and these are:

AL
∼B = (−1)A(A+B) BLA, AM

∼
B = (−1)A+B+AB

BMA,
AN∼B = (−1)AB BNA . (2.12)

With these definitions K∼∼ = K, while a supersymmetric matrix is one which satisfies K∼ = K.

Let {eA} be the dual basis to {Ae}. Then they act as a basis for forms. We write ω = eAAω

and define ω(X) = XA
Aω, where Aω has the expected degree (−1)ω+A. If we want to have

XA
Aω = (−1)ωXωA

AX then we must define

ωA = (−1)A(ω+A)
Aω . (2.13)

Note from (2.10), the difference in index-shifting conventions between up and down indices. This

behaviour carries over to tensors. For c-type matrices (i.e. those of the form of the coordinate

transformations) we define

K B
A = (−1)AAK

B, LAB = ALB, MAB = (−1)AAMB, NAB = ANB. (2.14)

Note that we are only able to move the leftmost right index to the left, and the rightmost left index

to the right. This generalises to c-type tensors so that shifting an upper index can be done for free,

whereas shifting a lower index comes with a (−1)A. With this convention we have, for example

K∼AB = (−1)ABKBA (2.15)
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and all matrices with both indices on the right have the same (−1)AB behaviour under supertrans-

position, meaning that for a supersymmetric matrix we have

SAB = (−1)ABSBA (2.16)

as one might naively expect.

Note that the different index-shifting conventions (2.10, 2.13) require care. For example,

Aδ
B, AδB, δAB (2.17)

all represent the Kronecker delta, but δ BA = (−1)AAδ
B does not. For a matrix with index positions

AK
B, we define the supertrace as

strK = (−1)AAK
B = K A

A , (2.18)

and similarly for ALB:

strL = (−1)A ALA = (−1)A LAA . (2.19)

Contrasting (2.18,2.19), we see again that with indices on the right, the “natural” index placement

leads to different behaviour. One can define the superdeterminant by working with [54]

δ ln sdetM = str(M−1δM) , (2.20)

with the condition that sdetI = 1 , in analogy with the determinant. The result is the Berezinian.

In particular

sdet

A 0

0 B

 =
detA

detB
. (2.21)

As usual, we define vector fields through their action on functions:

X(f) = XA

−→
∂

∂xA
f = XA

A,f (2.22)

with the obvious notation that indicates that the derivative acts from the left. Again care is required

since the usual notation f,A now means something slightly different. Indeed, we have

f,A = f

←−
∂

∂xA
= (−1)A(f+1)

A,f (2.23)

and other similar rules.

We wish to work in a Riemannian supermanifold and therefore have to define a metric. This is

a real, c-type, non-degenerate supersymmetric (0,2) tensor g. It defines a natural inner product

g(X,Y) = X·Y = XA
AgB

BY = (−1)XYg(Y,X) , (2.24)
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from which we get the transposition rules for g. They are none other than those of a supersymmetric

matrix. In particular if both indices are shifted to the right, then g satisfies (2.16):

gAB = (−1)ABgBA . (2.25)

We also have the inverse metric AgB = gAB, again supersymmetric, and which is defined by

AgBBgC = AδC , AgB
BgC = Aδ

C (2.26)

We can use the metric and its inverse to raise and lower indices on vector and tensor fields, however

taking care to use only “natural” contractions:

XA = XB
BgA, XA = XB

BgA, AX = AgB
BX, AX = AgB BX , (2.27)

so that right indices are raised/lowered with the first index on the metric, and left indices are raised

with the second index.

The Riemannian connection coefficients are then

ΓABC =
(−1)D

2
gAD

(
gDB,C + (−1)BCgDC,B − (−1)D(B+C)gBC,D

)
. (2.28)

In terms of these, the Riemann tensor is given by

RABCD = −ΓABC,D + (−1)CDΓABD,C + (−1)C(E+B)ΓAECΓEBD − (−1)D(E+B+C)ΓAEDΓEBC , (2.29)

and the Ricci tensor and scalar by

RAB = (−1)C(A+1)RCACB , R = RAB g
BA . (2.30)

Finally in order to compute the action of diffeomorphisms we need to the following formulae for

Lie derivatives on supermanifolds:

Lξf = ξf (2.31)

LξX = [ξ,X] (2.32)

Lξ(T (X,Y )) = (LξT )(X,Y ) + (−1)ξTT (LξX,Y ) + (−1)ξ(T+X)T (X,LξY ) (2.33)

where ξ,X, Y are vector fields, f is a function and T is a rank-(0,2) tensor on the supermanifold.
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3 Parisi-Sourlas supergravity

Recall from sec. 1, that the aim is to formulate a spontaneously broken Parisi-Sourlas supergravity

as the regularisation structure for a manifestly diffeomorphism-invariant renormalization group

equation. We assume that this can be built from the super-Einstein-Hilbert action:

S = −2

∫
dDθ dDx

√
gR/κ2 , (3.1)

where κ =
√

32πG is the natural coupling constant, G being Newton’s gravitational constant. The

factor of −2 is the correct factor for the Einstein-Hilbert action in Euclidean signature. It is not so

clear that it is the correct factor for a Parisi-Sourlas supergravity action, as we will discuss in sec.

6.1. In order for the wrong-statistics fields to have interactions that mimic as closely as possible

the original graviton interactions, we set the torsion to vanish and thus the connection is given by

the Riemannian one: (2.28).

In the current paper we set the cosmological constant term to zero. It may however play a crucial

rôle as we also point out in sec. 7. We take the base manifold to be flat RD and discard boundary

contributions, and assume a trivial bundle in the fermionic directions. This will be required for a

Wilsonian RG analysis, for example fixed points, since the manifold must remain invariant under

Kadanoff blocking [7], but this is also the obvious choice for determining the propagating degrees

of freedom, as we do in the remainder of the paper.

Recalling (2.24) and (2.10,2.13), we can now be precise about the formula (1.2):

ds2 = dxAAgB
Bdx = dxAAgB dx

B = (−1)AdxA gAB dx
B . (3.2)

Since gAB is a supersymmetric matrix, i.e. satisfies (2.25), if we define

gAB =

gµν gµb

gνa gab

 , (3.3)

then gµν = gνµ, gµa = gaµ and gab = −gba, as already assumed in the Introduction.

3.1 Kinetic terms around flat background

To find out what are the propagating degrees of freedom, we expand around the background metric

(1.3) to isolate the kinetic terms for fluctuations, writing to first order

gAB = δ̄AB + κhAB . (3.4)
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Since gAB = δ̄AB is trivially a solution to the vacuum super-Einstein equations, the above is

sufficient to get the O(κ0) part of (3.1), i.e. the bilinear terms for hAB. We put aside the factor of

−2 in (3.1), splitting the Lagrangian density (up to surface terms) as

L =
√
gR/κ2 = Lbb + Lbm + Lbf + Lmm + Lmf + Lff +O(κ) , (3.5)

naming the parts according to whether they involve the ‘bosonic’ fluctuation indices hµν , ‘mixed’

fluctuation indices hµa, or ‘fermionic’ fluctuation indices hab (labelled above as b, m, and f respec-

tively. Each of the matrix components themselves will have component fields (4.1) which are both

fermionic and bosonic.)

To raise super-indices, we use the background metric, δ̄AB, which recall is the matrix inverse

of Aδ̄B. In this case it is also consistent to raise bosonic indices with δµν and fermionic indices

with εab (the matrix inverse of aεb = −εab), taking the conventions on raising indices as detailed in

(2.27). From these one can verify that the inverse metric for AgB, is indeed

gAB = δ̄AB − κhAB , (3.6)

just as it is for the purely bosonic case, and where again we have used (2.10) to collect indices on

the right. In (3.1), g is the super-determinant (or Berezinian). By (1.4) and (2.21), sdet δ̄ = 1.

Then using (2.20), we have

√
g = 1 +

κ

2
str(Aδ̄BBhC) = 1 +

κ

2
(−1)A hAA = 1 +

κ

2

(
hµµ − haa

)
. (3.7)

Unpacking (2.28), we get six connection coefficients Γµνa = Γµaν and Γaνb = Γabν , and each

of these themselves contain six terms. These in turn are substituted into (2.29) and (2.30) to

give, before collection, approximately a hundred terms. Note that the right-derivatives gAB,C =

(−1)C(A+B+1)∂CgAB, cf. (2.23), and similarly ΓABC,D = (−1)D(A+B+C+1)∂DΓABC . Although we

write here ∂A with an index on the right in the usual way, this is really a left-index cf. (2.22). Thus

for example,

∂a∂
a = −∂a∂a , as with haa = −h a

a , but ∂aV
a = ∂aVa . (3.8)
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The final result is

Lbb =
1

4
∂ρh

µ
µ∂ρh

ν
ν +

1

2
hρρ∂µ∂νh

µν − 1

4
∂ρhµν∂

ρhµν +
1

2
∂νhµν∂ρh

µρ

− 1

4
∂ah

µ
µ∂

ahνν +
1

4
∂ahµν∂

ahµν ,

Lbm = −hµµ∂ν∂ahνa − ∂νhµν∂ahµa ,

Lbf =
1

2
∂ρ∂

ρhµµh
a
a +

1

2
hµµ∂

b∂bh
a
a −

1

2
haa∂µ∂νh

µν − 1

2
hµµ∂a∂bh

ab , (3.9)

Lmm = −1

2
∂νhµa∂

νhµa − 1

2
∂µh

µa∂νhνa −
1

2
∂bhµa∂

bhµa +
1

2
∂ahµa∂bh

µb ,

Lmf = haa∂µ∂bh
µb + ∂µhµa∂bh

ab ,

Lff =
1

4
∂µh

a
a∂

µhbb −
1

4
∂ch

a
a∂

chbb +
1

2
haa∂c∂dh

cd +
1

4
∂µhab∂

µhab

− 1

4
∂chab∂

chab +
1

2
∂bhab∂ch

ac .

Note that if we delete the terms with fermionic indices, we are left with the top line above. Up to

the discarded factor of −2 these are the standard graviton kinetic terms, i.e. identical in form to

the Fierz-Pauli action. For later purposes we write the latter as

LFP = −1

2
hαβ �

αβ,µν hµν , (3.10)

where �αβ,µν = � δα(µδν)β + · · · is the Fierz-Pauli differential operator. Of course this form follows

from the choice of Einstein-Hilbert form (3.1) of our super-action. However as usual it is also

fixed uniquely by invariance under linearised diffeomorphisms, or rather here the linearised super-

diffeomorphisms carrying purely bosonic indices (see below). The Fierz-Pauli form (3.10) then

yields a number of Fierz-Pauli actions for component fields, as we explain at the end of sec. 4.

3.2 Linearised super-diffeomorphisms

The above action for free fields is invariant under linearised super-diffeomorphisms applied to (3.4):

AhB 7→ AhB + A(Lξ δ̄)B , (3.11)

where the action of the Lie derivative is given by (2.33). We now unpack this definition to get the

gauge transformations for the fluctuation fields in (3.9), and verify that the resulting action (3.5) is

indeed invariant. In the remainder of the paper, the gauge transformations are then used to isolate

the true propagating degrees of freedom.

The expressions simplify on noting that the metric is a real c-type tensor, and also that for a

general supermanifold M , the Lie algebra of Diff(M) is generated by objects of the form Lξ, with
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ξ a c-type vector [54]. From (2.32) we have

(LξX)A = ξBB,X
A −XB

B,ξ
A and A(LξX) = −Aξ,BBX + AX,B

Bξ , (3.12)

where the second equation follows from the first on using index shifting rules (2.10,2.13), or by

swopping left for right derivatives. Using also (2.31) for the LHS of (2.33), the Lie derivative of

the (0, 2) tensor becomes:

ξC C,X
A
ATB

BY +XA ξC C,ATB
BY +XA

ATB ξ
C B
C, Y =

XA
A(LξT )B

BY + (ξC C,X
A −XC

C,ξ
A)ATB

BY +XA
ATB(−Bξ,C CY + BY,C

Cξ) . (3.13)

The terms where X is differentiated can be seen to cancel. The same for Y after some manipulation.

Thus since X and Y are arbitrary supervectors, we find:

A(LξT )B = ξCC,ATB + A,ξ
C
CTB + ATC

Cξ,B . (3.14)

Therefore from (3.11) we have

A(δξh)B = A,ξB + Aξ,B , (3.15)

and thus specialising the indices we have:

(δξh)µν = ∂µξν + ∂νξµ , (δξh)µa = ∂µξa − ∂aξµ = (δξh)aµ , (δξh)ab = −∂aξb + ∂bξa , (3.16)

the first equation of course being the usual formula for linearised bosonic diffeomorphisms. As

we already commented, this first equation, together with the requirement that the action has two

derivatives, is sufficient to guarantee (up to proportionality) the Fierz-Pauli form (3.10) for that

part of the action dependent on purely bosonic indices.

Since at the linearised level, (3.15) is again a tensor, using δ̄ and the rules (2.27), we also get

(δξh)AB = ∂AξB + (−1)B(A+1)∂Bξ
A , (3.17)

(δξh)AB = ∂AξB + (−1)AB∂BξA , (3.18)

and thus

(δξh)µν = ∂µξν + ∂νξµ , (δξh)µa = ∂µξa + ∂aξµ = (δξh)aµ , (δξh)ab = ∂aξb − ∂bξa , (3.19)

while summing over bosonic (fermionic) indices separately, gives:

(δξh)µµ = 2∂µξ
µ, (δξh)aa = 2∂aξ

a . (3.20)
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Applying (3.16), (3.19), (3.20) to (3.9) gives (up to integration by parts):

δξLbb = −∂ahµµ∂a∂νξν + ∂ah
µν∂a∂µξν ,

δξLbm = −∂µξµ∂ν∂ahνa − hµµ∂ν∂a(∂νξa + ∂aξν)− ∂ν∂νξµ∂ahµa − ∂νhµν∂a(∂µξa + ∂aξµ) ,

δξLbf = ∂ρ∂
ρhµµ∂aξ

a + ∂µξ
µ∂b∂bh

a
a − ∂aξa∂µ∂νhµν − ∂µξµ∂a∂bhab ,

δξLmm = −∂νhµa∂ν(∂µξa + ∂aξµ)− ∂νhνa∂µ(∂µξa − ∂aξµ) (3.21)

− ∂bhµa∂b(∂µξa + ∂aξµ) + ∂ahµa∂b(∂
µξb + ∂bξµ) ,

δξLmf = ∂aξ
a∂µ∂bh

µb + haa∂µ∂b(∂
µξb + ∂bξµ) + ∂µ(∂µξa + ∂aξµ)∂bh

ab − ∂µhµa∂b∂bξa ,

δξLff = ∂µh
a
a∂

µ∂bξ
a + ∂µhab∂

µ∂aξb .

Adding all of these together and comparing similar terms, confirms that δξL = 0 up to surface

terms, i.e. that the linearised action is gauge-invariant.

Finally, we remark that formula (3.18) can alternatively be derived from the Lie derivative of the

inverse metric A(Lξg)B, using the fact that its expansion, (3.6), then implies A(δξh)B = −A(Lξ δ̄)B.

For this we need also that for a (2,0)-tensor:

A(LξT )B = ξC A
C, T

B − Aξ,C
CTB − ATCC,ξ

B . (3.22)

This latter expression follows in a similar way to (3.14), namely via

Lξ(T (ω, χ)) = (LξT )(ω, χ) + T (Lξω, χ) + T (ω,Lξχ) , (3.23)

which holds for an arbitrary c-type (2,0)-tensor T and one-forms ω and χ, and on using the fact

that the Lie derivative of a one-form is given by

A(Lξω) = A,ξ
B
Bω + ξB B,Aω , (3.24)

(Lξω)A = ξBB,ωA + ωB
Bξ,A (3.25)

(as follows from considering ω(X) for arbitrary X). The result is again (3.18).

4 Field Decomposition

So far we have been working in general dimension D. At this point it becomes convenient to

specialise to the dimension of interest, D= 4, which we will do from now on. Since h is a field on

the supermanifold, it can be Taylor expanded in the θ coordinates as follows:

h(x, θ) = h(x) +Mθah|a(x) +M2θaθbh|ab(x) +M3θaθbθch|abc(x) +M4θaθbθcθdh|abcd(x) (4.1)
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(we will omit the arguments where there is no confusion). Since we have set D = 4, and θa

is Grassmann, the expansion stops at θ4. The vertical bar is there to distinguish between this

superfield expansion and the spacetime indices on hAB, which latter we temporarily suppress.

To keep numbers simple in the following, the component fields absorb a factor of 1/n! compared

to the Taylor expansion coefficients:

Mn h|a1···an(x) =
1

n!
∂an · · · ∂a1h(x, θ)

∣∣∣
θ=0

. (4.2)

We assign mass dimension [θa] = −1 to the fermionic coordinates so that the supercoordinates

xA in (1.1), have definite mass dimension. As discussed in the Introduction, the component fields

h|a1···an are destined to become part of the regulating structure for the graviton. It is convenient

then to keep them all the same dimension as [h(x, θ)] = [hµν ] = 1. This is why we introduce an

arbitrary mass scale M .

On integrating over d4θ, the only non-vanishing terms are those with exactly 4 powers of θ.

These are then proportional to εabcd, the Levi-Civita symbol in 4 dimensions. The proportionality

constant is our choice in defining the measure. We thus set∫
d4θ θaθbθcθd = M−4 εabcd , (4.3)

where the factor M−4 together with (4.1) ensures that terms with two space-time derivatives (i.e.

bosonic ∂µ) come out correct dimensionally.

The formulae also come out neater, if we utilise a Hodge dual in the θ space:5

∗h = εabcdh|abcd , ∗h|a = εabcdh|bcd , ∗h|ab =
1

2
εabcdh|cd . (4.4)

For completeness we further define

∗h|abc =
1

6
εabcdh|d , ∗h|abcd =

1

24
εabcdh , (4.5)

and for neatness define ∗∂µh = ∂µ∗h. We define the Hodge dual of the lower index expressions in

the same way, using the Levi-Civita symbol written as εabcd. Thus we have

∗(∗h)|a1...an = (−1)nh|a1...an , (4.6)

as expected for an even number of dimensions. We will also make use of the following standard

formula:

εi1...ikik+1...i4εi1...ikjk+1...j4 = k! δ
ik+1...i4
jk+1...j4

(4.7)

5Notice that Hodge duality here plays a purely algebraic rôle. There are no topological implications unlike its use

for forms in standard supergravity. (See also comments at the end of the paper.)
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where the generalised Kronecker δ is the sum over all products of Kronecker δinjm including the sign

of the permutation required to get from the upper to the lower indices. Then for any two metric

components h and h′, we have∫
d4θ ∂µh∂νh

′ = ∂µh∗∂νh′ − (−1)h∂µh|a∗∂νh′
|a

+ 2∂µh|ab∗∂νh′
|ab

+ (−1)h∗∂µh|a∂νh′|a + ∗∂µh∂νh′,∫
d4θ ∂µh∂ah

′ = −(−1)hM∂µh|a∗h′ − 2M∂µh|ab∗h′
|b

+ 2(−1)hM ∗∂µh|bh′|ab +M ∗∂µhh′|a , (4.8)∫
d4θ ∂ah∂µh

′ = Mh|a∗∂µh′ + 2(−1)hMh|ab∗∂µh′
|b − 2M ∗h|b∂µh′|ab − (−1)hM ∗h∂µh′|a ,∫

d4θ ∂ah∂bh
′ = 2(−1)hM2h|ab∗h′ −M2εabcd∗h|c∗h′

|d
+ 2(−1)hM2∗hh′|ab

(the third equation also following from the second by symmetry). Thus, expanding the part of the

action with bosonic metric components, we get

Lbb = 2∂ρϕ ∗∂ρϕ− 2∂µϕ|a∂
µϕ|a + 2∂ρϕ|ab∗∂ρϕ|ab + ϕ ∗∂µ∂νhµν − ϕ|a∂µ∂ν ∗ hµν|a

+ 2ϕ|ab∗∂µ∂νhµν|ab + ∗ϕ|a∂µ∂νhµν |a + ∗ϕ∂µ∂νhµν −
1

2
∂ρhµν∗∂ρhµν +

1

2
∂ρhµν|a∗∂ρhµν|a

− 1

2
∂ρhµν|ab∗∂ρhµν|ab + ∂νhµν∗∂ρhµρ − ∂νhµν|a∗∂ρhµρ|a + ∂νhµν|ab∗∂ρhµρ|ab

− εabM2

(
4ϕ|ab∗ϕ− εabcd∗ϕ|c∗ϕ|d − hµν|ab∗hµν +

1

4
εabcd∗hµν |c∗hµν|d

)
, (4.9)

where we write

ϕ =
1

2
hµµ . (4.10)

We have also taken the opportunity to make the inverse metric component εab explicit, where in

(3.9) it was used to raise an index. Similarly we find

Lbm = M

(
2∂µϕ|a∗hµa − 4∂µϕ|ab∗hµa|b − 4∗∂µϕ|bhµa|ab + 2∗∂µϕhµa|a

− ∂νhµν|a∗hµa + 2∂νhµν|ab∗hµa|b + 2∗∂νhµν |bhµa|ab − ∗∂νhµνhµa|a
)
,

Lbf = 2ϕ∗�χ− 2ϕ|a∗�χ|a + 4ϕ|ab∗�χ|ab + 2∗ϕ|a�χ|a + 2∗ϕ�χ+ ∂µχ∗∂νhµν (4.11)

− ∂µχ|a∗∂νhµν|a + 2∂µχ|ab∗∂νhµν|ab + ∗∂µχ|a∂νhµν |a + ∗∂µχ∂νhµν

+M2
(
εab
[
4χ|ab∗ϕ− 2εabcd∗χ|c∗ϕ|d + 4∗χϕ|ab

]
+ 2ϕ|ab∗hab − εabcd∗ϕ|c∗hab|d + 2∗ϕhab|ab

)
,

where we have also written

χ =
1

2
haa . (4.12)
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And finally,

Lmm = −∂νhµa∗∂νhµa − ∂νhµa|b∗∂νhµa|b − ∂νhµa|bc∗∂νhµa|bc

− ∂µhµa∗∂νhνa − ∂µhµa|b∗∂νhνa|b − ∂µhµa|bc∗∂νhνa|bc

− 1

2
M2εab

(
4∗hµchµc|ab − εabcd∗hµe|c∗hµe|d − 4hµ

a
|ab∗hµb + εabcd∗hµa|c∗hµb|d

)
,

Lmf = M

(
2∂µχ|a∗hµa + 4∂µχ|ab∗hµa|b − 4∗∂µχ|bhµa|ab − 2 ∗ ∂µχhµa|a

+ ∂µhµa|b∗hab − 2∂µhµa|bc∗hab|c − 2∗∂µhµa|chab|bc + ∗∂µhµahab|b
)
,

Lff = 2∂µχ∗∂µχ− 2∂µχ|a∗∂µχ|a + 2∂µχ|ab∗∂µχ|ab (4.13)

+
1

2
∂µhab∗∂µhab −

1

2
∂µhab|c∗∂µhab|c +

1

2
∂µhab|cd∗∂µhab|cd

−M2εab
(

4χ|ab∗χ− εabcd∗χ|c∗χ|d + hcd|ab∗hcd −
1

4
εabcd∗hef |c∗hef |d

)
+M2

(
2χ|ab∗hab + 2∗χhab − εabcd∗χ|c∗hab|d − 2ha

b
|bc∗hac +

1

2
εcdef ∗hac|e∗had|f

)
.

This system can now be recast as graviton fields plus partners, where the latter are to form

part of the regulating structure. In particular note that inside Lbb as written in (4.9) are a number

of copies of the standard Fierz-Pauli action for graviton fields. They now appear as6

1

2
hαβ �

αβ,µν ∗hµν +
1

4
εabcdhαβ|ab�

αβ,µν hµν|cd . (4.14)

The appearance of the Fierz-Pauli operator (3.10) for any component of the super-field hµν , is

guaranteed by the standard (bosonic) diffeomorphism invariance generated by ξµ(x). Although

�αβ,µν now couples different fields on the left and right, the above action can be diagonalised.

The first term then yields a correct sign Fierz-Pauli action for one diagonal component and thus

a candidate for the graviton, and a wrong sign Fierz-Pauli action for the other component, which

is thus a ghost (as we will see worked out effectively later in (6.14) and (6.15)). The second term

likewise provides a further six fields, three of which will have the right sign action and thus at this

stage are also candidate gravitons, and a further three which are ghosts.

Apparently we should conclude that there are thus four separate graviton fields at the free level.

This is the wrong answer. There is just one, or two, depending on some choices of sign. The mistake

is to ignore the mixing of these graviton-like fields to the other fields in the theory, as appear in the

rest of (4.9) and the other sectors displayed above, and also to ignore the larger local invariances

6There is also hµν|a�
αβ,µν ∗hµν |a. These fields are fermionic so do not correspond to gravitons.
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provided by the full super-diffeomorphism invariance. These two effects imply that some of these

degrees of freedom propagate in a way that cannot be identified with the graviton, while others are

pure gauge.

5 Gauge fixing

In fact, to understand correctly what are the real candidate gravitons and what are their partners,

we need first to fix the super-gauge invariance. To get a clear picture, we leave till last the standard

(bosonic) diffeomorphism invariance generated by ξµ(x), but remove redundancy by using ξa(x, θ)

and all the other components of ξµ(x, θ) to eliminate as many degrees of freedom as we can.

In analogy with spontaneously broken gauge symmetry, we begin by choosing “unitary gauge”

where possible, i.e. proceed by the local algebraic elimination of fields. Finally to fully isolate

propagating degrees of freedom in this theory, we will fix to a radiation gauge, first for a remaining

supersymmetry, and then for standard diffeomorphisms.

Starting with (3.16), we have

δξhab(x) = 2Mξ[a|b](x) , δξhab|c = 4Mξ[a|b]c , δξhab|cd = 6Mξ[a|b]cd , δξhab|cde = 8Mξ[a|b]cde ,

δξhab|cdef (x) = 0 . (5.1)

In all cases on the first line, the RHS takes the most general form for a function that is antisymmetric

in a and b. Therefore we can fix ξ[a|b]··· :=
1
2(ξa|b···− ξb|a···) so that all hab|... = 0, i.e. are eliminated,

except for hab|cdef which normally appears as ∗hab and is gauge invariant.

Next from (3.16), we look at

δξhµa(x) = ∂µξa(x)−Mξµ|a(x) , δξhµa|b = ∂µξa|b − 2Mξµ|ab , δξhµa|bc = ∂µξa|bc − 3Mξµ|abc ,

δξhµa|bcd = ∂µξa|bcd − 4Mξµ|abcd , δξhµa|bcde = ∂µξa|bcde . (5.2)

We see that we can fix ξµ|a to eliminate hµa, and we can also fix ξµ|ab··· to set hµ[a|b]··· = 0, with the

exception of hµa|bcde, similar to above. At this point note that there is no tensor that has symmetry

on the first two indices and antisymmetry on the second two. Indeed, in such a case we would have

Tabc = Tbac = −Tbca = −Tcba = Tbca = −Tbac = −Tabc (5.3)

and thus Tabc = 0. This means that hµa|bc··· and ξa|bc··· are automatically antisymmetric in a and

b. Therefore we have actually entirely eliminated ∗hµa|b and hµa|bc (equivalently ∗hµa|bc). For the

same reasons, the final gauge transformation in (5.2) no longer exists, ξa|bcde having been fixed
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entirely by setting hab|cde = 0 in (5.1). We see therefore that the remaining ∗hµa is now invariant,

and the only other remaining field components are hµ(a|b) = 1
2(hµa|b + hµb|a), which transform as

δξhµ(a|b) = ∂µξ(a|b) . (5.4)

Although no longer active in changing hµa, we still have a gauge invariance generated by ξa(x).

But by (5.2), any further change δξa = ξ′a, must be accompanied by δξµ|a = ξ′µ|a, such that

ξ′µ|a =
1

M
∂µξ
′
a , (5.5)

in order to maintain hµa(x) = 0.

Evidently from (4.9), Lbb is unchanged by the above partial gauge fixing, but all other parts of

the Lagrangian are profoundly altered. Firstly, we can clearly see that in (4.13), Lmm = Lff = 0,

as at least one component in every bilinear now vanishes. Similarly, noting for example that now

hµa|a = 0 (since the matrix used to raise a is antisymmetric), Lmf = 0, while Lbm collapses to

Lbm = M
(
2∂µϕ|a∗hµa − ∂νhµν|a∗hµa

)
, (5.6)

and, by eliminating all but ∗hab or ∗χ in (5.1), we are left in Lbf only with:

Lbf = 2ϕ�∗χ+ ∗∂µχ∂νhµν + 4M2εab∗χϕ|ab + 2M2ϕ|ab∗hab . (5.7)

Note that although we still have the mixed fluctuation field and gauge transformation (5.4), we see

that the remaining terms (5.6) in the free action, do not depend on them. However at the inter-

acting level these degrees of freedom could thus act as Lagrange multipliers, leading to important

constraints.

This is as far as we can go purely algebraically. Next we note from (3.16) and (5.5) that we

have the remaining gauge invariance

δξ′hµν|a = ∂µξ
′
ν|a + ∂νξ

′
µ|a =

2

M
∂µ∂νξ

′
a =⇒ δξ′ϕ|a =

�
M
ξ′a , (5.8)

and with a Green’s function, we can use ξ′a to fix the radiation-type gauge ϕ|a = 0. This reduces

both Lbb, cf. (4.9), and Lbm above. Since we still have ξµ(x) gauge invariance, we are now free to

choose traceless transverse gauge for hµν(x), which means in particular that ϕ = 0, cf. (4.10). This

also removes terms from Lbf .
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Apart from (5.4) which plays no rôle at the free level, we have at this point completely fixed

the gauge invariance. Combining all remaining terms we can re-express (3.5) as L = Lo+Le where

Le = 2∂µϕ|ab∗∂µϕ|ab + 2ϕ|ab∗∂µ∂νhµν|ab −
1

2
∂ρhµν∗∂ρhµν −

1

2
∂ρhµν|ab∗∂ρhµν|ab (5.9)

+ ∂νhµν|ab∗∂ρhµρ|ab − 4M2εabϕ|ab∗ϕ+M2εabhµν|ab∗hµν + 4M2εabϕ|ab∗χ+ 2M2ϕ|ab∗hab ,

Lo = ∗ϕ|a∂µ∂νhµν |a +
1

2
∂ρhµν|a∗∂ρhµν|a − ∂νhµν|a∗∂ρhµρ|a −M∂νhµν|a∗hµa (5.10)

+M2εabεabcd ∗ϕ|c∗ϕ|d −
1

4
M2εabεabcd ∗hµν |c∗hµν|d ,

collects together the bosonic field kinetic terms, and fermionic field kinetic terms, respectively.

6 Propagating degrees of freedom

6.1 Bosonic sector

With the Lagrangian now in this form, we note that ∗hab (and ∗χ, but this is part of ∗hab) acts as

a Lagrange multiplier, imposing the condition:

ϕ|ab + εab ε
cdϕ|cd = 0 . (6.1)

Contracting with εab (and using εabεab = 4) then establishes that ϕ|ab = 0, thus Le collapses to:

Le = −1

2
∂ρhµν∗∂ρhµν −

1

2
∂ρhµν|ab∗∂ρhµν|ab + ∂νhµν|ab∗∂ρhµρ|ab +M2εabhµν|ab∗hµν . (6.2)

Note that hµν|ab, and ∗hµν|ab are now traceless on their first two indices.

To diagonalise the remaining bosonic kinetic terms in (6.2) it is clearly now helpful to write

hµν|ab =
1

2
εab h

‖
µν + h⊥µν|ab , (6.3)

where

εabh⊥µν|ab = 0 ⇐⇒ h‖µν =
1

2
εabhµν|ab . (6.4)

However we see from (6.2) that this will result in the appearance of ∗εab, the Hodge dual of εab.

In fact this Hodge dual is proportional to the inverse metric εab:

∗εab =
1

2
εabcdεcd = s εab . (6.5)

Here we recall the definition (4.4), and introduce s, the Pfaffian of εab:

s =
1

8
εabcdεabεcd . (6.6)
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This identity (6.5) actually holds for any 4×4 invertible antisymmetric matrix aεb = −εab and its

inverse εab. It is most easily seen by first rotating to a basis in which εab is block-diagonal:

εab = λ1iσ2 ⊕ λ2iσ2 =⇒ s = λ1λ2 and εab = iσ2/λ1 ⊕ iσ2/λ2 , (6.7)

iσ2 being the totally antisymmetric symbol in two dimensions, σ2 being the 2nd Pauli matrix.

Finally note that, since the Pfaffian satisfies det ε = s2 and since we have normalised det ε = 1, cf.

(1.4), we actually have s = ±1.

Taking the Hodge dual of (6.3) and using (6.5), we get

∗hµν |ab =
s

2
εab h‖µν + ∗h⊥µν |ab . (6.8)

Contracting with εab and using (6.5) and (6.4) then establishes that

∗hµν |abεab = 2s h‖µν and ∗h⊥µν |abεab = 0 . (6.9)

Now substituting (6.3) and (6.8) into (6.2), and using (6.4) and (6.9), leaves us with

Le = −1

2
∂ρhµν∗∂ρhµν −

s

2
∂ρh
‖
µν∂

ρh‖µν + s ∂νh‖µν∂ρh
‖µρ + 2M2h‖µν∗hµν

− 1

2
∂ρh
⊥
µν|ab∗∂

ρh⊥µν|ab + ∂νh⊥µν|ab∗∂ρh
⊥µρ|ab . (6.10)

We see from the second line, that the perpendicular components propagate amongst themselves.

These kinetic terms are diagonalised by using (4.6) to define the (anti)self-dual combinations:

h⊥±µν|ab =
1

2
(h⊥µν|ab ± ∗h

⊥
µν
|ab) . (6.11)

Note that covariant and contravariant a-type indices are here identified, so the definition is basis

dependent. However it makes it clear that the kinetic terms split into fields that propagate with

the right sign, and ghost-like fields that propagate with the wrong sign:

− 1

2
∂ρh
⊥+
µν|ab∂

ρh⊥+µν |ab + ∂νh⊥+µν|ab∂ρh
⊥+µρ

|ab +
1

2
∂ρh
⊥−
µν|ab∂

ρh⊥−µν |ab− ∂νh⊥−µν|ab∂ρh
⊥−µρ

|ab , (6.12)

although none of these can be regarded as physical since they are massless but all 9 traceless

(µν) polarisations propagate for all [ab]. Thus these will all have to gain a regulator mass when

spontaneous symmetry breaking is imposed. Note that these are a subset of the fields in (4.14),

that we might have mistaken as graviton degrees of freedom.

Meanwhile from the rest of (6.10), ∗hµν imposes

�hµν + 4M2h‖µν = 0 , (6.13)
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and so we can deduce that since hµν has been gauge fixed to be transverse traceless, then h
‖
µν is

also transverse traceless. Additionally we see that while the rest of ∗hµν behaves as a Lagrange

multiplier, its transverse traceless part, ∗httµν , propagates through hµν . Defining

h±µν =
1

2
(hµν ± ∗httµν) (6.14)

(similar to (6.11) but however this time basis independent) we see from (6.10) that one of these

could be identified with the graviton and one must be a ghost with wrong sign kinetic term:

− 1

2
∂ρh

+
µν∂

ρh+µν +
1

2
∂ρh
−
µν∂

ρh−µν − s

2
∂ρh
‖
µν∂

ρh‖µν + 2M2h‖µν(h+µν − h−µν) . (6.15)

Which has the right sign depends on the sign chosen for the action: see (3.5) and the discussion

below (3.1). By choosing the sign s of the Pfaffian, we can also ensure that h
‖
µν propagates with

the right sign. Since it has only the two transverse polarisations, it too could qualify as the

graviton. Since we cannot have a theory with two gravitons that self-interact [59], only one of these

two contenders could ultimately play the rôle. Which gets chosen will depend on the symmetry

breaking mechanism.

The three fields in (6.15) are coupled together by what appear to be mass terms. Writing

XT
µν = (h+µν , h

−
µν , h

‖
µν), UT = (1,−1, 0), V T = (0, 0, 1) and D = diag(1,−1, s), (6.15) takes the form

1

2
XT
µνD�Xµν +M2XT

µνAX
µν , (6.16)

where A = UV T + V UT . If the kinetic terms were all of the right sign, the mass matrix 2M2A

could be diagonalised, but the presence of ghosts prevents this. In fact, setting the normalisation

of the action to −1/α (so that in (3.1), α = 1/2), the propagator is

〈Xµν(p)XTρσ(−p)〉 = αΠρσ
µν ∆ , (6.17)

where Πρσ
µν is the transverse traceless projector on the space of symmetric tensor fields, and the

reduced propagator

∆ = 〈XXT 〉 = (p2D − 2M2A)−1 = D/p2 + 2M2DAD/p4 + 4M4DADAD/p6 . (6.18)

The expansion in 1/p2 terminates because (DA)3, equivalently (AD)3, vanishes. Therefore the

mass matrix in (6.15) does not actually result in masses but rather encodes further propagator-

like contributions with improved ultraviolet behaviour (1/p4 and 1/p6 respectively). Introducing
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W T = (1, 1, 0), we have DAD = s(WV T + VW T ) and DADAD = sWW T , and thus read off:

〈h+h+〉 =
1

p2
+ 4s

M4

p6
, 〈h−h−〉 = − 1

p2
+ 4s

M4

p6
, 〈h‖h‖〉 =

s

p2
,

〈h+h−〉 = 4s
M4

p6
, 〈h+h‖〉 = 2s

M2

p4
, 〈h−h‖〉 = 2s

M2

p4
. (6.19)

This behaviour can be understood as follows. Recall that the mass scale M was introduced in

(4.1) and is arbitrary. Therefore it would make no sense if it resulted in propagators that contain

M as a genuine mass. In fact recalling also (4.3), we can eliminate M by rescaling

h|a1···ap 7→M−p h|a1···ap , α 7→M−4 α . (6.20)

Since this means that the fields now have differing dimensions [h] = 1, [h‖] = 3 and [∗h] = 5, and

M is no longer available to fix dimensions, non-vanishing propagators for these fields must have

a unique power of p as determined by dimensions, which may thus differ from the standard 1/p2.

Note that the (anti)self-dual fields (6.14) no longer have a well defined mass dimension, so to see

this effect we need to work in the original basis. From (6.18) we read off,

〈hh〉 =
W T∆W

M4
= 16

s

p6
, 〈∗h ∗h〉 = M4UT∆U = 0 , 〈h‖ h‖〉 = V T∆V =

s

p2
,

〈h ∗htt〉 = W T∆U =
2

p2
, 〈hh‖〉 =

W T∆V

M2
= 4

s

p4
, 〈∗hh‖〉 = M2UT∆V = 0 , (6.21)

where a factor of 1/M4 is provided by rescaling α in (6.17). We see that indeed M has disappeared,

and that the propagators are dimensionally correct on recalling that [α] = 4 now in (6.17).

6.2 Fermionic sector

Finally we turn to the remaining fermionic fields, (5.10). Taking the Hodge dual of (6.5) and using

(4.6) and s2 = 1,7 we have

∗εab :=
1

2
εabcdε

cd = s εab . (6.22)

Evidently this is also what one gets by lowering indices on (6.5) using (2.27), so the notation is

unambiguous. Noting that ∗hµa now behaves as a Lagrange multiplier imposing transversality

(Lorentz gauge), ∂νhµν|a = 0, (5.10) further simplifies (to just three terms). It is however clear

that at this stage we should fully split into transverse traceless and transverse traceful degrees of

freedom:

hµν|a(p) = httµν|a(p) +
2

3
Πt
µν(p)ϕ|a(p) , ∗hµν|a = ∗httµν|a +

2

3
Πtµν∗ϕ|a , (6.23)

7or note that since (6.5) holds for any 4×4 invertible antisymmetric matrix it holds for εab, and its Pfaffian 1/s.
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where

Πt
µν(p) = δµν −

pµpν
p2

(6.24)

is the transverse traceful part (the projector on vector fields into the transverse space), the trans-

verse traceless modes satisfy httµµ|a = 0 and ∗httµ µ|a = 0, and the coefficient 2/3 is fixed by taking

the trace and comparing with the definition (4.10). Then in

Lo = −1

2
∂ρh

tt
µν
|aεab ∗∂ρhttµν|b−

s

2
M2∗httµν |aεab ∗httµν|b−

2

3
∂ρϕ

|aεab∗∂ρϕ|b+
4

3
sM2∗ϕ|aεab∗ϕ|b , (6.25)

the traceless and traceful modes decouple. These fields are wrong-statistics and thus must all be

made to gain a mass via some future symmetry breaking mechanism. Again despite appearances,

M does not play this rôle. Writing Y Ta = (ϕ|a, ∗ϕ|a) and writing the projectors σ± = 1
2(1l ± σ3),

the transverse traceful part of the action is

1

3
Y Ta εab

(
σ1� + 2sM2σ−

)
Y b , (6.26)

where the σi are the Pauli matrices. With normalisation factor above (6.17), the propagator is then

〈Y a(p)Y Tb(−p)〉 = −3α

2
εab(p2σ1 − 2sM2σ−)−1 = −3α

2
εab
(
σ1
p2

+ 2sM2σ+
p4

)
, (6.27)

the expansion in 1/p2 terminating because σ1σ−σ1σ−σ1 = σ+σ−σ1 = 0. We thus see that

〈ϕ|a ϕ|b〉 = −3αsM2 ε
ab

p4
, 〈∗ϕ|a ∗ϕ|b〉 = 0 , 〈ϕ|a ∗ϕ|b〉 = −3α

2

εab

p2
. (6.28)

We see again the same effect: the mass term in (6.26) does not actually behave as a mass but

rather provides propagators with improved ultraviolet behaviour. Again this can be understood

by dimensions and by the fact that M is arbitrary. Indeed we see that the transformation (6.20)

removes all reference to M .

Since from (6.25), the pattern is the same for the transverse traceless modes, we have immedi-

ately that

〈httµν |a httρσ|b〉 = αsM2Πρσ
µν

εab

p4
, 〈∗httµν |a ∗httρσ|b〉 = 0 , 〈httµν |a ∗httρσ|b〉 = −2αΠρσ

µν

εab

p2
. (6.29)

7 Summary and discussion

As reviewed in sec. 1, the Parisi-Sourlas regularisation works in gauge theory by adding to the

original gauge field A1
µ, a complex pair of fermionic gauge fields Bµ, B̄µ and a ghost copy, A2

µ. For
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the pure SU(N |N) gauge theory at the free level, only the two transverse polarisations propagate

for all these fields and they are decoupled from each other.

In the analogous situation in gravity, the solution already at the free level is much richer and

more subtle. We have to expand around a non-vanishing background, (1.3), which in a sense

already leads to some spontaneous symmetry breaking. However the resulting mass-like terms do

not actually provide masses but are responsible for providing further propagators with improved

ultraviolet behaviour (viz. 1/p4 and 1/p6).

The propagating modes even at the free level are not just transverse traceless ones, as expected

for the graviton. The transverse traceless bosonic modes form a multiplet, hµν(x), ∗httµν(x) and

h
‖
µν(x), that propagate into each other through 1/p2 and higher powers, according to (6.21). Defin-

ing (anti)self-dual combinations (6.14) out of the first pair, one of h±µν is a ghost, while the other

has the right sign propagator, cf. (6.15) and (6.19). We also saw that h
‖
µν can have either sign

propagator depending on the sign of s (the Pfaffian of the fermionic part εab of the flat metric).

h
‖
µν is the part of hµν|ab(x) that is parallel to εab. As we saw in (6.12), the perpendicular part,

h⊥±µν|ab, is traceless but not transverse. They do not mix; one propagates as a real field while the

other propagates as a ghost-field cf. (6.12).

This summarises all the bosonic propagating modes. The fermionic modes hµν|a and ∗hµν|a

are wrong-statistics fields, thus intended to be Pauli-Villars. They are all transverse but split into

transverse traceless and transverse traceful. Each of these form a doublet propagating into each

other with 1/p2 and 1/p4 propagators, according to (6.29) and (6.28) respectively.

Turning to the non-propagating modes, all of the hab(x, θ) superfield is eliminated algebraically

via the linearised superdiffeomorphisms (5.1), except for ∗hab(x). This latter is gauge invariant

but becomes a Lagrange multiplier enforcing the tracelessness of hµν|ab(x) (on its first two indices).

Similarly all of hµa(x, θ) can be gauged away, apart from ∗hµa(x) which is gauge invariant but

behaves as a Lagrange multiplier imposing transversality of the propagating fermionic modes. A

remaining ξ′a(x) gauge invariance allows to impose the radiation gauge ϕ|a = 0, cf. (5.8), while the

original bosonic gauge invariance carried by ξµ(x) allows to choose hµν(x) to be transverse traceless.

Finally, the vector field hµ(a|b)(x) is special in that it and its gauge invariance, (5.4), are un-

touched and absent from the free action. At the interacting level, it could act as a Lagrange

multiplier leading to constraints on the form of the allowed spontaneous symmetry breaking.

Finding such a symmetry breaking is the next most important step in this construction. One

can expect to need to induce all modes to gain a mass, apart from the graviton, analogous to

that achieved for U(1|1) gauge theory in ref. [48], since the kind of decoupling otherwise seen
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in gauge theory, cf. sec. 1 [28], is unlikely to be effective here. In view of the similarity of a

cosmological constant term to a mass-term for the graviton when expanded around flat space, this

seems a promising starting point. Of course in normal bosonic (Einstein) gravity, a cosmological

constant does not provide a mass-term since diffeomorphism invariance is still unbroken, and the

linearised part ∝ κϕ, cf. (3.7) and (4.10), is anyway more important, signalling that flat space is

no longer a classical solution. Here however we see from (3.7) that the cosmological constant will

induce curvature only in ∗hµν(x) and ∗hab(x) to first order (since by (4.3) and (4.4) only these

components have non-vanishing integrals to first order in κ). In the cosmological constant term,

h
‖
µν appears first only at second order where, thanks to (6.6), it takes the form of a mass-term.

The properties of this Parisi-Sourlas supergravity construction already clearly differ from stan-

dard realisations of supergravity. We highlight where these differences enter and compare to other

extensions of supergravity. In standard (N = 1, D = 4) supergravity there are also four fermionic

coordinates but they are cast as a complex conjugate pair of two-component coordinates θα and

θ̄α̇. Most importantly we set the torsion field to vanish, in order for the regularising structure to

maintain the close similarity to the graviton interactions in the Einstein-Hilbert action. In the stan-

dard realisation of supergravity the torsion field is non-vanishing even in flat space, being related

to the Pauli matrices σµαα̇ ∼ (i,σ), and the tangent space symmetry of θα and θ̄α̇ is then tied to the

bosonic vectorial Lorentz representation, see e.g. [53]. The Parisi-Sourlas supergravity developed

here could therefore be viewed as a kind of deformation of standard supergravity. Since expan-

sion over the θa leads to component fields carrying antisymmetric vectorial indices (the fermionic

a, b, · · · ) reminiscent of forms, and thus also leading to fields with mixed representations, it has

some superficial resemblance to Generalized Geometry [55, 56]. However the indices a, b, · · · are

not associated to the cotangent bundle but belong to a new space. This latter property gives the

theory also an apparent resemblance to Double Field Theory [57,58], although there is no doubling

of the bosonic coordinates here or relation to T -duality.
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