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This article proposes a novel adaptive design algorithm that can be used to find opti-
mal treatment allocations in N-of-1 clinical trials. This new methodology uses two
Laplace approximations to provide a computationally efficient estimate of population
and individual random effects within a repeated measures, adaptive design frame-
work. Given the efficiency of this approach, it is also adopted for treatment selection
to target the collection of data for the precise estimation of treatment effects. To eval-
uate this approach, we consider both a simulated and motivating N-of-1 clinical trial
from the literature. For each trial, our methods were compared to the multi-armed
bandit approach and a randomised N-of-1 trial design in terms of identifying the best
treatment for each patient and the information gained about the model parameters.
The results show that our new approach selects designs that are highly efficient in
achieving each of these objectives. As such, we propose our Laplace-based algorithm
as an efficient approach for designing adaptive N-of-1 trials.
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1 INTRODUCTION

Research in evidence-based medicine is increasingly moving towards informing individualised clinical care. This has led to

renewed interest in N-of-1 clinical trials as they provide the strongest level of evidence for individual decisions.1 In N-of-1

trials, patients undergo a series of treatment periods called cycles where each patient receives each treatment (active or placebo)

sequentially in a randomised order. This allows each treatment to be trailed on each patient, enabling patients to act as their own

control. A major benefit of such a design is that individual and population treatment effects can be estimated through hierarchical

modelling approaches as proposed by Zucker et al.2 However, one potential drawback of such a design is that it remains fixed
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throughout the entire trial. This is potentially limiting as data collected throughout the trial are not used to target informative

treatment allocations. For this purpose, we propose a novel adaptive design algorithm for the selection of treatments that target

the estimation of both population and individual treatment effects. Such an approach will therefore provide more informative

and efficient N-of-1 trials, ensuring the right treatment is selected for the right patient in personalised care.

N-of-1 trials are typically used to test new and/or competing treatments for chronic diseases that are relatively stable over

time. In typical N-of-1 clinical trials, treatments do not permanently change the disease or condition, and therefore, once off

treatment, the patient will return to their underlying stable state (after a sufficiently long wash-out period). Such features may

seem restrictive in practice, however, N-of-1 trials have been applied widely to inform clinical care for, for example, arthritis,

asthma, insomnia, attention deficit hyperactivity disorder, hypertension, sleep disturbance, and fatigue from cancer.3–8 Most

notably, N-of-1 trials will typically recruit far fewer patients than randomised controlled trials making them suitable for smaller

patient cohorts such as those with rare diseases.9,10 Further, given individual treatment effects can be estimated, N-of-1 trials

are suitable when there is significant variability in response to treatment as seen, for example, in response to the treatment of

chronic pain.11

To extend the N-of-1 trial design, we consider a Bayesian adaptive design framework as sequential learning through time fits

naturally within this framework, and is a framework where uncertainty about, for example, the preferred treatment for a given

patient is handled most rigorously. A variety of different adaptive design algorithms have been proposed in the literature (see

Ryan et al12 for a recent review). Such algorithms often useMarkov chainMonte Carlo (MCMC) samplers, importance sampling

or sequential Monte Carlo (SMC) methods to update prior information at each iteration of the adaptive design process.13–16

However, such approaches are not appropriate for designing N-of-1 trials as they are either too computationally expensive and/or

do not allow both population and individual treatment effects to be estimated. As such, new statistical methods are needed that

allow N-of-1 trials to be efficiently and adaptively designed.

For adaptive design of N-of-1 trials, we consider a Laplace approximation to both the log-likelihood and the posterior dis-

tribution of the parameters.17,18 As will be shown, this provides an accurate approximation to the posterior distribution of

the population parameters and individual random effects, and can be derived efficiently, without relying on computationally

burdensomeMonte Carlo methods. The standard Laplace approximation to the posterior distribution has been considered previ-

ously19–21 but has been limited to independent data settings, and, such as, is not appropriate for N-of-1 trials. Thus, we propose

a new adaptive design and inference algorithm for N-of-1 trials including an extension to the Laplace approximation for mixed

effects models for use in Bayesian design. To select treatments, we aim to maximise the Kullback-Leibler (KL) divergence22

between the prior and the posterior distribution of the population and individual random effect parameters. Such an approach

targets the collection of data expected to provide the most information about the parameters. To evaluate this approach, two
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alternative designs are considered. The first is based on the multi-armed bandit (MAB) design23–25 where treatments are ran-

domised based on the probability of being the preferred treatment for a given individual. Of note, our Laplace approximation

allows the MAB design to be employed efficiently at the individual level through the availability of estimated individual random

effects. Secondly, we compare our designs with those based on a randomised N-of-1 trial design where treatments are randomly

selected with equal probability.

The outline of the paper is as follows. In Section 2, a motivating N-of-1 trial is introduced, along with the statistical model

used to analyse the data from this trial. Our Bayesian adaptive design framework is then defined in Section 3. In Section 4,

we show how to efficiently approximate the log-likelihood and the posterior distribution of the parameters. To illustrate our

methodologies, Section 5 focuses on two examples of aggregated N-of-1 trials. The paper concludes with a discussion of key

findings and suggestions for future research.

2 MOTIVATING EXAMPLE

The majority (60% − 90%) of advanced cancer patients experience fatigue, with such fatigue being related to cancer treatment

or the disease itself.26,27 Cancer-related fatigue (CRF) often persists after the end of treatment and can last for months, or even

years.28 As reported in previous studies, CRF is more severe and persistent than normal fatigue caused by lack of sleep or

overexertion, and has a negative impact on work, social relationships, and daily activities.29,30 Despite this, and the fact that

such fatigue has significant detrimental effects on the quality of life of cancer patients, in most cases it is under-treated as most

patients consider fatigue a symptom to be endured.26

Methylphenidate (MPH), a psychostimulant, is a commonly prescribed medication for the treatment of CRF. However, studies

of this medication have yielded conflicting evidence about it’s effectiveness in treating CRF. Little to no effect was observed

by Minton et al,31 while Kerr et al32 observed significant improvement in advanced prostate cancer patients. Collectively, the

results of such studies indicated that the effectiveness of MPH on CRF varied depending on the condition of the patient and

cancer type. Such variation motivated the consideration of an N-of-1 clinical trial of MPH by Mitchell et al.8 The main goals of

the trial were to estimate: (1) the population treatment effect of MPH on CRF in patients with advanced cancer; (2) individual

treatment effects; and (3) how variable individual treatment effects are within a population of advanced cancer patients. In this

paper, we consider this study as motivation for our methodological developments to enable adaptive N-of-1 trials to be efficiently

designed.
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2.1 Data collection and selection

Mitchell et al8 conducted a series of N-of-1 trials on 43 patients over three cycles. In each cycle, patients were assigned to both

MPH (treatment) and placebo in a randomised order. To ensure patients (and clinicians) were blinded throughout the study,

both the treatment and placebo were administered in capsules that were identical in appearance and taste. To measure CRF,

the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F) subscale was used. This is a survey comprised of

13 questions where each response is measured on a five-point Likert scale. A total score (which is the primary outcome) is

calculated as the sum across all responses, with higher scores indicating less fatigue.

As reported by Mitchell et al,8 24 patients completed the trial. Among these, 22 patients completed all six treatment peri-

ods (i.e. yielded complete data from three cycles of two treatments), and these data were considered in this paper to estimate

population and individual treatment effects, and the variability of treatment effects within and between patients.

2.2 Modelling aggregated N-of-1 trials

The analysis of aggregated N-of-1 clinical trial data can be undertaken within a mixed effects modelling framework. Such an

approach not only allows population effects to be estimated (akin to that provided by randomised clinical trials) but also allows

individual treatment effects to be estimated. Zucker et al33 provide the foundations for this for N-of-1 clinical trials through a

model specified as follows:

g(E[yijk]) = (�0 + b0i) + (�1 + b1i)dijk, (1)

where E[yijk] denotes the j th observation of the ith patient at the kth cycle, � = (�0, �1) are the population parameters,

bi = (b0i, b1i) are the random effects for the ith patient, dijk is the treatment allocation for the j th observation of the ith patient in

the kth cycle and g(.) is a link function which maps between the linear predictor and the space of the expected response. Here,

dijk can take the value 1 or 0, depending on the treatment allocation (treatment=1, placebo=0). In this model, random effects

b0, b1 are assumed to follow a Normal distribution with zero means and variances !0 and !1, respectively. Depending upon

the distribution of the response, additional parameters may need to be defined. For example, if the response follows a Normal

distribution, then an error term would be included in the linear predictor, and would be assumed to follow a Normal distribution

with variance �2. In other cases, typically the variance of the response will be a function of the expected response as is the case

for logistic and Poisson mixed effects models.

After estimating the parameters in the above model, it can be used to assess population and individual treatment efficacy. Here,

�0 represents the population level average response when receiving the placebo, and �1 represents the population level difference

between the average response when receiving the treatment compared to placebo. For estimating the individual treatment and
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placebo effects, the relevant individual random effect values are added to the population effects. As such, the average placebo

and treatment effects for the ith patient can be expressed as (�0 + b0i) and (�0 + b0i + �1 + b1i), respectively.

3 ADAPTIVE DESIGN

Consider an adaptive N-of-1 clinical trial where the goal is to determine with respect to a placebo: (1) the effectiveness of a given

treatment in the population; (2) the effectiveness of a given treatment for each individual; and (3) how variable the effectiveness

of treatment is in the patient cohort. Without loss of generality, we assume that such an adaptive trial can be constructed by

considering treatment selection for each cycle for each patient, iteratively. That is, initially treatments within the first cycle for

the first patient are determined. Then, once data have been collected from this cycle, treatments for the first cycle for the second

patient will be determined, and so on. Of course, in practice, patients are recruited at different times, thus this ordering may

not be exactly how a given trial would proceed. However, as will be seen, our proposed methodology does not depend on this

adaptive structure, and is actually flexible enough to handle the large variety of design problems that may be encountered in real

N-of-1 trials. Within our adaptive approach, treatments are allocated without constraint. That is, our approach allows allocating

any treatment combination for a given patient within a given cycle. The notion of a cycle is only retained so that comparisons

can be made with standard N-of-1 trials. If we suppose there are a total ofM treatments (including placebo), then the response

yijk represents the j th observation collected at the kth cycle for the ith patient given the design (treatment) dijk for i = 1,… , N ,

j = 1,… ,M and k = 1,… , K . Here,N is the total number of patients in the study.

Then, the design d1∶NMK can be expressed as follows:

d1∶NMK = (d111, d121,… , dijk,… , dNMK )T .

For clarity, consider two treatments (active and placebo) which will be assigned to N = 5 patients within a single (K = 1)

cycle. Given there is only a single cycle, the subscript for K can be omitted, and we can define the design d1∶NM as follows:

d1∶NM = (d11, d12,… , d15, d21,… , d25)T .

As there are no constraints in our treatment allocations, each of the above design points dij is either active treatment or placebo.

This extends naturally to more than a single cycle, comparing more than two treatments and enrolling more than five patients

into the trial.

Within an adaptive design framework, the Bayesian inference problem is to approximate the joint posterior distribution of

the population parameters � = (�, �2, !1, !2) (defined here, for example, for a Normally distributed response) and the random
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effects b at each iteration of the adaptive design. This posterior is typically analytically intractable, therefore we are required to

sample from or approximate the following:

p(�, b|y1∶ijk, d1∶ijk) ∝ p(y1∶ijk|�, �2, b, d1∶ijk)p(b|!)p(�),

where ! = (!1, !2) denotes the random effect variances, and p(y1∶ijk|�, �2, b, d1∶ijk) denotes the conditional likelihood of

observing data y1∶ijk = (y111,… , yijk)T from design d1∶ijk given the population parameters � and the random effects b, for

i = 1,… , N , j = 1,… ,M and k = 1,… , K . Further, p(b|!) is the distribution of the random effects b conditional on the

parameters !, and p(�) is the prior distribution of the population parameters.

The Bayesian adaptive design problem can then be stated as selecting d(ijk)+1 at each iteration. Here, depending on the iteration,

the design d(ijk)+1 can be either di{j+1}k, d{i+1}jk or dij{k+1}. That is, in each iteration of this design algorithm, we select a

treatment for either the same patient, the next patient or for the first patient in the study to start the next treatment cycle.

For selecting which treatment to administer, a utility function is defined to reflect the aim of the study which we assume,

based on the three goals stated at the start of Section 3, is parameter estimation. In general, we denote the utility function as

U (d, z,�, b|d1∶ijk, y1∶ijk), where z is a supposed outcome obtained from running design d. However, as z, � and b are unknown,

the expectation is taken with respect to the joint distribution of these random variables based on the posterior distribution from

the previous iteration. This yields the following expected utility:

U (d|d1∶ijk, y1∶ijk) = Ez,�,b|d1∶ijk,y1∶ijk[U (d, z,�, b|d1∶ijk, y1∶ijk)]

= ∫
Z

∫
�

∫
b

U (d, z,�, b|d1∶ijk, y1∶ijk)

× p(z|d, �, �2, b)p(�, b|d1∶ijk, y1∶ijk)dbd�dz,

(2)

where the above expected utility U (d|d1∶ijk, y1∶ijk) is defined based on a continuous response variable. Extensions to other

types of responses are straightforward.

When the utility function does not depend on the population parameters � and the random effects b, Equation (2) can be

simplified to yield,

U (d|d1∶ijk, y1∶ijk) = ∫
Z

U (d, z|d1∶ijk, y1∶ijk)p(z|d)dz, (3)

where p(z|d) is the model evidence.

Thus, at each iteration of the adaptive design process, one seeks to find d∗(ijk)+1 = arg max
d∈

U (d|d1∶ijk, y1∶ijk), and this is

termed the optimal design. Unfortunately, the above expression for the expected utility generally cannot be solved analytically,
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and thus needs to be approximated. The most common approach for this is Monte Carlo integration through the simulation of

prior predictive data as follows:

U (d|d1∶ijk, y1∶ijk) ≈
1
Q

Q
∑

q=1
U (d, zq|d1∶ijk, y1∶ijk), (4)

where zq ∼ p(z|d).

The adaptive design process described above is outlined in Algorithm 1 where initially the prior information about the param-

eters is defined. Typically, in N-of-1 trials, this prior information will be uninformative or vague but this need not be the case

within our framework. Then, throughout the iterative process, the next optimal design point is found by maximising the expected

utility (line 5), and the next data point is collected (line 6) based on this selected optimal design. The prior information about

the population parameters and the random effects is then updated based on the information gained from the new data point (line

7). For the examples considered in this desktop study, data cannot actually be collected. In place of this, we assume data are

generated from an underlying model with specified parameter values. For the motivating study, this underlying model is based

on the results from analysing data from Mitchell et al.8

Algorithm 1 Bayesian adaptive design algorithm for N-of-1 trials
1: Initialise the prior information p(�, b) for the population parameters
2: for k = 1 to K do
3: for i = 1 toN do
4: for j = 1 toM do
5: Find the optimal design point d(ijk)+1 by maximising the utility U (d|y1∶ijk, d1∶ijk)
6: Collect data point y(ijk)+1 at design point d(ijk)+1
7: Update the joint posterior distribution p(�, b|y1∶(ijk)+1, d1∶(ijk)+1)
8: end for
9: end for
10: end for

In considering the adaptive design process as outlined in Algorithm 1, there are twomain challenges (at least computationally).

The first is efficiently updating prior information as new data arrive (line 7). Employing methods like MCMC would require re-

running this algorithm at each iteration of the adaptive design. Given the high-dimensional nature of the posterior distribution

(i.e. many random effects to estimate), this will quickly become computationally infeasible. Thus, alternative approaches are

needed. The second difficulty is evaluating the expected utility function which requires sampling from or approximating a large

number of posterior distributions, see Equation (4). Thus, efficient approaches are needed, and this motivates the development

of the new methods proposed in this paper.
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4 EFFICIENT APPROXIMATION TO THE JOINT POSTERIOR DISTRIBUTION

A Laplace approximation is used to efficiently approximate the posterior distribution of the parameters. This approximation is

formed by finding the posterior mode and evaluating the inverse of the negative Hessian matrix of the log posterior density at

this mode. These two terms form the mean and variance-covariance matrix of a multivariate normal distribution approximation

to the posterior distribution. To describe how this Laplace approximation is formed in this paper, we first show how the posterior

mode is located. For this purpose, we first define the likelihood for random effect models such as those defined in Equation (1).

For such models, the likelihood function is defined by integrating out the random effects as follows:

L(�; y1∶ijk) = ∫
b

p(y1∶ijk|�, b, d1∶ijk)p(b|!)db

= ∫
b

exp{ℎ(b, �; y1∶ijk, d1∶ijk)}db,
(5)

where ℎ(b, �; y1∶ijk, d1∶ijk) = log p(y1∶ijk|�, b, d1∶ijk) + log p(b|!) is the joint log-likelihood function for the population

parameters and the random effects.

For some models, the above integral can be solved analytically. However, in general, there is no closed-form solution, so an

approach to handle the general case is presented. Accordingly, when an analytic solution is not available, an approximation is

required. Following the work of Breslow and Clayton,34 a Laplace approximation to the log-likelihood function is

l̂(�; y1∶ijk) = −1
2
log |H(b∗�)| + ℎ(b

∗
�, �; y1∶ijk, d1∶ijk), (6)

where

b∗� = argmax
b

ℎ(b, �; y1∶ijk, d1∶ijk) and (7)

H(b∗�) =
)2
{

ℎ(b, �; y1∶ijk, d1∶ijk)
}

)b)b′
|

|

|b=b∗�
(8)

is the Hessian matrix evaluated at b∗�.

Based on the above approximation to the log-likelihood function, the posterior mode of the population parameters can be

found as follows:

�∗ = argmax
�

l̂(�; y1∶ijk) + log p(�). (9)

However, from the above formulation, it can be seen that b∗� is conditional on � and �∗ is conditional on b∗�. Hence, to find

the posterior mode for both � and b, conditional optimisation is used. That is, for an initial value of the population parameters,
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values of the random effects which maximise ℎ(b, �; y1∶ijk, d1∶ijk) are found. These random effects are then used to approximate

the log-likelihood which is subsequently used to find the posterior mode for �. This process then continues until convergence,

upon which �∗ and b∗ denote the mode of the posterior distribution. It is this mode that is taken as the mean of the multivariate

normal approximation to the posterior distribution.

Once the posterior mode has been found, the Hessian matrix at this point can be evaluated and used to form the variance-

covariance matrix of the multivariate normal distribution. For this, we note that the model specified in Equation (1) assumes the

population parameters are independent of the random effects, hence this variance-covariance matrix will be block diagonal. The

block corresponding to the random effects can be found via the Hessian matrix in Equation (8), and the block corresponding to

the population parameters can be found as follows:

A(�∗) =
)2{l̂(�; y1∶ijk) + log p(�)}

)�)�′
|

|

|�=�∗
. (10)

Algorithm 2 Laplace approximation for the posterior distribution of population and individual parameters
1: Find �∗ by maximising Equation (9)

a: For each proposed �, find b∗� = argmax
b

ℎ(b, �; y1∶ijk, d1∶ijk) and the Hessian matrixH(b∗�) (Equations (7) and (8))

b: Update approximation to log-likelihood l̂(�; y1∶ijk), see Equation (6)
2: Given �∗, find b∗�∗ and the Hessian matrixH(b∗�∗)

3: Approximate p(�, b|y1∶ijk, d1∶ijk) ∼ MVN
(

(�∗, b∗�∗),

)

where 
 =
[

−A(�∗)−1 0
0 −H(b∗�∗)

−1

]

The process for approximating the posterior distribution of the population parameters and the random effects is outlined in

Algorithm 2. To initialise the algorithm, a value for the population parameters is randomly drawn from the prior distribution.

Given these values �, the mode of the random effects and the Hessian matrix at this mode are found (line 1a). These two

quantities are used to form a Laplace approximation to the log-likelihood function given in Equation (6). Next, this approximate

log-likelihood function is used to approximate a density that is proportional to the log-posterior distribution of the population

parameters. This density is then used to locate the posterior mode �∗ of the population parameters. Given �∗, the mode of the

random effects and the Hessian matrix at this mode are found (line 2). Finally, the (joint) posterior distribution of the population

and individual parameters is approximated using a multivariate normal distribution (line 3). It is worth noting that when the

likelihood function has an analytic solution, computation of �∗ is more straightforward as locating the posterior mode of the

population parameters can be undertaken directly without continually updating the approximation to the log-likelihood.
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5 SIMULATION STUDIES

Here, two aggregated N-of-1 trials are considered to demonstrate the adaptive design approach proposed in Section 3 with

the approximations given in Section 4. Since the main objective of these trials is to determine the preferred treatment at the

population and individual patient level, the KL divergence utility22 was implemented for treatment selection. KL divergence is

a measure of how different one probability distribution is from another. Lindley35 proposed that such a measure should be used

in design selection if one is interested in maximising the information gain on model parameters. Thus, we implemented this

utility as maximising information will lead to minimising uncertainty about parameter values including estimates of random

effects for each patient. This should therefore reduce the uncertainty about which treatment is preferred for each patient. The

KL divergence utility is

U (d, z|y1∶ijk, d1∶ijk) = ∫
�

∫
b

p(�, b|y1∶ijk, d1∶ijk, z, d) log

(

p(�, b|y1∶ijk, d1∶ijk, z, d)
p(�, b|y1∶ijk, d1∶ijk)

)

dbd�, (11)

where p(�, b|y1∶ijk, d1∶ijk) and p(�, b|y1∶ijk, d1∶ijk, z, d) denote the prior and the posterior distribution of the population

parameters and the random effects, respectively.

When both prior p(�, b|y1∶ijk, d1∶ijk) and the posterior distribution p(�, b|y1∶ijk, d1∶ijk, z, d) follow a multivariate Normal

distributions withmean vectors (�0, �1) and covariancematrices (�0,�1), respectively, then theKLDutility can be approximated

as follows:

Û (d, z|y1∶ijk, d1∶ijk) =
1
2

(

tr
(

�−10 �1
)

+ (�1 − �0)T�−10 (�1 − �0) − � + log
(det�0
det�1

)

)

, (12)

where � is the dimension of the two multivariate Normal distributions.

Throughout the examples, one active treatment will be compared to placebo, and henceM = 2. Given this, treatment will be

coded as an indicator variable with ‘1’ denoting active treatment and ‘0’ denoting placebo. For selecting the optimal design, as

there are only two possibilities for design selection, the expected utility for each will be evaluated, and the choice which yields

the expected utility value is selected. For comparison, we benchmarked this optimal design approach against the MAB design

and a randomised N-of-1 trial design.

A MAB design refers to a sequential experiment in which the goal is to determine the choice or ‘arm’ that yields the largest

‘reward’. In the context of a clinical trial, each arm represents a particular treatment (active or placebo), and reward refers to

benefit from treatment. The MAB design determines treatment choice by randomising treatment selection based on probabilities

which reflect current knowledge about the preferred treatment allocation for each patient in the N-of-1 trial. The adaptive design

approach proposed in this paper provides a framework to select MAB designs based on individual specific probabilities, and this

offers more flexibility than previous approaches based on population parameters only.24 Here, benefit from treatment is based
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on the posterior predictive distribution for each patient. For example, if a higher response indicates a higher level of disease

severity, then reward can be quantified via the following probability:

pi(d) = p
(

�id = min(�i0, �
i
1)
)

, for d ∈ {0, 1}, (13)

where �id = E[yi|d] denotes the posterior mean for treatment d. Within a Bayesian framework, the reward probability

given in Equation (13) can be expressed as an expectation of an indicator function. Let d(�, bi) = 1 if �id(�, bi) =

min(�i0(�, bi), �
i
1(�, bi)), and d(�, bi) = 0 otherwise. Then,

pi(d) = ∫
�

∫
bi

d(�, bi)p(�, bi|y1∶ijk, d1∶ijk)dbid�.

Here, the reward probability pi(d) is evaluated based on the posterior distribution of the population parameters and the random

effects of the ith patient, obtained from the data y1∶ijk collected from all the patients given the treatments d1∶ijk up to cycle k.

This reward probability can be approximated by drawing a large number of samples from the joint posterior distribution of

the population parameters and the random effects of the ith patient, and evaluating the following:

p̂i(d) ≈
1
Q

Q
∑

q=1
d(�q , biq), (14)

where (�q , biq) ∼ p(�, bi|y1∶ijk, d1∶ijk).

For the randomised N-of-1 design, the entire treatment sequence for each patient for all treatment cycles (Eg: {1, 0, 0, 1, 0, 1})

can be obtained before starting the experiment. This treatment sequence is generated in such a way that the patient receives

both treatment and placebo within each treatment cycle in a random order. As such, even though we use an adaptive design

approach, randomised N-of-1 designs do not use the information collected throughout the trial to inform treatment selection.

This is exactly how typical N-of-1 trials are run.

In each of the two examples considered in this paper, a simulation study was undertaken where experiments were sequentially

simulated within our design framework. That is, in each cycle, the next data point for the ith patient was generated based on the

selected optimal design and the assumed model (Equation (1)) with true parameter values (line 6 in Algorithm 1). Once the data

have been generated, they will be used to update the prior information of the population and individual parameters. Designs for

each patient within a given cycle will be found sequentially such thatM data points will be collected for a given patient, then

M data points will be collected for the next patient. Once all patients have completed the current cycle, a new cycle for the

initial patient will begin. This will continue until all patients complete three cycles. For both examples, the prior distribution for

the parameters was assumed to be vague, and follow Normal distributions as given in Table 1. These prior distributions were
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selected as they are relatively uninformative on the scale of each parameter, and might typically be implemented in practice for

inference.

TABLE 1 Prior distributions of the population parameters
Parameter Prior distribution
�0 N

(

0, 1002
)

�1 N
(

0, 1002
)

log(�) N
(

2.5, 1.62
)

log(
√

!0) N
(

2.5, 1.62
)

log(
√

!1) N
(

2.5, 1.62
)

As the results are subject to variability through the simulated data, all simulated studies were repeated 20 times to explore the

range of outcomes that could be observed. After the designs were obtained and the corresponding data for each example was gen-

erated, the posterior distributions were re-evaluated using a standard MCMC approach. This re-evaluation step was undertaken

to remove any potential bias from the Laplace approximation to the posterior distribution. We note, however, that the posterior

distributions from MCMC and the Laplace approximation were very similar, see Figure S10 in the online supplementary mate-

rial showing a comparison of these posterior distributions for the simulated example. In addition, in the supplementary material,

we have provided results from these simulation studies where an alternative distribution (i.e. the Poisson distribution) is con-

sidered for the response, see Section B. All simulations were carried out using R 3.5.2, and R code to reproduce the results in

this paper is available via the following GitHub repository, https://github.com/SenarathneSGJ/Adaptive_N-of-1_trials_design.

5.1 Simulated example

In this example, we investigate the effect of an active treatment over placebo by running an adaptive N-of-1 trial with 20 patients.

Here, the response variable is assumed to follow a Normal distribution with higher response values indicating a higher level of

disease severity (e.g. pain as measured on a VAS scale). For each patient, six observations were collected over three treatment

cycles, and the above defined three approaches for treatment selection were considered.

Within this simulation study, four design scenarios were considered, each differing in terms of the parameter values assumed

in the underlying generative model. Firstly, we considered a group of patients in which the between-subject variability was much

smaller than the within-subject variability of the outcome, and where there was a significant difference between treatment and

placebo at the population level. This scenario was considered as a baseline setting, where the remaining scenarios were defined

by changing a parameter value in this baseline. Specifically, in Scenario 2, we increased the between-subject variability such

that it equalled the within-subject variability of the outcome. Scenarios 3 and 4 were constructed by changing the population

https://github.com/SenarathneSGJ/Adaptive_N-of-1_trials_design
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treatment effect such that there was a large and no difference (respectively) between treatment and placebo at the population

level. These four scenarios are summarised in Table 2 by defining the parameter values used in each.

TABLE 2 The population parameter values for each design scenario
Parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4

�0 25 25 25 25
�1 -1 -1 -3 0
�2 9 9 9 9
!0 2.25 9 2.25 2.25
!1 2.25 9 2.25 2.25

For each design scenario, separate simulation studies were conducted. In each simulation study, a set of random effects were

generated based on the assumed parameter values, and these were considered as the true effects for each patient in the study, and

thus used to generate ‘real’ data throughout each N-of-1 trial. Furthermore, the same set of values were also used to calculate

the true treatment effect for each patient, and hence to determine the best treatment (active or placebo) for each patient via the

model described in Equation (1).

Results: Figures 1, 2 and 3 summarise the results from Scenario 1. Here, we first assessed the posterior precision of the

population and random effect parameters when data were collected based on the optimal (KLD), MAB and randomised N-

of-1 designs. For this comparison, we evaluated the log-determinant of the variance-covariance matrix of the joint posterior

distribution after each cycle of the experiment. Figure 1 shows boxplots of the distribution of the log-determinant values of each

intermediate posterior distribution (for each cycle) for all simulations. As can be seen, the posterior distributions obtained from

optimal designs have lower log-determinant values compared to those obtained fromMAB and randomised N-of-1 designs. This

indicates that the posterior distributions obtained from the optimal design have higher precision compared to those obtained

from either MAB or randomised N-of-1 design. As more data are collected, the MAB design also performs relatively well for

estimation when compared to the randomised N-of-1 design.

Next, we assessed the designs in terms of identifying the best treatment allocation (active or placebo) for each patient in

the study. For this purpose, we first calculated the true treatment effects based on the true parameter values as explained in

Section 2.2. Then, based on the true treatment effects, the best treatment assignment dbest for each patient was identified. Next,

we evaluated the probability of identifying the best treatment for each patient based on each of the three designs. For this, we

obtained a large number of samples from the joint posterior distribution of the population parameters and the random effects.

Then, for each posterior sample, we calculated the individual mean response based on each treatment allocation. The required

probability for each patient was then estimated via Equation (14) with d = dbest. These probabilities were evaluated for all
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independent simulations, and the results were averaged to compare the performance of optimal, MAB and randomised N-of-1

designs.

Figure 2 shows the probability (with 95% credible intervals) of identifying the best treatment allocation for each patient after

each treatment cycle when the optimal, MAB and randomised N-of-1 designs were considered for Scenario 1. According to

Figure 2, the optimal design has higher probability values (with less uncertainty) compared to the MAB and randomised N-of-1

designs. For patients who preferred placebo over the treatment (negative treatment difference), the median probability values

were close to 0.5 (not 1) for all designs in this scenario. The reason these probabilities are not closer to one is that, under the true

model (and therefore what will most likely be inferred from the data), it is likely that for a given patient, the active treatment

will be preferred. Hence, stronger evidence is needed to shift individual effects towards placebo when compared to patients who

prefer the active treatment. This is particularly noticeable in this simulation study as the between subject variability is small

compared to the within subject variability meaning patients who favour placebo are much less likely to occur than those who

favour treatment. This can be seen by comparing these results to those from Scenario 2 where the between subject variability is

large. As can be seen, probabilities for patients with similar treatment effect differences are generally closer to 1. Of note, this is

not a feature of our approach to treatment selection, but rather a feature of all designs considered here including the randomised

N-of-1 trial design.

Figure 3 compares the proportion of times the best treatment was administered for each patient in each cycle when the

optimal, MAB and randomised N-of-1 designs were considered. Here, MAB design chose the best treatment for each patient

a larger number of times than the other two design approaches. The optimal design also chose the best treatment for each

patient a reasonable number of times except for the eleventh patient in the study. As the eleventh patient had the highest true

treatment effect difference, the optimal design selected the placebo a large number of times. It is quite reasonable to observe

such a difference as the optimal designs focus on learning about parameter values while MAB explores with a preference for

the preferred treatment (based on currently available information). For this patient, it was more beneficial (in terms of learning

about parameter values) to administer the placebo more often than not.

Similar to design Scenario 1, we compared the performance of the optimal, MAB and randomised N-of-1 designs under the

remaining three design scenarios. For all of these three scenarios, the optimal designs were able to precisely estimate the joint

posterior distribution of the population parameters and the random effects when compared to MAB and randomised N-of-1

designs (see Figures S1, S2 and S3 in the online supplementary material). As shown in Figures S4 and S6, when there was

large uncertainty about the random effects (Scenario 2) or a small difference between the two treatments at the population level

(Scenario 4), it was difficult to determine the best treatment assignment for patients where the difference between treatment and

placebo was small. However, when there was a clear difference between the two treatments at the population level (Scenario 3),

it was relatively straightforward to determine the best treatment allocation for each patient in the study (Figure S5). In all these
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scenarios, the optimal design performed better than MAB and randomised N-of-1 designs for determining the best treatment

assignment for each patient. Figures S7, S8 and S9 in the online supplementary material compare the proportion of times the

best treatment was given to each patient when treatments were assigned using the optimal, MAB and randomised N-of-1 designs

under design Scenario 2, 3 and 4, respectively. As can be seen, for all scenarios, MAB design chose the best treatment for each

patient more often than the other two design methods. However, this did not translate into providing more information about

which treatment is better for each patient (as the optimal design performed best for this). Such results are expected based on

how treatments are selected within each approach.
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FIGURE 1 The boxplot of the distribution of the log-determinant of the posterior variance-covariance matrix for each design
after each treatment cycle over 20 simulations from Scenario 1 in Example 1.
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FIGURE 2 The probability (with 95% credible intervals) of identifying the best treatment for each patient after each cycle when
treatments were assigned using optimal, MAB and randomised N-of-1 designs under Scenario 1 in Example 1.
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FIGURE 3 The proportion of time that their best treatment was received for each patient in each treatment cycle when treatments
were assigned using optimal, MAB and randomised N-of-1 designs over 20 simulations for three cycles under Scenario 1 in
Example 1.
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5.2 Motivating example

We now return to our motivating example of MPH trial introduced in Section 2. Based on the data collected from all 22 patients

who completed all three cycles in Mitchell et al,8 population and individual parameter estimates were found by fitting the model

described in Equation (1). A simulation study was then undertaken with treatment selection based on the optimal, MAB and

randomised N-of-1 designs. This simulation study was run exactly as outlined for Example 1, including the prior distributions

used (see Table 1). Here, the response variable was assumed to follow a log-normal distribution with higher values indicating

less fatigue (higher recovery).

Results: For the purpose of comparing the parameter estimation results, log-determinant values of the posterior variance-

covariance matrix of the population parameters and the random effects were evaluated and plotted. As shown in Figure 4, the

joint posterior distribution based on the optimal designs have smaller log-determinant values compared to those based on MAB

and randomised N-of-1 designs. That is, the optimal design was relatively efficient for parameter estimation. Again, as more

design points were collected, MAB design performed relatively well for estimation when compared to the randomised N-of-1

design.

In Figure 5, we compare the probability (with 95% credible intervals) of identifying the best treatment assignment for each

patient after each treatment cycle when the optimal, MAB and randomised N-of-1 designs were considered for data collection.

Similar to the first example, these probabilities were approximated using Equation (14), but with a different indicator function.

Here, the indicator function equals to 1 if the mean response value of the best treatment assignment for a given patient is higher

than that of the remaining treatment assignment, and 0 otherwise. As can be seen, the optimal design performed relatively well

for this experimental goal when compared to the other two design methods.

The proportion of times the best treatment was selected for each patient in each treatment cycle is shown in Figure 6. Again,

MAB design selected the best treatment for each patient a larger number of times when compared to the other two design

methods.



SENARATHNE ET AL 19

−19

−17

−15

−13

1 2 3

Cycle

L
o
g
 d

e
te

rm
in

a
n
t

Design

MAB

optimal

random

FIGURE 4 The boxplot of the distribution of the log-determinant of the posterior variance-covariance matrix for each design
after each treatment cycle over 20 simulations from Example 2.
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FIGURE 5 The probability (with 95% credible intervals) of identifying the best treatment for each patient after each cycle when
treatments were assigned using optimal, MAB and randomised N-of-1 designs from Example 2.
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FIGURE 6 The proportion of time that their best treatment was received for each patient in each treatment cycle when treatments
were assigned using optimal, MAB and randomised N-of-1 designs over 20 simulations for three cycles from Example 2.
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6 DISCUSSION

In this work, we have developed a Bayesian adaptive design approach to find optimal treatment allocations for N-of-1 trials.

As was seen, the designs derived from our approach can be used to determine the best treatment assignment for each patient

with a fewer number of treatment cycles and/or provide more certainty about this after three cycles (typical duration of an N-

of-1 trial). The empirical evidence presented in this paper demonstrates that the proposed Bayesian adaptive framework can be

used to efficiently estimate both population parameters and the random effects in realistically sized N-of-1 trials, and benefits

of this approach over alternatives were demonstrated. As such, we propose this method could be adopted in future N-of-1 trials

to determine appropriateness in real-world settings.

In the first example, four design scenarios were considered to investigate the performance of our adaptive design approach

under different parameter settings. It was found that the optimal designs were preferred for estimating the population parameters

and the random effects when compared to the MAB and randomised N-of-1 designs. Furthermore, in using the optimal designs,

we were able to determine the best treatment assignment for each patient in a fewer number of treatment cycles. When there was

considerable variability in the random effects and a small difference between the individual treatment effects, it was difficult

to determine the best treatment assignment with our optimal design approach but this was also observed for the other two

approaches considered in this paper. In all four scenarios, MAB designs chose the best treatment for each patient a larger number

of times than the optimal and randomised N-of-1 designs but we note that this did not translate into more certainty about which

treatment was best for each patient.

When we considered the motivating example for this research, benefits were seen in adopting our optimal design approach

compared to the MAB and randomised N-of-1 designs in terms of estimating model parameters. Of note, this again translated

into more certainty about the preferred treatment for each patient during and at the end of the study. Thus, it seems as though

more information from the N-of-1 study of MPH could have been obtained if Bayesian adaptive design methods were imple-

mented. This was also seen when an alternative distribution was considered for the response (see Section B of the supplementary

material). Accordingly, we hope to explore the use of our methods in real N-of-1 trials into the future.

The two Laplace approximations proposed in this paper to form an approximation to the posterior distribution of the parameter

is different to what has previously been proposed in the literature by, for example, Overstall et al.36 In such work, authors have

proposed a single Laplace approximation formed by considering the conditional likelihood i.e. not integrating out the random

effects. Given this, it is of interest to compare the two approaches to determine which appears to yield a better approximation to

the posterior distribution. To investigate this, a separate simulation study was undertaken where posterior distributions obtained

from both approaches were compared to that obtained from MCMC. For this, the data generating model defined in Example 1

with five patients was used to simulate 50 data sets, each based on a typical N-of-1 design with 3 cycles. For each simulated
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data set, MCMC and the two Laplace-based approaches were used to form an approximation to the posterior distribution of the

parameters. The posterior mean and variance for all parameters were recorded for each simulation, and the distribution of these

is summarised in Table A1. As can be seen, the posterior distributions obtained fromMCMC and the Laplace approach proposed

in this paper have similar mean values, while the approximation from Overstall et al36 are noticeably different, particularly for

the random effect parameters. Both Laplace approximations appear to underestimate the variance of the parameters but this is

much more apparent when the approach from Overstall et al36 is used. An example of the posterior distributions obtained under

these three approaches is shown in Figure A1. The discussed advantages of our Laplace methods are highlighted in this plot.

As discussed throughout this paper, standard N-of-1 trials randomise treatment allocations within cycles. However, such

randomisation has no place in a Bayesian decision-theoretic framework. In essence, a randomised decision cannot result in

a higher expected utility than a deterministic decision. Notwithstanding this, it is recognised that there may be unobserved

confounding variables and that randomisation protects against the effects of these (see O’Hagan and Forster37). Hence it may

be desirable to randomly allocate treatments to patients. Within our implementation, approaches for randomising treatment

allocation based on the expected amount of information to be gained could be implemented (e.g. Atkinson and Biswas38; Ventz

et al39).

Future development of our adaptive design approach could include extensions to other types of trials. Of note, cross-over,

single case experimental designs and step-wedge designs can be viewed as special cases of the N-of-1 trial design. Thus, our

approach could potentially be adopted within such settings. Further, it would be interesting to explore our methodologies for

designing platform trials where patients can be allocated to different treatments over time.40 Such trials generally consider more

treatments when compared to N-of-1s, and the availability of different treatments can varying depending on the patient. Our

approach to targeting information at the population and individual patient level could prove useful in, for example, quickly

discounting ineffective treatments. We plan to explore this in future endeavours.

When designing N-of-1 trials, typically there is some information available about treatment effects from previously collected

data. Such prior information can be used to determine an appropriate model for which to undertaken adaptive design. However,

if not sufficient, then uncertainty at the model level should be incorporated into the selection of treatments. Of note, the identified

Bayesian adaptive design approach can be extended to incorporate model uncertainty by forming a non-trivial prior on the model

space. Further, in cases where it is desirable to (additionally) learn which model is most appropriate for the data, dual-purpose

utility functions could be considered.41,42 In cases where different data types and multiple primary and secondary outcomes are

considered, extensions to the work of Senarathne et al21 may prove fruitful in forming a more accurate approximation to the

posterior distribution. These are also areas of research which we hope to explore in the future.
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APPENDIX

Comparison between our proposed Laplace approach, MCMC and a Laplace approach based on

the conditional likelihood

FIGURE A1 The posterior distributions obtained from our proposed Laplace approximation, MCMC, and a Laplace approach
based on the conditional likelihood for Example 1 with 5 patients.
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