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Abstract

This thesis investigates the use of social media data in social research
from a statistical perspective. A broad review is given of how these
data has been used by researchers from different disciplines and the
extent and means of the investigations carried out with these data is
assessed. Special attention has been given to the common obstacles
faced by using social media data for statistical analysis and to the
graph representation of these data that is generally available to the

researcher and to its use for statistical inference.

Most of the literature about the use of social media data for statis-
tical analysis is concerned with the fact that these data represent a
non-random sample from the population of interest. We have instead
highlighted another fundamental challenge presented by these data,
which is, however, rarely taken explicitly into consideration. The
problem is that the object of sampling and the unit of interest might
be distinct. To tackle this problem, we have shown how two different
approaches of statistical inference can be distinguished in the litera-
ture. Under each approach, we have provided a discussion about the
target of inference and make explicit their limitations in relation with
the statistical methods used. Our exposition offers a framework for

dealing with unruly data sources.

However, the problems of non-random sample and various unavoid-
able non-sampling errors do not admit a universally valid statistical
approach. One can cope with them if needed to, but one cannot really
hope to solve these problems. Meanwhile the graph structure inherent
of social media data (and other forms of big data) seems to us a more

rewarding area of research.



We have investigated how to use the structure of the graph for estima-
tion. The Horvitz-Thompson (HT) estimator operates by weighting
each sample motif by the inverse of its inclusion probability. Gen-
eralising the work of Birnbaum and Sirken (1965), we demonstrated
that infinite types of incidence weights can be constructed for unbi-
ased estimation. We define the Incidence Weighting Estimator (IWE)
as a large class of linear design-based unbiased estimators based on
the edges of the a Bipartite Incidence Graph (BIG), of which the HT
estimator is a special case. This class of estimator has no equivalence

in traditional list sampling.

More ways of using the incidence structure of the BIG for estimation
has been explored and in doing so we enter in a completely new terri-
tory. We have investigated how to use the incidence structure of the
BIG to estimate a total based on the sampling units, and, once we
have obtained such estimator we have discussed if and how it can be
used together with the IWE to improve the inference. We have also
seen that it is possible to use the reverse incidence weights in com-
bination with the incidence weights. The weights obtained in such
ways, can be used to construct an unbiased estimator in both direc-
tions, although the idea seems somewhat impractical at the moment.
The final chapter wants to offer a flavour of what can be done under

the BIG framework and inspire future research in this direction.

The thesis is organised in four papers: the first paper discusses the
current statistical analysis made using social media data, while the
other three papers deal with the topic of graph sampling and estima-

tion.

Key words: social media data, finite-graph sampling, quality, non probability

samples, network.
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Chapter 1
Introduction

In recent times, the use of social media data as a source of social science data has
considerably increased. This type of data is easily available, cheap and in real
time; they can provide information about behaviour and opinion, making possible
to observe directly what people ‘do’ or ‘think’, rather than what people ‘claim
to do’ or ‘claim to think’. Nevertheless, the application of statistical inference to
obtain valid insight from them is still under debate. In fact, these data present
several challenges and limitations that need to be addressed for their statistical
analysis and a coherent statistical framework for analysing social media data is

currently lacking.

This thesis investigates the challenging of conducting statistical analysis this par-
ticular new form of data. The thesis focuses on three specific aspects involved
in the analysis of social media data, namely: 1. the problem of the statistical
validity of the conclusions drawn; 2. the problem of the sampling and 3. the
problem of estimation. These three problems are investigated separately in four

stand-alone papers.

The first chapter in this thesis presents the context of the research and is di-
vided into three sections. The first section provides an overview of big data and
social media data, discussing what defines them and how they emerged. The
second section examines how social media data has been used in social research;
the population that social media data represents and the measures that are ob-
servable in social media. Also an examination of the limitations involved with
applying statistical methods to this data type is made. In addition, the process

of data collection is described, distinguishing three modes: the API streaming,



the data purchasing from social media data aggregation services, such as GNIP
and Web scraping. A third section is devoted to the graph structure of the data.
In particular, it is seen how the available relationship amongst the elements of
social media data, can be used to obtain new sampling methods and improve the

efficiency of the estimators. Finally, the four papers are briefly presented.

1.1 Big data and Social media data

Data can be generated by organizations, such as transactions, emails, databases,
etc.; by Internet users themselves through their surfing habits, online discussion

forum, or sensors and other devices that exchange data.

The term ‘big data’ describes a significant volume of heterogenous data from dif-

ferent sources and which are often unavailable in standard database formats.

1.1.1 Definitions and characteristics of big data

There is no rigorous definition of big data. The Oxford English Dictionary de-
fines big data as “data of a very large size, typically to the extent that their
manipulation and management present significant logistical challenges”.

This definition emphasises the scale and complexity of big data and the method-
ological and structural challenges that they pose. The definition also alludes to
the fact that challenges arise because big data are unlike traditional data; they
are not only large in size, but their nature is intrinsically different from the data

that has been known so far.

One of the most common definition of big data was proposed by the 2001 Gartner
report (Laney}, 2001) and updated in 2012 in the Gartner IT Glossary, which
states “big data is high-volume, high-velocity and/or high-variety information
assets that demand cost-effective, innovative forms of information processing that

enable enhanced insight, decision making, and process automation”.

Laney’s definition of big data considers the difficulties which are often encoun-
tered in the process of extracting knowledge from the data: the technological
capabilities to store large and unstructured data, how to link different types of
data and how to perform comprehensive analysis. According to the definition
of Laney| (2001), there are three characteristics that distinguishes big data from
other data types.



The first of such characteristics is volume. Volume refers to the amount of data
available. Two main factors contribute to the big volume of data: the increasing
number of data collection tools, such as social media, mobile phones, sensors,
cameras and scanners, among others; and the improvements in data storing.
Facebook, for instance, has 2 billion monthly active users uploading 350 million
new photos every day !; it is expected that connected cars, i.e. equipped with
Internet access, will upload every hour twenty-five gigabytes of data regarding
the routes, speeds or road conditions among others?; 1.6 million packages are
shipped every day by Amazon®. The term ‘volume’ also indicates that big data
are not generated as a random sample of a given population, but are often the
result of observations of real time occurrences, which sometimes refers to the

whole population, sometimes it refers to a non-representative sample of it.

The second characteristics of big data in Laney| (2001)) definition is velocity. Ve-
locity refers to the speed at which the data is generated. Data is streamed at
real-time; social media are a classical example, also sensor data are becoming
increasingly popular, transmitting bits of data at a constant rate. The flow of
data is significant as well as continuous. The velocity of big data also makes
them appealing for evidence-based decisions and real-time analytics. Social me-
dia data, for instance, facilitate the analysis of marketing campaigns which pro-
vide information about customers, such as their location, demographics, and their

engagement with the product.

Finally, variety refers to the many types and formats of these data: text, images,
audio, video etc... These are all examples of types of unstructured data, and they
are often all collected simultaneously. As a consequence of this large variety of
data types, the process of cleaning the data requires greater effort. New data
management technologies and analytics are emerging, such as facial recognition

technologies or methods which collect and analyse clickstream data.

Over the years, the definition of big data given by |Laney| (2001) has evolved
to accommodate other characteristics of big data. |Japec et al.| (2015) includes
Variability, i.e. the inconsistency of the data over time, Veracity, i.e. the trust-
worthiness of the data, Complexity, i.e. the need for a edge with multiple data

sources.

Groves| (2011a)) suggests that big data are characterised by four aspects which
distinguish it from traditional data. He proposes that big data:



1. tend to measure behaviours, not internalized states like attitudes or beliefs;

2. tend to offer near-real-time records of phenomena, and they are highly granu-

lated temporally;

3. tend to observe a significant number of variables, many merely having some

sort of identifier;
4. rarely offer well-defined coverage of a large population.

Also these characteristics are used to focus on the difficulties that big data present

in extracting meaning from them, in comparisons with traditional data.

Taylor) (2013) distinguishes between ‘found vs made data’, where ‘found’ refers
to the non-research purpose of the data. He argues that to conduct scientific
analysis, data should be ‘made’, i.e. constructed by the researcher to answer the
specific research question. The statistical analysis of big data is of secondary use,
since they were intended for different primary use, in contrast with other form of
data, such as survey data, which are collected in such a way to permit statistical

analysis in valid and reliable ways.

Groves| (2011a,b) makes a similar distinction between organic and designed data.
Groves suggests that designed data are created with a specific idea in mind and
organic as ‘a self-measure in increasingly broad scope’. He considers the difference
in the amount of knowledge that can be obtained from the two types of data.
The ratio of knowledge to data is higher for designed data than for organic data
for the use of interest, primarily because the data was created in order to extract

the maximum level of information, with minimal noise.

Another definition proposed by Forbes? advocates that big data represents “the
belief that the more data you have the more insights and answers will rise auto-
matically from the pool of ones and zeros”. Another characteristic of big data
is that it represent a disruptive innovation which enables new approaches to sci-
ence (Kitchin, [2014). Some believe that we are heading towards a data-intensive
science; while others suggest that we are in a new era of empiricism, where the

data speaks for itself and where theory is not necessary.

The new empiricism approach advocates that insightful and meaningful knowl-
edge can now be produced directly from the mere observation of the data without
any theoretical method to extract such knowledge: “with enough data, the num-
bers speak for themselves” (Chris Anderson, ex editor-in-chief WIRED?).

4



This is a completely different approach to the traditional type of analysis, which
begins with relevant questions from which the appropriate methods are selected
based on theory, and then the data is collected accordingly to answer these ini-
tial questions. On the other hand, advocates of this new approach may insist
that hundreds of different algorithms can be applied to a dataset to find hidden
knowledge, without having to justify the use of them. The weaknesses of this
empiricism argument are several. First, the data is not exhaustive, but instead
it is a sample, it is determined by the technology used and subject to regulatory
environment and sampling bias (Crawford, 2013]). Second, the data is not gen-
erated free from theory. The algorithms and analytic methods used to capture
certain types of data are based on scientific methods and were tested for scientific
validity. Any attempt to identify patterns is not free from scientific theory. Third,
the data is not free from human bias and framing. In order for data analysis to
make sense, it needs to be contextualized within a particular scientific approach.
Finally, any analysis should be interpreted within a context or domain-specific
knowledge; the data cannot just speak for itself (Kitchin, |2014).

Those believing that science is becoming data-driven suggest that hypotheses and
questions are found in the data rather than in the theory. However, theory is used
in developing knowledge discovery techniques which identifies questions that are
worthy of further examination. Therefore, data is not generated by every possible
means; data is generated and analysed under assumptions which guarantees that

the techniques used will produce valid insights.

The technological advances which propelled the process of data generation has
increased over the previous decades and are unlikely to decelerate. Therefore, the
era of ‘big data’ is likely to continue into the future as well, so it is necessary to
develop statistical methods and techniques that have the ability to utilize such

new forms of data and exploit their potential.

The term ‘big data’ is quite broad and comprises different types of data and
industries. We will focus our discussion on social media data. In the next section
we present an overview of social media data, outlining their characteristics and

emphasising their differences compared to traditional sources of data.



1.1.2 Social Media Data

The UNECE (United Nations Economic Commission for Europe) in 2013 set
up by the High Level Group for the Modernisation of Official Statistics, which
developed a classification of big data containing three main types of big data
sources (Bergsewicz et al. 2018)). Firstly, we have machine-generated data, usu-
ally captured by sensors. Secondly, the classification includes data generated as a
by-product of IT system. These data is generated by people as they interact with
IT systems. And thirdly, human generated data which is stored in digitalised
form. Note that, while the first two classes include data with high level of detail,

data belonging to the last class is unstructured and of poor resolution.

Also, all data sources, with exception of human-volunteered data, produce de-
signed data, maybe not for statistical purpose, but for some purposed of data

processing.

Social media data belong to the third class. Social media consists of conversa-
tional platforms. People, who join them, utilise this technology to share content
and communicate their ideas and opinions with others. The communication may
take place through actively participating in already existing debates or creating
new ones, or it may be passive observation without interaction. Users can act as
their true self or they can create new identities; they can decide when to enter

and when to leave, what to share publicly and what to keep private.

Social media can be seen as collections of anecdotes: short stories that are sig-
nificant to describe a topic or a population. They may be real or fictional, and
perhaps involve subtle exaggeration and drama in order to entertain the audi-
ence. Social media data is generated in real-time and often as an answer to
external, real-life events. People may upload their personal stories or interact

over phenomena that are occurring in the offline sphere.

The data generated from surveys and experiments follows specific criteria and
theory which allows valid conclusions to be drawn. Unlike survey or experi-
mental data, social media data is generated directly from the users without any
specification or questions to be answered. In other words, social media data is
constructed free of a theory that is motivated by external purpose; the data com-
ing from social media is instead generated as a consequence of socio-technological

factors.

Following (Citro| (2014)), social media data belongs to the class of data obtained
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by the interactions of individuals with the World Wide Web: the individuals
that are providing information in their posts, are not asked to respond to a
questionnaire or required to supply administrative records; they choose to share

their information autonomously.

Every social media platform has a particular topic or theme of interest. The un-
derlying idea behind every social media site is to create communities of users. In
certain cases the community is broad and encompasses different topics. Facebook,
for instance, is an agglomerate of many small communities with variable inter-
ests; in other cases, the intent is to form a niche in order to host a more specific
theme, such as LinkedIn, where users are connected by professional relationships

or ResearchGate for example, which connects mainly academics.

A last consideration. Some of the data obtained from social media data can be
structured and highly detailed, for example the geographical information that the

individual voluntarily decides to share.

An example: Twitter Twitter is an example of an online news and social
networking site where people communicate. The method of communication oc-
curs through short messages, called tweets; the act of sending tweets is called
tweeting. Some people refer to the act of tweeting as microblogging, since people
often share tweets to their followers with the hope of being useful or interesting

to them, as well as increase their audience.

A peculiarity of this social site is that each tweet has a limit of 280 characters
(changed in 2017 from the original 140 characters). This limitation, on a side,
promotes the use of clever and direct language which makes the text easier to
scan; although, it can also incite the use of abbreviations which might require
more effort to interpret from a textual analysis perspective, if the researcher is

interested in the tweets’ contents.

To be able to tweet, an account needs to be created. To register the user has
to provide an email address, a username and a password. Optional fields are a
profile picture, a bio and a location. Once an account is registered, it can start
sending tweets. Tweets are by default publicly available, although the user may

change the privacy setting of his or her profile in order to make it private.



1.2 Use of social media data for social research

Social media are arenas where issues are debated and opinion formed. This has
caused an increased interest from social researchers to use them to understand
societal phenomena and characteristics. Three main applications of social media

data can be distinguished for social research (Japec et al., [2015)):
1. to capture what people are thinking or talking about;
2. to analyse public sentiments and opinions on specific topics;
3. to understand demographics about a specific population.

Twitter is often considered a source of real-time news from its users. The content
generated by the user in tweets covers daily stories, local news or world-wide news
which are reported as they happen. It is therefore plausible to consider the use of
tweets to gain an understanding of events occurring in real time. Petrovic et al.
(2013)) have shown how traditional newswire and Twitter equally cover the same
major events. They also found that Twitter has better coverage of sport events,
unpredictable high impact phenomena and small or local events. This type of
analysis is known as event detection and a survey of its techniques is presented
in Hasan et al.| (2017).

In addition, users do not only report news or stories, but they share their opinions
about them, as a result, social media also includes a substantial display of senti-
ments. This provides the opportunity to analyse tweets’ content to gain insights
about what people’s opinions are. For instance, a manufacturing company may
be interested in understanding what people think about their product and how
positive (or negative) their opinions are. Political parties and social organiza-
tions may be interested in people’s opinions about current debates. This type of
interest is known under the term ‘sentiment analysis’. Sentiment analysis offers
a series of techniques involving the analysis of a text, identification of key words
and the classification of opinions. See Pang and Lee (2008) for a review of the

current state on opinion mining and sentiment analysis.

In these first two applications, analysis and interpretation occur at the tweet level,
the text which constitutes the tweets being the object of analysis. Research can,
however, be also conducted at the Twitter account level. This type of research
involves an understanding of the characteristics of the accounts, for instance

demographic characteristics of the user behind each account, as user profiling.



Daas et al. (2016)) demonstrated how some demographic characteristics can be
extracted from some Twitter-specific characteristics of the users. This type of
research is also aimed at obtaining auxiliary information that can be used to link

social media units to traditional survey units.

1.2.1 Quantitative social research

Social researchers study social phenomena though quantifiable evidence and rely
on the empirical investigation of observable phenomena via statistical and com-
putational techniques. Social research is centred around the collection of data,

which is based on a given hypothesis.

The researcher starts her investigation with an hypothesis, formulated in terms
of a research question, and collect the appropriate data to extend, revise and test

the hypothesis through the data analysis.

In many cases, it might be impractical to collect data directly, and the researcher
has to rely on secondary data, i.e. data which has already been collected by

someone other than the user, such as social media data.

When secondary data are used for social research, the quality of the data becomes
of primary interest. From the statistical inference point of view, what really
matters is the way these data are generated, in particular to assess whether the
methodological assumptions behind the use of a statistical method are met and

the theory drawn from the evidence is consequently valid.

1.2.2 The statistical characteristics of social media data

In the following, we will discuss the statistical characteristics of social media data,
in particular their non-probabilistic character, and their organic and unstructured

nature.

1.2.2.1 Imperfect coverage

The representation problem of social media is a well-known problem which under-
mines the generalization of the results to the broader population. In this section,
we explore the population of social media users and how it differs from the general

population.



Demographics on social media The Internet usage is continuously spreading
over the year. Approximately 89% of adults in the UK used the Internet in 2017
and in 2016 63% of adults in the UK had reported using the Internet for social
networking (ONS| 2016, 2017)). Social media platform undoubtedly accelerated
Internet usage: they are easy to use, cover different and generic topics of interest
and are used by a broad spectrum of the population. This last characteristic
in particular contributes to increasing penetration of social media in the popu-
lation, due to the network effect which incentives people to join the networking

sites.

Social media users are not spread evenly throughout the population. Approxi-
mately 90% of adults resident in the UK, aged 16—34 are active on social networks
while there are only 23% of those aged 65 and over using social media (ONS, 2016},
2017). |Greenwood et al.| (2016) describe the demographic characteristics associ-
ated to some social media platforms in the USA; for example, younger Americans
are more likely to be on Twitter, while the number of older adults (> 40 years
old) joining Facebook has been increasing. LinkedIn continues to be popular

amongst college graduates and high income earners.

Different usages of social media It is important to note the different be-
haviours that users display on social media. Who creates the most content and
what type of content they create depends on different factors and diverging pat-
terns have been found (Bright et al. 2014). However, some common ways of

using the sites can be described.

Power users: The majority of content is created by a small group of users. The
general term to describe these types of users is influencers, since their pur-
pose is often to influence other people’s opinions about current salient issues
or for commercial reasons. There are no clear conclusions concerning why
some users may share more content than others. Some results show that age
and skills could have an effect on the differences in content creation (Har-
gittai and Walejkol |2008)). Others show that different types of contents are
affected by different user’s characteristics. For instance, those with higher
academic qualifications are more likely to engage in political discussions and
less likely to create entertainment kind of content (Blank, 2013)). Content

from power users will be over-represented in any social media platform.

Residents vs wvisitors: we can distinguish two types of users. There are those
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who actively spend most of their life online (residents), i.e. those who
regularly (every week or every day) sign into a social media platform and
those who come online only to satisfy specific needs, following which they
leave (visitors). For the visitors in particular, the usage pattern is not
uniform across time. Visitors tend to participate in the platform dialogue
in correspondence of an important event, usually happening offline, which
could have a public nature, as e.g. Twitter, or a private one, as e.g. in
Facebook.

Not human users: social media platform are not only populated by users who
are individuals. Institutions, governments and brands have their own pro-
file that they use to communicate and promote their content within their
communities. There are also accounts which are automatically controlled
and can produce content. Those accounts are called bots and the most re-
fined would appear as human as possible. Another example of not human
users are the parody accounts, such as Elizabeth Windsor (@Queen_UK),

which have a high number of followers and retweets.

Duplicated users: it is also possible for the same individual to have multiple ac-
counts in a networking site. This is generally the case for celebrities or
public professional figures. A journalist may have a professional profile,
where the information shared is related to the newspaper for which she is

working and a private one, where they can share freely their opinions.

1.2.2.2 Measures of interest not observed

The unstructured nature of social media data means that often they do not consist
of direct measurements of the variables of interest but only proxies. What is
observed in social media data cannot always be assumed to be the measure under
investigation; in most of cases, the measure of interest requires extrapolation from

metadata and interpretation.

In some cases the socio-demographic characteristics of the user are of interest.
Sometimes, this information is given by the social site, while in the majority of
cases, they need to be inferred by the researcher. Techniques for the automatic
detecting of these characteristics are still under development. For example, in the
case of Twitter, the users’ age and sex can be identified from the users’ profile
picture and their writing style (Daas et al., 2016} Yildiz et al.|, 2017)), their political

views from their follow relationship (Golbeck and Hansen, 2014), their residence
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from their geolocalized tweets (Swier et al., [2015]).

In addition, opinions also needs to be identified. Sentimental analysis incorpo-
rates a family of techniques which address the problem of automatic detection
of opinions and sentiments (Feldman, |2013; Pang and Lee, |2008). For example,
a basic algorithm assigns to specific words a score which represent a sentiment,
and the message is classified based on the frequency of the words with a given
score. The field is still new and the challenges are numerous, such as detecting

sarcasm®.

Finally, even when the characteristics of a user or their opinions are clearly iden-
tified, it should be taken into consideration that they do not always represent
what the researcher wants to observe. For instance, during the Iranian protests
in 2009/2010, tweets posted in Iran appeared to be written outside the coun-
try, since people were afraid of repercussion from the government, while Iranians
tweeting outside the country decided to geolocalise their tweets in Iran as a form
of support (Halford et al., 2017)).

On social media platforms, people interact with each other, in contrast to an-
swering questionnaires, and they make their profile public, so that it is likely that
they can be influenced by other people’s opinions, or they want to publicise an

image of themselves which does not necessarily represent the truth.

1.2.2.3 Secondary data

Halford et al. (2017)) describe how the construction and circulation of social media
data consists of a set of processes. To represent these processes, they use the data

pipeline model as in Figure [1.1]

The pipeline model provides evidence of the way in which social media data are
generated and processed beyond the researcher’s control; in contrast, they are a
consequence of technical, sociological and political factors. They are subject to
the social media companies’ technological infrastructures, the individuals’ per-

ception, legal regulations and ethical implications.

At the bottom of Figure the process of the construction of social media data
is conceptualised. The subject represents the user that generates the content
on a laptop, mobile phone or a tablet. The information shared by the subject
is controlled by the company’s APIs, which determine what passes through the

company’s servers.
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Figure 1.1: The social media data pipeline (Halford et al., 2017)).

API Acronym for ‘Application Programming Interfaces’, the APIs are a set
of routines, protocols and tools used for building software applications. They
describe which functionalities are available and how they must be used. The use
of a public API is strictly regulated by the policy of the API provider (Janetzkol,
2017; Lomborg and Bechman, [2014)).

Finally the information is organised in particular formats and structures to form
databases. The information is shaped according to which client server is used;
for instance, geo-referenced content will be more likely created on mobile phones,
rather than laptops. The APIs take a core role in the process, given that they
provide whether certain information is taken or not (see also section [1.2.2.4).
When a database is created, the process also can be read inversely. The infor-
mation sent back to the subject is also part of a process that involves the same
actors: servers, APIs, client or browser software; for example, changes in the API

will change what users can do.

The upper part of Figure describes the processes which allow researchers to
collect social media data. These processes move in different lines, all having a
database at the endpoints: one database is generated by the content produced
by the users and shaped by the company’s API, server and interfaces; the other
database is the one that the researcher constructed with the data collected after
cleaning and processing. The data can be collected by the researcher from the
company or through Web scraping. Web scraping involves downloading data
directly from the browser; the data available on the browser is constrained by
the APIs and by the browser as well (browsers, in general, offer personalised Web

surfing experiences to their users). Data can also be collected from the company
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directly or via a third party using their APIs.

In particular, different colours are used to distinguish the APIs used between
different actors. In orange are the APIs which regulate what, and how, is passed
through to the company’s server software and the software that store the data.
The APIs in blue and red are those that provide the set of rules determining
which data can be harvested and their limitations from a third party or the

server software respectively.

These networks of heterogeneous actors, that can be read in both directions,
offer an illustration of the socio-technical factors that shape the process of data

production and collection.

1.2.2.4 Selectivity issues

All the activities made on a social media platform are collected and stored. Access
to all of them is, in some cases, impossible; in other cases, really expensive.

However it is possible to collect a part of the data stored by the media site from

its APL

There are two types of APIs in terms of accessability: the restrict APIs, when
the access is granted only under special conditions, and public APIs, which give
universal access. Public APIs are normally used by researchers to get access to a

social media to collect data.

Via API Every social network has its own APIs, which works in different ways,
however some common filters used to obtain the sample can be distinguished.
Most of the APIs have limitations set by the owner of the sites. These limitations
include the amount of data that can be retrieved and the time of data collection;
for instance Twitter does not allow the collection of tweets older than seven

days.

The data collection starts with the identification of the objects used for the selec-
tion, which depends on the social media of interest. Facebook involves users and
post, Twitter involves hashtag and tweets, Instagram involves pictures. These
objects have different attributes assigned to them, for instance a tweet contains
a time stamp, the username of the user who posted it and in some cases, the
location where it was posted. Finally, the different objects are able to interact

with each other within the network.
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The most common criteria used to collect data for social media are illustrated
below (Mayr and Weller| 2016).

Based on topics and keywords: social media contents, i.e. tweets, Facebook posts,
blog posts etc., can be obtained by searching for a specific topic, for example
a specific event or a general topic. Note that there are many limitations to
achieve completeness, such as the use of different vocabulary and language
or use of different hashtag to indicate the same event. For example during
the EU referendum in the UK many hashtags where used to express opin-
ions on the topic: those in favour to leave: #beleave, #brexit (even though
this hashtag was quite generic and used to describe the political event), and
#voteout; those pro-EU: #bremain, #strongerin and #hugabrit; and the
neutral most commonly used: #EU, #UK and #EUreferendum. These final
hashtags are quite generic and, if not used together with some of the previ-
ous ones, could be misleading and not related to the topic of investigation.
Tweets without hashtags also sometimes occur. This criteria of selecting
data can be used when the interest is on a particular topic or to define a

subpopulation.

Based on structural metadata: filter metadata, for example geolocation, time-
frame, language or format (for instance only retweets or only status con-
taining a URL) can be used to select social media data. These methods can
be used when the investigation concerns particular characteristics of the
target population (for instance the residency) or to define a subpopulation

(for instance, those who speak a specific language).

Random Sample: if the interest is not a specific topic or characteristic, the API
can provide a random sample of objects, in the case of Twitter a sample of
tweets. The algorithm used to obtain the sample is unknown and property
of the site itself.

Based on user accounts: a sample from a given population of users can also be
collected. This approach of selecting a sample can only be feasible if the
usernames are known in advance. Consider the case where the interest is
on the political candidates during an election. If a complete list of their
usernames are available, all the data that they produce on the social me-
dia platform can be retrieved. This approach is only attainable when the
group is made of ‘elite’ users (a small group of known people), rather than

‘ordinary’ users; for instance it is not always possible to identify all those
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who are eligible to vote, hence a random sample from the population of po-
tential voters cannot be extracted. [Rebecq (2018) uses the user ID number
to randomly select a set of users from Twitter. It has to be noted, however,
that some ID numbers are missing as well as the maximum number between

them, indicating that the number of existing users is not known.

The Twitter APIs The collection of all the tweets is called the firehose. Using
the free available Twitter’s APIs a complete access to the firehose is not possible,
however there are other ways to obtain it (see below). Twitter’s free APIs are
organized into two categories, each of which provides a set of rules and criteria
used to collect the data: the REST API and the streaming API. Both APIs are
constantly changing; terms of usage, data access limits, technical features (like
geo-tagging) can be updated in times. These changes of regulations are not only
due to technological advance, but they are also related to specific strategies of

the company.

Streaming API: it offers access to the global stream of tweet data. The streaming
data has two different endpoints, which specify where the data that can be

accessed is situated:

Filter endpoint. Used to obtain a stream of tweets which match one or more

keywords;
Sample endpoint. It offers a random sample of 1% of the firehose.

REST API: it is used to retrieve past tweets. It is characterized by some lim-
itations: 1. Only tweets between the last seven days to 24 hours can be
collected; 2. It is focused on ‘relevance and not completeness’”, so that
not all tweets will be indexed and made available; 3. The Rest API does
not provide the same results as the Twitter Web search, i.e. if the same
keyword is used to search on the Twitter search (in the website), the list
of the resulting tweets will not necessarily be the same as the one obtained
via the Rest APL.

There is only one endpoint:

Search endpoint. Via a variety of query operators, such as hashtags, text,

usernames, etc., a specific search is made possible among tweets.
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Via GNIP or similar Data collection can also be made using social media
API aggregation services. They are paid service that offer completely access to

the Firehose and retrieval of historical tweets.

The companies offering these services “gather data from the APIs of over 40
different publishers, normalize the content into one format (Activity Streams),
enrich the stream with relevant metadata, and send those streams on to our

customers through one pipe”® (Rob Johnson, Gnip).

The most established companies in this sector are DataSift and Gnip (which was
acquired by Twitter in April 2014). Note that DataSift lost access to the complete
full data stream of Twitter and to historical data in 2015.

Web scraping Web scraping is another form of data collection which involves
the use of programs to process Web pages and extrapolate the required informa-
tion, such as social media content. Using this method, the researcher does not
have to go through the company’s APIs, and she is able to collect data which
may not be given by the company’s terms. Although, it has to be noted that
when the data is scraped from the web, the content available is often personalised
for the registered users from the company. Furthermore, even when the session
is anonymous, the content can still vary according to the geographic location or

the browser used, amongst others, during the request.

1.2.2.5 The unit problem

Research conducted with social media data may vary from one form of social
media to another, however a generic scheme illustrating how the research is con-
ducted can be described in three steps. The first two steps are related to the
identification of the population of interest via the unit of data collection. The
third step concerns the measurement of the variable of interest, which has to be
constructed from the content that the user has posted or provided on her profile.
If the measure has to be taken from the posts related to each user, they need to

be aggregated to produce a single value for the variable.

1. Identify a time frame and a geographical place. The construction of a frame

for the target population begins here.

2. Identify a set of relevant keywords or metadata. For example, if the filter

involves the use of keywords, then the selection of those filters refines the
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frame of the target population. The choice of words to include in the set is
quite delicate, since it can produce under or over coverage errors. For instance,
if a term is too generic, it will likely include units which are irrelevant to the
research, resulting in overcoverage. On the contrary, if terms are too specific,
the risk is to exclude units which are relevant. Note that units could include
both those which are linked to people (users) or linked to the content produced
by people (post, tweets, etc.), according to the data collection from the social

media network.

3. Finally in this step the focus is on extracting meaning from each unit according
to the format of the data, which can be text, URL, images etc. and construct-
ing a method for measuring the variable(s) of interest. This process can be
made both by a human or machine learning algorithm. For instance, Yildiz
et al.| (2017)), compare the results of human vs. machine learning algorithms
for identifying sex and age and find the accuracy to be higher when humans

are asked to perform the task.

These three steps are quite generic and might accommodate data from each dif-
ferent social media platform, according to the permitted procedures used for

selecting the data.

An important feature of the statistical analysis of social media data, which tran-
spire from the above discussion, is that the definition of the frame and the observ-
able measure is consequent to the choice of the units of data collection. Because,
in most of the cases, the direct observation of the elements of interest, i.e. the
user, is unpractical, the sample is taken indirectly from the posts or the hashtags,

as above described.

The problem of the unit is not isolated to the representation dimension. As seen
above, the measure of interest might also be computed as a function of the mea-

sures observed on the sampling units relevant to each element of interest.

In the first chapter of this thesis (Patone and Zhang) [2019)), the current state of
analysis of social media data will be discussed and classified into two approaches

on the basis of how they relate to the problem of the units.
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1.3 Types of inference with big data

In the previous section we have discussed the quality of social media data for
making statistical inference. It appears clear that one of the main obstacle to
achieve valid conclusion is that rarely a social media dataset represents a random
sample of the population of interest, due to missing data, imperfect coverage and

non random selection.

If the sample selection is not random, then no valid statistical inference can be
made using a design-based approach. In sampling theory, randomisation plays a
dominant role. It is employed to determine which units should be observed and

randomisation distribution provides the basis for statistical inference.

Model-based approach to inference does not make explicit use of randomisation or
probability sampling, and it offers a formal way to made statistical valid inference

from non-random samples.

A review of the inference methods which use non-random samples is given by
Buelens et al.| (2018). Three broad types of model-based approaches to infer-
ence are distinguished: pseudo-randomisation or pseudo-design-based inference,
model-based inference and machine learning or algorithmic methods. In their
paper, Buelens et al.| (2018)) compare different methods in each class to derive

which class is more able to remove selection bias in non-random samples.

A comprehensive overview of non-probability sampling and the their methodolog-

ical issues for official statistics is provided by Beresewicz et al.| (2018).

Pseudo-randomisation or pseudo-design-based inference Pseudo ran-
domisation includes all methods where the probability of being in the sample,
which is unknown, can instead be modelled: pseudoinclusion probabilities are
estimated and used to correct for selection bias and used in Horvitz—Thompson
type estimators to account for unequal selection probabilities (Valliant and Dever),
2011). See Elliott and Valliant| (2017) for a review of the pseudo-randomisation
approach. Examples of pseudo-design-based inference are: propensity score meth-
ods (Rosenbaum and Rubin| [1983)); linear weighting methods to non-probability
sample (Baker et al., 2013]); combine a non-probability sample with a reference
sample to construct propensity models for the non-probability sample (Elliott,
2009); Sample matching (Rivers, 2007). Matching and propensity score adjust-

ments are based on strong ignorability assumptions and can lead to serious bias
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if these assumptions are not met (see, e.g. Young and Karr| (2017)).

Model-based inference In the modelling approach, a model is assume to
have generated the distribution of the variable of interest. The model is fitted
using a sample. Smith (1983) has discussed how the sampling mechanism affect
the inference drawn under a model-based approach. [Sverchkov and Pteffermann
(2004) and [Pfeffermann and Sverchkov| (2003) discuss model-based approaches
for informative sampling. Small area estimation has also been used to combine
high-quality small-sized probability samples with large non-probability samples
(Marchetti et al,|2015; [Blumenstock et al.,|2015; |Brakel et al., 2017; Pfeffermann
and Sverchkovl 2007). Finally, Pfeffermann et al| (2015) gives an overview of
problems and issues with the use of big data in official statistics. See e.g. [Smith
(1983), Elliott and Valliant| (2017) and Zhang (2019)) for inference approaches
assuming non-informative selection of the observed sample; see e.g. [Rubin| (1976))
and Pfeffermann et al.| (1998) for examples of approaches that explicitly adjust for
the informative selection mechanism. Statistical models are also used to predict
the units not in the sample (Royall, |1970).

Machine learning or algorithmic methods Machine learning methods are
algorithms that are able to predict unseen values based on a given data set with
known values. Unlike model-based prediction, these algorithmic models cannot be
formulated as relatively simple analytic expressions (Buelens et al.| [2018)). Hastie
et al. (2016) give a recent overview of common algorithmic machine learning
methods. Examples are k-nearest neighbours, regression trees, artificial neural

networks and support vector machines.

In their study, machine learning methods are the more powerful. They conclude
that pseudo-design-based methods are too restrictive and will often be insuffi-
cient to remove selection bias from non-random samples. Also, a set of auxiliary
variables explaining the missing-data mechanism is an essential ingredient for
successfully employing non-probability samples in producing accurate valid sta-

tistical inference.
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1.3.1 Challenges with the model-based approaches of in-

ference

Two important characteristics of big data are the high-dimensionality and the
large sample size. These characteristics are suggested to understand aspects of
the data which would be difficult to understand with small data. The biggest
promise that big data propose, thanks to its features, is related to the development
of methods which can describe the relationship between outcome and predictor
variables and efficiently predict future observations. Moreover, large sample sizes
are essential to be able to identify and study subpopulations, especially when
those consist of rare individuals, who may be difficult to capture with a small
sample size (where, if they are captured, they are likely to be considered as

outliers).

However, as|Fan et al.| (2014) argue, high dimensionality and large sample size are
also the features which cause most of the challenges which invalidate traditional
statistical methods and require a new set of tools to analyse big data. Below we

list those challenges.

Heterogeneity. Being able to observe large enough sample sizes for different sub-
populations, big data are useful to understand heterogeneity and investi-
gate problems such as the association of certain covariates and rare features
(which are now observable) or the effects of a certain treatment on a specific
subpopulation. However, inferring models which represent a subpopulation
in a large dimension can be problematic with standard models, since it can

lead to overfitting or a further issue of noise accumulation.

Noise accumulation. Given the large number of variables available, it may be
tempting to use them in the statistical analysis, increasing the number of
parameters that needs to be tested or estimated. When a decision or a
prediction rule is conceptualised based on such parameters their estimation
errors will increase, causing noise accumulation. Furthermore, when a large
number of variables are used, included variables which have a low signal-
to-noise ratio, for classification or regression prediction, the models will

provide low performances.

Spurious correlation. Again spurious correlation is due to the high dimensionality
of the data and it refers to the fact that some variables, which are scientifi-

cally unrelated, might erroneously have high sample correlation. This may
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lead to false conclusions, which challenge variables selection and incorrect

statistical inference.

Incidental endogeneity. The term ‘endogeneity’ implies that some predictors may
be correlated to the residual terms. Since for many statistical methods, the
assumption of independence between residual terms and predictors is es-
sential, incidental endogeneity may invalidate the statistical analysis. High

dimensionality is a possible cause of endogeneity.

All four of the issues highlighted above are motivated by examples provided in
Fan et al. (2014).

An example of a big data study that did not go as intended Take for
instance the Google Flu Trend, which is the most recognized example of failure
in the use of big data for scientific research. The idea was to use Google searches
on flu symptoms, remedies, et similar to estimates the flu activities in the United
States and 24 countries worldwide. At first, Google Flu Trend provided estimates
which were more accurate than the Centers for Disease Control and Prevention
(CDC), but after a while, it started to predict more than double the proportion
of doctor visits than the CDC.

Lazer et al.| (2014)) attributes this failure in prediction to two causes: algorithmic
dynamics and big data hubris. The algorithm dynamics could lead to the creation
of bias in the data. In this specific example, the algorithm was such that, when
someone searched for flu related terms, the algorithm was suggesting the search
of flu symptoms and treatments, which were the terms used to predict flu. It is
comparable to the case in survey sampling, when the interviewer suggests to the
respondent that are coughing that they are coughing and could therefore have flu
and asks the respondent if he has flu. The big data hubris implies that the large
amount of data does not imply the data does not suffer from any other error,

such those mentioned above.

1.4 The network structure

Social media can be reduced to an abstract structure which captures the main
objects and the connections between them; this structure is known as a network
(see Figure [1.2] for two examples of a network). More than one network can be

constructed, according to the objects of interest (i.e. the users and the content
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they create) and the relationships between them. A network, in its simplest form,
consists of a set of nodes, i.e. the objects; a set of edges, i.e. the connections
between them; and a set of attributes, i.e. different measures associated to both

the nodes and the edges.

L
Le-o
L)

(a) (b)
Figure 1.2: Two examples of Twitter networks from the blog ‘Digital Humanities
Specialist’(https://dhs.stanford.edu/gephi-workshop/twitter-network-
gallery/. (a): A conversation between Twitter users focused on whether terror
and Islam can be separated; (b): a user actively writing different tweets at a
variety of users during a short period.

1.4.1 Structure of social media

Social media data does not only consist of conversations between users, but also
acts as a series of complex platforms involving different actors. Often, two main
actors are distinguishable: the user and the content produced, which varies ac-
cording to the specific platform. The two types of actors interact within their

similar as well as between them.

The types of connection, between the objects of social media vary, according to
the specific platform, changing the dynamics and structure of the platform and
the way in which it is accessed. For instance, Facebook does not allow access to
content unless the connection between users is mutual, while Twitter, which also
allows for one-way relationships (user A can follow user B, without necessarily
being followed by them), allows that there is open access to content to all users,

depending on the user’s privacy.

Consider Twitter. Each account can follow and be followed from other accounts.

On the news feed, the tweets posted from the followed users will appears.
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Figure 1.3: Conceptual model of Twitter activities.

Each tweet can be original, a reply to another tweet or a copy of a different tweet,
known as a retweet (RT); it can mention a username account (@), to address a
specific user, and it can contain hashtag (#), to declare the topic of the tweet.
Hashtags offer a way to categorize tweets into specific topics (e.g. a tv show, a
sport event, a news); for instance football matches, film festivals or conferences
which may have an official hashtag under which the content generated by the users
watching /attending the event is classified. Hashtags can also be user-specific and

may not understandable for the general public.

Together with the hashtag, the two other main objects of Twitter are the account

and the tweet and Twitter records both with their corresponding metadata.

Figure [1.3| represents a conceptual model of the Twitter platform as defined in
Brown and Soto-Corominas| (2017). The authors describe the Twitter platform
with three objects, which are the users, the tweets and the hashtags, and the
relationships that those objects share between them. For instance, a user tweets
a tweet or a tweet replies to a tweet, among others. Further, to each one of these
objects a series of attributes can be associated. For instance, for each user we

have an ID, a screen-name, a location and a picture.

1.4.1.1 Measures of complexity

Representing the social media systems as a network can be a powerful tool to
discover and understand patterns of connections or interactions between the ele-
ments of the systems or between some of their components. Different metrics or
properties, borrowed from graph theory, are used to represent the form and the

function of the system represented by the network, i.e. to analyse the structure
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of the network. In the following we present a brief introduction to some of those

properties.
Let A and B be two nodes in a network N.

Measures of connections: density of N, the ratio between the number of edges in
the graph and the number of all the edges that could be present; Out-degree
of A, the sum of the edges connecting A to the others nodes; In-degree, the

sum of the edges connecting the nodes in the network to B.

Measures of distance: walk between A and B, the sequence of nodes and edges
from a node A to a node B; Geodesic distance between A and B, the shortest
walk between all the possible walks from A and B; Diameter of N, the

longest between all the geodesic distances.

Measures of power: degree of A, the sum of edges from or to A; Closeness cen-
trality of A, the sum of the geodesic distances between A and the other

nodes.

For instance, an interesting characteristic of social networks is that there is a small
but significant number of nodes with an extremely high degree. Those nodes
are called ‘hubs’ and they usually play an important role inside the network,
changing the performance and behaviour of the other nodes in the system and

act as propagators of information.

Another related characteristic of social network is known as the ‘small-world
effect” which says that the mean geodesic distance between two nodes is usually
short, which increases as the logarithm of the number of nodes in the network.
This implies that information spreads rapidly around the network (six degree of

separation).

A final example of a distinctive property of the network is the formation of clus-
ters or communities. In Facebook, for instance, everyone is extremely connected
with their close friends, which are likely to be connected to each other (high

transitivity).

In the last decades, the study of the patterns of connections in social media
networks has rapidly increased. On one side, the structure of such networks can
clearly have an important effect on the behavior of the whole system; it seems
therefore necessary to include it when we aim to understand how the social media

network works. For example, the connections in a social network affect how
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people debate, share opinions, and gather news, as well as how information is
spread inside the network. On another side, when dealing with social media
data, these patterns of connection can be easily observed and stored, when it was
otherwise unpracticable, if not impossible, with more traditional type of data.
The technological progresses has clearly motivated the interest on understanding

these system.

1.4.2 Use of the graph structure for design-based infer-

ence

Stephan| (1969) discusses modern sampling theory and suggests several further
development of it. In particular, he calls nexus sampling the statistical inference
in graphs. Stephan recognized that the conventional way of looking at a popu-
lation disregard completely the interactions that might exists between the units
and focuses only on the measurements attached to each individual. However,
these interactions might be of value during the construction of a sampling design

and for the estimation of the characteristic of interest.

For example, there are situations when some individuals can be observed only
if the individuals related to them are observed in the sample. Stephan point
out that a general theory of graph sampling is missing. Several attempts have
been made: |Goodman| (2010) proposes snowball sampling as a sampling technique
which allows to enlarge the initial sample by recruiting more elements, which are
related to the initially sampled ones. Adaptive sampling (Thompson, 1990) is also
a way to expand a sample, by adding only elements related to elements of interest.
Birnbaum et al.| (1965) and [Lavallée| (2007) consider instead the situation where
the sampling frame and the population of interest consist of different elements,
and the observation of an element of interest is subject to the observation of the

sampling unit related to it.

All these attempts have aimed to solve a relevant problem, but a general theory
which can incorporate all of them, by recognising the graph structure of the
population, has not been provided. The first attempt to establish a general
framework for finite graph sampling and estimation belongs to the pioneer work
of |[Frank (1971, 1977a, 1979, 1980b}, 1981} [2011)). Frank does not focus on specific
populations, but he investigates how different sampling methods can be applied

to any population graph.
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The second chapter of this thesis [Zhang and Patone (2017) reviews the work
made by Frank and includes some more extension. Also, as suggested by [Stephan
(1969), the connections available in the population graph can be used as a way
of accessing into the population, with the purpose of obtaining more data: the
third and four chapter of this thesis investigate how these extra information can

be used in the estimation of totals of a population.

1.5 A structure of the thesis

The purpose of the first paper “On two existing approaches of statistical analysis
with social media data” is to identify a range of theoretical and methodological
challenges for a valid descriptive statistical inference. Two existing approaches of
statistical analysis, aimed to overcome the basic challenges associated with these
data, are delineated. In the first approach, the analysis is applied to the social
media data that are organised around the objects directly observed in the data;
in the second one, a pseudo survey dataset, aimed to transform the observed
social media data to a set of units from the target population, is constructed and
analysis applied to it. From the review of these two approaches, we conclude that
the main difficulty in the one-phase approach is to identify an analytic connection
to the target parameter, whereas the two-phase approach, besides facing the
same challenges of non-probability sampling and measurement errors, introduces
a new type of error that involves the transformation of the data into the units
and measures of interest. The paper is currently under review in International

Statistical Review.

The bigger part of the thesis concerns graph sampling and estimation. In the
paper ‘Graph sampling’, published in Metron, we synthesize the existing the-
ory of graph sampling and develop a general approach of HT-estimation based
on T-stage snowball sampling, under the requirement of ancestral observation
procedure. While the ancestral requirement might be hard to fulfil in many ap-
plications, it can be possible with social media data, by technological means. A
key message of this paper is that the parameters which can be studied under a
network representation differ from the conventional target parameters. It seems,
in fact, feasible to investigate the interactions between the elements, their struc-
tural positions, etc. which are instead hard to be defined in a list representation

of the population.
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The other two papers deal with unbiased estimation methods from the sample
graph. Both papers focus on the use of a Bipartite Incidence Graph (BIG), which
offers an useful representation of many unconventional situations of sampling. In
a BIG, the two distinct sets of nodes are represented by the sampling frame and
the population of motifs; and a edge exists from a sampling unit to a motif, if
its observation leads to the observation of the motif. In the paper ‘Incidence
weighting estimation under sampling from a bipartite incidence graph’ we exploit
the use of the observed edges in the BIG for estimation: each sampling method
induces an incidence structure on the BIG, that, together with a relevant observa-
tion procedure, allows the estimation of characteristics of the population of motifs
to be carried out on the sampled units rather than on the motifs directly. This
use of the BIG is advantageous in situations when the probabilities of inclusion of
the motifs cannot easily be computed, e.g. if a frame is not available, or in situ-
ations where the incidence structure can be used to improve the estimation. The
use of the incidence structure of the BIG is also investigated in the last paper,
‘Reverse weighting estimation under BIG sampling’, but in the reverse direction.
In this paper, we turn around to the opposite direction the incidence estimation
described in the previous paper and make use of observed edges to carry out the
estimation of cardinality of the frame on the sampled motifs, rather than on the
sample of units. Without using any known additional variable, but only the size
of the frame, we showed how the structure alone of the BIG can be used to im-
prove the reduce the variance of the estimator, in the form of a Hajek-type and

ratio-type estimators.
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Chapter 2

On two existing approaches to
statistical analysis of social media
data

Using social media data for statistical analysis of general population
faces commonly two basic obstacles: firstly, social media data are col-
lected for different objects than the population units of interest; sec-
ondly, the relevant measures are typically not available directly but
need to be extracted by algorithms or machine learning techniques.
In this paper we examine and summarise two existing approaches to
statistical analysis based on social media data, which can be discerned
in the literature. In the first approach, analysis is applied to the social
media data that are organised around the objects directly observed
in the data; in the second one, a different analysis is applied to a
constructed pseudo survey dataset, aimed to transform the observed
social media data to a set of units from the target population. We
elaborate systematically the relevant data quality frameworks, exem-
plify their applications, and highlight some typical challenges associ-

ated with social media data.

Key words: quality, representation, measurement, test, non-probability sam-

ple.
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2.1 Introduction

There has been a notable increase of interest from researchers, companies and
governments to conduct statistical analysis based on social media data collected
from platforms such as Twitter or Facebook. At the same time, there is also a
growing concern about various issues associated with these new types of data.
For instance, Boyd and Crawford (2012) ask whether such data may alter what
‘research’ means, and call for the need to interrogate relevant assumptions and
biases. Bright et al. (2014) argue that caution is needed when interpreting social
media data, and major questions remain on how to employ such data properly.
Hsieh and Murphy| (2017)) highlight what they call coverage error, query error
and interpretation error in relation to Twitter data. Halford et al. (2017) urge to
develop better understanding of the construction and circulation of social media
data, to evaluate their appropriate uses and the claims that might be made from
them.

The aim of this paper is to examine and summarise two existing approaches to
statistical analysis based on social media data, when the analysis otherwise would
have been possible based on the traditional approach of survey sampling. To fix
the scope, let U = {1,2,..., N} be a target population of persons. Let y; be an
associated value for each ¢ € U. Let the parameter of interest be a function of
yu = {v1,...,yn}, denoted by

0 =0(yv)

For instance, 6 can be the population total or mean of the y-values. The quality
of sample survey data can generally be examined with respect to two dimensions:
representation and measurement (Groves et al.,|2004). The representation dimen-
sion concerns the relationship between U and the observed set of persons, denoted
by s. For example, s suffers from under-coverage if there are persons in U who
have no chance of being included in s. The measurement dimension concerns the
potential discrepancy between y; and the obtained measures, denoted by vy for
¢ € s. For instance, y7 may be subjected to various causes of measurement error,

such that yf # y; for some persons in s.

Thus, when social media data are employed, one needs to address two basic
obstacles with respect to each quality dimension. Firstly, social media data are
initially organised around different units than persons; secondly, the relevant

measures typically cannot be directly observed but need to be processed using
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algorithms or machine learning techniques. For example, one may like to make
use of the relevant tweets to estimate the mean of a value associated with the
resident population of a country. The directly observed unit (or data object) is
then the tweets, whereas the statistical unit of interest is the residents. Next,
instead of using designed survey instruments to measure the value of interest as
one could in survey sampling, one will need to process a proxy to the target value

from the Twitter texts by means of text mining.

Two existing approaches can be discerned in the literature. In what we refer to
as the one-phase approach, statistical analysis is directly applied to the observed
social media data that are organised around data objects other than persons. An
example is Yan et al. (2019), who document statistical association between avail-
able drug-related tweets (processed by text mining techniques) in May - December
2012 and US county crimes rates (calculated against population size adjusted for
non-residents) over 2012 - 2013. Next, in the two-phase approach, a different
analysis is applied to a constructed pseudo survey dataset, after transforming the
observed social media data to a set of persons from the target population. An
example is Rampazzo et al| (2018), who document correlation between fertility
rate published by the UN and that can be calculated for Facebook users. The
pseudo survey dataset is collected directly from the Facebook Advertising Plat-
form, which is assumed to be cleared of bots or other non-human accounts. The
variable ‘number of children’ is also prepared by Facebook based on the informa-

tion the company has about the users.

In this paper we shall delineate these two approaches more generally and system-
atically than they have hitherto been treated in the literature, where the Social
Media Index for Dutch Consumer Confidence (Daas and Puts, 2014) serves as a
typical case of the one-phase approach, and the ONS study on residency and mo-
bility data constructed from geolocalised tweets (Swier et al. 2015) is used to il-
lustrate the construction of pseudo survey dataset under the two-phase approach.
We shall elaborate the relevant data quality frameworks and methodologies, and

highlight some typical challenges to statistical analysis.

The rest of the paper is organised as follows. In Section [2.2] we systematise and
describe in greater details the general issues of representation and measurement
of social media data. In Section [2.3] and we delineate and examine the one-
phase and two-phase approaches, respectively. Finally, some concluding remarks

are provided in Section [2.5]
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2.2 General issues of representation and mea-

surement

2.2.1 Representation

A major concern about the use of social media for research is the non-representativeness
of data, when the population of interest does not coincide with the social media
population (Boyd and Crawford, |2012; [Bright et al., 2014; Halford et al. |2017;
Hsieh and Murphy, [2017). Meanwhile, when investigating the representativeness
of a social media population, one often compares it to the resident population of a
country, about which one has high-quality statistics. For instance, Pew Research
Centre publishes every year a report on the use and participation in social media
of the US population. It is shown that US users of Twitter and Facebook tend
to be younger and more educated than the US resident population (Greenwood
et al. 2016). In the UK, Blank and Lutz (2017) find that Facebook users are
more likely to be younger and female, while LinkedIn users are more likely to
have an higher income than non-users. Mellon and Prosser| (2016)) examine how
Twitter and Facebook users differ from the UK resident population in terms of

demographics, political attitudes and political behaviour.

Twitter provides a typical example of online news and social networking site.
Communication occurs through short messages, called tweets; the act of sending
tweets is called tweeting. To be able to tweet, an account needs to be created.
To register, a user has to provide an email address, a username and a password.
A user can be a person, a business, a public institution, or even softwares (bots),
etc. In case of person, the user is not obliged to create an account reflecting her
physical persona. Optional fields include a profile picture, a bio and a location,
which are neither verified nor expected to accurately characterise the user. By
default tweets are publicly available, although the user may change the privacy
setting to make it private. Each tweet can be original, a reply to another tweet
or a copy of a different tweet, known as a retweet. It can mention a username
account (@) to address a specific user, and it can contain hashtag (#) to declare
the topic of the tweet. Hashtags offer a way to categorise tweets into specific
topics (e.g. a tv show, a sport event, a news story). Some events such as football
matches, film festivals or conferences may have an official hashtag under which the
relevant tweets about the event are classified. Hashtags can also be user-specific

and not intelligible to the general public.
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As in the Twitter example, one can identify two directly observable units of
data on most social media platforms, which we will refer to as the post and the

account:

Post We use the generic term post to refer to the immediate packaging of social
media content, which otherwise has a platform-specific name: Facebook has

posts, Twitter has tweets and Instagram uses picture, etc.

Account An account is the ostensible generator of a post. As in Twitter, the
user(s) operating a social media account can be different entities including
but not limited to persons. Moreover, the same user can have multiple
accounts, but the connections between these accounts and the user are not

publicly accessible.

Denote by P and A, respectively, the totality of all the posts and accounts on
a given social media platform. There is a many-one relationship from posts to
the active accounts, denoted by Ap = a(P), and the inactive accounts A\ Ap is
non-empty in general. Next, there is a many-one relationship from accounts to
the users, denoted by b(A). The observable persons are given by the joint set of
the target population U and uap = b(Ap) = b(a(P)), i.e. via the active accounts.
Moreover, U \ uap is non-empty as long as there are persons not engaged with
the given social media platform, and usp \ U is non-empty as long as they are

other users than persons. These relationships are summarised in Table [2.1]

Table 2.1: Many-one relations a from post to account, and b from account to user

Post Account Person
Totality P A U
Observable P Ap =a(P) UNuap, uap =b(Ap) = b(a(P))
A\Ap#w U\UAP#(Z), UAP\U#Q)
Sample i. spC P 1. sa=ua(sp) | UNsap, U\ sap#0D, sap\U #0
ii. spCat(sa)| il saCA i. sap =b(a(sp)), il. sap =b(sa)

Next, a common way of collecting data from a given social platform is via the
public APIs, either directly or indirectly through third-party data brokers; Web
scraping provides another option, albeit with unclear legal implications at this
moment. Via the APIs, a sample of posts or, less commonly, accounts is harvested
directly from the social media company and the obtainable sample depends on the
company’s terms and conditions. Depending on the API, the obtained datasets
may differ in terms of being real-time or historical, or the amount of data that is

allowed for.
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Gaffney and Puschmann (2013) provides an overview of the tools available to
extract Twitter data. For example, the Streaming API* returns two possible
samples: a 1% sample of the total firehose (the firehose is the totality of tweets
ever tweeted), without specifying any filter; or a sample of posts on specific
keywords or other metadata associated to the post. However, if the number of
posts matching these filters is greater than 1% of the firehose, the Twitter API
returns at most 1% of the firehose. In addition, historical tweets can be retrieved
using the Search API, which provides tweets published in the previous 7 days,
with a selection based on “relevance and not completeness” (Twitter Inc.). For
both APIs, Twitter does not provide the details of the process involved, nor
guarantees that the sampling is completely random. See e.g. studies that have
been conducted to understand and describe how the data generation process
works with Twitter (Morstatter et al., [2013} |Gonzalez-Bailon et al., 2014; Wang
et al., [2015)).

Sampling of accounts is less common, which is only feasible if the usernames
are known in advance. Consider the case where the interest is on the political
candidates during an election. If a complete list of their usernames are available,
sampling can be performed by the analyst; all the posts generated by the sample
accounts on the social media platform can possibly be retrieved. The approach
is only applicable when the group is made of ‘elite’ users (of known people),
rather than ‘ordinary’ users; for instance it is not always possible to identify all
the eligible or potential voters. Rebecq| (2018) and Berzofsky et al.| (2018) use
the user ID number to randomly select a set of users from Twitter. Both the
authors use also the available connections between users to propogate the initial

sample.

Thus, the actually observed units are generally either a subset of P or A to start
with. An initial observed sample of posts, denoted by sp C P, can lead one to
a corresponding sample of accounts sy = a(sp) and then, in principle, a sample
of users sap = b(a(sP)). Given a sample s, directly selected from A, we can
possibly acquire a sample of users s4p = b(s4) and a sample of associated posts,
denoted by sp = a~!(s4). The observed sample of persons are given by the joint
set of U and ssp. Again, both U \ sap and sqp \ U are non-empty in general.
The relationships are summarised in Table as well.
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2.2.2 Measurement

Unlike in sample surveys, social media data are not generated for the purpose
of analysis. They have been referred to as “organic data” (Groves, 2011b) to
emphasise their non-designed origin. One can only decide what is best to do with
the data given the state in which they are ‘found’. In light of the discussion of
representation above, the obtained measures from social media data are either
associated with the sample of posts or accounts. These may be based on the
content of a post such as a text or an image, or the metadata of a post or account,
such as the geo-location of a post or the profile of an account. According to Bright
et al. (2014) and Japec et al| (2015]), social media data are seen to provide the
opportunity to study the following social aspects: 1. to capture what people
are thinking, 2. to analyse public sentiment and opinion, and 3. to understand
demographics of a population. To this one may add that social media data
can obviously provide data about certain network relationships between posts,

accounts or users.

Take Twitter for examples of all the possibilities mentioned above. While Twit-
ter does not provide the information whether a user is a parent or not, it may
sometimes be possible to infer that the user behind a tweet is a parent based on
its content. Similarly, while Twitter does not provide the location of a user, it
is sometimes possible to infer this from the location (or content) of the relevant
tweets. When opinions about a particular topic are of interest, sentiment analysis
can be performed on each tweet. By analysing the frequency of different hashtags,
it could be possible to investigate the major topics that capture people’s attention
at a given moment. Finally, retweeting or the inclusion of certain hashtags can

reveal particular network connections between the different users.

Generally we shall distinguish three types of data extraction from the sample
posts and accounts, while at the same time noting the associated challenges in

each respect:

Content Thought, opinion and sentiment provide typical examples of content
extraction, which are the direct interest of study. Sentiment analysis is a
common technique for extracting opinion-oriented information in a text.
However, social media posts present some distinct challenges, because the
expressions may be exaggerated or too subtle (Pang and Lee, 2008). More-
over, the posts on social media are public by nature, such that a user may

easily be influenced by other opinions, or she may want to project an image
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of herself which does not necessarily represent the truth.

Feature Demographics, location and socio-economic standing are common exam-
ples of feature extraction, when these are not the direct interest of study
but may be useful or necessary for disaggregation and weighting of the re-
sults. Various techniques of ‘profiling’ have been used for feature extraction.
For instance, Daas et al|(2016) and |Yildiz et al.| (2017) consider the prob-
lem of estimating age and gender of Twitter users based on the user’s first
name, bio, writing style and profile pictures. Or, |Swier et al. (2015]) derive
the likely place of residence of a user, from all the geo-located tweets that
the user has posted. Completely accurate feature extraction is generally

impossible regardless of the techniques.

Network Directional posting, reposting, sharing, following and referencing all
provide the possibility of observing network relationships among the posts,
accounts or users. Common interests regarding the pattern and interaction
among social network actors include identifying the most influential actor,
discovering network communities, etc. [Tabassum et al| (2018) provide an
overview for social network analysis. However, it should be noted that the
possibility and ease of network extraction is to a large extent limited by the

APIs provided for a given social media platform.

In light of the above, whether by content, feature or network extraction from
available social media data, one should generally consider the obtained measures
as proxy values to the ideal target values. Of course, measurement errors are
equally omnipresent in sample surveys. For instance, survey responses to ques-
tions of opinion may be subjected to mode effects, social desirability effects and
various other causes of measurement error (e.g. Biemer et al|(2004)). So there

is certainly scope for exploring social media data for relevant studies.

There is a noteworthy distinction between measurement errors in survey and
social media data. In sample surveys, a measurement error does not affect the
representation of the observed sample. The matter differs with social media
data. For instance, when relevant accounts to a study are selected based on
the metadata of an account, such as place of residence, errors can arise if the
information recorded at the time of registration is not updated despite there has
actually been a change of the situation. Such an error can then directly affect
which accounts are selected for the study, i.e. the representation dimension of

data quality. An initial measurement error in the description of the account can
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thus result in a coverage error with respect to the study population. Similarly,
one may fail to include a post in a study if it is classified as not containing the
relevant opinion of interest. In sample surveys, the sampling frame is chosen
to best fit the target population and it is obtained from external sources, such
as registers of addresses or persons. Any error arising from an incomplete or
erroneous frame is classified as coverage error and only affects the representation

dimension.

It may be envisaged that combining multiple platforms, such as Twitter and
Linkedln, can be useful for enhancing the accuracy of data extraction, although
we have not been able to find any documented examples. This could be due
to ethical reasons or the limitations imposed by the terms of conditions of the
social media companies. An additional concern could be the ‘interaction’ between
representation and measurement just mentioned above, where e.g. the accounts
for which data combination is possible are subjected to an extra step of selection

from the initially observed sample of accounts.

2.3 One-phase approach

In the one-phase approach, one needs to estimate the target parameter 6 = 0(y;)
directly from the obtained measures, denote by z;, associated with a different

observed set of units sp or s4, despite the differences to y; and U.

To see why this may be possible at all, consider the following example. Suppose
one is interested in the totality of goods (#) that have been purchased in a shop
over a given time period. One could survey all the people who have been in the
given shop during the period of interest and ask what they have purchased. The
population U then consists of all the relevant persons and y; is the number of
goods they have purchased (possibly over multiple visits to the shop). Alterna-
tively, # can be defined based on the transactions registered over the counter. The
population P consists then of all the relevant transactions, and z; is the number
of goods associated with each transaction 7 € P. Clearly, despite the differences
in (y;,U) and (z;, P), either approach validly aims at the same target parameter
0.

Below we reexamine the Social Media Index (Daas and Puts| [2014)) as an applica-
tion, to formalise this approach and the relevant quality issues and methodological

challenges.
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2.3.1 Case: Social Media Index (SMI)

Every month, Statistic Netherlands conducts a sample survey to compute the
Consumer Confidence Index (CCI). It is based on a questionnaire of people’s
assessment of the country economy and their financial situation. As part of the
research on the use of social media data in official statistics (Daas and Puts|
2014; |Daas et al., [2015)), the authors collected posts from different social media
platforms and constructed the Social Media Index (SMI) from these posts. They
observed and compared the CCI and SMI over time and concluded that the two
series are highly correlated (see Figure .

The SMI is constructed as an index that measures the overall sentiment of social
media posts. The posts were purchased, in the time period between June 2010
and November 2013, from the Dutch company Coosto, which gather social media
posts written in the Dutch language on the most popular social media of the
country (Facebook, Twitter, LinkedIn, Google+ and Hyves). Coosto also assigns
a sentiment classification, positive, neutral or negative to each post based on
sentiment analysis (Pang and Lee, [2008]), which determines the overall sentiment
of the combination of words included in the text of the post. A neutral label is

assigned when the text does not show apparent sentiment.
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Figure 2.1: Comparison of Dutch CCI and SMI on a monthly basis. A correlation
coefficient of 0.88 is found for the two series (Daas et al., 2015).

Let P, be the totality of all the observed posts in month ¢. Let sp; be a subset of

posts that are selected from F;. Let m; be the size of sp;. The posts included in
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sps can have positive, neutral or negative sentiment value, respectively denoted
by z; = 1,0, -1, for j € sp;. The SMI is calculated as the percentage difference

between the positive and negative posts in spy, i.e. a function of z,,, = {z;;j €

el 100
SMIt = SMI(ZSPJ) = F Zj .

JEspt

Daas and Puts (2014]) experimented with different ways of selecting the sample
spt. The choices involve a decision about which social media platforms to in-
clude, and whether to accept all the posts from an included platform or only
certain groups. The groups can be filtered using a set of keywords, such as posts
containing personal pronouns like ‘I’; ‘me’; ‘you’ and ‘us’, or words related to the
consumer confidence or the economy, or words that are used with high frequency
in the Dutch language. The idea is that selecting only certain groups of posts
could affect the association between the SMI and the CCI. For instance, from a
previous study (Daas et al.,|[2012)) the same authors found that nearly 50% of the
tweets produced in the Netherlands can be considered a ‘pointless bubble’. In the
end sp; is chosen to include all the Facebook posts and filtered Twitter posts,

for which the resulting SMI achieved the highest correlation coefficient with the

CCI (Figure 2.1).

Finally, considering the SMI as an estimator with its own expectation and vari-

ance, let

SMIt — é.t + dt 5 (21)

where & is the expectation of the SMI, and d; has mean 0 and variance 72.

2.3.2 Formal interpretation

To assess the SMI as a potential replacement of the CCI, let us now formalise
the CCI and its target parameter. Let U; be the Dutch household population in
month ¢, which is of the size N;. Let y;, for i € U;, be a consumer confidence
score for household ¢ based on positive, neutral or negative responses to five

survey questions. The target parameter of the CCI is given by



The CCI based on the sample survey is an estimator of 6;, which can be given

by
CCIt = Qt + e s (22)

where ¢; is the sample survey error of the CCI. For our purpose here, we shall
assume that e; ~ N(0,0?), i.e. normally distributed with mean 0 and variance

2
o;.

Now that there is a many-one relationship between persons and households, the
generic relationships from posts to persons apply equally from posts to house-
holds. The households corresponding to the SMI sample sp; can thus formally
be given as

s =U N a(b(sP,t)) i

Let s; be of the size n;. Let the target parameter defined for s; be given by

100
es,t = e(yst) = n_t Zyz .

1E€ES¢t

In order to replace the CCI by the SMI, it is clear that one would like to have
0, = &. However, given the underlying relationship between the social media data
posts and the target population, one can only establish an analytic connection
between & and 6,,, based on the relationship between (z;,sp;) and (y;,s:). It
is therefore clear that the principal difficulty for the one-phase approach in this
case is the lack of an explicit connection between & and 6, = 0(yy,), or between
SMI(z,,) and 6(yy,). Moreover, it seems that in such situations external vali-
dation will be necessary in order to establish the validity of the analysis results

based on social media data, which we consider next.

2.3.3 Statistical validation

In the case of the SMI, one does have the possibility of validating its statistical
relationship to the CCI, despite the lack of an analytic connection between the
two. As can be seen in Figure 2.1 the two indices display a high correlation
with each other over time: the empirical correlation coefficient is 0.88 over the 27
months displayed. However, a high correlation between the two indices alone is
not enough. Below we formulate a test to exemplify a possible venue for statistical

validation in similar situations.
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As a conceivable scenario in which the SMI can replace the CCI, we set up the

null and alternative hypotheses below:

Hy:0,—&=p wvs. Hy:0,—&#p,

i.e. whether or not the target parameters of the SMI and CCI differ by a constant
over time. Or, one can apply the procedure below on the log-scale to test if 6,/&;

i1s a constant.

For our purpose here, we shall make a simplifying assumption that 72 = 0, and
thereby remove the conceptual distinction between SMI as an estimator and its
theoretical target &. In light of the large amount of posts in sp;, the assumption
seems plausible. It follows then from and that, under Hy, we have

Xt:CCIt—SMIt:M+6t,

where e; ~ N(0,02). Thus, one may compare the total deviation of X; from its
mean X = Zthl X;, over the available T' time points, to the variances of the
CCI: the larger the total deviation exceeds that which is allowed for by the CCI

variances, the stronger is the evidence against Hy compared to H;.

Formally, let P = I — 117 /T, where [ is the T' x T identity matrix and 1 is the
T x 1 unity vector, and the matrix P is idempotent such that PPT = PP = P.
We have

E(PX)=0 for X =(Xy,...,X7)",
V(PX)= PSP  for ¥ =Diag(o,...,07) .

The diagonal matrix ¥ corresponds to the assumption that the CCI’s are uncorre-
lated over time. If this is not the case, one may specify the true covariance matrix
appropriately, without this affecting the generality of the following development.
Now that 1" PX = 0, one of the component is redundant. Let X’ = (PX)_; on
deleting the t-th component of PX, for any 1 <t <T'. Let  be the correspond
(T'—1) x (T'— 1) sub-matrix of PXP, such that X’ has the T'— 1-variate normal
distribution
X'~ N(0,Q) .

Let LLT = @ be the Cholesky decomposition with lower-triangular L, such
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that
L—lQ(L—1>T — L_lLLT(L_1>T — [(Tfl)X(Tfl)

and
R=L"'X"~ N(0,I) .

A test statistic for Hy can thus given as

D=R'R~x3 .

Under the alternative hypothesis, the test statistic D follows a noncentral chi-
squared distribution with same degree of freedom 7" — 1 and noncentrality pa-
rameter A = Zgzo 72, where v = (1, ..., Vi1, Ver1, - - -, 1) 1s expected value of
X’ under the al‘ézlfnative hypothesis, that is

1 1

%Iui—fﬂl—‘“—fur

The smallest the value of A, the bigger the overlapping between the null and the
alternative hypothesis (A = 0 iff ; = 0 for all i = 1,..., T, therefore y; = ps =
-+ = pr). On the other hand, the bigger A, the smaller is the overlap and the
higher is the statistical power of the test.
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Figure 2.2: The CCI series with 95% confidence interval, 2000-2014.

Due to confidentiality restrictions, we can only obtain the CCI (from the home-
page of Statistics Netherlands), but not the actual values of the SMI, nor the

variances of the CCIL. The calculations below serve only for the purpose of illus-
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Figure 2.3: P-values of test Hy vs. H; for varying CVs, level 0.05 mark by
horizontal line

tration. Firstly, we eyeball Figure to obtain the approximate values of the
SMI, where the empirical correlation coefficient between two series is 0.88 over
the 27 months. Next, Figure reproduced from [Brakel et al.| (2017) plots the
95% confidence interval of CCI over 2000 - 2014, where the coefficient of variation
(CV), denoted by n; = 04/CCl,, varies approximately between 0.01 to 0.34 over
the period relevant to Figure Based on these approximate o2’s, the p-value
of the test above is virtually zero, such that Hj is rejected at the level of 0.05 or
much lower. Moreover, for the illustration purpose here, we stipulate the values of
o? in relation to the CCI via a constant coefficient of variation over time, denoted
by 7, such that o, = nCCl,;. Figure [2.3| shows the p-value of the test as n varies
from 0.05 to 0.5, where the p-value exceeds 0.05 for n > 0.367. In other words,
unless the CV of the CCI is larger than 36.7% for all the 27 months of concern
here, the null hypothesis is rejected at the level of 0.05.

2.3.4 Discussion

Firstly, in the above we have considered the validity of the SMI, assuming the
aim is to replace the CCI with it. Of course, even if the SMI cannot do this
directly, there is still the possibility to use it to improve the CCI. Brakel et al.
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(2017) study the two indices over time using a bivariate time series model:

A AN AN AN
(6) - () (3)+ (7))

where Z; is the SMI that is decomposed into trend L7 and an error term v?,
and Y; is the CCI that is decomposed into trend L), seasonal component S}, an
error term v}, and 315! that is an outlier term introduced to accommodate the
economic downturn at the corresponding time point. The authors find that using
the SMI series as an auxiliary series slightly improves the precision of the model
based estimates for the CCI, at a time when the SMI for the current month is
available but not the CCI — due to the longer production lag required for the
latter. Notice that such uses of social media data as the auxiliary information for

survey sampling does not pose any new theoretical challenges.

Next, disregarding the distinction between 60s; = 6(ys,) and the CCl-target
0; = (yu,), where one faces a difficulty of representation between s; and Uy,
there is a question whether the SMI appropriately targets the ‘intermedi-
ary’ parameter ;. As remarked by Brakel et al.| (2017)), the CCI survey questions
involve the amount of purchases of expensive goods during the last 12 months
and the tendency of households to buy expensive goods. It seems relevant to
utilise internet search data and actual purchase data of such expensive goods.
The implication is that one needs not to rely exclusively on social media data for
content extraction, but could seek to combine them with other non-survey data.
On the one hand, combining data to improve content extraction seems desirable
regarding the quality of measurement. On the other hand, doing so is likely to af-
fect the representation dimension of data quality, as previously noticed in Section
But the quality of representation is worth examining in any case. In the
current definition of SMI , each post is given the same weight. It is unclear
whether this is the most appropriate treatment, because the number of posts per
account or user is likely to vary in different subsets of s;. Indeed, provided a
method of differential weighting of the posts in sp,; can be justified with respect

to O(ys,), targeting O(yy,) may no longer be as elusive as it is currently.

Finally, despite our focus in this paper on target parameter 6 defined for (y;, U),
it is conceivable that one may be interested in target parameter & defined for
(z;, P) directly. In such situations, the quality considerations are analogous to

those in the case of targeting 6 based on a sample s, for s C U, and the associ-
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ated measures y* = {y;7 € s}. A basic issue regarding representation is the fact
that the sample sp is not selected from the totality P according to a probability
sampling design. Inference from non-probability samples have received much at-
tention. See e.g. Smith| (1983)), Elliott and Valliant| (2017) and [Zhang| (2019) for
inference approaches assuming non-informative selection of the observed sample;
see e.g. Rubin (1976) and |Pfeffermann et al. (1998) for examples of approaches
that explicitly adjust for the informative selection mechanism. When it comes
to the measurement dimension of data quality, the traditional treatment of mea-
surement errors in surveys (e.g. Biemer et al.,[2004) may be less relevant because,
as discussed in Section [2.2.2] content, feature or network extraction from social
media data faces quite different challenges and uses quite different techniques

than data collection via survey instruments.

2.4 Two-phase approach

In the two-phase approach, one aims to estimate the target parameter 6 = 0(yy)
based on a pseudo survey dataset constructed from the sample of social media
data to resemble a survey dataset from the target population. Denote by s4p the
sample of statistical units in the pseudo survey dataset, and by y; the constructed

proxy to y; for i € sap.

The quality of the pseudo survey dataset (y;, s4p) with respect to the ideal census
data (y;,U) can be assessed with respect to representation and measurement,
under the quality framework of |Groves et al.| (2004) for traditional sample survey
data. The key extra concern is the necessary transformation from the initial
social media data, which is a process that does not exist for sample survey data.
Zhang (2012)) outlines a two-phase life-cycle model of statistical data before and
during integration, respectively, which includes the transformation from multiple
first-phase input datasets to the ones to be integrated at the second phase. The
total-error framework of [Zhang| (2012)) is applicable as well to the two-phase

approach to statistical analysis based on social media data.

Below we examine the study of Swier et al.| (2015)), which aims to construct pseudo
survey datasets of residence and mobility from geolocated tweets. In particular,
this illustrates the generic transformation process under the two-phase approach:
from the first-phase data objects (posts) to the second-phase statistical units

(persons) in terms of representation, and from values obtained at the first-phase
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(e.g. the geolocation of a post) to the second-phase statistical variable (e.g.
location of residence) in terms of measurement. Moreover, we analyse the quality
of the resulting pseudo survey dataset according to the total-error framework of
Zhang| (2012), and highlight some relevant methodological challenges.

2.4.1 Case: Residence location from tweets

Swier et al. (2015) conducted a pilot study at the Office for National Statistics,
on the potential of Twitter to provide residence and mobility data for official
statistics. The main efforts concerned the construction of relevant pseudo survey
datasets, which we summarise below. In addition, some simple analyses were
performed, giving indications of the possible target parameters envisaged. We do

not explicitly discuss these analyses here.

There are two first-phase input datasets. The first one is collected via the Twitter
Streaming API, covering the period 11th of April to 14th of August in 2014. The
search criteria involve a set of bounding rectangles covering the British Isles, for
which a tailor made application is developed and deployed. The second dataset
is purchased from GNIP (a reseller of data, now owned by Twitter), covering the
period 1st to 10th of April and 15th August to 31st of October in 2014. Unlike
the API data, the GNIP data is filtered by tweets with a “GB” country code.
The tweets from the same period, which cannot be geo-located in either way, are

excluded.

Next, the two datasets are merged to create a single dataset, during which a
number of tweets are removed. These include e.g. the ones that are detected
to be generated by bots, or without exact GPS location, or non-GB tweets in
the first dataset (mainly those from the Republic of Ireland). In particular, for
privacy protection reasons, any tweet from the first dataset is removed, unless
it is associated with an account in the purchased GNIP data. All the retained
tweets have latitude and longitude (GPS) coordinates.

The process of merging can therefore equally be represented as in the life-cycle
model of integrated data (Zhang, 2012), where linkage of separate datasets are
carried out via the second-phase units associated each input datasets. In other
words, one may first identify the associated Account IDs (second-phase units
here) in the API and GNIP datasets, respectively; and then merge the data for
the same Account ID, provided it is present in the GNIP dataset. In this case one
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could merge the datasets before transforming the data organised around Tweet
ID to Account ID, because the two first-phase datasets share the same identifiable
objects (i.e. tweets with Tweet ID)

In this way, at the beginning of the second-phase processing, one obtains a single
set of GB-located tweets (81.4 million over 7 months) and the associated accounts.
No further second-phase data processing takes place in the representation dimen-
sion. For instance, one does not attempt to identify and classify the users behind
the observed accounts. Second-phase processing in the measurement is primarily
concerned with content extraction of residential location and its classification.

This is carried out in the following steps.

e The tweets associated with a given account are clustered, using the density-
based spatial clustering algorithm with noise (DBSCAN). It groups together
points that are closer to each other in terms of spatial density; the cluster
formed is regarded valid only if it contains a specified minimum number of
points. The points in clusters below the minimum threshold are considered as
noise. Of the 81.4 million tweets, 67.4 million are included in one or another
cluster that contains three or more tweets. The rest clusters with only one or

two tweets are classified as ‘invalid’.

e Next, each valid cluster is classified as ‘residential’, ‘commercial’ or ‘others’ in
terms of address type, using the AddressBase that is the definitive source of
address information for Great Britain. To this end, one calculates a weighted
centroid of the cluster and finds the closest property to it in the AddressBase.
The cluster address type is then classified according to this ‘nearest neighbour’

property.

e Then, for each account with one or several residential clusters, the one of them

with the most tweets is classified as the ‘dominant’ residential cluster.

e Finally, additional classification may be attached to each cluster, such as the
administrative geography it belongs to, the number of tweets it contains, the
time span of these tweets (short-term if less than 31 days vs. long-term other-

wise).

2.4.2 Quality assessment

Before we assess the quality of the pseudo survey dataset (y;, s4) obtained under

the two-phase approach when targeting 6 defined for (y;, U), it is helpful to reca-
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pitulate some of the relevant technical issues, even if they do not account for all

the sources of errors.

Firstly, some additional API data are actually collected on the 10th of April and
15th of August, which overlaps with the GNIP data on these two days. A small
number of API tweets are found not be included in the GNIP set, all of which
are associated with protected accounts — users may opt to protect their accounts
so that their tweets can only be viewed by approved followers. More generally,
retrospective changes made by a user to its account or specific tweets may prevent
them from being included in the historic point-in-time data available from GNIP,
despite these accounts or tweets are accessible via the real-time Streaming API.
This exemplifies a general cause for discrepancy between Twitter data collected

in different ways. Two other examples of general causes are as below.

Filter criteria The filter criteria may not be fully compatible between the APIs
and the data brokers. As explained above, in the case here, the geographic
filter works differently with the Streaming API and GNIP.

Missing data Data from APIs may be missing due to technical problems, such as

moving of I'T equipment or broadband router failure.

Next, once the data from the first phase have been merged and transformed,
there are generally technical issues with data extraction and processing that are
necessary at the second phase. In this case, the DBSCAN clustering of tweets
is an unsupervised machine learning technique, for which it is generally difficult
to verify the truthfulness of the results. The address type classification is in
principle a supervised learning technique. However, it may be resource demanding
to obtain a training-validation dataset, by which the classification method can
be improved and its accuracy evaluated. Similarly for the classification of the

dominant residual cluster.

The quality of the dataset (y}, s4) can be assessed according to the second-phase
life-cycle model (Figure , along the two dimensions of representation and
measurement. The exact nature of the potential errors needs to be related to
the envisaged analysis. Below we consider first representation and then measure-

ment.

In terms of representation, the “Linked Sets” in Figure is given by b(s4),
which is subjected to coverage errors. Over-coverage is the case if b(s4) \ U # 0.

This is unavoidable here because some of the accounts in b(s4) are not persons at
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Figure 2.4: Phase-two life-cycle model of Zhang (2012)

all and all the bots are not completely removed. Moreover, there may be multiple
accounts in s, that correspond to the same person; such duplicates are another
form of over-coverage error. Whether s4 entails under-coverage depends on the
assumption. For instance, let the target population U be the adult residents
of England. If one assumes that in principle there is an unknown but non-zero
probability for everyone in U to have a Twitter account and to have tweeted
at least three times from the same location during the 7 months in 2014, then
there would be no under-coverage error of b(s,4) for U, but only a non-probability
selection issue. However, insofar as these assumptions are untenable, then there

would be an under-coverage error in addition.

Next, the identification error may be an issue if domain classification of the target
population needs to be based on feature extraction, which is prone to errors;
whereas unit error is potentially troublesome if additional statistical units (e.g.
household) need to constructed. Neither seems relevant to any of the analyses of
Swier et al.| (2015)).

In terms of measurement, an example of “Harmonized Measures” in Figure [2.4
is the dominant residential cluster here. Suppose the “Target Concept” is the de
facto place of residence of a person. Relevance error is mostly like the case, unless
everyone sends most tweets from her de facto place of residence. Or, suppose the
“Target Concept” is whether a person is a tourist, and short-term vs. long-term
classification of the dominant residential cluster is used as a proxy measure of the

corresponding person. Again, relevance error is mostly like the case, unless no
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tourist stays longer than a month and no usual resident stops tweeting after less

than a month.

Next, the mapping error is e.g. the case when someone does tweet from her de
facto place of residence but the clustering-classification algorithm fails to identify
it as the dominant residential cluster. This can happen e.g. if the person tweets
more when at her friend’s place, or if the person more often than not switches
off GPS location when tweeting at home, or if the person’s home is in a dense
area and the chosen nearest neighbour property in the AddressBase happens to
be a commercial address. Finally, the comparability error could arise if e.g. the
classified dominant residential cluster is further adjusted in light of other available

measures, although this is not the case in the study of Swier et al.| (2015)).

In summary, the main errors of the pseudo survey dataset (v, s4) here are cover-
age errors in terms of representation, and relevance and mapping errors in terms

of measurement.

2.4.3 Discussion: Statistical analysis

In the above we outlined the data processing required under the two-phase ap-
proach to social media data, using the study of Swier et al.| (2015]) as the case-
in-point. It is shown that the life-cycle model of (Zhang, [2012) can be applied
as a total-error framework for evaluating the quality of the resulting pseudo sur-
vey dataset (yF,s4), where sx = a(sp). The study of Swier et al| (2015) does
not specify any definitive target of analysis. For a discussion of possible statis-
tical analysis of the target parameter 6 defined for (y;,U), let us consider two

situations, depending on whether it involves additional datasets or not.

Consider the situation where only the pseudo survey dataset (y;, s4) is to be used
for an analysis targeted at 6(yy). The first key issue regarding representation is
over-coverage adjustment, from s’ = b(s4) to s = U Nb(s4), due to the fact that
s'\U # (). This could be either based on the mapping from s’ to s or, provided it
can be specified, from t(y ) to t(y}), where ¢(-) denotes the sufficient statistics for
0. Given the over-coverage adjustment, the remaining issues are non-probability
representation of s for U, and measurement discrepancy between y; and y; caused
by lack of relevance and imperfect data extraction, similarly to what has been

discussed earlier in Section [2.3.4]

A potentially more promising scenario is to utilise additional datasets, in order
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to overcome or reduce the deficiency of each dataset on its own. Integration with
other Sign-of-Life data can possibly improve the quality of the pseudo survey
dataset constructed from social media data. For example, in the case of data for
residence and mobility, other Sign-of-Life data on employment, education, utility
services, etc. can probably improve the classification of the dominant residential
cluster, provided these data are available and can be combined with the tweets
data. However, it is also possible that one cannot always overcome the inherent
deficiencies of social media data in this way. Making statistics based on multiple
sources is a broad challenging topic. It is currently an area of active research and
development. See e.g. |De Waal et al. (2017); Di Zio et al.| (2017) for overviews of
related situations and methodological issues. See Zhang| (2018) for an overview

of estimation methods in the presence of multiple proxy variables.

2.5 Concluding remarks

In the above we systematically delineated two existing approaches to statistical
analysis based on social media data. The fundamental challenge with the one-
phase approach in some situations is a lack of analytic connection to the target
parameter, which is defined for a different set of units and another associated
measure. Nevertheless, external data can in principle be used to verify the sta-
tistical validity of this approach. Compared to observational studies based on
data subjected to non-probability selection and survey measurement errors, the
key extra issues with the two-phase approach revolve around the transformation
process from the initial data objects to the statistical units of interest and the
algorithmic data extraction required for measurement. In addition, an explicit

adjustment for the over-coverage error will be needed in many situations.

For assessment of data quality, we have demonstrated that it is possible to apply
relevant total-error frameworks formulated in terms of representation and mea-
surement of generic statistical data. In particular, for both approaches, it seems
more promising if one does not simply restrict oneself to the available social me-
dia data, but seeks to combine them with additional relevant datasets, in order
to overcome or reduce the deficiency of each source, despite data integration is

by no means a straightforward undertaking in general.

We would like to close with a few remarks. Firstly, in the paper we have focused

on target parameters that are finite-population functions. Such a parameter is
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often referred to as a descriptive target, in contrast to analytic target parameters
that can never be directly observed, regardless how large the observed number
of units and how perfect the obtained measurement may be. For example, the
ordinary least squares fit of some specified linear regression coefficients based on a
perfect census of the current population is a descriptive target parameter; at the
same time it is an estimate of the theoretical (or super-population) values of these
coefficients of the postulated regression model, i.e. the analytic target parameter
in this case. Our focus on descriptive target parameters helps to simplify the
exposition, since the differences between descriptive and analytic inference can
be subtle and many, but are nevertheless not critical to our aim in this paper.
See e.g. Skinner et al.| (1989)), |Chambers and Skinner (2003)), and Skinner and
Wakefield (2017) for introductions to analytic vs. descriptive inference based on

sample surveys.

Next, there are certainly many similarities to statistical analysis based on admin-
istrative data. As we have demonstrated, the total-error framework (Zhang;, [2012)
for statistical data integration involving administrative sources is applicable as
well to the two-phase approach based on social media data. It is worth reiterating
the two extra difficulties in comparison. The first one relates to the transformation
from the original data objects P to the statistical units U. The same requirement
exists equally for administrative data in general. For instance, exams are part
of the initial education data objects. However, while the transformation from
exams (say, P) to students (say, U) can be carried out unproblematically by the
school administration, such straightforward processing is often impossible from
social media data objects to the target population of interest. The second extra
difficulty concerns data extraction. The available measures in the administrative
sources do often suffer from relevance error. Nevertheless, the actual mapping
to the “Re-classified Measures” (Figure seldom requires content or feature
extraction that are necessary for social media data which, as has been discussed,
is generally an additional cause of discrepancy between y; and y; or between z;

and ;.

Finally, there seems to be currently an under-explored potential regarding the
rich network relationships that can be extracted from social media data. Such
network relationships may be difficult to obtain via traditional survey methods,
both due to the limitations of the usual survey instruments and the relatively

high cognitive and memorial requirements for correct information retrieval by the
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respondents. In contrast, for network relationships that are directly observable on
the social media platform, no subjective information processing will be needed
and the errors associated with such processing are thereby avoided. Making
greater use of the network relationships in social media data and developing
suitable sampling and analysis methods appear fruitful venues forward, in order

to harness the opportunities that have emerged with such big data sources.
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Chapter 3
Graph sampling

We synthesise the existing theory of graph sampling. We propose a
formal definition of sampling in finite graphs, and provide a classifi-
cation of potential graph parameters. We develop a general approach
of Horvitz-Thompson estimation to T-stage snowball sampling, and
present various reformulations of some common network sampling
methods in the literature in terms of the outlined graph sampling

theory.

Key words: network, finite-graph sampling, multiplicity sampling, indirect sam-

pling, adaptive cluster sampling.

3.1 Introduction

Many technological, social and biological phenomena exhibit a network structure
that may be the interest of study; see e.g. Newman (2010). As an example
of technological networks, consider the Internet as consisting of routers that are
connected to each other via cables. There are two types of objects, namely routers
and cables. A router must be connected to a cable to be included in the Internet,
and a cable must have two routers at both ends. As another example, consider
the social network of kinships. Again, there are two types of objects, namely
persons and kinships. Each person must have two or more kinships, and each
kinship must represent a connection between two persons. However, while it is

obvious that any two routers must be connected by cables to each other either
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directly or via other routers in the Internet, it is not sure that any two persons
can be connected to each other in the network of kinships. The difference can
be articulated in terms of some appropriate characterisation of their respective

network structures.

Following Frank (1980, 2011), we refer to network as a valued graph, and graph
as the formal structure of a network. The structure of a network, i.e. a graph,
is defined as a collection of nodes and edges (between the nodes); measures may
be attached to the nodes or the edges or both to form a valued graph, i.e. a
network. For a statistical approach to networks one may choose to model the
entire population network as a random realisation, or to exploit the variation over
possible sample networks taken from a given fixed population network. Graph
sampling theory deals with the structure of a network under the latter perspective.
In comparison, finite-population sampling (Neyman, 1934; Cochran, 1977) can
mostly be envisaged as sampling in a ‘graph’ with no edges at all. We shall refer

to such a setting as [ist sampling.

Ove Frank has undoubtedly made the most contributions to the existing graph
sampling theory. See e.g. Frank (1977c, 1979, 1980b, 1981, 2011) for his own
summary. However, the numerous works of Frank scatter over several decades,
and are not easily appreciable as a whole. For instance, Frank derives results
for different samples of nodes (Frank, 1971; 1977c; 1994), dyads (Frank, 1971;
1977a; 1977b; 1979) or triads (Frank, 1971; 1979). But he never proposes a formal
definition of the “sample graph” which unifies the different samples. Or, Frank
studies various characteristics of a graph, such as order (Frank, 1971; 1977c;
1994), size (Frank, 1971; 1977a; 1977b; 1979), degree distribution (Frank, 1971;
1980a), connectedness (Frank, 1971; 1978), etc. But he never provides a structure
of possible graph parameters which allows one to classify and contrast the different
interests of study. Finally, Frank does not appear to have articulated the role of
graph sampling theory in relation to some common “network sampling methods”
(e.g. Birnbaum and Sirken, 1965; Thompson, 1990; Lavallée, 2007), which “are
not explicitly stated as graph problems but which can be given such formulations”
(Frank, 1977c).

The aim of this paper is to synthesise and extend the existing graph sampling
theory, many elements of which are only implicit in Frank’s works. In partic-
ular, we propose a definition of sample graph taken from a given population

graph, together with the relevant observation procedures that enable sampling
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in a graph (Section . In Section we provide a structure of graph totals
and graph parameters, which reflects the extended scope of investigation that
can be difficult or impossible using only a list representation. Next, we develop
a general approach to HT-estimation under arbitrary 7T-stage snowball sampling
(Section[3.4). In Section[3.5] we present various graph sampling reformulations of
multiplicity sampling (Birnbaum and Sirken, 1965), indirect sampling (Lavallée,
2007) and adaptive cluster sampling (Thompson, 1990), all of which are referred
to as unconventional sampling methods in contrast to the more familiar finite-
population sampling methods, such as stratified multi-stage sampling. Finally,
some concluding remarks are given in Section [3.6] together with a couple of topics

of current research.

An interactive illustration of the graph notation, as used in this paper, and of the
graph sampling methods defined in section 3.2.3 can be found at the following
link http://tiny.cc/to8wpz. To have access to the notebook, a Google account
is required. Once you have clicked on it, you will be asked to switch to the play-
ground mode to run the R code. If a warning message appears (“this notebook

was not been authorized by Google”), continue by clicking on ‘run anyway’.

3.2 Sampling on a graph

3.2.1 Terms and notations

A graph G = (U, A) consists of a set of nodes U and a set of edges A. Define
\U| = N and |A| = R as the order and size of G, respectively. Let A;; C A be
the set of all edges from ¢ to j; let a;; = |A;;| be its size. If a;; > 1 for some
i,7 € U, the graph is called a multigraph; it is a simple graph if a;; = 0,1. The
edges in A;; = U]EU Ajjand Ay, = UjeU A;; are called the outedges and inedges
at i, respectively. Let a;; = |A;1| = ZJEU a;; and ay; = [Ay| = Z]EU aj;. The
node i is incident to each outedge or inedge at <. The number of edges incident
at a node 7 is called the degree of 7, denoted by d; = a;,; + a,;. Two nodes ¢ and
J are adjacent if there exists at least one edge between them, i.e. a;; + a;; > 1.
For any edge in A;;, ¢ is called its initial node and j its terminal node. Let o; be
the successors of i, which are the terminal nodes of outedges at 7; let 5; be the
predecessors of i, which are the initial nodes of inedges at . For a simple graph,
we have a;y = || and ay; = |f;]. A graph is said to be directed (i.e. a digraph)

if A,y # Ay; it is undirected if A,y = A, in which case there is no distinction
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between outedge and inedge, so that d; = a;; = a4;, and a; = (3;. Finally, an edge
a;; connecting the same node i is called a loop, which can sometimes be a useful
means of representation. Whether or not loops are included in the definitions of

the terms and notations above is purely a matter of convention.

Remark Adjacency refers to relationship between nodes, as objects of the same
kind; incidence refers to relationship between nodes and edges, i.e. objects of
different kinds.

Remark Let the N x N adjacency matriz A have elements a;; = |A;;]. It
is defined to be symmetric for undirected graphs. Put the diagonal degree ma-
trix D = diag(Alyx1). The Laplacian matrix L = D — A sums to 0 by row
and column, which is of central interest in Spectral Graph Theory (e.g. Chung,
1997).

3.2.2 Definition of sample graph

Denote by s; an initial sample of nodes, for s; C U. Under a probability design,
let m; and 7;; (or 7; and 7;;) be the probabilities of inclusion (or exclusion) of
respectively a node and a pair of nodes in s;. (The exclusion probability of i
is the probability of i ¢ s1, and the exclusion probability of a pair (i,7) is the
probability that neither i nor j isin s1.) A defining feature of sampling on graphs
is that one makes use of the edges to select the sample graph, denoted by Gi.
Given s, the relevant nodes are either in a(s1) = U;e,, i or B(s1) = Use,, 55
where «(s1) = B(s1) for undirected graphs. An observation procedure of the edges
needs to be specified, and the observed edges can be given in terms of a reference
set of node pairs, denoted by sy where sy C U x U, under the convention that the
set of edges A;; are observed whenever (ij) € so. Notice that generally speaking
(ij) and (ji) are considered as two distinct elements in U x U. Denote by ;)
(or 7(;;)) the corresponding inclusion (or exclusion) probability of (ij) € s, and
by @iy (or Teijyaey) the inclusion (or exclusion) probability of these two pairs
in sy. Denote by A; = A(sy) the edge set inherent of s9, and Us = s7 U Inc(Ajy)
the union of s; and those nodes that are incident to A,. The sample graph is
G, = (Us, Ay).

Example 1 Let U = {1,2,3}, and a;o = 1. Suppose s; = {1}. Provided
Sy = 81 X a(sy1), where a(s;) = {2} in this case, the sample graph G, has A, =
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A(sy) = Ajp and U, = {1,2}. The same sample graph can equally be given by
sh =81 X U, since A(s}) = Aja = A(s2).

Observation procedure Frank (1977c) considers several observation proce-
dures, which can be formalised as follows. First, given s, a procedure is induced
if A;; is observed iff both @ € s; and j € sy, or incident reciprocal if A;; and
Aj; are both observed provided either i € s; or j € s;. Second, for digraphs, an
incident non-reciprocal procedure is forward if A;; is observed provided ¢ € sy,
or backward if A;; is observed provided j € s;. For example, provided ¢ € s; and
J & s1 and a;; > 0 and aj; > 0, we would observe both A;; and Aj; given an
incident reciprocal procedure; only A;; if it is incident forward; only Aj; if it is

incident backward; neither A;; nor A;; given an induced procedure from s;.

Initial sampling of edges Sample graph initiated by a sample of edges can
be defined analogously. Bernoulli or Poisson sampling can be useful, because
it is not required to know all the edges in advance. Notice that when one is
interested in the totals or other functions of the edges of a graph, initial Bernoulli
or Poisson sampling of edges is meaningful — see e.g. Frank (1977c, Section 12),
whereas initial simple random sampling (of edges) would have been a trivial set-

up, because one would need to know all the edges to start with.

3.2.3 Some graph sampling methods

We describe some sampling methods based on the aforementioned observation
procedures. Frank (1977c) elicited several sampling methods based on the afore-
mentioned observation procedures. We include several alternative specifications
which are marked by {. By way of introduction, the first- and second-order
inclusion probabilities of (ij) in so are given in terms of the relevant inclusion
probabilities in s;, which facilitates Horvitz-Thompson (HT) estimation of any
totals defined on U x U. As will be illustrated, given s; and the observation
procedure, the sample graph can be specified using different reference sets s, but

the inclusion probabilities are more readily obtained for some choices of ss.

(i) s2 = s1 x s1 [Induced]: Both (ij) € sy and (ji) € so iff i € s and j € s5.

Then, ;) = my; and 75k = Tijh-
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(ii.1) s2 = s1 X S4, Sq = «(s1) U sy [Incident forward]: (ij) € sq iff i € s
and j € s,. Let B; = {j} U f;, i.e. itself and its predecessors, then j € s, iff
B] N S1 7& @ ThUS,

T(ij) = T + TB; — TB;U{i}-

Similarly, (ij), (ki) € sy iff i,k € s; and B;Ns; # 0 and B;Nsy # 0, so that

T(ij)(kl) = Tik + TB;u{k} + TBUL} T TB,UB,

— TB;u{i,k} — TBU{i,k} — TB;UBU{i} — TB;UB,U{k} T TB;UBU{ik}-

(ii.2) s2 = 51 x U [Incident forward]: (ij) € sy iff ¢ € s1. Then, 7(;; = m and

T(ig) (k1) = Tik-

Remark The sample edge set A(sq) is the same in (ii.2) and (ii.1), because the
observation procedure is the same given s;. For the estimation of any total over
A, the two reference sets would yield the same HT-estimate: any (ij) € so with
a;; = 0 does not contribute to the estimate, regardless of its 7(;;); whereas for any
(ij) € so with a;; > 0, we have 7(;;) = 7; given s, in (ii.2), just as one would have
obtained in (ii.1) since B; = B; U {i} provided a;; > 0. But it appears easier to

arrive at 7(;; and the HT-estimator in (ii.2) than (ii.1).

(ii.3)T s = s, X a(sy), s = s N ﬁ(a(sl)) [Incident forward]: This is the
smallest Cartesian product that contains the same sample edge set as in (ii.1)
and (ii.2).

(ii.4)" s, = | i x oy, where i x a; = 0 if a; = () [Incident, forward]: Only (ij)
1€S81
with a;; > 0 is included in sp. This is the smallest reference set for the same G

in (ii.1) - (ii.4).

(iii) s2 = Sq X Sa, Sa = a(s1) Usy [Induced from s,]: (ij) € sg even if i € s, \ 51
and j € s, \ s1. Similarly to (ii.1), (ij) € so iff B;Ns; # 0 and B; Ns; # 0, and

so on. Then,

T(ij) = T, + Tp; — TB,UB;,
T(ij)(kl) = TB;UB, + TB,UB, T TB;UB, + TB;UB,

- 7T‘—BiUBkUBl - ﬁ-BjUBkUBl - ﬁ-Bl‘UBjUBk - ﬁ-Bl‘UBjUBl + ﬁ—BiUBjUBkUBZ'
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Remark Observation of the edges between i € s, \ s; and j € s, \ $1 may
be demanding in practice, even when the observation procedure is reciprocal.
For example, let the node be email account. Then, by surveying ¢ € s; only, it
is possible to observe all the email accounts that have exchanges with ¢ due to
reciprocality. But one would have to survey the accounts in «; \ s; additionally,

in order to satisfy the requirement of (iii).

(iv.l) sy =51 x UUU x s; [Incident reciprocal]: (ij) & s9 iff i € s; and j & s;.

Then, 7T(z'j) =1 7_Tij and W(ij)(kl) =1- ﬁ'ij — ﬁkl + ﬁ'ijkl'

(iv.2)T sy = 81 X 8, US4 X 51, S = (1) U sy [Incident reciprocal]: We have
Sq X Sq = 82U (84 \ 1) X (84 \ $1), where the two sets on the right-hand side are
disjoint. The inclusion probabilities can thus be derived from those in (iii) and
those of (s, \ $1) X (s, \ s1). However, the sample edge set A(sy) is the same as
in (iv.1), and it is straightforward to derive the HT-estimator of any total over

A based on the reference set so specified in (iv.1).

(iv.3)" s = (U ixa;)U( U B xi) [Incident reciprocal]: This is the smallest
1€S1 1€81
reference set of the sample edge set in (iv.1) - (iv.3).

Example 2 Figure[3.1]illustrates the four sampling methods (i) - (iv) described

above, all of which are based on the same initial sample s; = {3, 6, 10}.

3.3 Graph parameter and HT-estimation

Frank (1980b) reviews some statistical problems based on population graphs. In
a list representation, the target population U is a collection of elements, which are
associated with certain values of interest. In a graph representation G = (U, A),
the elements in U can be the nodes that have relations to each other, which are
presented by the edges in A. It becomes feasible to investigate the interactions
between the elements, their structural positions, etc. which are difficult or un-
natural using a list representation. The extended scope of investigation is above
all reflected in the formulation of the target parameter. In this Section, we pro-
vide our own classification of the potential target parameters based on a graph

in terms of graph totals and graph parameters.

61



o )
@ @
@ ©
®
@) (i)
® @
®
®
@
@
® ®
(iii) (iv)
® ©
® ® ®
o ® ©)
©)
& &
o ®

Figure 3.1: Population graph (top) and four sample graphs (i) - (iv) based on
51 = {3,6,10).
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Graph total and graph parameter Let M be a subset of U, where | M| = k.
Let Cy be the set of all possible M},’s, where |Cr.| = N![k!/(N — k)!]7'. Let G(My,)
be the subgraph induced by M. Let y(G(Mk)), or simply y(My), be a function of

integer or real value. The corresponding k-th order graph total is given by

0= > y(Mp). (3.1)

M eCy,

We refer to functions of graph totals as graph parameters.

Remark Network totals can as well be defined by (3.1), where y(-) can incor-
porate the values associated with the nodes and edges of the induced subgraph
G(My).

Motif A subset M C U with specific characteristics is said to be a motif,
denoted by [M]. For example, denote by [i : d; = 3] a 1st-order motif, i.e. a node
with degree 3. Or, denote by [,j : a;; = aj; = 1] the motif of a pair of nodes
with mutual simple relationship, or by [¢, j : a;; = a;j; = 0] the motif of a pair of
non-adjacent nodes. A motif may or may not have a specific order, giving rise to

graph totals with or without given orders.

3.3.1 Graph totals of a given order
3.3.1.1 First-order graph total: M; = {i}

Each M; corresponds to a node. In principle any first-order graph total can
be dealt with by a list sampling method that does not make use of the edges,
against which one can evaluate the efficiency of any graph sampling method. For
the two parameters given below, estimation of the order by snowball sampling is
considered by Frank (1971, 1977¢c, 1994), and estimation of the degree distribution
is considered by Frank (1971, 1980a).

Order (of G) Lety(i) =1, fori € U. Then, § = |U| = N.

Number of degree-d nodes Let y(i) = §(d; = d) indicate whether or not d;
equals d, for © € U. Then, 6 is the number of nodes with degree d.
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3.3.1.2 Second-order graph total: M, = {i,j}

An M, of a pair of nodes is called a dyad, for My C U and |Ms| = 2. Some dyad
totals are considered by Frank (1971, 1979).

Size (of G) Let y(Ms) = a;; + a;; be the adjacency count between ¢ and j in a
digraph, or y(M3) = a;; for an undirected graph. Then, 0 =3, . y(Ms) = R
is the size (of G).

Remark If there are loops, one can let y(M;) = ay for M; = {i}, and § =
> anee, Y(Mi). Then, R = 0 + 0’ is a graph parameter based on a 1st- and a
2nd-order graph totals.

Remark Let Ny be the no. degree-d nodes, which is a 1st-order graph total.
Then,

D

2R = d; = dNy, where D = maxd;.
This is an example where a higher-order graph total (R) can be ‘reduced’ to
lower-order graph parameters (Ny). Such reduction can potentially be helpful in
practice, e.g. when it is possible to observe the degree of a sample node without

identifying its successors.

Number of adjacent pairs Let y(M;) = §(a;; + aj; > 0) indicate whether
1 and j are adjacent. Then, @ is the total number of adjacent pairs in G. Its
ratio to |Co| provides a graph parameter, i.e. an index of immediacy in the graph.
Minimum immediacy is the case when a graph consists of only isolated nodes,
and maximum immediacy if the graph is a clique, where every pair of distinct

nodes are adjacent with each other.

Number of mutual relationships Let y(M;) = d(a;;a;; > 0) indicate whether
1 and j have reciprocal edges between them, in which case their relationship is
mutual. Then, 6 is the number of mutual relationships in the graph. Goodman
(1961) studies the estimation of the number of mutual relationships in a special

digraph, where a;,; =1 for all i € U.
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3.3.1.3 Third-order graph total: M; = {i,j, h}

An Mj of three nodes is called a triad, for M3 C U and |M3| = 3. Some triad
totals are considered by Frank (1971, 1977a, 1977b, 1979).

Number of triads Let y(M3) = d(a;;aj5a; > 0) indicate whether the three
nodes form a triangle in an undirected graph. Then, 6* by is the total
number of triangles. Triangles on undirected graphs are intrinsically related to
equivalence relationships: for a relationship (represented by an edge) to be transi-
tive, every pair of connected nodes must be adjacent; hence, any three connected

nodes must form a triangle. For a simple undirected graph, transitivity is the

case iff 0/ = 0, when ¢’ is given by (4.1)), where
y(Ms) = aijan(l — ani) + amajn(l — aij) + again(l — azn).

Provided this is not the case, one can e.g. still measure the extent of transitivity
by
T=0"/(6"+0"),

i.e. a graph parameter. Next, for digraphs and ordered (jih), let z(jih) =
ajiaipan; be the count of strongly connected triangles from j via i and h back to
j. Let M; contain all the possible orderings of Ms, i.e. (ijh), (ihj), (jih), (jhi),
(hij) and (hji). Then, the number of strongly connected triangles in a digraph
is given by , where

y(Ms) = > z(ijh),

(ijh)€Ms

Remark For undirected simple graphs, Frank (1981) shows that there exists
an explicit relationship between the mean and variance of the degree distribution
and the triads of the graph. Let the numbers of triads of respective size 3, 2 and
1 be given by

93,3: E Q5 A5p A5,

Ms3eCs

O30 = Z ai;ain(1 — ajn) + aijajp(l — ain) + anan(l — aiy),
M3€eCs

Os0 =Y ay(1—apm)(L = am) + amn(l = ay)(1 = ajn) + ajn(l — a;) (1 — ai).
Ms3eCs
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Let p= Y0, dNy/N = 2R/N and ¢ = Q/N — pi?, where Q = 3207 d*N;. We

have

1 2
R = m(eg,l + 29372 + 39373), Q - m<9371 + N93,2 + 3(N o 1)93,3)~

3.3.2 Graph totals of unspecified order

A motif is sometimes defined in an order-free manner. Insofar as the correspond-
ing total can be given as a function of graph totals of specific orders, it can be
considered a graph parameter. Below are some examples that are related to the

connectedness of a graph. The number of connected components is considered by

Frank (1971, 1978).

Number of connected components The subgraph induced from M is a
connected component of order k, provided there exists a path for any i # j € M
and a;; = a;; = 0 for any ¢ € M, and j € M}, in which case let y(Mj) = 1 but
let y(My) = 0 otherwise. Then, 6, given by is the number of connected
components of order k. The number of connected components (i.e. as a motif
of unspecified order) is the graph parameter given by 6 = chvzl 0. At one end,
where A = (), i.e. there are no edges at all in the graph, we have § = N = 0; and
0, = 0 for £ > 1. At the other end, where there exists a path between any two
nodes, we have § = 0y =1 and 6, = 0 for £k < V.

Number of trees in a forest In a simple graph, a motif [My] is a tree if
the number of edges in G(M}) is k — 1. As an example where 6 can be reduced
to a specific graph total, suppose the undirected graph is a forest, where every
connected component is a tree. We have then § = N — R, where R is the size of

the graph, which is a 2nd-order parameter.

Number of cliques A clique is a connected component, where there exists an
edge between any two nodes of the component. It is a motif of unspecified order.
The subgraph induced by a clique is said to be complete. A clustered population
can be represented by a graph, where each cluster of population elements (i.e.
nodes) form a clique, and two nodes i and j are adjacent iff the two belong to

the same cluster.
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Index of demographic mobility Given the population of a region (U), let
there be an undirected edge between two persons ¢ and j if their family trees
intersect, say, within the last century, i.e. they are relatives of each other within
a ‘distance’ of 100 years. Each connected component in this graph G is a clique.
The ratio between the number of connected components # and N, where N is
the maximum possible 6, provides an index of demographic mobility that varies
between 1/N and 1. Alternatively, an index can be given by the ratio between
the number of edges R and |Cy|, which varies between 0 and 1, and is a function
of a 2nd-order graph total. This is an example where the target parameter can

be specified in terms of a lower-order graph total than higher-order totals.

Remark In the context of estimating the number of connected components,
Frank (1971) discusses the situation where observation is obtained about whether
a pair of sample nodes are connected in the graph, without necessarily includ-
ing the paths between them in the sample graph. The observation feature is
embedded in the definition of the graph here.

Geodesics in a graph Let an undirected graph G be connected, i.e. U = My is
a connected component. The geodesic between nodes ¢ and j is the shortest path
between them, denoted by [My], where M contains the nodes on the geodesic,
including 7 and j. A geodesic [My] is a motif of order k, whereas geodesic is
generally a motif of unspecified order. Let # be the harmonic mean of the length
of the geodesics in GG, which is a closeness centrality measure (Newman, 2010). For
instance, it is at its minimum value 1 if G is complete. Alternatively, let y(Ms) =
1/(k—1), provided [My] is the geodesic between ¢ and j, so that 6 can equally be
given as a 2nd-order graph parameter. Again, this is an example where a lower-
order graph parameter can be used as the target parameter instead of alternatives

involving higher-order graph totals, provided the required observation.

3.3.3 HT-estimation

A basic estimation approach in graph sampling is the HT-estimator of a graph to-
tal . Provided the inclusion probability sy, ) for My € Cy, the HT-estimator
is given by

0= Opngy(M)/man, (3:2)

MpeCy,
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where djp,) = 1 if [M}] is observed and T(Mm,) 18 its inclusion probability. The
observation of [M}] means not only M, C Us, but also it is possible to identify
whether M, is a particular motif in order to compute y(Mj). The probability
Ty 18 defined with respect to a chosen reference set s, and the corresponding
sample graph G,. It follows that a motif [My] is observed in Gy if My C U, and
My, x M, € s;. More detailed explanation of () will be given in Section

The example below illustrates the idea.

Example 3 Consider an undirected simple graph. Let 3-node star be the motif
of interest, and y(M;) = a;;ain(l — ajn) + aijajn(l — ain) + aipajn(l — a;;) the
corresponding indicator. Suppose incident observation and s, = s; x U. Consider
M; = {i,j,h} C Us. To be able to identify whether it is the motif of interest, all
the three pairs (ij), (ih) and (jh) need to be in s,; accordingly, m(as,) = Pr((ij) €
$2,(ih) € s2,(jh) € s5). An example where this is not the case is i € s; and
J,h € a(s1) \ s1, so that the observed part of this triad is a star, but one cannot

be sure if aj, = 0 in the population graph, because (jh) & s.

Symmetric designs The inclusion probability m(,s,) depends on the sampling
design of initial s;. At various places, Frank consider simple random sampling
(SRS) without replacement, Bernoulli sampling and Poisson sampling for select-
ing the initial sample. In particular, a sampling design is symmetric (Frank,
1977a) if the inclusion probability my, = Pr(M; € s;1) only depends on k but
is a constant of M, for all 1 < k < N. SRS with or without replacement and
Bernoulli sampling are all symmetric designs. SRS without replacement is the

only symmetric design with fixed sample size of distinct elements.

Approximate approach The initial inclusion probability 7y, has a simpler
expression under Bernoulli sampling than under an SRS design. Provided negli-
gible sampling fraction of s, many authors use Bernoulli sampling with probabil-
ity p = |s1|/N to approximate any symmetric designs. Similarly, initial unequal
probability sampling may be approximated by Poisson sampling with the same
m;, for © € U, provided negligible sampling fraction |s;|/N. Finally, Monte Carlo
simulation (Fattorini, 2006) may be used to approximate the relevant my, under

sampling without replacement.
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3.4 T-stage snowball sampling

An incident observation procedure (Section provides the means to enlarge
a set of sample nodes by their out-of-sample adjacent nodes. It yields a method
of 1-stage snowball sampling, which can be extended successively to yield the
T-stage snowball sampling. Below we assume that all the successors are included
in the sample. But it is possible to take only some of the successors at each
stage (e.g. Snijders, 1992). In particular, taking one successor each time yields a
T-stage walk (e.g. Klovdahl, 1989). Two different observation procedures will be
considered, i.e. incident forward in digraphs and incident reciprocal in directed or
undirected graphs. We develop general formulae for inclusion probabilities under
T-stage snowball sampling. It is shown that additional observation features are
necessary for the HT-estimator based on T-stage snowball sampling, which will
be referred to as incident ancestral. Previously, Goodman (1961) has studied the
estimation of mutual relationships between ¢ and j, where a;;a;; > 0fori # j € U,
based on T-stage snowball sampling in a special digraph with fixed a;, = 1; Frank
(1977c) and Frank and Snijders (1994) considered explicitly HT-estimation based

on 1-stage snowball sampling.

Sample graph G, = (Us, As) Let s1 be the initial sample of seeds, and «(s1)
its successors. Let Uy C U be the set of possible initial sample nodes. The
additional nodes s;1 = a(s1p) \ s1,0 are called the first-wave snowball sample,

which are the seeds of the second-wave snowball sample, and so on. At the ¢-th
t—1
stage, let s1; = a(s14-1) \ ( U sl,h) be the t-th stage seeds, for t = 1,2,...,T. If

s14 =10, set s1441 = -+ = s17 = 0 and terminate, otherwise move to stage ¢t + 1.
T-1

Let s; = |J s1+ be the sample of seeds. This may result in two different sample
t=0

graphs.

I. Let sy = s1 XU provided incident forward observation in digraphs, such that the
sample graph G has edge set A, = |J |J Ai; and node set Uy = s1Ua(sq).

1€ES1 JEQ;

II. Let s = sy x UUU x s; provided incident reciprocal observation, digraphs
or not, such that G5 has edge set A, = |J U (4;; U A;;) and node set Uy =

i681 jeai
s1 U a(s).
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Remark One may disregard any loops in snowball sampling, because they do
not affect the propagation of the waves of nodes, but only cause complications to

their definition.

3.4.1 Inclusion probabilities of nodes and edges in G,

Below we develop the inclusion probabilities m;) and 7(;)(;) of nodes in U, and
7)) and 7wy of edges in Ay, under T-stage snowball sampling with s; as

specified above.

Forward observation in digraphs The stage-specific seed samples s1 g, ..., 51,7-1
are disjoint, so that each observed edge, denoted by (ij) € A, can only be
included at a particular stage. For ¢ € U, let 62-[0] = Uy N {i}; let Blm =

<ﬁ(5[t’1]) \ ( U B[h])) be its t-th generation predecessors, for ¢ > 0, which

consists of the nodes that would lead to ¢ in t-stages from s but not sooner.
Notice that Bi[o ,ﬂi ,Bi , ... are disjoint. We have

e = 1—T7p, for B; = U 5[t]

Tj) =1 —=7p,;  for Bj = U B,
t=0

The respective joint inclusion probabilities follow as 7(;y;) = 1 —7p, — 7B, +TB,uB,

and T(ij)(hl) = 1-— 7_TBij — T, + ﬁ-BijUBhl‘

Incident reciprocal observation Each (ij) € A can only be included at a
particular stage, where either i or j is in the seed sample, regardless if the graph
is directed or not. For i € U, let n; = {j € Usay +aj > O} be the set of its

adjacent nodes. Let 77Z = UpN{i}; let 77 = Uy ﬂ( ( - 1])\( U 77 )) be its t-th

step neighbours, for ¢ > 0, which are the nodes that would lead to ¢ in t-stages

from s; o but not sooner. We have
T = 1 — 7R, for R, = U n[t] (3.3)
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The respective joint inclusion probabilities follow as ;) = 1 —7Tr, —Tr, + TR,UR,

and W(ij)(hl) =1- ﬂ—Rij — TRy, + ﬂ—Rz‘jUha'

Incident ancestral observation procedure It is thus clear that additional
features of the observation procedure is required in order to calculate 7y and
7)) given any T' > 1, or m(;;) and ;) given any T' > 2. Reciprocal or not,
an incident procedure is said to be ancestral in addition, if one is able to observe
all the nodes that would lead to the inclusion of a node ¢ € U, which will be
referred to as its ancestors. These are the predecessors of various generations for
forward observation in digraphs, or the neighbours of various steps for reciprocal
observation in directed or undirected graphs. Notice that the edges connecting
the sample nodes in U, and their out-of-sample ancestors are not included in the
sample graph G5. More comments regarding the connections between snowball
sampling and some well-known network sampling methods will be given in Section
5.0)

Remark Frank (1971) defines the reach at i as the order of the connected
component containing node i. The requirement of observing the reach, with-
out including the whole connected component in the sample graph, is similar
to that of an ancestral observation procedure, even though the two are clearly
different.

Example 4 To illustrate the inclusion probabilities and , consider
the population graph G = (U, A), and a sample graph G, = (Us, As) by 2-stage
snowball sampling, with the initial sample s, 9 = {3,4} by SRS with sample size 2.
The 1st- and 2nd-wave snowball samples are s;; = {8,9,10} and s12 = {1,5, 7},
respectively. The sample of seeds is s1 = {3,4,8,9,10}. Both G and G are given
in Figure 3.2l To the left of Figure [3.3 the true node inclusion probabilities
7y are plotted against those given by , where there are 5 distinct values;
to the right, the true edge inclusion probabilities (;; are plotted against those
given by , where there are 4 distinct values. In both cases, the true inclusion
probabilities are calculated directly over the 45 possible initial samples of size
2.
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Figure 3.2: Population graph G with 10 nodes and 11 edges (left), a sample graph
G by 2-stage snowball sampling starting from s, = {3,4} by simple random
sampling (right).
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Figure 3.3: Inclusion probability m¢): true vs. (3.3), left; mj): true vs. (3.4),
right.

3.4.2 Arbitrary M, with £ > 2 and sy =51 x UUU X s1

To fix the idea, consider incident reciprocal observation in directed or undirected
graphs. Notice that one can as well let s, = s; X U in the case of undirected

graphs.

Definition of 7, for M;, C U To be clear, write {i1, 1, ..., i} for M, C U.
Let M,Eh) = M, \ {in} be the subset obtained by dropping i, from My, for h =
1,...,k. As explained in Section [4.6] to be able to identify the motif [M,], there
can be at most one node in M), that belongs to the last wave of snowball sample

(s1,r). In other words, at least one of the k subsets M, éh) must be in the sample
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of seeds s;. We have

T(My) = Pr(M,gl) C s or M,EQ) Cspor --- or M,gk) C sy or My, C 81)

=iﬁ@wgﬂ—%4m@@gq (3.5)

where Pr(Mk - 51) = T(i)(in)-(i) 1S joint inclusion probability of the relevant
nodes in s, similarly for Pr(]\/[,gh) C 31), where h = 1,...,k. The expression
follows from noting {M,E,h) CsipN{My C s1} ={M; C s1}, and {M,Sh) C
sihn {M®P C 51} = {M, C 51}, and ({M,g’” C s\ {M; C 51}) N ({M,g” -

s} \ {0y € 51}) = 0.

Joint inclusion probability ) For My C U and M) C U, the joint
observation of [M]| and [M]] requires that (i) at most one node ¢ in s; 7, provided
i € My N M, or (ii) at most two nodes 4, j in sy r, provided ¢ € M \ M| and
j € M{\My. Put M = M,UM;. The relevant subsets are M for all i € M,NM;,
and M) for all i € M}, \ M}, and j € M} \ M. The joint inclusion probability
() () follows, similarly as above for m(yy,), as the probability that at least one
of these subsets is in the sample of seeds s.

Probability 7(;,)(,)..i,) In the case of k = 2, m;)(; is as given earlier in Section
3.4.1L To express 7(;)(i,)-(i) in terms of the probabilities for the initial seed

sample s; o, we have

T(i1) (i) (i) = Z <_1)|L|7_T(L)7 (3.6)

LCM;
where L includes (), and |L| is its cardinality, and 7(L) is the exclusion probabil-
ity
A(L) =Pr(LNs; =0) =Pr(R Ns19=0) =7r, = »_ (=1)Plap,  (3.7)
where R, = |J R; and R; = UZ:_OI nz[t] is the ancestors of ¢ up to the T'— 1 steps,

i€L
and 7p is joint inclusion probability of the nodes in D in the initial sample of

seeds 1.
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3.4.3 Arbitrary M; with £ > 2 and s5 = s; X 51

By dropping the nodes s; 1 of the last wave of T-stage snowball sampling, we
ensure that the motif of any subset M} € s; is observable. The idea is developed

below.

Definition of 7y, for M;, C s; Let G, = (U, As) be the sample graph of 7
stage snowball sampling, with reference set so = s; xUUU x s1. Let G = (U}, A%)
be the reduced sample graph obtained from dropping s;p, with reference set
sy = s1 x s1, where A* = A\ {(ij);i € 51,5 € sir} and UF = U \ s1.0 = 1.
Notice that A% contains all the edges between any ¢,j € s; in the population
graph G, and G7 is the same sample graph that is obtained from s; by induced
observation directly. It follows that one observes the motif for any M € s, so

that the inclusion probability mz,) is given by
Tt = Pr(Mi C 1) = 76 )(02)-(i0)- (3.8)

where 7(;,)(i)-(3,) 1 given by (3.6 and (3.7) as before.

Joint inclusion probability 7)) For My C s; and M; C sy, the joint
observation of [Mj] and [M]] requires simply M = M; U M| C s;. The joint
inclusion probability m(as) ) 1S therefore given by m(y) on replacing My by M

in B5). (B0) and ().

Other reduced graphs The sample graph G7 is obtained from dropping the
T-th wave nodes sy p. Rewrite G as Gngl); it can be reduced to GngQ) by
dropping s; 71 as well. This yields GgT_2) as the induced graph among s;\ sy 7—1.
The inclusion probability () for My C A" can be derived similarly as .
Carrying on like this, one obtains in the end the reduced graph Ggo), with reference
set sg = s19 X s10, which is just the induced graph among s;9. The inclusion
probability 7y, for My, € 51 is mpy, = Pr(Mk - 5170) directly. Notice that the
sample graph G under T -stage snowball sampling can equally be obtained as
G under 1-stage snowball sampling. It follows that the additional 7' — 1 wave-
samples would simply have been wasted, had one only used Ggo) for estimation.
For the same reason it is equally implausible to use Ggl), ey GgTJ). However,
G = G is different because the last wave serves to establish G as an induced

sub-population graph, i.e. with no potentially missing edges among the relevant
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nodes.

Comparisons between G; and G5 On the one hand, whichever motif of
interest, G5 always has a larger or equal number of observations than G}. Hence,
one may expect a loss of efficiency with G%. On the other hand, estimation
based on Gy requires more computation than G%. Firstly, for any M; C sy,
it requires about k times extra computation for m(,,) by than by .
This is due to the need to compute the probability of possibly observing M, as
M,gh) C sy and h € sy7, even if My, is observed as M), C sy, which is unnecessary
with respect to sj, where the observations are restricted to those among the
nodes in s; without involving s; 7. Secondly, corresponding to each M; C sy,
there are additional observations with respect to s,, which are all the possible
M, = {M,gh),j; h € My,j & s1}, because the motif of such an Mj, can be identified.
The motif of any M] is unknown, if it differs from any M), C s; by at least two

nodes.

Example 5 To illustrate the inclusion probabilities and , consider
the population graph G = (U, A) in Figure where |U| = 13 and |A4| = 19,
together with the two 2-stage snowball sample graphs G, and G}, both with
s10 = {4,5,10} by SRS of sample size 3. We have s;; = {1,2,8,9}, s12 =
{3,6,12,13} and s; = {1,2,4,5,8,9,10}. Table lists 6 selected triad (Ms)
inclusion probabilities given by and , respectively, with respect to sy =
s1 x U and s; = s1 X s;. These are seen to be equal to the true probabilities
calculated directly over all possible initial samples s;, under SRS of sample
size 3. Table shows the estimates of the four 3rd-order graph totals ég’h, for
h =0,1,2,3, which are as defined in Section [3.3.1.3] based on these two sample
graphs G5 and G%. The expectation and standard error of each estimators are
also given in Table |3.2] which are evaluated directly over all the possible initial
sample s1 . The true totals in the population graph G are (03,051,652,033) =
(121,123,40,2). Clearly, both HT-estimators are unbiased, and using G entails

a loss of efficiency against G, as commented earlier.

3.4.4 Proportional representative sampling in graphs

A traditional sampling method is sometimes said to be (proportional) represen-
tative if the sample distribution of the survey values of interest is an unbiased

estimator of the population distribution directly. This is the case provided equal
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Figure 3.4: Population graph G with 13 nodes and 19 edges (top); sample graphs
G5 (bottom left) and G (bottom right) by 2-stage snowball sampling with initial
S1,0 = {4, 5, 10}

probability selection. Equipped with the general formulae for 7y, ) under T-stage
snowball sampling, below we propose and examine a proportional representative-

ness concept for graph sampling.

Graph proportional representativeness Let m; # m) be two distinct mo-
tifs of the order k. A graph sampling method is k-th order proportionally repre-
sentative (PRy) if

E[0.]/0 = E[0.]/0', (3.9)

where 6 is the number of m; in the population graph G, and 6, that of the
observed my, in the sample graph G, with reference set so, and similarly with
¢" and ¢ for mj,. Let y(M;) = 1 if [M;] = my and 0 otherwise. Let dp,) be
the observation indicator with respect to s;. We have 0 = >, . y(M;) and
0y = ZMkeck O,y (My). Clearly, a graph sampling method will be PRy, if m(ay,)
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Table 3.1: Inclusion probability ) of selected My = {iy, 49,13}

With S9 = 81 X U

With s5 = 51 X 51

11 12 13 | By True By True

1 2 3109230769 | 0.9230769 | 0.5664336 | 0.5664336
1 2 4 ]0.8531469 | 0.8531469 | 0.2657343 | 0.2657343
1 3 4 ]0.8321678 | 0.8321678 | 0.2027972 | 0.2027972
2 3 4 |0.8531469 | 0.8531469 | 0.2552448 | 0.2552448
1 2 5108671329 | 0.8671329 | 0.6223776 | 0.6223776
1 3 5 ]0.8881119 | 0.8881119 | 0.5384615 | 0.5384615

Table 3.2: Third-order graph total estimate, expectation and standard error

Based on sample graph G 050 031 052 053
Estimate 96.251 89.260 26.289 2.515
Expectation 121 123 40 2
Standard error 22977 18.591 7.025 0.768
Based on sample graph G 050 031 052 053
Estimate 59.128 63.209 19.211 1.607
Expectation 121 123 40 2
Standard error 78.694 49.929 15.038 1.195

is a constant for different motifs of order k. Under any PR, design, one may

estimate the relative frequency between my and m) by 6,/0..

Result 1.

89 = 51 X s1 and symmetric design p(s).

Induced observation from s; is PR, for £ > 1, provided
The result follows since, for any
M, C Ay = s1, we have 7m(ay,) = 7, which is a constant of [Mj] by virtue of

symmetric design p(sy).

Result 2.

Sg = 81 x UUU x s; and symmetric design p(s;).

One-stage snowball sampling is PR, for £ > 2, provided
Suppose first reciprocal
observation. We have R; = {i} U 771[1], whose cardinality varies for different nodes
in G. It follows that m(y,) = 7(;) by is not a constant over U, i.e. the design
is not PR;. Next, for M, with k > 2, m(y,) by depends on k41 probabilities
given by and (3.7)). Each relevant probability 7 (L) is only a function of | Ry |
provided symmetric design p(s;), where Ry, = |J R; = L since R; = {i} given
T = 1. It follows that |Ry| = |L| regardless of thzeeilodes in M}, such that m(yy,) is

a constant of My, i.e. PRy. Similarly for forward observation in digraphs.
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Remark Setting sj = s; X s7 yields induced sample graph from s; and Result
1.

Result 3. T-stage snowball sampling is generally not PR, for k£ > 1 and
T > 2, despite symmetric design p(s;). Asunder 1-stage snowball sampling,
the design is not PR;. Whether by or for k > 2, may,) depends on
7(L) in ([3.6), which is only a function of |R;| provided symmetric design p(s1).
However, given T" > 2 and |L|, R, = |J R; generally varies for different L, so
that neither Ry nor |Ry| is a constant z)ethhe nodes in My, i.e. the design is not

PRy. Similarly for forward observation in digraphs.

3.5 Network sampling methods

As prominent examples from the network sampling literature we consider here
multiplicity sampling (Birnbaum and Sirken, 1965), indirect sampling (Lavallée,
2007) and adaptive cluster sampling (Thompson, 1990). Below we first sum-
marise broadly their characteristics in terms of target parameter, sampling and
estimator, and then discuss four salient applications of these methods using the
snowball sampling theory developed in Section

Target parameter In all the network sampling methods mentioned above, the
target parameter is the total of a value associated with each node of the graph,
denoted by y; for ¢ € U, which can be referred to as a lst-order network total
0 = ey ¥i in light of . This does not differ from that when “conventional”
sampling methods are applied for the same purpose, where Sirken (2005) uses the
term conventional in contrast to network. In other words, these network sampling
methods have so far only been applied to overcome either certain deficiency of
frame or lack of efficiency of the traditional sampling methods, as discussed below
in terms of sampling and estimator, but not in order to study genuine network

totals or parameters, which are of orders higher than one.

Sampling Like in the definition of sample graph, these network sampling meth-
ods start with an initial sample s;. The sampling frame of s; can be direct or
indirect. In the latter case, the sampling units are not the population elements.
This may be necessary because a frame of the population elements is unavailable,

such as when siblings are identified by following up kins to the household mem-
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bers of an initial sample of households (Sirken, 2005). Or, a frame of the elements
may be available but is unethical to use, such as when children are accessed via a
sample of parents (Lavallée, 2007). In cases a direct frame of elements is used, the
initial sample s; may be inefficient due to the low prevalence of in-scope target
population elements, so that an observation procedure depending on the network
relationship (between the elements) is used to increase the effective sample size.

This is the case with adaptive cluster sampling (Thompson, 1989).

Estimator For 1-st order network parameters , where the population ele-
ments are represented as nodes in the population graph G = (U, A), the HT-
estimator is defined for the observed nodes in the sample graph Gy =
(Us, As). Another approach in the aforementioned methods is the HT-estimator
defined for the selected sampling units. Let F' be the frame of sampling units,
where [ € F' has inclusion probability m;. We have

> :Z(sziyi) =D Y wi=>» y =0,

leF leF €U icU leF 1ceU

where 2, = ), wiy; is a value constructed for the sampling units, based on any
chosen weights, provided ), . wy; = 1, as noted by Birnbaum and Sirken (1965).

The corresponding HT-estimator that is unbiased for 6 can be given by

éHT:ZZl/’/Tl:ZZZ(Sl/Wl, (310)

l€sy leF

where 6, = 1 if [ € s; and 0 otherwise. To ensure that z; can be calculated
no matter which actual sample sy, the weights w; must not depend on s;. A
common approach is to set wy;; = 1/m;, where [ a sampling unit in s; which gives
rise to ¢, and m; is the number of all sampling units in F’ that could lead to the
observation of 7, for © € U. The number m; is referred to as the multiplicity of
the element (Birnbaum and Sirken, 1965). The observation of m; for each sample
element is the same kind of requirement as the observation of the ancestors of a

node in Ug under snowball sampling. The literature is inconclusive on the relative
efficiency between the two estimators (3.2)) and (3.10)).
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3.5.1 Sampling patients via hospitals

Birnbaum and Sirken (1965) consider this situation, without using graph repre-
sentation. To fix the idea, suppose a sample of hospitals is selected according to a
probability design. From each sample hospital, one observes a number of patients
of a given type, who are treated at this hospital. Let the target parameter 6 be
the population size of such patients. The complication arises from the fact that a
patient may receive treatment at more than one hospital. Sirken (2005) refers to
conventional sampling where every population element is linked to one and only
one sampling unit, whereas in the case of network sampling a population element
(i.e. patient of a certain type) can be linked to a varying number of sampling
units (i.e. hospitals). Sirken (2005) refers to ‘cluster’ as the group of population
elements which are linked to the same sampling unit, and ‘network’ the group of
sampling units which are linked to the same population element. The distinction

between cluster and network here needs to be accounted for in estimation.

(P) Projection graph The HT-estimator (3.2) can be obtained using the
following graph sampling set-up. Denote by H the known set of hospitals and
P the unknown set of in-scope patients, where § = |P|. Let G = (U, A) have
U=HUP. Forany i€ H and j € P, a;; € A iff patient j receives treatment
at hospital i. Let the simple graph be undirected. Notice that (H, P) form a
bipartition of U, where there are no other edges at all except those that project
H onto P. Given s; C H = Uy, let s = s; x P for 1-stage snowball sampling.
The observation procedure must be incident ancestral, so that m,; is observed
for i € a(sy), without including in the sample graph G all the edges that are
incident at ¢ but outside of s;. The inclusion probability m; is given by ,
where we have 77@[0] = () since UyN P = (), and nlm = (;, so that R; = f3; and
|R;| =m;. Let y; =1 for all i € P.

Remark The HT-estimator (3.2)) and (3.10]) correspond to the first two estima-
tors proposed by Birnbaum and Sirken (1965). Their third estimator is defined
for the edges in the projection graph, which however lacks a formulation that

allows it to be applied generally.

Two-stage snowball sampling Consider 2-stage snowball sampling in the
same graph, under which the observation procedure is incident but needs not be

ancestral in addition. Given s19 C H, let 511 = (s10) C P and s12 = a(s11) C
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H, i.e. reverse projection. The HT-estimator (3.2)) makes only use of the nodes
(i.e. motif of interest) in sy, where y; = 1, and 7(;) is given by (3.3)), for which
R; = B; is fully observed due to the addition of s o.

3.5.2 Sampling children via parents

Lavallée (2007) considers this situation. Children are the population elements.
Suppose a sample of parents is selected according to a probability design. One
obtains all the children of each sample parent. Without losing generality, let the
target parameter 6 be the number of children who are not orphans. The same
complication arises from the fact that a child may be accessed via two parents if
they are both in the sampling frame. Clearly, the situation is conceptually the

same as sampling patients via hospitals above.

Remark Lavallée (2007) represents the situation using the same graph (P)
above, where U = P U (), and P consists of the parents and C' the children. The
HT-estimator based on either 1- or 2-stage snowball sampling formulation
is the same as above, with y; = 1 for ¢ € C. Lavallée (2007) considers only the

HT-estimator (3.10]).

(M) Multigraph Put G = (U, A) where U = P and A = C, i.e. with parents
as the nodes and children as the edges. Let A;; represent the a;; children of
parents ¢ and j. Let loops A;; at node ¢ represent the a;; children of single-parent
i. Given s; = s19 C P = Uy, let s11 = a(s1p) \ S10, l.e. 1l-stage snowball
sampling. The incident observation procedure is ancestral by construction here.
Let s = s; x U. The inclusion probability m(;) of a child (ij) € A is given by
(3-4), where n¥ = {i} and 77][-0] = {j} under 1-stage snowball sampling; whereas

(i) of a child (ii) of a single parent is also given by (3.4), where 7]1[0] = {i}.

Remark Making population elements the edges of the graph is not convenient
for the hospital-patient application, because while each child corresponds to only
one edge, each patient may appear as multiple edges incident to different nodes

(i.e. hospitals).
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3.5.3 Sampling siblings via households

Sirken (2005) discusses this situation, without resorting to explicit graph repre-
sentation. To fix the idea, suppose a sample of households is selected according
to a probability design. For each member of the household, one obtains all the
siblings who may or may not live in the same household. The observation el-
ements are siblings, denoted by S, which excludes anyone who has no siblings.

Without losing generality, let 8 be the number of siblings.

(2P) Twice projection graph Denote by H the households, P the persons,
and S the siblings, where ¢ € S is considered a different element to j € P, even if
i and j refer to the same person in real life. Let G = (U, A), where U = HUPUS
and A = AHP U APS. Each Aj; € A"F is such that h € H and j € P, i.e. A"
projects H onto P; each A;; € APS is such that i € P and j € S are siblings,
including when the two refer to the same person, i.e. A" projects P onto S.
Let the twice projection graph from H to P to S be undirected. Consider 2-
stage snowball sampling starting from s, C H = Uy. Let so = s; x U, where
51 = 81,0Us1,1 is the sample of seeds. The observation procedure must be incident
ancestral, provided which the HT-estimator is only based on s1 9. For7 € S,
we have y; = 1 and ;) given by , where 771[0] = 771[1] = 0 because it can only
be reached from s in exactly two waves, and 7; = n?] where |n;] = m; is the
number of households that can lead to ¢ from s, i.e. its multiplicity according
to Birnbaum and Sirken (1965).

(PR) Projection relation graph Put G = (U, A), where U = H U P. Let
a;; € Aif (i) person j belongs to household ¢, or (ii) persons i and j are siblings
of each other. The edges of type (i) project H on to P, whereas those of type
(ii) are relations within P. Notice that each group of siblings form a clique; a
person without siblings is a single-node clique. To ensure ancestral observation,
consider 3-stage snowball sampling. Given s19 C H = Uy, 51,1 consists of the
members of the households in s; o, and s; 5 the siblings of s;; which are outside
of the initial sample households, and s, 3 C H consists of the households to s; .
Let sy = s; x U, where s; = s;9U 511 U s12. The HT-estimator makes
use of 7 € sy NS, with y; = 1. The corresponding ;) is given by , where
771[0] = 0, and nz[l] is the household of ¢, and 772[2] contains the households of its
out-of-household siblings. In other words, n; contains all the households that can

lead to i, where |n;| = m;.
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Remark Sampling in the graphs (2P) and (PR) makes use of relationships
among the population elements, unlike sampling of patients or children in the

projection graph (P).

(HP) Hypernode projection graph Let each clique in the graph (PR) above
be a hypernode — all the nodes of a hypernode are always observed together or
not at all. Let G = (U, A), where U = HUP, and P consists of all the hypernodes
of P. Let a;; = 1 iff at least one node in the hypernode j belongs to household
1. This yields an undirected simple graph as the hypernode projection graph.
Consider 2-stage snowball sampling with Uy = H as in the projection graph,
such that observation is ancestral by construction. Both HT-estimators and
follow directly, where y; is the number of nodes in 7 € P.

3.5.4 Adaptive cluster sampling of rare species

In contrast to conventional sampling, Thompson (1990) characterises adaptive
sampling designs as those in which the procedure to include units in the sample
depends on the values of interest observed during the survey. To fix the idea,
suppose an area is divided into (spatial) grids as the units of sampling and obser-
vation. Fach grid in an initial sample of grids is surveyed for a given species of
interest. If it is not found there, one would move on to another grid in the initial
sample. However, whenever the species is found in grid ¢, one would survey each
of its neighbour grids in four directions, beyond the initial sample, provided not
all of them have been surveyed before. This observation procedure can help to
increase the number of in-scope grids, compared to random sampling of the same
amount of grids, provided the species is more likely to be found given that it is
found in a neighbour grid than otherwise. Once in a new grid, the procedure is
repeated and the survey may or may not continue to the neighbour grids, depend-
ing on the finding in the current grid. The sampling is finished if no new grids
can be added to the sample, or if one has reached a predetermined limit in terms
of the number of surveyed grids, time, resource, etc. The observed in-scope grids
form sampling as well as observation clusters, in the sense that all the member

grids of a cluster are sampled and observed if any one of them is.

(T) Transitive graph Adaptive cluster sampling (ACS) can be represented
as 2-stage snowball sampling in a transitive graph as follows. Let G = (U, A),

where U contains all the grids in ACS. Let U4 contain all the grids where the
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rare species is present. Let U§ = U \ Us. Let a;; = 1 iff i, € Uy and 7 and j
belong to the same observation cluster under the ACS. This yields an undirected
simple transitive graph, where each ¢« € U§ is an isolated node, and each group
of connected nodes in Uy form a clique. Without losing generality, let 0 = |Ug].
The snowball sampling starts with s, C U = Uy, i.e. any grid can be selected
initially. Let s11 = a(s1p). Notice that the isolated nodes in s; do not lead
to any nodes in s;;, while a connected node in s; o leads to all the nodes in ies
observation cluster but none in U, since edges exist only among the nodes in
Us. In reality, a neighbour grid of i € Uy N s1 which belongs to U§ is also
surveyed, but it will not lead to any additional nodes in the next wave, nor will
it be the motif of interest in estimation. It is therefore convenient to represent
this adaptive nature of the ACS by not including in s;; any node from U§ at
all. The 2nd-wave snowball sample will be empty, i.e. s = ), because all the
connected nodes in a clique will already be observed either in s; o or s; ;. But the
2nd-stage is needed to ensure that the observation is ancestral by construction.
The HT-estimator uses every node ¢ € s; = s1,9U 811, with y; = 1, and 7(;
is given by , where m[o] = {i}, and 771[1] contains all its adjacent nodes.

Remark The graph (T) is the same as the relation part of the graph (PR) in
the case of sampling siblings via households. The projection part is not necessary
here because the initial sampling uses a direct frame, unlike the other applications

above.

Remark The ACS can as well be represented by the graph (HP), with the
cliques in the graph (T) above as the hypernodes. Both HT-estimators ([3.2)) and

(3.10) follow directly.

3.6 Concluding remarks

In this paper we synthesised the existing graph sampling theory, and made several
extensions of our own. We proposed a definition of sample graph, to replace
the different samples of nodes, dyads, triads, etc. This provides formally an
analogy between sample graph as a sub-population graph and sample as a sub-
population. Next, we developed a general approach of HT-estimation based on
arbitrary T-stage snowball sampling. It is clarified that design-based estimation

based on snowball sampling requires the observation procedure to be ancestral,
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which can be hard to fulfil in many practical applications of snowball or snowball-
like sampling, including the estimation of a clandestine target population size.
Without satisfying the ancestral requirement, the estimation will have to be based

on an appropriate statistical model instead.

We presented various graph sampling formulations of the existing design-based
network sampling methods. It is seen that different graph representations reveal
the different estimators more or less readily, so the choice matters in applications.
The graph sampling theory provides a more general and flexible framework to
study and compare these unconventional methods, and to develop possible alter-

natives and modifications.

Moreover, it transpires that these existing network sampling methods do not re-
ally differ from conventional sampling with respect to the target parameter. We
believe that the scope of investigation can be greatly extended if one starts to
consider other genuine network parameters, which can only be studied using a
graph representation. Two research directions can be identified in this respect.
First, we are currently examining the scope of problems that can be studied
using the (hypernode) projection graph, and the properties of the design-based
estimation methods. Second, it seems intuitive that a lower-order network pa-
rameter can be estimated using a ‘smaller’ or more fragmented sample graph than
a higher-order parameter. It is therefore interesting to understand better the con-
ditions, by which a high-order network parameter can be expressed as a function
of lower-order parameters. Although this is perhaps more of a mathematical than
statistical problem, such transformations can potentially be very useful for the
applications of the graph sampling theory. Developing a comprehensive finite-
graph sampling theory, beyond the established finite-population sampling theory,

seems an exciting area for future research.
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Chapter 4

Incidence weighting estimation
under sampling from a bipartite

incidence graph

We consider design-unbiased estimation on a bipartite incidence graph.
The bipartite incidence graph can be used to represent many graph
sampling situations for the purpose of estimation, including also the
so-called unconventional sampling methods in the literature, such as
indirect sampling, network sampling and adaptive cluster sampling.
We propose a class of linear estimators based on the edges of the
sample bipartite incidence graph, subjected to a general condition of
design unbiasedness. The proposed class of estimators contains as
special cases the classic Horvitz-Thompson estimator, as well as the
other existing unbiased estimators under unconventional sampling,
which can be traced back to Birnbaum and Sirken (1965). The gen-
eralisation allows one to devise new unbiased estimators, and thereby
greatly increase the scope of efficiency improvement in applications.
Numerical illustrations are provided for a number of incidence weight-

ing estimators.

Key words: graph sampling, incidence weight, multiplicity weighting
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4.1 Introduction

Birnbaum and Sirken (1965) consider the situation in which patients are sampled
indirectly via the hospitals where they receive treatment. Since a patient may
receive treatment from more than one hospital, the patients are not nested in
the hospitals like elements in clustered sampling. Birnbaum and Sirken propose
three estimators for such indirect sampling. The first one is the standard Horvitz-
Thompson (HT) estimator (Horvitz and Thompson, 1952) in finite-population
sampling, where each sampled patient is weighted by the inverse of the probability
of being observed. The other two estimators are unusual: one is based on the
sampled hospitals and a constructed measure for each of them, the other based
on a sub-sample of hospitals determined by a priority rule and a constructed
measure. Later, the first of these two estimators was recast as a generalised weight
share method for indirect sampling (Lavallée, 2007); it was reused for network
sampling (Sirken, 2005) and adaptive cluster sampling (Thompson, 2012, Ch.
24). However, the other priority-rule estimator appears to have vanished from

the literature.

Zhang and Patone (2017) synthesise the existing graph sampling theory, extend-
ing previous works on this topic by Frank (1980a, 1980b, 2011). A formal defini-
tion is given for sampling from finite graphs and the HT-estimator is developed
for general T-stage snowball sampling. In particular, they show that all the afore-
mentioned unconventional sampling techniques can be given as various instances
of graph sampling. In this paper, we shall use a bipartite incidence graph (BIG)
to represent all these situations of sampling. For instance, the nodes can be the
hospitals and the patients and an edge exists between a hospital and any patient
that has received treatment at the hospital. This is a bipartite graph since the

nodes of this graph are naturally divided into two disjoint sets.

The unified BIG representation allows us to reconsider and to extend the three
estimators of Birnbaum and Sirken (1965), under a much more general setting
that is immediately applicable to all these and other situations of sampling that
can be represented by the BIG. We will show how the three estimators of Birn-
baum and Sirken (1965) are particular cases of a general class of estimators which
we call incidence weighting estimators (IWEs). Not only can their two unusual
estimators be given a unified treatment, which is hitherto unknown in the litera-
ture, they can both be extended in various ways, which increases the possibility

for gains of estimation efficiency in applications.
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In Section 2, we introduce the BIG formally and explain how it can be used to
represent all the aforementioned situations of sampling. We recast the three esti-
mators of Birnbaum and Sirken (1965) as estimators on the BIG, and provide the
variance of the priority-rule estimator explicitly, which was lacking in Birnbaum
and Sirken (1965). In Section 3, we develop the IWE, which is based on the sam-
ple incidence relationships (edges of the sample BIG). We develop the general
condition for design unbiased IWE, derive its theoretical sampling variance and
associated variance estimation. Some examples of unbiased incidence weights are
presented in Section 4, where we recast the three estimators of Birnbaum and
Sirken (1965) as the IWEs, as well as proposing new estimators. Numerical illus-
trations will be given for several of them in Section 5. Section 6 contains some

brief concluding remarks and some topics for future research.

4.2 Basics of BIG sampling and estimation

Denote by G = (F,U; A) a bipartite simple directed graph, where (F,U) forms
a bipartition of the node set F'U U, and each edge in A points from one node in
F' to another in U. The graph is directed, i.e. the edge that goes from ¢ to j is
different from the edge that goes from j to i. The graph is bipartite since there
does not exist any edge among the nodes in F', nor so in U, but only between F
and U. Let F ={1,...,M} and U = {1,...,N}. In using G to represent BIG
sampling, we assume that F' is the frame containing the set of initial sampling
units, and U is the population containing the set of motifs of interest, and an
edge (ki) that is incident to k € F and i € U exists, if and only if the selection
of k in a sample s from F' leads to the observation of motif ¢ in U. The incidence
relationships corresponding to the edges in A can thus also be interpreted as
incidence of sampling. In particular, provided k € s, a sampling unit k£ in F' will
lead to the observation of all the motifs in U that are adjacent to k£ in G, denoted
by ay = {i;i € U, (ki) € A}.

Henceforth we shall refer to G as BIG. Some examples of BIG sampling are as

follows.

e Indirect sampling (Birnbaum and Sirken 1965; Lavallée, 2007): F' consists of
the hospitals, U the patients, and an edge exists between a hospital in F' and

a patient in U if and only if the patient receives treatment at the hospital.

e ‘Network sampling’ (Sirken, 2005): F' consists of the households, U the cliques
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of siblings, and an edge exists between a household in F' and a sibling-clique

in U if and only if at least one of the siblings belong to the household.

e Adaptive cluster sampling (Thompson, 1990): F' consists of the spatial grids
over a given area of habitat for a rare species, U the clusters of neighbouring
grids where one can find the species of interest, and an edge exists between a
grid in F' and a grid-cluster in U if and only if the grid belongs to the cluster.

4.2.1 BIG sampling

Insofar as 8; = {k; k € F, (ki) € A}, for ¢ € U, may contain more than one unit in
F, one needs to know f3;, so as to able to calculate the probability of observing ¢
under BIG sampling. This requires the observation procedure of BIG sampling to
be ancestral (Zhang and Patone, 2017). Ancestral observation procedure is also
needed to implement the other two unusual estimators of Birnbaum and Sirken

(1965) under indirect sampling.

By way of introduction, consider BIG sampling on the population graph G given
at the top of Figure[1.1] where F = {1,2,3,4} and U = {5,6,7,8,9,10,11}. The
edge set A and the set U are unknown. But the set F' is known, and serves as
the sampling frame of the initial sample, where M = |F| = 4 is its size. Given
an initial sample s of size m, for s C F, the sample graph (Zhang and Patone,
2017) is given by G = (s U a(s), As), where

Ay =Inc(s) = {(ki);k € s,i € Uyapy =1} = (s x a(s)) N A,

which consists of all the edges in A that are incident to the units in sample s.
Thus, given s = {1,2}, we have G, = {{1,2} U« ({1,2}); A,}, as shown to the
bottom-left in Figure [4.1] where

a({1,2}) = {10} U {5,7,9}
As ={(1,10),(10,1),(2,5),(5,2),(2,7),(7,2),(2,9),(9,2)}

Notice that the observation procedure given s is by default incident. More im-
portantly, to facilitate estimation based on the sampling design, the observation
procedure needs to be ancestral in addition, such that all the units that would
lead to the inclusion for each sample motif i € a(s) are observed. Thus, given
s = {1,2}, the motifs in B(a(s)) \ s = {3,4} are observed due to the ancestral
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Figure 4.1: Top, population bipartite incidence graph G = (F,U;A). Sam-
ple graph G, given s = {1,2}: bottom-left, by incident reciprocal observa-
tion; bottom-right, by incident ancestral observation, with additional information
marked by dotted edges.

nature of the observation procedure, even though they are not part of the sample
graph; nor are the dotted edges to the bottom-right of Figure [4.1] included in the
sample graph, which exist between 3(a(s)) \ s C F and a(s) C U. However, the
knowledge of the ezistence of these dotted edges is necessary in order to be able

to calculate the HT and the other estimators to be described later.

Finally, as explained by Zhang and Patone (2017), incident ancestral observation
in graph sampling can generally be achieved by T-stage snowball sampling, but
retaining only the edges observed in the first 7' — 1 stages. For BIG sampling
from G in Figure and given s = {1, 2}, 2-stage snowball sampling would lead
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to the observation of the dotted edges at the second stage, retaining only the
edges from the 1st-stage allows one to retain the knowledge of their existence

while removing them from the sample graph.

4.2.2 Three existing estimators under BIG sampling

Let y; be the value of interest associated with each motif i € U. Let the target

parameter for estimation be

0= Zyl = sz = Z WiiYis (4.1)

€U keF (ki)eA

where z; is a constructed measure for each unit in F, which is given by

2k = Z WiV and Z Wy = 1 (4.2)

1€ay keBi

(Birnbaum and Sirken, 1965). The weight wy; is a fixed constant of sampling, for
(ki) € A, and it takes value 0 if a(;) = 0. Below we present the three estimators
in Birnbaum and Sirken (1965) under the BIG framework, denoted by Yhat,
Zhat and Phat. None of them dominates another in term of efficiency generally

speaking.

Yhat Given the sample graph G, where s C F' is selected according to a
probability sampling design. Let 7, and 7y be, respectively, the first and second-
order inclusion probabilities of k,I € F. Let the HT-estimator based on {y;;i €

a(s)} be given by
y E ) E o Yi

ica(s) iev "

where 0; = 1 if i € a(s) and 0 otherwise. The probability 7 = Pr[i € a(s)],
for ¢ € U, is notationally distinguished from 7 for k € F. It can be derived from

the sampling distribution p(s), since we have
s =1 —Pr[f;Ns = 0] =1 — Pr[none of f; is included in s

(Birnbaum and Sirken, 1965; Frank, 1971). The variance of éy follows the stan-
dard variance formula for HT-estimator, which requires the second-order inclusion

probabilities 7 ;) for i,j € U; see Zhang and Patone (2017) for more details.
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For simplicity in discussion of alternative estimators later on, we shall refer to
the HT-estimator as the Yhat.

Zhat Let wy; be a value (i.e., weight) associated with the edge (ki) connecting
the motif ¢ with the sampling unit k. A measure z, = Zie% wy;y; is defined for
the sampling unit k£ in (4.2)). Let d, = 1 if k£ € s and 0 otherwise. An inverse

probability weighted estimator of 6 based on {zy; k € s} can now be given as

Z Sl Z _ka and Z wy; =1 . (4.3)

pes keF keB;

We shall refer to this estimator as the Zhat. It is unbiased since E(éz) =
Y rer 2k = 0 by construction and . For the so-called multiplicity
estimator, which was first proposed by Birnbaum and Sirken (1965) and later
developed by Sirken and Levy (1974), Sirken (2004) and by Lavallée (2007) for
his generalised weight share methods, the default choice for wy; is the equal-share
weight:
Wy = dl where d; = |5 .

Birnbaum and Sirken(1965) actually pointed out that the wy;’s for the same
motif ¢ can be unequal, as long as they sum to one for each motif and do not
vary according to which other sampling units are selected in the initial sample
s. Lavallée (2007) explores optimal weight-sharing which minimises V(6.), and
finds the result to be inconclusive. Although an optimal choice might be hard to
find, there still can be many different choices of weights subjected to (4.2]), which
are all unbiased but have different variances. We will present a new and often

more efficient choice of wy; in Section 4.

Phat The third expression of 6 in suggests the possibility of estimation
based on {wy;; (ki) € As}. However, under BIG sampling, where all the edges
incident to k are observed together, whenever k € s, we have 7 = Pr[(ki) €
Ag] = g, such that

Z wkzyz _ Z Wil Z Z wkzy@—Q

ke, TED  pea, kes K icatk)

Instead, Birnbaum and Sirken (1965) base the priority-rule estimator on a pri-
oritised subset of Ay, denote by Ag,. Let I(y;) = 1 if the edge (ki) is in A,, and 0
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otherwise. Birnbaum and Sirken (1965) let I(;;) = 1, for i € a(s) C U, if
k = min (s N 61)

i.e. if k happens to be enumerated first in the frame, among all the sample units
that can lead to 7. Clearly, other priority rules are possible, though it was not

explicitly mentioned. In any case, let the Phat based on {wy;; (ki) € Agy} be

b= 3 by~ lo (4.4)

(ki)eAsy T (ki) P (ki) (ki)eAs Pki)  T(ki)

given by

where p(x;) is the conditional probability that (ki) is prioritised given (ki) € As,
ie.

Pki) = Pr [I(ki) = 1|(k)2) S AS}

Since the unconditional probability of (ki) € A, is Pr[(ki) € Asp] = TkD(ki),
we have E(6,) = > (kiyer Wriyi = 0 by construction (4.1) and (4.2), provided
Priy > 0 for all (ki) € A;. Under BIG sampling, we have

A T iYi Z, L (ki
0, = Z (ki) Wkilhi _ Zk and Zy, = Z (k)wm-y@--

(kiyeA, Pk Tk kes ¥ ica(k) P*D

Although this looks like the Zhat éz, with the constructed measure Z;, instead
of zx, there is a key difference: unlike z; that is a constant of sampling, Z; is
a variable. Birnbaum and Sirken (1965) did not provide an expression of the

variance of their priority-rule estimator, but indicated that it is unwieldy.

4.2.3 More on Phat ép

Below we derive V(ép) via the general expression (4.4). We will show that the
Phat can be biased as the sample size increases, and provide a condition for un-

biasedness. The problem of the bias of the Phat was not mentioned by Birnbaum
and Sirken (1965).

Proposition 4.2.1. For the variance of ép by (4.4]), we have

Z Z ( TRl P (ki) (15) )_1> WiiW1Yi Y5 (4.5)

(ke (1j)eA TETIP (ki) P(15
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where piy) = Pr [I;ﬁ-_flj = 1[6x6; = 1} is the conditional probability that both
(ki) and (lj) are prioritised given that both k£ and [ are in the sample s.

Proof.

-y Y& (M) Wty — 6
Rt VAN

(ki)€A (Ij)€A D(ki) TUP(15)

Z Z Tkl (—Ikijlj

(kD)eA ()eA TETIP (ki) P(15)

™ i
Z Z klpk)(lj wkzwljyzyj 8

(kiyeA (iyea TRTIPR)P

Z Z ( TRIP (ki) (15) | _ 1> Wi Wi Y3 Y5 -

(ki)eA (Ij)eA TeMP (ki) P(15

0p0; = 1) wiiwyYiy; — 0°

The difference to the variance of Zhat can be given by

A (ki) (15) Tkl
V(b,) — Z Z ( ’ —1) %wkiwljyiyj

(kiyea (hea \PEOP

— Z Z C’ov( Ikl, Ilj

(ki)EA (Ij)€A Dki)  Puj)

Tkl
0p0; = 1> lwkzwljyzyj :

Thus, as long as the covariances are not all positive or negative, neither will the

Zhat dominate the Phat in terms of efficiency, nor the other way around.

An unbiased variance estimator can be given by:

Z Z < LD (ki) (15) _1> WriWijYiYj (4.6)
(1) Tkl

T
(ki)eAs (j)eA, " PkiP

Illustration Let us make an illustration of BIG sampling on the population
graph in Figure Suppose simple random sampling (SRS) without replacement
of s from F. To compute the probability of prioritising an edge (ki) requires the
knowledge of the number of units in F' with higher priority. For each i € «(s),

let dyi) = Y ow Pk <k Wi for which ancestral observation is required. We have,
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then,
Ty = Pr[(ki) € Ay] =Pr(0p = 1) =1, =m/M ,

M —1—dy M—1
p<ki):Pr(Iki:1|5k=1>:( —1k()>/( )

m m— 1

Table 4.1: Probability pg; for population BIG in Figure .

5 6 78 9 10 11
1)- - - - - 1 -
211 - 1 - 1 - -
31- 1 - 1 067 0.67 1
41 - - 067 - 033 033 0.67

The inclusion probability of (ki) € A, is given by mipxs). For the population
graph in Figure , the conditional probabilities p(;) of being prioritised are
given in Table .1 Birnbaum and Sirken (1965) did not provide expressions
of the second-order probabilities of being included in A,,. These are given by

TRID(ki)(15), Where

(p(m‘) ifi=j k=1
ifi=jk#I
D(ki) (1) = (M 1= dk(”’) MDY i k=1
(M2 dkoaa) J (MR i i £ j k£ Lwith |BEOT 4+ (85 Nkl =0
0 if i # j, k #1with |88 01+ 1[8Nkl >0
(4.7)
where (3 is the set of the neighbours of ¢ which have higher priority than k, and
diiij) = |BFU ﬁk\ is the number of units in ;U 5; which have higher priority than

k, and dxiyi) = |BF U 6l| For instance, with m = 2, the variances of the three
basic estimators of 6 = |U], for y; = 1, are V(6,) = 3.986, V(6.) = 5.370 with
equal-share weighting, and V(ép) = 3.064 by the priority-rule of Birnbaum and
Sirken (1965).

Bound for unbiasedness There are circumstances where pg;) = 0, ie. a
edge has zero probability of being prioritised, such that the Phat is biased. Take
for example the case when a motif ¢ in U is adjacent to all the sampling units in
F; the edge between ¢ and its ancestor enumerated as the last one in F' will never

be prioritised, if the sample size is greater than 1. The next proposition provides
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a general condition: essentially, the Phat will be biased, if there exists an ancestor
of some motif ¢, which has zero probability of being the only one among f; in the
sample s. Generally, for given a BIG, the likelihood of this happening increases

with the size of s.

Proposition 4.2.2. The Phat estimator is biased if there exists at least a motif
1 € U, such that:

8] >1  and Pr(Zék < 1) ~0. (4.8)

kEB;
Proof. Let i be a motif with |f;| > 1. Let h = max(5;) and ppy) = Pr(Ip) =
1|05, = 1). Assume that h € s. Because Pr(Zkeﬁi o < 1) = 0, then it must exist
at least another ancestor of 7, say h’, where h' € s and ' < h by definition of h.
It follows that h # min(5; N s) for all possible s containing h and consequently

Py = 0, i.e. k is sampled but never prioritised. In this case, the Phat is
biased. O

Remark Under SRS of the initial sample from F'| the probability in Equation
[4.§ can be easily calculated from:

- (/)

Therefore, under SRS, the Phat is biased for any m such as m > M —|f;|+1.

4.3 Incidence weighting estimator

The proposed class of linear estimators under BIG sampling, called the incidence
weighting estimator (IWE) is presented in this section, which encompasses all the

three estimators described in the previous section.

4.3.1 Definition

Given the sample BIG, G, = (sUa(s); Ay), let {Wy; (ki) € A} be the incidence
weights, where the capital letter W is used to emphasise that the incidence weights

are not necessarily constants of sampling. The IWE based on W = {W}; (ki) €
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A,} is given by

o= 3 TS B S (49)

(ki)eAs kes i€a(s)
where
Wi
Zk = Z szyz and V@) = Z . (410)
iCay keBins |k

4.3.2 Theory

We denote by ¢t any quantity apart from the sample graph G, which may be used
for the construction of the incidence weights. The properties of the IWE 4 will
be assessed with respect to the joint distribution of (s,t), denoted by p(s,t). In
this paper we consider only ¢, which is such that p(s,t) = p(s), i.e., the sampling
distribution of s. For instance, t = d;, the degree of motif ¢ in the population
graph, which is a constant associated with ¢ and is observed given ancestral
observation procedure for any ¢ € «a(s); or t = d, 5, the degree of motif ¢ in the

sample graph, which is a function of the sample graph Gi.

Remark It is in principle possible to allow ¢ to be random given s, with condi-
tional distribution p(t|s), such that the properties of the IWE are evaluated with
respect to p(s,t) = p(s)p(t|s). However, any such estimator can be subjected to
the Rao-Blackwell method, conditional on the sample graph G, which depends
only on p(s), and we have not been able to devise an estimator which leads to
efficiency gains that can justify the extension. We therefore do not pursue this

line of development here.

Proposition 4.3.1. The IWE by (4.9) is unbiased for 6 by (4.1)) provided, for
each i € U,

> EWiloy=1)=1. (4.11)

kEB;

The condition (4.11)) implies

>3 Wkl = Y #(s) ( 3 WT”> S 1)

keB; s; k€s s; 1€a(s) kesns;
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Remark Because the second term of (4.12)) can be written as
Whi(s
5 500 (") < 5 st =l <1 1.
s; 1€a(s) kesng; s; 1€a(s)
we have, in terms of the quantities in the definition of IWE (4.9)):

1

(i)

Z EWylop=1) =1 or E(yplos =1) =
kep;

Proof. The expectation of § with respect to p(s) is given by

E@) =) iE(51~3Z/<:) =y — B g E(Zylop = 1) = > E(Zxlox = 1)

wer 'k ker keF
keF i€ay €U kes;

where the first equality in the last line above follows from (4.10), and the third

equality follows from the stipulation of this proposition. n

Proposition 4.3.2. The variance of an unbiased IWE can be given by:

ZZ - Z > EWuyWaplodi = 1) =1 | giy; . (4.13)

kEF heF ZEO{ ) jea(l)

Proof. By definition we have:

EEe ()

ki€F leF
—zz( () 5(7)
Tk i
keF leF
:ZZ E(ZyZ)|0x0, = 1) — E(Zy|0x = 1)E(Z)|6, = 1))

keF leF

keF leF \iceU jeU €U jeu

Equation (4.13] - follows from the unbiasedness condition. O
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Proposition 4.3.3. An unbiased estimator of V(é) is given by

=Y > |- kL Z 3 Wi W) % (4.14)

kes hes zEa (k) jea(l)

Proof. By definition Wj,;W,; is an unbiased estimator of E(W},;W;;|0x6; = 1), for
any k,l € s. O

4.4 Unbiased IWE

Below we first show the three estimators defined in section [4.2.2] can be casted as

unbiased IWEs. We will then discuss some variations of them.

Zhat Let wy; be constant for (ki) € A such that Zkeﬁi wy; = 1. When wy; =
1/d;, the IWE is the multiplicity estimator of Birnbaum and Sirken (1965).

Yhat The HT estimator (as a Yhat) is obtained by using any Wj; satisfy-

ing

3 —W’;(S) - (4.15)

kesNB; 7.((2)

Notice that (4.15]) is satisfied by any

CsTy,

W]“(S) =

where Z cs =1,

77(1) kesns;

A possible choice is ¢, = 1/d; s; but one obtains the same HT-estimator in any

case.

Phat Given any fixed wy; such that Zke[ﬁ‘i wi; = 1, let Wy; = wy;Hy;. Then
(4.12) holds for the first term if, for each k € ;:

> Hki(s)l%s) = B(Hyl0p=1)=1.

The Zhat can be considered as an unbiased IWE with Hp;, = 1. The weights
used for the Phat belongs to this type, given |5; N's| > 1. Instead of attaching
weights to all the sample edges incident to motif ¢, one could assign a non-zero

weight only to one of them, depending on the observed sample. Let an indicator
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variable be defined as I; = 1 if W; # 0 and I; = 0 if Wy, = 0. Then, Hy; is

given as

]i CH s)= p\s
= i (S) where p(kz) = Pr([kl = 1|6k = 1) = Z T (s)=1 ( )

Hy;
P(ki) > s kes D(S)

. (4.16)

We call Wy; = wy; Hy; with Hy; given by (4.16) the priority weights.

4.4.1 Zhat

Below are some choices of fixed weights Wy, = wy; that yield different Zhats.

Equal-share weights The equal-share weights are given by

1
Wi — d—Z with t= dz s
where d; is the degree of the motif 7. The equal-share weights have been commonly

used in the literature, and are known as multiplicity weights.

Inverse-degree weights We define the inverse-degree weights as:

1 1 .
Wi = d—/z E Wlth t = {dk}ke,b’i .
k 1€B; l

Under simple random sampling (SRS) without replacement of s from F, they
provide a choice of weighting which could potentially reduce the variance of the
estimator, by making the constructed z; as similar as possible. On the one
hand, the weight wy; is increased compared to 1/d; under equal-share weighting,
provided k has relatively lower degree compared to the other units in 5;. On the
other hand, the measure z; of another unit [ € s will receive ‘shares’ from more
motifs in U than z;, provided d; > d; and [,k € ;. Thus, these weights can

possibly reduce the population variance of z, = . 5, Wil (i)

Power of inverse-degree weights The inverse-degree weights above defined

can be generalised as follow:

1\“ 1\*
W <dk> /E :(dl> wi {di, a}rep,

les;
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Notice that the feasibility of a particular choice of any fixed weights depends
on the information available from sampling, and therefore on the observation
procedure employed. The multiplicity weights are those requiring the minimum
information, since for their computation only the number of the ancestor of each
sample motif is needed. Whereas, information about the non-sampled ancestors
of each sample motif is required to construct inverse-degree weights and the power

of inverse-degree weights.

Tllustration Let us compare the different choices above for estimating N = |U|
for the graph in Figure 4.1 Suppose SRS of s from F of size m = 2. The equal-
share, inverse-degree and power of inverse-degree weights with o = 2 or3, together

with their corresponding constructed measures z;, are given in Table

Table 4.2: Weights, measures, variances for Fig. using three choices of multi-
plicity weighting: ES = equal-share; ID = inverse-degree; ID2 = power of inverse-
degree weights with o = 2 and ID3 with a = 3.

Wiy,10 | Wos | Wo7 | W29 | W310 | W3g | W31 | W39 | W3e | War | Wa10 | We11 | Wag
ES | 0.33 11 051033] 0.33 1 0.5 | 0.33 11 05| 0.33 0.5 0.33
ID 0.69 11057043 | 0.14 1] 0.44 | 0.26 11043 0.17 | 0.56 | 0.32
ID2 | 0.90 11064 )052] 0.04 1] 0.390.19 11036 | 0.06 | 061 |0.29
ID3 | 0.98 110.70 | 0.61 | 0.007 1] 0.34)0.14 11]0.30 | 0.013 | 0.66 | 0.25

21 29 23 2z | SE V()
ES (033|183 |3.17|1.67 | 1.34 5.37
1D 0.69 212831148 0.81 3.26
ID2 | 0.91 | 2.16 | 2.61 | 1.32 | 0.60 2.41
ID3 | 0.98 | 2.31 | 248 | 1.23 | 0.57 2.28

The variances of the IWEs with equal-share, inverse-degree and power inverse-
degree weights with @ = 2 and 3 are respectively 5.37, 3.26, 2.41 and 2.28. The
power inverse-degree weights can possibly reduce the variance of the IWE éz,

according to the choice of a.

4.4.2 HT weights

Here we consider the HT estimator given by:

Tk

Wi; =

Y

d; 5T (i)
where d; ; = Zkeﬂims ay; is degree of ¢ in sample graph.

101



Tllustration The variance of the Yhat is 3.98. Table A3 shows the HT in-
cidence weights Wy, and their corresponding Z; measures for the graph in Fig.

41l

Table 4.3: HT incidence weights and corresponding measures for the BIG in Fig.

A1

s Wit | Was | War | Wao | Wano | Was | Wanr | Wao | Wae | War | Wao | Wann | Wayg
2y 05 1] 06| 05 - B I - -
(.35 025 ~-| -| -] 025 1] 06| 05| 1| - - -
{1,4} | 0.25 - - - - - - - - 0.6 | 0.25 0.6 0.5
{2,3} - 1 0.6 | 0.25 0.5 1 0.6 | 0.25 1 - - - -
2,4} ST 1 037025 N ST o [ 03| 05| 06]025
{3,4} - - - -1 0.25 1 0.3 0.25 1 0.6 0.25] 0.30| 0.25

S Zl ZQ Z3 Z4

{1,2} | 05| 2.1 - -

{1,3} | 0.25 -13.35 -

{1,4} | 0.25 - -1 1.95

{2,3} -1 1.85 | 3.35 -

{2,4} -] 1.55 -1 1.65

{3,4} - -] 2.8 1.40

4.4.3 Priority weights

The priority weights proposed by Birnbaum and Sirken (1965) for the Phat esti-
mator, as described in Section belongs to this class of incidence weights, by
setting:
Lk
Hyy = ;
D(ki)
where I;) is the prioritization indicator and py = Pr(f = 1|0p = 1).

~

Tllustration Using the Birnbaum and Sirken (1965) rule we have that V' (6,) =
3.064. Furthermore, the variance of the same estimator after the sampling units
are arranged in descending order of their degree is 2.555, whereas it becomes
6.315 when using the units are re-arranged in the ‘opposite’ order. The priority
weights and their corresponding Z; measures in Table under both random

and descending order of the sampling frame.
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Table 4.4: Priority weights and measures for the graph in Fig. under the
unorder and descending ordering of the sampling frame.

Random order of sampling frame

s Wiao | Wos | War | Wag | Waig | Wag | Wanr | Wag | Wae | War | Wano | Waan | Wi
{1,2} | 0.33 11050 0.33 - - - - - - - - -
{1.3} | 033 - - - 0 1] 050] 0.50 1 N - - 5
{1,4} | 0.33 - - - - - - - - 0.75 0| 0.75 1
{2,3} - 1] 050 0.33| 0.50 1] 0.50 0 1 - - - -
{2,4} - 1] 0.50 | 0.33 - - - - - 0 1| 0.75 0
{3,4} - - - -1 0.50 1] 0.50 | 0.50 11075 0 0 0
Descending order of the sampling frame

s Wiio | Was | Waz | Wag | Wine | Wig | Wi | Wig | Wie | War | Woie | Wour | Wayg
{1,2} - - - -1 0.33 1 0.5 0.33 1|1 05 0 0 0
{1,3} - 11 0.75 0| 0.33 1| 0501 0.33 1 - - - -
{14} 0 - - -1033 1] 05]033 1 - - : -
{2,3} - 1 0 0 - - - - -1 05 05| 0.75] 0.5
{2,4} 0 - - - - - - - - 05 05| 0.75] 0.5
{3,4} 1 11 0.75 1 - - - - - - - - -

Random order of F Descending order of F

S Zl Zg Zg, Z4 Zl Z2 Z3 Z4

{1,2y 03318 -| ~-|317| o] -| -

{1,3Y[033] -[300] -||317| -|175]| -

(1,44 [033] ~-| -|250 317 ~-| -] 0

2,3y -[183[3.00] - “T225 [ 1] -

2.4y -|[18] -[17 1225 -] 0

(3.4y | -| -[350(075 T C275 | 1

4.4.4 Discussion on the efficiency of the different unbiased
IWE

Finally, Table provides a summary of the variances of the IWEs for N = |U]|
in Figure 4.1} The IWEs by inverse-degree and power of inverse-degree weight-
ing perform best compared to the others. Under SRS of s, any choice of fixed
weights which reduces the population variance of z;’s will result in a gain of
efficiency, compared to the standard multiplicity weights. The power of inverse-
degree weights provide a general means for reducing the variability amongst the

constructed z-measures.

The priority weights under the Birnbaum and Sirken (1965)’s rule yields a more
efficient estimator when the sampling frame is organized by descending order of
the degree. Since the efficiency of a given ordering depends on the population

graph, further investigation is required to understand this relationship in general
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Table 4.5: The true variances of the IWE for § = N by different choices of
weights under SRS with m = 2 of F' in the graph in Figure {.1] The ordering
of the sampling frame for the priority estimator is given by: (I) - random; (II) -
descending and (III) - ascending,.

6. (ES) | 6. (ID) [ 4. (ID2) [ 6. (ID3) | 6, (1) [ 6, (11) [ 6, (111) [ 4,

V(6) 5.37 3.25 241 228 | 3.06 2.55 6.32 | 3.98

terms.

The HT estimator is not as good as inverse-degree-based weights, but also not
as bad as the equal-share weights or the priority weights under the ascending
ordering of the sampling units by their degrees. It seems to remain a default
benchmark under BIG sampling, against which the other unbiased estimators
can be assessed. The insight that the HT estimator is a special case of unbiased

IWE is potentially important for future research on this topic.

4.5 Simulations

To further illustrate and explore the IWEs by simulations, we construct two
graphs, denoted by G; = (F,U; A;) and Gy = (F,U; Ay), respectively, where
|F| =54 and N = |U| = 310. The two graphs are set to have the same number
of edges, |A;| = |Az] = 1200, but different incidence relationships. In Aj, the
distribution of dj, for k € F', is relatively uniform over a small range of values;
in A, the distribution of dj, is constructed to be more skewed and asymmetrical.
The two distributions of dj, are shown in Figure [4.2]

Suppose we are interested in estimating the total number of motifs § = N.
For these simulations we assume SRS from F' with various sample sizes m =

2,5,8...,53, and the incident ancestral observation procedure.
We consider the following choices of incidence weights:

e the three types of fixed weights: equal-share (ES), inverse-degree (ID) and

square of inverse-degree (ID2);
e BS-priority weights as given in Birnbaum and Sirken (1965);
e the HT weights that yields the HT estimator.

Moreover, for the priority estimator, we consider three different orderings of the

frame: one is given by the frame as initially constructed, where the units can
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Figure 4.2: The two observed degree distributions for the units set F' in G; and
Go.

be considered to be arranged in a random order, and the other two are obtained
from rearranging the units by descending and ascending order of the degree dj,

for k € F, respectively.

The plots in Figure [4.3] show the results of 10000 simulations for the IWE with
fixed weights for both graph G; and GG5. The average of the estimates for the
different choices of IWE are plotted against the increasing sample sizes with
associated Monte Carlo error. It can be seen that the IWE which uses the fixed
weights is unbiased and, as the sample size increases, the variance reduces to

Zero.

Next, Figure [4.4] shows the true variances for these estimators, again plotted
against the sample sizes and with associated 95% confidence interval for the
Monte Carlo error. It is visible that the unequal-share weights are more efficient,
as can be expected under SRS, where the ID2-weights appear to have the smallest

variance.

A more peculiar situation is presented in the case of the BS-priority weights,
as shown in Figure [£.5] As previously explained, when the priority weights are
used, the IWE can become biased beyond a certain threshold of sample size.
For the graph with uniform degree distribution of the sampling units, where the
maximum degree of the motifs in U is 10, this occurs at m = 45; when the degree
distribution of the sampling units is skewed, where the maximum degree of the

motifs is 9, this occurs at m = 46.
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Next, the variance of the BS-priority IWE increases as the sample size increases,
so that this particular estimator seems to perform well only for small sample
sizes. This aspect of the Phat did not emerge in the illustration using the graph
in Figure [4.1], due to the small frame size. Moreover, the ordering of the sampling
units matters. When the sampling units are arranged in descending ordering of
d, for k € F, there seems to be an improvement in efficiency (see Figure , as
seen in the previous illustrations; whereas ascending order entails loss of efficiency

of the BS-priority estimator.

In Section , a general variance estimator is given by , which uses the
observed values of the incidence weights as the estimates of their conditional
expectation. However, for a specific IWE, it may be possible to analytically
derive an expression for the corresponding E(Wj;W;|0x6, = 1), which is the
case with the BS-priority estimator, where the variance estimator with the exact
expression of E(W},;W;|0x6; = 1) is given by . In Figure we have plotted
the variances estimators with associated Monte Carlo error together with the
true value of the variances for the graph (G; and under the three ordering of the
frame. Clearly, as one would expect, the variance estimator by is more

precise.

Figure shows the average of the HT estimates and their variances with asso-

ciated 95% confidence interval.

Finally, in Figure the variances of the six IWEs are plotted together against
the increasing sample size for both G; and G5. Immediately we notice that
the variance is much larger for Gy than for G;. Moreover, a similar pattern
emerges for both graphs G; and G,, but more pronounced for GG5. The inverse-
degree weights seems to perform better, together with the power inverse-degree
weights. For larger sample sizes, however, the HT estimator is more efficient than
the inverse-degree and power inverse-degree weights. The BS-priority estimator
perform well only for small sample sizes, and especially if the frame is rearranged
in descending ordering of the degrees of sampling units, when its variance can be
lower than the IWE making use of the unequal-share weights, for the graph G,.
The estimators with higher variance are the one with equal-share weights and the
BS-priority weights when the frame is organised in ascending order the degrees

of sampling units.
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4.6 Concluding remarks

In the above, we proposed a general linear class of IWEs for any situation that
can be represented as sampling on a BIG, based on the incidence relationships
underlying the sampling. The estimators presented by Birnbaum and Sirken
(1965) for indirect sampling are special cases of the proposed class, and their
underlying ideas generalised and synthesised into a unified condition of design
unbiasedness. The BIG representation of unconventional sampling methods has
proven to be extremely useful in order to simplify the problem; and the definition
of IWE unifies the existing estimators under a broader theory of estimation on
BIGs. In so doing we reveal the potentials of sampling strategy consisting of BIG

and IWE for future research.

The performance of the IWE depends on the definition of the corresponding inci-
dence weights. In principle, many more incidence weights can be proposed which
satisfy the unbiasedness of the IWE. The general definition of IWE includes also
those which are based on sample-dependent weights, such as the priority estima-
tor and the HT estimator. Importantly, we have shown that the HT estimator
is an example of IWE, which has not been discovered previously in the litera-
ture. It can be noted that the gain of efficiency is often associated with incidence
weights that require the observation of a greater portion of the graph. This is

not surprising, since more information is utilised in such situations.

Further investigation is needed to obtain a better theoretical understanding of
the potentials of using sample-dependent weights or additional characteristics of
the graph. For instance, a general variance estimator has been proposed. But it is
not precise for sample-dependent weights, as seen in the numerical results for the
priority estimator. Although when the conditional expectation involved in the
variance can be analytically derived for a given IWE, a more accurate variance
estimator can be obtained. The simulation results indicate that the variance
of the priority estimator may decrease with sample size that is relatively small,
but it quickly increases with the sample size beyond some threshold value. This
is another example where more theoretical understanding is desirable by future

research.
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Figure 4.3: The average of the estimates with associated Monte Carlo error for
the IWE plotted against the increasing sample sizes for G; and G4 considering
the three ordering of the frame. Three types of multiplicity weighting are used:
Equal-Share, Inverse-Degree and Power of Inverse-Degree weighting
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Figure 4.4: The variances estimator and the true variances for the IWE with
fixed weights plotted against the increasing sample sizes for both graph G and
GG5. Three types of multiplicity weighting are used: Equal-Share, Inverse-Degree
and Power of Inverse-Degree weights.
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error for the priority IWE plotted against the increasing sample sizes considering
different ordering of the frame for grap Gj.
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Chapter 5

Reverse incidence weighting

under BIG sampling

In the BIG, a form of information, which does not exist in traditional
list sampling, is given by the incidence structure of the graph. This
has been used, in the previous chapter, to directly estimate a total Y
of a variables measured on the motifs by means of incidence weight-
ing. In this chapter, we see how this can be used for the estimation
of a total measured on the sampling frame instead. In particular, an
estimator of the size of the sampling frame, when it makes use of the
incidence structure, can be considered important for improving the
precision of the estimator of Y. In this chapter we show how such
estimators can be formulated and how to use them to make better

estimates for Y.

Key words: graph sampling, reverse incidence weighting, auxiliary information,

ratio estimation, Hajek estimation.

5.1 Introduction

In the previous chapter, we have discussed how the structure of the BIG can be
used for the estimation of totals of the finite population of motifs. For unconven-
tional sampling methods, several authors (Birnbaum and Sirken, 1965; Thomp-

son, 1990; Lavallée, 2007) have implicitly done the same, each author proposing
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an estimator relevant for its problem, but without really exploring the potential
of the structure of the graph in general terms. We have shown how the existing
estimators can be formulated as a particular case of what we have called the
Incidence Weighting Estimator (IWE), a general unbiased linear estimator that
can be defined on the entities of the BIG. We have envisaged multiple choices of
incidence weighting, showing how the performance depends on the relevant BIG

structure.

If the IWE offers a way to incorporate the available graph structure in the es-
timation, one might suspect that this does not have to be the only way. We
want to explore more deeply the possibilities that the structure of the BIG can
offer during the estimation phase. This can be motivated by at least two rea-
sons. Firstly, this is a completely unexplored territory, which does not have a
corresponding version in list sampling. We are therefore driven by pure intel-
lectual curiosity to investigate what are the differences between BIG sampling
and conventional list sampling, and what is the potential of the use of the BIG
compared to the traditional list. Secondly, we realize that the structure of the
BIG is a form of auxiliary information, which we can use to define the incidence
weights, in accordance with the observation procedure. Given the same sample
of units, the sample graph can be different, depending on the observation proce-
dure employed. In fact, some observation procedures will return a larger sample
graph than other. For instance, in many situations, it will be possible to add
further steps to the incident ancestral observational procedure and collect more
edges so as to observe the elements they connect; in this situation, the incidence
weights are computed by using this extra observed structure of the graph. It is
reasonable to ask, how this information, to the extent that is available to us, can
be use to make a more efficient estimator than the IWE. Obviously, when more
of the graph structure is observed, more is the freedom to construct incidence
weights; therefore, a natural way to use the extra information is to improve the
efficiency of the IWE by means of incidence weighting.

Also, as done for the IWE, we should be able to use the graph structure to
estimate the total of a variable attached to the sampling units. In this chapter,
we focus on this topic. What we aim for is to make use of the incidence structure
of the BIG in the estimation. We considered two ways of doing this: by means of
sample-dependent incidence weighting; or by reverse incidence weighting, which

are essentially the incidence weights, but constructed in the reverse sense. If, in
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the IWE, the edges incident to each sampled unit are used for the estimation of a
characteristics of the population of motifs by means of incidence weights, we can
revert this argument and use the edges incident to the sampled motifs to estimate
characteristics of the sampling frame, while preserving unbiasedness. In both
scenarios, it will appear clear that an extra-step in the observation procedure
is required. The extra step necessary for estimation can be obtained by two-
step incident ancestral observation procedure. By incident ancestral observation
procedure, we are able to observe which are the ancestors of the sample motifs;
by adding an ulterior step, we are now able to also observe the successors of these
ancestors. The questions we raise in this chapter are, can the extra observed graph

structure be used for improving the estimation of Y¢ and if yes, how?

The rest of the chapter is organised as follows. In Section 2, we define the Reverse
Incidence Estimator (RIWE), as a linear unbiased estimator of a characteristic of
the sampling frame, which employs the additional structure of the graph provided
by a two-stage incident observation procedure. A condition for the unbiasedness
of the estimator is given. The variance and an estimator of it are provided.
Also some numerical illustration are offered. In Section 3, we consider ratio-
type estimators formulated by making use of the RIWE. The accuracy of the
proposed ratio-type estimators are tested with simulated datasets. Finally, some

concluding remarks are provided in Section [5.4]

A final note. The notation and setting up used in this chapter, when not otherwise

specified, are the same as the ones introduced in the previous chapter.

5.2 The reverse incidence weighting estimator

Let x5 be a known value attached to a sampling unit k. Assume that the target
of estimation is the total X =, . x. An estimator for X, can be given by the
IWE

5 Wiy Ty
X = (’ggA i > — > Wi (5.1)
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where, to guarantee unbiasedness, the weights Wj; need to satisfy that for all
keF,

> E(Wiilom) =1. (5.2)

1EQy

In particular, when only fixed weights are considered, i.e. Wp; = wy;, given the

unbiasedness constraint, we have that:

Zwkizla

1€y
and the IWE in Equation (j5.1)) is equal to the HT estimator Xur.

What appears clear is that when the IWE, based on the sample edges Aj, is
used to estimate X, the incidence structure of the BIG is not taken into account.
Following this observation, we can imagine at least two ways of making use of the
incidence structure. One way involves sample-dependent weights. For example,
the same priority rule used in the previous chapter can be formulated in this con-
text. Once the sample BIG is observed, for each sample unit, only the edge which
is incident to its ‘smaller’ sampled neighbour is considered in the estimation. An
example of this priority estimator is presented in the next Illustration. To be able
to derive this estimator, we need to know all the successors of the ancestors of
the sampled motifs. A second way is obtained by enlarging the observed sample,
so that the estimator is based on the set of edges incident to each sampled motif,
A, = B(a(s)) x a(s), where Pr((ki) € A,) = 7(s), which would result in a different

estimator, as defined below.

Definition 5.2.1. Let § = B(a(s)) and A, = B(a(s)) x a(s). The reserve
incidence weighting estimator (RIWE) for X is given by:

W, il
T - Z Wity _ D _kes Ve where v, = Zie%ma(s) ﬁ 53
. Z; .
(ki)e A, (1) Ziea(s) ﬂ((i;, where z(;) = Zkeﬂi Wit -

Essentially, this is the reverse problem of what we have seen in the previous
chapter. The IWE and RIWE look apparently symmetrical: one is obtained by
the other exchanging m; with ;) and y;) with x,. However, the two estimators

are defined on two different sets, A, and /le respectively, where A; = s X a(s).
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We call the weights wy; used in the RIWE, the reverse incidence weights.

The estimator is unbiased if Equation ([5.2]) holds. In fact,

5 Wiid )
B)=B| 3 —0=
(kz')eA (@)

—Z 100 = 1) E(d)

(ki)eA Qo
keF icay keF

Note that the conditions for unbiasedness for the IWE of Y and the RIWE of X

are exactly symmetrical.

The variance of an unbiased RIWE can be given by

— T
Z Z u E(Wk’bm‘]‘é(z 6(J )ZEkZEl .

(ki)eA (I)€A @™ ()

In fact, we have that

0)0¢)
Z Z (j Z( )Z(] |(5( = 1)xkxl - X2

€U jeU
=y e (ZZE Wil l3ad = Dawan) = X*
iU jeu "G N ies s,

T(i)(5) — T
Z Z (@)( (@) (J)E(Wk,-sz\(S(i)(S(j) = 1)37ka .
(ki)eA (Ij)eA

An unbiased estimator of V(X) is given by

Y T0G) — T0)TG) EWeiWii|dw03))zra

(ki)eAs (Ij)€As () T(HG)

Clearly, to be able to observe A,, an extra step in the observation procedure is
required; in the first step a(s) is observed, whereas the second step allows the
observation of 5(a(s)). Therefore, we have available more knowledge about the
structure of the graph. The question is whether the effort made to observe the

extra structure can be useful to improve the estimation of Y, which is ultimately
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the target of inference.

5.2.1 Examples of reverse incidence estimators

Similarly to the IWE, there are many possible choices of reverse incidence weights.
We are going to consider the reverse versions of the Zhat, Yhat and Phat as
described in the previous chapter, which are based on A,. It will be obvious how
they are symmetrical to their corresponding IWE, but with the necessary extra

step for the observation procedure.

Ztilde In analogy with the Zhat, but looking reversely, the Ztilde makes use of

the reverse incidence weights given by

1
Wi = 7/ .

dy,
Consequently, the Z;) and v, are given by:

1

T

x
Ziy = =k and Ve = — Z

d
kep; k k i€apNa(s)

For unbiased estimation of the Zhat the knowledge of d; is essential, that can
be provided under an incident or incident ancestral observation procedure. As
expected, none of them allows the estimation of the Ztilde, for which knowledge
of dj, is necessary for all k € f(a(s)). Two-stage incident ancestral observation
procedure is needed, where the relevant measures to be observed are x; and d,
for all the k € B(a(s)).

Xtilde In order to provide analogy with the Yhat, we define the Xtilde as the
RIWE corresponding to the IWE

s
Xtilde = Y 2% |
7 Tk
kes

where 71, = P(k € §). Note that 7, = 1 — Pr(ay & a(s)) = 1 — Pr(B(ag) €
s).

However, the strict analogy would be given by the HT-estimator of X, which is

instead defined on the initial sample s and with the initial inclusion probabilities
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T
XHT: - .
kes

The incidence weights corresponding to this estimator are given by

Wi = SN
dk,oc(s)ﬁ-k 7

where dj o5 = ZiEakﬁa(s) ay; is degree of k observed in the sample BIG and

;(—;) = Pr(i € a(s)|k € 5). The Z;) and v, follows as:

- TET(;) . Tk
keB; 8

The observation procedure needed to estimate Yhat is incident ancestral, since
to compute the m; we need to known its ancestors. As regarding the Xtilde,
to know the 7, we need instead to known the ;) for all its successors «(3).
Two-step incident ancestral observation procedure is also required to determine

the sample s.

Ptilde The same way that was used to define the Phat, can be reversed to define
a RIWE using a priority rule. Let flsp be the set consisting of the prioritised
edges, which are defined by the indicator variable I;, such that I; = 1, if for
kescCF,

i = min (a(s) Nay) .

We have that:

Zigy = Z Tyixy

= diP(ri)

where i) = Pr(I; = 1|(ki) € A;). We are basically assuming that the sample 3
is observed, but only some of the units of 5 contribute to the computation of Z;),

namely those that are connected with the smallest amongst their successors.

The corresponding ~; is given by

1 Ly,
Vi = d_k Z :

kEBNG PriT(4)

Regarding the observation procedure needed, the situation is analogous to the
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Xtilde, but for computing the prioritisation probabilities in this case.

5.2.2 Simulations

Here, we illustrate the aforementioned RIWES, providing an appreciation of their

properties.

For these simulations, three BIG graphs are considered with different number
of sampling units and motifs. The first BIG, G; has |Fy| = 50, |U;| = 20 and
|A;| = 100; the second BIG G, has instead |Fy| = 20, |Us| = 50 and |A2| = 100,
and finally the last BIG, G5 has |F5| = |Us| = 25 and |A3| = 100. The degree
distributions of the both the set of units and motifs for the three BIG are shown

in Figure [5.1]

BIG1

BIG1

T T T 1
2 3 4 5
degree U

BIG3

]

T
2 4 6 8

1 2 3 4 5 6 7

degree U

Figure 5.1: The degree distributions for the sampling units F' and the motifs set

U for the three BIG.



We assume simple random sampling on the sampling frame of size m = 2 and
two-step incidence observation procedure. The objective is to estimate the total
number of sampling units M for each of the three graphs. What will appear
clear is that by using the structure of the BIG, we are able to compute several
estimators of the sampling frame size, none of them having constant value M, as

we would expect when the population is represented as a list, under SRS.

Five estimators are considered: Ztilde, Xtilde, Ptilde and the Phat of M as given
in Equation (5.1)). In particular, for the Ztilde, two choices of reverse incidence
weighting are proposed:

1 1 1
wki:d—k and wm:d—z/zd—j

JEag

The priority rule used for the Phat of M is defined by the indicator I; where,

/ 1, ifi=min(a(s)Nag) ,
ki =
0, otherwise.

so the Phat of M is written as

Phat =

where py; = Pr(I; = 1|i € a(s)). The sampling distribution of each estimators is
shown in [5.2] where the red points and the solid lines represent respectively the

expectations and the medians of each distribution.

Table 5.1l shows the true variances of the estimators.

Table 5.1: The true variances of the estimators for M showed in Figure

Ztilde (ES) | Ztilde (ID) | Xtilde | Ptilde | Phat
BIG 1 623.43 653.31 | 468.66 | 459.52 | 55.09
BIG 2 130.34 105.64 | 63.46 | 103.24 | 7.72
BIG 3 149.01 158.81 | 37.77 | 54.21 | 9.73

Two main observations can be deduced from Figure [5.2. The Ptilde estimator is
biased when the sampling units are less than the motifs (G5) and slightly biased
when both sets have the same cardinality (G3). Similarly to the Phat, the Ptilde
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Figure 5.2: The sampling distribution of the estimators of M, under SRS of size
m = 2 for the three BIGs.

is biased, if exists at least a k € F' such that:



where 6;) = 1 if i € a(s); 0 otherwise. Also, the Phat of M seems to be the
more efficient amongst the estimators. Although, also this estimator suffers of

bias when the above equation is the case.

5.2.3 A discussion

In the previous section, we have considered several possible estimators for the
total X of any auxiliary variable measured on the sampling frame. Similarly to
the IWE, our concern is to make use of the incidence structure of the BIG in the
estimation. We have seen however, how this is not possible, when X is estimated
using the IWE with fixed weights; in fact, in that particular case, the IWE is
only based on the sampling units, and the incidence structure does not need to

be employed.

Two other possibilities are explored: the use of sample dependent weights and
the RIWE. The key characteristic of both estimators is that they require two-
step incident ancestral observation procedures, in the first case to compute the
probabilities of prioritization of each edge and in the second case to observe the
set of edges which are used to define the estimator. In this way we have used the
incidence structure of the BIG to estimate X. The next step is to understand

how can we use these estimators to improve the estimation of Y.

A natural way, as commonly done in list sampling, is to use the estimate of X
for the observed sample and the known true value of X to produce ratio-type
estimators, as we will discuss in the next section. Alternatively, because the
structure of the graph does not exists in list sampling, we must entertain the idea
that more ways, which do not have a counterpart in list sampling, might exists
on how to use it for improving the estimation of the parameter of interest. Also,
it would be natural to ask ourself if there is any gain in constructing incidence
weights which are unbiased for both the RIWE and the IWE, although, as it will

be show, these weights present great limitations.

For unbiased estimation, the constraint for both RIWE and the IWE under fixed

incidence weights, are given by

Y = Z WriY(i) = Z Z WkiY (i) = Z 2, with Z wr; =15
(

k’i)eA keF icay, keF keﬁi
X = E Wil = E E WEiLr = E 0 with E Wi = 1.
(ki)eA €U kep; el i€ay
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We use the small letter z; to highlight that the constructed measures are fixed.

Therefore, fixed weights wy; can exist which simultaneously satisfy

wy; = 1 and W = 1. (5.4)
) >

1€y keBi

An advantageous characteristics of these weights is that, under simple random
sampling of the sampling units, they often improve the IWE. Intuitively, the idea
is explained by the following. Under SRS, improving the efficiency of the IWE
equals reducing the finite population variance of the z;. Notice that, for each
k, the measure z; is a linear combination of the y;, with i € a(s), where the
coefficients of the combination are the weights wy;. Insofar, we had made no
assumptions on the set of values that the wy; should take, just that wy; > 0.
Instead, when using the weights discussed here, we are restricting the choices of
weights to those respecting that ), 5 Wk = 1. As an immediate consequence,
the range of values that z, can take goes between the minimum and the maxi-
mum of the y;), with ¢ € a(s). This suggests that compared to other weights,
the weights here presented can reduce the finite population variance of zp and

consequently the variance of the IWE.

Special case: y; = 1. When y; = 1, using the weights satisfying both
Equations (5.5)) returns z; = 1. In fact, we have:

Zr = Z Wril) = Z wy; = 1 for all kelU.

1€Qy 1€EQy

A necessarily condition for these weights to exist is that the size F' is equal to
the size U, i.e. N = M. In fact,

|U|:Zzwk¢=ZZwM:|F|.

€U kep; keF icay

Notice that if |F'| = |U]|, the these weights wy; are obtained by solving the system

of linear equations given by:

AW =1, (5.5)

where L is the number of edges, W is the vector of weights and A is the incidence
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(2N) x L matrix with 2N rows, representing the nodes of the graph; L columns,
representing the edges in the graph and whose entries are 1 if the node is incident
to the edge and 0 otherwise. The incidence matrix A is not always singular, in
which case there are infinite solutions for the system in Equation . In any
case, it can always be found an pseudoinverse inverse A", such that the weights

given by AT1, return approximately unbiased IWE.

Tllustration Consider the BIG G5, which has M = N = 25. We compute three
IWE of Y, where Y is the total of variable y;, where:

yi =3d;+e;  where e =N(0,2).

Three choices of weights are used: equal-share weights, inverse-degree weights
and ‘twice-unbiased’ weights as discussed above. A sample s of size m = 2 is
taken with simple random sampling from F'. The sampling distribution of the
three estimators is given in Figure 5.3 The variances are respectively: 57230.61,
14725.55 and 3199.16.

BIG 3

onwmo

800 1000 1200

600

400

200

IWE.es
IWE tu

Figure 5.3: The sampling distribution of the three IWE Y = 308.54, under SRS
of size m = 2 for the BIG Gj.

5.3 Ratio-type estimators on a BIG

Let M be the RIWE of M, the size of the sampling frame, which is known and
let Y be the IWE of Y, the total of the variable of interest measured on each
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motif in U. The two estimators are given by

- Wiy ~ W ki
Y = E —_— and M = E ,
A Tk — )
(ki)EA, (ki)eAs

where Wy, and W;ﬂ are respectively the incidence and reverse incidence weights
and 7, and 7(;) are the inclusion probability of respectively a sampling unit and

a motif. We assume a simple random sample is taken from F' of size m.

Two estimators of the ratio R = Y/M are given by

S Wiy ~ Wiy
. Y > ki)EAs ~ Y > ki)EAs
R=—_ == o and  R=- = et m
ki - ki
M D (ki)eA, > (kiye T

where M is the IWE estimator of M.

It follows that two ratio-type estimators of the total Y on a BIG can be given
as

~ ~

N % - Y
Ye=—=M and Yz=-—=<=M. 5.6
R= 0 R= (5.6)

Some observations about the two ratio-type estimators can be made. Firstly, the
two estimators in both ratio estimators R and R are not necessarily defined over
the same sample graph. Consider R. While Y is defined over A, M is defined
over A,. Also, even if apparently it seems that the Y and M in R are both defined
over A, if the priority weights are used, Y will be defined over the prioritised
set Agp, which is different from A, used to defined M. Secondly, even when the
auxiliary variable zj is equal to 1 for each & € F', the IWE for X with sample-
dependent weights and the RIWE for X are constructed by using the observed
structure of the graph, i.e. by constructing a sample dependent measure 7 # 1 in
the IWE and a measure Z(;) # 1 in the RIWE. Then, even when a simple random
sample is taken from F', the two estimators M and M do not result equal to M in
each sample. This suggests that even in this case of minimal information, when
the additional variable x, = 1 for all £ € F', the ratio-type estimators still exists
in a non-trivial way. Finally, note that the two ratio-type estimators in Equation
are defined by assigning a value to each edge via the incidence weights. It

is also certainly possible to assign just the value 1 to each edge, in this case we
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obtain two Hajek-type estimators. Let L be the known total number of edges in
the graph and let L and L be the two estimators of it defined as

. 1 1 - 1 1
L:ZWZZE and L:Z_:ZJT

Y

It is remarkable that, under SRS and using only the knowledge of M (or L), it
is possible to obtain at least four classes of ratio-type or Hajek-type estimators,
which can be modified under different choices of incidence weights. However, it is
not clear how these estimators can be motivated to improve the estimation of Y.
Take for instance Y (note that the following discussion holds also for the other

three estimators Yx, ffw, ?W). By its Taylor approximation around the point
(E(Y), E(M)), we have:

YarY + (ff — %M) . (5.8)
In fact:
Y _E(Y) Lo on BOY) o
ENE(M)JFE(M)(Y £0) E(MQ(M B(a)
Y 1. Y .
=M+M(Y—Y)—W(M—M)
Y 1, Y.

Multiplying the last equation by M, we obtain the linearization for Vr.

From Equation (5.8)), it follows that:

The ratio-type estimator Y on a BIG is approximately unbiased and it will be
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more efficient compared to the IWE Y if

(%)2 V(M) — 2%001;(?,1\2) <0. (5.9)

This means, that there in an improvement of efficiency if the covariance term is

enough big.

Consider the following example. Let G be a BIG with F' = {1,2,3}, U = {4,5,6}
and A = {(1,4),(1,5),(2,6),(3,4)}. Under equal-share incidence and reverse
incidence weights, we have that z;, = (1.5,1,0.5) and 2 = (1.5,0.5,1). Assume
simple random sampling of size 2, then 7, = 2/3 for all £ € F and 7 =
(1,2/3,2/3), for i = 4,5,6. Table shows the sampling distribution of the
three estimators f/, M and L.

Table 5.2: The sampling distribution of the Y, M and L, using equal-share
incidence and reverse incidence weights for the BIG G, with F' = {1,2,3}, U =
{4,5,6} and A = {(1,4),(1,5),(2,6), (3,4)}, under simple random sampling from
F of size 2.

=~ ~ od

s A, . Y| M| L
(1,2} [{(1,4),(1,5),(2,6)} | {(1,4),(1,5),(2,6),(3,4)} | 375 | 3.75 | 5
1,3} | {(1,4),(1,5),(3,4)} {(1,4),(1,5),(3,4)} 3122535
{2,3} {(2,6),(3,4)} {(1,4),(2,6),(3,4)} | 2.25 3135

Clearly, there is no positive covariance between the two estimators. First of all,
there is not a clear way to define a correlation between the values z, and z;, for
k and i which are connected; also, the values z; and z(;) are weighted differently,

respectively by m;, and ;.

5.3.1 Simulation study

We considered the same BIG used in the illustration in Section 3. Here, the
objective is to estimate the population total when y; = 1, ie. ¥ = N. We
assume SRS of size 7 from F. The computed estimators are given in Table

B3l

where the weights are defined as following: HT = HT weights; ES = equal-share

weights and ID = for inverse-degree weights.

Monte Carlo simulations are used to study the accuracy of the 11 estimators of the

total number of motifs. We have run 1000 simulations. The resulting estimators
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Table 5.3: The estimators considered in the simulations in this section.

Estimator Formula w| w
1 HT | Yur = EiEa(s) 7yr((z)) - -
2 - .. | ES -
3 IWE Y = Zkes W—Z D i
4 | Hajek-type Yip = LY - -
5 HT | ES
6 HT | ID
7 ES | ES
8 | Ratio-type Vi = 1\3541: ID | ID
9 ES | ID
10 ID | ES

for N in BIG 1, BIG 2 and BIG 3 are given respectively in Figures [5.4] [5.5) and
numbered as in Table [5.3]
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Figure 5.4: Comparison of the accuracy of the 10 estimators of N for BIG 1.

Most of the sampling units in BIG 2 have smaller degrees than the units in BIG
1 and BIG 3, so the sample of motifs in BIG 2 is on average smaller than the
samples of motifs in BIG 1 and BIG 3, given the same sample s C F. It follows
that the estimators in BIG 1 and BIG 3 are more efficient than those in BIG

2.

In particular, in all the three cases, we see that the IWE with inverse-degree
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Figure 5.5: Comparison of the accuracy of the 10 estimators of N for BIG 2.
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Figure 5.6: Comparison of the accuracy of the 10 estimators of N for BIG 3.

weights reduce the variance compared to the one which uses the equal-share
weights. All the ratio-type and the Hajek-type estimators are approximately
unbiased, and we noted that the bias is larger for the Hajek-type estimator in
all the three graphs. Also, the two ratio-type estimators defined on the sampled
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motifs reduce the variance compared to the HT and IWE. Also the estimator Hj
and H, tend to be more efficient, particularly in BIG 2 and BIG 3, when they are
the most efficient estimators. More investigation is needed on these ratio-type

estimators.

Finally, the Hajek-type estimator seems to be the most efficient estimators amongst

the 10 estimators; however, as already noted, it suffers from bigger bias.

5.3.2 A particular class of ratio-type and Hajek-type es-

timators

To simplify the situation, we consider only the ratios between estimators defined
over the same set and with same inclusion probability for each sampled element.
We exclude from the discussion both YR and YW, since under simple random
sampling they will not provide an estimator different from Y. We also exclude
the estimators which make use of the priority rules, since it will unnecessarily
complicate the discussion at the moment. We are left with the following two
estimators:

o YHT > Yirr

YR —M and YW = TL

where M is defined by using fixed reverse incidence weights.

In this cases, Equation (.8 becomes:

?R ~Y + €yt with €G) = Y@u) —

Y/W ~Y +eéyr with €6 = Yu) —

And the variances are given by

S T3 (ML ey

€U jeU

zz( T ) e

€U jeU

. . . €(iVe(q €(NVE(5 . i :
The covariance Cov(6;, §;) is weighted by UL or ~0°W ingtead of 2020,
TOTG) T TG) (i) ()
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The estimators of the variances are given by

OTG) \ €0EG)
=22 ( )T () ) )G)

1€a(s) jea(s)

~Y Y ( — ) ()) Cily)
TOTG) ) TG

i€a(s) jea(s)

where €y = y@) — YL]\{Z@) and e@) = Yy — % :

5.4 Conclusions

In this chapter we have shown how to construct the RIWE estimator of the total
X of a variable measured on the sampling units in a BIG. However, because
the final target of estimation is a function of the motifs, the RIWE is used to
improve the efficiency of the IWE. Its properties are described and some of the
peculiarities of the estimation on a BIG, which do not exists in the list case are
highlighted. Particular emphasis on the construction of ratio-type estimators is

given.

First of all, we have recognized that in a BIG, the structure of the graph is a
type of auxiliary information itself, which does not exist in list sampling. We
have utilised the graph structure by the incidence weights and by the reverse
incidence weights. In particular, it can be used to improve the efficiency of the
IWE. It is seen that the reverse incidence weights carry more information about
the structure of the BIG, and, in fact, the observational procedure necessary to

compute them returns a larger sample graph.

With the help of the RIWE, we have proposed several ratio-types estimators and
shown some of their properties, analytically and by means of numerical illustra-
tions. These ratio-type estimators improve the estimation of Y. Especially, in
the simulation studies, we have seen that using a ratio between estimators which
are not defined over the same sets, might nevertheless improve the estimation,

and further exploration on this type of estimators is required.

More importantly, under the BIG framework, several ratio-estimators for a func-
tion of the motifs can be constructed, which are all approximately unbiased. The
number of them is potentially infinite, since it depends on the possible choices of

incidence and reverse incidence weights. Adding this to the fact the IWE offers
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infinite unbiased linear estimator motivates our idea that the BIG framework is
quite a promising area of research for sampling and estimation and future works

is necessary to understand its potential.

Finally, we have two last observations. Firstly, we have seen that also the IWE can
be used to estimate the total X. We have shown that by using fixed weights, the
structure of the graph is not used, whereas priority weights make uses of it. We
did not explore the use of sample-dependent weights any further in this chapter,
but this can be a valuable topic of future research. Secondly, we have discussed
the use of weights which return unbiased IWE and RIWE simultaneously and
explore their advantages and limitations for the estimation of Y. We believe this
should not be the only possible way, and we think more investigation is required.
In particular, this exploration can be aimed to the construction of other types of

estimators, that are also unbiased.
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Conclusions

In this thesis we have discussed how the increasing use of social media data,
as well as other type of big data has brought both exciting opportunities and
considerable challenges for researcher in many disciplines and in particular in

Statistics.

We have distinguished four basic obstacles to making valid statistics analysis
using traditional methods. Firstly, there is a contrast between the population of
interest and the users of a relevant platform; secondly, there is no control over how
social media data can be selected from the relevant platform; thirdly, in general
the objects of data collection are different from those of interest and finally, the
measures of interest need to be extrapolated by algorithms and machine learning
techniques. We have argued how the identification of such errors is crucial for
understanding the quality of the data and systematically delineated two existing

approaches to statistical analysis based on social media data.

Having examined the difficulties that social media data carry for conducting sta-
tistical analysis, we have focused on the possibilities that such data offers, in
particular, their graph structure. A peculiar characteristic of social media data is
that they offer the potential to observe several network relationships, which are
seldom available via traditional surveys. We have provided a review of the ex-
isting methods of graph sampling and delineate a general framework of sampling
and estimation for graph data that makes use of the BIG, a bipartite incidence

graph.

To conclude, the research undertaken in this thesis offers a more rigorous approach
of the use of these types of data, by delineating and discussing the validity of the
existing methods for making appropriate quantitative estimates from the use of
social media data. Moreover, it introduces the new topics of graph sampling

and estimation, which is particularly relevant nowadays, given the increasing
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availability of the graph representation of the data. Currently, sampling and
analysis methods of network data are under-explored and we hope to have opened

the doors for more research in the future.
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