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Abstract—Semi-blind (SB) channel estimation is conceived
for millimeter wave (mmWave) analog-beamforming (AB) and
hybrid-beamforming (HB)-based multiple-input multiple-output
(MIMO) systems, which also exploits the data symbols for
improving the estimation accuracy. A novel aspect of the pro-
posed framework is that it directly estimates the analog beam-
former/ combiner weights without necessitating the estimation
of the entire mmWave MIMO channel matrix. By involving
powerful matrix perturbation theoretic techniques, a closed-
form expression is derived for the mean-squared-error (MSE)
of the mmWave-AB-SB algorithm. As a further novelty, our
mmWave-HB-SB technique relies on the decomposition of the
channel matrix as the product of a decorrelating and a unitary
matrix. Subsequently, the former is estimated purely relying
on the unknown data symbols, whereas the latter is estimated
exclusively from the training vectors. A lower bound on the
MSE of the proposed mmWave-HB-SB technique is derived using
the constrained Cramér-Rao lower bound (CRLB) framework.
Furthermore, the performance gain of our mmWave-HB-SB
technique over the conventional purely training-based scheme is
also quantified analytically. Our simulation results demonstrate
the superiority of the techniques advocated over the existing
solutions and also verify the accuracy of our analytical findings.

Index Terms—Millimeter wave, MIMO, analog- and hybrid-
beamforming, semi-blind channel estimation, CRLB.

I. INTRODUCTION

M ILLIMETER Wave (mmWave) wireless technology has
gained significant appeal as a promising candidate for

achieving the demanding data rate targets of next-generation
wireless networks [1], [2]. The huge bandwidth available in
the mmWave frequency band 30−300 GHz [3], together with
multiple-input multiple-output (MIMO) technology, facilitates

Prem Singh, Suraj Srivastava and Aditya K. Jagannatham are with the
Department of Electrical Engineering, Indian Institute of Technology Kanpur,
208016, India (e-mail: {psrawat, ssrivast, adityaj}@iitk.ac.in). L. Hanzo
is with the School of Electronics and Computer Science, University of
Southampton, Southampton SO17 1BJ, U.K. (e-mail: lh@ecs.soton.ac.uk).

L. Hanzo would like to acknowledge the financial support of the En-
gineering and Physical Sciences Research Council projects EP/N004558/1,
EP/P034284/1, EP/P034284/1, EP/P003990/1 (COALESCE), of the Royal
Society’s Global Challenges Research Fund Grant as well as of the European
Research Council’s Advanced Fellow Grant QuantCom.

This research has been supported by the Science and Engineering Research
Board (SERB), Department of Science and Technology, Government of
India, Space Technology Cell, IIT Kanpur, IIMA IDEA Telecom Centre
of Excellence, Qualcomm Innovation Fellowship and Arun Kumar Chair
Professorship.

new applications such as, smart wearables [4], virtual reality
(VR) [5] and also augments the capabilities of 5G new radio
(5G-NR) devices [2]. However, mmWave signal suffer from
the high propagation losses and increased signal blockage.
Moreover, the high sampling rate and the related increased
power consumption of the radio-frequency (RF) components
such as analog-to-digital/ digital-to-analog converters (ADC/
DACs) and the power amplifiers (PAs) prohibit the assignment
of an individual RF chain for each antenna [3]. This has
motivated researchers to explore practical solutions towards
addressing these challenges. A popular low-complexity ap-
proach for the design of mmWave transceivers that supports
single stream transmission, which is employed in IEEE 802.11
ad systems, is analog beamforming (mmWave-AB) [3]. In such
a system, the antenna arrays at the transmitter and receiver
are connected to a single RF chain, each via a network of
digitally controlled phase-shifters. In order to enhance the
capability of mmWave-AB by enabling the transmission of
multiple streams, the hybrid beamforming architecture has
gained popularity for mmWave MIMO systems [3], [6]–[8]. In
such a hybrid system that employs several RF chains, analog
precoding/ combining is performed in the RF front-end, while
digital processing is carried out in the baseband. Naturally,
channel state information (CSI) acquisition plays a key role in
the design of both the baseband as well as of the RF precoders
and combiners for maximizing the beamforming gain attained
[7], [8]. A brief review of the existing contributions on channel
estimation for mmWave MIMO systems is presented next.

A. Review of Existing Works

In the context of beamformer and combiner design for
mmWave-AB MIMO systems, beam-training, which is a
closed-loop strategy aiming for discovering the angular di-
rections of the strongest signal path between the mmWave
receiver and transmitter, has gained widespread popularity.
Its low complexity makes it appealing for practical imple-
mentation in Wireless HD and IEEE 802.11 ad [9] systems.
However, its performance is limited by the number of training
beams employed. Moreover, the training overhead of this
technique increases linearly with the number of devices,
thereby rendering it spectrally inefficient. Similar techniques
conceived for mmWave hybrid beamforming (mmWave-HB)
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MIMO systems initially estimate the channel, followed by the
design of the associated analog beamformer and combiner for
maximizing the MIMO capacity [10]. A common approach of
several treatises in this context is to first estimate the associated
parameters such as the angles of arrival (AoAs), angles of
departure (AoDs) and the corresponding path-gains of the
mmWave MIMO channel. To improve the performance, the
authors of [7], [8], [11], [12] proposed sparse signal recovery
techniques based on orthogonal matching pursuit (OMP) [11],
sparse Bayesian learning and their variants [8] for estimating
the mmWave MIMO channel. While generally efficient, an
important drawback of these approaches is that their estimation
performance is sensitive to the resolution of the grid employed
for the quantization of the AoA/ AoD space. Furthermore, the
performance of sparse signal recovery schemes is typically
also sensitive to the choice of both the sensing matrix as well
as of the stopping criterion, which may potentially lead to con-
vergence errors and performance degradation unless suitably
chosen. A MUSIC-based algorithm has been proposed in [13]
and [14] for mmWave MIMO channel estimation. Although,
the scheme therein has been shown to identify multiple paths
with a high degree of resolution, its performance depends on
factors such as the antenna positions, gains and phase errors.
The authors of [15] described an mmWave channel estimation
scheme based on estimating the signal parameters via rota-
tional invariance techniques (ESPRIT). To directly apply the
ESPRIT method, one has to turn off approximately half of the
antennas so that the number of powered antennas is equal to
that of the time slots for channel estimation, which will reduce
the total transmission power and signal coverage [16]. The
authors of [17] proposed an atomic norm minimization (ANM)
based semi-blind (SB) (ANM-SB) channel estimator that also
exploits the estimated data symbols to enhance the estimation
accuracy. This is different from the solutions in [8], [11],
which estimate the mmWave MIMO channel by estimating
the AoAs/ AoDs and the corresponding complex path gains.
However, the scheme of [17] has the following drawbacks:
it i) does not exploit the statistical information in the data
symbols; ii) requires the knowledge of a bound L̄ on the
number of spatial paths; iii) suffers from high computational
complexity, which is on the order of O(N2

t N
2
r L̄

2). To reduce
the large pilot overhead, the authors of [18], using a low-rank
matrix completion technique, proposed the semi-blind data
detection and channel estimation methods for a sub-6 GHz
multi-user (MU) hybrid massive MIMO systems. Two iterative
solutions were presented therein: the regularized alternating
least squares (R-ALS) and the bilinear generalized approxi-
mate message passing (BiG-AMP). A common limitation of
the contributions reviewed above is that they only exploit
the training symbols for mmWave MIMO channel estimation,
which leads to a reduction in the spectral efficiency. To
overcome this, some contributions in the existing literature
have described blind channel estimation techniques conceived
for mmWave hybrid MIMO systems, which completely elim-
inate the need for training symbols. For example, reference
[19] presented a maximum likelihood formulation aided blind
channel estimation scheme using l1 regularization with ideal
as well as one-bit receivers. However, blind schemes are often

computationally complex and may be plagued by convergence
problems. A common limitation of the contributions reviewed
above is that they only exploit the training symbols for
mmWave MIMO channel estimation, which leads to a spectral
efficiency reduction. The drawbacks of these techniques moti-
vate us to conceive semi-blind techniques for both mmWave-
AB and mmWave-HB MIMO systems, which are capable of
significantly enhancing the accuracy of channel estimation
by exploiting the statistical properties of the unknown data
symbols, along with a limited pilot overhead. A brief summary
of our contributions is presented next.

B. Contributions of the Paper

• We develop a novel semi-blind (SB) channel estimation
technique, termed as mmWave-AB-SB, for mmWave-
AB MIMO systems communicating over quasi-static
channels. In contrast to the conventional ML scheme
employed for channel estimation, the proposed mmWave-
AB-SB technique directly estimates the dominant left and
right singular vectors, without necessitating the estima-
tion of the complete mmWave MIMO channel matrix.
Furthermore, the proposed scheme also exploits the statis-
tical properties of the unknown data symbols in addition
to a few training symbols, thus leading to a reduced pilot
overhead.

• Employing a rigorous matrix perturbation theoretic ap-
proach, a closed-form expression is derived for the mean-
squared-error (MSE) of the proposed mmWave-AB-SB
channel estimator, thereby comprehensively characteriz-
ing its performance.

• Next, a semi-blind technique, termed as mmWave-HB-
SB, is developed for mmWave-HB MIMO systems com-
municating over quasi-static channels. The proposed
scheme decomposes the channel matrix H into a unitary
matrix U and decorrelating matrix D. In contrast to
the existing channel estimation solutions, the proposed
mmWave-HB-SB scheme offers the following advan-
tages:
– Unlike the training based conventional ML, and the ex-

isting SBL [8], OMP [11] and ANM-SB [17] schemes,
i) the proposed scheme exploits both the training as
well as the statistical information of the data symbols
for the estimation of the component matrices U and D,
respectively, which significantly enhances the accuracy
of channel estimation; and ii) the performance of the
proposed mmWave-HB-SB scheme also improves with
the number of receive antennas.

– The proposed mmWave-HB-SB technique, i) in con-
trast to the SBL [8] and OMP [11] sparse channel
estimation schemes, does not result in performance
degradation in a practical off-grid scenario, where the
true AoAs/ AoDs deviate from the set of quantized
AoAs/ AoDs corresponding to the beamspace represen-
tation; and ii) has a significantly lower computational
complexity than the SBL [8], OMP [11] and ANM-SB
[17] schemes.
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TABLE I: Summary of literature survey on hybrid MIMO channel estimation

[7] [11] [15], [16] [17] [18] [19] [8] Proposed
mmWave Band X X X X × X X X
Sub-6 GHz Band × × × × X × × ×
AB MIMO × × × × × × × X
HB MIMO X X X X X X X X
Training-based X X X X X X X X
Semi-blind × × × X X × × X
Blind × × × × × X × ×
Theoretical MSE × X × × × X X X
Complexity Analysis × × × × X × × X
Sensitive to Grid resolution Yes Yes No No No Yes Yes No

• The complex constrained Cramér-Rao lower bound
(CRLB) is derived for the proposed mmWave-HB-SB
channel estimator, which clearly demonstrates that the es-
timation of the constrained matrix U having much fewer
free parameters leads to a significantly lower channel
estimation MSE for the semi-blind technique. Analytical
results are also derived to explicitly characterize the
performance gain of our mmWave-HB-SB technique over
the conventional training-based ML technique.

• Our simulation results demonstrate the improved perfor-
mance of the proposed techniques in comparison to that
of existing techniques and also validate the accuracy of
the analytical results derived.

C. Organization of the Paper

The next section presents the proposed system model and
frame structure, followed by detailing our mmWave-AB-SB
scheme conceived for mmWave MIMO scenario. The theo-
retical analysis characterizing the MSE performance is carried
out in Subsection-II-C. Subsequently, Section-III describes our
mmWave-HB-SB designed for channel estimation in hybrid
beamforming aided mmWave MIMO systems based on a
decorrelating-unitary decomposition of the channel matrix.
The lower bounds on both the estimation error covariance
and on the MSE are also derived in Section-III using the
constrained CRLB framework, followed by quantifying the
performance gain of the mmWave-HB-SB over the conven-
tional mmWave-HB-ML technique. Our simulation results are
provided in Section-V, while Section-VI concludes the paper
followed by supplementary proofs of the various results in the
Appendices.

D. Notations

Upper and lower case bold face letters A and a denote
matrices and vectors, respectively. The Frobenius norm of a
matrix ∆ is denoted as ||∆||F . Furthermore, the notation
X ∼ CN (0, σ2) describes a zero-mean circularly symmetric
complex Gaussian random variable X with mean of zero and
variance of σ2. The matrix Kronecker product is denoted as
⊗, while the vec(·) operator stacks all the columns of a matrix
to obtain a single column vector.

II. MMWAVE ANALOG BEAMFORMING

Consider an mmWave-AB MIMO system with Nt transmit
antennas (TAs) and Nr receive antennas (RAs), wherein all

the TAs and RAs are connected to a single RF chain via
a network of digitally controlled phase-shifters, as shown in
Fig. 1. The system model of our mmWave-HB MIMO system
relying on hybrid beamforming, and the corresponding channel
estimation schemes are described later in Section III. The
transmitter is comprised of a cascade of a complex baseband
transmit precoder (TPC) fBB ∈ C and an RF beamformer
fRF ∈ CNt×1. At the receiver, the signal is first processed
using an RF combiner wRF ∈ CNr×1, followed by a baseband
combiner wBB ∈ C. Furthermore, as described in [3], the RF
beamformer fRF and the RF combiner wRF are implemented
using digitally controlled phase-shifters. The elements of the
RF precoder and combiner are constrained to have constant
magnitude as |fRF(i)| = 1√

Nt
and |wRF(j)| = 1√

Nr
,∀ i, j.

The symbol at the output of the baseband combiner for the
system given in Fig. 1 can be mathematically formulated as

y = w∗BBwH
RFHfRFfBBx+ v, (1)

where H ∈ CNr×Nt represents the mmWave MIMO channel
matrix, x ∈ C denotes the transmit symbol and v ∈ C is the
independent and identically distributed (i.i.d.) additive noise
having the distribution of CN (0, σ2

v).
Let the singular value decomposition (SVD) of the mmWave

MIMO channel matrix H be given as H = SΓQH , where
S ∈ CNr×Nr and Q ∈ CNt×Nt are the left and right
singular matrices, respectively, and Γ ∈ CNr×Nt contains
singular values σ1 ≥ σ2 ≥ . . . ≥ σr > 0 along the
principal diagonal with r = rank(H). It is widely recognized
[20] that the optimal unconstrained digital beamformer and
combiner that maximize the SNR at the output, denoted by
f opt ∈ CNt×1 and wopt ∈ CNr×1, respectively, are given by
f opt = q1 and wopt = s1, where s1 ∈ CNr×1 and q1 ∈ CNt×1

are the dominant left and right singular vectors of H, and
are given by the first columns of the matrices S and Q,
respectively. Hence, in order to maximize the throughput of
the system, it is essential to obtain accurate estimates of the
singular vectors q1 and s1. The conventional procedure for
estimation of q1 and s1 is described next, followed by our
more efficient semi-blind technique proposed in this paper.

A. Conventional Beamformer Estimation

Traditionally, for the purpose of channel estimation, MP

training beams are transmitted in each frame, as shown in
Fig. 2. Note that channel estimation is performed in each frame
for both the training and semi-blind schemes. Let the mth
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Fig. 1: Schematic of mmWave-AB MIMO Systems.

Fig. 2: Frame structure of the mmWave-AB-ML and the proposed
mmWave-AB-SB channel estimation schemes.

training beam, 1 ≤ m ≤ MP , employ the RF beamformer
fRF,m ∈ CNt×1. The corresponding pilot beam ȳm reaching
the receiver is given by

ȳm = HfRF,mxm + v̄m, (2)

where xm denotes a complex-valued pilot symbol drawn
from a phase-shift-keying (PSK) constellation of power
E
[
|xm|2

]
= Pp. The received pilot matrix Ȳ ∈ CNr×MP

obtained by concatenating all the MP training beams is
given by

Ȳ = [ȳ1, ȳ2, . . . , ȳMP
] = HFRFX + V̄, (3)

where the concatenated RF TPC matrix is FRF =
[fRF,1, fRF,2, · · · , fRF,MP

] ∈ CNt×MP , and the noise matrix
V̄ = [v̄1, v̄2, · · · , v̄MP

] ∈ CNr×MP . The pilot matrix X ∈
CMP×MP in (3) is given as X = diag (x1, x2, . . . , xMP

) .
Let QC denote the number of beams combined and wRF,q ∈
CNr×1 represent the RF combiner weights employed in the qth
beam. The output pilot vector ỹq ∈ C1×MP can be determined
from (3) as

ỹq = wH
RF,qHFRFX + wH

RF,qV̄. (4)

The output pilot matrix Y =
[
ỹT1 , ỹ

T
2 , · · · , ỹTQC

]T ∈
CQC×MP obtained by stacking ỹq for q = 1, 2, · · · , QC , can
be expressed as

Y = WH
RFHFRFX + V, (5)

where the RF combiner matrix WRF =
[wRF,1,wRF,2, · · · ,wRF,QC ] ∈ CNr×QC and the stacked

noise matrix V ∈ CQC×MP is given by V = WH
RFV̄. The

conventional maximum-likelihood (ML) estimate Ĥc,AB of
the mmWave-AB MIMO channel matrix H can be obtained
using (5) as

Ĥc,AB = arg min
H
‖Y −WH

RFHFRFX‖2F . (6)

Solving (6) for finding the training-based ML estimate Ĥc,AB
of H may be obtained by the well-known least-squares (LS)
solution. In practice, the RF beamformer and the receiver
combiner matrices FRF and WRF are frequently set as the
submatrices formed by the Nt and Nr rows of the discrete
Fourier transform (DFT) matrices of size MP × MP and
QC × QC , respectively [8], [11]. Since the elements FRF
and WRF are normalized to have magnitude 1√

Nt
and 1√

Nr
respectively, it follows that FRFF

H
RF = INt and WRFW

H
RF =

INr . Interestingly, this choice of FRF and WRF satisfies the
constraint of constant magnitude elements required for the RF
precoder as well as combiner and ensures minimum MSE [21].
The simplified expression of the mmWave-AB-ML estimate
for such a setting is given by

Ĥc,AB =
1

Pp
WRFYXHFHRF. (7)

The estimate of the digital beamformer and combiner vectors,
denoted as q̂1,c and ŝ1,c, respectively, can now be obtained via
the SVD of the mmWave MIMO channel estimate Ĥc,AB. It
follows from the invariance property of the ML estimate [22]
that the estimates q̂1,c and ŝ1,c obtained from Ĥc,AB are also
the ML estimates of q1 and s1, respectively.

While the conventional training-based scheme described
above is robust, a drawback of this approach is that it is neces-
sary to estimate the entire mmWave MIMO channel matrix H
for the sake of estimating the beamforming vectors q1 and s1.
This assumes greater significance in the context of mmWave
MIMO systems deployed in next-generation networks, since
the size of the antenna arrays employed is typically large.
Furthermore, the conventional techniques for estimating the
mmWave MIMO channel employ exclusively training sym-
bols, and do not exploit the statistical information pertaining to
the data symbols, which renders them inefficient. To overcome
these limitations, a semi-blind technique is proposed next for
analog beamforming based mmWave MIMO systems, which
yields the estimates of q1 and s1 without necessitating the
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estimation of the complete channel matrix H. Furthermore,
in addition to training symbols, it also exploits the second-
order statistical properties of the data symbols, which leads to
a significant improvement in the estimation accuracy.

B. Proposed mmWave-AB-SB Channel Estimation Scheme

The proposed mmWave-AB-SB scheme divides the data
transmission into two phases, wherein the first phase com-
prises ND1 spatially-white data vectors, followed by ND2

beamformed data vectors in the subsequent phase. Note that
MP < ND1 << ND2. Fig. 2 shows the schematic of the
proposed frame structure of our mmWave-AB-SB scheme,
wherein the training is comprised of MP training vectors, sim-
ilar to the mmWave-AB-ML scheme. The proposed mmWave-
AB-SB scheme utilizes the MP training vectors for estimating
the beamforming vector q1, whereas ND1 spatially-white
data vectors are used for estimating the combiner vector
s1. Subsequently, the SB estimates of q1 and s1 are used
for the transmission and detection of the ND2 beamformed
data vectors. The procedure of the proposed mmWave-AB-SB
estimator is described next.

Let fi = [fi(1), fi(2), . . . , fi(Nt)]
T ∈ CNt×1 denote the

ith spatially-white data vector, where i = 1, 2, . . . , ND1.
The elements fi(p) and fi(q) of the vector fi are drawn
independently from a zero mean M-ary PSK constellation,
i.e. E [fi(p)] = 0, 1 ≤ p ≤ Nt, with average power
E
[
|fi(p)|2

]
= Pd

Nt
. Thus, these elements satisfy the property

E [fi(p)f
∗
i (q)] =

{
E [fi(p)]E [f∗i (q)] = 0, for p 6= q

E
[
|fi(p)|2

]
= Pd

Nt
, for p = q.

(8)

Therefore, it follows that E
[
fif

H
i

]
= Pd

Nt
INt . Recall that

since the RF beamformer fRF in (1) is comprised of constant-
magnitude phase shifters, its jth element fRF(j), ∀ 1 ≤ j ≤
Nt, can be directly set as fi(j) for the transmission of the
ith spatially-white information data vector. Since the MIMO
channel is unknown prior to estimation, the RF precoder and
combiner are typically reconfigured several times during chan-
nel estimation [7], [8], [11] to excite all the angular modes.
However, in practice, this might lead to an increased switching
delay for reconfiguration of the phase shifters. Therefore, the
corresponding output signal yi ∈ CQC×1, similar to (5), can
be expressed as

yi = WH
RFHfi + WH

RFvi, (9)

where vi ∈ CNr×1 is the AWGN noise vector that has a
covariance of E

[
viv

H
i

]
= σ2

vINr . Employing (8), (9) and
exploiting the property of WRFW

H
RF = INr , the covariance

matrix Ry = E
[
WRFyi (WRFyi)

H
]
∈ CNr×Nr of the

processed output can be evaluated as

Ry =
Pd
Nt

HHH + σ2
vINr . (10)

It follows from (10) that the dominant left singular vector
s1 equals the dominant eigenvector of the covariance ma-
trix Ry . The proposed mmWave-AB-SB technique initially
obtains the estimate R̂y of the covariance matrix Ry from
the received ND1 spatially-white data vectors yi as R̂y =

1
ND1

∑ND1

i=1 WRFyi (WRFyi)
H
. The estimate of s1 is in turn

evaluated as ŝ1,s = Ŝ(:, 1), where the estimate Ŝ is derived
as ŜΓ̂2ŜH = SVD

(
R̂y

)
. Thus, the estimate ŝ1,s can be

obtained purely from the blind data symbols. Furthermore, as
ND1 increases, a near-perfect estimate of s1 can be obtained,
since we have R̂y → Ry . Subsequently, the estimate q̂1,s

of the dominant right singular vector q1 can be obtained
exclusively from the training-based channel estimation model
in (5) as follows. Let the matrix Y in (5) be processed as

y̌ = ŝH1,sWRFY.

Substituting the output pilot matrix Y from (5), one obtains

y̌ = ŝH1,s WRFW
H
RF︸ ︷︷ ︸

INr

HFRFX + ŝH1,sWRFV.

Replacing the channel H with its SVD H = SΓQH , the
vector y̌ can be recast as

y̌ = ŝH1,sSΓQHFRFX + ŝH1,sWRFV

= σ1q
H
1 FRFX + ŝH1,sWRFV, (11)

where the simplification ŝH1,sSΓQH = σ1q
H
1 above assumes

that the blind estimate ŝ1,s is sufficiently close to s1, which
is valid when ND1 is sufficiently large. The estimate q̂1,s can
now be obtained as the solution of the constrained optimization
problem

q̂1,s = arg min
‖q1‖=1

‖y̌ − σ1q
H
1 FRFX‖2. (12)

The estimate q̂1,s is given by the result below.
Lemma 1: For FRFF

H
RF = INt and WRFW

H
RF = INr ,

the solution to the above constrained optimization problem
is given by

q̂1,s =
FRFXy̌H

‖FRFXy̌H‖
. (13)

Proof: Given in Appendix A.
Thus, the mmWave-AB-SB estimator exploits the unknown
data symbols in addition to the known training symbols,
making it semi-blind in nature. It is also worth noting that
the proposed mmWave-AB-SB technique only utilizes the MP

training beams for estimating the complex vector q1, which
has much fewer parameters than the channel matrix H. This
naturally leads to a significantly improved estimation accuracy
in comparison to its conventional mmWave-AB-ML counter-
part, as also supported by the rigorous MSE analysis presented
next. Finally, the semi-blind estimate of the RF beamformer
and combiner, denoted by q̂con

1,s and ŝcon
1,s respectively, can be

derived using the hybrid design by alternating minimization
(HD-AM) technique of [23] as

q̂con
1,s = q̂1,s � |q̂1,s|, and ŝcon

1,s = ŝ1,s � |̂s1,s|, (14)

where the operation � represents the normalization of each
entry of the vector by its magnitude resulting in a vector of
constant-magnitude elements.
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C. MSE for the mmWave-AB-SB Channel Estimation Scheme

This section presents an outline of the procedure and the key
results pertaining to the MSE in the estimate q̂1,s. Due to the
intractability of the MSE analysis of the beamformer estima-
tion in the mmWave-AB-SB scheme, this section employs key
approximation results from rigorous matrix perturbation theory
described in [24]. For ease of reading, the technical details of
the various derivations are given in Appendices B, C and D.
We begin by noting that there are two sources of error in the
estimate of q1. First, the noise in the observed training output
matrix Y in (5), and second, the error in the imperfect estimate
of the vector s1 due to the noisy data vectors yi in (9). Let the
estimate q̂1,s be expressed as the function q̂1,s = g(Y, ŝ1,s).
Note that we have q1 = g

(
WH

RFHFRFX, s1

)
. Using the first-

order Taylor series expansion, it follows that

q̂1,s − q1 = g (Y, ŝ1,s)− g
(
WH

RFHFRFX, s1

)
≈
[
g
(
WH

RFHFRFX, ŝ1,s

)
− g

(
WH

RFHFRFX, s1

) ]
+
[
g (Y, s1)− g

(
WH

RFHFRFX, s1

) ]
. (15)

The first term in the above expression represents the error
in q̂1,s arising from the noisy training outputs with perfect
knowledge of s1. On the other hand, the second term above
can be attributed to the estimation error in q̂1,s with noise-free
training outputs. Furthermore, these two terms are statistically
independent, since the pilot output noise in (5) and the esti-
mation error in ŝ1,s arising from the noise in the blind outputs
are assumed to be statistically independent, having come from
temporally separated noise vectors. Upon exploiting the above
property, we have

E
[
‖q̂1,s − q1‖2

]
= E1 + E2, (16)

where E1 = E
[∥∥g (Y, s1)− g

(
WH

RFHFRFX, s1

)∥∥2
]

and

E2 = E
[∥∥g (WH

RFHFRFX, ŝ1,s

)
− g

(
WH

RFHFRFX, s1

)∥∥2
]
.

The expressions of E1 and E2 are simplified next.
1) MSE in q̂1,s with Perfect Knowledge of ŝ1,s: Let q̃1,s

be defined as

q̃1,s , FRFXYHWH
RFs1/σ1Pp.

Employing the relationship SVD(H) = SΓQH and (5), the
above expression can be simplified to

q̃1,s = q1 +
EHs1

σ1
, (17)

where the matrix E is defined as

E =
WRFVXHFHRF

Pp
. (18)

From (13), it follows that the estimate q̂1,s = q̃1,s/ ‖q̃1,s‖.
Ignoring the second-order terms, the quantity ‖q̃1,s‖2 can be
approximated as

‖q̃1,s‖2 ' 1 +
sH1 Eq1 + qH1 EHs1

σ1
. (19)

Given (19) and q̂1,s = q̃1,s/ ‖q̃1,s‖, the expression of q̂1,s

can be approximated as

q̂1,s '

(
q1 +

EHs1

σ1

)[
1− 1

2σ1

(
sH1 Eq1 + qH1 EHs1

)]
.

(20)

Using the above expression, as shown in Appendix C, the MSE
in the estimate q̂1,s for this scenario can be evaluated as

E1 = E
[
‖ q̂1,s − q1 ‖2

]
= E

‖ EHs1 ‖2

σ2
1

+

∣∣∣sH1 Eq1 + qH1 EHs1

∣∣∣2
4σ2

1


=

σ2
v

2Ppσ2
1

(
2Nt − 1

)
. (21)

2) MSE in q̂1,s with Noise-Free Training: Let us now
consider the noise-free training scenario, i.e., V = 0 in (5).
Since the columns of the matrix S form an orthonormal-basis
for the space CNr , one can express ŝ1,s = Sc, for some
c = [1 + ∆c1,∆c2, . . . ,∆cNr ]

T ∈ CNr×1. Let the vector q̌1,s

be defined as q̌1,s , 1
Pp

FRFXy̌H . Substituting V = 0 into
(11), and replacing ŝ1,s by Sc, the expression of the vector
q̌1,s may be simplified to q̌1,s = QΓc. Thus, the unit-norm

vector q̂1,s can be expressed as q̂1,s =
q̌1,s

‖q̌1,s‖
= Qc̃, where

c̃ , [c̃1, c̃2, . . . , c̃Nt ]
T

= Γc√
cHΓ2c

. As shown in Appendix D,
the squared-error in q̂1,s can be written as

‖q̂1,s − q1‖2 = |c̃1 − 1|2 + |c̃2|2 + . . .+ |c̃Nt |2

≈ 2 [1−< (c̃1)] (22)

≈
Nr∑
i=2

σ2
i

σ2
1

|∆ci|2, (23)

where <(·) represents the real part of the quantity. Finally,
using the result for E

[
|∆ci|2

]
from Appendix D, the MSE

component E2 may be simplified to

E2 =E
[
‖q̂1,s − q1‖2

]
=

Nr∑
i=2

σ2
i

ND1(σ2
1 − σ2

i )2σ2
1(

σ2
1σ

2
i

ND1
+
Ntσ

2
v

(
σ2

1 + σ2
i

)
Pd

+
N2
t σ

4
v

P 2
d

)
. (24)

It follows from (24) that the MSE in q̂1,s with noise-free train-
ing is inversely proportional to the number of data symbols
ND1. Therefore, as ND1 → ∞, the MSE in (16) approaches
the result derived in (21). Finally, substituting the expressions
for E1, E2 from (21), (24), respectively, into (16), yields the
expression for the net MSE corresponding to the SB estimate
of q̂1,s.

III. HYBRID BEAMFORMING

This section presents a semi-blind estimation scheme for
our mmWave-HB MIMO system having Nt TAs and Nr
RAs, as shown schematically in Fig. 3. The system comprises
NRF << min(Nt, Nr) RF chains both at the transmitter
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Fig. 3: Schematic Diagram for mmWave-HB MIMO systems.

Fig. 4: Frame structures of the mmWave-HB-ML and the proposed
mmWave-HB-SB channel estimation schemes.

and receiver for conveying Ns ≤ NRF data streams. The
transmitter employs the baseband TPC F̄BB ∈ CNRF×Ns
and RF TPC F̄RF ∈ CNt×NRF for hybrid beamforming. The
receiver processes the received signal using a cascade of a
baseband combiner W̄BB ∈ CNRF×Ns and an RF combiner
W̄RF ∈ CNr×NRF . Let x̄ ∈ CNs×1 denote the transmit signal
vector. The output signal vector ȳ ∈ CNs×1 after baseband
combining is

ȳ = W̄H
BBW̄H

RFHF̄RFF̄BBx̄ + v̄, (25)

where v̄ denotes the i.i.d. AWGN vector that is distributed
as CN (0, σ2

vINs). Similar to analog beamforming, the ele-
ments of the hybrid RF TPC and combiner matrices satisfy
|FRF(i, j)| = 1√

Nt
and |WRF(i, j)| = 1√

Nr
,∀ i, j.

A. Conventional mmWave-HB-ML Channel Estimation

For the purpose of channel estimation, let us consider the
transmission of B = Nt

NRF
pilot blocks, where each block

comprises NB pilot beams, as shown in the training phase
of the frame-structure in Fig. 4. Note that both the training

and semi-blind schemes estimate channel in each frame. Let
Xp,b ∈ CNRF×NB ,∀ 1 ≤ b ≤ B, denote the baseband
transmit pilot matrix for the bth pilot block so that

Xp,bX
H
p,b = PpNBINRF , (26)

where the quantity Pp denotes the pilot power. Let the matrix
FRF,b ∈ CNt×NRF denote the RF TPC in the bth pilot block.
The received pilot block Ȳp,b ∈ CNr×NB is obtained as

Ȳp,b = HFRF,bXp,b + V̄p,b, (27)

where V̄p,b ∈ CNr×NB is the AWGN noise ma-
trix. Furthermore, the concatenated output matrix Ȳp =[
Ȳp,1, Ȳp,2, · · · , Ȳp,B

]
∈ CNr×NBB across all the B pilot

blocks is given by

Ȳp = HFRFXp + V̄p, (28)

where FRF = [FRF,1,FRF,2, · · · ,FRF,B ] ∈ CNt×Nt and
V̄p =

[
V̄p,1, V̄p,2, · · · , V̄p,B

]
∈ CNr×NBB are the con-

catenated TPC and noise matrices, respectively. The block-
diagonal pilot matrix Xp ∈ CNt×NBB is obtained as Xp =
blkdiag (Xp,1,Xp,2, · · · ,Xp,B). Let the matrix WRF,q ∈
CNr×NRF denote the qth RF combiner, where 1 ≤ q ≤ QCB ,
and QCB = Nr

NRF
denotes the number of combining matrices.

The output pilot matrix Ỹp,q = WH
RF,qȲp ∈ CNRF×NBB ,

after combining with the qth RF combiner, is obtained as

Ỹp,q = WH
RF,qHFRFXp + Ṽp,q, (29)

where the noise at the output of the combiner obeys Ṽp,q =
WH

RF,qV̄p ∈ CNRF×NBB . Similar to FRF, let the RF com-
biner matrix be WRF = [WRF,1,WRF,2, · · · ,WRF,QCB ] ∈
CNr×Nr . The matrix Yp ∈ CNr×NBB , obtained by stacking
Ỹp,q for all the QCB combiners, is obtained as

Yp = WH
RFHFRFXp + Vp, (30)

where Vp ∈ CNr×NBB is the corresponding stacked noise
matrix. From (30) above, the training-based ML estimate of
the mmWave-HB MIMO channel matrix H is obtained as

Ĥc,HB = WRFYp

(
FRFXp

)†
= H + V̄p

(
FRFXp

)†
, (31)
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where (·)† denotes the pseudo-inverse of the corresponding
matrix [25]. Note that since WRF is a DFT matrix, the noise
samples at the output of the RF combiner are also i.i.d.
complex-Gaussian. Therefore, Ĥc,HB also denotes the ML
estimate of the channel matrix H. Again, the ML estimate
described above suffers from the drawback that it does not
exploit the unknown data, which in turn leads to higher
pilot overheads. Hence, in the next subsection we design a
novel semi-blind scheme for mmWave-HB MIMO systems
that exploits both the pilots as well as the unknown data
symbols for improved estimation accuracy.

B. Proposed mmWave-HB-SB Channel Estimation Scheme

In contrast to the conventional mmWave-HB-ML estimation
technique, the proposed mmWave-HB-SB solution segments
data transmission into two phases, as shown in Fig. 4. The
first phase processes NWB spatially-white data blocks, where
each data block is further divided into B sub-blocks with each
sub-block containing NB data beams. The average power of
each element in a data beam is Pd. This is followed by NPD
precoded data vectors in the second phase. Note that BNB <
NWBBNB << NPD. Let channel matrix H, with Nr ≥ Nt,
be decomposed as

H = DUH , (32)

where D ∈ CNr×Nt and U ∈ CNt×Nt are termed the
decorrelating and unitary matrices, respectively. Note that it is
always possible to decompose the mmWave MIMO channel
matrix H into the decorrelating and unitary matrices. For
example, given SVD(H) = SΓQH , we can set D = SΓ
and U = Q. The proposed mmWave-HB-SB scheme is based
on the principle that the decorrelating matrix D is estimated
by exploiting the second-order statistical properties of the
unknown data symbols, whereas the unitary matrix U is esti-
mated exclusively from the training beams. Since the unitary
matrix U is comprised of significantly fewer parameters than
H, the estimation accuracy of the proposed semi-blind scheme
is significantly better than that of the conventional training-
based technique. It is worth noting that since the channel H
is quasi-static i.e. constant over a frame, it follows that the
component matrices D and U are also quasi-static in nature.
To begin with, blind estimation of the decorrelating matrix D
can be carried out as follows.

Upon exploiting the property UUH = UHU = INt , it
follows from (32) that

HHH = DDH . (33)

For the ith data block of the frame in Fig. 4, the received
symbol matrix Yd,i ∈ CNr×NBB is expressed, similar to (30),
as

Yd,i = WH
RFHFRFXd,i + Vd,i, (34)

where Xd,i ∈ CNt×NBB is the block-diagonal matrix
comprising spatially-white data symbol matrices in the ith
block, and satisfies E[Xd,iX

H
d,i] = NBPdINt . The matrix

Vd,i ∈ CNr×NBB is the additive noise matrix for the ith
block with its elements distributed as CN (0, σ2

v). Let the

correlation matrix RY ∈ CNr×Nr be defined as RY ,
E
[
WRFYd,i(WRFYd,i)

H
]
. Following (34) and exploiting the

above properties, the output covariance matrix RY can be
obtained as

RY = NBPdHHH +NBBσ
2
vINr . (35)

It therefore follows that,

DDH = HHH =
RY −NBBσ2

vINr
NBPd

. (36)

The estimate R̂Y of RY can be obtained from the out-
puts corresponding to the blind data symbols as R̂Y =

1
NWB

∑NWB

i=i WRFYd,iY
H
d,iW

H
RF [26]. Exploiting the relation-

ship in (33), the blind estimate of the decorrelating matrix D
can now be determined as

D̂ = Φ̂Σ̂1/2, (37)

where the matrices Φ̂ and Σ̂1/2 are obtained from the SVD

Φ̂Σ̂Φ̂
H

= SVD

(
R̂Y −NBBσ2

vINr
NBPd

)
. (38)

The unitary matrix U is then estimated by solving the follow-
ing constrained optimization problem

min
U

∥∥∥WRFYp − D̂UHFRFXp

∥∥∥2

F

s.t. UUH = INt . (39)

For an orthogonal pilot beam matrix FRFXp obeying
FRFXpX

H
p FHRF = NBPpINt , the estimate Û is given by

Û = V̂QÛH
Q , (40)

where the matrices V̂Q and ÛQ are obtained from the SVD
as follows:

ÛQΣ̂QV̂H
Q = SVD

(
D̂HWRFYpX

H
p FHRF

)
.

Finally, the semi-blind estimate of the channel matrix is
obtained as

ĤSB = D̂ÛH = Φ̂Σ̂1/2ÛQV̂H
Q . (41)

The CRLB of the proposed mmWave-HB-SB estimator, which
lower bounds its MSE, is derived next using the constrained
CRLB framework.

C. Constrained CRLB for the mmWave-HB-SB Channel Esti-
mation Scheme

The mmWave-HB-SB channel estimation approach outlined
above necessitates the estimation of a unitary matrix U that
is constrained as UHU = INt . Hence, the constrained CRLB
framework developed in [27] is naturally suited for deriving
the pertinent CRLB for such an estimator. Let the decorrelating
matrix D be assumed to be perfectly known, which is a
reasonable assumption since D can be estimated with a
sufficiently high level of accuracy by transmitting a limited
number of spatially-white data symbols, as it will be evidenced
by the results in Section-V. Furthermore, the estimation of D
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does not add to the pilot overhead of the system. Let us define
the desired parameter vector ρ ∈ C2N2

t×1 to be estimated as

ρ =
[
vec
(
U
)T

vec
(
U∗
)T ]T . (42)

The construction of the parameter ρ above follows from [28],
which demonstrates that for each of the complex parameters,
we also have to include its complex conjugate. Upon exploiting
that SVD(H) = SΓUH , (30) can be recast as

SHWRFYp︸ ︷︷ ︸
Ỹp

= ΓUHFRFXp + SHWRFVp︸ ︷︷ ︸
Ṽp

. (43)

Vectorizing the model in (43), we obtain

vec
(
ỸH
p

)
=
[
Γ⊗XH

p FHRF

]
vec
(
U
)

+ vec
(
ṼH
p

)
. (44)

The unconstrained Fisher information matrix (FIM) for the
estimation of the parameter vector vec

(
U
)

in (42) is now
obtained as [22]

C =
1

σ2
v

[
ΓHΓ⊗FRFXpX

H
p FHRF

]
=
NBPp
σ2
v

[
Γ2⊗INt

]
, (45)

where the properties of XpX
H
p = NBPpINt , FRFF

H
RF = INt

and ΓHΓ = Γ2 have been exploited in the above simplifica-
tion. For an orthogonal pilot matrix Xp, we can verify that
the vector vec

(
U∗
)

in (42) has an identical FIM. Thus, it
follows that for the unconstrained estimation of U, the FIM
Cρ ∈ C2N2

t×2N2
t for the parameter vector ρ in (42) is given

by

Cρ = I2 ⊗C =
NBPp
σ2
v

[
I2 ⊗ Γ2 ⊗ INt

]
. (46)

Let ui denote the ith column of the unitary matrix U.
Employing the constraints uHi uj = 1 if i = j and 0 otherwise,
the set of non-redundant constraints f

(
ρ
)

for the constrained
estimation problem can be constructed as

f
(
ρ
)

=
[
uH1 u1 − 1,uH1 u2,u

H
2 u1,u

H
1 u3, . . . ,

uHNtuNt − 1
]T

= 0. (47)

The constrained CRLB for the parameter vector ρ can now be
derived as [29]

CRLB(ρ) = B
(
BHCρB

)−1
BH , (48)

where the matrix B ∈ C2N2
t×N

2
t is an orthonormal basis for

the null-space of the matrix

J
(
ρ
)
,

[
∂f
(
ρ
)

∂ρ
,
∂f
(
ρ
)

∂ρ∗

]
. (49)

The procedure of deriving the matrix B from J
(
ρ
)

is given
in Appendix-E. Since the size of ρ is 2N2

t × 1 and f(ρ)
comprises N2

t constraints, the matrix J
(
ρ
)
∈ CN2

t×2N2
t has a

rank 2N2
t −N2

t [27]. Let us now define the parameter vector
h = vec

(
HT
)

= [D⊗ INt ]vec
(
U∗
)

for the mmWave MIMO
channel matrix H. Let the orthonormal basis matrix B be

partitioned as [BT
1 ,B

T
2 ]T with B1,B2 ∈ CN2

t×N
2
t . The CRLB

for the covariance of the estimation of h is now obtained as

E
[(

ĥ− h
)(

ĥ− h
)H] ≥ σ2

v

PpNB
[SΓ⊗ INt ]B

∗
1Γ̃−1BT

1

× SΓ⊗ INt ]
H = CH,

where the matrix Γ̃ = diag[2σ2
1 , σ

2
1 +σ2

2 , σ
2
2 +σ2

1 , 2σ
2
2 , . . . , ] ∈

Rr2×r2 . The proof of the above result is given in Appendix-
F. Finally, the MSE arising from the semi-blind estimation of
each element H(k, l) of the mmWave MIMO channel matrix
H is given by the element CH[(k − 1)Nt + l, (k − 1)Nt + l]
of the matrix CH, which equals

E
[
|Ĥs,HB(k, l)−H(k, l)|2

]
≥ σ2

v

NBPp

r∑
i=1

r∑
j=1

σ2
i

σ2
j + σ2

i

×
∣∣S(k, i)

∣∣2∣∣U(l, j)
∣∣2, (50)

where the quantities S(k, i) and U(l, j) denote the (k, i)th and
(l, j)th elements of the matrices S and U, respectively. It is
worth noting that the weighting factor σ2

i /(σ
2
j + σ2

i ) in (50)
yields the net reduction in the estimation error in each term
in comparison to the training-based ML channel estimator. In
fact, it is easy to verify that setting this equal to 1 yields
the MSE bound for the conventional ML scheme described in
(31).

D. MSE Performance Improvement of the Proposed mmWave-
HB-SB Scheme

Let the parameter vector h̄ be defined as h̄ =[
vec(H)T , vec(H∗)T

]T ∈ C2NrNt×1. Note that the number
of unconstrained or free real parameters in the mmWave
MIMO channel matrix H is 2NrNt, which corresponds to
the NrNt complex parameters. It can be readily verified that
the unconstrained FIM matrix for the parameter vector h̄

can be evaluated as Ch̄ =
σ2
v

NBPp
I2NrNt . Thus, the MSE

bound for the conventional ML or unconstrained estimation
of H, as performed by the mmWave-HB-ML estimator, can
be evaluated as

E
[ ∥∥∥Ĥc,HB −H

∥∥∥2

F

]
=

1

2
Tr[Ch̄] =

σ2
vNtNr
PpNB

. (51)

The conventional ML estimator utilizes the training matrix Xp

for the estimation of the complete matrix H, which has 2NrNt
real parameters. However, the estimation of the decorrelating
matrix D using the statistical information of data symbols
allows the proposed mmWave-HB-SB scheme to utilize the
training matrix Xp for exclusively estimating the unitary ma-
trix U, which has only N2

t real parameters [28]. This reduction
in the number of free parameters significantly enhances the
channel estimation accuracy of the proposed scheme. Let
us now consider the constrained estimate obtained via the
mmWave-HB-SB technique as Ĥs,HB = DÛH . Following
our procedure from the previous section, the estimation error
εh̄ = ˆ̄h− h̄ of the parameter h̄ for this case is bounded as

E
[
εh̄ε

H
h̄

]
≥ B̄

(
B̄HCh̄B̄

)−1
B̄H , (52)
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where the matrix B̄ denotes an orthonormal basis for the
matrix J(h̄) ∈ CN2

t×2NrNt . Note that the rank of J(h̄) is
2NrNt −N2

t [27]. Hence, it follows that the matrix B̄ has a
size of 2NrNt×N2

t . Substituting Ch̄ in (52) and then applying
the trace operator to both sides, we obtain

E
[∥∥∥Ĥs,HB −H

∥∥∥2

F

]
≥ 1

2
Tr
[(

B̄HCh̄B̄
)−1
]

=
σ2
v

2NBPp
N2
t ,

(53)

which can be seen to be proportional to the number of free
parameters of the unitary matrix U, namely to N2

t . It follows
from (51) and (53) that the MSE improvement of the proposed
mmWave-HB-SB scheme over the training-based mmWave-
HB-ML scheme is

G ≤ E
[ ∥∥∥Ĥc,HB −H

∥∥∥2

F

]/
E
[ ∥∥∥Ĥs,HB −H

∥∥∥2

F

]
=

2Nr
Nt

. (54)

It becomes immediately clear from the above expression that
when Nr = Nt, the proposed mmWave-HB-SB scheme
outperforms the training-based mmWave-HB-ML scheme by
3 dB. Furthermore, the gain G of mmWave-HB-SB is seen
to increase with the number of RAs Nr, which leads to its
significantly improved performance in comparison to conven-
tional estimation. Finally, it is also worth noting that the per
parameter MSE bound for the mmWave-HB-SB estimator is
≥ σ2

vNN
2
t

2PpNB

(
1

NtNr

)
, which is seen to decrease with the number

of RAs Nr, while that of the competing mmWave-HB-ML is
σ2
vNtNr
PpNB

(
1

NtNr

)
, which can be seen to remain constant with

Nt and Nr.

IV. COMPLEXITY OF THE PROPOSED AND THE EXISTING
SCHEMES

This section presents a brief analysis of the computational
complexities of the proposed mmWave-AB-SB and mmWave-
HB-SB schemes, and the existing mmWave-AB-ML,
mmWave-HB-ML, SBL [8], OMP [11] and ANM-SB [17]
schemes. The complexity of each scheme is quantified in
terms of the number of real floating point operations (flops),
where a real flop denotes either a real addition, multiplication
or division [30], [31]. Due to lack of space, the detailed
derivations of the computational complexity have been
relegated to our technical report in [32]. As described in
[32], both the conventional mmWave-AB-ML and mmWave-
HB-ML schemes cost O(N2

t Nr + N2
rNt + N3

t ) flops.
Next, the state-of-the-art SBL [8] and OMP [11] schemes
require O(G2NrNt + N3

rN
3
t ) and O(G6 + G4NrNt) flops,

respectively, where, typically, the grid-size G ≥ min(Nt, Nr)
[31]. The proposed mmWave-AB-SB and mmWave-HB-
SB schemes fare O(N2

rND1 + N3
r + N2

t Nr + N2
rNt)

and O(N2
rNtNWB + N3

t + NtN
2
r + NrN

2
t + N3

r ) flops,
respectively. The terms N2

rND1 and N2
rNtNWB above arise

due to the estimation of the covariance matrices Ry and RY

using ND1 and NWB spatially-white data symbols in the
proposed mmWave-AB-SB and mmWave-HB-SB schemes,
respectively. The cubic order terms in the complexity of
the proposed schemes appear due to the associated SVD
operations to exploit the statistical characteristics in data
symbols. The existing ANM-SB scheme [17] has a complexity

O(N2
rN

2
t L̄

2), where the quantity L̄ denotes a bound on the
number of spatial paths. With G = Nr = Nt, it can be seen
that the complexity of the above mentioned schemes follow the
order O(SBL [8]) > O(OMP [11]) > O(ANM-SB [17]) >
O(mmWave-HB-SB) > O(mmWave-AB-SB) >
O(mmWave-AB-ML) = O(mmWave-HB-ML). It can
be observed that the proposed schemes have significantly
lower complexity than the existing OMP, SBL and ANM-SB
schemes. A visual comparison of the complexities is given in
Section-V.

V. SIMULATION RESULTS

As described in several related contributions [7], [8], [33],
the narrowband clustered channel model based mmWave
MIMO channel matrix H is expressed as

H =

√
NtNr
Nray

Ncl∑
i=1

Nray,i∑
j=1

αijar(θ
r
ij)a

H
t (θtij), (55)

where the 3-tuple (αij , θ
r
ij , θ

t
ij) denotes the complex

path gain αij , angle of arrival (AoA) θrij , and angle
of departure (AoD) θtij associated with the jth ray
in the ith cluster. The quantity Ncl denotes the total
number of clusters, each of which contributes Nray,i
spatial multipath components, and Nray =

∑Ncl
i=1Nray,i

denotes the total number of rays. The vector at(θ
t
ij) =

1√
Nt

[
1, e−j

2π
λ dT cos θtij , · · · , e−j 2π

λ (Nt−1)dT cos θtij
]T ∈ CNt×1

denotes the transmit array response and the vector ar(θ
r
ij) =

1√
Nr

[
1, e−j

2π
λ dR cos θrij , · · · , e−j 2π

λ (Nr−1)dR cos θrij
]T ∈

CNr×1 is the receive array response, corresponding to the
jth ray in the ith cluster. Here the quantity λ denotes the
carrier’s wavelength and dR and dT are the RA and TA
spacings, respectively. The sparse nature of the mmWave
MIMO channel above renders it highly correlated, as can also
be seen from the beamspace model described in [8], [11]. The
various simulation parameters have been chosen as follows,
unless stated otherwise. The mmWave MIMO channel
comprises of Ncl ∈ {4, 6} clusters and Nray,i ∈ {4, 6} rays
per cluster. The mean-angles of the clusters are assumed to
be uniformly distributed between (0, π), and the Nray,i rays
associated with the ith cluster are assumed to have a Laplacian
distribution with an angular spread of 0.1 radian around the
mean-angle of the cluster. The corresponding path gains are
generated as i.i.d. CN (0, 1). The inter-antenna spacings of
the TA and RA arrays are fixed as dT = dR = λ

2 . The SNR

in decibels (dB) is defined as SNR (dB) = 10 log10

Pp
σ2
v

.

The normalized mean square error (NMSE) is defined as∥∥∥Ĥ−H
∥∥∥2

F
/ ‖H‖2F . The corresponding theoretical NMSEs

have also been similarly normalized.

A. mmWave-AB Beamformer Estimation

Fig. 5(a) shows the NMSE versus SNR performance of
both the conventional mmWave-AB-ML and of the proposed
mmWave-AB-SB schemes, with perfect s1, for channel es-
timation in mmWave-AB MIMO systems. Since our solu-
tion successfully leverages both the training as well as the
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Fig. 5: Performance comparison of the mmWave-AB-ML and mmWave-AB-SB schemes: (a) NMSE versus SNR with perfect s1 for
Nr ∈ {8, 16, 32}, Nt = 8 and MP = Nt, along with theoretical NMSE from Eq. (21); (b) NMSE versus SNR with perfect s1, imperfect
s1 with ND1 ∈ {50, 200, 800} and Nt = Nr = MP = 8; and (c) NMSE versus pilot length MP for SNR ∈ {−5, 5} dB, Nt = Nr = 8
and ND1 = 800.
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Fig. 6: Performance comparison of the mmWave-HB-SB and mmWave-HB-ML schemes: (a) NMSE versus SNR for Nr ∈ {32, 64, 128} with
perfect D, Nt = 32, NRF = NB = 8 and Nray,i = Ncl = 4, along with CRLB from (53); (b) NMSE versus SNR for NWB ∈ {15, 60, 200}
with imperfect and perfect D, Nt = 16, Nr = 32, NRF = 8 and Nray,i = Ncl = 4; and (c) NMSE versus number of pilot beams NB for
SNR ∈ {−5, 5} dB with imperfect and perfect D, Nt = Nr = 8, NRF = 4, NWB = 200 and Nray,i = Ncl = 4.

second-order statistics of the data symbols, it significantly
outperforms the former technique for a fixed number of pilot
beams MP = Nt. Since the ML technique estimates the
complete mmWave MIMO channel matrix H ∈ CNr×Nt ,
2NrNt number of parameters has to be estimated, which
increases both with Nt and Nr. By contrast, the proposed
mmWave-AB-SB scheme directly estimates the dominant right
singular vector q1 ∈ CNt×1, which only has 2Nt parameters
that does not increase with Nr, thus rendering it efficient.
This explains the progressively improving performance of the
mmWave-AB-SB technique in comparison to the mmWave-
AB-ML scheme upon increasing Nr. It can also be observed
that the experimental MSE values obtained for the proposed
mmWave-AB-SB scheme closely agree with the corresponding
values obtained using the analytical MSE expression derived
in (21).

Fig. 5(b) shows the effect of increasing the number of data

symbols ND1 on the semi-blind estimate. It can be observed
that when ND1 is on the order of a few tens of data symbols,
the proposed scheme fails to approach the conventional ML
scheme at high SNR values, since the error arising in the
estimate of Ry results in an increased error in the estimation
of the left singular vector s1, which results in an NMSE
floor for the proposed schemes. However, this NMSE floor
disappears as ND1 is increased to a few hundred symbols
and the proposed mmWave-AB-SB scheme significantly out-
performs the mmWave-AB-ML scheme for the entire SNR
range. Furthermore, the NMSE approaches that of the scenario
having perfect s1 as ND1 increases. Fig. 5(c) demonstrates
the NMSE performance of both the mmWave-AB-ML and the
proposed mmWave-AB-SB schemes versus the pilot length
MP at different SNR values for both ND1 = 800 and for a
large number of data symbols having perfect s1 estimates. As
expected, the performance of both the ML as well as of the
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Fig. 7: Comparison between mmWave-HB-SB and the existing schemes: (a) NMSE versus SNR with Nt = Nr = 32, NB = NRF = 2,
NWB = 60, Ncl = 8, Nray,i = 1 and grid-size G = 32; and (b) Complexity comparison with ND1 = 200, NWB = 60, G = Nr =
Nt, L̄ = NclNray,i = 4× 6 = 24. (c) Overall BER of the mmWave-AB-ML and mmWave-AB-SB schemes with Nt = MP = 8, Nr = 32,
ND1 = 200, ND2 = 106, and Nray,i = Ncl = 4.

proposed mmWave-AB-SB techniques can be seen to improve
upon increasing MP .

B. mmWave-HB MIMO Channel Estimation

Fig. 6(a) demonstrates the performance gain of the proposed
mmWave-HB-SB scheme over the training-based mmWave-
HB-ML scheme as well as the analytical results derived in
Section-III-D for both the systems. The MSE of the mmWave-
HB-SB scheme exhibits 3 dB, 6 dB and 9 dB performance gain
over its ML counterparts, for 32× 32, 64× 32 and 128× 32
mmWave-HB MIMO systems, respectively, in accordance with
the formula 10log10

2Nr
Nt

derived in (54). It can also be ob-
served that the proposed mmWave-HB-SB scheme approaches
the MSE given by the complex-constrained CRLB derived in
Section-III-C.

Fig. 6(b) compares the NMSE versus SNR performance
of the proposed mmWave-HB-SB scheme both with perfect
and imperfect knowledge of the decorrelating matrix D. It
can be seen from Fig. 6(b) that the estimation performance
of the proposed scheme degrades with a reduction in the
number of spatially white symbols. This can be attributed
to the increased estimation error arising in the estimation
of D from equation (37). As shown in (38), the matrix D
is estimated using the sample correlation matrix R̂Y , which
approaches the true correlation matrix RY as the number of
spatially-white data blocks NWB increases. Consequently, the
estimate D̂ approaches the true decorrelating matrix D. The
same trend is reflected in Fig. 6(b), wherein the NMSE of the
proposed mmWave-HB-SB scheme progressively approaches
the scenario of perfect D, as the number of spatially-white
data block NWB increases.

Fig. 6(c) shows the NMSE versus number pilot beams
NB performance of the mmWave-HB-ML and the pro-
posed mmWave-HB-SB schemes. Similar to Fig. 5(c) for
the mmWave-AB MIMO systems, it can be seen that the
proposed mmWave-HB-SB scheme requires a significantly
lower number of pilot beams NB than the conventional ML

scheme for an identical NMSE performance. For example,
for SNR = 5 dB, the proposed mmWave-HB-SB scheme
requires only NB = 4 pilot beams to achieve an NMSE of
−15 dB, whereas the conventional mmWave-HB-ML scheme
requires NB = 10 pilot beams to achieve an identical NMSE
performance.

Fig. 7(a) compares the NMSE performance of the pro-
posed mmWave-HB-SB and the state-of-the-art existing sparse
techniques such as SBL [8] and OMP [11], also the atomic-
norm-minimization (ANM) [17]- and R-ALS [18]-based semi-
blind channel estimation techniques for mmWave-HB MIMO
systems. It can be observed that not only does the mmWave-
HB-SB significantly outperform the OMP and SBL schemes,
but is also robust to practical aberrations such as grid mis-
match, where the AoDs/ AoAs do not coincide with the
dictionary points. It can also be observed that at low SNR,
the NMSE of the proposed scheme is close to that of the
ANM-SB scheme, while at high SNR, the former significantly
outperform the latter. Furthermore, it can be readily observed
that the NMSE of the proposed mmWave-HB-SB scheme is
significantly lower than that of the R-ALS [18] scheme. This
is due to the fact that i) the problem formulation in [18]
based on a low-rank matrix decomposition is non-convex in
nature, which is subsequently solved using the R-ALS scheme
by decomposing it into two alternating convex sub-problems;
ii) the low-rank matrix decomposition therein relies on the
assumption Nt << Nr, which need not to satisfy in a typical
hybrid MIMO system; and iii) unlike the channel estimation
model formulated in Eq. (26)-(30), the scheme in [18] does not
excite all the angular modes of the mmWave MIMO channel.
Thus, the proposed scheme is ideally suited for mmWave
MIMO channel estimation in practical settings.

Fig. 7(b) shows the complexity comparison of the proposed
and several existing state-of-the-art schemes. As described in
Section-IV, both the mmWave-AB-ML and mmWave-HB-ML
schemes can be seen to have an identical computational cost,
which is slightly lower than that of the proposed mmWave-
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Fig. 8: (a) Overall capacity of the mmWave-AB-ML and mmWave-AB-SB schemes with Nt = MP = Nr = 8, ND1 = 200, ND2 = 103,
and Nray,i = Ncl = 4. (b) Overall BER of the mmWave-HB-ML and mmWave-HB-SB schemes with Nt = Nr = 32, NB = 8, NRF = 8,
NWB = 100, Ncl = Nray,i = 4 and NPD = 1000. (c) Overall capacity of the mmWave-HB-ML and mmWave-HB-SB schemes with
Nt = Nr = 32, NB = 8, NRF = 8, NWB = 200, Ncl = Nray,i = 4 and NPD = 2000.

AB-SB technique. Furthermore, it can also be observed that
the complexity of the mmWave-HB-SB scheme is only mod-
erately higher than that of the mmWave-HB-ML scheme,
while it is significantly lower in comparison to the existing
SBL [8], OMP [11] and ANM-SB [17] schemes. Thus, the
proposed semi-blind channel estimation schemes yield the best
performance complexity trade-off in practical systems.

C. Overall Performance Comparison of the ML and the pro-
posed SB Techniques

Fig. 7(c) shows the BER of both the mmWave-AB-ML
and of the proposed mmWave-AB-SB techniques. It can be
observed that the overall BER of our proposed mmWave-AB-
SB technique, which includes the performance of both the
spatially-white data as well as the beamformed data symbols,
is superior to that of the mmWave-AB-ML technique. Observe
that in order to obtain an overall superior BER for the
mmWave-AB-SB technique, it is desirable that ND2

ND1
>> 1,

since the BER for beamformed symbols is lower due to the
higher diversity gain attained. Fig. 8(a) compares the capacities
of the mmWave-AB MIMO system, with channel estimation
performed using the mmWave-AB-SB and mmWave-AB-ML
techniques. To benchmark the performance, the capacity of a
‘genie’-transceiver, which employs the optimal digital beam-
former and combiner vectors obtained using perfect knowledge
of the mmWave MIMO channel, has also been plotted. The
capacity of the mmWave-AB MIMO technique is also com-
pared to that of a hypothetical beam-training method, which
estimates the dominant AoA and AoD pair within an angular
uncertainty of 0.1 radian. The improved channel estimation
accuracy of the mmWave-AB-SB technique is also reflected
in the improved MIMO capacity, which is very close to that
of the conventional fully digital MIMO beamformer/ combiner
with perfect CSI.

Fig. 8(b) and Fig. 8(c) demonstrate the resultant BER versus
SNR and the capacity versus SNR performance of mmWave-
HB systems with the channel estimation performed using the

proposed SB and the existing ML schemes. It can be seen
that the overall performance of the proposed mmWave-HB-SB
estimator is significantly better than that of its ML counterpart
in terms of both the capacity as well as BER.

VI. CONCLUSIONS

We have conceived the mmWave-AB-SB and mmWave-
HB-SB schemes, for analog- and hybrid-beamforming based
mmWave MIMO systems, respectively. A unique aspect of
these schemes is that they exploit both the training as well as
the statistical information available in the unknown data sym-
bols for enhancing the estimation performance. The mmWave-
AB-SB has the advantage that it does not necessitate the
estimation of the complete channel matrix H and directly
estimates the beamforming vectors. A first order perturbation
analysis based framework has also been presented for deriving
the analytical MSE expression of the proposed mmWave-AB-
SB scheme. The mmWave-HB-SB scheme developed subse-
quently exploits the decorrelating-unitary decomposition of the
channel matrix H. It is shown that while the former can be
estimated exclusively using the unknown data symbols, the
known training symbols are only used for the estimation of
the latter. The lower number of free parameters in the unitary
matrix to be estimated by the proposed technique leads to
its significantly improved estimation performance, as shown
by our explicit constrained CRLB analysis. Furthermore, its
performance gain over the conventional technique shows a pro-
gressively improving trend with the number of RAs Nr. Our
simulation results have demonstrated the improved NMSE,
BER and capacity of the proposed schemes in comparison
to the existing ones.

APPENDIX A

Taking (·)H on both the sides of (11), we arrive at:

y̌H = XHFHRF (σ1q1) + VHWH
RFŝ

H
1,s. (56)
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Furthermore, the LS problem in (12) can be recast as

q̂1,s = arg min
‖q1‖=1

‖y̌H −XHFHRF (σ1q1) ‖2. (57)

The solution to (57) can be readily obtained as

σ̂1,sq̂1,s = (FRFXXHFHRF)−1FRFXy̌H =
1

Pp
FRFXy̌H .

(58)

Thus, σ̂1,s = 1
Pp
‖FRFXy̌H‖, since ‖q̂1,s‖ = 1. Substituting

σ̂1,s into (58), completes the proof.

APPENDIX B

This Appendix presents some relevant results from matrix
perturbation theory [24]. Let T ∈ CN×N be a Hermitian
symmetric matrix, whose eigenvalues and the corresponding
eigenvectors are denoted by {λi}Ni=1 and {ei}Ni=1, respectively.
Let the first-order perturbation of the matrix T, denoted by
T̂, be given as T̂ = T + ∆T, where ∆T is the error matrix.
Let {êi}Ni=1 denote the eigenvectors of the perturbed matrix
T̂. Then, for small perturbations, the eigenvector êi can be
approximated in terms of the true eigenvectors ei as

êi ≈ ei +

RT∑
j=1,j 6=i

eHj ∆T ei

λi − λj
ej , (59)

where RT = rank(T). An important assumption in (59) is
that the non-zero eigenvalues of the matrix T are distinct, i.e.,
λj 6= λk for j 6= k. For i = 1, the expression above can be
written as

ê1 ≈ e1 +

RT∑
j=2

eHj ∆T e1

λ1 − λj
ej . (60)

The above expression can be compactly rewritten as ê1 ≈ Eẽ,
where the matrix E ∈ CN×RT and the vector ẽ ∈ CRT×1 are
defined as

E = [e1, e2, . . . , eRT ] and

ẽ =

[
1,

eH2 ∆T e1

λ1 − λ2
, . . . ,

eHRT ∆T e1

λ1 − λRT

]T
. (61)

Furthermore, for a unit-norm vector ě1 = e1

‖e1‖ and ě =
ẽ
‖ẽ‖ = [1 + ∆e1,∆e2, . . . ,∆eRT ]

T , an equivalent relationship
is obtained as ě1 = Eě. It follows from [34] that the quantities
{∆ei}RTi=1 can be approximated as

∆e1 ≈ −
1

2

RT∑
j=2

|∆ei|2 and

∆ei ≈
eHi ∆T e1

λ1 − λi
, i = 2, . . . , RT . (62)

APPENDIX C

Ignoring the terms of the order EHE , the MSE contaminat-
ing the estimate q̂1,s can be evaluated using the expression in
(20) as

‖ q̂1,s − q1 ‖2=
‖ EHs1 ‖2

σ2
1

+

∣∣∣sH1 Eq1 + qH1 EHs1

∣∣∣2
4σ2

1

. (63)

Since we have V = WH
RFV̄, the matrix E in (18) can be recast

as E = V̄XHFHRF/Pp. Furthermore, since each element of
the noise V̄ is i.i.d. CN (0, σ2

v), it follows from the properties,
XXH = PpIMP

and FRFF
H
RF = INt , that each element of

the matrix E is i.i.d. as CN (0, σ2
v/Pp). Let x = sH1 Eq1 and

y = qH1 EHs1. In view of the fact that both x and y represent
linear transformations of the matrix E , we obtain E[xy∗] =
0, and E[|x|2] = E[|y|2] = σ2

v/Pp since ‖q1‖ = ‖s1‖ =
1. Exploiting the above properties, the MSE in q̂1,s can be
evaluated as

E
[
‖ q̂1,s − q1 ‖2

]
=

σ2
v

2Ppσ2
1

(
2Nt − 1

)
. (64)

APPENDIX D

Exploiting the relationship between c̃ and c, it can be readily
seen that

c̃1 =
σ1 (1 + ∆c1)√

σ2
1 |1 + ∆c1|2 +

∑Nr
i=2 σ

2
i |∆ci|2

≈ (1 + ∆c1)

[
1− 1

2

(
2∆c1 +

Nr∑
i=2

σ2
i

σ2
1

|∆ci|2
)]

≈ 1− 1

2

Nr∑
i=2

σ2
i

σ2
1

|∆ci|2. (65)

Substituting the above expression into (22), yields the desired
result in (23). The average value of the quantity |∆ci|2 is
derived next. Stacking the received vectors yi in (9), for
1 ≤ i ≤ ND1, as YD = [y1,y2, . . . ,yND1

] ∈ CNr×ND1 ,
one obtains YD = WH

RFHFD + WH
RFVD, where FD =

[f1, f2, . . . , fND1
] ∈ CNt×ND1 is the matrix of spatially-white

data vectors and VD = [v1,v2, . . . ,vND1
] ∈ CNr×ND1 is

the corresponding noise matrix. Recall that the vector s1

is estimated using the SVD of the covariance matrix Ry

of the vector WRFyi. Let the quantity αD be defined as
αD = ND1Pd/Nt. Scaling with the factor αD, the SVD

(
R̂y

)
can be rewritten as

ŜΓ̂2ŜH = HHH + ED, (66)

where the matrix ED is defined as

ED = HEfH
H + HEfv + EH

fvH
H + Ev. (67)

In the above expression, we have Ef =(
FDFHD − αDINt

)
/αD, Ev =

(
VDVH

D −ND1INr
)
/αD

and Efv = FDVH
D/αD. Note that, since the noise

matrix VD and the spatially-white data matrix FD are
mutually independent, the elements of the matrices Ef ,
Efv and Ev are pairwise uncorrelated. Thus, it follows
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that E[|Ef (k, l)|2] = (Pd/Nt)
2/(ND1(PD/Nt)

2) = 1/N2
D1,

E[|Ev(k, l)|2] = σ4
v/(ND1(PD/Nt)

2) = ND1σ
4
v/α

2
D and

E[|Efv(k, l)|2] = (σ2
vPd/Nt)/(ND1(PD/Nt)

2) = σ2
v/αD.

Now, it follows from the result of first-order perturbation in
(62) of Appendix B that ∆ci ≈ sHi EDs1/(σ

2
1 − σ2

i ). Thus,
using (67), the quantity E[|∆ci|2] can be expressed as

E[|∆ci|2] ≈
(
E
[∣∣sHi HEfH

Hs1

∣∣2]+ E
[∣∣sHi EH

fvH
Hs1

∣∣2]
+ E

[∣∣sHi HEfvs1

∣∣2]+ E
[∣∣sHi Evs1

∣∣2]) 1

(σ2
1 − σ2

i )2
. (68)

Exploiting SVD(H) = SΓQH and the aforementioned
properties, the different terms in the above expression
can be evaluated as E

[∣∣sHi HEfH
Hs1

∣∣2] = σ2
1σ

2
i /N

2
D1,

E
[∣∣sHi EH

fvH
Hs1

∣∣2] = σ2
vσ

2
1/αD, E

[∣∣sHi HEfvs1

∣∣2] =

σ2
vσ

2
i /αD and E

[∣∣sHi Evs1

∣∣2] = ND1σ
4
v/α

2
D. Upon substi-

tuting these results into (68), we get

E
[
|∆ci|2

]
≈

(
σ2

1σ
2
i

N2
D1

+
Ntσ

2
v

(
σ2

1 + σ2
i

)
ND1Pd

+
N2
t σ

4
v

ND1P 2
d

)
× 1

(σ2
1 − σ2

i )2
. (69)

APPENDIX E
Exploiting the properties of complex derivatives from [22],

the matrix J
(
ρ
)

can be constructed by differentiating f(ρ) in
(47). Furthermore, the matrix B ∈ C2N2

t×N
2
t is derived using

the property that it forms an orthonormal basis for the null-
space of the matrix J

(
ρ
)
. Both the matrices J

(
ρ
)

and B are
expressed below.

J
(
ρ
)

=



uH1 0 0 · · · uT1 0 0 · · ·
0 uH1 0 · · · uT2 0 0 · · ·

uH2 0 0 · · · 0 uT1 0 · · ·
0 uH2 0 · · · 0 uT2 0 · · ·

uH3 0 0 · · · 0 0 uT1 · · ·
0 0 uH1 · · · uT3 0 0 · · ·
...

...
...

. . .
...

...
...

. . .


and

B =
1√
2



u1 0 u2 0 u3 0 · · ·
0 u1 0 u2 0 0 · · ·
0 0 0 0 0 u1 · · ·
...

...
...

...
...

...
. . .

−u∗1 −u∗2 0 0 0 u∗3 · · ·
0 0 −u∗1 u∗2 0 0 · · ·
0 0 0 0 −u∗1 0 · · ·
...

...
...

...
...

...
. . .


.

APPENDIX F
CONSTRAINED CRLB FOR THE MMWAVE-HB-SB SCHEME

Upon employing (46), the matrix BHCρB in (48) can be
simplified to

BHCρB =
PpNB
σ2
v

Γ̃. (70)

Let the orthonormal basis matrix B be partitioned as B =
[BT

1 ,B
T
2 ]T . Correspondingly, the matrix CRLB(ρ) in (48) can

be partitioned as

CRLB(ρ) =

[
[CRLB(ρ)]1,1 [CRLB(ρ)]1,2
[CRLB(ρ)]2,1 [CRLB(ρ)]2,2

]
, (71)

where each block is of size N2
t × N2

t . From (46) and (48),
it is clear that the constrained CRLB for vec

(
U
)

can be
obtained as CRLB(ρ)1,1 = (σ2

v/(PpNB))B1Γ̃
−1BH

1 . Since
H = DUH , the parameter vector obeys h = vec

(
HT
)

=
[D ⊗ INt ]vec

(
U∗
)
. The error covariance of the mmWave

MIMO channel matrix estimate Ĥ is bounded as

E
[(

ĥ− h
)(

ĥ− h
)H] ≥ [D⊗ INt ]

(
[CRLB(ρ)]1,1

)∗
[D⊗ INt ]

H

=
σ2
v

PpNB
[SΓ⊗ INt ]B

∗
1Γ̃−1BT

1 [SΓ⊗ INt ]
H = CH.
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