The University of Southampton
University of Southampton Institutional Repository

Genome scanning by composite likelihood

Morton, Newton, Maniatis, Nikolas, Zhang, Weihua, Ennis, Sarah and Collins, Andrew (2007) Genome scanning by composite likelihood The American Journal of Human Genetics, 80, (1), pp. 19-28. (doi:10.1086/510401).

Record type: Article


Ambitious programs have recently been advocated or launched to create genomewide databases for meta-analysis of association between DNA markers and phenotypes of medical and/or social concern. A necessary but not sufficient condition for success in association mapping is that the data give accurate estimates of both genomic location and its standard error, which are provided for multifactorial phenotypes by composite likelihood. That class includes the Malecot model, which we here apply with an illustrative example. This preliminary analysis leads to five inferences: permutation of cases and controls provides a test of association free of autocorrelation; two hypotheses give similar estimates, but one is consistently more accurate; estimation of the false-discovery rate is extended to causal genes in a small proportion of regions; the minimal data for successful meta-analysis are inferred; and power is robust for all genomic factors except minor-allele frequency. An extension to meta-analysis is proposed. Other approaches to genome scanning and meta-analysis should, if possible, be similarly extended so that their operating characteristics can be compared.

PDF 44111.web.pdf - Version of Record
Restricted to Repository staff only
Download (169kB)

More information

Published date: January 2007
Keywords: research, models, dna, research support, meta-analysis, genes, meta-analysis as topic, phenotype, genome, databases, humans, chromosome mapping, theoretical, human, genetics, genetic markers, analysis


Local EPrints ID: 44324
ISSN: 0002-9297
PURE UUID: 8f084e70-8575-48e0-b64b-d32795dcf437
ORCID for Andrew Collins: ORCID iD

Catalogue record

Date deposited: 26 Feb 2007
Last modified: 17 Jul 2017 15:15

Export record



Author: Newton Morton
Author: Nikolas Maniatis
Author: Weihua Zhang
Author: Sarah Ennis
Author: Andrew Collins ORCID iD

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton:

ePrints Soton supports OAI 2.0 with a base URL of

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.