
University of Southampton

Faculty of Social Sciences

Social Statistics and Demography

Topics of statistical analysis with

social media data

Martina Patone

Thesis for the degree of Doctor of Philosophy

January, 2020





Abstract

This thesis investigates the use of social media data in social research

from a statistical perspective. A broad review is given of how these

data has been used by researchers from different disciplines and the

extent and means of the investigations carried out with these data is

assessed. Special attention has been given to the common obstacles

faced by using social media data for statistical analysis and to the

graph representation of these data that is generally available to the

researcher and to its use for statistical inference.

Most of the literature about the use of social media data for statis-

tical analysis is concerned with the fact that these data represent a

non-random sample from the population of interest. We have instead

highlighted another fundamental challenge presented by these data,

which is, however, rarely taken explicitly into consideration. The

problem is that the object of sampling and the unit of interest might

be distinct. To tackle this problem, we have shown how two different

approaches of statistical inference can be distinguished in the litera-

ture. Under each approach, we have provided a discussion about the

target of inference and make explicit their limitations in relation with

the statistical methods used. Our exposition offers a framework for

dealing with unruly data sources.

However, the problems of non-random sample and various unavoid-

able non-sampling errors do not admit a universally valid statistical

approach. One can cope with them if needed to, but one cannot really

hope to solve these problems. Meanwhile the graph structure inherent

of social media data (and other forms of big data) seems to us a more

rewarding area of research.
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We have investigated how to use the structure of the graph for estima-

tion. The Horvitz-Thompson (HT) estimator operates by weighting

each sample motif by the inverse of its inclusion probability. Gen-

eralising the work of Birnbaum and Sirken (1965), we demonstrated

that infinite types of incidence weights can be constructed for unbi-

ased estimation. We define the Incidence Weighting Estimator (IWE)

as a large class of linear design-based unbiased estimators based on

the edges of the a Bipartite Incidence Graph (BIG), of which the HT

estimator is a special case. This class of estimator has no equivalence

in traditional list sampling.

More ways of using the incidence structure of the BIG for estimation

has been explored and in doing so we enter in a completely new terri-

tory. We have investigated how to use the incidence structure of the

BIG to estimate a total based on the sampling units, and, once we

have obtained such estimator we have discussed if and how it can be

used together with the IWE to improve the inference. We have also

seen that it is possible to use the reverse incidence weights in com-

bination with the incidence weights. The weights obtained in such

ways, can be used to construct an unbiased estimator in both direc-

tions, although the idea seems somewhat impractical at the moment.

The final chapter wants to offer a flavour of what can be done under

the BIG framework and inspire future research in this direction.

The thesis is organised in four papers: the first paper discusses the

current statistical analysis made using social media data, while the

other three papers deal with the topic of graph sampling and estima-

tion.

Key words: social media data, finite-graph sampling, quality, non probability

samples, network.
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Chapter 1

Introduction

In recent times, the use of social media data as a source of social science data has

considerably increased. This type of data is easily available, cheap and in real

time; they can provide information about behaviour and opinion, making possible

to observe directly what people ‘do’ or ‘think’, rather than what people ‘claim

to do’ or ‘claim to think’. Nevertheless, the application of statistical inference to

obtain valid insight from them is still under debate. In fact, these data present

several challenges and limitations that need to be addressed for their statistical

analysis and a coherent statistical framework for analysing social media data is

currently lacking.

This thesis investigates the challenging of conducting statistical analysis this par-

ticular new form of data. The thesis focuses on three specific aspects involved

in the analysis of social media data, namely: 1. the problem of the statistical

validity of the conclusions drawn; 2. the problem of the sampling and 3. the

problem of estimation. These three problems are investigated separately in four

stand-alone papers.

The first chapter in this thesis presents the context of the research and is di-

vided into three sections. The first section provides an overview of big data and

social media data, discussing what defines them and how they emerged. The

second section examines how social media data has been used in social research;

the population that social media data represents and the measures that are ob-

servable in social media. Also an examination of the limitations involved with

applying statistical methods to this data type is made. In addition, the process

of data collection is described, distinguishing three modes: the API streaming,

1



the data purchasing from social media data aggregation services, such as GNIP

and Web scraping. A third section is devoted to the graph structure of the data.

In particular, it is seen how the available relationship amongst the elements of

social media data, can be used to obtain new sampling methods and improve the

efficiency of the estimators. Finally, the four papers are briefly presented.

1.1 Big data and Social media data

Data can be generated by organizations, such as transactions, emails, databases,

etc.; by Internet users themselves through their surfing habits, online discussion

forum, or sensors and other devices that exchange data.

The term ‘big data’ describes a significant volume of heterogenous data from dif-

ferent sources and which are often unavailable in standard database formats.

1.1.1 Definitions and characteristics of big data

There is no rigorous definition of big data. The Oxford English Dictionary de-

fines big data as “data of a very large size, typically to the extent that their

manipulation and management present significant logistical challenges”.

This definition emphasises the scale and complexity of big data and the method-

ological and structural challenges that they pose. The definition also alludes to

the fact that challenges arise because big data are unlike traditional data; they

are not only large in size, but their nature is intrinsically different from the data

that has been known so far.

One of the most common definition of big data was proposed by the 2001 Gartner

report (Laney, 2001) and updated in 2012 in the Gartner IT Glossary, which

states “big data is high-volume, high-velocity and/or high-variety information

assets that demand cost-effective, innovative forms of information processing that

enable enhanced insight, decision making, and process automation”.

Laney’s definition of big data considers the difficulties which are often encoun-

tered in the process of extracting knowledge from the data: the technological

capabilities to store large and unstructured data, how to link different types of

data and how to perform comprehensive analysis. According to the definition

of Laney (2001), there are three characteristics that distinguishes big data from

other data types.
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The first of such characteristics is volume. Volume refers to the amount of data

available. Two main factors contribute to the big volume of data: the increasing

number of data collection tools, such as social media, mobile phones, sensors,

cameras and scanners, among others; and the improvements in data storing.

Facebook, for instance, has 2 billion monthly active users uploading 350 million

new photos every day 1; it is expected that connected cars, i.e. equipped with

Internet access, will upload every hour twenty-five gigabytes of data regarding

the routes, speeds or road conditions among others2; 1.6 million packages are

shipped every day by Amazon3. The term ‘volume’ also indicates that big data

are not generated as a random sample of a given population, but are often the

result of observations of real time occurrences, which sometimes refers to the

whole population, sometimes it refers to a non-representative sample of it.

The second characteristics of big data in Laney (2001) definition is velocity. Ve-

locity refers to the speed at which the data is generated. Data is streamed at

real-time; social media are a classical example, also sensor data are becoming

increasingly popular, transmitting bits of data at a constant rate. The flow of

data is significant as well as continuous. The velocity of big data also makes

them appealing for evidence-based decisions and real-time analytics. Social me-

dia data, for instance, facilitate the analysis of marketing campaigns which pro-

vide information about customers, such as their location, demographics, and their

engagement with the product.

Finally, variety refers to the many types and formats of these data: text, images,

audio, video etc... These are all examples of types of unstructured data, and they

are often all collected simultaneously. As a consequence of this large variety of

data types, the process of cleaning the data requires greater effort. New data

management technologies and analytics are emerging, such as facial recognition

technologies or methods which collect and analyse clickstream data.

Over the years, the definition of big data given by Laney (2001) has evolved

to accommodate other characteristics of big data. Japec et al. (2015) includes

Variability, i.e. the inconsistency of the data over time, Veracity, i.e. the trust-

worthiness of the data, Complexity, i.e. the need for a edge with multiple data

sources.

Groves (2011a) suggests that big data are characterised by four aspects which

distinguish it from traditional data. He proposes that big data:
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1. tend to measure behaviours, not internalized states like attitudes or beliefs;

2. tend to offer near-real-time records of phenomena, and they are highly granu-

lated temporally;

3. tend to observe a significant number of variables, many merely having some

sort of identifier;

4. rarely offer well-defined coverage of a large population.

Also these characteristics are used to focus on the difficulties that big data present

in extracting meaning from them, in comparisons with traditional data.

Taylor (2013) distinguishes between ‘found vs made data’, where ‘found’ refers

to the non-research purpose of the data. He argues that to conduct scientific

analysis, data should be ‘made’, i.e. constructed by the researcher to answer the

specific research question. The statistical analysis of big data is of secondary use,

since they were intended for different primary use, in contrast with other form of

data, such as survey data, which are collected in such a way to permit statistical

analysis in valid and reliable ways.

Groves (2011a,b) makes a similar distinction between organic and designed data.

Groves suggests that designed data are created with a specific idea in mind and

organic as ‘a self-measure in increasingly broad scope’. He considers the difference

in the amount of knowledge that can be obtained from the two types of data.

The ratio of knowledge to data is higher for designed data than for organic data

for the use of interest, primarily because the data was created in order to extract

the maximum level of information, with minimal noise.

Another definition proposed by Forbes4 advocates that big data represents “the

belief that the more data you have the more insights and answers will rise auto-

matically from the pool of ones and zeros”. Another characteristic of big data

is that it represent a disruptive innovation which enables new approaches to sci-

ence (Kitchin, 2014). Some believe that we are heading towards a data-intensive

science; while others suggest that we are in a new era of empiricism, where the

data speaks for itself and where theory is not necessary.

The new empiricism approach advocates that insightful and meaningful knowl-

edge can now be produced directly from the mere observation of the data without

any theoretical method to extract such knowledge: “with enough data, the num-

bers speak for themselves” (Chris Anderson, ex editor-in-chief WIRED5).
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This is a completely different approach to the traditional type of analysis, which

begins with relevant questions from which the appropriate methods are selected

based on theory, and then the data is collected accordingly to answer these ini-

tial questions. On the other hand, advocates of this new approach may insist

that hundreds of different algorithms can be applied to a dataset to find hidden

knowledge, without having to justify the use of them. The weaknesses of this

empiricism argument are several. First, the data is not exhaustive, but instead

it is a sample, it is determined by the technology used and subject to regulatory

environment and sampling bias (Crawford, 2013). Second, the data is not gen-

erated free from theory. The algorithms and analytic methods used to capture

certain types of data are based on scientific methods and were tested for scientific

validity. Any attempt to identify patterns is not free from scientific theory. Third,

the data is not free from human bias and framing. In order for data analysis to

make sense, it needs to be contextualized within a particular scientific approach.

Finally, any analysis should be interpreted within a context or domain-specific

knowledge; the data cannot just speak for itself (Kitchin, 2014).

Those believing that science is becoming data-driven suggest that hypotheses and

questions are found in the data rather than in the theory. However, theory is used

in developing knowledge discovery techniques which identifies questions that are

worthy of further examination. Therefore, data is not generated by every possible

means; data is generated and analysed under assumptions which guarantees that

the techniques used will produce valid insights.

The technological advances which propelled the process of data generation has

increased over the previous decades and are unlikely to decelerate. Therefore, the

era of ‘big data’ is likely to continue into the future as well, so it is necessary to

develop statistical methods and techniques that have the ability to utilize such

new forms of data and exploit their potential.

The term ‘big data’ is quite broad and comprises different types of data and

industries. We will focus our discussion on social media data. In the next section

we present an overview of social media data, outlining their characteristics and

emphasising their differences compared to traditional sources of data.
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1.1.2 Social Media Data

The UNECE (United Nations Economic Commission for Europe) in 2013 set

up by the High Level Group for the Modernisation of Official Statistics, which

developed a classification of big data containing three main types of big data

sources (Berȩsewicz et al., 2018). Firstly, we have machine-generated data, usu-

ally captured by sensors. Secondly, the classification includes data generated as a

by-product of IT system. These data is generated by people as they interact with

IT systems. And thirdly, human generated data which is stored in digitalised

form. Note that, while the first two classes include data with high level of detail,

data belonging to the last class is unstructured and of poor resolution.

Also, all data sources, with exception of human-volunteered data, produce de-

signed data, maybe not for statistical purpose, but for some purposed of data

processing.

Social media data belong to the third class. Social media consists of conversa-

tional platforms. People, who join them, utilise this technology to share content

and communicate their ideas and opinions with others. The communication may

take place through actively participating in already existing debates or creating

new ones, or it may be passive observation without interaction. Users can act as

their true self or they can create new identities; they can decide when to enter

and when to leave, what to share publicly and what to keep private.

Social media can be seen as collections of anecdotes: short stories that are sig-

nificant to describe a topic or a population. They may be real or fictional, and

perhaps involve subtle exaggeration and drama in order to entertain the audi-

ence. Social media data is generated in real-time and often as an answer to

external, real-life events. People may upload their personal stories or interact

over phenomena that are occurring in the offline sphere.

The data generated from surveys and experiments follows specific criteria and

theory which allows valid conclusions to be drawn. Unlike survey or experi-

mental data, social media data is generated directly from the users without any

specification or questions to be answered. In other words, social media data is

constructed free of a theory that is motivated by external purpose; the data com-

ing from social media is instead generated as a consequence of socio-technological

factors.

Following Citro (2014), social media data belongs to the class of data obtained
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by the interactions of individuals with the World Wide Web: the individuals

that are providing information in their posts, are not asked to respond to a

questionnaire or required to supply administrative records; they choose to share

their information autonomously.

Every social media platform has a particular topic or theme of interest. The un-

derlying idea behind every social media site is to create communities of users. In

certain cases the community is broad and encompasses different topics. Facebook,

for instance, is an agglomerate of many small communities with variable inter-

ests; in other cases, the intent is to form a niche in order to host a more specific

theme, such as LinkedIn, where users are connected by professional relationships

or ResearchGate for example, which connects mainly academics.

A last consideration. Some of the data obtained from social media data can be

structured and highly detailed, for example the geographical information that the

individual voluntarily decides to share.

An example: Twitter Twitter is an example of an online news and social

networking site where people communicate. The method of communication oc-

curs through short messages, called tweets ; the act of sending tweets is called

tweeting. Some people refer to the act of tweeting as microblogging, since people

often share tweets to their followers with the hope of being useful or interesting

to them, as well as increase their audience.

A peculiarity of this social site is that each tweet has a limit of 280 characters

(changed in 2017 from the original 140 characters). This limitation, on a side,

promotes the use of clever and direct language which makes the text easier to

scan; although, it can also incite the use of abbreviations which might require

more effort to interpret from a textual analysis perspective, if the researcher is

interested in the tweets’ contents.

To be able to tweet, an account needs to be created. To register the user has

to provide an email address, a username and a password. Optional fields are a

profile picture, a bio and a location. Once an account is registered, it can start

sending tweets. Tweets are by default publicly available, although the user may

change the privacy setting of his or her profile in order to make it private.

7



1.2 Use of social media data for social research

Social media are arenas where issues are debated and opinion formed. This has

caused an increased interest from social researchers to use them to understand

societal phenomena and characteristics. Three main applications of social media

data can be distinguished for social research (Japec et al., 2015):

1. to capture what people are thinking or talking about;

2. to analyse public sentiments and opinions on specific topics;

3. to understand demographics about a specific population.

Twitter is often considered a source of real-time news from its users. The content

generated by the user in tweets covers daily stories, local news or world-wide news

which are reported as they happen. It is therefore plausible to consider the use of

tweets to gain an understanding of events occurring in real time. Petrovic et al.

(2013) have shown how traditional newswire and Twitter equally cover the same

major events. They also found that Twitter has better coverage of sport events,

unpredictable high impact phenomena and small or local events. This type of

analysis is known as event detection and a survey of its techniques is presented

in Hasan et al. (2017).

In addition, users do not only report news or stories, but they share their opinions

about them, as a result, social media also includes a substantial display of senti-

ments. This provides the opportunity to analyse tweets’ content to gain insights

about what people’s opinions are. For instance, a manufacturing company may

be interested in understanding what people think about their product and how

positive (or negative) their opinions are. Political parties and social organiza-

tions may be interested in people’s opinions about current debates. This type of

interest is known under the term ‘sentiment analysis’. Sentiment analysis offers

a series of techniques involving the analysis of a text, identification of key words

and the classification of opinions. See Pang and Lee (2008) for a review of the

current state on opinion mining and sentiment analysis.

In these first two applications, analysis and interpretation occur at the tweet level,

the text which constitutes the tweets being the object of analysis. Research can,

however, be also conducted at the Twitter account level. This type of research

involves an understanding of the characteristics of the accounts, for instance

demographic characteristics of the user behind each account, as user profiling.
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Daas et al. (2016) demonstrated how some demographic characteristics can be

extracted from some Twitter-specific characteristics of the users. This type of

research is also aimed at obtaining auxiliary information that can be used to link

social media units to traditional survey units.

1.2.1 Quantitative social research

Social researchers study social phenomena though quantifiable evidence and rely

on the empirical investigation of observable phenomena via statistical and com-

putational techniques. Social research is centred around the collection of data,

which is based on a given hypothesis.

The researcher starts her investigation with an hypothesis, formulated in terms

of a research question, and collect the appropriate data to extend, revise and test

the hypothesis through the data analysis.

In many cases, it might be impractical to collect data directly, and the researcher

has to rely on secondary data, i.e. data which has already been collected by

someone other than the user, such as social media data.

When secondary data are used for social research, the quality of the data becomes

of primary interest. From the statistical inference point of view, what really

matters is the way these data are generated, in particular to assess whether the

methodological assumptions behind the use of a statistical method are met and

the theory drawn from the evidence is consequently valid.

1.2.2 The statistical characteristics of social media data

In the following, we will discuss the statistical characteristics of social media data,

in particular their non-probabilistic character, and their organic and unstructured

nature.

1.2.2.1 Imperfect coverage

The representation problem of social media is a well-known problem which under-

mines the generalization of the results to the broader population. In this section,

we explore the population of social media users and how it differs from the general

population.
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Demographics on social media The Internet usage is continuously spreading

over the year. Approximately 89% of adults in the UK used the Internet in 2017

and in 2016 63% of adults in the UK had reported using the Internet for social

networking (ONS, 2016, 2017). Social media platform undoubtedly accelerated

Internet usage: they are easy to use, cover different and generic topics of interest

and are used by a broad spectrum of the population. This last characteristic

in particular contributes to increasing penetration of social media in the popu-

lation, due to the network effect which incentives people to join the networking

sites.

Social media users are not spread evenly throughout the population. Approxi-

mately 90% of adults resident in the UK, aged 16−34 are active on social networks

while there are only 23% of those aged 65 and over using social media (ONS, 2016,

2017). Greenwood et al. (2016) describe the demographic characteristics associ-

ated to some social media platforms in the USA; for example, younger Americans

are more likely to be on Twitter, while the number of older adults (> 40 years

old) joining Facebook has been increasing. LinkedIn continues to be popular

amongst college graduates and high income earners.

Different usages of social media It is important to note the different be-

haviours that users display on social media. Who creates the most content and

what type of content they create depends on different factors and diverging pat-

terns have been found (Bright et al., 2014). However, some common ways of

using the sites can be described.

Power users: The majority of content is created by a small group of users. The

general term to describe these types of users is influencers, since their pur-

pose is often to influence other people’s opinions about current salient issues

or for commercial reasons. There are no clear conclusions concerning why

some users may share more content than others. Some results show that age

and skills could have an effect on the differences in content creation (Har-

gittai and Walejko, 2008). Others show that different types of contents are

affected by different user’s characteristics. For instance, those with higher

academic qualifications are more likely to engage in political discussions and

less likely to create entertainment kind of content (Blank, 2013). Content

from power users will be over-represented in any social media platform.

Residents vs visitors: we can distinguish two types of users. There are those
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who actively spend most of their life online (residents), i.e. those who

regularly (every week or every day) sign into a social media platform and

those who come online only to satisfy specific needs, following which they

leave (visitors). For the visitors in particular, the usage pattern is not

uniform across time. Visitors tend to participate in the platform dialogue

in correspondence of an important event, usually happening offline, which

could have a public nature, as e.g. Twitter, or a private one, as e.g. in

Facebook.

Not human users: social media platform are not only populated by users who

are individuals. Institutions, governments and brands have their own pro-

file that they use to communicate and promote their content within their

communities. There are also accounts which are automatically controlled

and can produce content. Those accounts are called bots and the most re-

fined would appear as human as possible. Another example of not human

users are the parody accounts, such as Elizabeth Windsor (@Queen UK),

which have a high number of followers and retweets.

Duplicated users: it is also possible for the same individual to have multiple ac-

counts in a networking site. This is generally the case for celebrities or

public professional figures. A journalist may have a professional profile,

where the information shared is related to the newspaper for which she is

working and a private one, where they can share freely their opinions.

1.2.2.2 Measures of interest not observed

The unstructured nature of social media data means that often they do not consist

of direct measurements of the variables of interest but only proxies. What is

observed in social media data cannot always be assumed to be the measure under

investigation; in most of cases, the measure of interest requires extrapolation from

metadata and interpretation.

In some cases the socio-demographic characteristics of the user are of interest.

Sometimes, this information is given by the social site, while in the majority of

cases, they need to be inferred by the researcher. Techniques for the automatic

detecting of these characteristics are still under development. For example, in the

case of Twitter, the users’ age and sex can be identified from the users’ profile

picture and their writing style (Daas et al., 2016; Yildiz et al., 2017), their political

views from their follow relationship (Golbeck and Hansen, 2014), their residence
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from their geolocalized tweets (Swier et al., 2015).

In addition, opinions also needs to be identified. Sentimental analysis incorpo-

rates a family of techniques which address the problem of automatic detection

of opinions and sentiments (Feldman, 2013; Pang and Lee, 2008). For example,

a basic algorithm assigns to specific words a score which represent a sentiment,

and the message is classified based on the frequency of the words with a given

score. The field is still new and the challenges are numerous, such as detecting

sarcasm6.

Finally, even when the characteristics of a user or their opinions are clearly iden-

tified, it should be taken into consideration that they do not always represent

what the researcher wants to observe. For instance, during the Iranian protests

in 2009/2010, tweets posted in Iran appeared to be written outside the coun-

try, since people were afraid of repercussion from the government, while Iranians

tweeting outside the country decided to geolocalise their tweets in Iran as a form

of support (Halford et al., 2017).

On social media platforms, people interact with each other, in contrast to an-

swering questionnaires, and they make their profile public, so that it is likely that

they can be influenced by other people’s opinions, or they want to publicise an

image of themselves which does not necessarily represent the truth.

1.2.2.3 Secondary data

Halford et al. (2017) describe how the construction and circulation of social media

data consists of a set of processes. To represent these processes, they use the data

pipeline model as in Figure 1.1.

The pipeline model provides evidence of the way in which social media data are

generated and processed beyond the researcher’s control; in contrast, they are a

consequence of technical, sociological and political factors. They are subject to

the social media companies’ technological infrastructures, the individuals’ per-

ception, legal regulations and ethical implications.

At the bottom of Figure 1.1 the process of the construction of social media data

is conceptualised. The subject represents the user that generates the content

on a laptop, mobile phone or a tablet. The information shared by the subject

is controlled by the company’s APIs, which determine what passes through the

company’s servers.
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Figure 1.1: The social media data pipeline (Halford et al., 2017).

API Acronym for ‘Application Programming Interfaces’, the APIs are a set

of routines, protocols and tools used for building software applications. They

describe which functionalities are available and how they must be used. The use

of a public API is strictly regulated by the policy of the API provider (Janetzko,

2017; Lomborg and Bechman, 2014).

Finally the information is organised in particular formats and structures to form

databases. The information is shaped according to which client server is used;

for instance, geo-referenced content will be more likely created on mobile phones,

rather than laptops. The APIs take a core role in the process, given that they

provide whether certain information is taken or not (see also section 1.2.2.4).

When a database is created, the process also can be read inversely. The infor-

mation sent back to the subject is also part of a process that involves the same

actors: servers, APIs, client or browser software; for example, changes in the API

will change what users can do.

The upper part of Figure 1.1 describes the processes which allow researchers to

collect social media data. These processes move in different lines, all having a

database at the endpoints: one database is generated by the content produced

by the users and shaped by the company’s API, server and interfaces; the other

database is the one that the researcher constructed with the data collected after

cleaning and processing. The data can be collected by the researcher from the

company or through Web scraping. Web scraping involves downloading data

directly from the browser; the data available on the browser is constrained by

the APIs and by the browser as well (browsers, in general, offer personalised Web

surfing experiences to their users). Data can also be collected from the company
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directly or via a third party using their APIs.

In particular, different colours are used to distinguish the APIs used between

different actors. In orange are the APIs which regulate what, and how, is passed

through to the company’s server software and the software that store the data.

The APIs in blue and red are those that provide the set of rules determining

which data can be harvested and their limitations from a third party or the

server software respectively.

These networks of heterogeneous actors, that can be read in both directions,

offer an illustration of the socio-technical factors that shape the process of data

production and collection.

1.2.2.4 Selectivity issues

All the activities made on a social media platform are collected and stored. Access

to all of them is, in some cases, impossible; in other cases, really expensive.

However it is possible to collect a part of the data stored by the media site from

its API.

There are two types of APIs in terms of accessability: the restrict APIs, when

the access is granted only under special conditions, and public APIs, which give

universal access. Public APIs are normally used by researchers to get access to a

social media to collect data.

Via API Every social network has its own APIs, which works in different ways,

however some common filters used to obtain the sample can be distinguished.

Most of the APIs have limitations set by the owner of the sites. These limitations

include the amount of data that can be retrieved and the time of data collection;

for instance Twitter does not allow the collection of tweets older than seven

days.

The data collection starts with the identification of the objects used for the selec-

tion, which depends on the social media of interest. Facebook involves users and

post, Twitter involves hashtag and tweets, Instagram involves pictures. These

objects have different attributes assigned to them, for instance a tweet contains

a time stamp, the username of the user who posted it and in some cases, the

location where it was posted. Finally, the different objects are able to interact

with each other within the network.
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The most common criteria used to collect data for social media are illustrated

below (Mayr and Weller, 2016).

Based on topics and keywords: social media contents, i.e. tweets, Facebook posts,

blog posts etc., can be obtained by searching for a specific topic, for example

a specific event or a general topic. Note that there are many limitations to

achieve completeness, such as the use of different vocabulary and language

or use of different hashtag to indicate the same event. For example during

the EU referendum in the UK many hashtags where used to express opin-

ions on the topic: those in favour to leave: #beleave, #brexit (even though

this hashtag was quite generic and used to describe the political event), and

#voteout; those pro-EU: #bremain, #strongerin and #hugabrit; and the

neutral most commonly used: #EU, #UK and #EUreferendum. These final

hashtags are quite generic and, if not used together with some of the previ-

ous ones, could be misleading and not related to the topic of investigation.

Tweets without hashtags also sometimes occur. This criteria of selecting

data can be used when the interest is on a particular topic or to define a

subpopulation.

Based on structural metadata: filter metadata, for example geolocation, time-

frame, language or format (for instance only retweets or only status con-

taining a URL) can be used to select social media data. These methods can

be used when the investigation concerns particular characteristics of the

target population (for instance the residency) or to define a subpopulation

(for instance, those who speak a specific language).

Random Sample: if the interest is not a specific topic or characteristic, the API

can provide a random sample of objects, in the case of Twitter a sample of

tweets. The algorithm used to obtain the sample is unknown and property

of the site itself.

Based on user accounts: a sample from a given population of users can also be

collected. This approach of selecting a sample can only be feasible if the

usernames are known in advance. Consider the case where the interest is

on the political candidates during an election. If a complete list of their

usernames are available, all the data that they produce on the social me-

dia platform can be retrieved. This approach is only attainable when the

group is made of ‘elite’ users (a small group of known people), rather than

‘ordinary’ users; for instance it is not always possible to identify all those
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who are eligible to vote, hence a random sample from the population of po-

tential voters cannot be extracted. Rebecq (2018) uses the user ID number

to randomly select a set of users from Twitter. It has to be noted, however,

that some ID numbers are missing as well as the maximum number between

them, indicating that the number of existing users is not known.

The Twitter APIs The collection of all the tweets is called the firehose. Using

the free available Twitter’s APIs a complete access to the firehose is not possible,

however there are other ways to obtain it (see below). Twitter’s free APIs are

organized into two categories, each of which provides a set of rules and criteria

used to collect the data: the REST API and the streaming API. Both APIs are

constantly changing; terms of usage, data access limits, technical features (like

geo-tagging) can be updated in times. These changes of regulations are not only

due to technological advance, but they are also related to specific strategies of

the company.

Streaming API: it offers access to the global stream of tweet data. The streaming

data has two different endpoints, which specify where the data that can be

accessed is situated:

Filter endpoint. Used to obtain a stream of tweets which match one or more

keywords;

Sample endpoint. It offers a random sample of 1% of the firehose.

REST API: it is used to retrieve past tweets. It is characterized by some lim-

itations: 1. Only tweets between the last seven days to 24 hours can be

collected; 2. It is focused on ‘relevance and not completeness’7, so that

not all tweets will be indexed and made available; 3. The Rest API does

not provide the same results as the Twitter Web search, i.e. if the same

keyword is used to search on the Twitter search (in the website), the list

of the resulting tweets will not necessarily be the same as the one obtained

via the Rest API.

There is only one endpoint:

Search endpoint. Via a variety of query operators, such as hashtags, text,

usernames, etc., a specific search is made possible among tweets.
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Via GNIP or similar Data collection can also be made using social media

API aggregation services. They are paid service that offer completely access to

the Firehose and retrieval of historical tweets.

The companies offering these services “gather data from the APIs of over 40

different publishers, normalize the content into one format (Activity Streams),

enrich the stream with relevant metadata, and send those streams on to our

customers through one pipe”8 (Rob Johnson, Gnip).

The most established companies in this sector are DataSift and Gnip (which was

acquired by Twitter in April 2014). Note that DataSift lost access to the complete

full data stream of Twitter and to historical data in 2015.

Web scraping Web scraping is another form of data collection which involves

the use of programs to process Web pages and extrapolate the required informa-

tion, such as social media content. Using this method, the researcher does not

have to go through the company’s APIs, and she is able to collect data which

may not be given by the company’s terms. Although, it has to be noted that

when the data is scraped from the web, the content available is often personalised

for the registered users from the company. Furthermore, even when the session

is anonymous, the content can still vary according to the geographic location or

the browser used, amongst others, during the request.

1.2.2.5 The unit problem

Research conducted with social media data may vary from one form of social

media to another, however a generic scheme illustrating how the research is con-

ducted can be described in three steps. The first two steps are related to the

identification of the population of interest via the unit of data collection. The

third step concerns the measurement of the variable of interest, which has to be

constructed from the content that the user has posted or provided on her profile.

If the measure has to be taken from the posts related to each user, they need to

be aggregated to produce a single value for the variable.

1. Identify a time frame and a geographical place. The construction of a frame

for the target population begins here.

2. Identify a set of relevant keywords or metadata. For example, if the filter

involves the use of keywords, then the selection of those filters refines the
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frame of the target population. The choice of words to include in the set is

quite delicate, since it can produce under or over coverage errors. For instance,

if a term is too generic, it will likely include units which are irrelevant to the

research, resulting in overcoverage. On the contrary, if terms are too specific,

the risk is to exclude units which are relevant. Note that units could include

both those which are linked to people (users) or linked to the content produced

by people (post, tweets, etc.), according to the data collection from the social

media network.

3. Finally in this step the focus is on extracting meaning from each unit according

to the format of the data, which can be text, URL, images etc. and construct-

ing a method for measuring the variable(s) of interest. This process can be

made both by a human or machine learning algorithm. For instance, Yildiz

et al. (2017), compare the results of human vs. machine learning algorithms

for identifying sex and age and find the accuracy to be higher when humans

are asked to perform the task.

These three steps are quite generic and might accommodate data from each dif-

ferent social media platform, according to the permitted procedures used for

selecting the data.

An important feature of the statistical analysis of social media data, which tran-

spire from the above discussion, is that the definition of the frame and the observ-

able measure is consequent to the choice of the units of data collection. Because,

in most of the cases, the direct observation of the elements of interest, i.e. the

user, is unpractical, the sample is taken indirectly from the posts or the hashtags,

as above described.

The problem of the unit is not isolated to the representation dimension. As seen

above, the measure of interest might also be computed as a function of the mea-

sures observed on the sampling units relevant to each element of interest.

In the first chapter of this thesis (Patone and Zhang, 2019), the current state of

analysis of social media data will be discussed and classified into two approaches

on the basis of how they relate to the problem of the units.
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1.3 Types of inference with big data

In the previous section we have discussed the quality of social media data for

making statistical inference. It appears clear that one of the main obstacle to

achieve valid conclusion is that rarely a social media dataset represents a random

sample of the population of interest, due to missing data, imperfect coverage and

non random selection.

If the sample selection is not random, then no valid statistical inference can be

made using a design-based approach. In sampling theory, randomisation plays a

dominant role. It is employed to determine which units should be observed and

randomisation distribution provides the basis for statistical inference.

Model-based approach to inference does not make explicit use of randomisation or

probability sampling, and it offers a formal way to made statistical valid inference

from non-random samples.

A review of the inference methods which use non-random samples is given by

Buelens et al. (2018). Three broad types of model-based approaches to infer-

ence are distinguished: pseudo-randomisation or pseudo-design-based inference,

model-based inference and machine learning or algorithmic methods. In their

paper, Buelens et al. (2018) compare different methods in each class to derive

which class is more able to remove selection bias in non-random samples.

A comprehensive overview of non-probability sampling and the their methodolog-

ical issues for official statistics is provided by Berȩsewicz et al. (2018).

Pseudo-randomisation or pseudo-design-based inference Pseudo ran-

domisation includes all methods where the probability of being in the sample,

which is unknown, can instead be modelled: pseudoinclusion probabilities are

estimated and used to correct for selection bias and used in Horvitz–Thompson

type estimators to account for unequal selection probabilities (Valliant and Dever,

2011). See Elliott and Valliant (2017) for a review of the pseudo-randomisation

approach. Examples of pseudo-design-based inference are: propensity score meth-

ods (Rosenbaum and Rubin, 1983); linear weighting methods to non-probability

sample (Baker et al., 2013); combine a non-probability sample with a reference

sample to construct propensity models for the non-probability sample (Elliott,

2009); Sample matching (Rivers, 2007). Matching and propensity score adjust-

ments are based on strong ignorability assumptions and can lead to serious bias
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if these assumptions are not met (see, e.g. Young and Karr (2017)).

Model-based inference In the modelling approach, a model is assume to

have generated the distribution of the variable of interest. The model is fitted

using a sample. Smith (1983) has discussed how the sampling mechanism affect

the inference drawn under a model-based approach. Sverchkov and Pfeffermann

(2004) and Pfeffermann and Sverchkov (2003) discuss model-based approaches

for informative sampling. Small area estimation has also been used to combine

high-quality small-sized probability samples with large non-probability samples

(Marchetti et al., 2015; Blumenstock et al., 2015; Brakel et al., 2017; Pfeffermann

and Sverchkov, 2007). Finally, Pfeffermann et al. (2015) gives an overview of

problems and issues with the use of big data in official statistics. See e.g. Smith

(1983), Elliott and Valliant (2017) and Zhang (2019) for inference approaches

assuming non-informative selection of the observed sample; see e.g. Rubin (1976)

and Pfeffermann et al. (1998) for examples of approaches that explicitly adjust for

the informative selection mechanism. Statistical models are also used to predict

the units not in the sample (Royall, 1970).

Machine learning or algorithmic methods Machine learning methods are

algorithms that are able to predict unseen values based on a given data set with

known values. Unlike model-based prediction, these algorithmic models cannot be

formulated as relatively simple analytic expressions (Buelens et al., 2018). Hastie

et al. (2016) give a recent overview of common algorithmic machine learning

methods. Examples are k-nearest neighbours, regression trees, artificial neural

networks and support vector machines.

In their study, machine learning methods are the more powerful. They conclude

that pseudo-design-based methods are too restrictive and will often be insuffi-

cient to remove selection bias from non-random samples. Also, a set of auxiliary

variables explaining the missing-data mechanism is an essential ingredient for

successfully employing non-probability samples in producing accurate valid sta-

tistical inference.
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1.3.1 Challenges with the model-based approaches of in-

ference

Two important characteristics of big data are the high-dimensionality and the

large sample size. These characteristics are suggested to understand aspects of

the data which would be difficult to understand with small data. The biggest

promise that big data propose, thanks to its features, is related to the development

of methods which can describe the relationship between outcome and predictor

variables and efficiently predict future observations. Moreover, large sample sizes

are essential to be able to identify and study subpopulations, especially when

those consist of rare individuals, who may be difficult to capture with a small

sample size (where, if they are captured, they are likely to be considered as

outliers).

However, as Fan et al. (2014) argue, high dimensionality and large sample size are

also the features which cause most of the challenges which invalidate traditional

statistical methods and require a new set of tools to analyse big data. Below we

list those challenges.

Heterogeneity. Being able to observe large enough sample sizes for different sub-

populations, big data are useful to understand heterogeneity and investi-

gate problems such as the association of certain covariates and rare features

(which are now observable) or the effects of a certain treatment on a specific

subpopulation. However, inferring models which represent a subpopulation

in a large dimension can be problematic with standard models, since it can

lead to overfitting or a further issue of noise accumulation.

Noise accumulation. Given the large number of variables available, it may be

tempting to use them in the statistical analysis, increasing the number of

parameters that needs to be tested or estimated. When a decision or a

prediction rule is conceptualised based on such parameters their estimation

errors will increase, causing noise accumulation. Furthermore, when a large

number of variables are used, included variables which have a low signal-

to-noise ratio, for classification or regression prediction, the models will

provide low performances.

Spurious correlation. Again spurious correlation is due to the high dimensionality

of the data and it refers to the fact that some variables, which are scientifi-

cally unrelated, might erroneously have high sample correlation. This may
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lead to false conclusions, which challenge variables selection and incorrect

statistical inference.

Incidental endogeneity. The term ‘endogeneity’ implies that some predictors may

be correlated to the residual terms. Since for many statistical methods, the

assumption of independence between residual terms and predictors is es-

sential, incidental endogeneity may invalidate the statistical analysis. High

dimensionality is a possible cause of endogeneity.

All four of the issues highlighted above are motivated by examples provided in

Fan et al. (2014).

An example of a big data study that did not go as intended Take for

instance the Google Flu Trend, which is the most recognized example of failure

in the use of big data for scientific research. The idea was to use Google searches

on flu symptoms, remedies, et similar to estimates the flu activities in the United

States and 24 countries worldwide. At first, Google Flu Trend provided estimates

which were more accurate than the Centers for Disease Control and Prevention

(CDC), but after a while, it started to predict more than double the proportion

of doctor visits than the CDC.

Lazer et al. (2014) attributes this failure in prediction to two causes: algorithmic

dynamics and big data hubris. The algorithm dynamics could lead to the creation

of bias in the data. In this specific example, the algorithm was such that, when

someone searched for flu related terms, the algorithm was suggesting the search

of flu symptoms and treatments, which were the terms used to predict flu. It is

comparable to the case in survey sampling, when the interviewer suggests to the

respondent that are coughing that they are coughing and could therefore have flu

and asks the respondent if he has flu. The big data hubris implies that the large

amount of data does not imply the data does not suffer from any other error,

such those mentioned above.

1.4 The network structure

Social media can be reduced to an abstract structure which captures the main

objects and the connections between them; this structure is known as a network

(see Figure 1.2 for two examples of a network). More than one network can be

constructed, according to the objects of interest (i.e. the users and the content
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they create) and the relationships between them. A network, in its simplest form,

consists of a set of nodes, i.e. the objects; a set of edges, i.e. the connections

between them; and a set of attributes, i.e. different measures associated to both

the nodes and the edges.

(a) (b)

Figure 1.2: Two examples of Twitter networks from the blog ‘Digital Humanities
Specialist’(https://dhs.stanford.edu/gephi-workshop/twitter-network-
gallery/. (a): A conversation between Twitter users focused on whether terror
and Islam can be separated; (b): a user actively writing different tweets at a
variety of users during a short period.

1.4.1 Structure of social media

Social media data does not only consist of conversations between users, but also

acts as a series of complex platforms involving different actors. Often, two main

actors are distinguishable: the user and the content produced, which varies ac-

cording to the specific platform. The two types of actors interact within their

similar as well as between them.

The types of connection, between the objects of social media vary, according to

the specific platform, changing the dynamics and structure of the platform and

the way in which it is accessed. For instance, Facebook does not allow access to

content unless the connection between users is mutual, while Twitter, which also

allows for one-way relationships (user A can follow user B, without necessarily

being followed by them), allows that there is open access to content to all users,

depending on the user’s privacy.

Consider Twitter. Each account can follow and be followed from other accounts.

On the news feed, the tweets posted from the followed users will appears.
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Figure 1.3: Conceptual model of Twitter activities.

Each tweet can be original, a reply to another tweet or a copy of a different tweet,

known as a retweet (RT); it can mention a username account (@), to address a

specific user, and it can contain hashtag (#), to declare the topic of the tweet.

Hashtags offer a way to categorize tweets into specific topics (e.g. a tv show, a

sport event, a news); for instance football matches, film festivals or conferences

which may have an official hashtag under which the content generated by the users

watching/attending the event is classified. Hashtags can also be user-specific and

may not understandable for the general public.

Together with the hashtag, the two other main objects of Twitter are the account

and the tweet and Twitter records both with their corresponding metadata.

Figure 1.3 represents a conceptual model of the Twitter platform as defined in

Brown and Soto-Corominas (2017). The authors describe the Twitter platform

with three objects, which are the users, the tweets and the hashtags, and the

relationships that those objects share between them. For instance, a user tweets

a tweet or a tweet replies to a tweet, among others. Further, to each one of these

objects a series of attributes can be associated. For instance, for each user we

have an ID, a screen-name, a location and a picture.

1.4.1.1 Measures of complexity

Representing the social media systems as a network can be a powerful tool to

discover and understand patterns of connections or interactions between the ele-

ments of the systems or between some of their components. Different metrics or

properties, borrowed from graph theory, are used to represent the form and the

function of the system represented by the network, i.e. to analyse the structure
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of the network. In the following we present a brief introduction to some of those

properties.

Let A and B be two nodes in a network N .

Measures of connections: density of N , the ratio between the number of edges in

the graph and the number of all the edges that could be present; Out-degree

of A, the sum of the edges connecting A to the others nodes; In-degree, the

sum of the edges connecting the nodes in the network to B.

Measures of distance: walk between A and B, the sequence of nodes and edges

from a node A to a node B; Geodesic distance between A and B, the shortest

walk between all the possible walks from A and B; Diameter of N , the

longest between all the geodesic distances.

Measures of power: degree of A, the sum of edges from or to A; Closeness cen-

trality of A, the sum of the geodesic distances between A and the other

nodes.

For instance, an interesting characteristic of social networks is that there is a small

but significant number of nodes with an extremely high degree. Those nodes

are called ‘hubs’ and they usually play an important role inside the network,

changing the performance and behaviour of the other nodes in the system and

act as propagators of information.

Another related characteristic of social network is known as the ‘small-world

effect’ which says that the mean geodesic distance between two nodes is usually

short, which increases as the logarithm of the number of nodes in the network.

This implies that information spreads rapidly around the network (six degree of

separation).

A final example of a distinctive property of the network is the formation of clus-

ters or communities. In Facebook, for instance, everyone is extremely connected

with their close friends, which are likely to be connected to each other (high

transitivity).

In the last decades, the study of the patterns of connections in social media

networks has rapidly increased. On one side, the structure of such networks can

clearly have an important effect on the behavior of the whole system; it seems

therefore necessary to include it when we aim to understand how the social media

network works. For example, the connections in a social network affect how
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people debate, share opinions, and gather news, as well as how information is

spread inside the network. On another side, when dealing with social media

data, these patterns of connection can be easily observed and stored, when it was

otherwise unpracticable, if not impossible, with more traditional type of data.

The technological progresses has clearly motivated the interest on understanding

these system.

1.4.2 Use of the graph structure for design-based infer-

ence

Stephan (1969) discusses modern sampling theory and suggests several further

development of it. In particular, he calls nexus sampling the statistical inference

in graphs. Stephan recognized that the conventional way of looking at a popu-

lation disregard completely the interactions that might exists between the units

and focuses only on the measurements attached to each individual. However,

these interactions might be of value during the construction of a sampling design

and for the estimation of the characteristic of interest.

For example, there are situations when some individuals can be observed only

if the individuals related to them are observed in the sample. Stephan point

out that a general theory of graph sampling is missing. Several attempts have

been made: Goodman (2010) proposes snowball sampling as a sampling technique

which allows to enlarge the initial sample by recruiting more elements, which are

related to the initially sampled ones. Adaptive sampling (Thompson, 1990) is also

a way to expand a sample, by adding only elements related to elements of interest.

Birnbaum et al. (1965) and Lavallée (2007) consider instead the situation where

the sampling frame and the population of interest consist of different elements,

and the observation of an element of interest is subject to the observation of the

sampling unit related to it.

All these attempts have aimed to solve a relevant problem, but a general theory

which can incorporate all of them, by recognising the graph structure of the

population, has not been provided. The first attempt to establish a general

framework for finite graph sampling and estimation belongs to the pioneer work

of Frank (1971, 1977a, 1979, 1980b, 1981, 2011). Frank does not focus on specific

populations, but he investigates how different sampling methods can be applied

to any population graph.
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The second chapter of this thesis Zhang and Patone (2017) reviews the work

made by Frank and includes some more extension. Also, as suggested by Stephan

(1969), the connections available in the population graph can be used as a way

of accessing into the population, with the purpose of obtaining more data: the

third and four chapter of this thesis investigate how these extra information can

be used in the estimation of totals of a population.

1.5 A structure of the thesis

The purpose of the first paper “On two existing approaches of statistical analysis

with social media data” is to identify a range of theoretical and methodological

challenges for a valid descriptive statistical inference. Two existing approaches of

statistical analysis, aimed to overcome the basic challenges associated with these

data, are delineated. In the first approach, the analysis is applied to the social

media data that are organised around the objects directly observed in the data;

in the second one, a pseudo survey dataset, aimed to transform the observed

social media data to a set of units from the target population, is constructed and

analysis applied to it. From the review of these two approaches, we conclude that

the main difficulty in the one-phase approach is to identify an analytic connection

to the target parameter, whereas the two-phase approach, besides facing the

same challenges of non-probability sampling and measurement errors, introduces

a new type of error that involves the transformation of the data into the units

and measures of interest. The paper is currently under review in International

Statistical Review.

The bigger part of the thesis concerns graph sampling and estimation. In the

paper ‘Graph sampling’, published in Metron, we synthesize the existing the-

ory of graph sampling and develop a general approach of HT-estimation based

on T-stage snowball sampling, under the requirement of ancestral observation

procedure. While the ancestral requirement might be hard to fulfil in many ap-

plications, it can be possible with social media data, by technological means. A

key message of this paper is that the parameters which can be studied under a

network representation differ from the conventional target parameters. It seems,

in fact, feasible to investigate the interactions between the elements, their struc-

tural positions, etc. which are instead hard to be defined in a list representation

of the population.
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The other two papers deal with unbiased estimation methods from the sample

graph. Both papers focus on the use of a Bipartite Incidence Graph (BIG), which

offers an useful representation of many unconventional situations of sampling. In

a BIG, the two distinct sets of nodes are represented by the sampling frame and

the population of motifs; and a edge exists from a sampling unit to a motif, if

its observation leads to the observation of the motif. In the paper ‘Incidence

weighting estimation under sampling from a bipartite incidence graph’ we exploit

the use of the observed edges in the BIG for estimation: each sampling method

induces an incidence structure on the BIG, that, together with a relevant observa-

tion procedure, allows the estimation of characteristics of the population of motifs

to be carried out on the sampled units rather than on the motifs directly. This

use of the BIG is advantageous in situations when the probabilities of inclusion of

the motifs cannot easily be computed, e.g. if a frame is not available, or in situ-

ations where the incidence structure can be used to improve the estimation. The

use of the incidence structure of the BIG is also investigated in the last paper,

‘Reverse weighting estimation under BIG sampling’, but in the reverse direction.

In this paper, we turn around to the opposite direction the incidence estimation

described in the previous paper and make use of observed edges to carry out the

estimation of cardinality of the frame on the sampled motifs, rather than on the

sample of units. Without using any known additional variable, but only the size

of the frame, we showed how the structure alone of the BIG can be used to im-

prove the reduce the variance of the estimator, in the form of a Hajek-type and

ratio-type estimators.
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Chapter 2

On two existing approaches to

statistical analysis of social media

data

Using social media data for statistical analysis of general population

faces commonly two basic obstacles: firstly, social media data are col-

lected for different objects than the population units of interest; sec-

ondly, the relevant measures are typically not available directly but

need to be extracted by algorithms or machine learning techniques.

In this paper we examine and summarise two existing approaches to

statistical analysis based on social media data, which can be discerned

in the literature. In the first approach, analysis is applied to the social

media data that are organised around the objects directly observed

in the data; in the second one, a different analysis is applied to a

constructed pseudo survey dataset, aimed to transform the observed

social media data to a set of units from the target population. We

elaborate systematically the relevant data quality frameworks, exem-

plify their applications, and highlight some typical challenges associ-

ated with social media data.

Key words: quality, representation, measurement, test, non-probability sam-

ple.
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2.1 Introduction

There has been a notable increase of interest from researchers, companies and

governments to conduct statistical analysis based on social media data collected

from platforms such as Twitter or Facebook. At the same time, there is also a

growing concern about various issues associated with these new types of data.

For instance, Boyd and Crawford (2012) ask whether such data may alter what

‘research’ means, and call for the need to interrogate relevant assumptions and

biases. Bright et al. (2014) argue that caution is needed when interpreting social

media data, and major questions remain on how to employ such data properly.

Hsieh and Murphy (2017) highlight what they call coverage error, query error

and interpretation error in relation to Twitter data. Halford et al. (2017) urge to

develop better understanding of the construction and circulation of social media

data, to evaluate their appropriate uses and the claims that might be made from

them.

The aim of this paper is to examine and summarise two existing approaches to

statistical analysis based on social media data, when the analysis otherwise would

have been possible based on the traditional approach of survey sampling. To fix

the scope, let U = {1, 2, ..., N} be a target population of persons. Let yi be an

associated value for each i ∈ U . Let the parameter of interest be a function of

yU = {y1, ..., yN}, denoted by

θ = θ(yU)

For instance, θ can be the population total or mean of the y-values. The quality

of sample survey data can generally be examined with respect to two dimensions:

representation and measurement (Groves et al., 2004). The representation dimen-

sion concerns the relationship between U and the observed set of persons, denoted

by s. For example, s suffers from under-coverage if there are persons in U who

have no chance of being included in s. The measurement dimension concerns the

potential discrepancy between yi and the obtained measures, denoted by y∗i for

i ∈ s. For instance, y∗i may be subjected to various causes of measurement error,

such that y∗i 6= yi for some persons in s.

Thus, when social media data are employed, one needs to address two basic

obstacles with respect to each quality dimension. Firstly, social media data are

initially organised around different units than persons; secondly, the relevant

measures typically cannot be directly observed but need to be processed using
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algorithms or machine learning techniques. For example, one may like to make

use of the relevant tweets to estimate the mean of a value associated with the

resident population of a country. The directly observed unit (or data object) is

then the tweets, whereas the statistical unit of interest is the residents. Next,

instead of using designed survey instruments to measure the value of interest as

one could in survey sampling, one will need to process a proxy to the target value

from the Twitter texts by means of text mining.

Two existing approaches can be discerned in the literature. In what we refer to

as the one-phase approach, statistical analysis is directly applied to the observed

social media data that are organised around data objects other than persons. An

example is Yan et al. (2019), who document statistical association between avail-

able drug-related tweets (processed by text mining techniques) in May - December

2012 and US county crimes rates (calculated against population size adjusted for

non-residents) over 2012 - 2013. Next, in the two-phase approach, a different

analysis is applied to a constructed pseudo survey dataset, after transforming the

observed social media data to a set of persons from the target population. An

example is Rampazzo et al. (2018), who document correlation between fertility

rate published by the UN and that can be calculated for Facebook users. The

pseudo survey dataset is collected directly from the Facebook Advertising Plat-

form, which is assumed to be cleared of bots or other non-human accounts. The

variable ‘number of children’ is also prepared by Facebook based on the informa-

tion the company has about the users.

In this paper we shall delineate these two approaches more generally and system-

atically than they have hitherto been treated in the literature, where the Social

Media Index for Dutch Consumer Confidence (Daas and Puts, 2014) serves as a

typical case of the one-phase approach, and the ONS study on residency and mo-

bility data constructed from geolocalised tweets (Swier et al., 2015) is used to il-

lustrate the construction of pseudo survey dataset under the two-phase approach.

We shall elaborate the relevant data quality frameworks and methodologies, and

highlight some typical challenges to statistical analysis.

The rest of the paper is organised as follows. In Section 2.2, we systematise and

describe in greater details the general issues of representation and measurement

of social media data. In Section 2.3 and 2.4, we delineate and examine the one-

phase and two-phase approaches, respectively. Finally, some concluding remarks

are provided in Section 2.5.
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2.2 General issues of representation and mea-

surement

2.2.1 Representation

A major concern about the use of social media for research is the non-representativeness

of data, when the population of interest does not coincide with the social media

population (Boyd and Crawford, 2012; Bright et al., 2014; Halford et al., 2017;

Hsieh and Murphy, 2017). Meanwhile, when investigating the representativeness

of a social media population, one often compares it to the resident population of a

country, about which one has high-quality statistics. For instance, Pew Research

Centre publishes every year a report on the use and participation in social media

of the US population. It is shown that US users of Twitter and Facebook tend

to be younger and more educated than the US resident population (Greenwood

et al., 2016). In the UK, Blank and Lutz (2017) find that Facebook users are

more likely to be younger and female, while LinkedIn users are more likely to

have an higher income than non-users. Mellon and Prosser (2016) examine how

Twitter and Facebook users differ from the UK resident population in terms of

demographics, political attitudes and political behaviour.

Twitter provides a typical example of online news and social networking site.

Communication occurs through short messages, called tweets ; the act of sending

tweets is called tweeting. To be able to tweet, an account needs to be created.

To register, a user has to provide an email address, a username and a password.

A user can be a person, a business, a public institution, or even softwares (bots),

etc. In case of person, the user is not obliged to create an account reflecting her

physical persona. Optional fields include a profile picture, a bio and a location,

which are neither verified nor expected to accurately characterise the user. By

default tweets are publicly available, although the user may change the privacy

setting to make it private. Each tweet can be original, a reply to another tweet

or a copy of a different tweet, known as a retweet. It can mention a username

account (@) to address a specific user, and it can contain hashtag (#) to declare

the topic of the tweet. Hashtags offer a way to categorise tweets into specific

topics (e.g. a tv show, a sport event, a news story). Some events such as football

matches, film festivals or conferences may have an official hashtag under which the

relevant tweets about the event are classified. Hashtags can also be user-specific

and not intelligible to the general public.
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As in the Twitter example, one can identify two directly observable units of

data on most social media platforms, which we will refer to as the post and the

account :

Post We use the generic term post to refer to the immediate packaging of social

media content, which otherwise has a platform-specific name: Facebook has

posts, Twitter has tweets and Instagram uses picture, etc.

Account An account is the ostensible generator of a post. As in Twitter, the

user(s) operating a social media account can be different entities including

but not limited to persons. Moreover, the same user can have multiple

accounts, but the connections between these accounts and the user are not

publicly accessible.

Denote by P and A, respectively, the totality of all the posts and accounts on

a given social media platform. There is a many-one relationship from posts to

the active accounts, denoted by AP = a(P ), and the inactive accounts A \ AP is

non-empty in general. Next, there is a many-one relationship from accounts to

the users, denoted by b(A). The observable persons are given by the joint set of

the target population U and uAP = b(AP ) = b
(
a(P )

)
, i.e. via the active accounts.

Moreover, U \ uAP is non-empty as long as there are persons not engaged with

the given social media platform, and uAP \ U is non-empty as long as they are

other users than persons. These relationships are summarised in Table 2.1.

Table 2.1: Many-one relations a from post to account, and b from account to user

Post Account Person
Totality P A U
Observable P AP = a(P ) U ∩ uAP , uAP = b(AP ) = b

(
a(P )

)
A \ AP 6= ∅ U \ uAP 6= ∅, uAP \ U 6= ∅

Sample i. sP ⊂ P i. sA = a(sP ) U ∩ sAP , U \ sAP 6= ∅, sAP \ U 6= ∅
ii. sP ⊂ a−1(sA) ii. sA ⊂ A i. sAP = b

(
a(sP )

)
, ii. sAP = b(sA)

Next, a common way of collecting data from a given social platform is via the

public APIs, either directly or indirectly through third-party data brokers; Web

scraping provides another option, albeit with unclear legal implications at this

moment. Via the APIs, a sample of posts or, less commonly, accounts is harvested

directly from the social media company and the obtainable sample depends on the

company’s terms and conditions. Depending on the API, the obtained datasets

may differ in terms of being real-time or historical, or the amount of data that is

allowed for.
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Gaffney and Puschmann (2013) provides an overview of the tools available to

extract Twitter data. For example, the Streaming API* returns two possible

samples: a 1% sample of the total firehose (the firehose is the totality of tweets

ever tweeted), without specifying any filter; or a sample of posts on specific

keywords or other metadata associated to the post. However, if the number of

posts matching these filters is greater than 1% of the firehose, the Twitter API

returns at most 1% of the firehose. In addition, historical tweets can be retrieved

using the Search API, which provides tweets published in the previous 7 days,

with a selection based on “relevance and not completeness” (Twitter Inc.). For

both APIs, Twitter does not provide the details of the process involved, nor

guarantees that the sampling is completely random. See e.g. studies that have

been conducted to understand and describe how the data generation process

works with Twitter (Morstatter et al., 2013; González-Bailón et al., 2014; Wang

et al., 2015).

Sampling of accounts is less common, which is only feasible if the usernames

are known in advance. Consider the case where the interest is on the political

candidates during an election. If a complete list of their usernames are available,

sampling can be performed by the analyst; all the posts generated by the sample

accounts on the social media platform can possibly be retrieved. The approach

is only applicable when the group is made of ‘elite’ users (of known people),

rather than ‘ordinary’ users; for instance it is not always possible to identify all

the eligible or potential voters. Rebecq (2018) and Berzofsky et al. (2018) use

the user ID number to randomly select a set of users from Twitter. Both the

authors use also the available connections between users to propogate the initial

sample.

Thus, the actually observed units are generally either a subset of P or A to start

with. An initial observed sample of posts, denoted by sP ⊂ P , can lead one to

a corresponding sample of accounts sA = a(sP ) and then, in principle, a sample

of users sAP = b
(
a(sP )

)
. Given a sample sA directly selected from A, we can

possibly acquire a sample of users sAP = b(sA) and a sample of associated posts,

denoted by sP = a−1(sA). The observed sample of persons are given by the joint

set of U and sAP . Again, both U \ sAP and sAP \ U are non-empty in general.

The relationships are summarised in Table 2.1 as well.
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2.2.2 Measurement

Unlike in sample surveys, social media data are not generated for the purpose

of analysis. They have been referred to as “organic data” (Groves, 2011b) to

emphasise their non-designed origin. One can only decide what is best to do with

the data given the state in which they are ‘found’. In light of the discussion of

representation above, the obtained measures from social media data are either

associated with the sample of posts or accounts. These may be based on the

content of a post such as a text or an image, or the metadata of a post or account,

such as the geo-location of a post or the profile of an account. According to Bright

et al. (2014) and Japec et al. (2015), social media data are seen to provide the

opportunity to study the following social aspects: 1. to capture what people

are thinking, 2. to analyse public sentiment and opinion, and 3. to understand

demographics of a population. To this one may add that social media data

can obviously provide data about certain network relationships between posts,

accounts or users.

Take Twitter for examples of all the possibilities mentioned above. While Twit-

ter does not provide the information whether a user is a parent or not, it may

sometimes be possible to infer that the user behind a tweet is a parent based on

its content. Similarly, while Twitter does not provide the location of a user, it

is sometimes possible to infer this from the location (or content) of the relevant

tweets. When opinions about a particular topic are of interest, sentiment analysis

can be performed on each tweet. By analysing the frequency of different hashtags,

it could be possible to investigate the major topics that capture people’s attention

at a given moment. Finally, retweeting or the inclusion of certain hashtags can

reveal particular network connections between the different users.

Generally we shall distinguish three types of data extraction from the sample

posts and accounts, while at the same time noting the associated challenges in

each respect:

Content Thought, opinion and sentiment provide typical examples of content

extraction, which are the direct interest of study. Sentiment analysis is a

common technique for extracting opinion-oriented information in a text.

However, social media posts present some distinct challenges, because the

expressions may be exaggerated or too subtle (Pang and Lee, 2008). More-

over, the posts on social media are public by nature, such that a user may

easily be influenced by other opinions, or she may want to project an image
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of herself which does not necessarily represent the truth.

Feature Demographics, location and socio-economic standing are common exam-

ples of feature extraction, when these are not the direct interest of study

but may be useful or necessary for disaggregation and weighting of the re-

sults. Various techniques of ‘profiling’ have been used for feature extraction.

For instance, Daas et al. (2016) and Yildiz et al. (2017) consider the prob-

lem of estimating age and gender of Twitter users based on the user’s first

name, bio, writing style and profile pictures. Or, Swier et al. (2015) derive

the likely place of residence of a user, from all the geo-located tweets that

the user has posted. Completely accurate feature extraction is generally

impossible regardless of the techniques.

Network Directional posting, reposting, sharing, following and referencing all

provide the possibility of observing network relationships among the posts,

accounts or users. Common interests regarding the pattern and interaction

among social network actors include identifying the most influential actor,

discovering network communities, etc. Tabassum et al. (2018) provide an

overview for social network analysis. However, it should be noted that the

possibility and ease of network extraction is to a large extent limited by the

APIs provided for a given social media platform.

In light of the above, whether by content, feature or network extraction from

available social media data, one should generally consider the obtained measures

as proxy values to the ideal target values. Of course, measurement errors are

equally omnipresent in sample surveys. For instance, survey responses to ques-

tions of opinion may be subjected to mode effects, social desirability effects and

various other causes of measurement error (e.g. Biemer et al. (2004)). So there

is certainly scope for exploring social media data for relevant studies.

There is a noteworthy distinction between measurement errors in survey and

social media data. In sample surveys, a measurement error does not affect the

representation of the observed sample. The matter differs with social media

data. For instance, when relevant accounts to a study are selected based on

the metadata of an account, such as place of residence, errors can arise if the

information recorded at the time of registration is not updated despite there has

actually been a change of the situation. Such an error can then directly affect

which accounts are selected for the study, i.e. the representation dimension of

data quality. An initial measurement error in the description of the account can
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thus result in a coverage error with respect to the study population. Similarly,

one may fail to include a post in a study if it is classified as not containing the

relevant opinion of interest. In sample surveys, the sampling frame is chosen

to best fit the target population and it is obtained from external sources, such

as registers of addresses or persons. Any error arising from an incomplete or

erroneous frame is classified as coverage error and only affects the representation

dimension.

It may be envisaged that combining multiple platforms, such as Twitter and

Linkedln, can be useful for enhancing the accuracy of data extraction, although

we have not been able to find any documented examples. This could be due

to ethical reasons or the limitations imposed by the terms of conditions of the

social media companies. An additional concern could be the ‘interaction’ between

representation and measurement just mentioned above, where e.g. the accounts

for which data combination is possible are subjected to an extra step of selection

from the initially observed sample of accounts.

2.3 One-phase approach

In the one-phase approach, one needs to estimate the target parameter θ = θ(yU)

directly from the obtained measures, denote by zj, associated with a different

observed set of units sP or sA, despite the differences to yi and U .

To see why this may be possible at all, consider the following example. Suppose

one is interested in the totality of goods (θ) that have been purchased in a shop

over a given time period. One could survey all the people who have been in the

given shop during the period of interest and ask what they have purchased. The

population U then consists of all the relevant persons and yi is the number of

goods they have purchased (possibly over multiple visits to the shop). Alterna-

tively, θ can be defined based on the transactions registered over the counter. The

population P consists then of all the relevant transactions, and zj is the number

of goods associated with each transaction j ∈ P . Clearly, despite the differences

in (yi, U) and (zj, P ), either approach validly aims at the same target parameter

θ.

Below we reexamine the Social Media Index (Daas and Puts, 2014) as an applica-

tion, to formalise this approach and the relevant quality issues and methodological

challenges.
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2.3.1 Case: Social Media Index (SMI)

Every month, Statistic Netherlands conducts a sample survey to compute the

Consumer Confidence Index (CCI). It is based on a questionnaire of people’s

assessment of the country economy and their financial situation. As part of the

research on the use of social media data in official statistics (Daas and Puts,

2014; Daas et al., 2015), the authors collected posts from different social media

platforms and constructed the Social Media Index (SMI) from these posts. They

observed and compared the CCI and SMI over time and concluded that the two

series are highly correlated (see Figure 2.1).

The SMI is constructed as an index that measures the overall sentiment of social

media posts. The posts were purchased, in the time period between June 2010

and November 2013, from the Dutch company Coosto, which gather social media

posts written in the Dutch language on the most popular social media of the

country (Facebook, Twitter, LinkedIn, Google+ and Hyves). Coosto also assigns

a sentiment classification, positive, neutral or negative to each post based on

sentiment analysis (Pang and Lee, 2008), which determines the overall sentiment

of the combination of words included in the text of the post. A neutral label is

assigned when the text does not show apparent sentiment.

Figure 2.1: Comparison of Dutch CCI and SMI on a monthly basis. A correlation
coefficient of 0.88 is found for the two series (Daas et al., 2015).

Let Pt be the totality of all the observed posts in month t. Let sP,t be a subset of

posts that are selected from Pt. Let mt be the size of sP,t. The posts included in
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sP,t can have positive, neutral or negative sentiment value, respectively denoted

by zj = 1, 0,−1, for j ∈ sP,t. The SMI is calculated as the percentage difference

between the positive and negative posts in sP,t, i.e. a function of zsP,t
= {zj; j ∈

sP,t}:
SMIt = SMI(zsP,t

) =
100

mt

∑
j∈sP,t

zj .

Daas and Puts (2014) experimented with different ways of selecting the sample

sP,t. The choices involve a decision about which social media platforms to in-

clude, and whether to accept all the posts from an included platform or only

certain groups. The groups can be filtered using a set of keywords, such as posts

containing personal pronouns like ‘I’, ‘me’, ‘you’ and ‘us’, or words related to the

consumer confidence or the economy, or words that are used with high frequency

in the Dutch language. The idea is that selecting only certain groups of posts

could affect the association between the SMI and the CCI. For instance, from a

previous study (Daas et al., 2012) the same authors found that nearly 50% of the

tweets produced in the Netherlands can be considered a ‘pointless bubble’. In the

end sP,t is chosen to include all the Facebook posts and filtered Twitter posts,

for which the resulting SMI achieved the highest correlation coefficient with the

CCI (Figure 2.1).

Finally, considering the SMI as an estimator with its own expectation and vari-

ance, let

SMIt = ξt + dt , (2.1)

where ξt is the expectation of the SMI, and dt has mean 0 and variance τ 2t .

2.3.2 Formal interpretation

To assess the SMI as a potential replacement of the CCI, let us now formalise

the CCI and its target parameter. Let Ut be the Dutch household population in

month t, which is of the size Nt. Let yi, for i ∈ Ut, be a consumer confidence

score for household i based on positive, neutral or negative responses to five

survey questions. The target parameter of the CCI is given by

θt = θ(yUt) =
100

Nt

∑
i∈Ut

yi .
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The CCI based on the sample survey is an estimator of θt, which can be given

by

CCIt = θt + et , (2.2)

where et is the sample survey error of the CCI. For our purpose here, we shall

assume that et ∼ N(0, σ2
t ), i.e. normally distributed with mean 0 and variance

σ2
t .

Now that there is a many-one relationship between persons and households, the

generic relationships from posts to persons apply equally from posts to house-

holds. The households corresponding to the SMI sample sP,t can thus formally

be given as

st = Ut ∩ a
(
b(sP,t)

)
.

Let st be of the size nt. Let the target parameter defined for st be given by

θs,t = θ(yst) =
100

nt

∑
i∈st

yi .

In order to replace the CCI by the SMI, it is clear that one would like to have

θt = ξt. However, given the underlying relationship between the social media data

posts and the target population, one can only establish an analytic connection

between ξt and θs,t, based on the relationship between (zj, sP,t) and (yi, st). It

is therefore clear that the principal difficulty for the one-phase approach in this

case is the lack of an explicit connection between ξt and θt = θ(yUt), or between

SMI(zsP,t
) and θ(yUt). Moreover, it seems that in such situations external vali-

dation will be necessary in order to establish the validity of the analysis results

based on social media data, which we consider next.

2.3.3 Statistical validation

In the case of the SMI, one does have the possibility of validating its statistical

relationship to the CCI, despite the lack of an analytic connection between the

two. As can be seen in Figure 2.1, the two indices display a high correlation

with each other over time: the empirical correlation coefficient is 0.88 over the 27

months displayed. However, a high correlation between the two indices alone is

not enough. Below we formulate a test to exemplify a possible venue for statistical

validation in similar situations.
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As a conceivable scenario in which the SMI can replace the CCI, we set up the

null and alternative hypotheses below:

H0 : θt − ξt = µ vs. H1 : θt − ξt 6= µ ,

i.e. whether or not the target parameters of the SMI and CCI differ by a constant

over time. Or, one can apply the procedure below on the log-scale to test if θt/ξt

is a constant.

For our purpose here, we shall make a simplifying assumption that τ 2t = 0, and

thereby remove the conceptual distinction between SMI as an estimator and its

theoretical target ξt. In light of the large amount of posts in sP,t, the assumption

seems plausible. It follows then from (2.1) and (2.2) that, under H0, we have

Xt = CCIt − SMIt = µ+ et ,

where et ∼ N(0, σ2
t ). Thus, one may compare the total deviation of Xt from its

mean X̄ =
∑T

t=1Xt, over the available T time points, to the variances of the

CCI: the larger the total deviation exceeds that which is allowed for by the CCI

variances, the stronger is the evidence against H0 compared to H1.

Formally, let P = I − 11>/T , where I is the T × T identity matrix and 1 is the

T × 1 unity vector, and the matrix P is idempotent such that PP> = PP = P .

We have

E(PX) = 0 for X = (X1, ..., XT )> ,

V (PX) = PΣP for Σ = Diag(σ2
1, ..., σ

2
T ) .

The diagonal matrix Σ corresponds to the assumption that the CCI’s are uncorre-

lated over time. If this is not the case, one may specify the true covariance matrix

appropriately, without this affecting the generality of the following development.

Now that 1>PX ≡ 0, one of the component is redundant. Let X ′ = (PX)(−t) on

deleting the t-th component of PX, for any 1 ≤ t ≤ T . Let Q be the correspond

(T − 1)× (T − 1) sub-matrix of PΣP , such that X ′ has the T − 1-variate normal

distribution

X ′ ∼ N(0, Q) .

Let LL> = Q be the Cholesky decomposition with lower-triangular L, such
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that

L−1Q(L−1)> = L−1LL>(L−1)> = I(T−1)×(T−1)

and

R = L−1X ′ ∼ N(0, I) .

A test statistic for H0 can thus given as

D = R>R ∼ χ2
T−1 .

Under the alternative hypothesis, the test statistic D follows a noncentral chi-

squared distribution with same degree of freedom T − 1 and noncentrality pa-

rameter λ =
∑T

i=0
i 6=t

γ2i , where γ = (γ1, . . . , γt−1, γt+1, . . . , γT ) is expected value of

X ′ under the alternative hypothesis, that is

γi = µi −
1

T
µ1 − · · · −

1

T
µT .

The smallest the value of λ, the bigger the overlapping between the null and the

alternative hypothesis (λ = 0 iff γi = 0 for all i = 1, . . . , T , therefore µ1 = µ2 =

· · · = µT ). On the other hand, the bigger λ, the smaller is the overlap and the

higher is the statistical power of the test.

Figure 2.2: The CCI series with 95% confidence interval, 2000-2014.

Due to confidentiality restrictions, we can only obtain the CCI (from the home-

page of Statistics Netherlands), but not the actual values of the SMI, nor the

variances of the CCI. The calculations below serve only for the purpose of illus-
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Figure 2.3: P-values of test H0 vs. H1 for varying CVs, level 0.05 mark by
horizontal line

tration. Firstly, we eyeball Figure 2.1 to obtain the approximate values of the

SMI, where the empirical correlation coefficient between two series is 0.88 over

the 27 months. Next, Figure 2.2 reproduced from Brakel et al. (2017) plots the

95% confidence interval of CCI over 2000 - 2014, where the coefficient of variation

(CV), denoted by ηt = σt/CCIt, varies approximately between 0.01 to 0.34 over

the period relevant to Figure 2.1. Based on these approximate σ2
t ’s, the p-value

of the test above is virtually zero, such that H0 is rejected at the level of 0.05 or

much lower. Moreover, for the illustration purpose here, we stipulate the values of

σ2
t in relation to the CCI via a constant coefficient of variation over time, denoted

by η, such that σt = ηCCIt. Figure 2.3 shows the p-value of the test as η varies

from 0.05 to 0.5, where the p-value exceeds 0.05 for η > 0.367. In other words,

unless the CV of the CCI is larger than 36.7% for all the 27 months of concern

here, the null hypothesis is rejected at the level of 0.05.

2.3.4 Discussion

Firstly, in the above we have considered the validity of the SMI, assuming the

aim is to replace the CCI with it. Of course, even if the SMI cannot do this

directly, there is still the possibility to use it to improve the CCI. Brakel et al.

44



(2017) study the two indices over time using a bivariate time series model:(
Yt

Zt

)
=

(
LYt
LZt

)
+

(
SYt
0

)
+

(
β11δ11t

0

)
+

(
υYt
υZt

)
,

where Zt is the SMI that is decomposed into trend LZt and an error term vZt ,

and Yt is the CCI that is decomposed into trend LYt , seasonal component SYt , an

error term vYt , and β11δ11t that is an outlier term introduced to accommodate the

economic downturn at the corresponding time point. The authors find that using

the SMI series as an auxiliary series slightly improves the precision of the model

based estimates for the CCI, at a time when the SMI for the current month is

available but not the CCI – due to the longer production lag required for the

latter. Notice that such uses of social media data as the auxiliary information for

survey sampling does not pose any new theoretical challenges.

Next, disregarding the distinction between θs,t = θ(yst) and the CCI-target

θt = (yUt), where one faces a difficulty of representation between st and Ut,

there is a question whether the SMI (2.1) appropriately targets the ‘intermedi-

ary’ parameter θs,t. As remarked by Brakel et al. (2017), the CCI survey questions

involve the amount of purchases of expensive goods during the last 12 months

and the tendency of households to buy expensive goods. It seems relevant to

utilise internet search data and actual purchase data of such expensive goods.

The implication is that one needs not to rely exclusively on social media data for

content extraction, but could seek to combine them with other non-survey data.

On the one hand, combining data to improve content extraction seems desirable

regarding the quality of measurement. On the other hand, doing so is likely to af-

fect the representation dimension of data quality, as previously noticed in Section

2.2.2. But the quality of representation is worth examining in any case. In the

current definition of SMI (2.1), each post is given the same weight. It is unclear

whether this is the most appropriate treatment, because the number of posts per

account or user is likely to vary in different subsets of st. Indeed, provided a

method of differential weighting of the posts in sP,t can be justified with respect

to θ(yst), targeting θ(yUt) may no longer be as elusive as it is currently.

Finally, despite our focus in this paper on target parameter θ defined for (yi, U),

it is conceivable that one may be interested in target parameter ξ defined for

(zj, P ) directly. In such situations, the quality considerations are analogous to

those in the case of targeting θ based on a sample s, for s ⊂ U , and the associ-
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ated measures y∗s = {y∗i ; i ∈ s}. A basic issue regarding representation is the fact

that the sample sP is not selected from the totality P according to a probability

sampling design. Inference from non-probability samples have received much at-

tention. See e.g. Smith (1983), Elliott and Valliant (2017) and Zhang (2019) for

inference approaches assuming non-informative selection of the observed sample;

see e.g. Rubin (1976) and Pfeffermann et al. (1998) for examples of approaches

that explicitly adjust for the informative selection mechanism. When it comes

to the measurement dimension of data quality, the traditional treatment of mea-

surement errors in surveys (e.g. Biemer et al., 2004) may be less relevant because,

as discussed in Section 2.2.2, content, feature or network extraction from social

media data faces quite different challenges and uses quite different techniques

than data collection via survey instruments.

2.4 Two-phase approach

In the two-phase approach, one aims to estimate the target parameter θ = θ(yU)

based on a pseudo survey dataset constructed from the sample of social media

data to resemble a survey dataset from the target population. Denote by sAP the

sample of statistical units in the pseudo survey dataset, and by y∗i the constructed

proxy to yi for i ∈ sAP .

The quality of the pseudo survey dataset (y∗i , sAP ) with respect to the ideal census

data (yi, U) can be assessed with respect to representation and measurement,

under the quality framework of Groves et al. (2004) for traditional sample survey

data. The key extra concern is the necessary transformation from the initial

social media data, which is a process that does not exist for sample survey data.

Zhang (2012) outlines a two-phase life-cycle model of statistical data before and

during integration, respectively, which includes the transformation from multiple

first-phase input datasets to the ones to be integrated at the second phase. The

total-error framework of Zhang (2012) is applicable as well to the two-phase

approach to statistical analysis based on social media data.

Below we examine the study of Swier et al. (2015), which aims to construct pseudo

survey datasets of residence and mobility from geolocated tweets. In particular,

this illustrates the generic transformation process under the two-phase approach:

from the first-phase data objects (posts) to the second-phase statistical units

(persons) in terms of representation, and from values obtained at the first-phase
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(e.g. the geolocation of a post) to the second-phase statistical variable (e.g.

location of residence) in terms of measurement. Moreover, we analyse the quality

of the resulting pseudo survey dataset according to the total-error framework of

Zhang (2012), and highlight some relevant methodological challenges.

2.4.1 Case: Residence location from tweets

Swier et al. (2015) conducted a pilot study at the Office for National Statistics,

on the potential of Twitter to provide residence and mobility data for official

statistics. The main efforts concerned the construction of relevant pseudo survey

datasets, which we summarise below. In addition, some simple analyses were

performed, giving indications of the possible target parameters envisaged. We do

not explicitly discuss these analyses here.

There are two first-phase input datasets. The first one is collected via the Twitter

Streaming API, covering the period 11th of April to 14th of August in 2014. The

search criteria involve a set of bounding rectangles covering the British Isles, for

which a tailor made application is developed and deployed. The second dataset

is purchased from GNIP (a reseller of data, now owned by Twitter), covering the

period 1st to 10th of April and 15th August to 31st of October in 2014. Unlike

the API data, the GNIP data is filtered by tweets with a “GB” country code.

The tweets from the same period, which cannot be geo-located in either way, are

excluded.

Next, the two datasets are merged to create a single dataset, during which a

number of tweets are removed. These include e.g. the ones that are detected

to be generated by bots, or without exact GPS location, or non-GB tweets in

the first dataset (mainly those from the Republic of Ireland). In particular, for

privacy protection reasons, any tweet from the first dataset is removed, unless

it is associated with an account in the purchased GNIP data. All the retained

tweets have latitude and longitude (GPS) coordinates.

The process of merging can therefore equally be represented as in the life-cycle

model of integrated data (Zhang, 2012), where linkage of separate datasets are

carried out via the second-phase units associated each input datasets. In other

words, one may first identify the associated Account IDs (second-phase units

here) in the API and GNIP datasets, respectively; and then merge the data for

the same Account ID, provided it is present in the GNIP dataset. In this case one
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could merge the datasets before transforming the data organised around Tweet

ID to Account ID, because the two first-phase datasets share the same identifiable

objects (i.e. tweets with Tweet ID)

In this way, at the beginning of the second-phase processing, one obtains a single

set of GB-located tweets (81.4 million over 7 months) and the associated accounts.

No further second-phase data processing takes place in the representation dimen-

sion. For instance, one does not attempt to identify and classify the users behind

the observed accounts. Second-phase processing in the measurement is primarily

concerned with content extraction of residential location and its classification.

This is carried out in the following steps.

� The tweets associated with a given account are clustered, using the density-

based spatial clustering algorithm with noise (DBSCAN). It groups together

points that are closer to each other in terms of spatial density; the cluster

formed is regarded valid only if it contains a specified minimum number of

points. The points in clusters below the minimum threshold are considered as

noise. Of the 81.4 million tweets, 67.4 million are included in one or another

cluster that contains three or more tweets. The rest clusters with only one or

two tweets are classified as ‘invalid’.

� Next, each valid cluster is classified as ‘residential’, ‘commercial’ or ‘others’ in

terms of address type, using the AddressBase that is the definitive source of

address information for Great Britain. To this end, one calculates a weighted

centroid of the cluster and finds the closest property to it in the AddressBase.

The cluster address type is then classified according to this ‘nearest neighbour’

property.

� Then, for each account with one or several residential clusters, the one of them

with the most tweets is classified as the ‘dominant’ residential cluster.

� Finally, additional classification may be attached to each cluster, such as the

administrative geography it belongs to, the number of tweets it contains, the

time span of these tweets (short-term if less than 31 days vs. long-term other-

wise).

2.4.2 Quality assessment

Before we assess the quality of the pseudo survey dataset (y∗i , sA) obtained under

the two-phase approach when targeting θ defined for (yi, U), it is helpful to reca-
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pitulate some of the relevant technical issues, even if they do not account for all

the sources of errors.

Firstly, some additional API data are actually collected on the 10th of April and

15th of August, which overlaps with the GNIP data on these two days. A small

number of API tweets are found not be included in the GNIP set, all of which

are associated with protected accounts – users may opt to protect their accounts

so that their tweets can only be viewed by approved followers. More generally,

retrospective changes made by a user to its account or specific tweets may prevent

them from being included in the historic point-in-time data available from GNIP,

despite these accounts or tweets are accessible via the real-time Streaming API.

This exemplifies a general cause for discrepancy between Twitter data collected

in different ways. Two other examples of general causes are as below.

Filter criteria The filter criteria may not be fully compatible between the APIs

and the data brokers. As explained above, in the case here, the geographic

filter works differently with the Streaming API and GNIP.

Missing data Data from APIs may be missing due to technical problems, such as

moving of IT equipment or broadband router failure.

Next, once the data from the first phase have been merged and transformed,

there are generally technical issues with data extraction and processing that are

necessary at the second phase. In this case, the DBSCAN clustering of tweets

is an unsupervised machine learning technique, for which it is generally difficult

to verify the truthfulness of the results. The address type classification is in

principle a supervised learning technique. However, it may be resource demanding

to obtain a training-validation dataset, by which the classification method can

be improved and its accuracy evaluated. Similarly for the classification of the

dominant residual cluster.

The quality of the dataset (y∗i , sA) can be assessed according to the second-phase

life-cycle model (Figure 2.4), along the two dimensions of representation and

measurement. The exact nature of the potential errors needs to be related to

the envisaged analysis. Below we consider first representation and then measure-

ment.

In terms of representation, the “Linked Sets” in Figure 2.4 is given by b(sA),

which is subjected to coverage errors. Over-coverage is the case if b(sA) \ U 6= ∅.
This is unavoidable here because some of the accounts in b(sA) are not persons at
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Figure 2.4: Phase-two life-cycle model of Zhang (2012)

all and all the bots are not completely removed. Moreover, there may be multiple

accounts in sA that correspond to the same person; such duplicates are another

form of over-coverage error. Whether sA entails under-coverage depends on the

assumption. For instance, let the target population U be the adult residents

of England. If one assumes that in principle there is an unknown but non-zero

probability for everyone in U to have a Twitter account and to have tweeted

at least three times from the same location during the 7 months in 2014, then

there would be no under-coverage error of b(sA) for U , but only a non-probability

selection issue. However, insofar as these assumptions are untenable, then there

would be an under-coverage error in addition.

Next, the identification error may be an issue if domain classification of the target

population needs to be based on feature extraction, which is prone to errors;

whereas unit error is potentially troublesome if additional statistical units (e.g.

household) need to constructed. Neither seems relevant to any of the analyses of

Swier et al. (2015).

In terms of measurement, an example of “Harmonized Measures” in Figure 2.4

is the dominant residential cluster here. Suppose the “Target Concept” is the de

facto place of residence of a person. Relevance error is mostly like the case, unless

everyone sends most tweets from her de facto place of residence. Or, suppose the

“Target Concept” is whether a person is a tourist, and short-term vs. long-term

classification of the dominant residential cluster is used as a proxy measure of the

corresponding person. Again, relevance error is mostly like the case, unless no
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tourist stays longer than a month and no usual resident stops tweeting after less

than a month.

Next, the mapping error is e.g. the case when someone does tweet from her de

facto place of residence but the clustering-classification algorithm fails to identify

it as the dominant residential cluster. This can happen e.g. if the person tweets

more when at her friend’s place, or if the person more often than not switches

off GPS location when tweeting at home, or if the person’s home is in a dense

area and the chosen nearest neighbour property in the AddressBase happens to

be a commercial address. Finally, the comparability error could arise if e.g. the

classified dominant residential cluster is further adjusted in light of other available

measures, although this is not the case in the study of Swier et al. (2015).

In summary, the main errors of the pseudo survey dataset (y∗i , sA) here are cover-

age errors in terms of representation, and relevance and mapping errors in terms

of measurement.

2.4.3 Discussion: Statistical analysis

In the above we outlined the data processing required under the two-phase ap-

proach to social media data, using the study of Swier et al. (2015) as the case-

in-point. It is shown that the life-cycle model of (Zhang, 2012) can be applied

as a total-error framework for evaluating the quality of the resulting pseudo sur-

vey dataset (y∗i , sA), where sA = a(sP ). The study of Swier et al. (2015) does

not specify any definitive target of analysis. For a discussion of possible statis-

tical analysis of the target parameter θ defined for (yj, U), let us consider two

situations, depending on whether it involves additional datasets or not.

Consider the situation where only the pseudo survey dataset (y∗i , sA) is to be used

for an analysis targeted at θ(yU). The first key issue regarding representation is

over-coverage adjustment, from s′ = b(sA) to s = U ∩ b(sA), due to the fact that

s′ \U 6= ∅. This could be either based on the mapping from s′ to s or, provided it

can be specified, from t(y∗s′) to t(y∗s), where t(·) denotes the sufficient statistics for

θ. Given the over-coverage adjustment, the remaining issues are non-probability

representation of s for U , and measurement discrepancy between y∗i and yi caused

by lack of relevance and imperfect data extraction, similarly to what has been

discussed earlier in Section 2.3.4.

A potentially more promising scenario is to utilise additional datasets, in order

51



to overcome or reduce the deficiency of each dataset on its own. Integration with

other Sign-of-Life data can possibly improve the quality of the pseudo survey

dataset constructed from social media data. For example, in the case of data for

residence and mobility, other Sign-of-Life data on employment, education, utility

services, etc. can probably improve the classification of the dominant residential

cluster, provided these data are available and can be combined with the tweets

data. However, it is also possible that one cannot always overcome the inherent

deficiencies of social media data in this way. Making statistics based on multiple

sources is a broad challenging topic. It is currently an area of active research and

development. See e.g. De Waal et al. (2017); Di Zio et al. (2017) for overviews of

related situations and methodological issues. See Zhang (2018) for an overview

of estimation methods in the presence of multiple proxy variables.

2.5 Concluding remarks

In the above we systematically delineated two existing approaches to statistical

analysis based on social media data. The fundamental challenge with the one-

phase approach in some situations is a lack of analytic connection to the target

parameter, which is defined for a different set of units and another associated

measure. Nevertheless, external data can in principle be used to verify the sta-

tistical validity of this approach. Compared to observational studies based on

data subjected to non-probability selection and survey measurement errors, the

key extra issues with the two-phase approach revolve around the transformation

process from the initial data objects to the statistical units of interest and the

algorithmic data extraction required for measurement. In addition, an explicit

adjustment for the over-coverage error will be needed in many situations.

For assessment of data quality, we have demonstrated that it is possible to apply

relevant total-error frameworks formulated in terms of representation and mea-

surement of generic statistical data. In particular, for both approaches, it seems

more promising if one does not simply restrict oneself to the available social me-

dia data, but seeks to combine them with additional relevant datasets, in order

to overcome or reduce the deficiency of each source, despite data integration is

by no means a straightforward undertaking in general.

We would like to close with a few remarks. Firstly, in the paper we have focused

on target parameters that are finite-population functions. Such a parameter is
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often referred to as a descriptive target, in contrast to analytic target parameters

that can never be directly observed, regardless how large the observed number

of units and how perfect the obtained measurement may be. For example, the

ordinary least squares fit of some specified linear regression coefficients based on a

perfect census of the current population is a descriptive target parameter; at the

same time it is an estimate of the theoretical (or super-population) values of these

coefficients of the postulated regression model, i.e. the analytic target parameter

in this case. Our focus on descriptive target parameters helps to simplify the

exposition, since the differences between descriptive and analytic inference can

be subtle and many, but are nevertheless not critical to our aim in this paper.

See e.g. Skinner et al. (1989), Chambers and Skinner (2003), and Skinner and

Wakefield (2017) for introductions to analytic vs. descriptive inference based on

sample surveys.

Next, there are certainly many similarities to statistical analysis based on admin-

istrative data. As we have demonstrated, the total-error framework (Zhang, 2012)

for statistical data integration involving administrative sources is applicable as

well to the two-phase approach based on social media data. It is worth reiterating

the two extra difficulties in comparison. The first one relates to the transformation

from the original data objects P to the statistical units U . The same requirement

exists equally for administrative data in general. For instance, exams are part

of the initial education data objects. However, while the transformation from

exams (say, P ) to students (say, U) can be carried out unproblematically by the

school administration, such straightforward processing is often impossible from

social media data objects to the target population of interest. The second extra

difficulty concerns data extraction. The available measures in the administrative

sources do often suffer from relevance error. Nevertheless, the actual mapping

to the “Re-classified Measures” (Figure 2.4) seldom requires content or feature

extraction that are necessary for social media data which, as has been discussed,

is generally an additional cause of discrepancy between y∗i and yi or between zj

and yi.

Finally, there seems to be currently an under-explored potential regarding the

rich network relationships that can be extracted from social media data. Such

network relationships may be difficult to obtain via traditional survey methods,

both due to the limitations of the usual survey instruments and the relatively

high cognitive and memorial requirements for correct information retrieval by the
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respondents. In contrast, for network relationships that are directly observable on

the social media platform, no subjective information processing will be needed

and the errors associated with such processing are thereby avoided. Making

greater use of the network relationships in social media data and developing

suitable sampling and analysis methods appear fruitful venues forward, in order

to harness the opportunities that have emerged with such big data sources.
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Chapter 3

Graph sampling

We synthesise the existing theory of graph sampling. We propose a

formal definition of sampling in finite graphs, and provide a classifi-

cation of potential graph parameters. We develop a general approach

of Horvitz-Thompson estimation to T -stage snowball sampling, and

present various reformulations of some common network sampling

methods in the literature in terms of the outlined graph sampling

theory.

Key words: network, finite-graph sampling, multiplicity sampling, indirect sam-

pling, adaptive cluster sampling.

3.1 Introduction

Many technological, social and biological phenomena exhibit a network structure

that may be the interest of study; see e.g. Newman (2010). As an example

of technological networks, consider the Internet as consisting of routers that are

connected to each other via cables. There are two types of objects, namely routers

and cables. A router must be connected to a cable to be included in the Internet,

and a cable must have two routers at both ends. As another example, consider

the social network of kinships. Again, there are two types of objects, namely

persons and kinships. Each person must have two or more kinships, and each

kinship must represent a connection between two persons. However, while it is

obvious that any two routers must be connected by cables to each other either
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directly or via other routers in the Internet, it is not sure that any two persons

can be connected to each other in the network of kinships. The difference can

be articulated in terms of some appropriate characterisation of their respective

network structures.

Following Frank (1980, 2011), we refer to network as a valued graph, and graph

as the formal structure of a network. The structure of a network, i.e. a graph,

is defined as a collection of nodes and edges (between the nodes); measures may

be attached to the nodes or the edges or both to form a valued graph, i.e. a

network. For a statistical approach to networks one may choose to model the

entire population network as a random realisation, or to exploit the variation over

possible sample networks taken from a given fixed population network. Graph

sampling theory deals with the structure of a network under the latter perspective.

In comparison, finite-population sampling (Neyman, 1934; Cochran, 1977) can

mostly be envisaged as sampling in a ‘graph’ with no edges at all. We shall refer

to such a setting as list sampling.

Ove Frank has undoubtedly made the most contributions to the existing graph

sampling theory. See e.g. Frank (1977c, 1979, 1980b, 1981, 2011) for his own

summary. However, the numerous works of Frank scatter over several decades,

and are not easily appreciable as a whole. For instance, Frank derives results

for different samples of nodes (Frank, 1971; 1977c; 1994), dyads (Frank, 1971;

1977a; 1977b; 1979) or triads (Frank, 1971; 1979). But he never proposes a formal

definition of the “sample graph” which unifies the different samples. Or, Frank

studies various characteristics of a graph, such as order (Frank, 1971; 1977c;

1994), size (Frank, 1971; 1977a; 1977b; 1979), degree distribution (Frank, 1971;

1980a), connectedness (Frank, 1971; 1978), etc. But he never provides a structure

of possible graph parameters which allows one to classify and contrast the different

interests of study. Finally, Frank does not appear to have articulated the role of

graph sampling theory in relation to some common “network sampling methods”

(e.g. Birnbaum and Sirken, 1965; Thompson, 1990; Lavallée, 2007), which “are

not explicitly stated as graph problems but which can be given such formulations”

(Frank, 1977c).

The aim of this paper is to synthesise and extend the existing graph sampling

theory, many elements of which are only implicit in Frank’s works. In partic-

ular, we propose a definition of sample graph taken from a given population

graph, together with the relevant observation procedures that enable sampling
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in a graph (Section 3.2). In Section 3.3, we provide a structure of graph totals

and graph parameters, which reflects the extended scope of investigation that

can be difficult or impossible using only a list representation. Next, we develop

a general approach to HT-estimation under arbitrary T -stage snowball sampling

(Section 3.4). In Section 3.5, we present various graph sampling reformulations of

multiplicity sampling (Birnbaum and Sirken, 1965), indirect sampling (Lavallée,

2007) and adaptive cluster sampling (Thompson, 1990), all of which are referred

to as unconventional sampling methods in contrast to the more familiar finite-

population sampling methods, such as stratified multi-stage sampling. Finally,

some concluding remarks are given in Section 3.6, together with a couple of topics

of current research.

An interactive illustration of the graph notation, as used in this paper, and of the

graph sampling methods defined in section 3.2.3 can be found at the following

link http://tiny.cc/to8wpz. To have access to the notebook, a Google account

is required. Once you have clicked on it, you will be asked to switch to the play-

ground mode to run the R code. If a warning message appears (“this notebook

was not been authorized by Google”), continue by clicking on ‘run anyway’.

3.2 Sampling on a graph

3.2.1 Terms and notations

A graph G = (U,A) consists of a set of nodes U and a set of edges A. Define

|U | = N and |A| = R as the order and size of G, respectively. Let Aij ⊂ A be

the set of all edges from i to j; let aij = |Aij| be its size. If aij > 1 for some

i, j ∈ U , the graph is called a multigraph; it is a simple graph if aij = 0, 1. The

edges in Ai+ =
⋃
j∈U Aij and A+i =

⋃
j∈U Aji are called the outedges and inedges

at i, respectively. Let ai+ = |Ai+| =
∑

j∈U aij and a+i = |A+i| =
∑

j∈U aji. The

node i is incident to each outedge or inedge at i. The number of edges incident

at a node i is called the degree of i, denoted by di = ai+ + a+i. Two nodes i and

j are adjacent if there exists at least one edge between them, i.e. aij + aji > 1.

For any edge in Aij, i is called its initial node and j its terminal node. Let αi be

the successors of i, which are the terminal nodes of outedges at i; let βi be the

predecessors of i, which are the initial nodes of inedges at i. For a simple graph,

we have ai+ = |αi| and a+i = |βi|. A graph is said to be directed (i.e. a digraph)

if Ai+ 6= A+i; it is undirected if Ai+ = A+i, in which case there is no distinction
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between outedge and inedge, so that di = ai+ = a+i, and αi = βi. Finally, an edge

aii connecting the same node i is called a loop, which can sometimes be a useful

means of representation. Whether or not loops are included in the definitions of

the terms and notations above is purely a matter of convention.

Remark Adjacency refers to relationship between nodes, as objects of the same

kind; incidence refers to relationship between nodes and edges, i.e. objects of

different kinds.

Remark Let the N × N adjacency matrix A have elements aij = |Aij|. It

is defined to be symmetric for undirected graphs. Put the diagonal degree ma-

trix D = diag(A1N×1). The Laplacian matrix L = D − A sums to 0 by row

and column, which is of central interest in Spectral Graph Theory (e.g. Chung,

1997).

3.2.2 Definition of sample graph

Denote by s1 an initial sample of nodes, for s1 ⊆ U . Under a probability design,

let πi and πij (or π̄i and π̄ij) be the probabilities of inclusion (or exclusion) of

respectively a node and a pair of nodes in s1. (The exclusion probability of i

is the probability of i 6∈ s1, and the exclusion probability of a pair (i, j) is the

probability that neither i nor j is in s1.) A defining feature of sampling on graphs

is that one makes use of the edges to select the sample graph, denoted by Gs.

Given s1, the relevant nodes are either in α(s1) =
⋃
i∈s1 αi or β(s1) =

⋃
i∈s1 βi,

where α(s1) = β(s1) for undirected graphs. An observation procedure of the edges

needs to be specified, and the observed edges can be given in terms of a reference

set of node pairs, denoted by s2 where s2 ⊆ U×U , under the convention that the

set of edges Aij are observed whenever (ij) ∈ s2. Notice that generally speaking

(ij) and (ji) are considered as two distinct elements in U × U . Denote by π(ij)

(or π̄(ij)) the corresponding inclusion (or exclusion) probability of (ij) ∈ s2, and

by π(ij)(kl) (or π̄(ij)(kl)) the inclusion (or exclusion) probability of these two pairs

in s2. Denote by As = A(s2) the edge set inherent of s2, and Us = s1 ∪ Inc(As)

the union of s1 and those nodes that are incident to As. The sample graph is

Gs =
(
Us, As

)
.

Example 1 Let U = {1, 2, 3}, and a12 = 1. Suppose s1 = {1}. Provided

s2 = s1 × α(s1), where α(s1) = {2} in this case, the sample graph Gs has As =
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A(s2) = A12 and Us = {1, 2}. The same sample graph can equally be given by

s′2 = s1 × U , since A(s′2) = A12 = A(s2).

Observation procedure Frank (1977c) considers several observation proce-

dures, which can be formalised as follows. First, given s1, a procedure is induced

if Aij is observed iff both i ∈ s1 and j ∈ s1, or incident reciprocal if Aij and

Aji are both observed provided either i ∈ s1 or j ∈ s1. Second, for digraphs, an

incident non-reciprocal procedure is forward if Aij is observed provided i ∈ s1,
or backward if Aij is observed provided j ∈ s1. For example, provided i ∈ s1 and

j 6∈ s1 and aij > 0 and aji > 0, we would observe both Aij and Aji given an

incident reciprocal procedure; only Aij if it is incident forward; only Aji if it is

incident backward; neither Aij nor Aji given an induced procedure from s1.

Initial sampling of edges Sample graph initiated by a sample of edges can

be defined analogously. Bernoulli or Poisson sampling can be useful, because

it is not required to know all the edges in advance. Notice that when one is

interested in the totals or other functions of the edges of a graph, initial Bernoulli

or Poisson sampling of edges is meaningful – see e.g. Frank (1977c, Section 12),

whereas initial simple random sampling (of edges) would have been a trivial set-

up, because one would need to know all the edges to start with.

3.2.3 Some graph sampling methods

We describe some sampling methods based on the aforementioned observation

procedures. Frank (1977c) elicited several sampling methods based on the afore-

mentioned observation procedures. We include several alternative specifications

which are marked by †. By way of introduction, the first- and second-order

inclusion probabilities of (ij) in s2 are given in terms of the relevant inclusion

probabilities in s1, which facilitates Horvitz-Thompson (HT) estimation of any

totals defined on U × U . As will be illustrated, given s1 and the observation

procedure, the sample graph can be specified using different reference sets s2, but

the inclusion probabilities are more readily obtained for some choices of s2.

(i) s2 = s1 × s1 [Induced]: Both (ij) ∈ s2 and (ji) ∈ s2 iff i ∈ s1 and j ∈ s1.
Then, π(ij) = πij and π(ij)(kl) = πijkl.
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(ii.1) s2 = s1 × sa, sa = α(s1) ∪ s1 [Incident forward]: (ij) ∈ s2 iff i ∈ s1

and j ∈ sa. Let Bj = {j} ∪ βj, i.e. itself and its predecessors, then j ∈ sa iff

Bj ∩ s1 6= ∅. Thus,

π̄(ij) = π̄i + π̄Bj
− π̄Bj∪{i}.

Similarly, (ij), (kl) ∈ s2 iff i, k ∈ s1 and Bj ∩s1 6= ∅ and Bl∩s1 6= ∅, so that

π̄(ij)(kl) = π̄ik + π̄Bj∪{k} + π̄Bl∪{i} + π̄Bj∪Bl

− π̄Bj∪{i,k} − π̄Bl∪{i,k} − π̄Bj∪Bl∪{i} − π̄Bj∪Bl∪{k} + π̄Bj∪Bl∪{i,k}.

(ii.2) s2 = s1 × U [Incident forward]: (ij) ∈ s2 iff i ∈ s1. Then, π(ij) = πi and

π(ij)(kl) = πik.

Remark The sample edge set A(s2) is the same in (ii.2) and (ii.1), because the

observation procedure is the same given s1. For the estimation of any total over

A, the two reference sets would yield the same HT-estimate: any (ij) ∈ s2 with

aij = 0 does not contribute to the estimate, regardless of its π(ij); whereas for any

(ij) ∈ s2 with aij > 0, we have π(ij) = πi given s2 in (ii.2), just as one would have

obtained in (ii.1) since Bj = Bj ∪ {i} provided aij > 0. But it appears easier to

arrive at π(ij) and the HT-estimator in (ii.2) than (ii.1).

(ii.3)† s2 = sb × α(s1), sb = s1 ∩ β
(
α(s1)

)
[Incident forward]: This is the

smallest Cartesian product that contains the same sample edge set as in (ii.1)

and (ii.2).

(ii.4)† s2 =
⋃
i∈s1

i× αi, where i× αi = ∅ if αi = ∅ [Incident, forward]: Only (ij)

with aij > 0 is included in s2. This is the smallest reference set for the same Gs

in (ii.1) - (ii.4).

(iii) s2 = sa× sa, sa = α(s1)∪ s1 [Induced from sa]: (ij) ∈ s2 even if i ∈ sa \ s1
and j ∈ sa \ s1. Similarly to (ii.1), (ij) ∈ s2 iff Bi ∩ s1 6= ∅ and Bj ∩ s1 6= ∅, and

so on. Then,

π̄(ij) = π̄Bi
+ π̄Bj

− π̄Bi∪Bj
,

π̄(ij)(kl) = π̄Bi∪Bk
+ π̄Bi∪Bl

+ π̄Bj∪Bk
+ π̄Bj∪Bl

− π̄Bi∪Bk∪Bl
− π̄Bj∪Bk∪Bl

− π̄Bi∪Bj∪Bk
− π̄Bi∪Bj∪Bl

+ π̄Bi∪Bj∪Bk∪Bl
.
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Remark Observation of the edges between i ∈ sa \ s1 and j ∈ sa \ s1 may

be demanding in practice, even when the observation procedure is reciprocal.

For example, let the node be email account. Then, by surveying i ∈ s1 only, it

is possible to observe all the email accounts that have exchanges with i due to

reciprocality. But one would have to survey the accounts in αi \ s1 additionally,

in order to satisfy the requirement of (iii).

(iv.1) s2 = s1×U ∪U × s1 [Incident reciprocal]: (ij) 6∈ s2 iff i 6∈ s1 and j 6∈ s1.
Then, π(ij) = 1− π̄ij and π(ij)(kl) = 1− π̄ij − π̄kl + π̄ijkl.

(iv.2)† s2 = s1 × sa ∪ sa × s1, sa = α(s1) ∪ s1 [Incident reciprocal]: We have

sa × sa = s2 ∪ (sa \ s1)× (sa \ s1), where the two sets on the right-hand side are

disjoint. The inclusion probabilities can thus be derived from those in (iii) and

those of (sa \ s1)× (sa \ s1). However, the sample edge set A(s2) is the same as

in (iv.1), and it is straightforward to derive the HT-estimator of any total over

A based on the reference set s2 specified in (iv.1).

(iv.3)† s2 =
( ⋃
i∈s1

i×αi
)
∪
( ⋃
i∈s1

βi× i
)

[Incident reciprocal]: This is the smallest

reference set of the sample edge set in (iv.1) - (iv.3).

Example 2 Figure 3.1 illustrates the four sampling methods (i) - (iv) described

above, all of which are based on the same initial sample s1 = {3, 6, 10}.

3.3 Graph parameter and HT-estimation

Frank (1980b) reviews some statistical problems based on population graphs. In

a list representation, the target population U is a collection of elements, which are

associated with certain values of interest. In a graph representation G = (U,A),

the elements in U can be the nodes that have relations to each other, which are

presented by the edges in A. It becomes feasible to investigate the interactions

between the elements, their structural positions, etc. which are difficult or un-

natural using a list representation. The extended scope of investigation is above

all reflected in the formulation of the target parameter. In this Section, we pro-

vide our own classification of the potential target parameters based on a graph

in terms of graph totals and graph parameters.
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Figure 3.1: Population graph (top) and four sample graphs (i) - (iv) based on
s1 = {3, 6, 10}.
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Graph total and graph parameter Let Mk be a subset of U , where |Mk| = k.

Let Ck be the set of all possible Mk’s, where |Ck| = N ![k!(N − k)!]−1. Let G(Mk)

be the subgraph induced by Mk. Let y
(
G(Mk)

)
, or simply y(Mk), be a function of

integer or real value. The corresponding k-th order graph total is given by

θ =
∑
Mk∈Ck

y(Mk). (3.1)

We refer to functions of graph totals as graph parameters.

Remark Network totals can as well be defined by (3.1), where y(·) can incor-

porate the values associated with the nodes and edges of the induced subgraph

G(Mk).

Motif A subset M ⊂ U with specific characteristics is said to be a motif,

denoted by [M ]. For example, denote by [i : di = 3] a 1st-order motif, i.e. a node

with degree 3. Or, denote by [i, j : aij = aji = 1] the motif of a pair of nodes

with mutual simple relationship, or by [i, j : aij = aji = 0] the motif of a pair of

non-adjacent nodes. A motif may or may not have a specific order, giving rise to

graph totals with or without given orders.

3.3.1 Graph totals of a given order

3.3.1.1 First-order graph total: M1 = {i}

Each M1 corresponds to a node. In principle any first-order graph total can

be dealt with by a list sampling method that does not make use of the edges,

against which one can evaluate the efficiency of any graph sampling method. For

the two parameters given below, estimation of the order by snowball sampling is

considered by Frank (1971, 1977c, 1994), and estimation of the degree distribution

is considered by Frank (1971, 1980a).

Order (of G) Let y(i) ≡ 1, for i ∈ U . Then, θ = |U | = N .

Number of degree-d nodes Let y(i) = δ(di = d) indicate whether or not di

equals d, for i ∈ U . Then, θ is the number of nodes with degree d.
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3.3.1.2 Second-order graph total: M2 = {i, j}

An M2 of a pair of nodes is called a dyad, for M2 ⊂ U and |M2| = 2. Some dyad

totals are considered by Frank (1971, 1979).

Size (of G) Let y(M2) = aij + aji be the adjacency count between i and j in a

digraph, or y(M2) = aij for an undirected graph. Then, θ =
∑

M2∈C2 y(M2) = R

is the size (of G).

Remark If there are loops, one can let y(M1) = aii for M1 = {i}, and θ′ =∑
M1∈C1 y(M1). Then, R = θ + θ′ is a graph parameter based on a 1st- and a

2nd-order graph totals.

Remark Let Nd be the no. degree-d nodes, which is a 1st-order graph total.

Then,

2R =
∑
i∈U

di =
D∑
d=1

dNd, where D = max
i∈U

di.

This is an example where a higher-order graph total (R) can be ‘reduced’ to

lower-order graph parameters (Nd). Such reduction can potentially be helpful in

practice, e.g. when it is possible to observe the degree of a sample node without

identifying its successors.

Number of adjacent pairs Let y(M2) = δ(aij + aji > 0) indicate whether

i and j are adjacent. Then, θ is the total number of adjacent pairs in G. Its

ratio to |C2| provides a graph parameter, i.e. an index of immediacy in the graph.

Minimum immediacy is the case when a graph consists of only isolated nodes,

and maximum immediacy if the graph is a clique, where every pair of distinct

nodes are adjacent with each other.

Number of mutual relationships Let y(M2) = δ(aijaji > 0) indicate whether

i and j have reciprocal edges between them, in which case their relationship is

mutual. Then, θ is the number of mutual relationships in the graph. Goodman

(1961) studies the estimation of the number of mutual relationships in a special

digraph, where ai+ = 1 for all i ∈ U .
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3.3.1.3 Third-order graph total: M3 = {i, j, h}

An M3 of three nodes is called a triad, for M3 ⊂ U and |M3| = 3. Some triad

totals are considered by Frank (1971, 1977a, 1977b, 1979).

Number of triads Let y(M3) = δ(aijajhaih > 0) indicate whether the three

nodes form a triangle in an undirected graph. Then, θ∗ by (4.1) is the total

number of triangles. Triangles on undirected graphs are intrinsically related to

equivalence relationships: for a relationship (represented by an edge) to be transi-

tive, every pair of connected nodes must be adjacent; hence, any three connected

nodes must form a triangle. For a simple undirected graph, transitivity is the

case iff θ′ = 0, when θ′ is given by (4.1), where

y(M3) = aijajh(1− ahi) + aihajh(1− aij) + aijaih(1− ajh).

Provided this is not the case, one can e.g. still measure the extent of transitivity

by

τ = θ∗/(θ∗ + θ′),

i.e. a graph parameter. Next, for digraphs and ordered (jih), let z(jih) =

ajiaihahj be the count of strongly connected triangles from j via i and h back to

j. Let M̃3 contain all the possible orderings of M3, i.e. (ijh), (ihj), (jih), (jhi),

(hij) and (hji). Then, the number of strongly connected triangles in a digraph

is given by (4.1), where

y(M3) =
∑

(ijh)∈M̃3

z(ijh).

Remark For undirected simple graphs, Frank (1981) shows that there exists

an explicit relationship between the mean and variance of the degree distribution

and the triads of the graph. Let the numbers of triads of respective size 3, 2 and

1 be given by

θ3,3 =
∑
M3∈C3

aijajhaih,

θ3,2 =
∑
M3∈C3

aijaih(1− ajh) + aijajh(1− aih) + aihajh(1− aij),

θ3,1 =
∑
M3∈C3

aij(1− ajh)(1− aih) + aih(1− aij)(1− ajh) + ajh(1− aij)(1− aih).
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Let µ =
∑N

d=1 dNd/N = 2R/N and σ2 = Q/N − µ2, where Q =
∑N

d=1 d
2Nd. We

have

R =
1

N − 2

(
θ3,1 + 2θ3,2 + 3θ3,3

)
, Q =

2

N − 1

(
θ3,1 +Nθ3,2 + 3(N − 1)θ3,3

)
.

3.3.2 Graph totals of unspecified order

A motif is sometimes defined in an order-free manner. Insofar as the correspond-

ing total can be given as a function of graph totals of specific orders, it can be

considered a graph parameter. Below are some examples that are related to the

connectedness of a graph. The number of connected components is considered by

Frank (1971, 1978).

Number of connected components The subgraph induced from Mk is a

connected component of order k, provided there exists a path for any i 6= j ∈Mk

and aij = aji = 0 for any i ∈ Mk and j 6∈ Mk, in which case let y(Mk) = 1 but

let y(Mk) = 0 otherwise. Then, θk given by (4.1) is the number of connected

components of order k. The number of connected components (i.e. as a motif

of unspecified order) is the graph parameter given by θ =
∑N

k=1 θk. At one end,

where A = ∅, i.e. there are no edges at all in the graph, we have θ = N = θ1 and

θk = 0 for k > 1. At the other end, where there exists a path between any two

nodes, we have θ = θN = 1 and θk = 0 for k < N .

Number of trees in a forest In a simple graph, a motif [Mk] is a tree if

the number of edges in G(Mk) is k − 1. As an example where θ can be reduced

to a specific graph total, suppose the undirected graph is a forest, where every

connected component is a tree. We have then θ = N −R, where R is the size of

the graph, which is a 2nd-order parameter.

Number of cliques A clique is a connected component, where there exists an

edge between any two nodes of the component. It is a motif of unspecified order.

The subgraph induced by a clique is said to be complete. A clustered population

can be represented by a graph, where each cluster of population elements (i.e.

nodes) form a clique, and two nodes i and j are adjacent iff the two belong to

the same cluster.
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Index of demographic mobility Given the population of a region (U), let

there be an undirected edge between two persons i and j if their family trees

intersect, say, within the last century, i.e. they are relatives of each other within

a ‘distance’ of 100 years. Each connected component in this graph G is a clique.

The ratio between the number of connected components θ and N , where N is

the maximum possible θ, provides an index of demographic mobility that varies

between 1/N and 1. Alternatively, an index can be given by the ratio between

the number of edges R and |C2|, which varies between 0 and 1, and is a function

of a 2nd-order graph total. This is an example where the target parameter can

be specified in terms of a lower-order graph total than higher-order totals.

Remark In the context of estimating the number of connected components,

Frank (1971) discusses the situation where observation is obtained about whether

a pair of sample nodes are connected in the graph, without necessarily includ-

ing the paths between them in the sample graph. The observation feature is

embedded in the definition of the graph here.

Geodesics in a graph Let an undirected graphG be connected, i.e. U = MN is

a connected component. The geodesic between nodes i and j is the shortest path

between them, denoted by [Mk], where Mk contains the nodes on the geodesic,

including i and j. A geodesic [Mk] is a motif of order k, whereas geodesic is

generally a motif of unspecified order. Let θ be the harmonic mean of the length

of the geodesics inG, which is a closeness centrality measure (Newman, 2010). For

instance, it is at its minimum value 1 if G is complete. Alternatively, let y(M2) =

1/(k−1), provided [Mk] is the geodesic between i and j, so that θ can equally be

given as a 2nd-order graph parameter. Again, this is an example where a lower-

order graph parameter can be used as the target parameter instead of alternatives

involving higher-order graph totals, provided the required observation.

3.3.3 HT-estimation

A basic estimation approach in graph sampling is the HT-estimator of a graph to-

tal (4.1). Provided the inclusion probability π(Mk) for Mk ∈ Ck, the HT-estimator

is given by

θ̂ =
∑
Mk∈Ck

δ[Mk]y(Mk)/π(Mk), (3.2)

67



where δ[Mk] = 1 if [Mk] is observed and π(Mk) is its inclusion probability. The

observation of [Mk] means not only Mk ⊆ Us, but also it is possible to identify

whether Mk is a particular motif in order to compute y(Mk). The probability

π(Mk) is defined with respect to a chosen reference set s2 and the corresponding

sample graph Gs. It follows that a motif [Mk] is observed in Gs if Mk ⊆ Us and

Mk ×Mk ⊆ s2. More detailed explanation of π(Mk) will be given in Section 3.4.

The example below illustrates the idea.

Example 3 Consider an undirected simple graph. Let 3-node star be the motif

of interest, and y(M3) = aijaih(1 − ajh) + aijajh(1 − aih) + aihajh(1 − aij) the

corresponding indicator. Suppose incident observation and s2 = s1×U . Consider

M3 = {i, j, h} ⊂ Us. To be able to identify whether it is the motif of interest, all

the three pairs (ij), (ih) and (jh) need to be in s2; accordingly, π(M3) = Pr
(
(ij) ∈

s2, (ih) ∈ s2, (jh) ∈ s2
)
. An example where this is not the case is i ∈ s1 and

j, h ∈ α(s1) \ s1, so that the observed part of this triad is a star, but one cannot

be sure if ajh = 0 in the population graph, because (jh) 6∈ s2.

Symmetric designs The inclusion probability π(Mk) depends on the sampling

design of initial s1. At various places, Frank consider simple random sampling

(SRS) without replacement, Bernoulli sampling and Poisson sampling for select-

ing the initial sample. In particular, a sampling design is symmetric (Frank,

1977a) if the inclusion probability πMk
= Pr(Mk ∈ s1) only depends on k but

is a constant of Mk, for all 1 ≤ k ≤ N . SRS with or without replacement and

Bernoulli sampling are all symmetric designs. SRS without replacement is the

only symmetric design with fixed sample size of distinct elements.

Approximate approach The initial inclusion probability πMk
has a simpler

expression under Bernoulli sampling than under an SRS design. Provided negli-

gible sampling fraction of s1, many authors use Bernoulli sampling with probabil-

ity p = |s1|/N to approximate any symmetric designs. Similarly, initial unequal

probability sampling may be approximated by Poisson sampling with the same

πi, for i ∈ U , provided negligible sampling fraction |s1|/N . Finally, Monte Carlo

simulation (Fattorini, 2006) may be used to approximate the relevant πMk
under

sampling without replacement.
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3.4 T -stage snowball sampling

An incident observation procedure (Section 3.2.3) provides the means to enlarge

a set of sample nodes by their out-of-sample adjacent nodes. It yields a method

of 1-stage snowball sampling, which can be extended successively to yield the

T -stage snowball sampling. Below we assume that all the successors are included

in the sample. But it is possible to take only some of the successors at each

stage (e.g. Snijders, 1992). In particular, taking one successor each time yields a

T -stage walk (e.g. Klovdahl, 1989). Two different observation procedures will be

considered, i.e. incident forward in digraphs and incident reciprocal in directed or

undirected graphs. We develop general formulae for inclusion probabilities under

T -stage snowball sampling. It is shown that additional observation features are

necessary for the HT-estimator based on T -stage snowball sampling, which will

be referred to as incident ancestral. Previously, Goodman (1961) has studied the

estimation of mutual relationships between i and j, where aijaji > 0 for i 6= j ∈ U ,

based on T -stage snowball sampling in a special digraph with fixed ai+ ≡ 1; Frank

(1977c) and Frank and Snijders (1994) considered explicitly HT-estimation based

on 1-stage snowball sampling.

Sample graph Gs = (Us, As) Let s1,0 be the initial sample of seeds, and α(s1,0)

its successors. Let U0 ⊆ U be the set of possible initial sample nodes. The

additional nodes s1,1 = α(s1,0) \ s1,0 are called the first-wave snowball sample,

which are the seeds of the second-wave snowball sample, and so on. At the t-th

stage, let s1,t = α(s1,t−1) \
( t−1⋃
h=0

s1,h
)

be the t-th stage seeds, for t = 1, 2, ..., T . If

s1,t = ∅, set s1,t+1 = · · · = s1,T = ∅ and terminate, otherwise move to stage t+ 1.

Let s1 =
T−1⋃
t=0

s1,t be the sample of seeds. This may result in two different sample

graphs.

I. Let s2 = s1×U provided incident forward observation in digraphs, such that the

sample graph Gs has edge set As =
⋃
i∈s1

⋃
j∈αi

Aij and node set Us = s1∪α(s1).

II. Let s2 = s1 × U ∪ U × s1 provided incident reciprocal observation, digraphs

or not, such that Gs has edge set As =
⋃
i∈s1

⋃
j∈αi

(Aij ∪ Aji) and node set Us =

s1 ∪ α(s1).
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Remark One may disregard any loops in snowball sampling, because they do

not affect the propagation of the waves of nodes, but only cause complications to

their definition.

3.4.1 Inclusion probabilities of nodes and edges in Gs

Below we develop the inclusion probabilities π(i) and π(i)(j) of nodes in Us, and

π(ij) and π(ij)(hl) of edges in As, under T -stage snowball sampling with s2 as

specified above.

Forward observation in digraphs The stage-specific seed samples s1,0, ..., s1,T−1

are disjoint, so that each observed edge, denoted by 〈ij〉 ∈ As, can only be

included at a particular stage. For i ∈ U , let β
[0]
i = U0 ∩ {i}; let β

[t]
i =

U0 ∩
(
β(β

[t−1]
i ) \

( t−1⋃
h=0

β
[h]
i

))
be its t-th generation predecessors, for t > 0, which

consists of the nodes that would lead to i in t-stages from s1,0 but not sooner.

Notice that β
[0]
i , β

[1]
i , β

[2]
i , ... are disjoint. We have

π(i) = 1− π̄Bi
for Bi =

T⋃
t=0

β
[t]
i ,

π(ij) = 1− π̄Bij
for Bij =

T−1⋃
t=0

β
[t]
i .

The respective joint inclusion probabilities follow as π(i)(j) = 1−π̄Bi
−π̄Bj

+π̄Bi∪Bj

and π(ij)(hl) = 1− π̄Bij
− π̄Bhl

+ π̄Bij∪Bhl
.

Incident reciprocal observation Each 〈ij〉 ∈ As can only be included at a

particular stage, where either i or j is in the seed sample, regardless if the graph

is directed or not. For i ∈ U , let ηi = {j ∈ U ; aij + aji > 0} be the set of its

adjacent nodes. Let η
[0]
i = U0∩{i}; let η

[t]
i = U0∩

(
η(η

[t−1]
i )\

( t−1⋃
h=0

η
[h]
i

))
be its t-th

step neighbours, for t > 0, which are the nodes that would lead to i in t-stages

from s1,0 but not sooner. We have

π(i) = 1− π̄Ri
for Ri =

T⋃
t=0

η
[t]
i , (3.3)

π(ij) = 1− π̄Rij
for Rij =

T−1⋃
t=0

η
[t]
i ∪ η

[t]
j . (3.4)
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The respective joint inclusion probabilities follow as π(i)(j) = 1−π̄Ri
−π̄Rj

+π̄Ri∪Rj

and π(ij)(hl) = 1− π̄Rij
− π̄Rhl

+ π̄Rij∪Rhl
.

Incident ancestral observation procedure It is thus clear that additional

features of the observation procedure is required in order to calculate π(i) and

π(i)(j) given any T ≥ 1, or π(ij) and π(ij)(hl) given any T ≥ 2. Reciprocal or not,

an incident procedure is said to be ancestral in addition, if one is able to observe

all the nodes that would lead to the inclusion of a node i ∈ Us, which will be

referred to as its ancestors. These are the predecessors of various generations for

forward observation in digraphs, or the neighbours of various steps for reciprocal

observation in directed or undirected graphs. Notice that the edges connecting

the sample nodes in Us and their out-of-sample ancestors are not included in the

sample graph Gs. More comments regarding the connections between snowball

sampling and some well-known network sampling methods will be given in Section

3.5.

Remark Frank (1971) defines the reach at i as the order of the connected

component containing node i. The requirement of observing the reach, with-

out including the whole connected component in the sample graph, is similar

to that of an ancestral observation procedure, even though the two are clearly

different.

Example 4 To illustrate the inclusion probabilities (3.3) and (3.4), consider

the population graph G = (U,A), and a sample graph Gs = (Us, As) by 2-stage

snowball sampling, with the initial sample s1,0 = {3, 4} by SRS with sample size 2.

The 1st- and 2nd-wave snowball samples are s1,1 = {8, 9, 10} and s1,2 = {1, 5, 7},
respectively. The sample of seeds is s1 = {3, 4, 8, 9, 10}. Both G and Gs are given

in Figure 3.2. To the left of Figure 3.3, the true node inclusion probabilities

π(i) are plotted against those given by (3.3), where there are 5 distinct values;

to the right, the true edge inclusion probabilities π(ij) are plotted against those

given by (3.4), where there are 4 distinct values. In both cases, the true inclusion

probabilities are calculated directly over the 45 possible initial samples of size

2.
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Figure 3.2: Population graph G with 10 nodes and 11 edges (left), a sample graph
Gs by 2-stage snowball sampling starting from s1,0 = {3, 4} by simple random
sampling (right).
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Figure 3.3: Inclusion probability π(i): true vs. (3.3), left; π(ij): true vs. (3.4),
right.

3.4.2 Arbitrary Mk with k ≥ 2 and s2 = s1 × U ∪ U × s1

To fix the idea, consider incident reciprocal observation in directed or undirected

graphs. Notice that one can as well let s2 = s1 × U in the case of undirected

graphs.

Definition of π(Mk) for Mk ⊂ U To be clear, write {i1, i2, ..., ik} for Mk ⊂ U .

Let M
(h)
k = Mk \ {ih} be the subset obtained by dropping ih from Mk, for h =

1, ..., k. As explained in Section 4.6, to be able to identify the motif [Mk], there

can be at most one node in Mk that belongs to the last wave of snowball sample

(s1,T ). In other words, at least one of the k subsets M
(h)
k must be in the sample
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of seeds s1. We have

π(Mk) = Pr
(
M

(1)
k ⊆ s1 or M

(2)
k ⊆ s1 or · · · or M

(k)
k ⊆ s1 or Mk ⊆ s1

)
=

k∑
h=1

Pr
(
M

(h)
k ⊆ s1

)
− (k − 1)Pr

(
Mk ⊆ s1

)
, (3.5)

where Pr
(
Mk ⊆ s1

)
= π(i1)(i2)···(ik) is joint inclusion probability of the relevant

nodes in s1, similarly for Pr
(
M

(h)
k ⊆ s1

)
, where h = 1, ..., k. The expression

(3.5) follows from noting {M (h)
k ⊆ s1} ∩ {Mk ⊆ s1} = {Mk ⊆ s1}, and {M (h)

k ⊆
s1} ∩ {M (l)

k ⊆ s1} = {Mk ⊆ s1}, and
(
{M (h)

k ⊆ s1} \ {Mk ⊆ s1}
)
∩
(
{M (l)

k ⊆

s1} \ {Mk ⊆ s1}
)

= ∅.

Joint inclusion probability π(Mk)(M
′
k)

For Mk ⊂ U and M ′
k ⊂ U , the joint

observation of [Mk] and [M ′
k] requires that (i) at most one node i in s1,T , provided

i ∈ Mk ∩M ′
k, or (ii) at most two nodes i, j in s1,T , provided i ∈ Mk \M ′

k and

j ∈M ′
k\Mk. Put M = Mk∪M ′

k. The relevant subsets are M (i) for all i ∈Mk∩M ′
k,

and M (ij) for all i ∈ Mk \M ′
k and j ∈ M ′

k \Mk. The joint inclusion probability

π(Mk)(M
′
k)

follows, similarly as above for π(Mk), as the probability that at least one

of these subsets is in the sample of seeds s1.

Probability π(i1)(i2)···(ik) In the case of k = 2, π(i)(j) is as given earlier in Section

3.4.1. To express π(i1)(i2)···(ik) in terms of the probabilities for the initial seed

sample s1,0, we have

π(i1)(i2)···(ik) =
∑
L⊆Mk

(−1)|L|π̄(L), (3.6)

where L includes ∅, and |L| is its cardinality, and π̄(L) is the exclusion probabil-

ity

π̄(L) = Pr(L ∩ s1 = ∅) = Pr(RL ∩ s1,0 = ∅) = π̄RL
=
∑
D⊆RL

(−1)|D|πD, (3.7)

where RL =
⋃
i∈L

Ri and Ri =
⋃T−1
t=0 η

[t]
i is the ancestors of i up to the T − 1 steps,

and πD is joint inclusion probability of the nodes in D in the initial sample of

seeds s1,0.
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3.4.3 Arbitrary Mk with k ≥ 2 and s∗2 = s1 × s1
By dropping the nodes s1,T of the last wave of T -stage snowball sampling, we

ensure that the motif of any subset Mk ∈ s1 is observable. The idea is developed

below.

Definition of π(Mk) for Mk ⊆ s1 Let Gs = (Us, As) be the sample graph of T -

stage snowball sampling, with reference set s2 = s1×U∪U×s1. Let G∗s = (U∗s , A
∗
s)

be the reduced sample graph obtained from dropping s1,T , with reference set

s∗2 = s1 × s1, where A∗s = As \ {〈ij〉; i ∈ s1, j ∈ s1,T} and U∗s = Us \ s1,T = s1.

Notice that A∗s contains all the edges between any i, j ∈ s1 in the population

graph G, and G∗s is the same sample graph that is obtained from s1 by induced

observation directly. It follows that one observes the motif for any Mk ∈ s1, so

that the inclusion probability π(Mk) is given by

π(Mk) = Pr
(
Mk ⊆ s1

)
= π(i1)(i2)···(ik), (3.8)

where π(i1)(i2)···(ik) is given by (3.6) and (3.7) as before.

Joint inclusion probability π(Mk)(M
′
k)

For Mk ⊂ s1 and M ′
k ⊂ s1, the joint

observation of [Mk] and [M ′
k] requires simply M = Mk ∪ M ′

k ⊆ s1. The joint

inclusion probability π(Mk)(M
′
k)

is therefore given by π(M) on replacing Mk by M

in (3.8), (3.6) and (3.7).

Other reduced graphs The sample graph G∗s is obtained from dropping the

T -th wave nodes s1,T . Rewrite G∗s as G
(T−1)
s ; it can be reduced to G

(T−2)
s by

dropping s1,T−1 as well. This yields G
(T−2)
s as the induced graph among s1\s1,T−1.

The inclusion probability π(Mk) for Mk ⊂ A
(T−2)
s can be derived similarly as (3.8).

Carrying on like this, one obtains in the end the reduced graphG
(0)
s , with reference

set s2 = s1,0 × s1,0, which is just the induced graph among s1,0. The inclusion

probability π(Mk) for Mk ∈ s1,0 is πMk
= Pr

(
Mk ⊆ s1,0

)
directly. Notice that the

sample graph G
(0)
s under T -stage snowball sampling can equally be obtained as

G
(0)
s under 1-stage snowball sampling. It follows that the additional T − 1 wave-

samples would simply have been wasted, had one only used G
(0)
s for estimation.

For the same reason it is equally implausible to use G
(1)
s , ..., G

(T−2)
s . However,

G
(T−1)
s = G∗s is different because the last wave serves to establish G∗s as an induced

sub-population graph, i.e. with no potentially missing edges among the relevant

74



nodes.

Comparisons between G∗s and Gs On the one hand, whichever motif of

interest, Gs always has a larger or equal number of observations than G∗s. Hence,

one may expect a loss of efficiency with G∗s. On the other hand, estimation

based on Gs requires more computation than G∗s. Firstly, for any Mk ⊆ s1,

it requires about k times extra computation for π(Mk) by (3.5) than by (3.8).

This is due to the need to compute the probability of possibly observing Mk as

M
(h)
k ⊂ s1 and h ∈ s1,T , even if Mk is observed as Mk ⊂ s1, which is unnecessary

with respect to s∗2, where the observations are restricted to those among the

nodes in s1 without involving s1,T . Secondly, corresponding to each Mk ⊆ s1,

there are additional observations with respect to s2, which are all the possible

M ′
k = {M (h)

k , j;h ∈Mk, j 6∈ s1}, because the motif of such anM ′
k can be identified.

The motif of any M ′
k is unknown, if it differs from any Mk ⊆ s1 by at least two

nodes.

Example 5 To illustrate the inclusion probabilities (3.5) and (3.8), consider

the population graph G = (U,A) in Figure 3.4, where |U | = 13 and |A| = 19,

together with the two 2-stage snowball sample graphs Gs and G∗s, both with

s1,0 = {4, 5, 10} by SRS of sample size 3. We have s1,1 = {1, 2, 8, 9}, s1,2 =

{3, 6, 12, 13} and s1 = {1, 2, 4, 5, 8, 9, 10}. Table 3.1 lists 6 selected triad (M3)

inclusion probabilities given by (3.5) and (3.8), respectively, with respect to s2 =

s1 × U and s∗2 = s1 × s1. These are seen to be equal to the true probabilities

calculated directly over all possible initial samples s1,0, under SRS of sample

size 3. Table 3.2 shows the estimates of the four 3rd-order graph totals θ̂3,h, for

h = 0, 1, 2, 3, which are as defined in Section 3.3.1.3, based on these two sample

graphs Gs and G∗s. The expectation and standard error of each estimators are

also given in Table 3.2, which are evaluated directly over all the possible initial

sample s1,0. The true totals in the population graph G are (θ3,0, θ3,1, θ3,2, θ3,3) =

(121, 123, 40, 2). Clearly, both HT-estimators are unbiased, and using G∗s entails

a loss of efficiency against Gs, as commented earlier.

3.4.4 Proportional representative sampling in graphs

A traditional sampling method is sometimes said to be (proportional) represen-

tative if the sample distribution of the survey values of interest is an unbiased

estimator of the population distribution directly. This is the case provided equal
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Figure 3.4: Population graph G with 13 nodes and 19 edges (top); sample graphs
Gs (bottom left) and G∗s (bottom right) by 2-stage snowball sampling with initial
s1,0 = {4, 5, 10}.

probability selection. Equipped with the general formulae for π(Mk) under T -stage

snowball sampling, below we propose and examine a proportional representative-

ness concept for graph sampling.

Graph proportional representativeness Let mk 6= m′k be two distinct mo-

tifs of the order k. A graph sampling method is k-th order proportionally repre-

sentative (PRk) if

E[θs]/θ = E[θ′s]/θ
′, (3.9)

where θ is the number of mk in the population graph G, and θs that of the

observed mk in the sample graph Gs with reference set s2, and similarly with

θ′ and θ′s for m′k. Let y(Mk) = 1 if [Mk] = mk and 0 otherwise. Let δ[Mk] be

the observation indicator with respect to s2. We have θ =
∑

Mk∈Ck y(Mk) and

θs =
∑

Mk∈Ck δ[Mk]y(Mk). Clearly, a graph sampling method will be PRk if π(Mk)
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Table 3.1: Inclusion probability π(M3) of selected M3 = {i1, i2, i3}
With s2 = s1 × U With s∗2 = s1 × s1

i1 i2 i3 By (3.5) True By (3.8) True
1 2 3 0.9230769 0.9230769 0.5664336 0.5664336
1 2 4 0.8531469 0.8531469 0.2657343 0.2657343
1 3 4 0.8321678 0.8321678 0.2027972 0.2027972
2 3 4 0.8531469 0.8531469 0.2552448 0.2552448
1 2 5 0.8671329 0.8671329 0.6223776 0.6223776
1 3 5 0.8881119 0.8881119 0.5384615 0.5384615

Table 3.2: Third-order graph total estimate, expectation and standard error

Based on sample graph Gs θ̂3,0 θ̂3,1 θ̂3,2 θ̂3,3
Estimate 96.251 89.260 26.289 2.515
Expectation 121 123 40 2
Standard error 22.977 18.591 7.025 0.768

Based on sample graph G∗s θ̂3,0 θ̂3,1 θ̂3,2 θ̂3,3
Estimate 59.128 63.209 19.211 1.607
Expectation 121 123 40 2
Standard error 78.694 49.929 15.038 1.195

is a constant for different motifs of order k. Under any PRk design, one may

estimate the relative frequency between mk and m′k by θs/θ
′
s.

Result 1. Induced observation from s1 is PRk for k ≥ 1, provided

s2 = s1 × s1 and symmetric design p(s1). The result follows since, for any

Mk ⊂ As = s1, we have π(Mk) = πMk
, which is a constant of [Mk] by virtue of

symmetric design p(s1).

Result 2. One-stage snowball sampling is PRk for k ≥ 2, provided

s2 = s1 × U ∪ U × s1 and symmetric design p(s1). Suppose first reciprocal

observation. We have Ri = {i} ∪ η[1]i , whose cardinality varies for different nodes

in G. It follows that π(M1) = π(i) by (3.3) is not a constant over U , i.e. the design

is not PR1. Next, for Mk with k ≥ 2, π(Mk) by (3.5) depends on k+1 probabilities

given by (3.6) and (3.7). Each relevant probability π̄(L) is only a function of |RL|
provided symmetric design p(s1), where RL =

⋃
i∈L

Ri = L since Ri = {i} given

T = 1. It follows that |RL| = |L| regardless of the nodes in Mk, such that π(Mk) is

a constant of Mk, i.e. PRk. Similarly for forward observation in digraphs.

77



Remark Setting s∗2 = s1 × s1 yields induced sample graph from s1 and Result

1.

Result 3. T -stage snowball sampling is generally not PRk for k ≥ 1 and

T ≥ 2, despite symmetric design p(s1). As under 1-stage snowball sampling,

the design is not PR1. Whether by (3.5) or (3.8) for k ≥ 2, π(Mk) depends on

π̄(L) in (3.6), which is only a function of |RL| provided symmetric design p(s1).

However, given T ≥ 2 and |L|, RL =
⋃
i∈L

Ri generally varies for different L, so

that neither RL nor |RL| is a constant of the nodes in Mk, i.e. the design is not

PRk. Similarly for forward observation in digraphs.

3.5 Network sampling methods

As prominent examples from the network sampling literature we consider here

multiplicity sampling (Birnbaum and Sirken, 1965), indirect sampling (Lavallée,

2007) and adaptive cluster sampling (Thompson, 1990). Below we first sum-

marise broadly their characteristics in terms of target parameter, sampling and

estimator, and then discuss four salient applications of these methods using the

snowball sampling theory developed in Section 3.4.

Target parameter In all the network sampling methods mentioned above, the

target parameter is the total of a value associated with each node of the graph,

denoted by yi for i ∈ U , which can be referred to as a 1st-order network total

θ =
∑

i∈U yi in light of (4.1). This does not differ from that when “conventional”

sampling methods are applied for the same purpose, where Sirken (2005) uses the

term conventional in contrast to network. In other words, these network sampling

methods have so far only been applied to overcome either certain deficiency of

frame or lack of efficiency of the traditional sampling methods, as discussed below

in terms of sampling and estimator, but not in order to study genuine network

totals or parameters, which are of orders higher than one.

Sampling Like in the definition of sample graph, these network sampling meth-

ods start with an initial sample s1. The sampling frame of s1 can be direct or

indirect. In the latter case, the sampling units are not the population elements.

This may be necessary because a frame of the population elements is unavailable,

such as when siblings are identified by following up kins to the household mem-
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bers of an initial sample of households (Sirken, 2005). Or, a frame of the elements

may be available but is unethical to use, such as when children are accessed via a

sample of parents (Lavallée, 2007). In cases a direct frame of elements is used, the

initial sample s1 may be inefficient due to the low prevalence of in-scope target

population elements, so that an observation procedure depending on the network

relationship (between the elements) is used to increase the effective sample size.

This is the case with adaptive cluster sampling (Thompson, 1989).

Estimator For 1-st order network parameters (4.1), where the population ele-

ments are represented as nodes in the population graph G = (U,A), the HT-

estimator (3.2) is defined for the observed nodes in the sample graph Gs =

(Us, As). Another approach in the aforementioned methods is the HT-estimator

defined for the selected sampling units. Let F be the frame of sampling units,

where l ∈ F has inclusion probability πl. We have∑
l∈F

zl =
∑
l∈F

(∑
i∈U

wliyi

)
=
∑
i∈U

yi
∑
l∈F

wli =
∑
i∈U

yi = θ,

where zl =
∑

i∈U wliyi is a value constructed for the sampling units, based on any

chosen weights, provided
∑

k∈F wki = 1, as noted by Birnbaum and Sirken (1965).

The corresponding HT-estimator that is unbiased for θ can be given by

θ̃HT =
∑
l∈s1

zl/πl =
∑
l∈F

zlδl/πl, (3.10)

where δl = 1 if l ∈ s1 and 0 otherwise. To ensure that zl can be calculated

no matter which actual sample s1, the weights wli must not depend on s1. A

common approach is to set wli = 1/mi, where l a sampling unit in s1 which gives

rise to i, and mi is the number of all sampling units in F that could lead to the

observation of i, for i ∈ U . The number mi is referred to as the multiplicity of

the element (Birnbaum and Sirken, 1965). The observation of mi for each sample

element is the same kind of requirement as the observation of the ancestors of a

node in Us under snowball sampling. The literature is inconclusive on the relative

efficiency between the two estimators (3.2) and (3.10).
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3.5.1 Sampling patients via hospitals

Birnbaum and Sirken (1965) consider this situation, without using graph repre-

sentation. To fix the idea, suppose a sample of hospitals is selected according to a

probability design. From each sample hospital, one observes a number of patients

of a given type, who are treated at this hospital. Let the target parameter θ be

the population size of such patients. The complication arises from the fact that a

patient may receive treatment at more than one hospital. Sirken (2005) refers to

conventional sampling where every population element is linked to one and only

one sampling unit, whereas in the case of network sampling a population element

(i.e. patient of a certain type) can be linked to a varying number of sampling

units (i.e. hospitals). Sirken (2005) refers to ‘cluster’ as the group of population

elements which are linked to the same sampling unit, and ‘network’ the group of

sampling units which are linked to the same population element. The distinction

between cluster and network here needs to be accounted for in estimation.

(P) Projection graph The HT-estimator (3.2) can be obtained using the

following graph sampling set-up. Denote by H the known set of hospitals and

P the unknown set of in-scope patients, where θ = |P |. Let G = (U,A) have

U = H ∪ P . For any i ∈ H and j ∈ P , aij ∈ A iff patient j receives treatment

at hospital i. Let the simple graph be undirected. Notice that (H,P ) form a

bipartition of U , where there are no other edges at all except those that project

H onto P . Given s1 ⊂ H = U0, let s2 = s1 × P for 1-stage snowball sampling.

The observation procedure must be incident ancestral, so that mi is observed

for i ∈ α(s1), without including in the sample graph Gs all the edges that are

incident at i but outside of s2. The inclusion probability π(i) is given by (3.3),

where we have η
[0]
i = ∅ since U0 ∩ P = ∅, and η

[1]
i = βi, so that Ri = βi and

|Ri| = mi. Let yi = 1 for all i ∈ P .

Remark The HT-estimator (3.2) and (3.10) correspond to the first two estima-

tors proposed by Birnbaum and Sirken (1965). Their third estimator is defined

for the edges in the projection graph, which however lacks a formulation that

allows it to be applied generally.

Two-stage snowball sampling Consider 2-stage snowball sampling in the

same graph, under which the observation procedure is incident but needs not be

ancestral in addition. Given s1,0 ⊂ H, let s1,1 = α(s1,0) ⊆ P and s1,2 = α(s1,1) ⊆
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H, i.e. reverse projection. The HT-estimator (3.2) makes only use of the nodes

(i.e. motif of interest) in s1,1, where yi ≡ 1, and π(i) is given by (3.3), for which

Ri = βi is fully observed due to the addition of s1,2.

3.5.2 Sampling children via parents

Lavallée (2007) considers this situation. Children are the population elements.

Suppose a sample of parents is selected according to a probability design. One

obtains all the children of each sample parent. Without losing generality, let the

target parameter θ be the number of children who are not orphans. The same

complication arises from the fact that a child may be accessed via two parents if

they are both in the sampling frame. Clearly, the situation is conceptually the

same as sampling patients via hospitals above.

Remark Lavallée (2007) represents the situation using the same graph (P)

above, where U = P ∪C, and P consists of the parents and C the children. The

HT-estimator (3.2) based on either 1- or 2-stage snowball sampling formulation

is the same as above, with yi ≡ 1 for i ∈ C. Lavallée (2007) considers only the

HT-estimator (3.10).

(M) Multigraph Put G = (U,A) where U = P and A = C, i.e. with parents

as the nodes and children as the edges. Let Aij represent the aij children of

parents i and j. Let loops Aii at node i represent the aii children of single-parent

i. Given s1 = s1,0 ⊂ P = U0, let s1,1 = α(s1,0) \ s1,0, i.e. 1-stage snowball

sampling. The incident observation procedure is ancestral by construction here.

Let s2 = s1 × U . The inclusion probability π(ij) of a child 〈ij〉 ∈ A is given by

(3.4), where η
[0]
i = {i} and η

[0]
j = {j} under 1-stage snowball sampling; whereas

π(ii) of a child 〈ii〉 of a single parent is also given by (3.4), where η
[0]
i = {i}.

Remark Making population elements the edges of the graph is not convenient

for the hospital-patient application, because while each child corresponds to only

one edge, each patient may appear as multiple edges incident to different nodes

(i.e. hospitals).
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3.5.3 Sampling siblings via households

Sirken (2005) discusses this situation, without resorting to explicit graph repre-

sentation. To fix the idea, suppose a sample of households is selected according

to a probability design. For each member of the household, one obtains all the

siblings who may or may not live in the same household. The observation el-

ements are siblings, denoted by S, which excludes anyone who has no siblings.

Without losing generality, let θ be the number of siblings.

(2P) Twice projection graph Denote by H the households, P the persons,

and S the siblings, where i ∈ S is considered a different element to j ∈ P , even if

i and j refer to the same person in real life. Let G = (U,A), where U = H∪P ∪S
and A = AHP ∪ APS. Each Ahj ⊂ AHP is such that h ∈ H and j ∈ P , i.e. AHP

projects H onto P ; each Aij ∈ APS is such that i ∈ P and j ∈ S are siblings,

including when the two refer to the same person, i.e. APS projects P onto S.

Let the twice projection graph from H to P to S be undirected. Consider 2-

stage snowball sampling starting from s1,0 ⊂ H = U0. Let s2 = s1 × U , where

s1 = s1,0∪s1,1 is the sample of seeds. The observation procedure must be incident

ancestral, provided which the HT-estimator (3.2) is only based on s1,2. For i ∈ S,

we have yi = 1 and π(i) given by (3.3), where η
[0]
i = η

[1]
i = 0 because it can only

be reached from s1,0 in exactly two waves, and ηi = η
[2]
i where |ηi| = mi is the

number of households that can lead to i from s1,0, i.e. its multiplicity according

to Birnbaum and Sirken (1965).

(PR) Projection relation graph Put G = (U,A), where U = H ∪ P . Let

aij ∈ A if (i) person j belongs to household i, or (ii) persons i and j are siblings

of each other. The edges of type (i) project H on to P , whereas those of type

(ii) are relations within P . Notice that each group of siblings form a clique; a

person without siblings is a single-node clique. To ensure ancestral observation,

consider 3-stage snowball sampling. Given s1,0 ⊂ H = U0, s1,1 consists of the

members of the households in s1,0, and s1,2 the siblings of s1,1 which are outside

of the initial sample households, and s1,3 ⊆ H consists of the households to s1,2.

Let s2 = s1 × U , where s1 = s1,0 ∪ s1,1 ∪ s1,2. The HT-estimator (3.2) makes

use of i ∈ s1 ∩ S, with yi ≡ 1. The corresponding π(i) is given by (3.3), where

η
[0]
i = 0, and η

[1]
i is the household of i, and η

[2]
i contains the households of its

out-of-household siblings. In other words, ηi contains all the households that can

lead to i, where |ηi| = mi.
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Remark Sampling in the graphs (2P) and (PR) makes use of relationships

among the population elements, unlike sampling of patients or children in the

projection graph (P).

(HP) Hypernode projection graph Let each clique in the graph (PR) above

be a hypernode — all the nodes of a hypernode are always observed together or

not at all. Let G = (U,A), where U = H∪P , and P consists of all the hypernodes

of P . Let aij = 1 iff at least one node in the hypernode j belongs to household

i. This yields an undirected simple graph as the hypernode projection graph.

Consider 2-stage snowball sampling with U0 = H as in the projection graph,

such that observation is ancestral by construction. Both HT-estimators (3.2) and

(3.10) follow directly, where yi is the number of nodes in i ∈ P .

3.5.4 Adaptive cluster sampling of rare species

In contrast to conventional sampling, Thompson (1990) characterises adaptive

sampling designs as those in which the procedure to include units in the sample

depends on the values of interest observed during the survey. To fix the idea,

suppose an area is divided into (spatial) grids as the units of sampling and obser-

vation. Each grid in an initial sample of grids is surveyed for a given species of

interest. If it is not found there, one would move on to another grid in the initial

sample. However, whenever the species is found in grid i, one would survey each

of its neighbour grids in four directions, beyond the initial sample, provided not

all of them have been surveyed before. This observation procedure can help to

increase the number of in-scope grids, compared to random sampling of the same

amount of grids, provided the species is more likely to be found given that it is

found in a neighbour grid than otherwise. Once in a new grid, the procedure is

repeated and the survey may or may not continue to the neighbour grids, depend-

ing on the finding in the current grid. The sampling is finished if no new grids

can be added to the sample, or if one has reached a predetermined limit in terms

of the number of surveyed grids, time, resource, etc. The observed in-scope grids

form sampling as well as observation clusters, in the sense that all the member

grids of a cluster are sampled and observed if any one of them is.

(T) Transitive graph Adaptive cluster sampling (ACS) can be represented

as 2-stage snowball sampling in a transitive graph as follows. Let G = (U,A),

where U contains all the grids in ACS. Let UA contain all the grids where the
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rare species is present. Let U c
A = U \ UA. Let aij = 1 iff i, j ∈ UA and i and j

belong to the same observation cluster under the ACS. This yields an undirected

simple transitive graph, where each i ∈ U c
A is an isolated node, and each group

of connected nodes in UA form a clique. Without losing generality, let θ = |UA|.
The snowball sampling starts with s1,0 ⊂ U = U0, i.e. any grid can be selected

initially. Let s1,1 = α(s1,0). Notice that the isolated nodes in s1,0 do not lead

to any nodes in s1,1, while a connected node in s1,0 leads to all the nodes in ies

observation cluster but none in U c
A, since edges exist only among the nodes in

UA. In reality, a neighbour grid of i ∈ UA ∩ s1,0 which belongs to U c
A is also

surveyed, but it will not lead to any additional nodes in the next wave, nor will

it be the motif of interest in estimation. It is therefore convenient to represent

this adaptive nature of the ACS by not including in s1,1 any node from U c
A at

all. The 2nd-wave snowball sample will be empty, i.e. s1,2 = ∅, because all the

connected nodes in a clique will already be observed either in s1,0 or s1,1. But the

2nd-stage is needed to ensure that the observation is ancestral by construction.

The HT-estimator (3.2) uses every node i ∈ s1 = s1,0 ∪ s1,1, with yi = 1, and π(i)

is given by (3.3), where η
[0]
i = {i}, and η

[1]
i contains all its adjacent nodes.

Remark The graph (T) is the same as the relation part of the graph (PR) in

the case of sampling siblings via households. The projection part is not necessary

here because the initial sampling uses a direct frame, unlike the other applications

above.

Remark The ACS can as well be represented by the graph (HP), with the

cliques in the graph (T) above as the hypernodes. Both HT-estimators (3.2) and

(3.10) follow directly.

3.6 Concluding remarks

In this paper we synthesised the existing graph sampling theory, and made several

extensions of our own. We proposed a definition of sample graph, to replace

the different samples of nodes, dyads, triads, etc. This provides formally an

analogy between sample graph as a sub-population graph and sample as a sub-

population. Next, we developed a general approach of HT-estimation based on

arbitrary T -stage snowball sampling. It is clarified that design-based estimation

based on snowball sampling requires the observation procedure to be ancestral,
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which can be hard to fulfil in many practical applications of snowball or snowball-

like sampling, including the estimation of a clandestine target population size.

Without satisfying the ancestral requirement, the estimation will have to be based

on an appropriate statistical model instead.

We presented various graph sampling formulations of the existing design-based

network sampling methods. It is seen that different graph representations reveal

the different estimators more or less readily, so the choice matters in applications.

The graph sampling theory provides a more general and flexible framework to

study and compare these unconventional methods, and to develop possible alter-

natives and modifications.

Moreover, it transpires that these existing network sampling methods do not re-

ally differ from conventional sampling with respect to the target parameter. We

believe that the scope of investigation can be greatly extended if one starts to

consider other genuine network parameters, which can only be studied using a

graph representation. Two research directions can be identified in this respect.

First, we are currently examining the scope of problems that can be studied

using the (hypernode) projection graph, and the properties of the design-based

estimation methods. Second, it seems intuitive that a lower-order network pa-

rameter can be estimated using a ‘smaller’ or more fragmented sample graph than

a higher-order parameter. It is therefore interesting to understand better the con-

ditions, by which a high-order network parameter can be expressed as a function

of lower-order parameters. Although this is perhaps more of a mathematical than

statistical problem, such transformations can potentially be very useful for the

applications of the graph sampling theory. Developing a comprehensive finite-

graph sampling theory, beyond the established finite-population sampling theory,

seems an exciting area for future research.
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Chapter 4

Incidence weighting estimation

under sampling from a bipartite

incidence graph

We consider design-unbiased estimation on a bipartite incidence graph.

The bipartite incidence graph can be used to represent many graph

sampling situations for the purpose of estimation, including also the

so-called unconventional sampling methods in the literature, such as

indirect sampling, network sampling and adaptive cluster sampling.

We propose a class of linear estimators based on the edges of the

sample bipartite incidence graph, subjected to a general condition of

design unbiasedness. The proposed class of estimators contains as

special cases the classic Horvitz-Thompson estimator, as well as the

other existing unbiased estimators under unconventional sampling,

which can be traced back to Birnbaum and Sirken (1965). The gen-

eralisation allows one to devise new unbiased estimators, and thereby

greatly increase the scope of efficiency improvement in applications.

Numerical illustrations are provided for a number of incidence weight-

ing estimators.

Key words: graph sampling, incidence weight, multiplicity weighting
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4.1 Introduction

Birnbaum and Sirken (1965) consider the situation in which patients are sampled

indirectly via the hospitals where they receive treatment. Since a patient may

receive treatment from more than one hospital, the patients are not nested in

the hospitals like elements in clustered sampling. Birnbaum and Sirken propose

three estimators for such indirect sampling. The first one is the standard Horvitz-

Thompson (HT) estimator (Horvitz and Thompson, 1952) in finite-population

sampling, where each sampled patient is weighted by the inverse of the probability

of being observed. The other two estimators are unusual: one is based on the

sampled hospitals and a constructed measure for each of them, the other based

on a sub-sample of hospitals determined by a priority rule and a constructed

measure. Later, the first of these two estimators was recast as a generalised weight

share method for indirect sampling (Lavallée, 2007); it was reused for network

sampling (Sirken, 2005) and adaptive cluster sampling (Thompson, 2012, Ch.

24). However, the other priority-rule estimator appears to have vanished from

the literature.

Zhang and Patone (2017) synthesise the existing graph sampling theory, extend-

ing previous works on this topic by Frank (1980a, 1980b, 2011). A formal defini-

tion is given for sampling from finite graphs and the HT-estimator is developed

for general T-stage snowball sampling. In particular, they show that all the afore-

mentioned unconventional sampling techniques can be given as various instances

of graph sampling. In this paper, we shall use a bipartite incidence graph (BIG)

to represent all these situations of sampling. For instance, the nodes can be the

hospitals and the patients and an edge exists between a hospital and any patient

that has received treatment at the hospital. This is a bipartite graph since the

nodes of this graph are naturally divided into two disjoint sets.

The unified BIG representation allows us to reconsider and to extend the three

estimators of Birnbaum and Sirken (1965), under a much more general setting

that is immediately applicable to all these and other situations of sampling that

can be represented by the BIG. We will show how the three estimators of Birn-

baum and Sirken (1965) are particular cases of a general class of estimators which

we call incidence weighting estimators (IWEs). Not only can their two unusual

estimators be given a unified treatment, which is hitherto unknown in the litera-

ture, they can both be extended in various ways, which increases the possibility

for gains of estimation efficiency in applications.
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In Section 2, we introduce the BIG formally and explain how it can be used to

represent all the aforementioned situations of sampling. We recast the three esti-

mators of Birnbaum and Sirken (1965) as estimators on the BIG, and provide the

variance of the priority-rule estimator explicitly, which was lacking in Birnbaum

and Sirken (1965). In Section 3, we develop the IWE, which is based on the sam-

ple incidence relationships (edges of the sample BIG). We develop the general

condition for design unbiased IWE, derive its theoretical sampling variance and

associated variance estimation. Some examples of unbiased incidence weights are

presented in Section 4, where we recast the three estimators of Birnbaum and

Sirken (1965) as the IWEs, as well as proposing new estimators. Numerical illus-

trations will be given for several of them in Section 5. Section 6 contains some

brief concluding remarks and some topics for future research.

4.2 Basics of BIG sampling and estimation

Denote by G = (F,U ;A) a bipartite simple directed graph, where (F,U) forms

a bipartition of the node set F ∪ U , and each edge in A points from one node in

F to another in U . The graph is directed, i.e. the edge that goes from i to j is

different from the edge that goes from j to i. The graph is bipartite since there

does not exist any edge among the nodes in F , nor so in U , but only between F

and U . Let F = {1, . . . ,M} and U = {1, . . . , N}. In using G to represent BIG

sampling, we assume that F is the frame containing the set of initial sampling

units, and U is the population containing the set of motifs of interest, and an

edge (ki) that is incident to k ∈ F and i ∈ U exists, if and only if the selection

of k in a sample s from F leads to the observation of motif i in U. The incidence

relationships corresponding to the edges in A can thus also be interpreted as

incidence of sampling. In particular, provided k ∈ s, a sampling unit k in F will

lead to the observation of all the motifs in U that are adjacent to k in G, denoted

by αk = {i; i ∈ U, (ki) ∈ A}.

Henceforth we shall refer to G as BIG. Some examples of BIG sampling are as

follows.

� Indirect sampling (Birnbaum and Sirken 1965; Lavallée, 2007): F consists of

the hospitals, U the patients, and an edge exists between a hospital in F and

a patient in U if and only if the patient receives treatment at the hospital.

� ‘Network sampling’ (Sirken, 2005): F consists of the households, U the cliques
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of siblings, and an edge exists between a household in F and a sibling-clique

in U if and only if at least one of the siblings belong to the household.

� Adaptive cluster sampling (Thompson, 1990): F consists of the spatial grids

over a given area of habitat for a rare species, U the clusters of neighbouring

grids where one can find the species of interest, and an edge exists between a

grid in F and a grid-cluster in U if and only if the grid belongs to the cluster.

4.2.1 BIG sampling

Insofar as βi = {k; k ∈ F, (ki) ∈ A}, for i ∈ U , may contain more than one unit in

F , one needs to know βi, so as to able to calculate the probability of observing i

under BIG sampling. This requires the observation procedure of BIG sampling to

be ancestral (Zhang and Patone, 2017). Ancestral observation procedure is also

needed to implement the other two unusual estimators of Birnbaum and Sirken

(1965) under indirect sampling.

By way of introduction, consider BIG sampling on the population graph G given

at the top of Figure 4.1, where F = {1, 2, 3, 4} and U = {5, 6, 7, 8, 9, 10, 11}. The

edge set A and the set U are unknown. But the set F is known, and serves as

the sampling frame of the initial sample, where M = |F | = 4 is its size. Given

an initial sample s of size m, for s ⊂ F , the sample graph (Zhang and Patone,

2017) is given by Gs = (s ∪ α(s), As), where

As = Inc(s) = {(ki); k ∈ s, i ∈ U, a(ki) = 1} =
(
s× α(s)

)
∩ A ,

which consists of all the edges in A that are incident to the units in sample s.

Thus, given s = {1, 2}, we have Gs = {{1, 2} ∪ α
(
{1, 2}

)
;As}, as shown to the

bottom-left in Figure 4.1, where

α
(
{1, 2}

)
= {10} ∪ {5, 7, 9}

As = {(1, 10), (10, 1), (2, 5), (5, 2), (2, 7), (7, 2), (2, 9), (9, 2)}

Notice that the observation procedure given s is by default incident. More im-

portantly, to facilitate estimation based on the sampling design, the observation

procedure needs to be ancestral in addition, such that all the units that would

lead to the inclusion for each sample motif i ∈ α(s) are observed. Thus, given

s = {1, 2}, the motifs in β
(
α(s)

)
\ s = {3, 4} are observed due to the ancestral
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Figure 4.1: Top, population bipartite incidence graph G = (F,U ;A). Sam-
ple graph Gs given s = {1, 2}: bottom-left, by incident reciprocal observa-
tion; bottom-right, by incident ancestral observation, with additional information
marked by dotted edges.

nature of the observation procedure, even though they are not part of the sample

graph; nor are the dotted edges to the bottom-right of Figure 4.1 included in the

sample graph, which exist between β
(
α(s)

)
\ s ⊂ F and α(s) ⊂ U . However, the

knowledge of the existence of these dotted edges is necessary in order to be able

to calculate the HT and the other estimators to be described later.

Finally, as explained by Zhang and Patone (2017), incident ancestral observation

in graph sampling can generally be achieved by T-stage snowball sampling, but

retaining only the edges observed in the first T − 1 stages. For BIG sampling

from G in Figure 4.1 and given s = {1, 2}, 2-stage snowball sampling would lead
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to the observation of the dotted edges at the second stage, retaining only the

edges from the 1st-stage allows one to retain the knowledge of their existence

while removing them from the sample graph.

4.2.2 Three existing estimators under BIG sampling

Let yi be the value of interest associated with each motif i ∈ U . Let the target

parameter for estimation be

θ =
∑
i∈U

yi =
∑
k∈F

zk =
∑

(ki)∈A

wkiyi, (4.1)

where zk is a constructed measure for each unit in F , which is given by

zk =
∑
i∈αk

wkiyi and
∑
k∈βi

wki = 1 (4.2)

(Birnbaum and Sirken, 1965). The weight wki is a fixed constant of sampling, for

(ki) ∈ A, and it takes value 0 if a(ki) = 0. Below we present the three estimators

in Birnbaum and Sirken (1965) under the BIG framework, denoted by Yhat,

Zhat and Phat. None of them dominates another in term of efficiency generally

speaking.

Yhat Given the sample graph Gs, where s ⊂ F is selected according to a

probability sampling design. Let πk and πkl be, respectively, the first and second-

order inclusion probabilities of k, l ∈ F . Let the HT-estimator based on {yi; i ∈
α(s)} be given by

θ̂y =
∑
i∈α(s)

yi
π(i)

=
∑
i∈U

δ(i)
π(i)

yi ,

where δ(i) = 1 if i ∈ α(s) and 0 otherwise. The probability π(i) = Pr[i ∈ α(s)],

for i ∈ U , is notationally distinguished from πk for k ∈ F . It can be derived from

the sampling distribution p(s), since we have

π(i) = 1− Pr[βi ∩ s = ∅] = 1− Pr[none of βi is included in s]

(Birnbaum and Sirken, 1965; Frank, 1971). The variance of θ̂y follows the stan-

dard variance formula for HT-estimator, which requires the second-order inclusion

probabilities π(i)(j) for i, j ∈ U ; see Zhang and Patone (2017) for more details.
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For simplicity in discussion of alternative estimators later on, we shall refer to

the HT-estimator as the Yhat.

Zhat Let wki be a value (i.e., weight) associated with the edge (ki) connecting

the motif i with the sampling unit k. A measure zk =
∑

i∈αk
wkiyi is defined for

the sampling unit k in (4.2). Let δk = 1 if k ∈ s and 0 otherwise. An inverse

probability weighted estimator of θ based on {zk; k ∈ s} can now be given as

θ̂z =
∑
k∈s

zk
πk

=
∑
k∈F

δk
πk
zk and

∑
k∈βi

wki = 1 . (4.3)

We shall refer to this estimator as the Zhat. It is unbiased since E(θ̂z) =∑
k∈F zk = θ by construction (4.1) and (4.2). For the so-called multiplicity

estimator, which was first proposed by Birnbaum and Sirken (1965) and later

developed by Sirken and Levy (1974), Sirken (2004) and by Lavallée (2007) for

his generalised weight share methods, the default choice for wki is the equal-share

weight:

wki =
1

di
where di = |βi| .

Birnbaum and Sirken(1965) actually pointed out that the wki’s for the same

motif i can be unequal, as long as they sum to one for each motif and do not

vary according to which other sampling units are selected in the initial sample

s. Lavallée (2007) explores optimal weight-sharing which minimises V (θ̂z), and

finds the result to be inconclusive. Although an optimal choice might be hard to

find, there still can be many different choices of weights subjected to (4.2), which

are all unbiased but have different variances. We will present a new and often

more efficient choice of wki in Section 4.

Phat The third expression of θ in (4.1) suggests the possibility of estimation

based on {wki; (ki) ∈ As}. However, under BIG sampling, where all the edges

incident to k are observed together, whenever k ∈ s, we have π(ki) = Pr[(ki) ∈
As] = πk, such that

∑
(ki)∈As

wkiyi
π(ki)

=
∑

(ki)∈As

wkiyi
πk

=
∑
k∈s

1

πk

∑
i∈α(k)

wkiyi = θ̂z.

Instead, Birnbaum and Sirken (1965) base the priority-rule estimator on a pri-

oritised subset of As, denote by Asp. Let I(ki) = 1 if the edge (ki) is in Asp and 0
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otherwise. Birnbaum and Sirken (1965) let I(ki) = 1, for i ∈ α(s) ⊂ U , if

k = min
(
s ∩ βi

)
i.e. if k happens to be enumerated first in the frame, among all the sample units

that can lead to i. Clearly, other priority rules are possible, though it was not

explicitly mentioned. In any case, let the Phat based on {wki; (ki) ∈ Asp} be

given by

θ̂p =
∑

(ki)∈Asp

wkiyi
π(ki)p(ki)

=
∑

(ki)∈As

I(ki)
p(ki)

· wkiyi
π(ki)

(4.4)

where p(ki) is the conditional probability that (ki) is prioritised given (ki) ∈ As,
i.e.

p(ki) = Pr
[
I(ki) = 1|(ki) ∈ As

]
Since the unconditional probability of (ki) ∈ Asp is Pr

[
(ki) ∈ Asp

]
= πkp(ki),

we have E(θ̂p) =
∑

(ki)∈F wkiyi = θ by construction (4.1) and (4.2), provided

p(ki) > 0 for all (ki) ∈ As. Under BIG sampling, we have

θ̂p =
∑

(ki)∈As

I(ki)
p(ki)

· wkiyi
πk

=
∑
k∈s

Zk
πk

and Zk =
∑
i∈α(k)

I(ki)
p(ki)

wkiyi .

Although this looks like the Zhat θ̂z, with the constructed measure Zk instead

of zk, there is a key difference: unlike zk that is a constant of sampling, Zk is

a variable. Birnbaum and Sirken (1965) did not provide an expression of the

variance of their priority-rule estimator, but indicated that it is unwieldy.

4.2.3 More on Phat θ̂p

Below we derive V (θ̂p) via the general expression (4.4). We will show that the

Phat can be biased as the sample size increases, and provide a condition for un-

biasedness. The problem of the bias of the Phat was not mentioned by Birnbaum

and Sirken (1965).

Proposition 4.2.1. For the variance of θ̂p by (4.4), we have

V (θ̂p) =
∑

(ki)∈A

∑
(lj)∈A

(
πklp(ki)(lj)
πkπlp(ki)p(lj)

− 1

)
wkiwljyiyj (4.5)
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where p(ki)(lj) = Pr
[
IkiIlj = 1|δkδl = 1

]
is the conditional probability that both

(ki) and (lj) are prioritised given that both k and l are in the sample s.

Proof.

V (θ̂p) =
∑

(ki)∈A

∑
(lj)∈A

E

(
δkIkiδlIlj

πkp(ki)πlp(lj)

)
wkiwljyiyj − θ2

=
∑

(ki)∈A

∑
(lj)∈A

πkl E

(
IkiIlj

πkπlp(ki)p(lj)

∣∣∣∣δkδl = 1

)
wkiwljyiyj − θ2

=
∑

(ki)∈A

∑
(lj)∈A

πklp(ki)(lj)
πkπlp(ki)p(lj)

wkiwljyiyj − θ2

=
∑

(ki)∈A

∑
(lj)∈A

(
πklp(ki)(lj)
πkπlp(ki)p(lj)

− 1

)
wkiwljyiyj .

The difference to the variance of Zhat can be given by

V (θ̂p)− V (θ̂z) =
∑

(ki)∈A

∑
(lj)∈A

(
p(ki)(lj)
p(ki)p(lj)

− 1

)
πkl
πkπl

wkiwljyiyj

=
∑

(ki)∈A

∑
(lj)∈A

Cov
( Iki
p(ki)

,
Ilj
p(lj)

∣∣∣δkδl = 1
) πkl
πkπl

wkiwljyiyj .

Thus, as long as the covariances are not all positive or negative, neither will the

Zhat dominate the Phat in terms of efficiency, nor the other way around.

An unbiased variance estimator can be given by:

V̂ (θ̂p) =
∑

(ki)∈As

∑
(lj)∈As

( πklp(ki)(lj)
πkπlp(ki)p(lj)

− 1
)wkiwljyiyj

πkl
. (4.6)

Illustration Let us make an illustration of BIG sampling on the population

graph in Figure 4.1. Suppose simple random sampling (SRS) without replacement

of s from F . To compute the probability of prioritising an edge (ki) requires the

knowledge of the number of units in F with higher priority. For each i ∈ α(s),

let dk(i) =
∑

k′∈F ;k′<k ak′i, for which ancestral observation is required. We have,
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then,

π(ki) = Pr
[
(ki) ∈ As

]
= Pr(δk = 1) = πk ≡ m/M ,

p(ki) = Pr(Iki = 1|δk = 1) =

(
M − 1− dk(i)

m− 1

)
/

(
M − 1

m− 1

)
.

Table 4.1: Probability p(ki) for population BIG in Figure 4.1.

5 6 7 8 9 10 11
1 - - - - - 1 -
2 1 - 1 - 1 - -
3 - 1 - 1 0.67 0.67 1
4 - - 0.67 - 0.33 0.33 0.67

The inclusion probability of (ki) ∈ Asp is given by πkp(ki). For the population

graph in Figure 4.1, the conditional probabilities p(ki) of being prioritised are

given in Table 4.1. Birnbaum and Sirken (1965) did not provide expressions

of the second-order probabilities of being included in Asp. These are given by

πklp(ki)(lj), where

p(ki)(lj) =



p(ki) if i = j, k = l

0 if i = j, k 6= l(
M−1−dk(i,j)

m−1

)
/
(
M−1
m−1

)
if i 6= j, k = l(

M−2−dk(i),l(j)
m−2

)
/
(
M−2
m−2

)
if i 6= j, k 6= l with |βki ∩ l|+ |βlj ∩ k| = 0

0 if i 6= j, k 6= l with |βki ∩ l|+ |βlj ∩ k| > 0

(4.7)

where βki is the set of the neighbours of i which have higher priority than k, and

dk(i,j) = |βki ∪βkj | is the number of units in βi∪βj which have higher priority than

k, and dk(i),l(j) = |βki ∪ βlj|. For instance, with m = 2, the variances of the three

basic estimators of θ = |U |, for yi ≡ 1, are V (θ̂y) = 3.986, V (θ̂z) = 5.370 with

equal-share weighting, and V (θ̂p) = 3.064 by the priority-rule of Birnbaum and

Sirken (1965).

Bound for unbiasedness There are circumstances where p(ki) = 0, i.e. a

edge has zero probability of being prioritised, such that the Phat is biased. Take

for example the case when a motif i in U is adjacent to all the sampling units in

F ; the edge between i and its ancestor enumerated as the last one in F will never

be prioritised, if the sample size is greater than 1. The next proposition provides
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a general condition: essentially, the Phat will be biased, if there exists an ancestor

of some motif i, which has zero probability of being the only one among βi in the

sample s. Generally, for given a BIG, the likelihood of this happening increases

with the size of s.

Proposition 4.2.2. The Phat estimator is biased if there exists at least a motif

i ∈ U , such that:

|βi| > 1 and Pr
(∑
k∈βi

δk ≤ 1
)

= 0 . (4.8)

Proof. Let i be a motif with |βi| > 1. Let h = max(βi) and p(hi) = Pr(I(hi) =

1|δh = 1). Assume that h ∈ s. Because Pr
(∑

k∈βi δk ≤ 1
)

= 0, then it must exist

at least another ancestor of i, say h′, where h′ ∈ s and h′ < h by definition of h.

It follows that h 6= min(βi ∩ s) for all possible s containing h and consequently

p(hi) = 0, i.e. k is sampled but never prioritised. In this case, the Phat is

biased.

Remark Under SRS of the initial sample from F , the probability in Equation

4.8 can be easily calculated from:

Pr
(∑
k∈βi

δk = 1
)

=

(
M − |βi|
m− 1

)/(
M

m

)
.

Therefore, under SRS, the Phat is biased for any m such as m > M−|βi|+1.

4.3 Incidence weighting estimator

The proposed class of linear estimators under BIG sampling, called the incidence

weighting estimator (IWE) is presented in this section, which encompasses all the

three estimators described in the previous section.

4.3.1 Definition

Given the sample BIG, Gs = (s∪α(s);As), let {Wki; (ki) ∈ As} be the incidence

weights, where the capital letterW is used to emphasise that the incidence weights

are not necessarily constants of sampling. The IWE based on W = {Wki; (ki) ∈

96



As} is given by

θ̂ =
∑

(ki)∈As

Wkiyi
π(ki)

=
∑
k∈s

Zk
πk

=
∑
i∈α(s)

γ(i)yi , (4.9)

where

Zk =
∑
i∈αk

Wkiyi and γ(i) =
∑
k∈βi∩s

Wki

πk
. (4.10)

4.3.2 Theory

We denote by t any quantity apart from the sample graph Gs, which may be used

for the construction of the incidence weights. The properties of the IWE θ̂ will

be assessed with respect to the joint distribution of (s, t), denoted by p(s, t). In

this paper we consider only t, which is such that p(s, t) = p(s), i.e., the sampling

distribution of s. For instance, t = di, the degree of motif i in the population

graph, which is a constant associated with i and is observed given ancestral

observation procedure for any i ∈ α(s); or t = di,s, the degree of motif i in the

sample graph, which is a function of the sample graph Gs.

Remark It is in principle possible to allow t to be random given s, with condi-

tional distribution p(t|s), such that the properties of the IWE are evaluated with

respect to p(s, t) = p(s)p(t|s). However, any such estimator can be subjected to

the Rao-Blackwell method, conditional on the sample graph Gs which depends

only on p(s), and we have not been able to devise an estimator which leads to

efficiency gains that can justify the extension. We therefore do not pursue this

line of development here.

Proposition 4.3.1. The IWE by (4.9) is unbiased for θ by (4.1) provided, for

each i ∈ U , ∑
k∈βi

E(Wki|δk = 1) = 1 . (4.11)

The condition (4.11) implies

∑
k∈βi

1

πk

∑
s; k∈s

Wki(s)p(s) =
∑

s; i∈α(s)

p(s)

( ∑
k∈s∩βi

Wki(s)

πk

)
= 1 . (4.12)
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Remark Because the second term of (4.12) can be written as

∑
s; i∈α(s)

p(s)

( ∑
k∈s∩βi

Wki(s)

πk

)
=

∑
s; i∈α(s)

p(s)γ(i) = π(i)E(γ(i)|δ(i) = 1) = 1 ,

we have, in terms of the quantities in the definition of IWE (4.9):

∑
k∈βi

E(Wki|δk = 1) = 1 or E(γ(i)|δ(i) = 1) =
1

π(i)
.

Proof. The expectation of θ̂ with respect to p(s) is given by

E(θ̂) =
∑
k∈F

1

πk
E(δkZk) =

∑
k∈F

E(δk)

πk
E(Zk|δk = 1) =

∑
k∈F

E(Zk|δk = 1)

=
∑
k∈F

∑
i∈αk

E(Wki|δk = 1)yi =
∑
i∈U

yi
∑
k∈βi

E(Wki|δk = 1) = θ ,

where the first equality in the last line above follows from (4.10), and the third

equality follows from the stipulation of this proposition.

Proposition 4.3.2. The variance of an unbiased IWE can be given by:

V (θ̂) =
∑
k∈F

∑
h∈F

 πkl
πkπl

∑
i∈α(k)

∑
j∈α(l)

E(W(ki)W(lj)|δkδl = 1)− 1

 yiyj . (4.13)

Proof. By definition we have:

V (θ̂) =
∑
ki∈F

∑
l∈F

Cov

(
δkZk
πk

,
δlZl
πl

)
=
∑
k∈F

∑
l∈F

(
E(δkδlZkZl)

πkl
− E

(
δkZk
πk

)
E

(
δlZl
πl

))
=
∑
k∈F

∑
l∈F

(
πkl
πkπl

E(ZkZl|δkδl = 1)− E(Zk|δk = 1)E(Zl|δl = 1)

)

=
∑
k∈F

∑
l∈F

(∑
i∈U

∑
j∈U

E(W(ki)W(lj)|δkδl = 1)−
∑
i∈U

E(W(ki)|δk = 1)
∑
j∈U

E(W(lj)|δl = 1)

)
yiyj.

Equation (4.13) follows from the unbiasedness condition.
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Proposition 4.3.3. An unbiased estimator of V (θ̂) is given by

V̂ (θ̂) =
∑
k∈s

∑
h∈s

 πkl
πkπl

∑
i∈α(k)

∑
j∈α(l)

W(ki)W(lj) − 1

 yiyj
πkl

. (4.14)

Proof. By definition WkiWlj is an unbiased estimator of E(WkiWlj|δkδl = 1), for

any k, l ∈ s.

4.4 Unbiased IWE

Below we first show the three estimators defined in section 4.2.2 can be casted as

unbiased IWEs. We will then discuss some variations of them.

Zhat Let wki be constant for (ki) ∈ A such that
∑

k∈βi wki = 1. When wki =

1/di, the IWE is the multiplicity estimator of Birnbaum and Sirken (1965).

Yhat The HT estimator (as a Yhat) is obtained by using any Wki satisfy-

ing ∑
k∈s∩βi

Wki(s)

πk
=

1

π(i)
. (4.15)

Notice that (4.15) is satisfied by any

Wki(s) =
csπk
π(i)

where
∑
k∈s∩βi

cs = 1 ,

A possible choice is cs = 1/di,s; but one obtains the same HT-estimator in any

case.

Phat Given any fixed wki such that
∑

k∈βi wki = 1, let Wki = wkiHki. Then

(4.12) holds for the first term if, for each k ∈ βi:∑
s; k∈s

Hki(s)
p(s)

πk
= E(Hki|δk = 1) = 1 .

The Zhat can be considered as an unbiased IWE with Hki = 1. The weights

used for the Phat belongs to this type, given |βi ∩ s| > 1. Instead of attaching

weights to all the sample edges incident to motif i, one could assign a non-zero

weight only to one of them, depending on the observed sample. Let an indicator
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variable be defined as Iki = 1 if Wki 6= 0 and Iki = 0 if Wki = 0. Then, Hki is

given as

Hki =
Iki(s)

p(ki)
where p(ki) = Pr(Iki = 1|δk = 1) =

∑
s; Ik(s)=1 p(s)∑
s; k∈s p(s)

. (4.16)

We call Wki = wkiHki with Hki given by (4.16) the priority weights.

4.4.1 Zhat

Below are some choices of fixed weights Wki = wki that yield different Zhats.

Equal-share weights The equal-share weights are given by

wki =
1

di
with t = di ,

where di is the degree of the motif i. The equal-share weights have been commonly

used in the literature, and are known as multiplicity weights.

Inverse-degree weights We define the inverse-degree weights as:

wki =
1

dk

/∑
l∈βi

1

dl
with t = {dk}k∈βi .

Under simple random sampling (SRS) without replacement of s from F , they

provide a choice of weighting which could potentially reduce the variance of the

estimator, by making the constructed zk as similar as possible. On the one

hand, the weight wki is increased compared to 1/di under equal-share weighting,

provided k has relatively lower degree compared to the other units in βi. On the

other hand, the measure zl of another unit l ∈ s will receive ‘shares’ from more

motifs in U than zk, provided dl > dk and l, k ∈ βi. Thus, these weights can

possibly reduce the population variance of zk =
∑

i∈βi wkiy(i).

Power of inverse-degree weights The inverse-degree weights above defined

can be generalised as follow:

wki =

(
1

dk

)α /∑
l∈βi

(
1

dl

)α
with t = {dk, α}k∈βi .
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Notice that the feasibility of a particular choice of any fixed weights depends

on the information available from sampling, and therefore on the observation

procedure employed. The multiplicity weights are those requiring the minimum

information, since for their computation only the number of the ancestor of each

sample motif is needed. Whereas, information about the non-sampled ancestors

of each sample motif is required to construct inverse-degree weights and the power

of inverse-degree weights.

Illustration Let us compare the different choices above for estimating N = |U |
for the graph in Figure 4.1. Suppose SRS of s from F of size m = 2. The equal-

share, inverse-degree and power of inverse-degree weights with α = 2 or3, together

with their corresponding constructed measures zk are given in Table 4.2.

Table 4.2: Weights, measures, variances for Fig. 4.1 using three choices of multi-
plicity weighting: ES = equal-share; ID = inverse-degree; ID2 = power of inverse-
degree weights with α = 2 and ID3 with α = 3.

w1,10 w2,5 w2,7 w2,9 w3,10 w3,8 w3,11 w3,9 w3,6 w4,7 w4,10 w4,11 w4,9

ES 0.33 1 0.5 0.33 0.33 1 0.5 0.33 1 0.5 0.33 0.5 0.33
ID 0.69 1 0.57 0.43 0.14 1 0.44 0.26 1 0.43 0.17 0.56 0.32
ID2 0.90 1 0.64 0.52 0.04 1 0.39 0.19 1 0.36 0.06 0.61 0.29
ID3 0.98 1 0.70 0.61 0.007 1 0.34 0.14 1 0.30 0.013 0.66 0.25

z1 z2 z3 z4 S2
w V (θ̂z)

ES 0.33 1.83 3.17 1.67 1.34 5.37
ID 0.69 2 2.83 1.48 0.81 3.26
ID2 0.91 2.16 2.61 1.32 0.60 2.41
ID3 0.98 2.31 2.48 1.23 0.57 2.28

The variances of the IWEs with equal-share, inverse-degree and power inverse-

degree weights with α = 2 and 3 are respectively 5.37, 3.26, 2.41 and 2.28. The

power inverse-degree weights can possibly reduce the variance of the IWE θ̂z,

according to the choice of α.

4.4.2 HT weights

Here we consider the HT estimator given by:

Wki =
πk

di,sπ(i)
,

where di,s =
∑

k∈βi∩s aki is degree of i in sample graph.
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Illustration The variance of the Yhat is 3.98. Table 4.3 shows the HT in-

cidence weights Wki and their corresponding Zk measures for the graph in Fig.

4.1.

Table 4.3: HT incidence weights and corresponding measures for the BIG in Fig.
4.1.

s W1,10 W2,5 W2,7 W2,9 W3,10 W3,8 W3,11 W3,9 W3,6 W4,7 W4,10 W4,11 W4,9

{1, 2} 0.5 1 0.6 0.5 - - - - - - - - -
{1, 3} 0.25 - - - 0.25 1 0.6 0.5 1 - - - -
{1, 4} 0.25 - - - - - - - - 0.6 0.25 0.6 0.5
{2, 3} - 1 0.6 0.25 0.5 1 0.6 0.25 1 - - - -
{2, 4} - 1 0.3 0.25 - - - - - 0.3 0.5 0.6 0.25
{3, 4} - - - - 0.25 1 0.3 0.25 1 0.6 0.25 0.30 0.25

s Z1 Z2 Z3 Z4

{1, 2} 0.5 2.1 - -
{1, 3} 0.25 - 3.35 -
{1, 4} 0.25 - - 1.95
{2, 3} - 1.85 3.35 -
{2, 4} - 1.55 - 1.65
{3, 4} - - 2.8 1.40

4.4.3 Priority weights

The priority weights proposed by Birnbaum and Sirken (1965) for the Phat esti-

mator, as described in Section 4.2.2 belongs to this class of incidence weights, by

setting:

H(ki) =
I(ki)
p(ki)

,

where I(ki) is the prioritization indicator and p(ki) = Pr(I(ki) = 1|δk = 1).

Illustration Using the Birnbaum and Sirken (1965) rule we have that V (θ̂r) =

3.064. Furthermore, the variance of the same estimator after the sampling units

are arranged in descending order of their degree is 2.555, whereas it becomes

6.315 when using the units are re-arranged in the ‘opposite’ order. The priority

weights and their corresponding Zk measures in Table 4.4 under both random

and descending order of the sampling frame.
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Table 4.4: Priority weights and measures for the graph in Fig. 4.1 under the
unorder and descending ordering of the sampling frame.

Random order of sampling frame
s W1,10 W2,5 W2,7 W2,9 W3,10 W3,8 W3,11 W3,9 W3,6 W4,7 W4,10 W4,11 W4,9

{1, 2} 0.33 1 0.50 0.33 - - - - - - - - -
{1, 3} 0.33 - - - 0 1 0.50 0.50 1 - - - -
{1, 4} 0.33 - - - - - - - - 0.75 0 0.75 1
{2, 3} - 1 0.50 0.33 0.50 1 0.50 0 1 - - - -
{2, 4} - 1 0.50 0.33 - - - - - 0 1 0.75 0
{3, 4} - - - - 0.50 1 0.50 0.50 1 0.75 0 0 0

Descending order of the sampling frame
s W4,10 W3,5 W3,7 W3,9 W1,10 W1,8 W1,11 W1,9 W1,6 W2,7 W2,10 W2,11 W2,9

{1, 2} - - - - 0.33 1 0.5 0.33 1 0.5 0 0 0
{1, 3} - 1 0.75 0 0.33 1 0.50 0.33 1 - - - -
{1, 4} 0 - - - 0.33 1 0.5 0.33 1 - - - -
{2, 3} - 1 0 0 - - - - - 0.5 0.5 0.75 0.5
{2, 4} 0 - - - - - - - - 0.5 0.5 0.75 0.5
{3, 4} 1 1 0.75 1 - - - - - - - - -

Random order of F Descending order of F
s Z1 Z2 Z3 Z4 Z1 Z2 Z3 Z4

{1, 2} 0.33 1.83 - - 3.17 0 - -
{1, 3} 0.33 - 3.00 - 3.17 - 1.75 -
{1, 4} 0.33 - - 2.50 3.17 - - 0
{2, 3} - 1.83 3.00 - - 2.25 1 -
{2, 4} - 1.83 - 1.75 - 2.25 - 0
{3, 4} - - 3.50 0.75 - - 2.75 1

4.4.4 Discussion on the efficiency of the different unbiased

IWE

Finally, Table 4.5 provides a summary of the variances of the IWEs for N = |U |
in Figure 4.1. The IWEs by inverse-degree and power of inverse-degree weight-

ing perform best compared to the others. Under SRS of s, any choice of fixed

weights which reduces the population variance of zk’s will result in a gain of

efficiency, compared to the standard multiplicity weights. The power of inverse-

degree weights provide a general means for reducing the variability amongst the

constructed z-measures.

The priority weights under the Birnbaum and Sirken (1965)’s rule yields a more

efficient estimator when the sampling frame is organized by descending order of

the degree. Since the efficiency of a given ordering depends on the population

graph, further investigation is required to understand this relationship in general
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Table 4.5: The true variances of the IWE for θ = N by different choices of
weights under SRS with m = 2 of F in the graph in Figure 4.1. The ordering
of the sampling frame for the priority estimator is given by: (I) - random; (II) -
descending and (III) - ascending.

θ̂z (ES) θ̂z (ID) θ̂z (ID2) θ̂z (ID3) θ̂r (I) θ̂r (II) θ̂w (III) θ̂y
V (θ̂) 5.37 3.25 2.41 2.28 3.06 2.55 6.32 3.98

terms.

The HT estimator is not as good as inverse-degree-based weights, but also not

as bad as the equal-share weights or the priority weights under the ascending

ordering of the sampling units by their degrees. It seems to remain a default

benchmark under BIG sampling, against which the other unbiased estimators

can be assessed. The insight that the HT estimator is a special case of unbiased

IWE is potentially important for future research on this topic.

4.5 Simulations

To further illustrate and explore the IWEs by simulations, we construct two

graphs, denoted by G1 = (F,U ;A1) and G2 = (F,U ;A2), respectively, where

|F | = 54 and N = |U | = 310. The two graphs are set to have the same number

of edges, |A1| = |A2| = 1200, but different incidence relationships. In A1, the

distribution of dk, for k ∈ F , is relatively uniform over a small range of values;

in A2, the distribution of dk is constructed to be more skewed and asymmetrical.

The two distributions of dk are shown in Figure 4.2.

Suppose we are interested in estimating the total number of motifs θ = N .

For these simulations we assume SRS from F with various sample sizes m =

2, 5, 8 . . . , 53, and the incident ancestral observation procedure.

We consider the following choices of incidence weights:

� the three types of fixed weights: equal-share (ES), inverse-degree (ID) and

square of inverse-degree (ID2);

� BS-priority weights as given in Birnbaum and Sirken (1965);

� the HT weights that yields the HT estimator.

Moreover, for the priority estimator, we consider three different orderings of the

frame: one is given by the frame as initially constructed, where the units can
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Figure 4.2: The two observed degree distributions for the units set F in G1 and
G2.

be considered to be arranged in a random order, and the other two are obtained

from rearranging the units by descending and ascending order of the degree dk,

for k ∈ F , respectively.

The plots in Figure 4.3 show the results of 10000 simulations for the IWE with

fixed weights for both graph G1 and G2. The average of the estimates for the

different choices of IWE are plotted against the increasing sample sizes with

associated Monte Carlo error. It can be seen that the IWE which uses the fixed

weights is unbiased and, as the sample size increases, the variance reduces to

zero.

Next, Figure 4.4 shows the true variances for these estimators, again plotted

against the sample sizes and with associated 95% confidence interval for the

Monte Carlo error. It is visible that the unequal-share weights are more efficient,

as can be expected under SRS, where the ID2-weights appear to have the smallest

variance.

A more peculiar situation is presented in the case of the BS-priority weights,

as shown in Figure 4.5. As previously explained, when the priority weights are

used, the IWE can become biased beyond a certain threshold of sample size.

For the graph with uniform degree distribution of the sampling units, where the

maximum degree of the motifs in U is 10, this occurs at m = 45; when the degree

distribution of the sampling units is skewed, where the maximum degree of the

motifs is 9, this occurs at m = 46.
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Next, the variance of the BS-priority IWE increases as the sample size increases,

so that this particular estimator seems to perform well only for small sample

sizes. This aspect of the Phat did not emerge in the illustration using the graph

in Figure 4.1, due to the small frame size. Moreover, the ordering of the sampling

units matters. When the sampling units are arranged in descending ordering of

dk, for k ∈ F , there seems to be an improvement in efficiency (see Figure 4.9), as

seen in the previous illustrations; whereas ascending order entails loss of efficiency

of the BS-priority estimator.

In Section 4.3.2, a general variance estimator is given by (4.14), which uses the

observed values of the incidence weights as the estimates of their conditional

expectation. However, for a specific IWE, it may be possible to analytically

derive an expression for the corresponding E(WkiWlj|δkδl = 1), which is the

case with the BS-priority estimator, where the variance estimator with the exact

expression of E(WkiWlj|δkδl = 1) is given by (4.6). In Figure 4.6 we have plotted

the variances estimators with associated Monte Carlo error together with the

true value of the variances for the graph G1 and under the three ordering of the

frame. Clearly, as one would expect, the variance estimator by (4.6) is more

precise.

Figure 4.8 shows the average of the HT estimates and their variances with asso-

ciated 95% confidence interval.

Finally, in Figure 4.9 the variances of the six IWEs are plotted together against

the increasing sample size for both G1 and G2. Immediately we notice that

the variance is much larger for G2 than for G1. Moreover, a similar pattern

emerges for both graphs G1 and G2, but more pronounced for G2. The inverse-

degree weights seems to perform better, together with the power inverse-degree

weights. For larger sample sizes, however, the HT estimator is more efficient than

the inverse-degree and power inverse-degree weights. The BS-priority estimator

perform well only for small sample sizes, and especially if the frame is rearranged

in descending ordering of the degrees of sampling units, when its variance can be

lower than the IWE making use of the unequal-share weights, for the graph G2.

The estimators with higher variance are the one with equal-share weights and the

BS-priority weights when the frame is organised in ascending order the degrees

of sampling units.
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4.6 Concluding remarks

In the above, we proposed a general linear class of IWEs for any situation that

can be represented as sampling on a BIG, based on the incidence relationships

underlying the sampling. The estimators presented by Birnbaum and Sirken

(1965) for indirect sampling are special cases of the proposed class, and their

underlying ideas generalised and synthesised into a unified condition of design

unbiasedness. The BIG representation of unconventional sampling methods has

proven to be extremely useful in order to simplify the problem; and the definition

of IWE unifies the existing estimators under a broader theory of estimation on

BIGs. In so doing we reveal the potentials of sampling strategy consisting of BIG

and IWE for future research.

The performance of the IWE depends on the definition of the corresponding inci-

dence weights. In principle, many more incidence weights can be proposed which

satisfy the unbiasedness of the IWE. The general definition of IWE includes also

those which are based on sample-dependent weights, such as the priority estima-

tor and the HT estimator. Importantly, we have shown that the HT estimator

is an example of IWE, which has not been discovered previously in the litera-

ture. It can be noted that the gain of efficiency is often associated with incidence

weights that require the observation of a greater portion of the graph. This is

not surprising, since more information is utilised in such situations.

Further investigation is needed to obtain a better theoretical understanding of

the potentials of using sample-dependent weights or additional characteristics of

the graph. For instance, a general variance estimator has been proposed. But it is

not precise for sample-dependent weights, as seen in the numerical results for the

priority estimator. Although when the conditional expectation involved in the

variance can be analytically derived for a given IWE, a more accurate variance

estimator can be obtained. The simulation results indicate that the variance

of the priority estimator may decrease with sample size that is relatively small,

but it quickly increases with the sample size beyond some threshold value. This

is another example where more theoretical understanding is desirable by future

research.
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Figure 4.3: The average of the estimates with associated Monte Carlo error for
the IWE plotted against the increasing sample sizes for G1 and G2 considering
the three ordering of the frame. Three types of multiplicity weighting are used:
Equal-Share, Inverse-Degree and Power of Inverse-Degree weighting
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Figure 4.4: The variances estimator and the true variances for the IWE with
fixed weights plotted against the increasing sample sizes for both graph G1 and
G2. Three types of multiplicity weighting are used: Equal-Share, Inverse-Degree
and Power of Inverse-Degree weights.
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Figure 4.5: The average of the estimates with associated Monte Carlo error for
the IWE plotted against the increasing sample sizes for G1 and G2 considering
the priority weighting. Three ordering of the frame are considered.
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Figure 4.6: The true variances and its two estimators with associated Monte Carlo
error for the priority IWE plotted against the increasing sample sizes considering
different ordering of the frame for grap G1.
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Figure 4.7: The true variances and its two estimators with associated Monte Carlo
error for the priority IWE plotted against the increasing sample sizes considering
different ordering of the frame for grap G2.
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Figure 4.8: The average of the estimates with associated Monte Carlo error for
the IWE corresponding to the Yhat, plotted against the increasing sample sizes
for G1 and G2
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Figure 4.9: The variances of the six IWE plotted against the increasing sample
sizes for both graph G1 and G2.
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Chapter 5

Reverse incidence weighting

under BIG sampling

In the BIG, a form of information, which does not exist in traditional

list sampling, is given by the incidence structure of the graph. This

has been used, in the previous chapter, to directly estimate a total Y

of a variables measured on the motifs by means of incidence weight-

ing. In this chapter, we see how this can be used for the estimation

of a total measured on the sampling frame instead. In particular, an

estimator of the size of the sampling frame, when it makes use of the

incidence structure, can be considered important for improving the

precision of the estimator of Y . In this chapter we show how such

estimators can be formulated and how to use them to make better

estimates for Y .

Key words: graph sampling, reverse incidence weighting, auxiliary information,

ratio estimation, Hajek estimation.

5.1 Introduction

In the previous chapter, we have discussed how the structure of the BIG can be

used for the estimation of totals of the finite population of motifs. For unconven-

tional sampling methods, several authors (Birnbaum and Sirken, 1965; Thomp-

son, 1990; Lavallée, 2007) have implicitly done the same, each author proposing
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an estimator relevant for its problem, but without really exploring the potential

of the structure of the graph in general terms. We have shown how the existing

estimators can be formulated as a particular case of what we have called the

Incidence Weighting Estimator (IWE), a general unbiased linear estimator that

can be defined on the entities of the BIG. We have envisaged multiple choices of

incidence weighting, showing how the performance depends on the relevant BIG

structure.

If the IWE offers a way to incorporate the available graph structure in the es-

timation, one might suspect that this does not have to be the only way. We

want to explore more deeply the possibilities that the structure of the BIG can

offer during the estimation phase. This can be motivated by at least two rea-

sons. Firstly, this is a completely unexplored territory, which does not have a

corresponding version in list sampling. We are therefore driven by pure intel-

lectual curiosity to investigate what are the differences between BIG sampling

and conventional list sampling, and what is the potential of the use of the BIG

compared to the traditional list. Secondly, we realize that the structure of the

BIG is a form of auxiliary information, which we can use to define the incidence

weights, in accordance with the observation procedure. Given the same sample

of units, the sample graph can be different, depending on the observation proce-

dure employed. In fact, some observation procedures will return a larger sample

graph than other. For instance, in many situations, it will be possible to add

further steps to the incident ancestral observational procedure and collect more

edges so as to observe the elements they connect; in this situation, the incidence

weights are computed by using this extra observed structure of the graph. It is

reasonable to ask, how this information, to the extent that is available to us, can

be use to make a more efficient estimator than the IWE. Obviously, when more

of the graph structure is observed, more is the freedom to construct incidence

weights; therefore, a natural way to use the extra information is to improve the

efficiency of the IWE by means of incidence weighting.

Also, as done for the IWE, we should be able to use the graph structure to

estimate the total of a variable attached to the sampling units. In this chapter,

we focus on this topic. What we aim for is to make use of the incidence structure

of the BIG in the estimation. We considered two ways of doing this: by means of

sample-dependent incidence weighting; or by reverse incidence weighting, which

are essentially the incidence weights, but constructed in the reverse sense. If, in
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the IWE, the edges incident to each sampled unit are used for the estimation of a

characteristics of the population of motifs by means of incidence weights, we can

revert this argument and use the edges incident to the sampled motifs to estimate

characteristics of the sampling frame, while preserving unbiasedness. In both

scenarios, it will appear clear that an extra-step in the observation procedure

is required. The extra step necessary for estimation can be obtained by two-

step incident ancestral observation procedure. By incident ancestral observation

procedure, we are able to observe which are the ancestors of the sample motifs;

by adding an ulterior step, we are now able to also observe the successors of these

ancestors. The questions we raise in this chapter are, can the extra observed graph

structure be used for improving the estimation of Y? and if yes, how?

The rest of the chapter is organised as follows. In Section 2, we define the Reverse

Incidence Estimator (RIWE), as a linear unbiased estimator of a characteristic of

the sampling frame, which employs the additional structure of the graph provided

by a two-stage incident observation procedure. A condition for the unbiasedness

of the estimator is given. The variance and an estimator of it are provided.

Also some numerical illustration are offered. In Section 3, we consider ratio-

type estimators formulated by making use of the RIWE. The accuracy of the

proposed ratio-type estimators are tested with simulated datasets. Finally, some

concluding remarks are provided in Section 5.4.

A final note. The notation and setting up used in this chapter, when not otherwise

specified, are the same as the ones introduced in the previous chapter.

5.2 The reverse incidence weighting estimator

Let xk be a known value attached to a sampling unit k. Assume that the target

of estimation is the total X =
∑

k∈F xk. An estimator for X, can be given by the

IWE

X̂ =
∑

(ki)∈As

Wkixk
πki

=
∑
k∈s

xk
πk

∑
i∈αk

Wki . (5.1)

117



where, to guarantee unbiasedness, the weights Wki need to satisfy that for all

k ∈ F , ∑
i∈αk

E(Wki|δ(i)) = 1 . (5.2)

In particular, when only fixed weights are considered, i.e. Wki = wki, given the

unbiasedness constraint, we have that:∑
i∈αk

wki = 1 ,

and the IWE in Equation (5.1) is equal to the HT estimator X̂HT .

What appears clear is that when the IWE, based on the sample edges As, is

used to estimate X, the incidence structure of the BIG is not taken into account.

Following this observation, we can imagine at least two ways of making use of the

incidence structure. One way involves sample-dependent weights. For example,

the same priority rule used in the previous chapter can be formulated in this con-

text. Once the sample BIG is observed, for each sample unit, only the edge which

is incident to its ‘smaller’ sampled neighbour is considered in the estimation. An

example of this priority estimator is presented in the next Illustration. To be able

to derive this estimator, we need to know all the successors of the ancestors of

the sampled motifs. A second way is obtained by enlarging the observed sample,

so that the estimator is based on the set of edges incident to each sampled motif,

Ãs = β(α(s))×α(s), where Pr((ki) ∈ Ãs) = π(i), which would result in a different

estimator, as defined below.

Definition 5.2.1. Let s̃ = β(α(s)) and Ãs = β(α(s)) × α(s). The reserve

incidence weighting estimator (RIWE) for X is given by:

X̃ =
∑

(ki)∈Ãs

Wkixk
π(i)

=


∑

k∈s̃ γk, where γk =
∑

i∈αk∩α(s)
Wkixk
π(i)∑

i∈α(s)
Z(i)

π(i)
, where z(i) =

∑
k∈βi Wkixk .

(5.3)

Essentially, this is the reverse problem of what we have seen in the previous

chapter. The IWE and RIWE look apparently symmetrical: one is obtained by

the other exchanging πk with π(i) and y(i) with xk. However, the two estimators

are defined on two different sets, As and Ãs respectively, where As = s × α(s).
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We call the weights wki used in the RIWE, the reverse incidence weights.

The estimator is unbiased if Equation (5.2) holds. In fact,

E(X̃) = E

 ∑
(ki)∈A

Wkiδ(i)xk
π(i)


=
∑

(ki)∈A

E(Wki|δ(i) = 1)E(δ(i))xk
π(i)

=
∑
k∈F

∑
i∈αk

E(Wki|δ(i) = 1)xk =
∑
k∈F

xk = X .

Note that the conditions for unbiasedness for the IWE of Y and the RIWE of X

are exactly symmetrical.

The variance of an unbiased RIWE can be given by

V (X̃) =
∑

(ki)∈A

∑
(lj)∈A

π(i)(j) − π(i)π(j)
π(i)π(j)

E(WkiWlj|δ(i)δ(j))xkxl .

In fact, we have that

V (X̃) =
∑
i∈U

∑
j∈U

E(δ(i)δ(j))

π(i)π(j)
E(Z(i)Z(j)|δ(i)δ(j) = 1)xkxl −X2

=
∑
i∈U

∑
j∈U

π(i)(j)
π(i)π(j)

(∑
k∈βi

∑
l∈βj

E(WkiWlj|δ(i)δ(j) = 1)xkxl

)
−X2

=
∑

(ki)∈A

∑
(lj)∈A

π(i)(j) − π(i)π(j)
π(i)π(j)

E(WkiWlj|δ(i)δ(j) = 1)xkxl .

An unbiased estimator of V (X̃) is given by

V̂ (X̃) =
∑

(ki)∈As

∑
(lj)∈As

π(i)(j) − π(i)π(j)
π(i)π(j)

E(WkiWlj|δ(i)δ(j))xkxl
π(i)(j)

.

Clearly, to be able to observe Ãs, an extra step in the observation procedure is

required; in the first step α(s) is observed, whereas the second step allows the

observation of β(α(s)). Therefore, we have available more knowledge about the

structure of the graph. The question is whether the effort made to observe the

extra structure can be useful to improve the estimation of Y , which is ultimately
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the target of inference.

5.2.1 Examples of reverse incidence estimators

Similarly to the IWE, there are many possible choices of reverse incidence weights.

We are going to consider the reverse versions of the Zhat, Yhat and Phat as

described in the previous chapter, which are based on Ãs. It will be obvious how

they are symmetrical to their corresponding IWE, but with the necessary extra

step for the observation procedure.

Ztilde In analogy with the Zhat, but looking reversely, the Ztilde makes use of

the reverse incidence weights given by

wki =
1

dk
.

Consequently, the Z(i) and γk are given by:

Z(i) =
∑
k∈βi

xk
dk

and γk =
xk
dk

∑
i∈αk∩α(s)

1

π(i)
.

For unbiased estimation of the Zhat the knowledge of di is essential, that can

be provided under an incident or incident ancestral observation procedure. As

expected, none of them allows the estimation of the Ztilde, for which knowledge

of dk is necessary for all k ∈ β(α(s)). Two-stage incident ancestral observation

procedure is needed, where the relevant measures to be observed are xk and dk,

for all the k ∈ β(α(s)).

Xtilde In order to provide analogy with the Yhat, we define the Xtilde as the

RIWE corresponding to the IWE

Xtilde =
∑
k∈s̃

xk
π̃k

,

where π̃k = P (k ∈ s̃). Note that π̃k = 1 − Pr(αk 6∈ α(s)) = 1 − Pr(β(αk) 6∈
s).

However, the strict analogy would be given by the HT-estimator of X, which is

instead defined on the initial sample s and with the initial inclusion probabilities
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πk:

X̂HT =
∑
k∈s

xk
π̃k

.

The incidence weights corresponding to this estimator are given by

Wki =
π(i)

dk,α(s)π̃k
,

where dk,α(s) =
∑

i∈αk∩α(s) aki is degree of k observed in the sample BIG and
π(i)
π̃k

= Pr(i ∈ α(s)|k ∈ s̃). The Z(i) and γk follows as:

Z(i) =
∑
k∈βi

xkπ(i)
dk,sπ̃k

and γk =
xk
π̃k

.

The observation procedure needed to estimate Yhat is incident ancestral, since

to compute the π(i) we need to known its ancestors. As regarding the Xtilde,

to know the π̃k, we need instead to known the π(i) for all its successors α(s̃).

Two-step incident ancestral observation procedure is also required to determine

the sample s̃.

Ptilde The same way that was used to define the Phat, can be reversed to define

a RIWE using a priority rule. Let Ãsp be the set consisting of the prioritised

edges, which are defined by the indicator variable Iki, such that Iki = 1, if for

k ∈ s̃ ⊂ F ,

i = min
(
α(s) ∩ αk

)
.

We have that:

Z(i) =
∑
k∈s̃

Ikixk
dkp̃(ki)

,

where p̃(ki) = Pr(Iki = 1|(ki) ∈ Ãs). We are basically assuming that the sample s̃

is observed, but only some of the units of s̃ contribute to the computation of Z(i),

namely those that are connected with the smallest amongst their successors.

The corresponding γi is given by

γi =
1

dk

∑
k∈βi∩s̃

Ikixk
p̃kiπ(i)

.

Regarding the observation procedure needed, the situation is analogous to the
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Xtilde, but for computing the prioritisation probabilities in this case.

5.2.2 Simulations

Here, we illustrate the aforementioned RIWEs, providing an appreciation of their

properties.

For these simulations, three BIG graphs are considered with different number

of sampling units and motifs. The first BIG, G1 has |F1| = 50, |U1| = 20 and

|A1| = 100; the second BIG G2 has instead |F2| = 20, |U2| = 50 and |A2| = 100,

and finally the last BIG, G3 has |F3| = |U3| = 25 and |A3| = 100. The degree

distributions of the both the set of units and motifs for the three BIG are shown

in Figure 5.1

Figure 5.1: The degree distributions for the sampling units F and the motifs set
U for the three BIG.
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We assume simple random sampling on the sampling frame of size m = 2 and

two-step incidence observation procedure. The objective is to estimate the total

number of sampling units M for each of the three graphs. What will appear

clear is that by using the structure of the BIG, we are able to compute several

estimators of the sampling frame size, none of them having constant value M , as

we would expect when the population is represented as a list, under SRS.

Five estimators are considered: Ztilde, Xtilde, Ptilde and the Phat of M as given

in Equation (5.1). In particular, for the Ztilde, two choices of reverse incidence

weighting are proposed:

wki =
1

dk
and wki =

1

di

/∑
j∈αk

1

dj
.

The priority rule used for the Phat ofM is defined by the indicator Iki where,

Iki =

1, if i = min(α(s) ∩ αk) ,

0, otherwise.

so the Phat of M is written as

Phat =
∑

(ki)∈As

Iki
dipkiπk

,

where pki = Pr(Iki = 1|i ∈ α(s)). The sampling distribution of each estimators is

shown in 5.2, where the red points and the solid lines represent respectively the

expectations and the medians of each distribution.

Table 5.1 shows the true variances of the estimators.

Table 5.1: The true variances of the estimators for M showed in Figure 5.2.

Ztilde (ES) Ztilde (ID) Xtilde Ptilde Phat
BIG 1 623.43 653.31 468.66 459.52 55.09
BIG 2 130.34 105.64 63.46 103.24 7.72
BIG 3 149.01 158.81 37.77 54.21 9.73

Two main observations can be deduced from Figure 5.2. The Ptilde estimator is

biased when the sampling units are less than the motifs (G2) and slightly biased

when both sets have the same cardinality (G3). Similarly to the Phat, the Ptilde
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Figure 5.2: The sampling distribution of the estimators of M , under SRS of size
m = 2 for the three BIGs.

is biased, if exists at least a k ∈ F such that:

P

(∑
i∈αk

δ(i) ≤ 1

)
= 0 ,
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where δ(i) = 1 if i ∈ α(s); 0 otherwise. Also, the Phat of M seems to be the

more efficient amongst the estimators. Although, also this estimator suffers of

bias when the above equation is the case.

5.2.3 A discussion

In the previous section, we have considered several possible estimators for the

total X of any auxiliary variable measured on the sampling frame. Similarly to

the IWE, our concern is to make use of the incidence structure of the BIG in the

estimation. We have seen however, how this is not possible, when X is estimated

using the IWE with fixed weights; in fact, in that particular case, the IWE is

only based on the sampling units, and the incidence structure does not need to

be employed.

Two other possibilities are explored: the use of sample dependent weights and

the RIWE. The key characteristic of both estimators is that they require two-

step incident ancestral observation procedures, in the first case to compute the

probabilities of prioritization of each edge and in the second case to observe the

set of edges which are used to define the estimator. In this way we have used the

incidence structure of the BIG to estimate X. The next step is to understand

how can we use these estimators to improve the estimation of Y .

A natural way, as commonly done in list sampling, is to use the estimate of X

for the observed sample and the known true value of X to produce ratio-type

estimators, as we will discuss in the next section. Alternatively, because the

structure of the graph does not exists in list sampling, we must entertain the idea

that more ways, which do not have a counterpart in list sampling, might exists

on how to use it for improving the estimation of the parameter of interest. Also,

it would be natural to ask ourself if there is any gain in constructing incidence

weights which are unbiased for both the RIWE and the IWE, although, as it will

be show, these weights present great limitations.

For unbiased estimation, the constraint for both RIWE and the IWE under fixed

incidence weights, are given by

Y =
∑

(ki)∈A

wkiy(i) =
∑
k∈F

∑
i∈αk

wkiy(i) =
∑
k∈F

zk with
∑
k∈βi

wki = 1 ;

X =
∑

(ki)∈A

wkixk =
∑
i∈U

∑
k∈βi

wkixk =
∑
i∈U

z(i) with
∑
i∈αk

wki = 1 .
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We use the small letter zk to highlight that the constructed measures are fixed.

Therefore, fixed weights wki can exist which simultaneously satisfy∑
i∈αk

wki = 1 and
∑
k∈βi

wki = 1 . (5.4)

An advantageous characteristics of these weights is that, under simple random

sampling of the sampling units, they often improve the IWE. Intuitively, the idea

is explained by the following. Under SRS, improving the efficiency of the IWE

equals reducing the finite population variance of the zk. Notice that, for each

k, the measure zk is a linear combination of the y(i), with i ∈ α(s), where the

coefficients of the combination are the weights wki. Insofar, we had made no

assumptions on the set of values that the wki should take, just that wki > 0.

Instead, when using the weights discussed here, we are restricting the choices of

weights to those respecting that
∑

k∈βi wki = 1. As an immediate consequence,

the range of values that zk can take goes between the minimum and the maxi-

mum of the y(i), with i ∈ α(s). This suggests that compared to other weights,

the weights here presented can reduce the finite population variance of zk and

consequently the variance of the IWE.

Special case: y(i) ≡ 1. When y(i) ≡ 1, using the weights satisfying both

Equations (5.5) returns zk ≡ 1. In fact, we have:

zk =
∑
i∈αk

wkiy(i) =
∑
i∈αk

wki = 1 for all k ∈ U .

A necessarily condition for these weights to exist is that the size F is equal to

the size U , i.e. N = M . In fact,

|U | =
∑
i∈U

∑
k∈βi

wki =
∑
k∈F

∑
i∈αk

wki = |F | .

Notice that if |F | = |U |, the these weights wki are obtained by solving the system

of linear equations given by:

ΛW = 1L , (5.5)

where L is the number of edges, W is the vector of weights and Λ is the incidence
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(2N)×L matrix with 2N rows, representing the nodes of the graph; L columns,

representing the edges in the graph and whose entries are 1 if the node is incident

to the edge and 0 otherwise. The incidence matrix Λ is not always singular, in

which case there are infinite solutions for the system in Equation (5.5). In any

case, it can always be found an pseudoinverse inverse Λ+, such that the weights

given by Λ+1L, return approximately unbiased IWE.

Illustration Consider the BIG G3, which has M = N = 25. We compute three

IWE of Y , where Y is the total of variable y(i), where:

yi = 3di + ei where ei = N (0, 2) .

Three choices of weights are used: equal-share weights, inverse-degree weights

and ‘twice-unbiased’ weights as discussed above. A sample s of size m = 2 is

taken with simple random sampling from F . The sampling distribution of the

three estimators is given in Figure 5.3. The variances are respectively: 57230.61,

14725.55 and 3199.16.

Figure 5.3: The sampling distribution of the three IWE Y = 308.54, under SRS
of size m = 2 for the BIG G3.

5.3 Ratio-type estimators on a BIG

Let M̃ be the RIWE of M , the size of the sampling frame, which is known and

let Ŷ be the IWE of Y , the total of the variable of interest measured on each
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motif in U . The two estimators are given by

Ŷ =
∑

(ki)∈As

Wkiy(i)
πk

and M̃ =
∑

(ki)∈Ãs

W̃ki

π(i)
,

where Wki and W̃ki are respectively the incidence and reverse incidence weights

and πk and π(i) are the inclusion probability of respectively a sampling unit and

a motif. We assume a simple random sample is taken from F of size m.

Two estimators of the ratio R = Y/M are given by

R̂ =
Ŷ

M̂
=

∑
(ki)∈As

Wkiy(i)
πk∑

(ki)∈As

W̃ki

πk

and R̃ =
Ŷ

M̃
=

∑
(ki)∈As

Wkiy(i)
πk∑

(ki)∈Ãs

W̃ki

π(i)

,

where M̂ is the IWE estimator of M .

It follows that two ratio-type estimators of the total Y on a BIG can be given

as

ŶR =
Ŷ

M̂
M and ỸR =

Ŷ

M̃
M . (5.6)

Some observations about the two ratio-type estimators can be made. Firstly, the

two estimators in both ratio estimators R̂ and R̃ are not necessarily defined over

the same sample graph. Consider R̃. While Ŷ is defined over As, M̃ is defined

over Ãs. Also, even if apparently it seems that the Ŷ and M̂ in R̂ are both defined

over As, if the priority weights are used, Ŷ will be defined over the prioritised

set Asp, which is different from As, used to defined M̂ . Secondly, even when the

auxiliary variable xk is equal to 1 for each k ∈ F , the IWE for X with sample-

dependent weights and the RIWE for X are constructed by using the observed

structure of the graph, i.e. by constructing a sample dependent measure Zk 6= 1 in

the IWE and a measure Z(i) 6= 1 in the RIWE. Then, even when a simple random

sample is taken from F , the two estimators M̂ and M̃ do not result equal to M in

each sample. This suggests that even in this case of minimal information, when

the additional variable xk = 1 for all k ∈ F , the ratio-type estimators still exists

in a non-trivial way. Finally, note that the two ratio-type estimators in Equation

(5.6) are defined by assigning a value to each edge via the incidence weights. It

is also certainly possible to assign just the value 1 to each edge, in this case we
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obtain two Hajek-type estimators. Let L be the known total number of edges in

the graph and let L̂ and L̃ be the two estimators of it defined as

L̂ =
∑

(ki)∈As

1

π(ki)
=
∑

(ki)∈As

1

πk
and L̃ =

∑
(ki)∈Ãs

1

π̃(ki)
=
∑

(ki)∈Ãs

1

π(i)
.

The two Hajek-type estimators are then given by

ŶW =
Ŷ

L̂
L and ỸW =

Ŷ

L̃
L . (5.7)

It is remarkable that, under SRS and using only the knowledge of M (or L), it

is possible to obtain at least four classes of ratio-type or Hajek-type estimators,

which can be modified under different choices of incidence weights. However, it is

not clear how these estimators can be motivated to improve the estimation of Y .

Take for instance ŶR (note that the following discussion holds also for the other

three estimators ỸR, ŶW , ỸW ). By its Taylor approximation around the point

(E(Ŷ ), E(M̂)), we have:

ŶR ≈ Y +

(
Ŷ − Y

M
M̂

)
. (5.8)

In fact:

Ŷ

M̂
≈ E(Ŷ )

E(M̂)
+

1

E(M̂)

(
Ŷ − E(Ŷ )

)
− E(Ŷ )

E(M̂)2

(
M̂ − E(M̂)

)
=
Y

M
+

1

M

(
Ŷ − Y

)
− Y

M2

(
M̂ −M

)
=
Y

M
+

1

M

(
Ŷ − Y

M
M̂
)
.

Multiplying the last equation by M , we obtain the linearization for ŶR.

From Equation (5.8), it follows that:

E(ŶR) ≈ Y and V (ŶR) ≈ V (Ŷ ) +

(
Y

M

)2

V (M̂)− 2
Y

M
Cov(Ŷ , M̂) .

The ratio-type estimator ŶR on a BIG is approximately unbiased and it will be
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more efficient compared to the IWE Ŷ if(
Y

M

)2

V (M̂)− 2
Y

M
Cov(Ŷ , M̂) < 0 . (5.9)

This means, that there in an improvement of efficiency if the covariance term is

enough big.

Consider the following example. Let G be a BIG with F = {1, 2, 3}, U = {4, 5, 6}
and A = {(1, 4), (1, 5), (2, 6), (3, 4)}. Under equal-share incidence and reverse

incidence weights, we have that zk = (1.5, 1, 0.5) and z(i) = (1.5, 0.5, 1). Assume

simple random sampling of size 2, then πk = 2/3 for all k ∈ F and π(i) =

(1, 2/3, 2/3), for i = 4, 5, 6. Table 5.2 shows the sampling distribution of the

three estimators Ŷ , M̃ and L̃.

Table 5.2: The sampling distribution of the Ŷ , M̃ and L̃, using equal-share
incidence and reverse incidence weights for the BIG G, with F = {1, 2, 3}, U =
{4, 5, 6} and A = {(1, 4), (1, 5), (2, 6), (3, 4)}, under simple random sampling from
F of size 2.

s As Ãs Ŷ M̃ L̃
{1, 2} {(1, 4), (1, 5), (2, 6)} {(1, 4), (1, 5), (2, 6), (3, 4)} 3.75 3.75 5
{1, 3} {(1, 4), (1, 5), (3, 4)} {(1, 4), (1, 5), (3, 4)} 3 2.25 3.5
{2, 3} {(2, 6), (3, 4)} {(1, 4), (2, 6), (3, 4)} 2.25 3 3.5

Clearly, there is no positive covariance between the two estimators. First of all,

there is not a clear way to define a correlation between the values zk and z(i), for

k and i which are connected; also, the values zk and z(i) are weighted differently,

respectively by πk and π(i).

5.3.1 Simulation study

We considered the same BIG used in the illustration in Section 3. Here, the

objective is to estimate the population total when y(i) ≡ 1, i.e. Y = N . We

assume SRS of size 7 from F . The computed estimators are given in Table

5.3

where the weights are defined as following: HT = HT weights; ES = equal-share

weights and ID = for inverse-degree weights.

Monte Carlo simulations are used to study the accuracy of the 11 estimators of the

total number of motifs. We have run 1000 simulations. The resulting estimators
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Table 5.3: The estimators considered in the simulations in this section.

Estimator Formula w w̃

1 HT ŶHT =
∑

i∈α(s)
y(i)
π(i)

- -

2
IWE Ŷ =

∑
k∈s

zk
πk

ES -
3 ID -

4 Hajek-type ỸW = L ŶHT

L̃
- -

5

Ratio-type ŶR = M Ŷ w

M̃ w̃

HT ES
6 HT ID
7 ES ES
8 ID ID
9 ES ID
10 ID ES

for N in BIG 1, BIG 2 and BIG 3 are given respectively in Figures 5.4, 5.5 and

5.6, numbered as in Table 5.3.

Figure 5.4: Comparison of the accuracy of the 10 estimators of N for BIG 1.

Most of the sampling units in BIG 2 have smaller degrees than the units in BIG

1 and BIG 3, so the sample of motifs in BIG 2 is on average smaller than the

samples of motifs in BIG 1 and BIG 3, given the same sample s ⊂ F . It follows

that the estimators in BIG 1 and BIG 3 are more efficient than those in BIG

2.

In particular, in all the three cases, we see that the IWE with inverse-degree
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Figure 5.5: Comparison of the accuracy of the 10 estimators of N for BIG 2.

Figure 5.6: Comparison of the accuracy of the 10 estimators of N for BIG 3.

weights reduce the variance compared to the one which uses the equal-share

weights. All the ratio-type and the Hajek-type estimators are approximately

unbiased, and we noted that the bias is larger for the Hajek-type estimator in

all the three graphs. Also, the two ratio-type estimators defined on the sampled
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motifs reduce the variance compared to the HT and IWE. Also the estimator H3

and H4 tend to be more efficient, particularly in BIG 2 and BIG 3, when they are

the most efficient estimators. More investigation is needed on these ratio-type

estimators.

Finally, the Hajek-type estimator seems to be the most efficient estimators amongst

the 10 estimators; however, as already noted, it suffers from bigger bias.

5.3.2 A particular class of ratio-type and Hajek-type es-

timators

To simplify the situation, we consider only the ratios between estimators defined

over the same set and with same inclusion probability for each sampled element.

We exclude from the discussion both ŶR and ŶW , since under simple random

sampling they will not provide an estimator different from Ŷ . We also exclude

the estimators which make use of the priority rules, since it will unnecessarily

complicate the discussion at the moment. We are left with the following two

estimators:

ỸR =
ŶHT

M̃
M and ỸW =

ŶHT

L̃
L ,

where M̃ is defined by using fixed reverse incidence weights.

In this cases, Equation (5.8) becomes:

ỸR ≈ Y + ε̃HT with ε(i) = y(i) −
Y

M
z(i) ;

ỸW ≈ Y + ẽHT with e(i) = y(i) −
Y

L
.

And the variances are given by

V (ỸR) ≈
∑
i∈U

∑
j∈U

(
π(ij) − π(i)π(j)

π(i)π(j)

)
ε(i)ε(j) ,

V (ỸW ) ≈
∑
i∈U

∑
j∈U

(
π(ij) − π(i)π(j)

π(i)π(j)

)
e(i)e(j) .

The covariance Cov(δi, δj) is weighted by
e(i)e(j)
π(i)π(j)

or
ε(i)ε(j)
π(i)π(j)

instead of
y(i)y(j)
π(i)π(j)

.
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The estimators of the variances are given by

V̂ (ỸR) ≈
∑
i∈α(s)

∑
j∈α(s)

(
π(ij) − π(i)π(j)

π(i)π(j)

)
ε̂(i)ε̂(j)
π(i)(j)

,

V̂ (ỸW ) ≈
∑
i∈α(s)

∑
j∈α(s)

(
π(ij) − π(i)π(j)

π(i)π(j)

)
ê(i)ê(j)
π(i)(j)

.

where ε̂(i) = y(i) − ŶHT

M̃
z(i) and ê(i) = y(i) − ŶHT

L̃
.

5.4 Conclusions

In this chapter we have shown how to construct the RIWE estimator of the total

X of a variable measured on the sampling units in a BIG. However, because

the final target of estimation is a function of the motifs, the RIWE is used to

improve the efficiency of the IWE. Its properties are described and some of the

peculiarities of the estimation on a BIG, which do not exists in the list case are

highlighted. Particular emphasis on the construction of ratio-type estimators is

given.

First of all, we have recognized that in a BIG, the structure of the graph is a

type of auxiliary information itself, which does not exist in list sampling. We

have utilised the graph structure by the incidence weights and by the reverse

incidence weights. In particular, it can be used to improve the efficiency of the

IWE. It is seen that the reverse incidence weights carry more information about

the structure of the BIG, and, in fact, the observational procedure necessary to

compute them returns a larger sample graph.

With the help of the RIWE, we have proposed several ratio-types estimators and

shown some of their properties, analytically and by means of numerical illustra-

tions. These ratio-type estimators improve the estimation of Y . Especially, in

the simulation studies, we have seen that using a ratio between estimators which

are not defined over the same sets, might nevertheless improve the estimation,

and further exploration on this type of estimators is required.

More importantly, under the BIG framework, several ratio-estimators for a func-

tion of the motifs can be constructed, which are all approximately unbiased. The

number of them is potentially infinite, since it depends on the possible choices of

incidence and reverse incidence weights. Adding this to the fact the IWE offers
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infinite unbiased linear estimator motivates our idea that the BIG framework is

quite a promising area of research for sampling and estimation and future works

is necessary to understand its potential.

Finally, we have two last observations. Firstly, we have seen that also the IWE can

be used to estimate the total X. We have shown that by using fixed weights, the

structure of the graph is not used, whereas priority weights make uses of it. We

did not explore the use of sample-dependent weights any further in this chapter,

but this can be a valuable topic of future research. Secondly, we have discussed

the use of weights which return unbiased IWE and RIWE simultaneously and

explore their advantages and limitations for the estimation of Y . We believe this

should not be the only possible way, and we think more investigation is required.

In particular, this exploration can be aimed to the construction of other types of

estimators, that are also unbiased.
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Conclusions

In this thesis we have discussed how the increasing use of social media data,

as well as other type of big data has brought both exciting opportunities and

considerable challenges for researcher in many disciplines and in particular in

Statistics.

We have distinguished four basic obstacles to making valid statistics analysis

using traditional methods. Firstly, there is a contrast between the population of

interest and the users of a relevant platform; secondly, there is no control over how

social media data can be selected from the relevant platform; thirdly, in general

the objects of data collection are different from those of interest and finally, the

measures of interest need to be extrapolated by algorithms and machine learning

techniques. We have argued how the identification of such errors is crucial for

understanding the quality of the data and systematically delineated two existing

approaches to statistical analysis based on social media data.

Having examined the difficulties that social media data carry for conducting sta-

tistical analysis, we have focused on the possibilities that such data offers, in

particular, their graph structure. A peculiar characteristic of social media data is

that they offer the potential to observe several network relationships, which are

seldom available via traditional surveys. We have provided a review of the ex-

isting methods of graph sampling and delineate a general framework of sampling

and estimation for graph data that makes use of the BIG, a bipartite incidence

graph.

To conclude, the research undertaken in this thesis offers a more rigorous approach

of the use of these types of data, by delineating and discussing the validity of the

existing methods for making appropriate quantitative estimates from the use of

social media data. Moreover, it introduces the new topics of graph sampling

and estimation, which is particularly relevant nowadays, given the increasing
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availability of the graph representation of the data. Currently, sampling and

analysis methods of network data are under-explored and we hope to have opened

the doors for more research in the future.
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