Table S1 – Main characterstics of observational studies included in the meta-analysis (n=33).

Author, Year	PMID	Country	Study design	Follow- up (years)	Sample size (n)	Patients with NAFLD (n)	NAFLD diagnosis	Incident cases of diabetes (n)	Diagnosis of diabetes	Covariate adjustment(s)	Main findings	NOS scale
Okamoto M et al. 2003	12587609	Japan	Retrospective	10	840 (mean age 43 years, BMI 23 kg/m², 57% men)	120	Ultrasonography	82	Fasting glucose >6.1 mmol/I or HbA1c ≥6.5%	Age, sex, BMI, family history of diabetes, fasting glucose, HbA1c, alcohol intake, frequency of check-ups, changes of BMI during follow-up	NAFLD was not independently associated with incident diabetes (aHR 1.83, 95% CI 0.90-3.50)	6
Shibata M et al. 2007	17666460	Japan	Retrospective	4	3189 (mean age 48 years, BMI 23 kg/m², 100% men)	802	Ultrasonography	109	Fasting glucose ≥7.0 mmol/L or 2- hour post- load glucose ≥11.1 mmol/L	Age, BMI, smoking, blood pressure, physical activity, follow-up duration, presence of metabolic syndrome	NAFLD was independently associated with incident diabetes both in the entire cohort (aHR 5.50, 95% CI 3.6–8.5) and in the nested case-control analysis (aHR 4.60, 95% CI 3.0–6.9)	4
Kim CH et al. 2008	18346164	South Korea	Retrospective	5	5372 (mean age 48 years, BMI 25 kg/m², 68% men)	1790	Ultrasonography	234	Fasting glucose ≥7.0 mmol/L, clinical history, or drug treatment	Age, sex, BMI, family history of diabetes, smoking, fasting glucose, HDL- cholesterol, triglycerides, serum ALT	NAFLD was independently associated with incident diabetes (aHR 1.51, 95% CI 1.04-2.2). In addition, moderate/severe NAFLD had higher risk of incident diabetes than mild NAFLD	8
Bae JC et al. 2011	21278140	South Korea	Retrospective	5	7849 (mean age 44 years, BMI 24 kg/m², 69% men)	2292	Ultrasonography	435	fasting glucose ≥7.0 mmol/L or HbA1c ≥6.5%	Age, sex, BMI, triglycerides, HDL-cholesterol, systolic blood pressure, smoking, physical activity, alcohol intake, IFG status	NAFLD was independently associated with incident diabetes (aHR 1.33, 95% CI 1.10-1.70)	8
Sung KC et al. 2012	22338098	South Korea	Retrospective	5	12853 (mean age	3555	Ultrasonography	223	Fasting glucose ≥7.0	Age, sex, BMI, educational	NAFLD was independently	7

					42 years, BMI 25 kg/m², 72% men)				mmol/L, clinical history, or drug treatment	status, smoking, physical activity, alcohol intake, HOMA-IR, triglycerides, serum ALT	associated with incident diabetes (aOR 2.42, 95% CI 1.70-3.40)	
Park SK et al. 2012	23213066	South Korea	Prospective	5	25232 (mean age 42 years, BMI 24 kg/m², 100% men)	8831	Ultrasonography	2108	Fasting glucose ≥7.0 mmol/L, previous history, or drug treatment	Age, waist circumference, HDL-cholesterol, triglycerides, systolic blood pressure, C- reactive protein, HOMA-IR, creatinine, family history of diabetes, physical activity, metabolic syndrome	The aHRs for incident diabetes were increased in mild steatosis (1.09, 95% CI 0.8–1.5) and in moderate/severe steatosis (1.73, 95% CI 1.0–3.0) vs. nosteatosis	8
Kasturiratne A et al. 2013	22989165	Sri Lanka	Retrospective	3	2276 (mean age 52 years, BMI 25 kg/m², 41% men)	926	Ultrasonography	242	Fasting glucose ≥7.0 mmol/L, previous history, or drug treatment	Age, sex, BMI, waist circumference, family history of diabetes, hypertension, serum ALT, dyslipidemia, IFG status	NAFLD was independently associated with incident diabetes (aHR 1.64, 95% CI 1.20-2.20)	6
Choi JH et al. 2013	23398788	South Korea	Retrospective	4	7849 (mean age 45 years, BMI 25 kg/m², 69% men)	2276	Ultrasonography	435	Fasting glucose ≥7 mmol/I or HbA1c ≥6.5% or drug treatment	Age, sex, BMI, systolic blood pressure, triglycerides, HDL-cholesterol, IFG status, physical activity, smoking, alcohol intake	NAFLD and elevated ALT was independently associated with incident diabetes (aHR 1.64, 95% CI 1.30-2.10)	8
Chang Y et al. 2013	24100261	South Korea	Retrospective	5	38291 (mean age 37 years, BMI 23 kg/m², 63% men)	11640	Ultrasonography	2025	Fasting glucose ≥7 mmol/I or HbA1c ≥6.5% or drug treatment	Age, sex, smoking, alcohol intake, physical activity, family history of diabetes, plasma lipid profile, HOMA-IR, C- reactive protein	aHRs for incident diabetes in NAFLD with low NFS and NAFLD with intermediate/high NFS vs. no NAFLD were 2.01, 95% CI 1.8–2.2, and 4.74, 95% CI 3.7–6.1, respectively	8

Yamazaki H et al. 2015	26156527	Japan	Retrospective	11.3	3074 (mean age 43 years, BMI 24 kg/m², 61% men)	728	Ultrasonography	189	Fasting glucose ≥7 mmol/I or HbA1c ≥6.5% or history or drug treatment	Age, sex, family history of diabetes, BMI, IFG status, dyslipidemia, hypertension, physical activity	NAFLD was independently associated with incident diabetes (aOR 2.37, 95% CI 1.60-3.50). In addition, improvement of NAFLD was associated with a diabetes risk reduction	8
Ming J et al. 2015	25879672	China	Retrospective	5	508 (mean age 46 years, BMI 24 kg/m², 42% men)	97	Ultrasonography	20	Fasting glucose ≥7.0 mmol/L or 2- hour post- load glucose ≥11.1 mmol/L or drug treatment	Age, sex, BMI, educational level, smoking, alcohol intake, physical activity, family history of diabetes, blood pressure, fasting glucose, 2-h glucose, triglycerides, HDL-cholesterol	NAFLD was independently associated with incident diabetes (aHR 4.46, 95% CI 1.90-10.7)	6
Li WD et al. 2015	26327768	China	Retrospective	4	4736 (mean age 53 years, BMI 24 kg/m², 67% men)	1412	Ultrasonography	380	Fasting glucose ≥7.0 mmol/L, previous history, or drug treatment	Age, sex, blood pressure, lipids, serum ALT, uric acid, creatinine	NAFLD was independently associated with incident diabetes (aHR 3.37, 95% CI 2.40-4.30)	7
Shah RV et al. 2015	26209814	USA	Prospective	9.1	3153 (mean age 59 years, BMI 27 kg/m², 44% men)	786	Computed tomography	216	Fasting glucose ≥7.0 mmol/L, previous history, or drug treatment	Age, sex, race, family history of diabetes, BMI, waist circumference, systolic blood pressure, triglycerides, HDL-cholesterol, fasting glucose, C-reactive protein, physical activity, statin use	NAFLD was independently associated with incident diabetes (aHR 2.06, 95% CI 1.5-2.8)	8
Fukuda T et al. 2016	26176710	Japan	Retrospective	12.8	4629 (mean age 42 years, BMI 22	1779	Ultrasonography	351	Fasting glucose ≥7.0 mmol/I or HbA1c	Age, sex, family history of diabetes, alcohol intake, smoking,	aHRs for incident diabetes were: 3.59 (95%CI 2.1– 5.8) in the non-	7

Chen GY et al. 2016	27042272	China	Retrospective	6	6542 (mean age 35 years, BMI 23	209	Ultrasonography	368	≥6.5% or drug treatment Fasting glucose ≥7.0 mmol/l or HbA1c	Age, BMI, triglycerides, fasting glucose, IFG status	overweight NAFLD group, 1.99 (95%CI 1.5–2.7) in the overweight group without NAFLD, and 6.77 (95%CI 5.2–8.9) in the overweight NAFLD group NAFLD was independently associated with incident diabetes	7
					kg/m², 86% men)				≥6.5% or drug treatment	ii C status	(aHR 2.17, 95% CI 1.60–3.0)	
Kim SS et al. 2017	29398414	South Korea	Retrospective	5.1	2818 (non-obese: 2059, mean age 46 years, BMI 23 kg/m², 56% men; obese: 759 mean age 47 years, BMI 27 kg/m², 72% men)	924	Ultrasonography	193	Fasting glucose ≥7 mmol/I or HbA1c ≥6.5% or previous history or drug treatment	Age, sex, waist circumference, plasma lipid profile, uric acid level, smoking	NAFLD was independently associated with incident diabetes both in non-obese group (aHR 2.69, 95% CI 1.72-4.20) and in obese group (aHR 2.81, 95% CI 1.73-4.84)	7
Mitsuhashi K et al. 2017	28867686	Japan	Retrospective	5.1	17810 (15794 without metabolic syndrome) (mean age 45 years, BMI 23 kg/m², 59% men)	3846	Ultrasonography	491	Fasting glucose ≥7 mmol/I or HbA1c ≥6.5% or previous history or drug treatment	Age, BMI, physical activity, smoking status, alcohol consumption, fasting glucose	NAFLD was independently associated with incident diabetes both in those with (aHR 2.33, 95% CI 1.85-2.94) and those without metabolic syndrome (aHR 2.35, 95% CI 1.91-2.89)	8
Chen SC et al. 2017	28680048	Taiwan	Prospective	5.8	132377 (mean age 45 years, BMI 24 kg/m², 49% men)	42410	Ultrasonography	6555	Fasting glucose ≥7.0 mmol/L, previous history, or drug treatment	Age, BMI, family history of diabetes, hypertension, smoking, drinking, physical activity, lipids,	NAFLD was independently associated with incident diabetes both in women (aHR 2.70, 95% CI 2.46-2.96) and in	9

Ma J et al. 2017	27729222	USA	Retrospective	6.2	1051	187	Ultrasonography	64	Fasting	serum liver enzymes Age, sex,	men (aHR 1.98, 95% CI 1.81-2.16) NAFLD was	8
					(mean age 46 years, BMI 28 kg/m², 54% men)				glucose ≥7.0 mmol/L, previous history, or drug treatment	smoking, exercise, alcohol intake, fasting glucose, systolic blood pressure, BMI, visceral adipose tissue, and changes in BMI, visceral adipose tissue, and liver fat over the follow-up	independently associated with incident diabetes (aOR 2.66, 95% CI 1.20–5.70)	
Liu M et al. 2017	28324002	China	Retrospective	5	18507 (mean age 71 years, BMI 25 kg/m², 100% men)	3474	Ultrasonography	453	Fasting glucose ≥7.0 mmol/L or 2- hour post- load glucose ≥11.1 mmol/L or previous history or drug treatment	Age, BMI, smoking, marital status, alcohol intake, hypertension, dyslipidemia	NAFLD was independently associated with incident diabetes (aHR 1.67, 95% CI 1.40–2.10)	7
Li Y et al. 2017	28350839	China	Prospective	4	18111 (mean age 63 years, BMI 26 kg/m², 42% men)	5759	Ultrasonography	1262	Fasting glucose ≥7.0 mmol/L, previous history, or drug treatment	Age, sex, BMI, waist circumference, alcohol intake, smoking, exercise, family history of diabetes, fasting glucose, triglycerides, total cholesterol	aHRs for incident diabetes vs. those without NAFLD group were 1.88, 95% CI 1.6–2.2, in the mild NAFLD group and 2.34, 95% CI 1.9–3.0, in the moderate-severe NAFLD group, respectively	8
Björkström K et al. 2017	28479500	Sweden	Retrospective	18.4	396 (mean age 46 years, BMI 28 kg/m², 65% men)	396	Biopsy	132	Previous history or drug treatment	None	Higher proportion of NAFLD patients with fibrosis stages 3–4 developed diabetes compared to those with fibrosis stages 0-2 (unadjusted HR 2.30, 95% CI 1.12-	8

											4.75)	
Shen X et al. 2018	29975579	China	Prospective	3.6	41650 (mean age 51 years, 65% men)	11809	Ultrasonography	2763	Fasting glucose ≥7.0 mmol/L, or drug treatment	Age, sex, smoking, physical activity, education status, family incomes, family history of diabetes, waist circumference, hypertension, serum ALT, lipids, fasting glucose, uric acid, C- reactive protein, presence of metabolic syndrome	NAFLD was independently associated with incident diabetes (aHR 1.62, 95% CI 1.49-1.76). In addition, patients with severe steatosis had a higher risk of incident diabetes than those with moderate/mild steatosis (aHR 2.66, 95% CI 2.17-3.25)	8
Bae JC et al. 2018	29111276	South Korea	Retrospective	4	5564 (mean age 45 years, BMI 24 kg/m², 69% men)	1383	Ultrasonography	174	Fasting glucose ≥7 mmol/l or HbA1c ≥6.5% or previous history or drug treatment	Age, sex, BMI, fasting glucose, HbA1c, plasma lipid profile, systolic blood pressure, HOMA- IR, smoking	NAFLD was independently associated with incident diabetes (aHR 1.50, 95% CI 1.13-1.98)	7
Zhang J et al 2018	29936075	China	Prospective	2.2	45022 (mean age 46 years, BMI 24 kg/m², 63% men)	10212	Ultrasonography	1051	Fasting glucose ≥7.0 mmol/L, previous history, or drug treatment	Age, BMI, education level, smoking, alcohol consumption, family history of diabetes, plasma lipid profile, uric acid, systolic blood pressure	NAFLD was independently associated with incident diabetes (aHR 2.26, 95% CI 1.95-2.63)	8
Sung KC et al. 2018	29860108	South Korea	Prospective	3.9	29836 (mean age 37 years, BMI 27 kg/m², 81% men)	16833	Ultrasonography	1200	Fasting glucose ≥7 mmol/I or HbA1c ≥6.5% or previous history or drug treatment	Age, sex, center, year of screening exam, smoking, alcohol intake, regular exercise, family history of diabetes, education level, metabolic syndrome, C-reactive protein	NAFLD was independently associated with incident diabetes both in women (aHR 3.09, 95% CI 2.04-4.67) and in men (aHR 2.03, 95% CI 1.73-2.38)	8
Sinn DH et al. 2019	31176297	South Korea	Retrospective	4	51453 (non-obese:	15841	Ultrasonography	5357	Fasting glucose ≥7	Age, sex, year of visit, smoking,	NAFLD was independently	6

					21974, mean age 49 years, BMI 22 kg/m², 33% men; obese: 29479, mean age 51 years, BMI 26 kg/m², 67% men)				mmol/l or HbA1c ≥6.5% or previous history or drug treatment	alcohol intake, systolic blood pressure, fasting glucose, plasma lipid profile, use of anti- hypertensive or lipid-lowering drugs	associated with incident diabetes both in non-obese group (aHR 1.18, 95% CI 1.03-1.35) and in obese group (aHR 1.45, 95% CI 1.34-1.57)	
Cho HJ et al. 2019	30970431	South Korea	Retrospective	5.2	2726 (mean age 44 years, BMI 23 kg/m², 58% men)	670	Ultrasonography	141	Fasting glucose ≥7 mmol/I or HbA1c ≥6.5%	Age, sex, BMI, fasting glucose, serum ALT	Presence of persistent NAFLD was independently associated with incident diabetes (aHR 3.59, 95% CI 2.05-6.27)	8
Lee J et al. 2019	31754157	South Korea	Retrospective	4.3	6240 (mean age 51 years, BMI 25 kg/m², 74% men)	2830	Ultrasonography	505	Fasting glucose ≥7 mmol/l or HbA1c ≥6.5% or previous history or drug treatment	Age, sex, BMI, smoking, alcohol, serum ALT, triglycerides, HDL-cholesterol, systolic blood pressure, HbA1c	NAFLD was independently associated with incident diabetes (aHR 1.81, 95% CI 1.47-2.21)	7
Önnerhag K et al. 2019	30907181	Sweden	Prospective	18.8	144 (mean age 53 years, BMI 28 kg/m², 58% men)	144	Biopsy	77	Previous history or drug treatment	Sex, BMI, cardiovascular disease, hypertension, histologic stages of liver fibrosis	High FIB-4-index was independently associated with incident diabetes (aHR 4.18, 95% CI 1.96-8.92)	7
Fuse K et al. 2020	31904446	Japan	Prospective	5	640 (mean age 64 years, BMI 23 kg/m², 100% men)	121	Computed tomography	36	Fasting glucose ≥7 mmol/l or HbA1c ≥6.5% or previous history or drug treatment	Age, family history of diabetes, smoking, alcohol intake, physical activity, BMI, waist circumference, and visceral fat	NAFLD was independently associated with incident diabetes (aHR 2.27, 95% CI 1.00-5.14)	7
Nasr P et al. 2020	32087038	Sweden	Prospective	2	106 (mean age 49 years, BMI 28	106	Ultrasonography	66	Fasting glucose ≥7.0 mmol/L or 2-hour post-	Age, BMI	Histologic fibrosis stage was independently associated with	7

					kg/m², 69% men)				load glucose ≥11.1 mmol/L or drug treatment		incident diabetes (aHR 6.0, 95% CI 1.32, 27.05 for stage F4 and aHR 1.54, 95% CI 0.65- 3.67 for stage F3)	
Ampuero J et al. 2020	32147361	Spain	Prospective	5.6	178 (mean age 45 years, BMI 31 kg/m², 56% men)	178	Ultrasonography	16	Fasting glucose ≥7 mmol/I or HbA1c ≥6.5% or drug treatment	Age, sex, BMI, serum AST, ALT, bilirubin, albumin, fasting glucose, plasma lipid profile, platelet count and presence of NASH on histology	NAFLD with significant fibrosis was independently associated with incident diabetes (aHR 3.39, 95% CI 1.11-3.58)	8

Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; aHR, adjusted HR; aOR, adjusted OR; BMI, body mass index; CI, confidence interval; GGT, gamma-glutamyl transferase; HbA1c, haemoglobin A1c; HOMA-IR, HOMA of insulin resistance; IFG, impaired fasting glycaemia; NFS, NAFLD fibrosis score; NOS, Newcastle-Ottawa Scale category.

REFERENCES for Table S1

- 1. Okamoto M, Takeda Y, Yoda Y, Kobayashi K, Fujino MA, Yamagata Z. The association of fatty liver and diabetes risk. J Epidemiol. 2003;13:15-21.
- 2. Shibata M, Kihara Y, Taguchi M, Tashiro M, Otsuki M. Nonalcoholic fatty liver disease is a risk factor for type 2 diabetes in middle-aged Japanese men. Diabetes Care. 2007;30:2940-2944.
- 3. Kim CH, Park JY, Lee KU, Kim JH, Kim HK. Fatty liver is an independent risk factor for the development of Type 2 diabetes in Korean adults. Diabet Med. 2008;25:476-481.
- 4. Bae JC, Rhee EJ, Lee WY, Park SE, Park CY, Oh KW, et al. Combined effect of nonalcoholic fatty liver disease and impaired fasting glucose on the development of type 2 diabetes: a 4-year retrospective longitudinal study. Diabetes Care. 2011;34:727-729.
- 5. Sung KC, Jeong WS, Wild SH, Byrne CD. Combined influence of insulin resistance, overweight/obesity, and fatty liver as risk factors for type 2 diabetes. Diabetes Care. 2012;35:717-722.
- 6. Park SK, Seo MH, Shin HC, Ryoo JH. Clinical availability of nonalcoholic fatty liver disease as an early predictor of type 2 diabetes mellitus in Korean men: 5-year prospective cohort study. Hepatology. 2013;57:1378-1383.
- 7. Kasturiratne A, Weerasinghe S, Dassanayake AS, Rajindrajith S, de Silva AP, Kato N, et al. Influence of non-alcoholic fatty liver disease on the development of diabetes mellitus. J Gastroenterol Hepatol. 2013;28:142-147.
- 8. Choi JH, Rhee EJ, Bae JC, Park SE, Park CY, Cho YK, et al. Increased risk of type 2 diabetes in subjects with both elevated liver enzymes and ultrasonographically diagnosed nonalcoholic fatty liver disease: a 4-year longitudinal study. Arch Med Res. 2013;44:115-120.
- 9. Chang Y, Jung HS, Yun KE, Cho J, Cho YK, Ryu S. Cohort study of non-alcoholic fatty liver disease, NAFLD fibrosis score, and the risk of incident diabetes in a Korean population. Am J Gastroenterol. 2013;108:1861-1868.
- 10. Yamazaki H, Tsuboya T, Tsuji K, Dohke M, Maguchi H. Independent association between improvement of nonalcoholic fatty liver disease and reduced incidence of type 2 diabetes. Diabetes Care. 2015;38:1673-1679.
- 11. Ming J, Xu S, Gao B, Liu G, Ji Y, Yang F, et al. Non-alcoholic fatty liver disease predicts type 2 diabetes mellitus, but not prediabetes, in Xi'an, China: a five-year cohort study. Liver Int. 2015:35:2401-2407.
- 12. Li WD, Fu KF, Li GM, Lian YS, Ren AM, Chen YJ, et al. Comparison of effects of obesity and non-alcoholic fatty liver disease on incidence of type 2 diabetes mellitus. World J Gastroenterol. 2015;21:9607-9613.

- 13. Shah RV, Allison MA, Lima JA, Bluemke DA, Abbasi SA, Ouyang P, et al. Liver fat, statin use, and incident diabetes: The Multi-Ethnic Study of Atherosclerosis. Atherosclerosis. 2015:242:211-217.
- 14. Fukuda T, Hamaguchi M, Kojima T, Hashimoto Y, Ohbora A, Kato T, et al. The impact of non-alcoholic fatty liver disease on incident type 2 diabetes mellitus in non-overweight individuals. Liver Int. 2016:36:275-283.
- 15. Chen GY, Cao HX, Li F, Cai XB, Ao QH, Gao Y, et al. New risk-scoring system including non-alcoholic fatty liver disease for predicting incident type 2 diabetes in East China: Shanghai Baosteel Cohort. J Diabetes Investig. 2016;7:206-211.
- 16. Kim SS, Cho HJ, Kim HJ, Kang DR, Berry JR, Kim JH, et al. Nonalcoholic fatty liver disease as a sentinel marker for the development of diabetes mellitus in non-obese subjects. Dig Liver Dis. 2018 Apr;50(4):370-377.
- 17. Mitsuhashi K, Hashimoto Y, Hamaguchi M, Obora A, Kojima T, Fukuda T, et al. Impact of fatty liver disease and metabolic syndrome on incident type 2 diabetes; a population based cohort study. Endocr J. 2017;64:1105-1114.
- 18. Chen SC, Tsai SP, Jhao JY, Jiang WK, Tsao CK, Chang LY. Liver fat, hepatic enzymes, alkaline phosphatase and the risk of incident type 2 diabetes: a prospective study of 132,377 adults. Sci Rep. 2017;7:4649.
- 19. Ma J, Hwang SJ, Pedley A, Massaro JM, Hoffmann U, Chung RT, et al. Bi-directional analysis between fatty liver and cardiovascular disease risk factors. J Hepatol. 2017;66:390-397.
- 20. Liu M, Wang J, Zeng J, Cao X, He Y. Association of NAFLD with diabetes and the impact of BMI changes: a 5-year cohort study based on 18,507 elderly. J Clin Endocrinol Metab. 2017:102:1309-1316.
- 21. Li Y, Wang J, Tang Y, Han X, Liu B, Hu H, et al. Bidirectional association between nonalcoholic fatty liver disease and type 2 diabetes in Chinese population: Evidence from the Dongfeng-Tongji cohort study. PLoS One. 2017;12:e0174291.
- 22. Björkström K, Stål P, Hultcrantz R, Hagström H. Histologic scores for fat and fibrosis associate with development of type 2 diabetes in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2017;15:1461-1468.
- 23. Shen X, Cai J, Gao J, Vaidya A, Liu X, Li W, et al. Nonalcoholic fatty liver disease and risk of diabetes: a prospective study in china. Endocr Pract. 2018;24:823-832.
- 24. Bae JC, Han JM, Cho JH, Kwon H, Park SE, Park CY, et al. The persistence of fatty liver has a differential impact on the development of diabetes: The Kangbuk Samsung Health Study. Diabetes Res Clin Pract. 2018:135:1-6.
- 25. Zhang J, Cheng N, Ma Y, Li H, Cheng Z, Yang Y, et al. Liver enzymes, fatty liver and type 2 diabetes mellitus in a Jinchang cohort: a prospective study in adults. Can J Diabetes. 2018:42:652-658.
- 26. Sung KC, Lee MY, Kim YH, Huh JH, Kim JY, Wild SH, et al. Obesity and incidence of diabetes: Effect of absence of metabolic syndrome, insulin resistance, inflammation and fatty liver. Atherosclerosis. 2018;275:50-57.
- 27. Sinn DH, Kang D, Cho SJ, Paik SW, Guallar E, Cho J, et al. Lean non-alcoholic fatty liver disease and development of diabetes: a cohort study. Eur J Endocrinol. 2019;181:185-192.
- 28. Cho HJ, Hwang S, Park JI, Yang MJ, Hwang JC, Yoo BM, et al. Improvement of nonalcoholic fatty liver disease reduces the risk of type 2 diabetes mellitus. Gut Liver. 2019;13:440-449.
- 29. Lee J, Cho YK, Kang YM, Kim HS, Jung CH, Kim HK, et al. The impact of NAFLD and waist circumference changes on diabetes development in prediabetes subjects. Sci Rep. 2019;9:17258.
- 30. Önnerhag K, Hartman H, Nilsson PM, Lindgren S. Non-invasive fibrosis scoring systems can predict future metabolic complications and overall mortality in non-alcoholic fatty liver disease (NAFLD). Scand J Gastroenterol. 2019;54:328-334.
- 31. Fuse K, Kadota A, Kondo K, Morino K, Fujiyoshi A, Hisamatsu T, et al; SESSA Research Group. Liver fat accumulation assessed by computed tomography is an independent risk factor for diabetes mellitus in a population-based study: SESSA (Shiga Epidemiological Study of Subclinical Atherosclerosis). Diabetes Res Clin Pract. 2020;160:108002.
- 32. Nasr P, Fredrikson M, Ekstedt M, Kechagias S. The amount of liver fat predicts mortality and development of type 2 diabetes in non-alcoholic fatty liver disease. Liver Int. 2020;40:1069-1078.
- 33. Ampuero J, Aller R, Gallego-Durán R, Crespo J, Calleja JL, García-Monzón C, et al; HEPAmet Registry. Significant fibrosis predicts new-onset diabetes mellitus and arterial hypertension in patients with NASH. J Hepatol. 2020;73:17-25.