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Numerical simulations are employed to investigate the dynamical separation of an initially
stationary sphere from the surface of a two-dimensional ramp in hypersonic flow. We
consider the inviscid limit, which is effectively equivalent to assuming the sphere radius
to be much larger than the ramp boundary-layer thickness. Of particular interest is
determining how the shock-surfing phenomenon discovered by Laurence & Deiterding (J.
Fluid Mech., vol. 676), in which a spherical body can stably oscillate about an oblique
shock as it moves downstream, manifests itself in such a situation. First, the isolated
interactions between a sphere and an oblique shock, and then between a sphere and
an inviscid wall, are examined independently to elucidate relevant trends. Full trajectory
predictions are subsequently performed using a computationally efficient decoupled model
in which the shock and wall interactions are assumed to contribute independently to the
aerodynamic forces. It is found that three types of trajectories are possible: surfing of
the spherical body down the shock; initial expulsion outside the shock layer followed
by re-entry and entrainment; or direct entrainment. At relatively low hypersonic Mach
numbers, the latter two types of trajectories are predominant, but at higher Mach
numbers (M&10), surfing becomes possible over an increasingly wide range of ramp
angles and downstream release locations. By reparameterizing the release location in
terms of the initial lateral distance of the sphere from the shock, a good collapse of the
transition boundary delineating surfing from ejection/re-entrainment over various Mach
numbers and ramp angles is obtained.
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1. Introduction

In flight, the leading-edge region of a hypersonic vehicle is exposed to extreme thermal
loads and thus, on a practical vehicle, is likely to be fabricated of a high-temperature
ceramic material. Although able to withstand high temperatures, such materials are
susceptible to ablation and scouring from the hot gas (Zeng et al. 2017), potentially
leading to the shedding of particulate matter from the leading-edge region. These particles
will be quickly accelerated along the vehicle and, if they impact structures further
downstream, will potentially be carrying sufficient kinetic energy to inflict damage.
In such situations it is important to be able to predict the likely trajectories of these
shed particles and, in particular, to ascertain whether certain areas may have a higher
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Figure 1. Numerical schlieren images of a sphere being shed from a 10◦ ramp in a Mach-6
inviscid flow.

probability of being impacted. A physically similar problem, but on a larger scale, was
encountered during the ascent of STS-102, when a piece of foam insulation detached from
the external tank and struck the left wing of the orbiter, causing damage that resulted
in the demise of the vehicle upon re-entry (Bertin & Cummings 2006). The process of
store separation from a hypersonic vehicle also shares the basic physical nature of these
two other problems, i.e., a free-flying object separating from a slender parent geometry
at high Mach numbers.

The present two-part work is concerned with studying a simplified version of such a
separation problem, in which the parent geometry is represented by a two-dimensional
ramp and the shed object by a spherical body of uniform density. To provide a well-
defined initial condition for the shed body, we limit ourselves to the situation in which it
lies on the ramp with zero initial velocity and is released instantaneously into the flow.
Although somewhat idealized, the problem as studied captures much of the key physics
of the situations described above, and we thus expect it to give insight into more realistic
scenarios. We illustrate this problem in the sequence of numerical schlieren images in
figure 1, taken from an inviscid free-flight simulation with a ramp angle of 10◦ and a free-
stream Mach number of 6. In this example, the ramp-generated oblique shock initially
intersects the sphere’s bow shock just above the sphere, and in the resulting trajectory
the sphere appears to ride the shock downstream. Our objective is to characterize such
sphere trajectories as the Mach number, ramp angle, and starting position along the
ramp are varied, for both inviscid and viscous flows. The inviscid case is the focus of the
present article; the effects of flow viscosity are examined in an accompanying work.

In figure 1, it is clear that there are two distinct phases to the sphere trajectory: at
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earlier times the sphere is affected by the near-wall flow created by its interaction with the
ramp itself, but at later times only by the external ramp flow (and in this particular case,
the ramp-generated shock). We first summarize what can be expected of the later phase
based on the literature to date. It should first be noted that this part of the trajectory
will depend very little on whether the flow is viscous or inviscid, as the forces on a blunt
body in high-speed flow are dominated by pressure components. If the sphere is immersed
entirely within either the shock layer or the freestream flow, the dynamics will be rather
trivial as they will be determined purely by the drag force in that respective region (in the
corresponding flow direction). If the sphere is interacting with the shock itself, however,
the situation becomes more interesting. The detailed flow structures created when an
oblique shock impinges on the bow shock generated by a blunt body were first elucidated
by Edney (1968a,b), who identified six qualitatively different shock-shock interaction
patterns (denoted Type I to Type VI). The aerodynamic forces that are produced on
a spherical geometry when exposed to such interactions were examined by Laurence
& Deiterding (2011), who also used these results to predict the dynamical behaviour
of a sphere interacting with an isolated planar oblique shock. Cases were examined in
which the sphere is initially stationary and released upstream of or on the shock; it was
found that there are a range of initial conditions for which the sphere “surfs” the shock
downstream, i.e., moves along the shock while oscillating about a stable point lying at
a fixed location relative to the shock. This behaviour is possible because the maximum
lift-to-drag ratio of the sphere as it interacts with the shock can exceed the tangent of
the shock angle. From a vehicle standpoint then, one concern in the current context may
be that the shock generated at the leading edge would act as a guide to channel particles
towards (or away from) particular regions.

In contrast to the interaction of the sphere with the oblique shock, the initial phase of
sphere separation from the wall will be highly dependent on whether the fluid is inviscid
or viscous, as the presence of a ramp boundary layer will significantly alter the flowfield
near the wall. We assume for the time being that this near-wall flow is unaffected by the
ramp shock (this will be a reasonable assumption in cases such as that shown in figure 1, in
which the sphere starts from an appreciable distance downstream of the leading edge). For
an inviscid flow, the ramp wall will act simply as a reflecting boundary condition, and the
near-wall flow will be exactly the same as if the wall were replaced by a second, mirroring
sphere. The separation of such identical blunt bodies from one another has been studied
in the context of meteoroid fragmentation. Artem’eva & Shuvalov (1996) performed
numerical simulations and found that the normalized separation (transverse) velocity
of two hemi-cylinders once separation was complete was V ′T=

√
ρb/ρaVT /V≈0.2, where

VT is the dimensional transverse velocity of each object, V is the freestream velocity,
and ρb and ρa are the densities of the bodies and the atmosphere. Laurence et al. (2012)
conducted both experiments and simulations of separating spheres at Mach 4, and found
that V ′T=0.24. Further investigations of this or similar problems have been carried out,
for example, by Park & Park (2019) and Register et al. (2020). In such configurations, the
mutual repulsion of the two bodies is caused by the confined, high-pressure region that
develops between them when they are closely spaced. If a boundary layer is present on the
ramp, however, the resulting flowfield will be much more complicated, as the sphere bow
shock will produce a shock-wave/boundary-layer interaction (SWBLI) where it impinges
upon the wall. We might thus expect the forces on the sphere in the presence of an SWBLI
to be quite different from the inviscid case, which in turn will affect the sphere dynamics;
such viscous effects will be the focus of the second article in this two-part work. For
the present article, the main implication of the inviscid approximation will be to neglect
the boundary layer that develops on the ramp, and therefore any interactions between
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this and the flow around the sphere. This approximation will thus become increasingly
realistic in the limit of the sphere radius being much larger than the ramp boundary-
layer thickness. In any case, the inviscid behaviour will provide substantial insight into
the viscous cases examined in the accompanying work.

In the inviscid separation event of figure 1, the sphere is repulsed away from the ramp
wall in the initial part of its trajectory; this is a result of both the wall and shock
interactions. In this example, we note that even though the influence of both these
interactions is present at early times, they are effectively decoupled from one another
since they affect different regions of the sphere surface. Such decoupling will generally hold
unless the sphere is initially positioned close to the leading edge of the ramp. Therefore,
in the following analysis, we consider the first the sphere-shock interactions (§3) and then
the sphere-wall interactions (§4) independently of one another, before examining their
combined influence on the sphere dynamics in §5. Additional effects are investigated in
§6 before conclusions are drawn. To begin, however, we describe the numerical approach
employed.

2. Numerical methodology

As in Laurence & Deiterding (2011), we employ the Cartesian fluid solver framework
AMROC (Deiterding 2003, 2011; Ziegler et al. 2011) to simulate numerically the inter-
action of a spherical body with a two-dimensional ramp. The equations solved to model
the inviscid compressible fluid are the Euler equations in conservation-law form

∂tρ+∇· (ρ~u) = 0, ∂t(ρ~u) +∇· (ρ~u⊗~u) +∇p = 0, ∂t(ρE) +∇· ((ρE+ p)~u) = 0. (2.1)

Here, ρ is the fluid density, ~u the velocity vector, and E the specific total energy.
The hydrostatic pressure p is given by the polytropic gas equation, p = (γ − 1)(ρE −
1
2ρ~u

T~u). We approximate (2.1) in three spatial dimensions using a discretely conservative
Cartesian finite-volume discretisation built on dimensional splitting. The flux vector
splitting approach by Van Leer is used to evaluate an upwinded numerical flux at
cell interfaces; the MUSCL-Hancock reconstruction technique with Minmod-limiter is
employed to construct a high-resolution method that is of second-order approximation
accuracy away from shocks and contact discontinuities, cf. Deiterding (2003).

The spherical bodies are represented on the Cartesian mesh with a scalar level-set
function, ϕ, that stores the signed distance to the nearest point on either sphere surface
to each finite-volume cell centre. For non-overlapping spheres, the evaluation of ϕ is
straightforward and we adopt the convention ϕ > 0 in the fluid domain and ϕ < 0
inside the solid bodies. By utilising the sign of ϕ, the first layer of cells inside each
body can be identified; the vector of state in these cells is then adjusted to model the
relevant non-Cartesian boundary conditions, i.e., a rigid sphere moving with velocity
~v, before applying the unaltered Cartesian finite-volume discretisation. The last step
involves the interpolation and mirroring of ρ, ~u, and p across the sphere boundary and
the modification of the normal velocity in the immersed boundary cells to (2~v ·~n−~u ·~n)~n,
with ~n = ∇ϕ/|∇ϕ|, cf. Deiterding (2009). The benefit of this immersed-boundary, aka
“ghost fluid” method (Fedkiw et al. 1999) is the natural incorporation of moving bodies.
However, the approach usually reduces the approximation accuracy along the immersed
boundary, in the present implementation to first order. We mitigate this error by applying
automatic, dynamic mesh adaptation along ϕ = 0 and additionally to important flow
features, specifically to gradients larger than a certain threshold in the fluid density.
The adopted mesh adaptation method is the recursive block-structured algorithm for
explicit finite-volume discretisations after Berger & Colella (1988), allowing simultaneous
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adaptive mesh refinement (AMR) in time and space by the same factor, lj , for each
additional level j. In AMROC, the AMR method is fully parallelised for distributed
memory machines, including automatic load-balancing and parallel re-partitioning as
the mesh refinement hierarchy changes throughout a computation (Deiterding 2005).

In the simulations described hereinafter, the sphere and ramp surface are always fully
enveloped by cells at the highest level of mesh adaptation, and no exchange of kinetic
energy by direct contact is allowed to take place. The hydrodynamic force, ~f , on the
sphere is updated after every highest-level time step by integrating the pressure over the
body surface, for the purpose of which spherical longitude-latitude grids are temporarily
constructed. The position of the sphere’s centre, ~x, is then updated by advancing the
equation of motion,~̈x = ~f/m, with mass m = 4

3πr
3ρb (r being the sphere radius and ρb

its density). Finally, the level set function is re-calculated.
Two different categories of simulations were employed within this general framework.

The first was free-flight simulations, in which the initial sphere velocity was zero and
the sphere density was typically set to a value such that the sphere would traverse
the computational domain of interest while typically maintaining a velocity that was
negligible compared to that of the freestream. An example of such a simulation is shown
in figure 1; here the sphere velocity remains below 2.5% of the freestream throughout the
simulation. One such computation, however, can only provide information about a single
initial condition, and as such, free-flight simulations were primarily performed to analyze
the sphere dynamics near the ramp leading edge (§5.3), where the approximations used
elsewhere (as described in §5.1) become tenuous. In such simulations, a typical base
grid was 60×40×20 (physical dimensions 3.0×2.0×1.0), with three levels of additional
refinement, each of factor two. The sphere diameter was 0.4 in physical units, which
corresponded to 64 cells at the finest level. The sphere velocity remained below 0.5% of
the freestream in all simulations investigating the leading-edge behaviour.

The second category of simulation we refer to as “forced”, in that the sphere density
was set to an artificially high value and an impulsive velocity was imparted on the sphere
once the flow over it had been established; thus, the sphere traced out a prescribed
straight-line trajectory that was not influenced by the aerodynamic forces. In this way
the aerodynamic forces as functions of the position relative to the ramp wall or shock
could be characterized in an efficient manner. Two sub-categories of forced simulations
were performed. In the first, the ramp was present and the sphere was started with a
lateral velocity from an initial position either touching the ramp (if a characterization
of the aerodynamic influences from both the ramp wall and shock was desired, as in
§5.1) or out in the shock layer (if only the influence of the shock was of interest, as
in §3). The sphere velocity in the forced sphere-ramp simulations was generally 1.5%
of the freestream velocity. A typical computation had a base grid of 280×90×20 cells
(14.0×4.0×1.0 in physical units), with three levels of additional refinement, each of
factor two. The sphere diameter was 0.5 physical units, corresponding to 80 cells at the
finest level – this was found to be sufficiently resolved for converged force calculations
(results of a mesh refinement study involving such a forced simulation are provided in §3).
Such a computation would typically require ∼1800 CPU hours on 20 Intel Xeon cores,
including both the flow startup period and the time for sphere traversal. In some cases, a
refinement factor of four at only the highest level was used to improve the quality of flow
visualization, while additional simulations with only two levels of additional refinement
were used to fill out the relevant parameter space in §3 and §5.

In the second sub-category of forced simulations, the angle of the ramp was set to zero,
and the ramp thus acted simply as a reflecting wall boundary condition. The sphere was
again traversed normal to the freestream flow (this time with a lateral velocity of 0.7% of
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Figure 2. Numerical schlieren images with pressure contour maps on the surface of the sphere
as it interacts with the oblique shock generated by a 10◦ ramp at Mach 6. The pressure scale is
different for each visualization.

the freestream value). The base grid was 60×30×50 cells, with three levels of additional
refinement (factor two); the sphere diameter was again 80 cells at the finest level. Such
simulations were performed to explore the interaction of the sphere solely with the ramp
surface and will be described in further detail in §4.

In all inviscid simulations, the fluid was a perfect gas with a ratio of specific heats of
1.4 (unless otherwise stated). The CFL number ranged from 0.6 to 0.95, the lower value
being necessary to maintain numerical stability at higher Mach numbers.

3. Interactions between a sphere and an oblique shock

In an earlier work (Laurence & Deiterding 2011), two of the present authors discovered
a phenomenon refered to as “shock-wave surfing”, whereby it is possible for a sphere to
follow a stable trajectory downstream along a planar oblique shock. Since the main focus
of that earlier work was the interaction between two spheres, only a brief description of
the ramp-sphere case was given; for the present work, it is instructive to both review this
surfing phenomenon and examine it in further detail.

To begin, a sequence of flow visualizations from a forced sphere-ramp simulation is
shown in figure 2. Here, the freestream Mach number is 6 and the ramp angle, θ, is
10◦. The lateral position of the sphere centre (y) is varied while the streamwise location
(x) remains constant (with the origin of the coordinate system being the leading edge
of the ramp). A numerical schlieren (magnitude of the density gradient) on the plane
through the sphere centre is visualized at each time step, along with a color map showing
contours of pressure on the surface of the sphere. Corresponding drag and lift coefficients
are plotted in the left part of figure 3 (high refinement curve); here the abscissa is the
lateral distance from the sphere centre to the extrapolated location of the oblique shock
at the streamwise location of the sphere centre (ys=x tanβ), normalized by the sphere
radius. Force coefficients are calculated based on the freestream rather than post-shock
conditions. We observe that the drag coefficient decreases essentially monotonically as
the sphere passes from inside to outside the shock layer. The lift coefficient has a finite,
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Figure 3. (Left) Drag (upper curves) and lift (lower curves) coefficients computed for a sphere
as its position is varied relative to the shock generated by a 10◦ ramp at Mach 6 for a range
of refinement levels: (· · · ) coarse; (– –) medium; (– · – · –) medium-high; (––) high. (Right)
Lift-to-drag ratio as the sphere position is varied at Mach 6 (– · – · –), 10 (– –), and 20 (––).
For each curve, tanβ is indicated by the horizontal dotted line. The symbols on the Mach-6
curve indicate the locations of the visualizations in figure 2.

positive value inside the shock layer (because of the nonzero flow angle behind the shock),
increases further as the sphere passes through the shock, reaches a maximum value at y
slightly below ys, and then decreases again as the sphere moves out into the freestream.
The small nonzero value of CL in the freestream is a result of the finite lateral velocity
of the sphere; for a stationary sphere, CL would of course be zero here. The increase in
CL during interaction with the shock is caused primarily by the lower side of the sphere
being exposed to doubly shocked flow, which results in a higher pressure than the singly
shocked flow on the upper side of the sphere.

As the force coefficients are integrated quantities, they are relatively insensitive to the
grid resolution. To demonstrate this, on the left graph of figure 3 we also show curves
derived from three other numerical simulations with different total levels of refinement:
the coarse through medium-fine simulations have one through three levels of additional
refinement over the base grid, each of factor two, while the fine simulation (referred
to previously) has a refinement factor of four only at the third additional level. Each
simulation is thus effectively twice as resolved as the one before. Although some small
changes are noted as we move from coarse to medium-fine, the medium-fine and fine
results are essentially identical. To conserve computational resources then, medium-fine
refinement was used for the bulk of the force characterization described in this section,
while the highly refined simulations were used primarily for flow visualization in a few
select cases, such as that shown in figure 3. In these highly refined simulations, a smaller
computational domain was used with the sphere located further upstream than in the
force-characterization simulations.

The lift-to-drag ratio of the sphere as it is translated through the shock is shown in the
right part of figure 3, together with corresponding curves for two other Mach numbers.
To reduce the effects of the sphere motion on the calculated forces (primarily the lift,
as the drag is largely unaffected), the lift profile used to calculate this curve has been
shifted so that the freestream value is zero, and scaled such that L/D is equal to the
tangent of the ramp angle when the sphere is fully immersed in the shock layer. The
points in this simulation corresponding to the visualizations of figure 2 are indicated
by symbols on the curve. The maximum L/D ratio, (L/D)max, occurs when the sphere
is experiencing a type-IV Edney interaction (second visualized timestep). Changes in
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the slope of the L/D curve are generally observed at transitions between shock-shock
interaction types (e.g., type-III to type-II near the penultimate visualized timestep) or
when other qualitative changes in the flowfield take place (e.g., the shear layer generated
in the type-III interaction moving off the sphere surface in the fourth visualized timestep).
Also shown is a dotted horizontal line indicating the value of tanβ for this Mach number.
The maximum L/D is seen to be larger than tanβ in this case, and L/D is equal to tanβ
at two values of (y − ys)/r. Both of these locations will therefore be stationary points,
i.e., if the sphere is released at either of those points with zero velocity, it will remain
at the same value of (y − ys)/r as it moves downstream; however, the slope of the L/D
curve tells us that only the outer point will be a stable one (see Laurence & Deiterding
2011 for further discussion).

Similar curves for Mach numbers of 10 and 20 (again for θ=10◦) are also shown in
the right part of figure 3. We see that the degree to which the maximum L/D exceeds
the tangent of the shock angle increases substantially as the Mach number is increased.
This is a result of both a decreasing tanβ (for a fixed θ) and an increasing (L/D)max;
the former effect is well-known oblique shock behaviour, while the second we shall return
to shortly. The distance between the two stationary points also increases with Mach
number.

As was shown in Laurence & Deiterding (2011), to analyze the sphere dynamics it
is instructive to utilize the reduced coordinates η = (y − ys)/r and vη = dη/dt̂ =

v̂y − tanβ v̂x, with v̂x=
√
ρb/ρavx/V , v̂y=

√
ρb/ρavy/V , and t̂ =

√
ρa/ρbV t/r. We can

then reduce the original four equations of motion to the following two-equation system:

dη

dt̂
= vη, (3.1)

dvη

dt̂
=

3

8
[CL(η)− tanβCD(η)] . (3.2)

This allows a phase-plane analysis to be employed to describe the sphere dynamics, with
trajectories obtained by integrating the combined equation

dvη
dη

=
3(CL − tanβCD)

8vη
, (3.3)

giving

v2η =
3

4

∫
(CL − tanβCD)dη. (3.4)

Note that by writing CL and CD as functions solely of η (and not of sphere velocity), we
are assuming that the sphere velocity remains negligible in comparison to the freestream
throughout the time period of interest. Phase diagrams of the sphere motion for a Mach-6
freestream and ramp angles of 5◦, 10◦, and 20◦ are shown in figure 4. For the smallest
ramp angle, there are no stationary points: in this case, the maximum value of the lift-
to-drag ratio is smaller than tanβ, which precludes the possibility of the sphere following
the shock downstream. Therefore, all sphere trajectories eventually lead to the sphere
becoming entrained inside the shock layer. Increasing the ramp angle to 10◦ brings about
a qualitative change in the phase portrait. Now the maximum L/D is greater than tanβ
and two stationary points appear on the phase diagram: the inner (η<0), unstable point
is a saddle, while the outer (η>0), stable point is a centre. The separatrix to the right of
the saddle point is a closed curve that forms the boundary of all stable orbits about the
centre. Increasing the ramp angle to 20◦ does not bring about a qualitative change in the
phase portrait, though we see that the stable region becomes more extended along both
the η and vη axes. Manipulating the coefficient curves revealed that the extent of the
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Figure 4. Phase diagrams of the sphere behaviour for a Mach-6 freestream and ramp angles
of (left) 5◦, (centre) 10◦, and (right) 20◦. Separatrices are shown in dashed lines.

stable region in the vη dimension is directly related to the degree by which (L/D)max
exceeds tanβ.

One point regarding equation 3.3 that will become important is that if vη=0, dvη/dη is
infinite (unless CL=tanβCD), and therefore trajectories starting from rest will initially
trace out vertical lines in the phase plane (except those that begin exactly at stationary
points). We also note that, for η.-1, CD is constant and CL=CD tan θ (as the sphere is
fully immersed inside the shock layer). In this case we can directly integrate equation 3.4
to obtain

v2η = c− 3

4
(tanβ − tan θ)CDη, (3.5)

c being a constant of integration. We thus see that these parts of the sphere trajectories
in the phase plane are parabolas. Similarly, for η&1 (outside the shock), CD is constant
and CL=0, and the trajectories are parabolas of the form

v2η = c− 3

4
tanβCDη. (3.6)

In figure 4 we have graphed the phase-plane separatrices for ramp angles of 5◦, 10◦,
and 20◦, in each case for Mach numbers of 6, 10, and 20. The most consistent trend
observed is that increasing M enlarges the stable region in the phase plane along both
axes. At Mach 6 and 10, increasing the ramp angle to 20◦ similarly extends the stable
region along both axes, but the corresponding effect at Mach 20 is not so clear: the extent
in the η dimension is in fact maximum for 5◦, whereas the vη extent grows (if modestly)
up to 20◦. To the left of the saddle point, the slope of the separatrix becomes shallower
as the Mach number is increased, and steeper as the ramp angle is increased.

The effects of varying θ and M on the stationary-point locations are shown more
explicitly in figure 6. In the left graph, θ is varied for Mach numbers of 6, 10, and 20,
whereas in the right graph, M is varied for each of θ=5◦, 10◦ and 20◦. The location of
the centre is relatively unaffected by the ramp angle, but does change more substantially
with M , being pushed out to larger η as M is increased. The saddle point, on the other
hand, shows a weak general trend to more negative η as both M and θ are increased. The
net result is that the spacing between the two stationary points grows with increasing
M , but remains relatively constant as θ is varied.

As we will see, the slope of the separatrix at the saddle point is an important parameter
in determining the separation behaviour; this value can be determined from equation 3.3.
Noting that both the numerator and denominator are zero at the saddle point, we use
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l’Hôpital’s rule to obtain

dvη
dη

∣∣∣
sp

= ±
√

3

8
[C ′L(ηsp)− tanβC ′D(ηsp)], (3.7)

where the subscript sp refers to the saddle point. For the Mach-6 phase portraits, this
slope takes the values of 0.41 and 0.62 for 10◦ and 20◦ ramps; at Mach 10, the values
are 0.48, 0.73 and 0.80 for 5◦, 10◦ and 20◦ ramps. We thus observe that this slope tends
to increase with both Mach number and ramp angle, but remains somewhat below unity
for the cases considered.

We noted earlier that the source of the large lift coefficients generated as the sphere
moves through the shock is the difference in pressures resulting from the singly shocked
flow on the upper surface and the doubly shocked flow on the lower surface. We finish the
present section by examining this effect in more detail. In Laurence & Deiterding (2011),
it was noted that a reasonable approximation to the lift and drag curves could be obtained
if it were assumed that the oblique shock effectively divided the flow over the sphere into
two regions of Newtonian flow. Then the local pressure coefficient is Cp=C

∗
p sin2 θ, where

θ is the angle between the local surface element and the incoming flow, and C∗p is a
reference pressure coefficient, which according to the modified Newtonian theory of Lees
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Figure 7. (Left) Ratio of Pitot pressure before and after obliques shocks with varying turn
angle for Mach numbers of (-N-) 6, (-•-) 10, and (-�-) 20. The weak shock branch in each case is
indicated by the solid curve with symbols, the corresponding strong shock branch by the dashed
curve. (Right) Computed maximum lift coefficient (closed symbols) and maximum lift-to-drag
ratio (open symbols) as functions of ramp angle for a sphere interacting with an oblique shock
for Mach numbers of (-N-) 6, (-•-) 10, and (-�-) 20.

(1955), will simply be the Pitot pressure in the relevant flow region. An examination of
the Pitot pressure upstream and downstream of the ramp-generated oblique shock should
thus provide some understanding of the lift behaviour of the sphere.

Formulae for the ratios of Pitot pressure across an oblique shock in terms of the shock
angle and Mach number are given by Graham & Davis (1965) for cases in which the
post-shock flows are both subsonic and supersonic. In the left graph of figure 7 we have
plotted this ratio, pt2/pt1, against the ramp angle for Mach numbers of 6, 10 and 20.
We see that pt2/pt1 reaches a maximum on the weak-shock branch at a ramp angle that
decreases from 23.1◦ for Mach 6 to 15.3◦ for Mach 20. The peak value of pt2/pt1 increases
with M , and would reach a maximum of 6 for M=∞, θ=0. At a very basic level, we
might thus expect the peak CL of the sphere to increase with M for a given θ and, for
a given Mach number (within the range considered in the present work), to occur at an
angle somewhere in the range of 15-25◦. In the right graph of figure 7, we have plotted
this peak, CL,max, versus ramp angle for the same Mach numbers, as computed in the
forced numerical simulations. We do indeed observe a monotonic increase in CL,max with
Mach number and although CL,max is increasing with θ over the range plotted, for M=20
it does appear to be approaching a maximum near θ=25◦. The peak L/D values from
these simulations are also plotted on the same axes. We see that these again increase
monotonically with Mach number, though the curves do not appear to be approaching
a maximum with θ (this is because the drag values at peak L/D begin to decrease with
θ). Nevertheless, we conclude that a simple consideration of the Pitot pressures before
and after the oblique shock gives significant insight into the prevalence of surfing over a
range of conditions.

4. Near-wall aerodynamics

It is clear from the first two images of figure 1 that the presence of the ramp significantly
alters the flow over the lower part of the sphere, in particular, by maintaining a stronger
shock down to the ramp wall. This increases the pressure on the lower half of the sphere,
leading to a repulsive force that propels the sphere out towards the ramp-generated
oblique shock. If the near-wall part of the flowfield is free from the influence of the
oblique shock, as we have assumed thus far, variation of just two flow parameters – the
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Figure 8. Sequences of numerical schlieren slices and pressure contours on the sphere as it is
translated away from an inviscid wall in (upper row) Mach-3 and (lower row) Mach-12 freestream
flows.

Mach number behind the oblique shock and the wall-normal displacement of the sphere
– is sufficient to fully characterize such near-wall aerodynamic effects. Therefore, we may
elucidate these effects by considering the simpler problem of a sphere separating from a
reflecting, inviscid wall aligned with the incoming flow.

We performed forced simulations of a sphere translating away from a reflecting-wall
boundary at various Mach numbers, as described in §2. Figure 8 shows the computed
flowfields at different stages during the sphere-wall separation for Mach numbers of 3
and 12. The flowfield development is seen to be qualitatively similar in the two cases.
When the sphere is in contact with the wall, the sphere bow shock extends down to the
wall with little decrease in strength; the flow ahead of the lower part of the sphere is
then entirely subsonic and generates high pressure levels on the sphere surface. As the
sphere translates away from the wall, the flow between the sphere and the wall accelerates
to supersonic conditions, resulting in first a Mach throat and then a three-dimensional
regular reflection. The reflected shock initially impinges on the lower sphere surface,
causing a local increase in pressure, but once the shock moves off the rear of the sphere,
the presence of the wall has negligible further influence on the sphere aerodynamics
(the only effect possible being to modify the wake flow). For the higher Mach number,
the bow shock lies closer to the sphere and the transitions between these different flow
configurations occur at smaller values of y/r: for example, in the second image showing
the Mach reflection for the Mach-3 sequence, the sphere is at y/r=1.39, while for the
corresponding Mach-12 image, the sphere is at y/r=1.15.

In figure 9 we plot the lift and drag coefficients as functions of normalized wall-normal
distance for Mach numbers of 3, 6, 10, and 14. In the lift-coefficient profiles (note that
these have been shifted vertically so that they asymptote to zero, in order to remove
the influence of the wall-normal motion), we observe that the lateral force in each case
decreases monotonically as the sphere moves away from the wall. The maximum lift value
increases slightly as the Mach number increases (from 0.259 for M=3 to 0.277 for M=14),
but much more significant is the extended range of y/r over which the influence of the
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Figure 9. (Left) Lift and (right) drag coefficients of a near-wall sphere as functions of
normalized distance from the wall, for Mach numbers of (-N-) 3, (-�-) 6, (-�-) 10, and (-•-) 14.

wall is felt at lower Mach numbers. For M=14, CL drops below 0.005 at y/r=1.44, while
for M=3, this doesn’t occur until y/r=1.64. The sphere drag is moderately enhanced
through being in close proximity to the wall, increasing by approximately 20% compared
to the uninfluenced value in the freestream. For each Mach number, the drag initially
decreases as the sphere moves away from the wall, then undershoots slightly before rising
to the freestream value; this undershoot occurs when the reflected shock from the wall
impinges towards the rear of the sphere, increasing the back-side pressure. The effect
of increasing Mach number is to decrease the overall drag coefficient and limit the y/r
range over which the sphere is influenced, as with the lift.

The effects of these Mach-number trends on the sphere parameters once separated from
the wall are summarized in figure 10, where we plot the normalized wall-normal distance,
ysep/r, at which the lift coefficient has fallen to 1% of its maximum value, as well as the

normalized sphere velocities at this point (e.g., v̂y,sep=
√
ρb/ρavy,sep/V , where vy,sep is

the physical y velocity at ysep), versus the Mach number. The velocities are obtained by
integrating the force-coefficient profiles; note that v̂y,sep is identical to the normalized
separation velocity, V ′T , discussed in the introduction. As would be expected from the
discussion of the previous paragraph, all plotted separation parameters (ysep/r, v̂y,sep,
and v̂x,sep) decrease with increasing Mach number, falling rapidly at first but then more
gradually as the Mach number increases above ∼4. Despite the enhanced lateral impulse
the sphere receives at lower Mach numbers, the angle at which it is travelling once it
escapes the influence of the wall increases slightly as the Mach number rises (from 8.6◦

at M=2 to 10.4◦ at M=14). Comparing CL and CD at y/r=1 in figure 9, it is clear that
this trend also holds true for the initial direction of travel.

Ultimately we are interested in how this behaviour will affect the separation of the
sphere from a ramp oriented at a non-zero angle to the freestream. Each of the forced
sphere-wall computations allows us to simulate a range of sphere-ramp separation cases,
all sharing their post-shock Mach number with the freestream value in the relevant
computation (but through different combinations of freestream Mach number and ramp
angle to achieve this). The trajectory of the sphere in η-vη space in these simulated
separation events will then provide insight into how this initial wall interaction affects
the possibility of subsequent surfing in the full separation problem. In the left graph of
figure 11, we present such phase-plane trajectories for a 10◦ ramp and three freestream
Mach numbers (M=6.59, 8.49, and 14.30, corresponding to post-shock Mach numbers of
5, 6, and 8); the abscissa here is the change in η, since the initial value of η is arbitrary.
To obtain these trajectories, the sphere-wall force-coefficient curves are integrated and
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Figure 11. Initial sphere trajectories in the η-vη phase plane produced by isolated wall
interactions: (left) for θ=10◦ and freestream Mach numbers of (——) 6.59, (– –) 8.49, and
(– · – · –) 14.30; (right) for M=10 and ramp angles of (——) 5.85◦, (– –) 12.24◦, (– · – · –) 16.18◦,
and (· · · ) 21.40◦.

then rotated; ρa and V are then rescaled (in calculating vη) based on the oblique
shock relations. For the reason noted in discussing equation 3.3, all trajectories start
off vertically, but then curve around as the influence of the wall diminishes, resulting in
a peak vη in all cases. This peak increases notably with increasing Mach number, and
typically occurs when vη is of the same order of or slightly larger than ∆η. In the right
graph of figure 11, we show phase-plane trajectories for a fixed freestream Mach number
of 10 and various ramp angles. The trajectories are all of a similar shape, but the trend
with θ is non-monotonic insofar as the 16.2◦ trajectory reaches a higher value of vη than
those of either the smaller or larger ramp angles. Overall, however, the influence of the
ramp angle on the phase-plane trajectory is somewhat less than that of the Mach number
(at least over the range of parameters considered here).

We can explore the trends in the value of vη following separation in more detail by
interpolating the data shown in figure 10 to determine the value of vη once separation
from the wall is complete – which we denote vη,sep (note from figure 11 that this will be
slightly lower than the peak value of vη) – for varying ramp angles and Mach numbers.
We do this by following a procedure similar to that just described for the trajectories
in figure 11, i.e., a rotation of the interpolated values of vx,sep and vy,sep followed by
a rescaling of the density and velocity to calculate vη,sep. In figure 12, vη,sep is plotted
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Figure 12. Normalized shock-relative velocity when sphere is free of the wall influence: (left)
versus Mach number for ramp angles of (—N—) 5◦, (—�—) 10◦, (—�—) 15◦, (—•—) 20◦, and
(—H—) 25◦; and (right) versus ramp angle for Mach numbers of (—N—) 6, (—�—) 8, (—�—)
10, (—•—) 12, (—J—) 16, and (—I—) 20.

versus Mach number for ramp angles of 5◦, 10◦, 15◦, 20◦, and 25◦ (left axes), and versus
the ramp angle for freestream Mach numbers of 6, 8, 10, 12, 16, and 20 (right axes). For
all ramp angles, vη,sep increases monotonically with Mach number; this we can attribute
primarily to the decreasing shock angle (for a given θ) as the Mach number is increased,
together with a small contribution from the increase in the angle of the sphere velocity
relative to the wall noted earlier. In contrast, the trend with θ (for fixed M) is non-
monotonic, with vη attaining a maximum at a ramp angle that decreases with increasing
Mach number (generally between θ=10◦ and 15◦).

Before proceeding further, let us consider how the behaviour observed thus far is likely
to affect the possibility of surfing. We note that the trends for the sphere-wall separation
in the present section in some way reflect those seen in the extent of the stable surfing
region in §3. In particular, for fixed θ, the stable region contracts with decreasing Mach
number; however, since the effective repulsion from the wall interaction (in terms of
vη) is also reduced as the Mach number is decreased, we might expect these effects to
counteract one another (to some extent) when considering the full separation problem.
Also, if the ramp angle is increased from zero for fixed M, both the extent of the stable
region and the wall repulsion increase to a maximum before falling again. Again, these
two effects would be expected to work against one another with regard to enabling stable
surfing trajectories. Which of these effects are dominant, however, remains to be seen.

5. Full separation behaviour

5.1. Decoupled force model

Having investigated the aerodynamic interactions of the sphere with the ramp-
generated shock and ramp wall independently, we are now in a position to examine the
full separation behaviour. To allow complete sphere trajectories to be calculated in an
efficient manner, a decoupled approach based on forced simulations was developed as
follows. For a given M and θ, force-coefficient data were generated for sphere positions
from the ramp surface out into the freestream. The streamwise sphere location in each
of these simulations was chosen such that there was a finite intermediate region over
which the sphere was free from the influence of both the wall and the shock, and thus
the coefficients were constant, say, CDi and CLi. The force coefficients as functions of
y/r for such a simulation with M=10 and θ=10◦ are shown in the left graph of figure 13;
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Figure 13. (Left) Full force coefficient curves (——,CD; – · – · –,CL) including wall- and
shock-affected regions for M=10, θ=10◦; the vertical dashed lines indicate the boundaries of
the region over which the sphere is free from the influence of both the wall and the shock,
and the dotted line is the shock location (ys). (Right) Construction of composite curve using
the decoupled model for values of x/r for which the wall and shock simultaneously influence
the sphere; the wall-only and shock-only parts of the original curve are plotted in dashed and
dashed-dotted lines, respectively.

in this case x/r=48 and the boundaries of the intermediate region are indicated by
dashed lines. For any larger x/r, the coefficient profiles will be identical except that the
intermediate region will be stretched as a result of the increased distance between the
wall and shock (which will grow as [tanβ − tan θ]x). For smaller x/r, this intermediate
region will shrink until a critical value, xc/r, is reached at which its extent is exactly zero.
If we decrease x/r further from this critical point, the sphere will begin to experience
the effects of the oblique shock before it is free from the wall influence. Nevertheless,
as we have noted earlier, these two effects will be largely independent of one another
unless the sphere is very close to the leading edge; this means their combined influence
on the force coefficients will be additive. Thus, if x<xc, we modify the parts of the
coefficient curves over which the sphere is influenced by both the shock and the wall in
the following way (illustrated in the right graph of figure 13). For the drag, let ∆CDw
be the additional increment in the drag coefficient compared to CDi produced by the
influence of the wall at a given y location (as calculated from the original CD curve);
similarly, let ∆CDs be the increment (compared to CDi) at that y produced by the
interaction with the oblique shock. The total drag coefficient is then calculated simply
as CD = CDi +∆CDw +∆CDs, and similarly for CL. In this way the forces experienced
by the sphere anywhere in the flowfield can be well approximated, with the exception
of locations close to the leading edge (just how close to the leading edge this decoupled
assumption is valid will be examined in §5.3). Thus, for any initial sphere position,
we can integrate the equations of motion and derive the resulting sphere trajectory.
Again, the assumption that the sphere velocity remains negligible in comparison to the
freestream flow is required here (since CL and CD are assumed to be functions solely of
the sphere position).

5.2. Sphere trajectories with the decoupled model

Example trajectories for a ramp angle of 10◦ and a Mach number of 10 are shown in
figure 14. Those trajectories for which the sphere is shed further upstream (x0/r615)
appear to exhibit stable surfing; for x0/r=36 the sphere is clearly entrained within the
shock layer, while for x0/r=25 and 32 its fate is less clear. The corresponding phase-
plane trajectories for these cases are shown in the centre graph of figure 15. Here we
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Figure 14. Calculated separation trajectories for a Mach 10 freestream and a ramp angle of
10◦; the starting positions are x0/r=9, 11, 13, 15, 25, 32, and 36.
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Figure 15. Separation trajectories in the phase plane for a Mach 10 freestream with ramp
angles of: (left) 5◦, x0/r=9, 11, 13, 15, 25, 32, and 36; (centre) 10◦, x0/r=9, 11, 13, 15, 25, 32,
and 36; (right) 20◦, x0/r=9, 11, 13, 15, 21, and 25. In each case, the trajectory that corresponds
to the largest x0/r is the one that originates from the minimum value of η on the vη=0 axis.
Separatrices are shown in dashed lines.

see that for x0/r=9, 11, 13, and 15, the sphere does indeed attain an orbit within the
stable region of the phase diagram. For x0/r=25 and 32, the initial repulsion from the
wall takes the sphere trajectory above the upper branch of the separatrix – the sphere
will thus temporarily move outside the shock layer but will subsequently re-enter and
become entrained within. If the initial position of the sphere is shifted further rearwards
(e.g., x0/r=36), it will simply become entrained without first exiting the shock. We
can generalize to say that one of these three categories of trajectories – stable surfing,
temporary escape/ejection followed by re-entrainment, or direct entrainment – will be
the fate of any spherical body shed from a ramp. Ejection/re-entrainment trajectories
are only possible (for initially stationary spheres) because of the repulsive influence of
the ramp interactions, whereas the other two trajectory types would be possible for an
isolated oblique shock without any direct ramp influence. What remains to determine
then is how the boundaries of x0/r delineating these behaviours vary for different
freestream Mach numbers and ramp angles. For combinations of Mach number and
ramp angle for which there is no stable region (e.g., the Mach-6, θ=5◦ case shown in
the left graph of figure 4), ejection/re-entrainment and direct entrainment will be the
only possibilities, but there will be no distinct boundary between the two.

Some insight into the effect of varying the ramp angle can be gained by comparing the
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Figure 16. Calculated separation trajectories for a Mach 6 freestream and a ramp angle of
10◦; the starting positions are x0/r=5, 7, 9, 11, 13, 15.5, and 17.
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Figure 17. Separation trajectories in the phase plane for a Mach 6 freestream with ramp angles
of: (left) 10◦, x0/r=5, 7, 9, 11, 13, 15.5, and 17; (centre) 15◦, x0/r=5, 7, 9, 11, 13, 15, and 17;
(right) 20◦, x0/r=5, 7, 9, 11, 13, 13.5, and 15.

graph just described with the other two of figure 15, which show phase-plane trajectories
for angles of 5◦ and 20◦ (at Mach 10). We see in both cases the limiting x0/r for stable
surfing is shifted forward, with only the x0/r=9 case of those plotted producing a stable
orbit. This is despite the extent of the stable region along the vη coordinate being
significantly larger for θ=20◦ than for θ=10◦.

For Mach-6 trajectories at ramp angles of 10◦, 15◦, and 20◦, figure 17 demonstrates that
there is in fact no possibility of stable surfing according to the decoupled model, with all
sphere trajectories being pushed outside the stable boundary during the wall-separation
phase (figure 16 shows the trajectories in physical space for θ=10◦). In contrast, for the
Mach-20 trajectories with θ=5◦, 10◦, and 20◦ (figure 18), a wide range of initial locations
can produce surfing, especially for the smaller ramp angles.

In general, we observe from figures 15, 17, and 18 that for surfing to be initiated, the
sphere must initially lie within the stable region of the phase plane. In discussing figure 11
it was noted that the sphere-wall interactions impart a combination of ∆vη and ∆η that
is somewhat steeper than the slope of the separatrix near the saddle point. As a result,
there is no way for the wall interaction to push the sphere trajectory into the stable
region if it begins outside (the opposite tendency rather prevailing). Therefore, if η0 is
the initial value of η, η0>ηsp is a necessary (but not sufficient) condition for surfing, and
thus surfing trajectories are only possible if the ramp-generated oblique shock is initially
incident on the sphere.
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Figure 18. Separation trajectories in the phase plane for a Mach 20 freestream with ramp
angles of: (left) 5◦, x0/r=15, 23, 31, 33, 65, 95, and 100; (centre) 10◦, x0/r=13, 19, 25, 27, 45,
65, and 70; (right) 20◦, x0/r=9, 11, 13, 14, 22, 28, and 33.
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Figure 19. (Left) Numerical schlieren image of a sphere sitting on a 10◦ ramp in a Mach-6
freestream at a distance downstream of x/r=5; pressure contours on the sphere surface are also
shown. (Right) Comparison of the initial part of the sphere trajectory for this starting location
as predicted by the decoupled model (– –) and in the free-flight simulation (——).

5.3. Sphere dynamics near the ramp leading edge

The decoupled force model will not be a good approximation close to the leading edge
of the ramp, as there the shock-shock interactions will affect the lower part of the sphere
and thus the flow in the vicinity of the wall, in violation of our decoupled assumption.
This is clear from the left image of figure 19, which shows the flowfield over a sphere at the
surface of a 10◦ ramp with x/r=5 in a Mach-6 freestream. The shock-shock interaction
produces a complex flow pattern near the wall, with a Mach stem extending to the ramp
surface and a localized region of very high pressure on the underside of the sphere. This
is quite different from the near-wall flowfield effectively assumed in the decoupled model,
of which the first image in figure 1 is representative.

In order to obtain more accurate predictions for such upstream starting locations, as
well as to verify that the decoupled model performs well elsewhere, free-flight simulations
were conducted for a range of initial sphere positions (but concentrating on cases
relatively close to the leading edge). The initial part of the trajectory in physical space
for the case shown in the left image of figure 19 (M=6, θ=10◦, x0/r=5) is compared with
the decoupled prediction in the right part of this figure. The free-flying sphere leaves the
wall at a steeper angle than the decoupled model predicts, as the localized high-pressure
region on the underside of the sphere generates higher lift than in the decoupled model
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Figure 20. Trajectories near the leading edge for: (left) Mach 10, 10◦ ramp and initial sphere
locations of x0/r=5, 9, 13, 17, and 21; (centre) Mach 6, 10◦ ramp and initial sphere locations
of x0/r=3, 5, 7, 9, and 11; (right) Mach 6, 15◦ ramp and initial sphere locations of x0/r=3,
5, 7, 9, and 11. In each case, the solid lines show the results of free-flight simulations and the
dot-dashed lines indicate the predicted trajectory from the decoupled force model.

(with little difference in drag). As the sphere moves away from the wall, however, the
free-flight trajectory curves around more sharply than the decoupled one, leading to a
shallower angle of travel at later times. This is a result of the shock-shock interaction
displacing the high-pressure region on the underside of the sphere downstream, meaning
that although the lift coefficient is initially higher than in the decoupled prediction, it
drops off rapidly as the sphere moves away from the wall. The overall influence of the
sphere-wall interaction is thus decreased.

With these observations in mind, in figure 20 we compare free-flight and decoupled
trajectories in the phase plane for a 10◦ ramp at Mach 10, as well as 10◦ and 15◦ ramps
at Mach 6. In all three graphs, for starting locations near or upstream of the centre, the
overprediction of the wall repulsion just noted results in decoupled trajectories that are
pushed out to larger vη values than those of the free-flying spheres. For M=10, θ=10◦, this
discrepancy doesn’t modify the qualitative behaviour, though the decoupled model will
slightly underpredict the x0/r value at which the transition from surfing to ejection/re-
entrainment occurs. Similarly, for M=6, θ=10◦, no change in qualitative behaviour is
noted for the free-flight trajectories compared to the decoupled ones, despite the reduced
wall repulsion; in particular, surfing is still not possible for any starting location. For
M=6, θ=15◦, however, the free-flight simulations show that there is in fact a range of
near-leading-edge initial positions for which surfing is possible (x0/r.5), contrary to the
predictions of the decoupled model. For all three Mach-number/ramp-angle combinations
considered here, the decoupled model provides accurate predictions for starting locations
with η0.0.

Our objective in the following subsection is to use the decoupled model to determine
how the transition boundaries between the different trajectory types vary with Mach
number and ramp angle; the comparisons just made provide a means to gauge how
accurate these predictions will be. First, we note that the ejection/re-entrainment to
direct entrainment boundary will be well predicted, given that this transition occurs when
η0<ηsp, which will always be sufficiently far downstream that the decoupled assumption
is valid. The trajectories in figure 20 show that the transition x0/r from surfing to
ejection/re-entrainment will be slightly underpredicted by the decoupled model (and, in
cases where surfing is marginal, may be erroneously predicted not to exist). Nevertheless,
as this underprediction appears to be consistent across ramp angle and Mach number
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Figure 21. Boundaries between regions of different sphere behaviours: (left) in x0/r-θ space
for Mach numbers of (N) 6, (◦,•) 10, and (�,�) 20; (right) in x0/r-M space for ramp angles of
(4,N) 5◦, (◦,•) 10◦, and (�,�) 20◦. Open symbols with dashed lines indicate transitions from
surfing to ejection/re-entrainment, and closed symbols with solid lines indicate transitions from
ejection/re-entrainment to direct entrainment.

(at least for the cases examined), we may still expect that the trends predicted by the
model to be accurate.

5.4. Boundaries of sphere behaviour

From decoupled trajectory predictions such as those shown in figures 15, 17, and 18,
for a given M and θ it is straightforward to determine the critical values of x0/r at which
the sphere behaviour transitions between the different categories – surfing, ejection/re-
entrainment, direct entrainment – with the minor caveats mentioned in the previous
paragraph. In figure 21 we plot these boundaries in x0/r-θ space for Mach numbers
of 6, 10, and 20 (left graph) and in x0/r-M space for ramp angles of 5◦, 10◦, and
20◦ (right graph). In the left graph, we see that the transition between surfing and
ejection/re-entrainment at Mach 10 exhibits a relatively weak dependence on θ for ramp
angles between 5◦ and 25◦. The trend is not monotonic, but rather the transition x0/r
increases to a maximum of 14.0 for θ=10◦ as the ramp angle is increased, before gradually
decreasing to reach x0/r=7.6 at θ=25◦. The maximum range of initial locations leading
to surfing is thus found near θ=10◦. For M=20, the surfing to ejection/re-entrainment
transition x0/r is larger and the curve is shifted to lower θ, with the maximum x0/r
now occurring near or below θ=5◦. For both Mach 10 and Mach 20, the ejection/re-
entrainment to direct entrainment boundary shows the same qualitative behaviour as
the surfing to ejection/re-entrainment boundary at the same Mach number, just shifted
to larger x0/r. For M=10, the range of x0/r for ejection/re-entrainment is maximum
at θ≈7.5◦ (13.16x0/r633.6). For M=20, the range of x0/r over which this behaviour is
observed reaches a maximum (of the ramp angles simulated) of 32.36x0/r698.3 at θ=5◦.
The corresponding M=6 curve (note that there is no surfing to ejection/re-entrainment
boundary at this Mach number) is somewhat flatter and shifted to smaller x0/r; the
maximum here is x0/r=15.7 at θ=10◦.

The right graph of figure 21 shows how these transition boundaries vary with Mach
number. The most obvious trend is that both transition boundaries shift to larger x0/r as
Mach number is increased. For θ=20◦, there is little change above M=16, behaviour which
might be expected from the Mach-number independence principle (Anderson 2006);
however, for θ=10◦ and especially for θ=5◦, the transition x0/r values are still increasing
significantly at M=20. In general then, the range of x0/r over which both surfing and
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Figure 22. Lateral distance between shock and ramp at unit distance downstream for Mach
numbers of (uppermost to lowermost curve) 4, 6, 8, 10, 15, 20.

ejection/re-entrainment are possible will increase with Mach number, especially for small
ramp angles.

One factor that has not been considered thus far, but will certainly influence the x0/r
values plotted in figure 21, is the initial lateral distance from the sphere centre to the
shock. We have noted that surfing is only possible if the shock is initially impinging on
the sphere, and if the shock angle is larger relative to the ramp angle, the sphere will
need to be located further upstream to produce such a flow configuration. In figure 22
we plot the quantity tanβ − tan θ, i.e., the lateral separation between ramp and shock
at unit distance downstream of the leading edge, versus the ramp angle. As would be
expected, this quantity decreases with Mach number; however, perhaps less intuitively,
we see that the minimum for a given (finite) M is reached at nonzero θ, which shifts
closer to zero as M is increased. We note that the minima in the Mach 6, 10, and 20
curves in figure 22 fall at roughly the same angles as the corresponding extrema in the
left graph of figure 21, which may indicate that the initial sphere-shock spacing plays an
important role here.

As an aside, since the θ values for minimum separation in figure 22 are small and the
Mach numbers of interest large, the corresponding shock angles will also be small and
we can approximate tanβ − tan θ≈tan(β − θ). Differentiating the oblique-shock relation

tan(β − θ) = tanβ
(γ − 1)M2

1 sin2 β + 2

(γ + 1)M2
1 sin2 β

, (5.1)

it is straightforward to show that tan(β − θ) has a minimum when

tanβ =

(
1 +

γ − 1

2
M2

)−1/2
. (5.2)

No such simple relation is known by the authors for the minimum in tanβ − tan θ.
In figure 23 we replot the boundary curves of figure 21 but now versus the normalized

initial lateral distance from the sphere centre to the shock, η0=(y0 − ys)/r. This suc-
cessfully collapses much of the data for the surfing to ejection/re-entrainment transition
boundary; indeed, we see that the value of η0 for this transition is close to constant (η0≈0)
over the range of cases considered, with discrepancies only for small ramp angles. We
thus conclude that the dynamical behaviour of the sphere as it transitions from surfing
to ejection/re-entrainment is determined primarily by the initial lateral location of the
sphere relative to the shock, regardless of Mach number and ramp angle. This suggests
that it is the sphere-shock interactions (rather than the sphere-wall interactions) that
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Figure 23. Boundaries between regions of different sphere behaviours: (left) in (y0 − ys)/r-θ
space for Mach numbers of (N) 6, (◦,•) 10, and (�,�) 20; (right) in (y0 − ys)/r-M space for
ramp angles of (4,N) 5◦, (◦,•) 10◦, and (�,�) 20◦. Open symbols with dashed lines indicate
transition from surfing to ejection/re-entrainment and closed symbols with solid lines indicate
transition from ejection/re-entrainment to direct entrainment.

are most important in determining the sphere dynamics in this region of the parameter
space. The ejection/re-entrainment to direct entrainment boundaries, in contrast, are
poorly collapsed by this scaling, for variations in both ramp angle and Mach number.
The main Mach number trend observed is that the transition η0 becomes more negative,
i.e., the sphere lies further inside the shock, as the Mach number is increased (and more
rapidly for smaller θ). The trend with ramp angle depends on the specific Mach number,
but we do see that for large ramp angles, the boundary appears to be asymptoting to η0≈-
1.5 (from above for low M and from below for high M). The poor collapse of the data for
this boundary points to the increased significance of the initial sphere-wall interactions
compared to the surfing to ejection/re-entrainment boundary.

6. Additional effects

6.1. Influence of non-negligible sphere velocity

In all results derived from the forced simulations, we have effectively assumed that the
aerodynamic forces experienced by the sphere are independent of the sphere velocity,
which will be appropriate if this remains a negligible fraction of the flow velocity.
Similarly, in the free-flight simulations presented thus far, we have specified the sphere
density such that this would be the case. In a more realistic situation, however, as the
sphere accelerates downstream the assumption of negligible sphere velocity will become
increasingly tenuous. It is of interest then to evaluate the effects of finite velocity on the
sphere dynamics, and in particular how the surfing phenomenon is affected. To this end,
a set of free-flight simulations was conducted on an extended domain (150 sphere radii
in downstream extent) in which the sphere density was varied so as to achieve a range of
sphere velocities with otherwise identical computational parameters. In all cases the Mach
number was 10 and the ramp angle 10◦. To make such large-domain simulations feasible,
the degree of refinement was reduced to a single level of factor two above the base grid
(equivalent to the coarse computation in figure 3). Although this will have some influence
on the force coefficients compared to the better-resolved simulations, we expect the
effects of finite sphere velocity to be consistent within this set and representative of such
effects overall. Results from these simulations are shown as phase-plane trajectories in
figure 24. Three starting locations close to the boundary between surfing and ejection/re-
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Figure 24. Phase trajectories for M=10, θ=10◦ showing the effect of non-negligible sphere
velocity on the sphere behaviour. In each case the starting locations are x0/r=13, 14, and
15, and the sphere densities are set such that the maximum streamwise sphere velocities are
approximately (left) 8%, (centre) 16%, and (right) 29% of the freestream.

entrainment were chosen (x0/r=13, 14 and 15) and the sphere density was varied
by a factor of sixteen (ρb/ρa=21.4×103, 5.36×103, and 1.34×103), resulting in sphere
velocities towards the downstream end of the computational domain of typically 8%,
16%, and 29% of the freestream velocity. The effects of such sphere velocities on the
surfing behaviour is seen to be limited. For the largest sphere density, the qualitative
behaviour is exactly the same as if the sphere velocity was entirely negligible, with the
x0/r=13 and 14 trajectories stably surfing (despite the x0/r=14 trajectory temporarily
leaving the stable region) and the x0/r=15 trajectory exhibiting expulsion/re-entry. For
ρb/ρa=5.36×103, the x0/r=14 trajectory has now (just) transitioned from surfing to
expulsion/re-entry, while the other two remain qualitatively unchanged; this remains the
case when the sphere density is again decreased to ρb/ρa=1.34×103. We note that for
hypersonic flight at 30 km altitude and assuming a sphere density of 6×103 kg/m3 (typical
of high-temperature ceramics), we will have ρb/ρa≈3.3×105; the finite-velocity effects on
surfing seen here would thus only manifest themselves a substantial distance further
downstream than was simulated. We conclude that a non-negligible sphere velocity may
decrease the prevalence of surfing, but its effects will be limited and generally only become
important hundreds of sphere radii downstream.

6.2. Variable ratios of specific heats

Thus far we have assumed that the fluid is a perfect gas with a constant ratio of specific
heats of γ=1.4. As the freestream Mach number increases, however, high-temperature
effects (primarily vibrational excitation and molecular dissociation) will emerge (Ander-
son 2006) and this perfect-gas assumption will become increasingly tenuous. A detailed
examination of these effects is beyond the scope of this paper, but at least a qualitative
estimate of how they will affect the sphere dynamics is possible through considering
variations in the ratio of specific heats. Activation of the internal energy modes will
decrease the effective γ towards unity; approximating high-temperature effects through
variations in γ is thus common in the literature (see, for example, Gnoffo et al. 1996).
To begin, we note that decreasing γ will reduce the shock angle for a given θ, and from
this alone we would expect the transition boundaries between the categories of sphere
behaviour to be shifted to larger x0/r; however, changes in γ will also affect both the
sphere-shock and sphere-wall interactions, and we consider these briefly now.

Regarding sphere-shock interactions, we noted earlier in our discussion of figure 7 that
the maximum L/D that the sphere experiences as it passes through the shock is closely
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Figure 25. (Left) Ratio of Pitot pressure before and after an oblique shock with varying turn
angle for a Mach number of 10 and ratios of specific heat of (-N-) 1.1, (-�-) 1.2, (-�-) 1.3, and
(-•-) 1.4. The weak shock branch in each case is indicated by the solid curve with symbols, the
corresponding strong shock branch by the dashed curve. (Right) Lift to drag ratio for a sphere
as it is translated through the oblique shock created by a 10◦ ramp at Mach 10 for (– –) γ=1.2
and (––) γ=1.4.

linked to the ratio of pressures before and after the oblique shock, and that this in turn
dictates the surfing behaviour (i.e., the existence and size of the stable surfing region).
In the left graph of figure 25 we have plotted the ratio of Pitot pressures across a Mach-
10 oblique shock against the ramp angle for values of γ from 1.1 to 1.4. For a fixed θ,
this Pitot-pressure ratio increases with decreasing γ, and the maximum value over the
range of possible θ also increases: for γ=1.1, this maximum is more than double that for
γ=1.4. Based on our earlier arguments then, we would expect the maximum sphere L/D
to increase as γ is decreased. In the right graph of figure 25, which shows the sphere L/D
versus (y − ys)/r for forced simulations with γ values of 1.2 and 1.4 (both for M=10,
θ=10◦), we see that this is indeed the case. As a result, the stable region in the phase
plane is larger for γ=1.2 compared to γ=1.4, and we can generalize to predict this as a
consistent trend.

As for the effect of decreasing the ratio of specific heats on the sphere-wall interactions,
a series of forced simulations similar to those described in §4 were performed with varying
γ. As γ tends towards unity, the bow shock around the sphere moves closer to the sphere
surface, which decreases the value of ysep/r (i.e., the wall-normal distance at which
the wall effects on the forces become negligible), and thus also the net repulsion that
the sphere experiences from the wall. Overall then, decreasing γ would be expected
to promote the likelihood of surfing for a given Mach number and ramp angle. This is
confirmed in figure 26, which shows phase-plane trajectories for M=10, θ=10◦, and ratios
of specific heats of γ=1.2, 1.3, and 1.4, all with the the same x0/r values (note that the
γ=1.4 case is the same as the centre graph of figure 15). Clearly, decreasing γ shifts the
transition boundaries downstream, expanding the range of x0/r for which surfing and
ejection/re-entrainment will occur. For example, the x0/r=15 trajectory is ejected just
outside the stable region for γ=1.4, but remains inside for γ=1.3, and even more so for
γ=1.2.

7. Conclusions

In this first of a two-part work, we have examined the dynamical behaviour of a
sphere shed into a hypersonic inviscid flow from the surface of a planar ramp. To
provide a well-defined initial condition, the sphere is assumed to be initially stationary
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Figure 26. Separation trajectories in the phase plane for a Mach 10 freestream, a ramp angle of
10◦ and a ratios of specific heats of (left) 1.4, (centre) 1.3, and (right) 1.2. The starting locations
are x0/r=9, 11, 13, 15, 25, 32, and 36 (as in the centre graph of figure 15).

and instantaneously released; thereafter, it is free to respond to the aerodynamic forces
experienced. The inviscid approximation here primarily affects the interactions between
the sphere and the ramp boundary layer, and is effectively equivalent to assuming that
the boundary-layer thickness is negligible in comparison to the sphere radius.

A variety of numerical simulations were performed to investigate the separation be-
haviour. Forced simulations, in which the aerodynamic forces acting on the sphere along
a specified trajectory were computed, were used to study the interactions first between
the sphere and the ramp-generated oblique shock and then between the sphere and the
ramp wall itself. The sphere-shock simulations provided insight into the conditions under
which shock-wave surfing – a phenomenon in which the sphere rides the oblique shock
downstream – is possible for different freestream Mach numbers and ramp angles. This
was facilitated by a phase-plane analysis, in which the sphere dynamics were described in
terms of the normalized lateral displacement and velocity relative to the oblique shock.
It was found that the size of the stable region in the phase plane that is associated
with surfing increases monotonically with increasing freestream Mach number; however,
the trend with ramp angle was less clear. For the sphere/ramp-wall interactions, forced
simulations were conducted of a sphere translating away from a wall aligned with the
freestream flow (i.e., zero ramp angle); results were then extrapolated to finite ramp
angles with the same post-shock Mach numbers (equal to the free-stream value in the
corresponding simulation). The wall exerts a repulsive force on the sphere, and this is
felt further away from the wall as the local Mach number is reduced. Nevertheless, as the
freestream Mach number is increased for a given ramp angle, the wall interactions result
in an increased tendency for the sphere to be expelled out of the stable surfing region in
the phase plane.

To enable full sphere trajectories to be simulated in a computationally efficient man-
ner, a decoupled model was developed whereby the influences of both shock and wall
interactions were included in calculating the overall sphere forces, but were assumed to
act independently of one another. Predictions from the model were compared to results
from free-flight simulations, with generally good agreement except when the sphere was
released close to the ramp leading edge. Three types of sphere trajectories were found
to be possible: in order of increasing distance of release from the ramp leading edge
these were (i) surfing of the sphere down the shock, (ii) initial expulsion from the shock
layer followed by re-entry and entrainment, or (iii) direct entrainment inside the shock
layer. At Mach 6, the decoupled model predicted surfing to be unattainable because of
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the tendency of the wall interaction to push the sphere trajectory outside of the stable
region in the phase plane (though free-flight simulations showed that surfing was in fact
possible for a very limited range of ramp angles and release locations). At lower hypersonic
Mach numbers then, type (ii) and (iii) trajectories are predominant. By raising the Mach
number, however, surfing becomes possible over an increasing range of ramp angles and
sphere release locations. This demonstrates that, in terms of Mach-number trends, the
enlargening of the stable region in the phase plane with increasing Mach number is more
significant for the sphere behaviour than the increased wall-induced expulsion. In all
cases, however, the nature of the wall interaction is to expel the sphere trajectory from
the stable region of the phase plane rather than bring it inside, meaning that the sphere
must initially lie within the stable region for surfing to be initiated.

The decoupled model was used to predict the transition boundaries (in terms of the
downstream release location, x0/r) between the different trajectory types as functions
of the freestream Mach number and ramp angle. For large Mach numbers and small
ramp angles, the range of initial sphere locations over which surfing and ejection/re-
entrainment occur can become quite large: for example, for M=20 and θ=5◦, the transi-
tion from type (i) to (ii) behaviour occurs at 32 sphere radii downstream, and that from
type (ii) to (iii) occurs at 98 radii downstream (it should be noted, however, that for
such high Mach numbers the ramp boundary layer would become very thick, resulting
in pronounced viscous interactions and making the inviscid assumption increasingly
untenable, even for large sphere radii). The observed trends were clearly linked to
the spacing between the oblique shock and the ramp surface at the release location,
which motivated recasting the transition boundaries in terms of the initial lateral sphere
displacement from the shock. This re-parameterization was found to give a good collapse
of the type (i) to (ii) transition boundary (which occurred consistently at (y0−ys)/r≈0),
but was less successful in collapsing the type (ii) to (iii) boundary data.

Finally, the additional influences of non-negligible sphere velocity (relative to the
freestream) and high-temperature gas effects were briefly examined. Decreasing the
sphere density in free-flight simulations so that the sphere velocity became a significant
fraction of the freestream (up to ∼29%) was found to have only a small influence on the
surfing behaviour, while high-temperature effects as represented by decreasing the ratio
of specific heats promoted surfing. These trends can be expected to carry over to the
viscous flows to be examined in the second part of this work.

As a closing point, we note clear parallels between the separation behaviour here and
that observed for two spheres in Laurence & Deiterding (2011) and Laurence et al.
(2012). In the earlier works, as the secondary (smaller) sphere size was increased, the
behaviour transitioned from entrainment within the shock layer of the primary (larger)
sphere, to an increased tendency to surf the primary shock downstream, to expulsion of
the secondary sphere from the primary shock layer beyond a critical radius ratio. This
behaviour is clearly mirrorred in the present work as the sphere release location is moved
progressively closer to the ramp leading edge. The primary difference in behaviours arises
from the constant shock angle in the present case. This means that the force-coefficient
profiles resulting from the sphere-shock interactions are unchanging as the sphere moves
downstream, allowing clear distinctions between the trajectory types that are not possible
in the two-sphere case.

Future work might consider shedding from a non-planar parent body. An axisymmetric
configuration, for example, would have a decreased shock angle for the equivalent final
deflection angle and, as we have seen in the current study, a shallower shock angle
increases the likelihood of surfing. Additionally, it may be of interest to examine the effects
of sudden or gradual changes in ramp angle on sphere trajectories. Such geometrical
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changes are characteristic of scramjet intakes (see, for example, the X-43 vehicle), and
might in some cases cause a jump from one trajectory type to another. Finally, non-
spherical geometries for the shed body may exhibit behaviour distinct from that found
in the present study, especially if rotations play a significant role.
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