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Abstract—Grant-free spatial modulated multi-carrier non-
orthogonal multiple access (SM/MC-NOMA) is proposed for
supporting the large-scale access of devices transmitting in a
sporadic pattern at a low rate. Furthermore, a pair of compres-
sive sensing (CS)-based low-complexity detectors are conceived
for jointly detecting the active users and their transmitted data.
These detectors are referred to as the Joint Multiuser Matching
Pursuit (JMuMP) detector, and the Adaptive MuMP (AMuMP)
detector, respectively. However, most of the state-of-the-art CS-
based detectors designed for grant-free NOMA systems critically
rely on the sparsity of the user activity. By contrast, the proposed
AMuMP detector does not require any prior knowledge about
the user activity in our SM/MC-NOMA system. The bit error
rate (BER) performance of both detectors converges to that of the
idealized ‘genie’ receiver, which has perfect knowledge of the user
activity. Finally, the complexity of both detectors is quantified.

Index Terms—Grant-free, Non-Orthogonal Multiple Access,
Multi-carrier, Spatial Modulation, Compressive Sensing.

I. INTRODUCTION

Supporting large-scale access of myriads devices has been
one of the challenging targets of next generation wireless
communications [1-3]. For example, in massive Machine-Type
Communication (mMTC) scenarios, the uplink tele-traffic is
usually sporadic, where a massive number of devices on the
order of say a million or so may connect to the base station
(BS). However, they tend to transmit their signals to the BS
at a low activity rate and at a low data rate for each active
user [4]. Non-orthogonal multiple access (NOMA) has been
considered as a promising technique of meeting the challenge
of massive access in mMTC, since it allows us to support
more devices than the classic orthogonal MA (OMA) using
the same amount of resources [5-8]. In contrast to the OMA
schemes [9], where users are supported by the orthogonal
resources in the time, frequency or code domain, NOMA
schemes rely on non-orthogonal resource allocation in either
the power- or code-domain [10-12]. In this way, each resource
unit of a NOMA system may be shared by more than one
device, hence enabling massive connectivity, albeit at the cost
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of requiring more complex receivers for mitigating the inter-
user interference (IUT).

Another challenge encountered in the mMTC scenario is the
low-latency requirement and the sporadic transmission pattern.
The classic grant-based legacy access schemes require extra
resources, such as time-slots for requesting access grant, which
imposes extra latency. This is clearly undesirable for mMTC.
Hence, grant-free access schemes are more promising in terms
of satisfying the stringent low-latency requirements whilst
simultaneously supporting sporadic uplink transmissions with-
out imposing any overhead. However, when incorporating
grant-free transmissions, the receiver has to promptly detect
both the user activity and the transmitted data. Hence, sophisti-
cated signal detection schemes have been introduced [13-17],
as summarized in Table I. Specifically, Bayesteh et al. [18]
proposed three blind detection algorithms jointly considering
user activity, channel estimation and data detection. They have
used the FOcal Underdetermined System Solver (FOCUSS)
of [19], and expectation maximization (EM) of [20], respec-
tively. In most mMTC scenarios, only a very small fraction of
user devices is active at a time. This activity sparsity of grant-
free NOMA systems inspired the application of compressive
sensing (CS) algorithms [21], leading to the design of a range
of low-complexity multi-user detectors [13—17,22]. In these
CS-based detectors, the orthogonal matching pursuit (OMP)
[23], subspace pursuit (SP) [24] and compressive sampling
matching pursuit (CoSaMP) [25] have been adopted. Zhang
et al. [22] proposed user activity and signal detection in
orthogonal frequency division multiplexing (OFDM) systems
relying on low density signatures (LDS), where the signal
spreading across the frequency domain (FD) resulted in bene-
ficial frequency diversity gain, since the individual LDS-chips
experienced independent fading.

In parallel with the development of grant-free NOMA
schemes, spatial modulation (SM) [26-30] has distinguished
itself as a promising low-complexity single-radio frequency
(RF)-chain multiple-input multiple-output (MIMO) technique
relying on a single activated antenna. Alternatively, a small
fraction of transmit antennas (TAs) may be activated at a
time. This unique TA activation scheme allows the transmit-
ter to implicitly convey additional information bits ‘hidden’
in the active TA index patterns, hence achieving energy-
efficient modulation. Additionally, the activated TA(s) convey
the classically modulated information bits using conventional
amplitude-phase modulation (APM), which belongs to the
family of bandwidth-efficient modulation schemes. As an



additional benefit, again, either a single or a low number
of RF-chains can be used, which results in lower detection
complexity at the receiver, when compared to conventional
MIMO systems. Hence, SM strikes a flexible trade-off among
the spectral efficiency, energy efficiency and complexity.

The application of SM to different NOMA schemes has
been investigated in [31-34], demonstrating promising com-
plexity reductions compared to the conventional MIMO-
NOMA systems, owing to its reduced number of RF chains
in SM-NOMA. The benefit of SM-NOMA may be further
enhanced in mMTC scenarios, where data are transmitted at
a relatively low rate. However, the majority of SM-NOMA
systems proposed in literature are based on the simplifying
assumption that all users are always active, which is highly
unlikely in practical mMTC scenarios. Although the SM-
NOMA schemes proposed in [35] astutely considered user
activity detection, they assumed that the receiver has perfect
knowledge of the number of active users, which prevents their
application in the face of the realistic uncertainty in the grant-
free mMTC scenario. Additionally, in [35], flat-fading uplink
transmission was assumed, whilst realistic mMTC systems
experience correlated frequency-selective fading.

Against this background, our inspiration is to conceive
powerful SM/MC-NOMA schemes for the realistic massive
access scenarios of next generation systems by dispensing with
the idealized simplifying assumptions routinely exploited at
the current state-of-the-art. Crisply and explicitly, the main
contributions of our paper are as follows.

e We propose an uplink SM/MC-NOMA scheme for
supporting large-scale grant-free multiple access for
next-generation wireless communications. The proposed
SM/MC-NOMA scheme gleans diversity gains from
the often independently-fading frequency- and spatial-
domains. SM is employed for reducing the number of
RF chains, while non-orthogonal FD spreading attains
FD diversity gains for MC transmission over frequency-
selective fading channels. In contrast to the existing
research on SM-NOMA uplink transmissions [31-34],
which assumes that all users are active all the time and
transmit their data to the BS, we assume grant-free uplink
transmission, where each user only becomes active at a
small activation probability.

o In order to identify the active users and detect their trans-
mitted data, an iterative Joint Multiuser Matching Pursuit
(JMuMP) detector is proposed based on the SP algorithm
of [24], which exploits the sparsity existing in both the
user activity and in the SM antenna domain. In contrast to
the original SP detector of [24], which recovers the user
signals by exploiting the known activity at the receiver,
the number of active users is estimated by our IMuMP
detector before the detection of data conveyed by the
space-shift keying (SSK) and the classic APM symbols,
with the SSK data detection being intrinsically integrated
into the active user identification process. Furthermore,
a beneficial symbol mapping approach is proposed and
integrated into our JMuMP detector.

« We also conceive an Adaptive MuMP (AMuMP) detector,
which does not require the a priori knowledge of the

user activity at the receiver, and yet further improves the
bit error rate (BER) performance of the SM/MC-NOMA
system employing the JMuMP detector. Naturally, this is
achieved at the cost of a higher detection complexity and
latency. In the proposed AMuMP detector, both the active
users as well as their data are iteratively detected, until
both the active users and their data are deemed to be
reliably detected. This is more realistic, but also more
challenging than the JMuMP philosophy of assuming
that the number of users identified in each iteration
remains unchanged. We demonstrate that the AMuMP
scheme provides more reliable detection than the JMuMP
detector, even when the user activation probability is as
high as p = 0.3.

o The BER vs complexity trade-off of our SM/MC-NOMA
system employing the JIMuMP and AMuMP detectors is
demonstrated by simulation results.

The rest of this paper is structured as follows. Section II
describes the system model of the proposed SM/MC-NOMA
scheme. Following this, the proposed JMuMP and AMuMP
detection algorithms are detailed in Sections III and IV,
respectively. Then Section V characterizes the system per-
formance in terms of its BER and computational complexity.
Finally, Section VI provides our main conclusions and future
research ideas.

Notations: In this paper, the calligraphic letters X’ represent
sets. The uppercase and lowercase boldface letters, X and
x, denote matrices and vectors, respectively. The calligraphic
subscripts of the boldface letters Xy and xy denote the
column entries of X in the set X', and the elements of £ with
indices in the set X, respectively. Additionally, (-)~1, ()7,
and (-) represent matrix inversion, transpose, and Hermitian
transpose operations, respectively. Furthermore, the ¢,,-norm
operation is expressed as || - ||,

II. DESCRIPTION OF THE SM/MC-NOMA SYSTEM

In this section, we detail our uplink SM/MC-NOMA system
supporting K potential users, each with an activation prob-
ability of p (p < 1). We assume that the channels of the
active users experience frequency selective fading having L
resolvable paths in the time domain (TD). Below we detail
the transmitter and receiver models in Section II-A, and
II-B, respectively, along with the assumptions used in our
investigations.

A. Transmitter Model

We consider the single-cell uplink MC system of Fig. 1,
under the following assumptions. Firstly, the system supports
K potential users to communicate with a BS, and each user
has a small and independent activation probability p (p < 1),
yielding K, < K active users at a given time. Secondly, we
assume that each of the K users employs M; TAs, which
have the indices of {1,---, M;}. By contrast, the BS has U
receive antennas (RAs). When the k-th user becomes active,
it transmits b-bit information symbols, using M;-ary SSK and
Ms-ary quadrature amplitude modulation (QAM), which is
the most well-known modulation scheme of the APM family.



TABLE I
OVERVIEW OF EXISTING LITERATURE ON THE GRANT-FREE NOMA SYSTEM.

Contributions [ Thiswork [ [13] [ [14 [ [15] [ [16] [ [17]
Integrated with property of SM v
Unknown number of active users v v
Perfect channel state information (CSI) v v v v v
Imperfect CSI v
Frequency-selective fading channels v
Fixed number of users identified in each iteration v v v v v v
Adaptive number of users identified in each iteration v
More accurate symbol mapping v
Multiple TAs available at the transmitter v
Multi-carrier (MC) transmission v v v
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Fig. 1.
represent the active users.

Specifically, the first b; bits are conveyed by M;SSK relying
on a ‘spatial constellation’ of S; = {1,---,M;}, whereas
the remaining bo = (b — by) bits are conveyed by M>QAM
[28]. In other words, the M;j-ary symbol sx; € S activates
the sii-th TA to transmit the Ms-ary QAM symbol sxo €
Sy, where Sy = {ay, a9, -+ ,an } represents the M>QAM
constellation set, after sparse spreading, as shown in Fig. 1.
We assume random spreading code pre-assigned to user k in
the form of ¢, = [cx1, Cr2, ..., cv]T, where N is the number
of subcarriers. Note that if we replace the random spreading
code by the sparse spreading code, where most elements in ¢,
are zeros, we have a LDS-based code division multiple access
(LDS-CDMA) [11].

Let us denote the transmitted symbol of user k by xy,
which is selected from the set of S = S; ® Sy U 0, where
® denotes the Kronecker product [33] so that S is a set
consisting of all the M = M; M, different combinations of the
elements in S7 and those in Sa, as well as a symbol 0, which
is added to indicate inactive users. Following the transmit
signal processing operations, which include the inverse fast
Fourier transform (IFFT), parallel-to-serial (P/S) conversion,
and cyclic prefix (CP) attachment, the signal of an active user
k is transmitted from the si1-th TA, activated by the M;SSK
symbol sg;.

QAM S12 SKQCK
bx2 - *

P/S

Cx /1

The transmitter schematic of our SM/MC-NOMA system, where the light-shaded diagrams represent the inactive users while the dark-shaded diagrams

B. Receiver Model

Let us express the channel impulse response (CIR) hgﬂ
between the si1-th TA of the k-th active user and the u-th
RA at the BS as

u) _qp(u) (u) (w) T
hgki _[hsk'lao’hsklvl".' 7h5k17L_1] K
sp1=1,2,.... My;u=1,2,--- ,U;k=1,2,--- | K

(D
where hgﬁj{ are independent identically distributed (iid) com-
plex Gaussian random variables with zero mean and a variance
of 0.5/ L per dimension. The schematic diagram of the receiver
is shown in Fig. 2. According to the classic MC reception [36],
including sampling, CP-removal and FFT-based demodulation,
the (N x 1) received observations y,, at the u-th RA can be
expressed as

K
Yu :chﬂiZiSkQ TNy, U= 1727"' 5U7 (2)
k=1

where C, = diag{cy} is a (IV x N) diagonal matrix and the
(N x 1)-dimensional FD channel transfer function (FDCHTF)

h(uz experienced by the N subcarriers can be expressed as [36]

Sk
Y = Foh), 3)
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Fig. 2. The receiver schematic of our grant-free SM/MC-NOMA system.

where @, is a (N x L)-element mapping matrix constructed
by the first L columns of the (N x N) identity matrix I, and
F is the (N x N) FFT matrix having the property of FFH =

FHF = NIy. Now the channel izszl experiences frequency-
selective Rayleigh fading, having L CIR taps in the TD. In (2),
the noise vector n, obeys the zero-mean complex Gaussian
distribution with a covariance matrix of 2021 y, expressed as
CN(0,202Iy), where 02 = 1/(2y), v = byo denotes the
signal-to-noise ratio (SNR) per symbol, while 7 is the SNR
per bit. .

Let Yy = [yT7yg> t ’le]]T, hskl =

T T ™7
(1) - (2) (U) T
l(hsm) ) (hs;d) s <h8k1> ] and n = [ng,
nl, .- ,nL]T, which are all UN-dimensional vectors. Then,

it can be shown that we have
K

y=> Iy ®Ci)hs, 552+ 1

b
Il
—

(Iy © C1)H ey, 512 + 1

O

o

ZHkxk +n
k=1

=Hz +n, @)

where ﬂk = A[illk,ile,' . ,iLA/jlk] is (UN X Ml)-
dimensional, and A, is in the form of (3) with sg; = m,
es,, is the sii-th column of Iy, Hy = (Iy @ Cy)Hy, H =
[Hi,Hs, - ,Hg], which is a (UN x M;K)-dimensional
matrix, Ty = €g,, Sk2, and finally, we have M; K-length x =

T T T — T T T
[xl y Loy 7xK} - [6511512a6521322a"' 7esK15K2]

III. JMUMP DETECTION

It may be observed from (4) that in the received signal, =
is a Mj; K-length sparse vector with the non-zero elements
representing the active users and H can be viewed as a
measurement matrix. Furthermore, (4) is a typical MIMO
equation. Hence, some of the popular signal detection methods
can be applied at the receiver for information recovery. Let us
use £, £ and & to represent the transmitted symbol vector,
the possible candidates and the final estimated symbol vector,
respectively. Then, the optimal maximum-likelihood (ML)
detector finds the estimates of the transmitted symbols by

User
identification
Least square

Detector

estiamation

Zr

Constellation
mapping

visiting each legitimate solution via solving the following
optimization problem:

& =arg min — Hz|? 5

g min {[ly — Hz|3}, )
where S¥ represents all possible combinations of the constel-
lation S of K users and where ||-||, represents the ¢5-norm.

It is widely recognized that the ML detector achieves the
lower bound of the error probability at a full-search com-
plexity. However, as mentioned above, z is a sparse vector
due to a) a low activation probability p per user, and b) the
employment of SM. Therefore, CS-based signal recovery may
be performed for low-complexity detection. Before we detail
the corresponding CS-based detection, let us first consider
the restricted isometry property (RIP) defined in [37], which
determines whether the signal can or cannot be recovered
with good performance by the CS-based detection. According
to [37], the measurement matrix H should satisfy the RIP
condition expressed as

(1= 0x,) lllls < | Hell; < (1+0x,) |2l ¥ 2]y < K,
6

where ||-||, represents the {p-norm and the constant obeys
dxk, € (0,1). The best-known matrices that have been proven
to satisfy the RIP condition are the random matrices obeying
either the Gaussian distribution, or those that are obtained from
the Fourier ensemble [37]. In our system, each column of H is
independent and it is obtained after applying the FFT operation
to the TD CIRs, hence the RIP requirement in general can be
satisfied [38].

In the domain of CS-based detection, it may be inferred
from (4) that the original CS recovery problem of estimating
x may also be formulated as [21]

)

However, the ¢, minimization has been shown to be non-
convex and NP-hard. Hence, usually relaxation techniques are
applied to make the optimization problem convex and solvable
by employing low-complexity algorithms. In the literature,
typically two categories of CS-based detectors have been
studied, namely convex optimisation employing the ¢;-norm
[39], and greedy algorithms adopting ¢3-norm optimization
[23-25]. However, the ¢;-norm optimization still leads to high
computational complexity [39]. Therefore, we focus our atten-
tion on the greedy algorithm, which iteratively identifies the

min ||Z||, st y=HT+n,



support set in a greedy manner using for example the classic
least square (LS) algorithm, and performs ¢2-norm based opti-
misation. Furthermore, the greedy algorithm-assisted detector
has a linearly increasing complexity as a function of the search
space size, but unfortunately it is prone to avalanche-like error
propagation, owing to its serial detection process.

To be more specific, in this section, we first propose our
JMuMP detector for the grant-free SM/MC-NOMA system
in Section III-A. Explicitly, we conceive an appropriately
modified SP algorithm [24], which improves the signal detec-
tion accuracy, and tailor it for SM. Then, the corresponding
termination criteria will be detailed in Section III-B.

A. Description of our JMuMP detection

The proposed JMuMP detector is developed by appropri-
ately tailoring the iterative SP algorithm of [24], which is
capable of recovering signals having known sparsity, whilst
outperforming the conventional OMP algorithm of [23].

Again, the proposed JMuMP detector relies on similar
operations to those of the SP algorithm, which are evolved
further into a bespoke version tailor-made for SM. As a further
benefit, it does not require the knowledge of the active user
indices. In other words, it accomplishes joint active user and
data detection. In our JMuMP detection, the sparsity of the
received signal is first estimated according to the activation
probability p. In detail, the JMuMP detector operates as
follows.

o Step 1:

Since the receiver does not have the knowledge of the number
K, of active users, the JMuMP detector commences its action
by estimating the number of active users K., based on the
activation probability p that is known to the receiver, in order
to infer the grade of sparsity inherent in the received signal.
In this case, the probability € that the number of active users
is higher than K, is given by

Ke /5
e=1— k(1 — p)E—Fk, 8
Z% (k )p (1-p) (8)
which may be interpreted as the outage probability (OP), when
the receiver assumes that there are K, active users. Hence, if
we fix ¢ to a sufficiently low value, such as, 1075, then the
OP is negligible. Hence, we may assume that the maximum
number of active users at any time does not exceed K, which
gives a relative sparsity of at most K./K for the operation
of the SP algorithm, as detailed below, until any termination
criterion to be detailed in Section III-B is met.

o Step 2:
We then proceed by determining the indices of the most-
likely active users. Hence, we subject the received signal y to
matched filtering (MF), at the first iteration to obtain a vector

+()
tV) =H"y — (H"H)z + H'n. ©)

Notably, the signals received from the active users have a
significantly higher power than all other hypothetical signals
received from the inactive users, who have zero transmit

Algorithm 1 JMuMP detector
Input:
Received observations y, user activation probability p and
CIR H
Output:
Detected symbols Z.
Initialization: i = 1,7(*) =y, F(©) = &, outage probability
g,
1: Calculate K, using (8) for given ¢;
2: while : < I do

3t = gHpG-D),

4 fork=12,---, K do

5: 7;(1) = max(|t§f)|, 1);

6: end for } }
7 TO=T0uTu- U7y
8 MO = max(|t(l(l)| K, )

9 W M) U FG=D);

10: ‘”vm = (Hy Hyo) "H{,y;
1 ’15% =0;

122 for k=1,2,--- K do _
13: i:gj) = arg mingesuo ||a:’§;) —z||3;
14: if :i:,(c) # 0 then

15: 3(9 = max(|z\" ], 1);

16: Bg)_|$8,(“) A)

17: else

18: BY = o

19: end if

20:  end for

o BO =8P uBu-..uBY:
2. FO® mm(dg(mK );

23 ) =gy — Hfmxf)( s
24:  if |[rV|2 < BUNG? then

25: break;

26:  end if

27 if ||r®)|3 > [|r¢~1 |2 then
28: break;

29:  end if

300 t=141;

31: end while

32: return  Detected symbol Z.

power. Therefore, we can distinguish the signals received from
the active users and that from the inactive users based on the
power difference of the elements in ¢(1). More specifically, if
we define the absolute value of the n-th element of the vector
t() as |t§ll) , |t(1)| represents the absolute values of each
element in t(). A higher \tﬁ,l)\ indicates a higher signal power
and the corresponding user is more likely to be active.

It is now time for us to exploit that the SSK modula-
tion restricts the distribution of the potential active signals,
where among the [(k — 1)M; + 1]-st to kM;-th elements
in t() transmitted by user k¥ (k = 1,2,---,K), at most
one element contains non-zero value. Therefore, in contrast
to the SP algorithm, which identifies the active users by
tentatively considering all the KM, elements in t(1), we




instead identify the highest receive signal value in \t,(fl)| =

[\tgk) 1)M1+1| , \t,(cl]&l ]T for each possible user k, and store

the corresponding index in the set 7;(1)

T = max(jtl], 1),

, which is expressed as
(10)

where max(a, b) represents the operation of selecting b largest
elements from a. Then the indices of the highest received
signal for all the K users are stored in 7(!) as follows:

TO =WV U T (1n

Then, during the first 1terat10n of the JMuMP algorithm, the
K. largest elements in |t7_(1>\ are identified in order to form
the candidate set M), formulated as

MO =max([t']), |, Ke). (12)

We should note that due to the non-negligible cross-correlation
between user signals, both false-alarms and misidentifications
may occur. In this case, the identified users in the set MO
may not actually be the active users. However, this inaccuracy
will be mitigated later by the symbol detection stage of Step 4.
o Step 3:

Once the potential active users have been identified, classic LS
estimation can be performed in order to detect the symbols sent
by these potential active users, whose indices are in the set of
MW, by minimizing ||H &) — Y% where H ) is
structured by the column entries of H corresponding to the
set MW, and M represents the elements of Z having the
indices provided by the set M (). Therefore, the LS estimate
of z 1) given by the first iteration is formulated as:

/(1) :(H_/I{/((l)HM(l))_

CVIEY:

For all remaining (K M; — K. ) elements not in the candidate
set M) their values can be set to z /E421) = 0. Furthermore,
by combining x /E/;Zu and -"3;5/121)’ we can obtain an estimate

z'() for the transmitted SM signals of all the users.

o Step 4:
Following the classic LS estimation, the elements in xﬁ?l)
are then mapped to the constellation S UQ. More specifically,
based on 'Y, we can obtain xgl) for user k, which is given
by M, elements of 2'(!) spanning from [(k — 1)M; + 1] to
kM. At this stage, if .’l:k( ) = 0, user k is deemed to be
inactive. However, if z o) # 0, user k£ may potentially be
active or inactive. Hence, a further detection stage is required
for recovering the M;SSK and M>QAM symbol. Specifically,

given :1:;(1), this detection process can be formulated as:
(1)

Ty

"HY . (13)

= arg_min_ [z — &3, (14)
where if £, = 0 is detected, the k-th user is deemed to be
inactive.In this way, the misidentification problem encountered
at Step 2 will be circumvented.

o Step 5:
Then, the residual signal r(1) of the current iteration is
obtained as

15)

,’_(1) =Y — HM(l)x.(M)u)

Finally, after the first iteration, the indices of the tentatively
identified users are stored in a set .F(l), ie. FO = M@,
The correspondlng estimated SSK/QAM symbols are then
expressed as & f“) Note that 7 i = 1,2,--- I, where I
denotes the maximum number of iterations, is a set containing
the indices of the K. active users estimated during the
algorithm. After the termination of the algorithm, the indices
of the finally identified K. users are given by the set F.

Following the first iteration, during the ¢-th iteration (¢ €
[2,I]), similar operations to these of the first iteration are
performed. To be more specific, at Step 2, a MF processing is
performed on the residual 7*~1) obtained from the (i — 1)-st
iteration in the form of (15), yielding

t0 —Hr0) —H (y - Hponal D). (6)
Then, after identifying the largest element in |t(‘ | to form a
candidate index set 7 (%) following (10) and (11) a set M(®)

is obtained from the K. largest elements in |t )

as

MO = max(|t

e)- a7

These indices identified in M () are merged with the indices in
F=1 for forming a set as V() = M®UFE-D which has at
most 2K, indices. Then, based on V()| the algorithm performs
the classic LS estimation at Step 3, yielding the estimate of
i) expressed as

() =(Hy o Hyo)~

0 (18)

lgrH
Hv(i>y-

For the elements that are not in V9, the values are set to

=0.
v(z)
At Step 4, the classic constellation mapping is performed
on the non-zero elements in ', i.e. z ') in order to recover

i)
the M,SSK and M>;QAM symbols, expressed as

&) =arg min [z - &[3, (19)

Now, we have to update F=1) to F@) by the reliability
of identification and detection, measured according to the
distance between the LS estimated signal and the mapped
signal. In detail, if mgc) # 0, then user k£ may be an active
user. According to the principles of SM, at most one element in
:i:gj) is a non-zero value. Hence, we only consider the distance
between the non-zero LS estimated element in a:;c(i) and the
detected non-zero element in :1:;) This is obtained by first
finding the largest element value in |.’L'k )| for all .'i:,(;) # 0 and
storing its index in the set B expressed as

B(i) — maX(|§Iki)|, 1), if ig) # 0; (20)
k @, else.

Furthermore, let B0 = B U B U ... U BY. Then the
distance between the non-zero LS estimated element and the
detected element in the constellation for the specific users in
the set B() is calculated as

a®

- (1)
='W 20 (21)
B =z’ B,@'



A smaller distance d'” 5 indicates a more reliable symbol

recovery. Hence, F(*) can be updated as

./—"(Z) = min(dBU) ) K6)7 (22)

where min(a, b) represents a function that returns the indices
of the b smallest elements in a.

Note that if the size of B is smaller than K., then the
final set is updated with a size determined by B(). Finally, at
the Step 5 of the i-th iteration, the residual signal is updated
tor® =y — H}-mwf)( , for ensuring (i + 1)-st iteration.

Finally, after I iterations, the JMuMP algorithm is terminat-
ed. A range of other termination criteria will be discussed in
Section III-B. In summary, the JMuMP algorithm is formally
stated as Algorithm 1.

B. Termination Criteria for JMuMP Detection

There are three plausible conditions for terminating the
JMuMP algorithm, which may be jointly incorporated for
striking an attractive performance vs complexity trade-off.

1) When the residual signal stops improving, i.e. when
[r@ )3 > |13, implying that no columns in the
residual 7(*) have a significant amount of energy, the
iteration stops.

2) When the residual power |r(|]3 sinks below a certain
a threshold SUN¢2, where § can be set to a small
value, the iteration stops. Note that the threshold is set
in harmony with the noise level o2 for the following
reason. Let us assume that perfect recovery is achieved.
Then the estimated signal can be expressed as

ir=x =(HEHz)"'Hy, (23)

where the superscript (i) is omitted for the sake of
simplicity. Then, the signal’s residual power can be
expressed as

Ir||3 =r"r

=(y — Hrz's)" (y — Hraly)
=y"y—y"Hr(HFH7)'Hry.  (24)
Substituting (15) into (24), we obtain
|r||2 ==z H¥Hz + " H"n + n Hz + nin
"HY'H(HYH ) "'HYHz
—z"HH (HEH7) 'H%n
—nfHyHIHz)'HIHx
—nHHf(HgH;)_ngn. (25)
The expectation of ||7||3 can be shown to be
E||r3] =(UN - K,)o* + E [z" H" Hx]
—E[z"H"HrHYHy) 'HYHz] .
(26)
Since ideal recovery is assumed, we have Hx = H rx r.
Hence, (26) can be simplified to

E[|r]3] =(UN - K,)o? 7)

Based on (27), we can surmise that the iterations can
be terminated if the residual ||r||2 reaches a sufficiently
small value, say approximately BUNo? (0 < 8 < 1).
Furthermore, a smaller 5 may result in a better BER
performance at the cost of imposing a higher complexity
and a longer detection delay.

3) Finally, the detection process is terminated when the
number of iterations reaches the limit /. Our investi-
gations have shown that I can be set to a value of
I = 5, since the performance usually converges after
about I = 3 iterations.

IV. AMUMP DETECTION

In this section, we propose another novel detector, referred
to as the AMuMP detector, which does not require the
knowledge of user activation probability p at the receiver.
Instead of identifying K. active users at each iteration, the
AMuMP detector adopts the concept of the sparsity-adaptive
matching pursuit (SAMP) algorithm proposed in [40], for
identifying and detecting an arbitrary number of ‘likely-to-
be-active’ users. The description and termination criteria of
the AMuMP detector will be detailed in Sections IV-A and
IV-B, respectively.

A. Description of the AMuMP Detector

The AMuMP algorithm is formally stated as Algorithm 2.

o Step 1:

Identically to the JMuMP detector, the AMuMP detector first
carries out the MF operation formulated in (9) applied to the
received signal y in (4) at the beginning, obtaining a vector
t) . As discussed in Section III-A, a larger element value
|t£Ll)| in |t(M| indicates that the corresponding user is more
likely to be active. Hence, by exploiting the nature of SM, a
set 7(1) is formed for storing the highest value in t,~c b (k =
1,2,..., K) following (10) and (11). However, in contrast to
our JMuMP detector of Sectlon III-A that identifies and detects
K. candidates from |t7’<1>| the AMuMP detector starts by
identifying a much smaller number of potentially active users
Il = z (2 < K,). Then the set of identified candidates is
linearly expanded within one and over different iterations, until
a certain termination criterion is met. In this way, a more
accurate active user set may be constructed at the cost of an
increased detection complexity and latency.

In more detail, the AMuMP detector relies on a small integer
value z as its step size. Following the MF processing of the 1-
st iteration, the z largest elements in ‘tT()1>| are identified, with
the corresponding indices stored in the candidate set M) and
also in the set F(1).

o Step 2 & 3:

After the LS estimation of z") MO following (13), a further de-
tection is performed for recovering the M;SSK and M>QAM
symbols, as shown in (14).

o Step 4:

Then, the residual signal r(Y) =y — H MODET M)<1> is obtained
and the AMuMP algorithm continues its iterations, as shown
in Algorithm 2.



Specifically, during the Step 1 of the 2-nd iteration, MF pro-
cessing of (1) is carried out to obtain ¢) and 7(? is formed
for storing the largest element in t;f) (k=1,2,---,K). Then
I = z candidates are selected as the users corresponding to the
[ largest elements in |t£r2<)2> |. Then, as shown in Algorithm 2,
these z candidates are merged with the set of z candidates
obtained during the 1-st iteration, forming the set V@) which
has at most 2z candidates.

Now, the AMuMP algorithm carries out the classic LS
estimation following (18) at Step 2 and a further mapping
process following (19) is applied to the candidates in V()
at Step 3, yielding m;fz)) and :2'52222). Then, from the detected
symbols in :1:5/()@, z candidates are selected according to
the distance between the estimated and detected symbols, as
shown in (20) and (21), in order to form the final candidate
set of

FO =min(d%), . 2). (28)

Then, at Step 4, the residual signal is updated to r2
according to r® =y — H ;)& 7). To proceed from this
point, depending on the specific values of ||[r(?)||2, there are
different ways for the algorithm to continue.

Firstly, if we have |[r®|? < BUNo? for a preset f3
value, implying that all active users have been identified, or if
lrM% — ¢ < Ir® |3 < ||+ |3, indicating no improvement
of the most recent residual signal, the identification and
detection process is deemed to be completed.

Secondly, if ||[r(?]|3 > ||r(1)||2, there are likely to be more
than | = z active users. Hence the algorithm prepares to
expand the set of active users by returning to line 6 of the
algorithm, in order to obtain a new active user set (%) having
| = | + z candidates, expressed as F(? = min(dg()z), 0).
Then an updated residual (?) is prepared for the next stage
of identification and detection.

Finally, if none of the above-mentioned conditions is met,
implying that BUNo? < [[r® |2 < ||r() |2 — ¢, the algorithm
proceeds to the third iteration and repeats the operations of the
2-nd iteration.

This process continues either until the above mentioned ter-
mination conditions are met, or until the maximum affordable
number of iterations is reached.

It is plausible that the specific choice of the initial candidate
set size is determined by the step size z, which has to
strike a trade-off between the detection latency, complexity
and accuracy. When a smaller step size z is employed, the
search for potential active users becomes slower, since a higher
number of step size expansions are required to reach the
size of the final candidate set, hence resulting in a higher
detection complexity. As a benefit, a more accurate estimate
will be obtained. These extra step size expansions have to be
carried out serially, which also leads to an increased detection
latency. By contrast, a higher step size z reduces the detection
latency and complexity at the cost of less accurate estimation.
This may also result in an error-floor problem, which will be
demonstrated and analysed in Section V-A.

Algorithm 2 AMuMP detector
Input:
Received observations y, CIR H and step size z,
Output:
Detected symbol z.
Initialization: i = 1,1 = 2,70 =gy, FO = g V(O = &
1: while : < I do
2. t) = FHp(-

32 fork=1,2,--- K do
4 T = max([t{], 1);
5: end for
o TO=T"U T” UTY
7. MO = max(|t )
g VO =MOy .7-'(Z 1)
9: 15<)> = (vava) 1H§’<7¢>y;
10: \E()> =0;
11: fork=1,2,--- , K do
) A (1) _ ; /(@) ~p2.
12: z, arg mingesuo |2’ — Z|3;
13: if :1:,(;) # 0 then
14: B = max(|.'1: D1,1):
15: dBlzw = |z /Bm - AZ(M
16: else
17: B,(j) = g;
18: end if
19:  end for
0. BO=p"uBPu-.-uBY,
21 F = mln(dgz),l)'
2. )= y Hy. ):1:(]_.)( o
23 if [|r||3 < BUNo? then
24: break;
25:  end if
26:  if [[r0=V)3 — [|r@||2 < ¢ then
27: break;
28:  end 1f
29 if |[r@ |3 > |lr(—1)|3 then
30: =142z
31: go to line 6;
32 end if
332 i=1+1;
34: end while
35: return  Detected symbol Z.

B. Termination Criteria of the AMuMP Algorithm

In general, there are three natural conditions of terminating
the AMuMP algorithm, which may be jointly considered for
striking an attractive performance vs complexity trade-off .

1) The first termination criterion is the same as that em-
ployed by the IMuMP, i.e. when ||r()||3 < BUNo?, the
detection is deemed to be completed.

2) If the residual signal reduction becomes limited, i.e., if
=112~ |r® 3 < o, where ¢ is a small threshold, it
is assumed to be due to the noise imposed on the inactive
users. Hence, the AMuMP algorithm is terminated for
avoiding excessive expansion of the active user set. In
the following simulations in Section V-A, ¢ is fixed at



0.1.

3) Finally, the AMuMP detection terminates, when the
number of iterations reaches the maximum limit I.
Again, in our simulations, we set [ = 5.

V. PERFORMANCE RESULTS AND DISCUSSION

In this section, the BER vs complexity of the JMuMP and
the AMuMP detectors is analyzed for the grant-free SM/MC-
NOMA system in Sections V-A and V-B.

A. BER Performance

Let us commence by investigating the impact of K. on
the system performance. Figs. 3 and 4 compare the BER
performance of our JMuMP detector for different K. values
for transmission over an L = 16-path frequency selective
channel to that of the SP algorithm [24], where the latter has
perfect knowledge of the number K, of active users at the
receiver. The 128 x 128 SM/MC-NOMA system of Figs. 3
and 4 adopts N = 128 subcarriers to support ' = 128 users
equipped with 4 TAs, where 4QAM and 16QAM are employed
in Figs. 3 and 4, respectively. Each user of the SM/MC-NOMA
system is randomly activated with an activation probability of
p = 0.1. Here, in the case of p = 0.1, K. = 22 indicates that
the probability of having more than K, = 22 active users is
below 10~%, which corresponds to the ¢ of (8) discussed in
Section III-A. Similarly, K, = 25 ensures having ¢ < 107°.
If the receiver has perfect knowledge of K,, then instead
of K. users, K, users are identified and detected in each
iteration by the SP algorithm, as shown in Figs. 3 and 4. We
can see that although JMuMP using K. = 25 achieves better
BER performance than that with K, = 22, it also includes a
higher detection complexity, since K. determines the column
size of H r. Additionally, as shown in Fig. 3, in the case of
U = 1 RA, there is an approximately 1 dB degradation at
a BER of 103 for our JMuMP detector, compared to the
SP detector that has perfect a priori knowledge of the user
activity. Furthermore, a maximum of 1 dB SNR difference is
seen between the SP detector and the JMuMP detector using
K. =25 at a BER of 107 when U = 2 RAs are employed.
However, the JMuMP detector using K. = 22 still suffers
from an error floor formation around BER= 104,

The BER performance of AMuMP detection with z = 4
is also shown in Fig. 3. We can see that the error floor
can be mitigated when the AMuMP detector is employed.
The influence of the initial candidate set size z on AMuMP
detection is demonstrated in Fig. 5, where a higher activation
probability of p = 0.2 is considered and U = 2 RAs are
employed. While a better BER performance is obtained with
a smaller z in the lower SNR regions, an error floor occurs
when the step size is too small, e.g., z = 2, since the success
of signal detection in the later iterations critically depends on
the accuracy of user cancellation in the previous iterations.

Fig. 6 investigates the influence of 5 = 0.01,0.1,0.2
and 0.5 on the proposed JMuMP detector, where the other
parameters employed in Fig. 6 are the same as those in Fig. 3.
It can be observed from Fig. 6 that while a higher S results
in better BER performance in the low SNR region, it suffers
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Fig. 3. BER performance of the JIMuMP and AMuMP detectors for a 128 x
128 SM/MC-NOMA system for transmission over an L = 16-path frequency-
selective Rayleigh fading channel, where p = 0.1, 4SSK and 4QAM are
employed.
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Fig. 4. BER performance of the ]IMuMP and AMuMP detectors for a 128 x
128 SM/MC-NOMA system for transmission over an L = 16-path frequency-
selective Rayleigh fading channel, where p = 0.1, 4SSK and 16QAM are
employed.

from a higher error floor. By contrast, the JMuMP detector as-
sociated with 8 = 0.1 and that with 0.01 achieve similar BER
performance, which is superior to that associated with 5 = 0.2
or 0.5 after SNR = 6 dB. Hence, 8 = 0.1 is sufficient for the
JMuMP detector in practical implementations. Similarly, the
proposed AMuMP detector using 5 = 0.1 also achieves the
best performance among the different S values, but we omit
the simulation results, since they exhibit very similar trends
to those of Fig. 6.

Figs. 7 and 8 compare the BER performance of a 128 x 192
SM/MC-NOMA system using N = 128 subcarriers to support
K = 192 users, which employs the JMuMP and AMuMP
detectors, respectively, in conjunction with different user ac-
tivation probabilities for transmission over an L = 16-path
frequency-selective Rayleigh fading channel, where K, is
carefully selected for ensuring ¢ < 10~° for JMuMP and
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Fig. 5. BER performance of a 128 x 128 SM/MC-NOMA system with U = 2
RAs employing the AMuMP detector with z = 2,4 and 8 for transmission
over an L = 16-path frequency-selective Rayleigh fading channel, where
p = 0.2, 4SSK and 4QAM are employed.
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Fig. 6. BER performance of a 128 x 128 SM/MC-NOMA system using
U = 1 RA employing the JMuMP detector associated with 5 = 0.01,0.1,0.2
and 0.5 for transmission over an L = 16-path frequency-selective Rayleigh
fading channel, where p = 0.1, 4SSK and 4QAM are employed.

z = 4 is chosen for AMuMP detection. We can see from Fig. 7
that in the case of U = 1 RA, as p increases, the average
number of active users K, increases, which prevents the
system from maintaining a good sparsity. Therefore, JIMuMP
detection suffers from a pronounced error floor formulation.
The increase of RAs to U = 2 does mitigate the error floor,
hence allowing the system to maintain good performance up
top=20.3.

By contrast, as shown in Fig. 8, when AMuMP detection
is employed, the error floor formation is clearly mitigated,
with all the system parameters remaining the same as those in
Fig. 7. The 128 x 192 SM/MC-NOMA system using U = 2
RAs employing z = 4 and the AMuMP detector is capable
of supporting up to p = 0.30 user activation probability,
which indicates that on average 58 users are active at a time.
This is in contrast to the 128 x 192 SM/MC-NOMA system
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Fig. 7. BER performance of the JMuMP detector for a 128 x 192 SM/MC-
NOMA system with different user activation probabilities for transmission
over an L = 16-path frequency-selective Rayleigh fading channel, where
4SSK and 4QAM are employed.

using U = 2 RAs employing the JMuMP detector, where an
error floor appears after a p = 0.3 user activation probability.
Furthermore, while JMuMP requires the knowledge of the
activation probability p at the receiver, the AMuMP detector
does not require the knowledge of p.
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Fig. 8. BER performance of the AMuMP detector for a 128 x 192 SM/MC-
NOMA system with different user activation probabilities for transmission
over an L = 16-path frequency-selective Rayleigh fading channel, where
4SSK and 4QAM are employed.

B. Complexity

Let us now discuss the detection complexity of the proposed
JMuMP and AMuMP detectors by quantifying the number of
floating point operations (FLOPs) required for completing the
iterative detection process. Let us first define the number of
FLOPs required for matrix or vector multiplication, addition
and norm calculations [41]. Given ¢,d € C"*',A € C™*"
and B € C"*P, the operation of ¢ + d requires 2n FLOPs,



A x B requires 8mnp—2mp FLOPs and ||c||3 requires (4n—1)
FLOPs.

The computations in each iteration of JMuMP detection
are comprised of four steps: the MF processing, the LS
estimation, the constellation mapping and the residual com-
putation. Firstly, during the MF processing of (9), only matrix
multiplications are performed, giving a complexity of Cp;p =
SUNKM;, — 2K M;. Secondly, there are two commonly
employed direct methods of the m x n LS operations, namely
the QR decomposition and the Cholesky decomposition. As
discussed in [41], the QR decomposition requires Crs.or ~
8n2m — (8/3)n> + 8mn +4n? FLOPs for carrying out the LS
operation, whereas C.s.cno ~ 4n?m+(4/3)n+8mn+11n?
FLOPs are required for Cholesky decomposition. It has been
demonstrated in [42] that the QR decomposition attains a
higher accuracy at the cost of higher complexity. Therefore, in
our complexity analysis, we opted for the Cholesky decompo-
sition in the following discussions, in order to achieve a lower
overall complexity. Thirdly, the mapping process requires at
most 2K (4M7 —1)(M; Ms+1) FLOP operations. Finally, the
residual update requires another C.¢s;qua; = 8U N K, FLOPs.

The maximum total computational complexity Cimump,max
is the sum of Cyr, CLs,cho> Cmapping and Chresidual, Which
can be expressed in (29).

Similar to (29), we may also calculate the maximum com-
putational complexity of AMuMP detection. Since up to 2/
elements are identified during each candidate expansion step
and a maximum of [ iterations are required for the detection,
the maximum complexity of AMuMP detection Camump,max
may be expressed in (30), where j(*) is the number of
candidate set expansions in the ¢-th iteration and ; ; is the step
size at the j-th candidate set expansion in the ¢-th iteration.
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Fig. 9.  BER and complexity of the SP, JMuMP and AMuMP detectors

for a 128 x 192 SM/MC-NOMA system at FE,/No = 16 dB vs the user
activation probability for transmission over an L = 16-path frequency-
selective Rayleigh fading channel, where 4SSK and 4QAM are employed.

Fig. 9 demonstrates the BER vs complexity of the two
detectors for the grant-free SM/MC-NOMA system having
N = 128 subcarriers supporting K = 192 users at £, /Ny =
16 dB, where different user activation probabilities up to
p = 0.2 are considered. Furthermore, the complexity of the SP
detector, which has perfect knwoledge of the number of active

users is included in Fig. 9 as the benchmark. Since in reality
K, is unknown at the receiver, the proposed JMuMP and
AMuMP detectors imposed an increased detection complexity,
compared to that of the SP detector, where K, is known at
the receiver. We can also see a BER vs complexity trade-off,
where the AMuMP detector achieves an improved BER at the
cost of a higher complexity than that of the JMuMP detector.

VI. CONCLUSIONS

An uplink grant-free SM/MC-NOMA scheme has been
conceived for supporting massive connectivity in mMTC sce-
narios of next-generation communications, whilst relying on
grant-free transmission, where users transmit in a sporadic
pattern at a low rate. A pair of CS-based low-complexity
detectors were proposed for jointly detecting both the user
activity and the transmitted data, namely the JMuMP and
the AMuMP detector. In contrast to state-of-the-art CS-based
detectors designed for grant-free NOMA systems, where the
user sparsity is expected to be known at the receiver, the
proposed JMuMP detector estimates the user sparsity based
on the user activation probability known at the receiver. By
contrast, the AMuMP detector does not require any prior
knowledge about the user activity in our SM/MC-NOMA
system. The BER performance of both detectors demonstrates
convergence to the ideal condition, where the receiver has
the complete knowledge of the user activity. Additionally, the
complexity of the two detectors was quantified in terms of the
number of FLOPs, and the BER vs complexity trade-off was
demonstrated by simulations.

Our future work may consider the channel estimation of
the grant-free SM/MC-NOMA system, where the receiver has
only part or no prior information at all about the channel
knowledge.
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