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This paper discusses a physics–informed methodology aimed at reconstructing efficiently
the fluid state of a system. Herein, the generation of an accurate reduced order model of
two-dimensional unsteady flows from data leverages on sparsity-promoting statistical learning
techniques. The cornerstone of the approach is ;1 regularised regression, resulting in sparsely-
connectedmodels where only the important quadratic interactions betweenmodes are retained.
The original dynamical behaviour is reproduced at low computational costs, as few quadratic
interactions need to be evaluated. The approach has two key features. First, interactions
are selected systematically as a solution of a convex optimisation problem and no a priori
assumptions on the physics of the flow are required. Second, the presence of a regularisation
term improves the predictive performance of the original model, generally affected by noise and
poor data quality. Test cases are for two-dimensional lid-driven cavity flows, at three values
of the Reynolds number for which the motion is chaotic and energy interactions are scattered
across the spectrum. It is found that: a) the sparsification generates models maintaining
the original accuracy level but with a lower number of active coefficients; this becomes more
pronounced for increasing Reynolds numbers suggesting that extension of these techniques to
real-life flow configurations is possible; b) sparse models maintain a good temporal stability for
predictions. The methodology is ready for more complex applications without modifications
of the underlying theory, and the integration into a cyber–physical model is feasible.

I. Introduction
Future air and sea vehicles will be self–aware. The concept of self–awareness [1] requires the ability to monitor the

vehicle internal state, to sense the surrounding environment, and to assess its capabilities currently and to project them into
the future. This requires integration of multiple individual technologies and development of integrated technologies [2].
Self–aware vehicles have immediate and future applications, i.e. on–demand mobility, and include the full spectrum of
aircraft, from small unmanned vehicles to large transport aircraft. Among the required technologies identified in [1]
for a self–aware aircraft concept, the present work focuses on the development of physics–informed models of the
current system states and the capability to forecast the temporal evolution of the system at low computational costs for
on–board, real–time applications. Generally, the development of required technologies for self–aware vehicles is driven
by nature, as discussed thoroughly in the review work [2]. A recent and excellent contribution on bio–inspired concepts
and existing flying prototypes is presented in [3]. Despite the need to advance a multitude of individual technologies,
morphing continues to be one of the most popular research venues [4]. For example, Ref. [5] presents a numerical study
of morphing wings that are compared to a conventional wing in terms of aerodynamic performance. On a different but
complementary subject, Ref. [6] proposed a novel load prediction tool that extends analytical theories. Predicted loads
are parametrised by wing planform geometry, making the tool suitable for exploring a large design space in topology
optimisation studies or for predicting the system response (aerodynamics, flight dynamics) when damage characteristics
are detected in real–time by sensor networks. The seminal work in Ref. [7] optimised the external aerodynamic surface
of an aircraft over an entire flight trajectory, going beyond state–of–the–art single or multi–point optimisation. The
optimisation leverages on morphing technologies that are coordinated with the appropriate stage of the flight path,
providing superior performances compared to a fixed wing aircraft.

This paper provides an overview of a recent technology development effort aimed at identifying the aerodynamic /
fluid states of a system with no a–priori aerodynamic knowledge. The approach is general in its formulation and shall
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see applications in different fields than those documented herein. To demonstrate the proposed approach, a canonical
fluid mechanics problem is used as test case. The extension to a fully three–dimensional problem, i.e. flow around a
membrane wing, or to a coupled problem, i.e. fluid–structure interaction, is straightforward and entails no modifications
to the underlying theory.

Reduced order modelling (ROM) techniques have gained significant importance both as analysis and prediction
tools [8–11]. This increase in popularity can be attributed to the availability of large amount of data from experimental
and numerical sources [12, 13]. A well established approach consists in projecting the governing equations onto the the
subspace spanned by the first # modes obtained from a suitable modal decomposition [14, 15]. The choice of the modal
decomposition is not unique [15, 16], but depends upon the aspects of the flow one wants to highlight. One of the most
popular choices is Proper Orthogonal Decomposition (POD), mainly for its properties of energetic optimality and the
consequent ability of generating compact and parsimonious representations of the original dataset [15, 17, 18].

Galerkin projection of the governing equations onto the POD subspace results in a system of coupled ordinary
differential equations (ODEs) with a quadratic nonlinearity described by a third order tensor &8 9: , representing the
quadratic interaction between pairs of different modes. Due to the non-local nature of the spatial modes and no a priori
assumptions on the flow field all entries of &8 9: are generally non-zero. This results in a computational cost scaling as
O(#3) for a model constructed with # modes. Models that include all possible quadratic interactions are referred to as
dense or densely connected.

When the Reynolds number grows and the range of energy-relevant spatial scales widens [19], a larger number of
modes is required to reach a satisfactory energy resolution. As a consequence, a complete evaluation of the nonlinear
interactions can quickly become prohibitive. This limits the use of Galerkin models in real life applications, where the
number of modes needed to reconstruct a satisfactory amount of kinetic energy might be large. A possible solution is to
construct a reduced order model considering only a small amount of modes. If the POD is used this is equivalent to
simulate the large scales of the flow and models the smallest ones. Commonly, this approach results in lack of accuracy
and temporal stability of the corresponding ROM [9]. The main problem arising from the truncation process is the
elimination of the smallest and less energetic scales of the flow [20] responsible of the dissipation of the kinetic energy
generated at the larger scales. This is a well studied issue and it is usually tackled with the introduction of a sub-grid
dissipation model [9, 14]. A second aspect undermining the accuracy of reduced order models is the lack of quality of
the numerical or experimental data the models are generated from. Often times, numerical simulations are not carried
out on complete dynamical representations of the flows (subgrid modelling in LES simulations, for example) while
experimental results can be corrupted or affected by measurement errors [12]. The joint effect of truncation of poor data
quality can make obtaining accurate short time predictions a challenging task.

This work aims to extend the current literature in term of calibration techniques for reduced order models. Recently,
various approaches have been proposed to calibrate and improve the accuracy of the reduced order models [12, 21–23].
They all share the idea of leveraging the knowledge of the true temporal dynamics of the flow in order to adjust the
numerical value of the coefficients in the ODEs system through an optimisation procedure. A simple approach consists
in performing least squares regression on the system coefficients. This approach can provide satisfactory results in case
of small ROMs and good quality data to train the algorithm. In real life configurations, as observed by [12, 24], small
and poor quality datasets are very common. This makes the use of a pure least squares regression technique without any
regularisation term strongly discouraged. Cordier and coworkers [12, 25] proposed an approach based on a Tikhonov
penalisation term to control the numerical values of the coefficients in the reduced order model. This approach is a
well established statistical learning technique used to regularise least squares regression problems where the database
or feature matrix has poor numerical conditioning [24, 26]. Although the Tikhonov regularisation has been proved
successful for relatively small models a possible drawback is that this regularisation preserves in the tuned model all the
coefficients present in the original one. Since for POD-based Galerkin models the number of coefficients grows as
$ (#3), the resulting least squares problem might require a prohibitive number of snapshots to perform a meaningful
regression without incurring in overfitting problems. The proposed solution to overcome this limitations exploits the
observation that the dynamics of the flow is not equally influenced by all the coefficients contained in &8 9: but, on
the contrary, it is mainly governed by a small number of flow structures generating a reduced order model where only
a subset of interactions is relevant for the dynamics [27–29, 29, 30]. Therefore, an algorithm able to automatically
identify the subset of relevant interactions could be beneficial to improve the computational performances and facilitate
the calibration of ROMs of complex flows.

Work in this direction has been recently done by Brunton and coworkers [31], who developed the SINDy framework
to identify equations generated by a system that already posses a sparse structure. A further extension of the SINDy has
been proposed by [32] introducing energy preserving constraints to improve the prediction accuracy of POD-based
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Galerkin models without the need of high-fidelity solver to project the Navier–Stokes equations. In this paper, the aim is
to extend these ideas using the ;1 sparsity promoting regression to systematically identify the leading coefficients in a
priori dense Galerkin systems. To this end, we identify the coefficients associated with the interactions between modal
structures that play the dominant role in the dynamics. Once this subset is identified, tuning the numerical values of
the coefficients to improve the performances of the model is more convenient. The main advantage of the proposed
approach is that only a small subset of coefficients is retained after sparsification and, as a result, the tuning of the
coefficients requires a considerably smaller dataset.

The present paper is structured as follows. The first part of section II summarises the methodology utilised to
generate Galerkin reduced order models. Subsequently, the ;1 based regression is outlined and a discussion on how it can
be leveraged to generate sparse representation of originally dense models is presented. In section III, we demonstrate
this approach on a family of large POD-based reduced order models of chaotic solutions of lid-driven cavity flows at
different Reynolds numbers for which direct numerical simulation (DNS) is performed. Results are divided into two
main sections. In the first, the focus is on the effects of the complexity of the reduced order model on the sparsification.
Second, the predictive capabilities of the sparse models are compared with their dense counterparts and with DNS
simulations.

II. Methodology

A. Galerkin-based reduced order modelling
A modal decomposition represents the fluctuating part of the flow field u′ (C, x) = u(C, x) − ū(x), where the ū(x) is

the mean flow, as a finite sum of # temporal and spatial modes as

u(C, x) = ū(x) +
#∑
8=1

08 (C)58 (x). (1)

The coefficients 08 (C) and 58 (x), 8 = 1, . . . , # are the temporal and spatial modes, respectively. If the modes form an
orthonormal basis set, the fluctuating kinetic energy is defined as

� (C) = 1
2

∫
Ω

u′(C, x)23Ω = 1
2

#∑
8=1

#∑
9=1
08 (C)08 (C). (2)

Since the spatial modes incorporate automatically the boundary conditions of the problem, this provides a suitable basis
to generate reduced order models of flows in arbitrary geometries. Reduced order models are then derived by projecting
the governing equations onto the subspace defined by the first # modes. Assuming appropriate boundary conditions
[14] and orthogonality of the spatial modes, this results in a system of coupled nonlinear ODEs

¤08 (C) = �8 +
#∑
9=1

!8 90 9 (C) +
#∑
9=1

#∑
:=1

&8 9:0 9 (C)0: (C), 8 = 1 . . . , #, (3)

defining the temporal evolution of the coefficients 08 (C). The tensors of coefficients �8 , !8 9 and &8 9: are defined in
Noack et al. [14] and describe the constant, linear and quadratic interactions between modal structures. Here, we
focus on the nonlinear interactions term in (3), &8 9:0 9 (C)0: (C). Without any a priori assumption on the flow physics
and on the boundary conditions, due to the global nature of the spatial basis functions 58 (x) all entries of &8 9: are
different from zero. This means that the evaluation of ¤08 at any instant of time requires the evaluation of all the linear
and quadratic interactions between the mode itself 08 (C) and the other modes 0 9 (C) with 9 = 1... # . Due to the
mathematical structure, the number of coefficients evaluated at every time step and, consequently, the computational
complexity of the model grows with the number of modes as $ (#3).

Since we know that flow structures associated to 0 9 (C)0: (C) do not interact in an arbitrary way but some interactions
are favoured over others, we assume that not all the entries of &8 9: have the same importance in describing the evolution
of ¤08 . Therefore, we aim at developing a systematic procedure to enable us identify a sparse tensor, &B

8 9:
, that is a good

approximation of the original tensor &8 9: , in the sense that at any time

&B
8 9:08 (C)0 9 (C) ' &8 9:08 (C)0 9 (C). (4)
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The identification of the subset of most relevant interactions is beneficial allowing to reduce the number of active
coefficients in the system (3) without affecting the accuracy of the system itself. We will refer to this new set of
coefficients as sparse or sparsely connected reduced order model.

B. Sparse regression
We use sparse regression to identify the most important quadratic interactions inside the set of equations (3).

Assuming #) snapshots of the velocity field are available from simulation, we arrange the projections 08 (C 9 ) = 0 9

8
, with

8 = 1, ..., # and 9 = 1, ..., #) , into the data matrix � ∈ <#) ×# , where the 8-th column represents the evolution of the
8-th mode, while the 9-th row contains the state vector at time C 9 . We exploit the polynomial structure of the Galerkin
system (3) to construct the database matrix Θ(�) ∈ <#) ×@

� =

©«
01

1 . . . 01
#

...
. . .

...

0
#)

1 . . . 0
#)

#

ª®®®¬ Θ(�) =
©«
1 01

1 . . . 01
#

01
10

1
1 . . . 01

=0
1
=

...
...

...
...

...

1 0
#)

1 . . . 0
#)

#
0
#)

1 0
#)

1 . . . 0
#)

#
0
#)

#

ª®®®¬ , (5)

where @ = (# + 1) + # × (# + 1)/2 is the total number of interactions present in the model (3), the sum of constant,
linear and quadratic interactions. The number of quadratic coefficients is # (# + 1)/2 instead of #2 since the interaction
between the mode 8 and 9 is considered only once in the definition of Θ(�). This avoids generating columns of Θ(�)
that are linearly dependent, which would result in numerical issues in the solution of the regression (see e.g. Perret
et al. [33]). Similarly, we construct the modal acceleration matrix ¤� ∈ <#) ×# , containing the time derivative of the
temporal coefficients by projecting the modes 58 (G) on the corresponding snapshots of the Eulerian acceleration field
mCu(C 9 , x). Arranging the coefficients tensors �8 , !8 9 and &8 9: of the 8-th mode into a vector V8 ∈ <@ , the 8-th equation
of system (3) is rewritten as

¤�8 = Θ(�)V8 , (6)

where the dynamics associated with the mode ¤08 is contained in the 8-th column of the matrix ¤�8 .
The assumption that not all interactions in the nonlinear term &8 9:0 90: have the same importance is equivalent to

assuming that some coefficients in V8 associated with the columns of Θ(�) can be set to zero without affecting the value
of the corresponding column ¤08 . Thus, the idea is to prune some of the entries of V8 , corresponding to columns of Θ, by
solving the optimisation problem

V̂8 = argmin
V8

 | |Θ(�)V8 −
¤�8 | |22︸               ︷︷               ︸

Least-Squares

+ W | |V8 | |1︸  ︷︷  ︸
Penalization

 , (7)

depending on the regularisation weight W. This is a ;1 regression problem also known as LASSO (Least Absolute
Shrinkage Selection Operator) regression [34]. It is a well studied convex optimisation problem for which numerous
efficient routines have been developed. The objective function in (7) is composed of two terms. The first is a least-squares
term that penalises the distance in modal space between the acceleration of the reconstructed system, the term Θ(�)V8 ,
and the objective ¤�8 . The second term is a penalisation on the regression coefficients weighted by the variable coefficient
W. It encourages sparsity in the solution shrinking to zero the entries of V8 that have the least contribution to the
dynamics of ¤08 (C). More specifically, the ;1 norm is proven to be the best convex approximation of the cardinality
operator that counts the nonzero entries of V8 [35].

After the solution of (7) is obtained, we define the relative reconstruction error n as

n =

#∑
8=1

| |Θ(�)V8 − ¤�8 | |22
| | ¤�8 | |22

, (8)

where the reconstruction error is normalised with respect to the corresponding amplitude in order to balance the error
across the spectrum of modes. We also define the global density as

d =
1
#@

#∑
8=1

20A3 (V8). (9)
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Fig. 1 Lid-driven cavity flow: snapshots of the vorticity field for differentReynolds numbers. In (a), '4 = 1×104;
in (b), '4 = 2 × 104; and in (c), '4 = 5 × 104.

where the cardinality operator 20A3 (V8) counts the number of entries of V8 different from zero. The cardinality of V8
can be also defined in term of ;0 norm | |V8 | |0 providing a formal definition of sparsity of the vector V8 . A family of
models can be generated by varying the regularisation weight W. For small weights, dense models with good prediction
accuracy are obtained and vice versa for large weights. We can display this family of models on a d − n plane, producing
a curve referred to as sparsification or d − n curve. Since only a subset of interactions is relevant, many of the entries of
&8 9: will be shrunk to zero when increasing the regularisation weight, without affecting significantly the error n . This
produces a sweet spot in the sparsification curve, defining an ‘optimal‘ value of W and a consequent optimal value of the
model density d = d>?C , corresponding to models with low density and low reconstruction error where only the relevant
interactions for the flow physics are preserved.

III. Results
In this section this methodology is applied on the two dimensional flow developing inside a lid driven square cavity.

First, the flow characteristics and the modal decomposition is presented. Second, the different dense ROMs are generated
by Galerkin projection. Lastly, the performance of the sparse models compare with the correspondent dense model and
the baseline DNS simulation are analysed.

A. Test case and modal decomposition
The Reynolds number is defined as '4 = !*/a, where ! and * are, respectively, the cavity edge and the lid

velocity. The kinematic viscosity is denoted by a. In this work the edge length and the lid velocity are set equal to 1 in
non-dimensional units and different values of '4 are obtained varying the values of a. More specifically, three different
values of Reynolds numbers are considered. Namely, 104, 2 × 104 and 5 × 104. The dynamics in these conditions
is chaotic with increasing complexity for increasing Reynolds number, as shown by Auteri et al. [36]. The domain
is defined in nondimensional Cartesian coordinates x = (G, H) and the velocity field is defined by the components
u = (D, E). The simulations are performed in OpenFOAM using a modified version of the solver icoFOAM that also
outputs the snapshots of the Eulerian acceleration mCu(C, x) to compute the modal acceleration ¤08 needed in (7) more
accurately. The convective and viscous terms are spatially discretised with a second order finite volume technique and
the temporal term with a semi-implicit Crank-Nicholson scheme.

Figure 1 shows the vorticity field l = (∇ × u)I at the same time instant for the three Reynolds numbers considered.
For the lowest Reynolds number, a strong shear layer separates the main vortex from the recirculation areas in the cavity
corners. As the Reynolds number increases, the vortex on the lower right corner is shed and advected by the mean flow
along the shear layer. This phenomenon is accompanied by strong, quasi-periodic bursts in the turbulent kinetic energy.
For the highest value of Reynolds number, the set of vortices breaks the shear layer while being transported downstream
by the mean flow. A preliminary study was carried out to ensure that the average flow quantities reached statistical
convergence. This is an important aspect to satisfy to obtain reliable cross-validated results in the regression. To this
end, the eigenvalues of the POD decomposition were monitored. It was found that a database of length ) = 100 time
units is adequate for the case at '4 = 1 × 104, increasing to ) = 200 time units at '4 = 2 × 104, and finally to ) = 300
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Fig. 2 The first 50 eigenvalues of the POD decomposition in (a); the vorticity fields of the first and most
energetic spatial POD mode at '4 = 104 in (b), '4 = 2 × 104 in (c), and '4 = 5 × 104 in (d).

time units at '4 = 5 × 104.
Figure 2-(a) reports the first 50 eigenvalues of the POD decomposition of the three test cases already presented

in figure 1. It is observed that the eigenvalues increase monotonically for increasing Reynolds number, as turbulent
fluctuations contain increasingly more energy. One also observes that, for the two lowest Reynolds numbers, consecutive
eigenvalues appear in pairs with similar value. This feature reflects the presence of an unsteady motion in a quasi-periodic
regime, characterised by pairs of spatially-similar structures shifted in space, describing the evolution of a wave travelling
along the shear layer. Evidence of this feature can be found in figure 2-(b) and (c). Similar structures have already been
observed in [37] for Koopman eigenmodes of cavity flow at similar flow conditions. At the highest Reynolds number,
'4 = 5 × 104, the flow contains a wider hierarchy of modes. The eigenvalue spectrum (blue triangles) has a slower
decreasing trend, without pairs of adjacent eigenvalues. The most energetic spatial eigenmode in figure 2-(d) captures
the generation and shedding of a vortex on the lower right corner, with no significant activity in the shear layer. This
observation is confirmed by inspecting the temporal evolution of the velocity field, revealing the formation of a high
energy vortex on the lower right corner transported downstream by the mean flow. First, the temporal correlation matrix
between two snapshots defined at two instants of time, C8 and C 9 , defined as (8 9 ∈ R#C ,#C , with entries

(8 9 =
1
#C

(
u′(C8 , x), u′(C 9 , x)

)
, (10)

where the brackets (·, ·) denote the inner product defined into the space. To classify reduced order models on the basis
of the resolved turbulent kinetic energy for different flows we define the normalised cumulative sum of the eigenvalues
of the correlation matrix _8 as

4(=) =
∑=

8=1 _8∑#)

8=1 _8
(11)

describing the fraction of the kinetic energy captured by the first = term of the expression (1). The increasing complexity
of the flow is directly reflected to the fact that the number of modes required to reconstruct the same amount of kinetic
energy increases non linearly. Here, we consider three families of models for every test case, resolving 90%,95% and
99% of the kinetic energy, respectively. The number of modes required to reach the requested energy resolution is
shown in Table 1.

4(=) 0.9 0.95 0.99

'4 = 104 8 12 36
'4 = 2 × 104 20 35 75
'4 = 5 × 104 60 112 290

Table 1 Number of modes required as a function of Reynolds number and energy resolution.

Once the coefficients �8 , !8 9 and &8 9: (3) are generated by Galerkin projection, the resulting system of ODEs can
be integrated in time given one initial condition. In this work, an explicit time integration scheme with a time step of
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Fig. 3 Time evolution of turbulent kinetic energy (as in Eq. (2)) at '4 = 2 × 104 for reduced order models with
different energy resolution and form the DNS reference data.

ΔC = 10−3 time units has been used. All the systems have been integrated for a time span equal to ) = 100 time units,
starting from an initial condition obtained from the DNS choosing a snapshot in the region of statistical convergence of
the solution. Figure 3 shows the temporal evolution of the turbulent kinetic energy as defined in (2) for three different
ROMs resolving different amounts of kinetic energy and the baseline DNS. As expected, it is observed that the models
reconstructing a lower amount of kinetic energy tends to overshoot the reference value of the turbulent fluctuations.
This is a well know issue of reduced order modelling already discussed in [14, 20] for POD-based models and is a
direct consequence of the impossibility of dissipating the kinetic energy produced at the large scales in the small scales
eliminated in the truncation process. As a result, the solution is not able to satisfy the energy balance of the original
flow, presenting a higher energy in the first few modes associated with larger flow scales. More specifically, figure 3
shows that only the 4(=) = 0.99 model contains a sufficient number of modes to provide predictions comparable with
the DNS. These results highlight that, in order to obtain reliable reduced order models, a large number of modes needs
to be included, generating complex and computationally expensive models.The idea of sparsification consists in pruning
the least important coefficients of the tensor &8 9: without truncate any mode from the original system. The desired
outcome is to obtain accurate but computationally efficient models constructed by a large amount of modes (spatial
scales) but containing only the relevant interactions.

B. Sparse Regression
The sparse regression methodology was applied to the reduced order models with 4(=) = 0.9, 0.95 and 0.99, for the

three Reynolds numbers. Since the relationship between number of modes and energy resolution is not linear and the
size of the database matrix, Θ(�), increases quadratically with =, the number of possible interactions @ can quickly
become larger than the number of available snapshots, #) . This is a well–known problem in statistical learning and
requires cross–validation methods to avoid data overfitting [24]. This work employs the  –fold validation procedure
available in the sklearn library [38]. The database is divided into  = 10 folds. The model is initially trained on a subset
of the entire database, obtained by removing the :–th fold. Subsequently, the model is tested on the :–th fold which was
excluded for the model generation. The procedure is repeated  times. To quantify the quality of the model predictions,
the mean and standard deviation of the cross–validated reconstruction error, Eq. (8), are calculated over the folds.

The sparsification procedure consists in solving problem (7) for increasing values of the regularisation weight W.
Then the corresponding value of the density d and reconstruction error n as defined in (9),(8) is computed and displayed
on the d − n plane. Figure 4 summarises the results of the sparsification procedure applied to the nine models considered.
In each panel, the value of the mean cross validated error n against the density d is displayed for the three Reynolds
numbers. The value of the resolved kinetic energy increases from left to right showing the results for 4(=) = 0.9, 0.95
and 0.99 in panel (a,b,c), respectively. When low weights are used (points in the right part of the graphs), dense systems
with low prediction accuracy are obtained. The opposite is true for large weights, identifying points in the left part of
the graphs. As postulated, since a set of coefficients in the tensor &8 9: is predominant, the curves present an initial
plateau for high densities where it is possible to remove coefficients from the system (3) without significantly affecting
the reconstruction error n .
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Fig. 4 Mean of the cross–validated reconstruction error against the density of the system, d: in (a), 4(=) = 0.90;
in (b), 4(=) = 0.95; and in (c), 4(=) = 0.99.
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Fig. 5 In (a), time evolution of turbulent kinetic energy for the three sparse models highlighted by red circles
in Figure 4-(b) compared to reference DNS; in (b), optimal density for all models considered in this study.

Generally, the sparsification curves in figure 4 shown two emerging trends. First, the value of the reconstruction
error n in the plateau decreases monotonically as the energy resolution increases, since more modes participates in
capturing the dynamics of the fluctuations. Secondly, and more importantly, the optimal density d>?C decreases when
the Reynolds number is increased. This can be observed qualitatively in figure 4 and more quantitatively later on in
figure 5-(b) showing the trends of d>?C against the value of the Reynolds number. These results show that more complex
models can be more efficiently sparsified. There are two further considerations. For the model with 4(=) = 0.9 at
'4 = 1 × 104, no evident plateau exists in the n-d curve, indicating that the reconstruction error increases as soon as
coefficients are removed from the system. This phenomenon was also observed in [31], and alerts that a successful
sparsification may depend on the basis used in the model generation as well as the mathematical structure of the model.
The second consideration relates to Figure 4-(c). The curve for the model with 4(=) = 0.99 reveals a sharp elbow point,
with an optimal density d>?C ∼ 0.1. After a short plateau, the reconstruction error increases, worsening predictions for
denser models. This behaviour is due to the small amount of data confronted with the complexity of the system, and
shows the importance of using cross-validation for systems of high complexity. It is important to underline that this
effect is present only for the case at higher Reynolds number and energy resolution. Increasing the size of the dataset for
the other models does not change significatively the shape of the curves.

To understand the effect of the sparsification on the temporal characteristics of the models, we analyse the temporal
evolution of Eq. (2) for three different models chosen along the curves corresponding to 4(=) = 0.95 and '4 = 2 × 104,
shown in Figure 5-(a). The thee models corresponds to the three red circles in Figure 4-(b) corresponding to the full
system, a system located near the elbow point and one located in an area of very low density and with a higher error.
Panel (a) shows that the behaviour of the dense system is qualitatively similar to that obtained by projection shown
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Fig. 6 Time evolution of the fluctuation kinetic energy � (C), (left) and spectral density function of � (C) reported
against the nondimensional frequency (C = 5 !/*, (right). In (a, b), '4 = 1 × 104; in (c, d), '4 = 2 × 104; and in
(e, f), '4 = 5 × 104.

in figure 3, leading to an overestimation of the kinetic energy of the flow. This result is expected since for d = 1 the
problem (7) is reduced to a pure least squares regression. More interestingly, decreasing the density of the model
moving towards the sweet spot in the sparsification curves, the models’ predictions move closer to the DNS reference.
Both sparse models seem to predict quite accurately the average kinetic energy level. However, a visual examination of
the reconstructed vorticity field shows that for d = 0.1 the main features of the flow are not reconstructed faithfully.
Hereafter, we will only consider the optimally sparse model located in the proximity of the elbow point. Lastly, we
observe that the value of d>?C decreases as the Reynolds number increases. This is quantitatively shown in figure 5-(b)
reporting the value of d>?C as a function of the Reynolds number. This effect is due to the broader range of scales
in a model for increasing Reynolds number, and the weaker interactions among modes that are far in the spectrum.
A qualitatively similar behaviour is observed increasing the energy resolution of the system. More importantly, this
general trend shows that the effectiveness of the sparsification increases as the complexity of the model increases.

Figure 6 shows time histories of the turbulent kinetic energy (left panels) and the corresponding power spectral
densities obtained by temporal simulation of models at 4(=) = 0.95 (right panels) for the three different Reynolds
numbers considered. DNS data is used as reference for two reduced order models: an optimally sparse model (black
dashed curves), and a dense reduced order model (black curves). It is found that dense models overestimate the turbulent
kinetic energy compared to DNS by several orders of magnitude. This is not unexpected because the model, not
resolving the full range of scales of the flow, does not correctly model the energy dissipation occurring at the small scales.
A confirmation of this observation can be seen on the right panels of Figure 6, where the dense ROMs over-predict the
energy content at all scales and for all Reynolds numbers. On the other hand, we observe that for the sparse models the
level of the predicted kinetic energy is, on average, in agreement with the reference value.

To better visualise how the sparsification affects the predicted average kinetic energy, the ratio :A between the
average reference kinetic energy and that predicted by the model is considered. The average has been computed from
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Fig. 7 The ratio :A for models with different energy resolutions 4(=). The empty symbols represent dense
systems while the full symbols represent the optimally sparse systems. Results for different Reynolds numbers
'4 = 104, 2 × 104 and 5 × 104 are shown in panels a), b), and c), respectively

C ≥ 40, corresponding to the time needed by the solution to reach statistical convergence as can be observed in figure 6.
Results are reported in figure 7. Each panel displays data for six models, three dense models obtained by projection
(empty triangles), and the corresponding sparse models with d = d>?C (full black circles), as shown in figure 4. The
Reynolds number increases moving from panel (a) to panel (c). A common trend for the three different flow conditions
is observed. The models with a low energy resolution overestimate the fluctuating kinetic energy by two orders of
magnitude. As the energy resolution of the model increases the value of :A tends to values close to 1. This is an expected
result since the number of spatial structures included in the model increases allowing the model to better describe the
energy dissipation scales. Interestingly, for all sparsified models, the ratio :A is close to 1. This means that on average
the sparse system predict the right average amount of kinetic energy. In addition, we observe that the ratio :A is almost
constant as the energy resolution increases. This means that regardless the energy resolution chosen the optimisation
problem (7) is able to provide correct predictions on the kinetic energy of the system. This is a direct consequence to
the fact that the target of the acceleration is the modal accelerations ¤08 (C) computed from DNS simulation.

C. Reconstructed Flow Field
Once a solution of (7) is obtained, rearranging the coefficients vector V8 into a new set of matrices �B

8
,!B

8 9
and

&B
8 9:

the sparse representation of (3) is obtained. The new dynamical system can be integrated to obtain the evolution
of a new set of 08 (C) that are used to reconstruct the flow field according to Eq. (1) since the spatial modes remain
unchanged. Figure 8 shows the reconstructed vorticity field l for the optimally sparse models with 4(=) = 0.95. Every
column contains results for a value of Reynolds number increasing from left to right. The top row shows the result of the
time integration of the dense system while the bottom row shows the ones of the corresponding sparse model. From a
visual analysis, we observe that the overshoot of kinetic energy observed in the dense models in figure 6 corresponds to
non-physical large amplitude oscillations in the shear layer, as shown in panels (a,b), similarly for the model at highest
Reynolds number the vortex in the lower right corner is amplified as well as shown in panel (c). This behaviour is due to
an overestimation of the amplitude corresponding to the large and most energetic modes leading to an exaggeration of
the low indexes modes as shown in figure 1-(b,c,d). More specifically, the sparse models reconstruct quite accurately
the topology of the original flow field reproducing the shear layer and the vortex detachment for the lowest Reynolds
numbers considered in panel (d) and (e). Similarly, for the highest value of the Reynolds number (panel (f)), the sparse
model is able to describe the formation and the shedding of the vortex produced in the bottom right corner of the cavity
and subsequently shed and advected along the shear layer by the mean flow.

A more in depth analysis on the dynamics of the velocity fluctuations can be done analysing the value of the time
average of the Reynolds stress D′E′. This term is particular relevant for our analysis since the sparsification is performed
on the set of equations (3) describing only the fluctuating part of the velocity field, while the mean field is left unchanged.
Figure 9 shows the profile of the Reynolds stress, D′E′, along a vertical line located at G = 0.5 for increasing values of
the Reynolds numbers, from panel (a) to (c). The grey continuous line is the reference from DNS while the optimally
sparse model is represented as black dashed line. Results of the dense ROMs are reported as black dotted line in the

10



Fig. 8 Instantaneous snapshots of the vorticity field l. Each column reports data for a different Reynolds
number (1 × 104, 2 × 104 and 5 × 104, from left to right). The upper row reports results for the dense reduced
order model, while the lower row for the optimally sparse reduced order model.
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Fig. 9 Profiles of the Reynolds stress D′E′ from simulation and from time integration of the sparse and dense
ROMs along the line G = 0.5: in (a), for '4 = 104; in (b), '4 = 2 × 104; and in (c), '4 = 5 × 104.
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background as reference. Since they are orders of magnitude larger than the ones observed in the DNS we chose a range
of values on the G axis in order to better visualise the results of the DNS and the sparse ROM.

For the two lower Reynolds numbers, panels (a,b), oscillations in the the stress D′E′ can be observed, becoming
more intense as the Reynolds number increases. In addition, outside the shear layer the stress D′E′ drops to zero except
near the cavity lid. This result is expected since from a visual examination of figure 1 and 8 we observe that outside
the shear layer the flow is mainly stationary and presents quasi-periodic fluctuations. A different behaviour is shown
in panel (c) for the highest Reynolds number. As already observed in figure 1 and 8, in this case the shedding of the
bottom-right vortex generates a much more complex flow field, with oscillations extended also near the central area of
the cavity. For this flow configuration we observe that although the general distribution is reproduced the values are
locally more different with respect to the other two test cases.

IV. Conclusions
In this work a systematic data-driven methodology to perform sparsification and calibration of Galerkin based

reduced order models of turbulent flows was utilised. The cornerstone of this approach consists in transforming the
sparsification of a ROM into a convex optimisation problem independent from a priori knowledge on the flow physics.
This methodology was applied to chaotic solutions of lid-driven square cavity flow. A family of POD-based Galerkin
models with increasing complexity and spanning a range of Reynolds numbers and different energy resolution was
created. Results show that pruning interactions from the original system does not affect the reconstruction error. The
d − n plane is used to identify the trade off between reconstruction error n and system density d. It has been observed
that when the Reynolds number or the energy resolution is increased, the optimal sparsity d>?C decreases monotonically,
showing that the sparsification becomes more efficient. Arguably, this behaviour is due to the widening of the range of
dynamically active structures, generating a more pronounced decoupling between modes at different spatio-temporal
scales.

A second important aspect is how the sparsification affects the temporal stability of the models. Interestingly, sparse
models generally outperform the dense ones when it comes to the prediction of the average turbulent kinetic energy and
its power spectrum. This improvement is due to the training phase of the sparsification algorithm, where the model is
trained with respect to the DNS simulations. This allows the coefficients of the system to be calibrated to better describe
the flow dynamics. This correction is more beneficial for models resolving a small amount of kinetic energy. This result
was expected since for small ROMs energy dissipating scales are not resolved, generating an over-prediction of turbulent
kinetic energy.

Lastly, the reconstructed flow field for the different Reynolds numbers was analysed. As expected, the over-prediction
of turbulent kinetic energy is reflected on the flow field as non-physical oscillations associated with the largest and
low index modal structures. The sparsification is beneficial and allows reconstructing the flow structures observed in
the DNS simulation. This is also confirmed by the distribution of Reynolds stresses in the shear layer; for the lowest
Reynolds numbers these are in good agreement with the baseline DNS simulations. Differently, for the case at higher
Reynolds number, the sparse model reproduces the magnitude of the Reynolds stresses while the spatial distribution
is recovered only qualitatively. A visual examination of the flow fields shows that the key flow features, such as the
formation and shedding of corner vortices, are recovered.

Looking further into the future, the proposed methodology serves as a key enabler for autonomous air and sea
operations. The physics–informed model may be integrated into a cyber–physical model, for on–board and real–time
applications. In this context, the cyber–physical model uses information derived from a network of sensors embedded
on the system, at certain spatial locations. The measured information drives the reduced order model which reconstructs
the flow state around the system, and feeds the state reconstruction to a mission manager. The mission manager, i.e.
the "brain" of the system, commands appropriate actions currently to match desired performance targets in the future
using advanced navigation and guidance control laws, i.e. model reference adaptive control. This type of application is
feasible in the near future by integrating commercial off–the–shelves hardware components into a flying testbed.

The authors gratefully acknowledge support for this work from the Air Force Office of Scientific Research (Grant
No. FA9550-17-1-0324, Program Manager Dr D. Smith).
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