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Abstract

Performing censuses on stigmatised or vulnerable populations is challenging,

however, for such populations partial enumeration is often possible using different

lists or sources. If the sources overlap then multiple systems estimation (MSE) meth-

ods can be applied to obtain an estimate of the total population. These are typically

expressed by a log-linear model which permits positive/negative dependencies be-

tween lists. This paper considers issues that arise for the application of MSE to

modern slavery where there is little to no overlap of individuals across lists. We

investigate the robustness of MSE in terms of the importance of each list and the im-

pact of combining lists on the estimation process. We undertake a simulation study

and consider real national modern slavery data from the UK and Romania.
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1 Introduction

Modern forms of slavery persist in the 21st century despite the legislative successes of

19th century reformers in having predominantly abolished traditional slavery. Document-

ing and quantifying the prevalence of modern slavery is a challenging task for many rea-

sons but not least due to the hidden nature of individuals who would be classed in this

category and how victims of modern slavery are defined. Further, the nature of modern

slavery means that international boundaries may be crossed with many modern slavery

victims also victims of illegal trafficking (see for example Cruyff et al (2017); van Dijk

et al (2017) for the context to human trafficking). However, the problem is significantly

wider that the exploitation of illegal immigrants - for example, 16% of the UK’s identi-

fied potential victims of modern slavery are its own citizens. The own-citizen percentage

was higher still at 32% for the 2121 potential victims in 2017 who were children (Home

Office, 2018). Major other countries-of-origin for UK-identified victims include Albania

and Vietnam but these two, together with the UK itself, may have a different representa-

tion within the totality of victims (non-identified as well as identified) of modern slavery

in the UK. Hence, policy initiatives for the prevention of human trafficking that have

been directed at Albania and Vietnam might need re-orientation when UK’s unidentified

victims are estimated by where they originated from.

In the UK, all police forces report identified victims of modern slavery to the National

Crime Agency (NCA). Support, ranging in duration from 7 to 13 weeks, is available

for “probable-cause” victims unless or until their final-status is determined otherwise.

Overlaps between the list held by UK’s NCA and those of other service providers arise

both because of the support on offer to probable-cause victims, or because these services

may have referred identified potential victims to NCA for appraisal of their eligibility

for support, or because police action could rescue further victims. It is this overlap of

individuals observed by the different sources that permits the use of multiple systems

estimation (MSE) for estimating the difficult to obtain total prevalence and associated

measure of the problem within society. See Bird and King (2018) for a review of multiple

systems estimation and their application to different populations; Jewell et al (2013) for
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an application to estimating nonmilitary deaths in conflict; and Silverman (2019), and

references therein, for discussion of their application to modern slavery.

Complexities can occur for modern slavery data as the term covers a range of differ-

ent types of modern slavery, including for example, domestic/physical labour and forced

prostitution. The characteristics of the type of victimisation typically varies by gender

(for example, physical versus domestic labour) and age-group (child versus adult female

prostitution); and is also likely to determine how many other victims belong to the same

cluster as the listed victim, for example, many adult males engaged in physical labour,

may be co-located and controlled by a gang-master; solo female domestic slave; or a

clutch of sex workers who travel between premises in different towns and may include

children in their number. Professionals in different capacities may report suspect activity

to authorities. For example, doctors who are made aware that a child is at risk of pros-

titution, or that victims of human trafficking are held at a specific location, may (or be

required to) inform the relevant authorities so that a rescue can be attempted by the po-

lice. Considerations pertain to non-governmental voluntary organizations including those

which might, in less extreme circumstances, be unwilling to cross-refer leading to min-

imal overlap between different lists, for example, in relation to voluntary organizations

giving refuge to escapee women versus males, or to adults versus children.

We focus on the common issue of limited or minimal overlap (where relatively few

individuals are observed across the different lists used) within modern slavery application

of MSE. Multiple lists with limited or minimal overlap can occur for numerous reasons,

and affect different subsets of the population. For example, as discussed above, this may

be the case for lists that are held by different non-governmental voluntary organizations.

This, in turn, can lead to a number of different issues when applying a MSE approach, in-

cluding models being unidentifiable with inestimable parameters (Sharifi Far et al, 2019)

and potentially unstable estimation of the total population size. Further, demographic in-

formation or contextual data, such as type of victimization that victims of modern slavery

are subjected to and whether drug dependent, may be important determinants of capture-

propensity on some but not all lists, or the interaction between different lists. If such
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information is available, MSE can be extended to directly incorporate such factors (see

for example, King et al (2005), in the case of MSE applied to injecting drug users). How-

ever, this leads to a further reduction in the overlaps observed between the different lists,

potentially exacerbating the issues further, and introducing a greater number of parame-

ters to estimate. Thus, within this paper, we do not consider such characteristics further,

and focus on the standard cross-classification of individuals across the different lists.

Our aim in this paper is to investigate, by simulation and empirically, the impact of

lists with minimal overlaps for capture-recapture estimation of victims of modern slavery,

and methods to combat effects of such phenomena on population size estimation.

2 Methods

We consider standard log-linear models for MSE, where we are able to explicitly ac-

count for dependencies between lists via associated log-linear interaction terms (Fienberg,

1972). We investigate the effect on population size estimation where there is limited over-

lap between the lists relating to the two specific methods of (i) list omission; and (ii) list

combination. In particular, we shall consider an approach where we assess the influence

of the lists on the estimation process by removing each list in turn from the analysis; and

the impact of combining two lists where there is limited overlap between the lists. We

begin by defining the models and associated MSE approach.

2.1 Multiple systems estimation (MSE)

We begin by describing the general framework for MSE. LetK denote the total number of

lists available in the dataset, we label the individual lists k = 1, . . . , K (with a minimum

of K = 2 lists). We construct an incomplete 2K contingency table where each element of

the table corresponds to the number of individuals observed by the given list combination.

The table is incomplete since we do not observe the number of individuals not observed

by any of the K lists, and hence taking the total population size to be equal to the total

number of observed individuals will lead to an underestimate of the total population size.
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Mathematically, each cell is indexed in the form k ∈ {0, 1}K , where the 1/0 correspond

to the given list observing/not observing an individual, respectively. For example, when

K = 4 the cell k = {0, 1, 1, 0} corresponds to being observed by lists 2 and 3 but not lists

1 and 4. The cell k = {0}K corresponds to not being observed by any of the lists.

Let nk denote the number of individuals in cell k ∈ {0, 1}K of the contingency table;

and µk correspond to the mean cell count for cell k. We specify the model as a generalised

linear model, with Poisson error and log-link function, such that,

nk|µk
ind∼ Poisson(µk), for k ∈ {0, 1}K . (1)

Letting µ denote the column vector of the mean cell counts, µk, we can write,

logµ =Xθ,

where θ denotes the column vector of log-linear parameters and X is the associated

design matrix describing the relationship between the (log) of the expected cell counts

and the parameters. In general, θ contains an intercept term (associated with the mean cell

count), main effect terms for each list (associated with the propensity of being observed

by a given list) and interaction terms (associated with dependencies between the different

lists). Due to the incompleteness of the contingency table, we cannot estimate the K-way

interaction for hierarchical log-linear models.

This modelling structure permits the estimation of the total population size as follows:

the log-linear parameters, θ, can be estimated from the observed cell counts; given these

estimates we are able to obtain the associated maximum likelihood estimate (MLE) and

associated uncertainty of the unobserved cell, via the model specified in Equation (1). The

associated uncertainty is described via a 95% confidence interval (CI), using the standard

asymptotic normality assumption and estimated standard error calculated via the Hessian

matrix evaluated at the MLE of the parameters. However, we note that the estimate of

the total population size (and 95% CI) is in general, dependent on the model specified

in terms of the interactions present within the model. This typically leads to a two-step

process, (i) identify the “best” model in terms of the interactions present in the model;

then (ii) obtain an estimate of the total population size given the specified model.
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To discriminate between competing models and conduct the model selection step, it

is conventional to use Akaike’s information criterion, AIC (Akaike, 1974), where,

AIC = −2l(θ̂;n) + 2p,

such that l(θ̂;n) denotes the log-likelihood of the model evaluated at the MLEs of the

parameters denoted θ̂, and p denotes the number of parameters in the model i.e. p = |θ|.

The likelihood in this case simply corresponds to a product over independent Poisson

terms. The AIC criterion is easily interpreted as a trade-off between the fit of the model

to the data and the complexity of the model. The model with the smallest AIC statistic

is deemed to be the “best” of the models considered, in this respect AIC assesses the

relative performance of the competing models. See, for example, Coumans et al (2017);

Silverman (2014); Van der Heijden et al (2012) for the use of the AIC statistic within the

MSE context for modern slavery and other related populations; and Davison (2003) for

discussion of alternative model selection tools.

In practice, it may not be feasible to fit every possible model (including/excluding in-

teraction terms) to the data. If the dataset features many sources, the number of possible

models becomes prohibitive and so a model search algorithm is typically implemented.

For example, adding/removing interaction terms in a systematic manner until no improve-

ment in the model is detected. In this paper, we use a model selection procedure using the

AIC statistic and estimate the total population size from the single “best” model in order

to investigate the issues of combining and omitting lists without the additional confound-

ing with model-averaging issues. In particular, we are interested in the influence of each

individual list on the total population estimate.

2.2 List influence

The pattern of the observed data, in terms of the number of individuals observed in the

cross-classification across different lists is the underpinning principle permitting the es-

timation of the total population size via MSE. In general, situations can arise whereby,

for example, there is a dominant list where a substantial proportion of individuals are ob-
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served by this single source (see, for example, Cormack (2000)); there is substantial de-

pendence between lists (either positive or negative: see, for example, Jones et al (2014));

or limited overlap across lists leading to sparse contingency tables, i.e. tables with a large

number of zero counts (see, for example, Chan et al (2019); Sharifi Far (2017)). We focus

on this last case of minimal overlap between the different lists. Issues encountered in this

scenario include model fitting complexity, including for example, model identifiability

and parameter redundancy (Chan et al, 2019; Fienberg and Rinaldo, 2012; Sharifi Far et

al, 2019; Silverman, 2019; Vincent et al, 2019).

To investigate the influence of the different lists on the statistical analysis, and fo-

cussing in particular on the estimation of the total population size, we consider both a (i)

“leave-one-out” approach and (ii) combining lists approach.

2.2.1 Leave-one-out approach

The leave-one-out approach involves cycling through each possible list, removing the

given list, constructing the reduced incomplete contingency table from the remaining

sources before conducting the statistical analysis to obtain the total population size es-

timate as described above. In particular, we obtain the MLE of the total population size

for the model deemed optimal via the AIC statistic and an associated 95% CI. When there

areK lists in general, this means conductingK leave-one-out contingency table analyses.

We note that for each leave-one out analysis, the total number of observed individuals is

reduced (assuming that all lists observe at least one unique individual not observed by any

other source). The estimates of population size from each of the K leave-one-out anal-

yses can be compared with each other and also with the estimate of the total population

size using all K sources. In the simulation study in Section 4, we can also compare the

estimates with the (known) true population size.

2.2.2 Combining lists approach

In some cases, we may wish to combine two lists into a single list prior to analysing the

contingency table. For example, we focus on the particular case where we may wish to
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do this due to the limited (or even lack of any) overlap between two (or more) of the

sources used within the analysis. The new list then essentially corresponds to individuals

observed by source A, say, or source B (or both). In the case of there being no individ-

uals observed by both these two sources, the interaction between these sources is also

not estimable (shown for a saturated model by Sharifi Far (2017)). Combining the two

sources automatically removes the issue of identifiability of the interaction between these

two sources as this parameter is no longer present. Further, unlike the leave-one-out ap-

proach, this approach does not reduce the number of individuals observed within the new

revised contingency table; however, the number of lists is reduced by one. Once again the

estimates of total population size can be compared using the original all-list data and then

the reduced (combined list) contingency table. For the simulation study the estimate can

also be compared to the (known) true population size from which the data are simulated.

3 Case Studies

We consider two case studies relating to data from the UK and Romania, both with 5

sources. Both of these cases have minimal overlap between some of the sources. For the

Romanian data, one of the lists is dominant and contains the majority of the observations.

3.1 UK data

We consider the data presented by Silverman (2014) relating to modern slavery in the

UK. The data contains 5 different sources corresponding to: Local Authority (LA); Non-

Government organisations (NG); Police Force and/or National Crime Agency (PF); Gov-

ernment Organisations (GO); and the General Public (GP). For further information, in-

cluding discussion of combining the police force and National Crime Agency as a single

list, see Silverman (2014). The data are presented in Table 1. We note that there is no

overlap between the lists LA and GP, i.e. no individuals are recorded by both of these

sources, and, in general, there is very little overlap between GP and the other remaining

lists. Given these data, it can be shown that the interaction between LA and GP (and all
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higher order interactions) cannot be estimated (Sharifi Far, 2017). In our analyses, due to

the sparsity of the contingency table, we restrict the interactions to only two-way interac-

tions between lists. When modelling the 5 lists, all the two-way interactions, except the

LA and GP interaction, are estimable.

LA LA LA LA LA LA LA

NG NG NG NG NG NG NG NG NG

PF PF PF PF PF PF PF PF

GO GO GO GO GO GO GO GO

GP GP GP GP

54 463 995 695 316 15 19 3 62 19 1 76 11 8 1 1 4 1

Table 1: UK modern slavery data of non-zero contingency table cell entries. The five

lists are: LA = local authority; PF = police force and/or National Crime Agency; GO =

government organisation; NG = non-government organisation; GP = general public.

3.1.1 Full data analysis

We initially analyse the full 5-list dataset, in order to consider the robustness of the total

population estimate when investigating the two issues of (i) removing each list in turn; and

(ii) combining GP with each of the remaining lists in turn. We consider a model search

algorithm using the AIC statistic to compare competing models. We restrict the set of

models to those with two-way interactions, omitting the LA×GP interaction. The model

identified as optimal has the following six two-way interactions and associated direction

of the interaction (+ve = positive interaction and -ve = negative interaction): LA×NG

(+ve); LA×PF (+ve); NG×GO (-ve); NG×GP (-ve); PF×GP (-ve); GO×GP (-ve). All

interactions identified relating to either GO or GP correspond to negative interactions (so

being identified by either of these sources leads to a lower chance of being observed by

the other data source where there is an interaction). Conversely, interactions that involve

only the lists LA, NG or PF have positive relationships. Given the above model, the

corresponding MLE for the total population is 11313 with the 95% CI (9750, 12876).
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3.1.2 Omitting lists: “leave-one-out”

We consider the influence of each list on the estimate of the population size, by omitting

each list in turn. The estimates and 95% CIs are presented in Table 2, along with the sign

of the included interaction terms. The population size estimates are highly variable for

the different omitted lists. Identifying structured patterns within the output is non-trivial:

omitting lists masks patterns in the cell entries, for example, a previous overlap between

two lists becomes an observation in a single list when one of the sources is left-out, and

different models (and interactions) will be identified given these changes. In all cases

where interactions are chosen in both the full 5-list and reduced 4-list dataset analyses, the

direction of the interactions remains consistent (except for NG×GO interaction which is

positive when PF is removed). In every instance, the reduced dataset includes interactions

in common with those identified for the full 5-list dataset. When omitting lists LA, NG

and PF (that exhibit positive interactions between them in the full analysis) the reduced

datasets lead to different set of interactions to the full dataset (but with some common

interactions). The comparison when removing lists GO and GP is more straightforward:

the model identified is simply the reduced model from the 5-list analysis, omitting the

interaction terms associated with the omitted list. For these latter two cases, the estimate

of the population size is similar to the estimate from the 5-list analysis. List PF has the

largest number of observations - removing this list provides an estimate where the 95%

CI does not include the population estimate obtained in the 5-list analysis.

3.1.3 Combining lists

The GP list has very little overlap with the other lists and no overlap with LA. Therefore,

we combine this list with each of the other lists in turn and estimate the total population

size from the reduced contingency table. The corresponding MLEs of the population

size, 95% CIs and selected interaction terms are given in Table 3. To clearly denote which

lists have been combined we “dot product” the list names, for example, the combination

of GP and LA is denoted by “GP.LA”. The largest deviation from the population size

estimate of the 5-list dataset is observed when LA and GP are combined. These two lists
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Omitted Population 95%
Model

list estimate confidence interval

- 11313 (9750, 12876) LA×NG (+ve); LA×PF (+ve); NG×GO (-ve);

NG×GP (-ve); PF×GP (-ve); GO×GP (-ve)

LA 18945 (11740, 26150) NG×PF (+ve); NG×GP (-ve); PF×GO (+ve);

PF×GP (-ve); GO×GP (-ve)

NG 31118 (18893, 43343) LA×PF (+ve); PF×GO (+ve)

PF 32042 (13781, 50304) LA×NG (+ve); NG×GO (+ve); NG×GP (-ve);

GO 10202 (8061, 12343) LA×NG (+ve); LA×PF (+ve); NG×GP (-ve);

PF×GP (-ve)

GP 11015 (9447, 12583) LA×NG (+ve); LA×PF (+ve); NG×GO (-ve)

Table 2: MLEs and associated 95% CIs for the total population size for the UK data,

and corresponding model selected in terms of interaction terms present with associated

estimated sign of the interaction. The first row (denoted by a “-”) gives the results of the

complete 5-list analysis; the remaining rows are the results of omitting each list in turn.

13



have no overlap and their interactions with the other lists are in opposite directions. This

appears to have resulted in some interactions cancelling each other out. For instance,

in the 5-list analysis GP×NG has a negative interaction whilst LA×NG has a positive

interaction, once combined GP.LA has no interaction with NG. This has further impact

on the remaining interactions between the non-combined lists with clear changes in the

selected interaction terms. For the combinations of GP with NG and GO the interactions

for the combined model appear more predictable: where the uncombined lists displayed

interactions, the combined lists share those same interactions. The combination GP.PF

lies somewhere in between the above cases: the majority of interactions can be anticipated

from the original interactions, but there are also some changes in the interactions of the

uncombined lists. Overall, when compared to the leave-one-out method there appears to

be less variability in the range of estimates.

3.2 Romania data

We consider data collected for Romania in 2015. Five lists are included corresponding to:

Police/agency against trafficking in persons and border police (PF), International orga-

nization for Migration (IM), Non-Governmental organisations (NG), Foreign Authorities

(FA) and Other (OT). 879 individuals are observed, with the majority of these obtained

by list PF (a total of 806 individuals are observed by PF; of these 758 are only identified

by PF). Thus, PF dominates the other lists. IM observes a total of 48 individuals (1 indi-

vidual is unique to IM); NG observes 25 individuals (19 of these are observed by at least

one other list); FA observes 72 individuals (all these individuals are observed by at least

one other list); and OT has 66 individuals (with 34 only observed by OT).

3.2.1 Full data analysis

We conduct an analysis of the full 5-list dataset. We restrict the model search to those

including two-way interactions, and use the AIC statistic to determine the interactions

present. The model selected as “best” had interactions: PF×IM (-ve); PF×NG (-ve);

PF×FA (+ve); PF×OT (-ve); IM×FA (+ve); NG×FA (+ve); NG×OT (-ve); FA×OT

14



Combined Population 95%
Model

lists estimate confidence interval

- 11313 (9750, 12876) LA×NG (+ve); LA×PF (+ve); NG×GO (-ve);

NG×GP (-ve); PF×GP (-ve); GO×GP (-ve)

GP.LA 16071 (12661, 19481) GP.LA×GO (-ve); NG×PF (+ve)

PF×GO (+ve)

GP.NG 12661 (10920, 14403) LA×GP.NG (+ve); LA×PF (+ve);

GP.NG×GO (-ve)

GP.PF 13180 (11343, 15017) LA×NG (+ve); LA×GP.PF (+ve);

NG×GO (-ve)

GP.GO 14394 (11862, 16926) LA×NG (+ve); LA×PF (+ve);

NG×PF (+ve); NG×GP.GO (-ve)

Table 3: MLEs and 95% CIs of the population size for the UK data given the model se-

lected, and corresponding model selected in terms of interaction terms present (estimated

sign). The first row (denoted by a “-”) gives the results of the complete 5-list analysis; the

remaining rows are the results of combining list GP with each of the other lists. For the

model description we denote the combined lists by the combined “dotted” abbreviations.
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(+ve). The associated estimate of the population size is 921, with 95% CI (879∗, 993).

We truncate the lower limit of the 95% CI to the observed number of individuals (indicated

by ∗). We will use this estimate as a baseline to investigate the impact of removing each

of the lists in turn and secondly combining PF with each of the other lists in turn (chosen

since PF has the smallest percentage overlap with each of the other lists).

3.2.2 Omitting lists: “leave-one-out”

The population size estimates, 95% CIs and selected model when each list is omitted in

turn, are given in Table 4. Removing the dominant list PF (of which 86% of the individuals

on this list are only seen on this list) leads to a substantial decrease in the estimate of

the total population. This is unsurprising given the dominance of this list in observing

individuals. In particular, this source alone records 74% of all individuals observed; and

68% of all individuals observed are only observed by this list. Omitting the other lists

leads to estimates similar to the estimate obtained when using all 5 lists. We note that

removing the OT list leads to a larger and highly imprecise estimate of the population size.

In line with the observations from the UK data, there is generally agreement across the

different omissions in the interactions identified: where an interaction is identified to be

present, the sign of the interaction remains consistent whenever the interaction is detected.

On removing lists that have a negative interaction with the dominant list PF (i.e. IM, NG

and OT) the interaction terms identified are typically those identified by the 5-list analysis

with those featuring the omitted list removed. For list FA which originally displayed a

positive interaction with the dominant list PF, and contains no unique individuals, the

selection of interactions is somewhat different amongst the remaining lists.

3.2.3 Combining lists

For the Romanian data, PF has minimal overlap with the other lists: only 48 individuals

observed by list PF are observed by another list, which corresponds to only 6% of indi-

viduals observed by PF. We investigate the effect of combining PF with each of the other

lists. Whilst this approach is similar to that of the UK data (combining with a minimally
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Omitted Population 95%
Model

lists estimate confidence interval

- 921 (879∗, 993) PF×IM (-ve); PF×NG (-ve); PF×FA (+ve);

PF×OT (-ve); IM×FA (+ve); NG×FA (+ve);

NG×OT (-ve); FA×OT (+ve)

PF 258 (142, 374) IM×FA (+ve); IM×OT (+ve); NG×FA (+ve)

IM 971 (742, 1200) PF×NG (-ve); PF×FA (+ve); PF×OT (-ve);

NG×FA (+ve); NG×OT (-ve); FA×OT (+ve)

NG 923 (842, 1005) PF×IM (-ve); PF×FA (+ve); PF×OT (-ve);

IM×FA (+ve); FA×OT (+ve)

FA 1035 (895, 1175) PF×NG (-ve); PF×OT (-ve); IM×NG (+ve);

IM×OT (+ve)

OT 2915 (845∗, 5638) PF×IM (-ve); PF×FA (+ve); IM×FA (+ve);

NG×FA (+ve)

Table 4: Results for the Romanian data in terms of the MLEs and associated 95% CIs for

the total population size given the model selected, and corresponding model selected in

terms of interaction terms present with associated estimated sign of the interaction. The

first row (denoted by a “-”) gives the results of the complete 5-list analysis; the remaining

rows are the results of omitting each list in turn. When the lower bound of the confidence

interval was truncated to the number of observed individuals, it is indicated by ∗.
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overlapping list), here there is a structural difference in that the list also accounts for the

majority of observations. The corresponding results are given in Table 5. The estimates

obtained in each of the combined list analyses are reasonably consistent with substantially

overlapping 95% CIs (compared with the estimate using all 5 lists). The largest discrep-

ancy arises when combining list PF with list FA. This is potentially due to the complex

relationship between these two lists: of the 8 interactions identified in the 5-list analysis,

7 feature PF, FA or both. Once again the interactions identified (and associated sign) are

remain fairly consistent across analyses. As for the UK data, the combining of lists leads

to less variable estimates of population size compared to omitting lists.

The case studies suggest that analyses should be conducted with some caution in the

presence of minimally overlapping sources. In particular, omitting sources with limited

overlap can lead to different behaviours in the estimate of the population size. Alterna-

tively, combining a list with limited overlap to another list appears to provide less variable

estimates. Thus, how we deal with such sources can have a significant impact on the pop-

ulation size estimate - and some sensitivity of the analyses should be conducted. To in-

vestigate the impact further where the observed contingency tables are more “controlled”,

we conduct a simulation study, motivated by the larger UK data.

4 Simulation Study

The simulation study is motivated by the UK dataset with 5 sources, which represents a

common structure between the victims-of-slavery sources - in particular when there are

two sources for which no individuals are observed in common (sources LA and GP). We

use the fitted model to the full 5-list data analysis (so that there are 6 interaction terms

with non-zero effects) as the generating model within the simulation study and use the

same list names for simplicity. We set the true population size to be equal to 11313.

We generate 500 datasets from the given (conditional Multinomial) model. Only the cell

count corresponding to cell k = {0, 0, 0, 0, 0} is unknown. For each simulated dataset,
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Combined Population 95%
Model

lists estimate confidence interval

- 921 (879∗, 993) PF×IM (-ve); PF×NG (-ve); PF×FA (+ve);

PF×OT (-ve); IM×FA (+ve); NG×FA (+ve);

NG×OT (-ve); FA×OT (+ve)

PF. IM 1087 (879∗, 1400) PF. IM×NG (-ve); PF. IM×FA (+ve);

PF. IM×OT (-ve); NG×FA (+ve);

FA×OT (+ve)

PF. NG 904 (879∗, 1647) PF. NG×IM (-ve); PF. NG×FA (+ve);

PF. NG×OT (-ve); IM×FA (+ve);

FA×OT (+ve)

PF. FA 1679 (912, 2446) PF. FA×IM (+ve); PF. FA×OT (-ve);

IM×OT (+ve); IM×NG (+ve)

PF. OT 1139 (879∗, 1585) PF. OT×NG (-ve); PF. OT×FA (+ve);

IM×FA (+ve); NG×FA (+ve)

Table 5: Results for the Romanian data in terms of the MLEs and associated 95% CIs

for the total population size given the model selected, and corresponding model selected

in terms of interaction terms present with associated estimated sign of the interaction.

The first row (denoted by a “-”) gives the results of the complete 5-list analysis; the

remaining rows are the results of combining list PF with each of the other lists. For the

model description we denote the combined lists by the combined “dotted” abbreviations.

When the lower bound of the confidence interval was truncated to the number of observed

individuals, it is indicated by ∗.
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we repeat the model search algorithm to identify the model deemed optimal using the

AIC statistic, and estimate the associated population size and associated 95% CI. We then

remove each list in turn and repeat the analysis; before combining list GP (which has the

smallest expected overlap) with each of the other lists and again repeat the model-fitting

process. Finally, within the simulation study to consider the impact of the model selection

process we also fit the generating model, or an alternative form of the model when a list is

omitted or lists are combined. When omitting lists, the alternative model corresponds to

the generating model but with all interactions involving the omitted list removed; for com-

bined lists for the alternative model we include all possible two-way interactions (there

are six in total). Note that we only use the simulated datasets for which we do not observe

any potential identifiability problems to remove any possible confounding errors entering

the simulation study. Thus, 30 percent of the simulated models in removing lists, and 55

percent of models in combining lists are used. For further discussion on identifiability,

see for example, Vincent et al (2019).

4.1 Omitting lists: “leave-one-out”

For each simulated dataset we calculate the ratio of both the population estimate omit-

ting the given source to the estimated total using all 5 lists; and the true population size

(11313). We plot these estimates against two further statistics corresponding to (i) the

proportion of the total number of observed individuals by the source that is subsequently

omitted; and (ii) the proportion of overlap for the given list that is omitted (i.e. the pro-

portion of individuals observed by the given list that are also observed by at least one

other list). These results are plotted in Figure 1, where the left-hand plots, (a) and (c),

correspond to the associated population size ratio for the estimate using all 5 lists plotted

against (i); and the right-hand plots (b) and (d), correspond to the population size ratio for

the estimate with the true simulated population size plotted against (ii). The black dots

show the same quantities for the original UK data.

The relationships observed in the plots are similar when considering the true popula-

tion size; or the estimated population size using all 5 lists (i.e. the columns in the figure
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are similar): although, the variability appears to be slightly greater when using the true

population size. In general, the greater the proportion of individuals observed by a given

list, then omitting that list leads to a greater variability in the estimate of the population

size. Further, within this simulation study the variability of the estimates appears to be

more dependent on the number of individuals observed by the given list that is omitted,

as opposed to the proportion of overlap for that list - this is demonstrated by relatively

similar estimates for LA and GP which observe the smallest number of individuals but

have very different overlap patterns. Finally, we comment that there does not appear to

be any structural over or under estimate of the population size when omitting any of the

particular lists. However, we do note that underestimates do have a lower bound (i.e. the

total number of individuals observed by the sources); whereas overestimates have no such

bound and thus overestimates may be larger in magnitude.

To investigate further the performance of the estimates, we consider the 95% CIs of

the estimated population sizes and compare these with the true simulated population size.

When considering all 5 lists, 69% of the 95% CIs contained the true value of the param-

eter. This is less than the nominal 95% level that we would expect and would indicate

perhaps that there are further potential issues (for example, relating to model selection;

see below for further discussion). However, we are primarily concerned with the impact

of omitting each list, and thus we use this 69% as a comparison when we subsequently

omit each list. The coverage probabilities in each case correspond to: 69%, 63%, 41%,

58% and 63% when removing GP, GO, PF, NG and LA, respectively. Further, the median

of the length of these CIs for the models with 5 lists is 3341. Similarly, the median of the

length of the 95% CIs after removing GP, GO, PF, NG, LA is respectively 3451, 5076,

12058, 4277, 3402. Thus, omitting the list GP leads to very similar performance as the

full 5 lists (in terms of coverage and precision of the estimate) and suggests that the addi-

tional information that this list provides is minimal. Omitting lists GO, LA and NG leads

to a relatively similar reduction in performance in terms of reduced coverage probabilities

and precision. However, omitting list PF leads to a significant decrease in performance -

this list also corresponds to the list that observes the greatest number of individuals.
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Finally, we consider the impact of the model selection process by simply using the

generating model or alternative form of the model. For the generated and alternative

models for the reduced 4-list sources when omitting a list, the coverage probabilities were

significantly higher and equal to 97% with using the five lists and 97%, 93%, 100%, 96%

and 91% when removing GP, GO, PF, NG and LA, respectively. Further, the median of the

length of the 95% CIs are increased to: 14483 with 5 lists, 15049, 22105, 55400, 31362,

20781 after removing GP, GO, PF, NG and LA. Thus model selection has a significant

impact on the performance of the MSE approach - we return to this issue in Section 5.

4.2 Combining lists

For each simulated dataset, the list GP is combined with each of the other four lists in turn

and the associated total population size is estimated. Figure 2 provides the corresponding

plots of the ratio of the estimated population size using the combined lists compared to the

estimated total using all 5 lists (in the left-hand plots); and the true population size used

to simulate the data (in the right-hand plots), compared to the percentage of overlap of the

source GP with the list it is combined with. The black dots show the same quantities for

the original UK data. As for the above case of omitting the lists there is greater variability

in the ratio of the estimated population size with the true value, compared to the case when

we consider the estimated value using all 5 lists. Interestingly, within this simulation study

there appears to be a clear and consistent overestimate of the total population size when

we combine the GP list with the LA list - for which in the real UK data there was no

overlap observed. However, combining the list GP with the other lists (GO, PF and NG)

appears to provide less biased estimates of the total population size, and a reduced level

of variability in the ratios. There also appears to be a slight decrease in the variability of

the estimated ratio as the proportion of overlap of the combined lists increases.

For the set of retained datasets, the 95% CIs for the estimated population size using all

the 5 lists, include the true value of the population size in 67% of the simulated datasets,

with a median length of 3281. After combining GP with LA, NG, PF, GO this coverage

probability is reduced to 23%, 51%, 33,% and 54%, respectively. The median length of
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Figure 1: Ratio of estimated total population size using only 4 of the lists to the estimate

obtained using all 5 lists plotted against proportion of individuals observed by omitted list

(a) or proportion of overlap of omitted list (c); and similar plot for the ratio of estimated

total population size against true simulated value plotted against proportion of individuals

observed by omitted list (b) or proportion of overlap of omitted list (d). The black dots

show the same quantities for the original UK data.

the 95% CIs were 7480, 4033, 3814, 4058, respectively after combining GP with LA,

NG, PF and GO. Thus combining GP with each of the other sources leads to substantially

worse performance in terms of coverage probabilities, particularly for LA and PF. With

regard to LA (for which this has very small overlap across the simulations), not only does

combining the GP list with the LA list lead to poor estimation of the total population size
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(i.e. a general overestimate and substantially reduced confidence interval performance)

but the uncertainty of the estimate is also relatively large. Finally, to provide some insight

into the impact of model selection within the analyses we also consider the generating and

associated alternative models. In these cases the coverage probability are significantly

increased to 90% (for the generating model) when using the five lists and 92%, 97%, 94%

and 93% after combining GP with LA, NG, PF, and GO, respectively, for the reduced

model. The corresponding median length of the 95% CIs are also increased to 13310

when using all 5 lists, and 24055, 15702, 15868, 15183 after combining GP with LA,

NG, PF, and GO, respectively. This is a similar observation as for the case of omitting

lists but without any a large increase in the size and variability of the length of the CIs.
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Figure 2: Ratio of estimated population size using 4 lists with GP combined with each

source in turn with (i) the estimated population size using all 5 sources (on the left-hand

side); and (ii) the true population size used to simulate the data, compared with the per-

centage of the list GP overlap with the given list it is combined with. The black dots show

the same quantities for the original UK data.
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The simulation studies suggest that the population size estimates can be sensitive to a

number of different factors, including the number of sources that we include in the anal-

ysis and how we define a single source (i.e. a combined source). In general, assuming

that we fit the generating model or the alternative version of this model (when we omit

or combine a list) the corresponding population size estimates appear to be reasonable

with generally good coverage probabilities. However, when adding the associated model

search algorithm (using the AIC statistic as the criteria) the performance drops signifi-

cantly and also appears to overestimate the precision of the resulting estimates.

5 Discussion

Collecting data from the different (and potentially diverse) sources and conducting the

collation across the different lists requires resources. These resources may be limited, for

example, in terms of person time or money. Thus, understanding the importance of dif-

ferent lists can have a direct impact on future data collection, and allocation of resources.

Questions may particularly be raised in relation to sources that, for example, observe only

a relatively small number of individuals, or those which have minimal overlap with other

sources, since MSE relies on overlap between courses in order to estimate the total pop-

ulation size. This latter situation is very common in modern slavery applications - in this

paper we considered the robustness of MSE in the case of small overlap between sources.

To reduce the minimal overlap between sources two approaches can be adopted: re-

move a source; or combine a source with another. This latter step may be done prior to

any analysis being conducted, as may be done not only where there is minimal overlap

but also in the opposite case where the overlap is substantial as was the case with UK data

where the police force data was combined with the National Crime Agency data (Silver-

man, 2014). The analyses conducted within this paper suggests a note of caution with

regard to the application of MSE to modern slavery data. In particular changes to the lists

(omitting a list or combining two lists) could potentially have a significant impact on the
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total population size estimate - although combining lists appeared to have a lesser effect

than simply omitting a list. Overall the model selection algorithm implemented - and in

particular the use of the AIC statistic commonly used within MSE approaches Coumans et

al (2017); Silverman (2014); Van der Heijden et al (2012) - had a significant effect on the

performance of the MSE. It is possible that several competing models may be regarded to

fit the observed data equally well but yet have very different estimates for the population

size. These observations lead us to make the following minimum recommendations when

implementing an MSE approach:

1. Fit multiple models to the data to investigate the sensitivity of the estimates to

the different models - this would particularly include “similar” (i.e. neighbouring)

models;

2. Investigate the robustness of the estimate by omitting each source in turn and re-

peating the analysis;

3. Combine pairs of sources together and again investigate the robustness of the pa-

rameter estimates; and

4. Conduct a simulation study to gain an understanding of the performance of the

analyses (for example, using the MLEs of the fitted model as the generating model,

as for the simulation study conducted within this paper based on the UK data).

The above aim to provide a greater understanding of the particular dataset and analysis. If

similar estimates are obtained under the different scenarios there is some reassurance in

the approach being robust. However, deviations may indicate some particular interesting

aspect of the data. For example in our case for PF from the Romanian data lead to a

significant decrease in the population estimate - and on inspection this was most likely

due to the large number of (unique) individuals observed by this source. This in turn

may be investigated to understand why so many individuals are only observed by PF, for

example.

The simulation study suggests that the use of the AIC statistic as the model selec-

tion criteria may not be optimal, leading to poor coverage estimates of the true popu-
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lation size and over-confidence in the estimate. Alternative criteria exist, such as the

Bayesian information criterion (BIC; Schwarz (1978)) and Focused information criterion

(FIC; Claeskens and Hjort (2003)). Thus these different criteria could also be investigated

within the exploratory analyses and added to the list of recommendations above. Further,

with regard to model selection, an additional approach to consider includes a model-

averaging approach, and thus removing the reliance on a single model. A weighted aver-

age over the set of plausible models can be calculated, so that the population size estimate

includes both parameter and model uncertainty. See for example, Buckland et al (1997) in

the classical framework and Hoeting et al (1999); King and Brooks (2001); Madigan and

York (1997) in the Bayesian framework. If the set of plausible models all provide similar

estimates of the total population size, then so too will the model-averaged estimate; how-

ever if the estimates differ between models the model-averaged approach will provide a

weighted point estimate but typically have an associated significantly larger uncertainty

interval to convey this additional uncertainty. In this latter circumstance it is useful to not

only provide a single model-averaged estimate but also the set of most likely models and

their associated estimate.

Another issue that we have not considered within this data analyses but may arise re-

lates to cross-referrals, where one (or more lists) may refer individuals to other agencies

but not vice-versa leading to asymmetry. For example, cross-referrals by another list to

police may almost always be made when a child is or has been at risk. Cross-referral

is also more likely when there is the prospect that an intelligence-led police raid could

lead to the rescue of a clutch of other victims of modern slavery (Bird et al, 2019). Re-

ports on MSE estimation of modern slavery, such as in Serbia and Ireland (23 Romanian

men exploited in a waste recycling plant), for the United Nations Office on Drugs and

Crime mention the context of annual counts for rescued victims being inflated by a par-

ticularly successful police operation. More generally, we acknowledge that MSE needs to

evolve to take into account the underlying networks by which victims came to be listed.

For example, a rescued victim may provide information leading to the rescue of other

individuals, so that individuals are not independent of each other. Hence, in addition to
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list-membership and (selective) cross-referrals, consideration may also need to be given

to the size and context of the rescued victim-network that selective cross-referral gives

rise to. The current presentation of the data in terms of simply the presence of individuals

on different lists discards the temporal information, so that it is not possible to take into

account (or estimate) referrals between lists; or possible relationships between identifica-

tions. Worthington et al (2019) discuss similarities with ecological capture-recapture data

where such temporal information is available and could provide insight/motivation for

extended MSE models if such temporal information is available for modern slavery data.

The challenges of modern slavery motivates further developments of MSE to incorporate

the above particular complexities of the different processes acting on the and between the

different lists used to identify victims.
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