
1 
 

Title: 
Neural measures of working memory in a bilateral change detection task 
 
 
Authors: Tobias Feldmann-Wüstefeld 
 
 

Affiliations: 

University of Southampton, School of Psychology 

Highfield Campus B44, SO172BJ Southampton, UK 

 

 

Contact information (corresponding author): 

Tobias Feldmann-Wüstefeld 

tobias.fw@soton.ac.uk 

 
  

mailto:tobias.fw@soton.ac.uk


2 
 

Abstract 
 

The change detection task is a widely-used paradigm to examine visual working memory 

processes. Participants memorize a set of items and then try to detect changes in the set after a 

retention period. The negative slow wave (NSW) and contralateral delay activity (CDA) are event-

related potentials in the EEG signal that are commonly used in change detection tasks to track working 

memory load, as both increase with the number of items maintained in working memory (set size). 

While the CDA was argued to more purely reflect memory-specific neural activity than the NSW, it 

also requires a lateralized design and attention shifts prior to memoranda onset, imposing more 

restrictions on the task than the NSW. The present study proposes a novel change detection task in 

which both CDA and NSW can be measured at the same time. Memory items were presented 

bilaterally, but their distribution in the left and right hemifield varied, inducing a target imbalance or 

‘net load’. NSW increased with set size whereas CDA increased with net load. In addition, a 

multivariate linear classifier was able to decode set size and net load from the EEG signal. CDA, NSW 

and decoding accuracy predicted an individual’s working memory capacity. In line with the notion of 

a bilateral advantage in working memory, accuracy and CDA data suggest that participants tended to 

encode items relatively balanced. In sum, this novel change detection task offers a basis to make use 

of converging neural measures of working memory in a comprehensive paradigm. 
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1. Introduction 

Visual working memory describes the ability to maintain visual information over short periods 

of time. This is a crucial function of the visual system as it allows to retrieve and manipulate 

information not currently present to the senses. Studies of change blindness illustrated severe 

limitations of working memory processes (e.g., Simons & Levin, 1997) and inspired research that tried 

to pinpoint the properties of working memory. One fundamental property of working memory is its 

limited capacity (Baddeley, 2003; Luck & Vogel, 2013; Oberauer et al., 2016). Working memory 

capacity is highly correlated with many cognitive functions such as fluid intelligence, attentional 

control or school grades (Adam et al., 2018; Engle et al., 1999; Krumm et al., 2008; Xu et al., 2018) 

which makes it a valuable tool to examine individual differences. 

A well-established paradigm that measures working memory capacity is the change detection 

task (Luck & Vogel, 1997; Phillips, 1974; Zhang & Luck, 2008). In a change detection task, participants 

are first presented with a number of objects they have to encode into working memory. During a 

retention interval of typically 500-2000 ms participants cannot see the objects anymore and need to 

maintain them in working memory. In a final test display, working memory is probed by presenting 

one (or more) of the items again. Participants indicate whether a change occurred or not. Change 

detection accuracy is precise for up to 3-4 items and then drops drastically (Luck & Vogel, 1997). Taking 

guessing rate into account, an established way to estimate an individual’s working memory capacity 

is using Cowan’s K: K = N x (hit rate – false alarm rate) where K is the working memory capacity and N 

is the set size. In Line with Luck and Vogel’s (1997) findings, the estimated working memory capacity 

K is typically around 3-4 items (Cowan, 2001). 

 

1.1 The negative slow wave 

The negative slow wave (NSW) was identified as a neural measure of working memory load, 

(Fukuda et al., 2015; Ruchkin et al., 1992). The NSW was originally found by Ruchkin et al. (1992) in a 

change detection task with non-lateralized stimuli. Three, four, or five pairs of letters were presented 
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to participants and then shown again after 5 secs with (change) or without (no change) a slight 

displacement of one of the pairs. The ERP elicited by the memory display was increasingly negative 

with an increasing set size. Because of its late onset (post P300) and sustained set size sensitivity (> 3 

secs) this ERP component was described as a negative slow wave (NSW). This NSW set size effect was 

replicated with number of faces (Ruchkin et al., 1997), number of color patches (Fukuda et al., 2015; 

Klaver et al., 1999), and number of occupied locations in a Sternberg delayed-match-to-sample task 

paradigm (Liu et al., 2018). The NSW is most pronounced at posterior electrode sites for spatial 

working memory tasks but also has a positive counterpart at more frontal sites in object working 

memory tasks (Mecklinger & Pfeifer, 1996). The NSW is correlated with working memory capacity K: 

the NSW amplitude is more pronounced for individuals with high working memory capacity (Liu et al., 

2018; Wiegand et al., 2014) and asymptotes at working memory capacity (Fukuda et al., 2015). The 

NSW also seems to track dynamic changes in the memory load. One study used a change detection 

task with two targets and found that when a retro-cue reduced working memory load from two to 

one item, NSW amplitude was reduced compared to a neutral retro-cue that did not reduce working 

memory load (Schneider et al., 2017). This suggests that NSW amplitude may be sensitive to dropping 

of items from working memory, similar to the CDA (Kuo et al., 2012). In sum the negative slow wave 

meets both the criterion for a neural correlate of current working memory load and working memory 

capacity limit. In contrast to the CDA, NSW can be elicited by centrally (Ruchkin et al., 1992) or 

bilaterally (Fukuda et al., 2015) presented stimuli, i.e. it is not required to cue participants to either 

hemifield. 

 

1.2 The contralateral delay activity 

An important innovation for working memory research was the discovery of a further ERP component 

that reflects working memory load, the contralateral delay activity (CDA). The CDA was first described 

in a lateralized version of a change detection task (Vogel & Machizawa, 2004; Vogel, McCollough, & 

Machizawa, 2005). Instead of trying to remember all items presented in the memory display, 
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participants only had to encode and maintain items from either the left or right hemifield, as only 

items from that side would be probed in the end of a trial. Prior to the onset of the memory display, 

a cue indicated which side would be relevant in the current trial. Vogel and Machizawa (2004) found 

a sustained contralateral negativity to cued items that lasted until the test display was shown (hence 

contralateral delay activity). Because the CDA is the difference between the contra- and ipsilateral 

signal, task-unspecific activity that affects both hemispheres is cancelled out (Gratton, 1998). Thus it 

was argued that the CDA is a better measure of working memory load than the NSW (Drew et al., 

2006). The CDA has important properties that renders it a valuable tool in working memory research. 

The CDA amplitude increases with increasing set size, suggesting it reflects the current number of 

items held in working memory (Feldmann-Wüstefeld, Vogel, & Awh, 2018; Vogel & Machizawa, 2004). 

In line with this notion, the CDA did not linearly increase but asymptoted right around the point of an 

individual’s working memory capacity (Balaban & Luria, 2015a; Unsworth et al., 2014a; Vogel et al., 

2005), suggesting that once working memory capacity is reached, CDA as a measure of items held in 

working memory cannot increase furthermore, similar to the NSW. Working memory capacity is 

closely linked to cognitive abilities such as reading skills, arithmetic calculation, and fluid intelligence 

(Baddeley, 2003; Unsworth et al., 2009) and the CDA, as a measure of working memory, has also been 

linked to track individual differences in cognitive abilities (Unsworth et al., 2014b). In addition, the 

CDA amplitude is reduced in individuals with impaired working memory, for example ADHD patients 

(Wiegand et al., 2016) or elderly adults (Wiegand et al., 2013). In the present study, a revised change 

detection paradigm will be used that does not require participants to shift attention to one 

hemisphere in order to measure working memory processes. This may be particularly helpful for 

studies with participants with impaired cognitive abilities as the cognitive demands are presumably 

lower. 
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1.3 Measuring NSW and CDA in the same task 

The prime goal of the current study was to develop a working memory paradigm in which both 

the NSW as a non-lateralized and the CDA as a lateralized measure can be used. While the CDA has 

the advantage that task-unspecific effects on the EEG signal (such noise or bottom-up processing 

differences between conditions) are cancelled out through the contralateral control method (Gratton, 

1998), the NSW has several advantages as well. For example, the CDA increase with set size may not 

only be due to more targets in the attended hemifield, but also due to more distractors in the opposite 

hemifield (Fukuda et al., 2015; Sauseng et al., 2009) whereas no distractor variations are required for 

NSW designs. Furthermore, the NSW has the advantage that it does not require a spatial cue to direct 

participants’ attention to one hemifield. Cue-related activity can contaminate working memory 

related EEG activity (Cooreman et al., 2015; Wiegand et al., 2018) and cue properties themselves can 

affect working memory consolidation; for example, the more selective a cue, the stronger are neural 

working memory representations (Herrero et al., 2009). Directing attention to the wrong hemifield 

may result in failures to encode items into working memory (but see Adam et al., 2018). Furthermore, 

cue-induced attention processes can complicate the interpretation of what is assumed a working 

memory modulation. For example an apparent working memory effect may be due to one 

experimental condition benefitting more from an attention shift prior to memoranda presentation 

than another. Furthermore, recognizing a cue, interpreting its meaning and then directing attention 

according to the cue on one hand and encoding items into working memory on the other hand may 

constitute a dual-task situation that increases task load, particularly when the relevant hemifield 

switches from trial to trial (Sander et al., 2011). Avoiding additional attentional demands can be 

helpful when comparing groups that could be differentially affected by them, e.g. young and older 

adults or psychiatric patients and a control group. The paradigm used here will forgo cues and use the 

relative distribution of targets in the left and right hemifield to induce a lateralized signal. 
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1.4 Hemisphere-specific contralateral activity 

As pointed out above, one benefit of the CDA is that the subtraction of ipsi- from contralateral 

activity cleans the waveform from low level and early perceptual processing and leaves working 

memory related activity (Gratton, 1998; Luria et al., 2016). However, this comes with the drawback 

that any variation in the CDA amplitude could reflect a change in the contralateral activity, the 

ipsilateral activity, or both. The specific response of contra- and ipsilateral activity could go unnoticed 

which is why some studies focused on contra- or ipsilateral activity separately (Arend & Zimmer, 2011; 

Liesefeld et al., 2014). For example, Arend and Zimmermann (2012) used a change detection task in 

which a cue indicated from which side items were to be memorized. The number of targets (cued side) 

and distractors (uncued side) was systematically varied. For high memory loads (two or three targets), 

contralateral activity reflected the number of targets, irrespective of the number of distractors, and 

ipsilateral activity was neither affected by the number of targets nor the number of distractors. For 

low memory loads (one target), contralateral activity increased with distractor load and ipsilateral 

activity increased with distractor load. These results suggest that for a sufficiently high memory load, 

a completely lateralized processing takes place that is determined by the number of items in the 

relevant hemifield (targets) but unaffected by the number of items in the irrelevant hemifield 

(distractors). For low memory loads, however, distractors get processed to some extent (Arend & 

Zimmer, 2011), possibly because leftover working memory capacity is automatically used for 

distractors (Lavie, 2005). In the present study, there will be targets in both hemifields which will allow 

to compare the activity contralateral to one subset of targets (e.g., the high-load hemifield) with the 

activity contralateral to another subset of targets (e.g., the low-load hemifield). To address the 

question of how targets compete for access to working memory, one question will be how the 

contralateral activity to 4 targets varies as a function of whether 0 or 2 targets are presented in the 

ipsilateral hemifield. Results will be informative regarding the notion that target processing is mainly 

reflected in the EEG signal contralateral to the target (Arend & Zimmer, 2011; Liesefeld et al., 2014) 
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and in how far processing of targets in one hemisphere is affected by the number of targets in the 

opposite hemifield. 

 

1.5 Information-based decoding approach 

Besides event-related potentials, an information-based decoding approach (Bae & Luck, 2018, 2019) 

will be used that measures the information content present in the neural signals of each individual 

participant to quantify working memory processes. Information-based decoding methods are 

multivariate approaches originally popularized by brain-computer interfaces (Bigdely-Shamlo et al., 

2008; Thulasidas et al., 2006) but now becoming increasingly popular in cognitive neuroscience as a 

tool to assess how much information is present in a given neural signal (Bae et al., 2020). This means 

that instead of asking how an experimental manipulation affects the neural signal (e.g., a voxel or EEG 

electrode), the question is: How much information about the experimental manipulation is present in 

the neural signal? For example the orientation of an item in working memory can be decoded from 

fMRI data (Ester et al., 2015) or the unfiltered EEG signal (Bae & Luck, 2018) and the location of an 

item in working memory can be decoded from alpha-band activity in the EEG data (Foster et al., 2016). 

The basic principle of information-based decoding approaches is to train a classifier in a subset of trials 

so that it differentiates between conditions of interest as well as possible. In a second step, the 

classifier is tested in an independent set of trials in terms of how accurately it can classify the trials as 

the respective condition. Multivariate classifiers have recently been shown to allow decoding working 

memory content (Bae & Luck, 2018; Foster et al., 2016), but these studies have decoded target identity 

or location whereas the current study will aim at decoding the number of targets (set size) or the 

target imbalance (net load). In the present study, the classifier will be trained and tested time-point 

by time-point to allow tracking how much information is contained in the EEG signal about set size/net 

load in a time-resolved manner. Such a classifier may prove as a valuable tool to track working memory 

processes as multivariate approaches can pick up on variations in the neural data that go unnoticed 

with the relatively coarse method of ERPs. Furthermore, multivariate tracking of working memory load 



9 
 

is generalizable across stimuli, tasks, observers and experiments and thus a particularly flexible tool 

(Adam et al., 2020). 

 

1.6 Rationale of the present study 

The present study uses a novel, bilateral change detection paradigm that can provide a 

framework of converging neural markers of working memory. The paradigm presents a variable 

number of targets bilaterally, similar to traditional NSW tasks (Fukuda et al., 2015; Schneider et al., 

2017), however with targets being unequally distributed in both hemifields. Although a CDA is typically 

observed contralateral to a cued hemifield, previous studies also showed that a CDA can result from 

target imbalances, e.g., when targets are only presented in one hemifield (Feldmann-Wüstefeld & 

Vogel, 2018), from successive presentation of targets in the left and right hemifield (Berggren & Eimer, 

2016; Feldmann-Wüstefeld et al., 2018), or when a single target is presented in one hemifield of a 

visual search task (Feldmann-Wüstefeld et al., 2020; Jolicœur et al., 2008; Töllner et al., 2013). Thus, 

in the present study, instead of using a cue that directs attention towards one hemifield, the spatial 

imbalance is inherent of the target distribution itself. For example, 3 targets may be presented in the 

left hemifield and one target in the right hemifield. This constitutes a net load of 2 items in the left 

hemifield which should accordingly elicit a CDA contralateral to the left hemifield. The target 

imbalance, however, is only a “cognitive” imbalance. To keep physical stimulation balanced between 

hemifields, both hemifields will be filled up with distractors, i.e. irrelevant items that will not be 

probed in the end of a trial and can thus be safely ignored. For example, when 3 targets are presented 

in the left hemifield and 1 target in the right hemifield, 3 distractors will be presented in the left 

hemifield and 5 distractors in the right hemifield. As a result, the total number of items in both 

hemispheres is equal and fixed across conditions. 

This study has six goals. First, it will be measured whether the non-lateralized NSW is sensitive 

to working memory load. Previous studies showed that NSW increases with number of bilateral 
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targets but in the present study, the total number of items (targets + distractors) will be kept constant 

which will allow to unlink the NSW from total stimulation. 

Second, it will be measured whether the unequal distribution of targets induces a processing 

imbalance (net load) measurable as a contralateral negativity (CDA) to the hemifield with more targets. 

Attention needs to be deployed towards both hemifields, but a different number of targets needs to 

be encoded from each hemifield (net load). The CDA amplitude is expected to increase with net load. 

Third, it will be measured whether the activity in a given hemisphere is determined by the 

number of targets in the contralateral hemifield. The negativity contralateral to a fixed number of 

targets may vary as a function of the number of items in the other hemifield, thus revealing 

competition for access to working memory. 

Fourth, variations within net load and accuracy may reveal how targets are sampled. Targets 

could be entirely randomly selected or participants might have a preference to encode them from the 

more numerous (high-load) hemifield or the less numerous (low-load) hemifield. A model based on 

behavioral performance and CDA amplitude will be used that estimates how likely a target enters 

working memory as a function of the hemifield in which it is presented. 

Fifth, a multivariate linear classifier will be trained to assess whether it can decode set size 

and net load, similar to previous studies that showed working memory features and location can be 

decoded from the EEG signal. 

Sixth, NSW, CDA and decoding accuracy will be tested as predictors of working memory 

capacity K to examine whether these neural measures are functionally significant. 

 

2. Method 

2.1 Participants 

Twenty-one volunteers, naïve to the objective of the experiment participated for payment. 

Participants were aged 18-31 years (M = 22.8, SD = 4.3), 10 of them were male, 20 of them were right-

handed and all of them reported normal or corrected-to-normal visual acuity. Normal color vision was 
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assured with an Ishihara color test. As no participant had more than 25% of artifact-contaminated 

trials (see below for criteria), the entire sample was used for analysis. The experiment was conducted 

with the written understanding and consent of each participant. Experimental procedures were 

approved by the local ethics committee. 

2.2 Apparatus 

Participants were seated in a comfortable chair in a dimly lit, electrically shielded and sound 

attenuated chamber. Participants responded with button presses on a standard US American QUERTY 

keyboard that was placed in front of them. Stimulus presentation and response collection were 

controlled by a Windows PC. Experiments were written in MatLab with the Psychophysics Toolbox 

extensions (Kleiner, Brainard, & Pelli, 2007). All stimuli were presented on a LCD-TN screen (BenQ 

XL2430-B) placed at ~75 cm distance from participants. 

2.3 Design 

The experiment comprised a total of 1560 trials run in 30 blocks of 52 trials. There were three 

different set sizes: participants had to remember two, four or six targets. Crucially, within each set size 

condition, the ‘net load’, i.e. the imbalance between the left and right visual field, varied. In the 

following, the target distribution resulting in the different net loads will be denoted irrespective of 

left/right hemifield, e.g., 2-1 refers to two targets in the left and one in the right hemifield or vice 

versa. There were eight conditions in total. For set size 2, there were two conditions: a net load 2 

condition with two targets in one hemifield and none in the other (2-0; 240 trials) and a net load 0 

condition with a target in both hemifields (1-1; 120 trials). For set size 4, net load conditions was 0 (2-

2; 120 trials), 2 (3-1; 240 trials), or 4 (4-0; 240 trials). Analogously, for set size 6, three net load 

conditions of 0 (3-3; 120 trials), 2 (4-2; 240 trials) and 4 (5-1; 240 trials) were used. For each of the 5 

lateralized conditions (with net load 2 or 4), the left and the right hemifield showed the more 

numerous subset of targets equally likely. 
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2.4 Stimuli 

All stimuli were presented on a grey background (RGB: 128-128-128). The fixation cross was 

black (0-0-0) and had a diameter of 0.5° visual angle. Targets were colored circles with a diameter of 

1.5°. Distractors were colored squares with a side length of 1.33° (i.e. of equal area as circles). Memory 

displays always showed 12 items, i.e. 2 targets and 10 distractors, 4 targets and 8 distractors or 6 

targets and 6 distractors. All 12 items were distributed on a 6 x 6 grid. In each quarter, there were 3 

items and targets were as equally distributed across quarters as possible. The distance between the 

center of grids was 2.2°, or 4° for grid cells left and right of the vertical midline. Thus the overall 

diameter of the grid was 12.8° x 11.0°. Within the grid, items were jittered by -2, -1, 0, 1, or 2 x 0.15°. 

Colors for squares and circles were drawn randomly from a set of thirteen colors (red (255-0-0), light 

green (0-255-0), blue (0-0-255), yellow (255-255-0), magenta (255-0-255), cyan (0-255-255), dark 

green (30-140-60), purple (128-0-255), orange (255-128-0)), brown (157-0-23), black (0-0-0) or white 

(255-255-255)). No color was repeated within one memory display. The probe display showed a circle 

at one of the target positions (randomly chosen). It had the same color as the target from the memory 

display in 50% of the trials (no change trials) and the color not used in the memory display in the 

remaining 50% of the trials (change trials). A representation of the 2-1 and 3-0 condition as well the 

trial procedure can be found in Fig. 1. 

---------------------------------------------------------- 

Insert Figure 1 around here 

---------------------------------------------------------- 

2.5 Procedure 

Prior to each trial, a “ready” display was presented that only showed a central black fixation 

dot (0.5°). The ready display indicated for the participant to fixate the center and prepare for the 

upcoming trial. After participants pressed spacebar to begin, the trial started with a fixation cross that 

was presented for 500 ms (see Figure 2). The memory display followed and was presented together 

with a fixation cross for 500 ms. Participants were instructed to remember the color and location of 
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the circles and ignore all rectangles. All 8 memory conditions were randomly shuffled across the 

experiment. The memory display was followed by a retention interval of 1000 ms in which only a 

fixation cross was shown. The probe display followed and was presented until participants pressed 

one of the two response buttons. Participants were instructed to press the left button (‘z’) with their 

left index finger for ‘same color’ (circle at probed location did not change color compared to the 

memory display) and to press the right button (‘?’) with their right index finger for ‘different color’ 

(circle at probed location did change color). They were instructed to respond as accurately as possible. 

The trial ended with the button press and a blank screen was presented during an 1000 ms inter-trial 

interval before the next “ready” screen appeared. Performance feedback (average accuracy) and a 

minimum break of 10 seconds (participants decided when to continue) were provided after each block. 

Gaze position was tracked at a sampling rate of 1000 Hz for both eyes with an EyeLink 1000+ 

eye tracker (SR Research Ltd., Mississauga, Ontario, Canada). A direct gaze feedback violation 

procedure was applied from 250 ms after fixation cross onset until the onset of the probe display, i.e. 

for 1750 ms. If participants’ gaze was not within 1.5° of the center of the fixation cross during that 

time, or if they blinked, the trial was aborted, and a message “eye movement” (or, “blink”) was 

presented on the screen before a ready screen indicated the restart of the next trial. The remaining 

trials were shuffled so as to put the aborted trial in a random position within the sequence and make 

its reappearance unpredictable. Accordingly, any detected gaze violation extended the experiment by 

one trial. The number of trials per block without gaze violation was kept constant at 52. 

2.6 EEG recording 

EEG was recorded with Ag–AgCl “actichamp” active electrodes (BrainProducts, Gilching, 

Germany) from 32 scalp sites (according to the International 10/20 System: FP1/2, F7/8, F3/4, Fz, 

FC5/6, FC1/2, C3/4, Cz, TP9/10, CP5/6, CP1/2, P7/8, P3/4, PO7/8, PO3/4, Pz, O1/2, Oz). Horizontal and 

vertical EOGs were recorded with passive electrodes bipolarly from the outer canthi of the eyes and 

from above and below the observers’ right eye, respectively. FPz served as the ground electrode and 

all electrodes were referenced to TP10 and re-referenced off-line to the average of all electrodes. 
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Impedances for active electrodes were kept below 10 kΩ. Sampling rate was 1000 Hz with a high cutoff 

filter of 125 Hz and a low cutoff filter of 0.01 Hz (half power cutoff, 24 dB rolloff). 

2.7 Data analysis 

2.7.1 Behavioral data. Accuracy was calculated for each set size and forwarded to a 1x3 

ANOVA for repeated measures. Within each set size, accuracy was compared between all target 

distributions with t-tests for dependent measures. To reveal differences in how well items could be 

encoded from each hemifield, for the conditions 3-1, 4-2, and 5-1, accuracy was compared for probing 

the high-load versus low-load hemifield with t-tests for dependent measures (this analysis was not 

possible for the other conditions because they had symmetric displays or only targets in one hemifield). 

To calculate the working memory capacity measure K, hit rate (ratio of correctly identified changes) 

and correct rejection rate (ratio of correctly identified color repetitions) were determined separately 

for each set size, and across set size. K was calculated with Cohen’s (2001) formula: KSetSize = Set size × 

Hit rate × (1-correct rejection rate). 

2.7.2 EEG data: Event-related potentials. Trials with eye-related artifacts from -200 to 1500 

ms were excluded from the analysis (7.7 % (SD = 5.5 %)). Eye-related artifacts were identified as eye 

tracking data indicating a gaze drift (> 1° degrees from fixation) or saccades (difference in gaze position 

between first and second half of 50-ms time window > 0.5°; time window moving in 20-ms steps). 

Additionally, segments were excluded from further analysis on an individual-channel basis when the 

absolute voltage exceeded 60 μV. Only correct trials were analyzed. 

The negative Slow Wave (NSW) amplitude was most negative at PO7 and PO8 across 

conditions (see Fig. 3). Thus for NSW analyses, mean activity for the electrode pool PO7/PO8 (bilateral) 

was calculated for Set Size 2, 4, and 6, and for Net Load 0, 2, and 4, resulting in 6 waveforms for each 

participant. The NSW amplitude was determined for a time windows of 500-1500 ms and forwarded 

to an 1x3 ANOVA with the within-subjects factor Set Size and to a 1x3 ANOVA with the within-subjects 

factor Net Load. Amplitude of the contralateral delay activity (CDA) was most negative at PO7 and PO8 

across time windows and conditions (see Fig. 4). Thus for CDA analyses, the mean contralateral and 
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ipsilateral (relative to high-load hemifield) ERP signal for the electrode pool PO7/PO8 was calculated 

for the 5 conditions with a net load > 0 (2-0, 3-1, 4-0, 4-2, 5-1). This resulted in 10 waveforms for each 

participant. The CDA was determined as the mean lateralized amplitude (difference contra minus ipsi 

to high-load hemifield) for a time window of 500-1500 ms. The CDA was analyzed with a 2x2 ANOVA 

with the within-subjects factors Laterality and Net Load (2, 4). CDA was further analyzed with a 2x5 

ANOVA with the within-subjects factors Laterality (contra- versus ipsilateral activity) and Target 

Distribution (2-0, 3-1, 4-0, 4-2, 5-1). Planned comparisons within each Net Load compared the CDA for 

all possible target distributions. As contra- and ipsilateral activity responded differently to 

experimental manipulations, follow-up analyses compared conditions separately for contra- and 

ipsilateral sites (see results for details). Using the CDA data, a model estimated the encoding bias, i.e., 

how likely participants encoded an items from the high-load versus low-load hemifield (see results for 

details). 

2.7.3 EEG data: Classifier. A multivariate linear classifier was used to assess whether set size 

or net load could be decoded from raw (unfiltered) EEG data that was previously shown to track 

attention deployment (Fahrenfort et al., 2016; Foster et al., 2016). To that end an equal number of 

artifact-free trials was first selected from each set size or net load condition (e.g., if there were n 

artifact-free trials for set size 2, n+x for set size 4, and n+y for set size 6, n trials were randomly picked 

for each set size). Within each condition, the EEG signal was averaged across bins of 10 randomly 

selected trials and bins of 5 subsequent data points (i.e., 5 ms) to obtain a better signal-to-noise ratio. 

2/3 of available trial bins were assigned to a training set, the remaining 1/3 were assigned to a testing 

set. As opposed to ERP analyses, a trial was excluded from analysis if any electrode showed noise in 

that trial. Prior to this electrode-based rejection, all electrodes showing noise in more than 100 trials 

were excluded from the analysis to reduce the loss of trials. All remaining electrodes were treated 

equally and the model was blind to site, hemisphere etc. Using the Matlab function “classify.m”, the 

classifier was tested in terms of how correctly it can classify set size or net load correctly in a given 

trial. Classification accuracy was calculated for each time bin of 5 ms from -200 to 1500 ms. For cross-
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validation, the process of selecting trials and assigning them to trial bins as well as assigning them to 

training and testing bins, was repeated 100 times for each participant. Classification accuracy was 

averaged across the 100 iterations. As a control, the entire classification procedure described above 

was also applied to bins with shuffled labels (i.e., each trial was randomly assigned net load or set size 

rather than using the correct label). The mean classification accuracy for the real data and the shuffled 

data were exported for the same time window as CDA and NSW (500-1500 ms) and compared with a 

t-test for dependent measures (one-tailed, as classification accuracy for shuffled data was expected 

to be worse than for real data). In addition, as an explorative measure, the same test was run for each 

time bin, to track the time course of classification accuracy. As a measure of effect size, partial eta 

squared (η²) is reported for ANOVAs, Cohen’s d for t-tests. T-test were one-tailed unless denoted 

otherwise. Greenhouse-Geisser correction was applied in all analyses when appropriate. 

2.7.4 Correlations. To assess how well neural measures of working memory predict an 

individual’s working memory capacity, correlation analyses were run for working memory capacity 

measure K (from trials with set sizes ≥ 4 as lower set sizes would underestimate K) on one hand and 

mean NSW (across set sizes), mean CDA (across net loads), NSW increase ((SS4 +SS6)/2 – SS2), CDA 

increase (NL4 – NL2), and classification accuracy for set size and net load, on the other hand. Because 

not all variables were normally distributed, Spearman’s rho (rank correlation coefficient) was used as 

a correlational measure. 

 

3. Results 

3.1 Behavioral results (see Fig. 2) 

Accuracy varied as a function of set size (M2 = 93.4%, M4 = 82.5%, M6 = 74.7%), F(2,40) = 238.3, 

p < .001, η² = .92. Accuracy for set size 2 was higher than for set size 4, t(20) = 15.3, p < .001, d = 3.33, 

and set size 6, t(20) = 16.8, p < .001, d = 3.67. Accuracy for set size 4 was higher than for set size 6, 

t(20) = 11.3, p < .001, d = 2.46. Within each set size (2, 4, or 6), target distribution did not affect 

accuracy (all t(20) ≤ 1.7, all p ≥ .057, all d ≤ 0.20), except that 3-1 yielded a higher accuracy (M = 83.2%) 
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than 4-0 (M = 81.4 %), t(20) = 2.3, p = .015, d = .51. For target distribution 3-1, accuracy was higher in 

trials in which the low-load hemifield (M = 85.8%) compared to the high-load hemifield (M = 82.2%) 

was probed, t(20) = 3.0, p = .003,d = 0.66. Similarly, for target distribution 4-2, accuracy was higher in 

trials in which the low-load hemifield (M = 77.4%) compared to the high-load hemifield (M = 73.1%) 

was probed, t(20) = 4.5, p < .001, d = 0.98. Again, for target distribution 5-1, accuracy was higher in 

trials in which the low-load hemifield (M = 80.0%) compared to the high-load hemifield (M = 74.2%) 

was probed, t(20) = 2.9, p = .005, d = 0.63. The average advantage of the low-load hemifield (accuracy 

low-load / accuracy high-load) was 5.8%. Overall working memory capacity K was 2.5 (SD = 0.5). 

---------------------------------------------------------- 

Insert Figure 2 around here 

---------------------------------------------------------- 

3.2 Negative Slow Wave (bilateral ERP, see Fig. 3) 

NSW increased as a function of Set Size (M2 = -2.07 μV, M4 = -2.37 μV, M6 = -2.42 μV), F(2,40) 

= 5.6, p = .013, η² = .22, see Fig. 2A. Follow-up t-tests for dependent measures showed that the ERP 

was different between SS2 and SS4 (t(20) = 2.2, p = .021, d = 0.48), between SS2 and SS6 (t(20) = 3.0, 

p = .004, d = 0.65), but not between SS4 and SS6 (t(20) = 0.7, p = .240, d = .16). NSW varied as a function 

of Net Load (M0 = -2.52 μV, M2 = -2.21 μV, M4 = -2.23 μV), F(2,40) = 6.6, p = .003, η² = .25. Follow-up 

t-tests for dependent measures showed that the ERP was different between NL0 and NL2 (t(20) = 4.5, 

p < .001, d = 0.99), between NL0 and NL 4 (t(20) = 2.6, p = .009, d = 0.56), but not between NL2 and 

NL4 (t(20) = 0.2, p = .411, d = 0.05). Only the 4-0 (but not the 5-1) condition was used for NL4 to achieve 

the same average set size across net load conditions. However, when including the 5-1 condition (M 

= -2.31 μV), all statistical values were equivalent to using the 4-0 condition only. 

---------------------------------------------------------- 

Insert Figure 3 around here 

---------------------------------------------------------- 
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3.3. CDA (lateralized ERP, see Fig. 4). 

Note that the Net load 0 conditions were not analyzed for the Contralateral Delay Activity 

(CDA) as contra- and ipsilateral are not defined in these conditions. An interaction of Laterality (contra, 

ipsi) and Net Load (2, 4) revealed that the CDA was larger for a Net load of 4 (ΔM = 1.26 μV) than for 

a Net load of 2 (ΔM = 0.78 μV), F(1,20) = 13.8, p = .001, η² = .41. An interaction of Laterality (contra, 

ipsi) and Target Distribution (2-0, 3-1, 4-2, 4-0, 5-1) revealed that the CDA amplitude varied as a 

function of relative distribution of targets in the visual field, F(4,80) = 11.9, p < .001, η² = .37. The CDA 

was reliable in all five conditions (all p ≤ .001). Within the Net Load 2 condition, the CDA was larger for 

a distribution of 2-0 (ΔM = -1.26 μV) than for 3-1 (ΔM = -0.59 μV), t(20) = 3.8, p < .001, d = 0.84, and 

larger than for 4-2 (ΔM = -0.50 μV), t(20) = 4.4, p < .001, d = 0.96. The CDA was equally large for 3-1 

and 4-2, t(20) = 0.4, p = .335, d = 0.09. Within the Net Load 4 condition, the CDA was larger for a target 

distribution of 4-0 (ΔM = -1.49 μV) than 5-1 (ΔM = -1.03 μV), t(20) = 3.9, p < .001, d = 0.84. 

---------------------------------------------------------- 

Insert Figure 4 around here 

---------------------------------------------------------- 

3.4 Analyses separately for sites contralateral to high-load and low-load hemifield (see Fig. 5) 

3.4.1 Conditions separately. Mean amplitude for all lateralized conditions (=unequal target 

distributions), separately for the EEG signal contralateral to high-load and low-load hemifield can be 

found in Figure 5. Statistical analyses for pairwise comparisons can be found in Table 1. Note that 

“contralateral to low-load hemifield” is tantamount to “ipsilateral to high-load hemifield” the 

difference of which constitutes the CDA as reported above. A 1x5 ANOVA demonstrated that mean 

amplitude contralateral to the high-load hemifield varied as a function of target distribution, F(4,80) 

= 3.4, p = .013, η² = .14. Similarly, the mean amplitude contralateral to the low-load hemifield varied 

as a function of target distribution F(4,80) = 9.4, p < .001, η² = .32. It is noteworthy that for the EEG 

signal contralateral to the high-load hemifield, none of the pairwise comparisons within Net Load (see 

column “comparison” in Table 1) were significant (all p ≥ .248) whereas all comparisons between Net 
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Loads were significant (all p ≤ .048) except for 4-2 versus 5-1 that was marginally significant (p = .065). 

For the EEG signal contralateral to the low-load hemifield, a different pattern was found. Here, none 

of the comparisons within low-load hemifield load (= number of targets in hemifield with fewer targets) 

were significant (both p ≥ .118) whereas all comparisons between low-load hemifield loads (all p ≤ .007) 

except for 3-1 versus 4-2 (p = .287) were significant. Thus, contralateral activity to high-load hemifield 

was mainly determined by Net Load, whereas contralateral activity to low-load hemifield was mainly 

determined by the number of targets in the low-load hemifield. The low-load hemifield load effect 

was analyzed in combination with the high-load hemifield load (see below). The net load effect was 

confirmed with a 2x2 ANOVA with the within-subjects factors Laterality (contralateral to high-load 

versus low-load hemifield) and Net Load (2 versus 4), F(1,20) = 13.8, p = .001, η² = .41. Follow-up t-

tests for dependent measures showed that for the signal contralateral to the high-load hemifield, Net 

Load 4 was more negative than Net Load 2, t(20) = 4.5, p < .001, d = 0.98, whereas for the signal 

contralateral to the low-load hemifield, Net Load 2 and Net Load 4 were similar in amplitude, t(20) = 

1.4, p = .086, d = 0.31.  

---------------------------------------------------------- 

Insert Figure 5 and Table 1 around here 

---------------------------------------------------------- 

3.4.2 Conditions pooled. As Net Load is determined by the number of targets in both hemifields, 

follow-up analyses scrutinized the contribution of high-load and low-load in separate analyses. To this 

end, the signal contralateral to the high-load hemifield and the signal contralateral to low-load 

hemifield were pooled by (i) high-load hemifield load (Fig. 5D, middle rows in Table 1) and (ii) low-load 

hemifield load (Fig. 5E, bottom rows in Table 1). For example, the 4-2 and 4-0 conditions were pooled 

to represent 4 targets (4-x) in the high-load hemifield and the 3-1 and 5-1 conditions were pooled to 

represent 1 target (x-1) in the low-load hemifield. The signal contralateral to high-load hemifield 

varied as a function of high-load hemifield load (F(3,60) = 2.9, p = .041, η² = .13 and showed a linear 

(p = .002) but not a quadratic or cubic trend (both p ≥ .488). This was driven by a monotonically 
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increasing negativity with high-load hemifield load with all direct comparisons being reliable (all p 

≤ .048) except for 2-x versus 3-x (p = .290) and 4-x versus 5-x (p = .285). The signal contralateral to low-

load hemifield also varied as a function of number of items in the high-load hemifield (F(3,60) = 7.6, p 

= .002, η² = .27 and showed a linear, quadratic and cubic trend (all p ≤ .036). This was driven by the 2-

x conditions showing significantly smaller amplitudes compared to all other conditions (all p ≤ .001), 

whereas 3-x, 4-x, and 5-x did not differ amongst each other (all p ≥ .114). The signal contralateral to 

high-load hemifield did not vary as a function of low-load hemifield load (F(2,40) = 0.5, p = .531, η² 

= .03. This was evident in none of the low-load hemifield load conditions deviating from one another 

reliably (all p ≥ .186). The signal contralateral to the low-load hemifield, however, varied as a function 

of low-load hemifield load (F(2,40) = 19.4, p < .001, η² = .49 and shows a linear (p < .001) but not a 

quadratic trend (p = .091). This was driven by a low-load hemifield load of x-0 being reliably smaller 

than x-1 and x-2 (both p < .001) and a low load hemifield load of x-1 being marginally smaller than x-

2 (p = .053). These results show that the signal contralateral to the high-load hemifield is mainly driven 

by the number of targets in the high-load hemifield, which explains the net load effect described above. 

In addition, the signal contralateral to the low-load hemifield is mainly driven by the number of targets 

in the low-load hemifield.  

3.5 Modelling the net CDA 

The lateralized ERP results indicate that the CDA amplitude varied within each net load 

condition. For example, the CDA was larger in the 4-0 than in the 5-1 condition. The CDA amplitude of 

an ideal observer (with K ≥ 6) should closely reflect the net load, e.g., be of equal size for the 4-0 and 

the 5-1 conditions as they could encode all items. The varying CDA amplitudes in the present data may 

not be surprising, however, given that participants’ working memory capacity was lower than set size 

most conditions (mean K = 2.5). Accordingly, a participant with a capacity of 3 may have encoded 3 

items from one hemifield in the 4-0 condition, resulting in a encoding imbalance (the “real net load”) 

of 3. The same participants may have encoded two items from one hemifield and one from the other 

hemifield in the 5-1 condition, resulting in a encoding imbalance of 1. The CDA amplitude should 
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depend on the encoding imbalance, i.e. the imbalanced resulting from which items were actually 

encoded. The observed CDA amplitudes could thus reveal how the visual system samples items from 

the visual environment to be encoded into working memory. 

This was tested with a model. In its most simple form (ω = 1), the model assumed that all 

target items on the screen were equally likely encoded into working memory. For example, a 

participant with a working memory capacity of K = 3 would randomly pick 3 out of 6 items in the 4-2 

condition which means that on average they should have an encoding imbalance of 1 item (4/6 – 2/6 

× 3 = 1; i.e., participants encode one more item from the hemifield with four target than from the 

hemifield with two targets). In the 5-1 condition, the predicted encoding imbalance is 2 (5/6 – 1/6 × 3 

= 2) and in the 3-1 condition, the encoding imbalance should be 1.5 (3/4 – 1/4 × 3 = 1.5) targets on 

average. An additional model parameter was the weight of items in the hemifield with more items. 

While for ω = 1, i.e. each item was equally likely sampled, this weight could also be smaller or larger 

than 1. A weight of ω = 1.1, for example, would mean that all items from the low-load hemifield have 

an increased chance of 10% to be encoded into working memory (with all items from the high-load 

hemifield having a combined decreased chance of 10%). The model assumed that the weight would 

be identical for all participants. 

In a first step, the expected average encoding imbalance was calculated for each participant 

and each of the 5 lateralized conditions, taking an individual’s working memory capacity into account 

and varying weights from 0.5 to 2.0 in steps of 0.001. In a second step the expected encoding 

imbalance was compared with the measured CDA in each condition. More precisely, we estimated a 

standard one-item-CDA amplitude by dividing the observed CDA in each condition by the expected 

encoding imbalance. In the above mentioned example of an individual with K=3 and ω = 1, the CDA in 

the 4-2 condition divided by 1, the CDA in the 5-1 condition divided by 2, and the CDA in the 3-1 

condition divided by 1.5 should be similar as the resulting amplitudes should each reflect an imbalance 

of one item. If a given weight was reflecting the encoding bias across participants well, the resulting 

estimated one-item-CDA amplitudes should be similar. The standard deviation of the estimated one-
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item-CDA amplitudes were taken as a measure of model fitness. The model was run for the average 

CDA amplitude from 500 to 1500 ms. 

The weight that resulted in the lowest standard deviation of the five estimated CDA 

amplitudes was determined as ω = 1.064. To statistically evaluate whether the estimated one-item 

CDA amplitudes were indeed identical, they were first forwarded to a 1x5 ANOVA for repeated 

measures, showing no reliable effect of net load (F(4,80) = 0.3, p = .695, η² = .02). In addition, t-tests 

for dependent measures were run to compare the estimated CDA amplitude for all net load conditions 

pair-wise. All ten comparisons had a p ≥ 0.121, demonstrating that the model explained the observed 

CDA reasonably well. The results suggest that individuals sample targets from the visual field with a 

6.4 % increased chance from the hemifield with fewer targets. The CDA amplitude was a result of this 

stochastic imbalance between the hemifields, moderated by an individual’s working memory capacity. 

 

3.6. Decoding Accuracy (see Fig. 6). Decoding accuracy for set size was higher than for shuffled set 

size, t(20) = 5.3, p < .001, d = 1.16. Decoding accuracy for net load was higher than for shuffled net 

load, t(20) = 2.0, p = 0.028, d = 0.44. The first time period for which at least three consecutive time 

bins (i.e., 15 ms) were reliably different from shuffled data started at 185 ms for set size and at 305 

ms for net load (see red lines in Fig. 6). 

---------------------------------------------------------- 

Insert Figure 6 around here 

---------------------------------------------------------- 

3.7 Correlations (see Fig. 7). K correlated with NSW (r = -.39, p = .042) and with CDA (r = -.43, p = .026), 

demonstrating that both a larger (more negative) NSW amplitude and a larger (more negative 

contralateral than ipsilateral) CDA amplitude predicted a high working memory capacity. K also 

correlated with CDA increment (r = -.39, p = .040), demonstrating that the more CDA amplitude 

increased with net load, the higher an individual’s working memory capacity. K did not correlate with 

NSW increment (r = -.14, p = .260). Moreover, K correlated with the set size classifier (r = .46, p = .018) 
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as well as the net load classifier (r = .41, p = .032). A linear regression model showed that ERP measures 

(CDA, CDA increase, NSW, NSW increase) accounted for 31.2% of the variance of K. Classification 

measures (set size and net load classification accuracy) accounted for 30.1% of the variance of K. All 

measures combined accounted for 58.6% of the variance of K. 

---------------------------------------------------------- 

Insert Figure 7 around here 

---------------------------------------------------------- 

 

4. Discussion 

This study presents a novel change detection paradigm that allows to simultaneously measure 

the contralateral delay activity (CDA) and the negative slow wave (NSW) as measures of working 

memory. They first key finding of the present study was that the negative slow wave increased with 

set size (i.e. number of targets) when the total number of items (targets and distractors) and thus 

overall physical stimulation was kept constant. The second key finding was that a CDA was observed 

without cueing participants to either hemifield; the CDA varied as a function of the imbalance of items 

memorized from the left versus right hemifield. Third, the lateralized EEG signal was mostly 

determined by the number of items in the contralateral hemifield. Fourth, participants encoded items 

into working memory more balanced (biased away from the hemifield with more items) as random 

sampling would predict. Fifth, a linear classifier could decode set size (but not net load) from the raw 

(unfiltered) EEG signal. Sixth, NSW, CDA and classifier accuracy were good predictors of working 

memory capacity highlighting their functional significance as neural markers of working memory. 

 

4.1 The negative slow wave (NSW) as a measure of set size 

Participants were presented with 12 stimuli, 6 in each hemifield, in every trial. They had to 

maintain targets (colored circles) in working memory while ignoring distractors (colored squares). The 

number of targets (set size of 2, 4 or 6) and the imbalance between hemispheres (net load 0, 2, or 4) 
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was varied. Replicating earlier studies, NSW increased with set size (Bailey et al., 2016; McEvoy, 1998;  

Ruchkin et al., 1992) and asymptoted for supra-capacity set sizes (Fukuda et al., 2015). In the present 

study, an overall working memory capacity of K = 2.5 (K = 2.8 excluding sub-capacity set size trials) was 

measured and the NSW did not increase from set size 4 to 6, presumably because the working memory 

capacity was already depleted with 4 memorized items for most participants. NSW amplitude 

predicted working memory capacity, demonstrating its functional significance: The larger an 

individual’s capacity, the more pronounced was the NSW. As opposed to previous studies, the total 

number of items (set size + number of distractors) was kept constant, ruling out the possibility that 

the overall physical stimulation can account for the set size effect. This comes with another confound, 

however, namely the number of distractors. In the present study, 10 distractors were presented in 

the set size 2 condition, 8 distractors in the set size 4 condition, and 6 distractors in the set size 6 

condition. As the NSW was found to increase with cognitive demands (Zickerick et al., 2020) and 

amount of filtering needs (Schneider et al., 2017), a decreased number of distractors in the high-load 

conditions seems unlikely as a reason for an increased NSW amplitude. As it is impossible to control 

for both total number of items and number of distractors while varying the number of targets, the 

paradigm presented here and the traditional NSW paradigm without distractors (e.g., Fukuda et al., 

2015) constitute complementary approaches to non-lateralized neural measures of working memory.  

The advantage of the present paradigm is that in addition to the NSW, the contralateral delay 

activity (CDA) as a lateralized neural correlate of working memory can be measured in the same trials 

(see next paragraph). NSW did not only vary with set size, but also with net load. In contrast to the 

CDA, NSW decreased with net load. The maximum NSW amplitude for net load 0 may be related to 

the bilateral field advantage, i.e., the preference to encode items equally from both hemifields (see 

below). However, as paradigms measuring the NSW do typically not vary net load, this remains 

speculative and the functional significance of this effect has yet to be scrutinized. 

 

4.2 The contralateral Delay activity (CDA) as a measure of net load 
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In order to induce a spatial imbalance in working memory, change detection tasks typically 

employ lateralized designs: participants are presented with stimuli in both hemifields but are asked to 

only encode items from the cued hemifield (Fukuda et al., 2016; Luria et al., 2016; Vogel & Machizawa, 

2004). The CDA is then observed as a negativity at sites contralateral to the relevant hemifield, 

compared to ipsilateral sites. A CDA is, however, also observed without cues when a spatial imbalance 

is inherent of the target distribution (Feldmann-Wüstefeld & Vogel, 2018; Berggren & Eimer, 2016; 

Feldmann-Wüstefeld et al., 2019; Jolicœur et al., 2008; Töllner et al., 2013). In the current study, the 

difference in number of targets between the left and right hemifield, the net load, determined the 

CDA amplitude. A net load of 4 produced a larger CDA than a net load of 2. As the total number of 

stimuli was identical in both hemifields, the CDA amplitude difference cannot be explained by 

differences in bottom-up processes. The present study shows that the well-established effect of 

working memory load on CDA amplitude (Drew & Vogel, 2008; Ikkai et al., 2010; Jolicœur et al., 2008; 

Luria et al., 2016; Salahub & Emrich, 2018; Vogel et al., 2005) can be replicated without the use of 

spatial cues. Furthermore, both CDA amplitude and CDA increase (from net load 2 to 4) predicted 

working memory capacity K, replicating earlier studies (Luria et al., 2016; Vogel et al., 2005). CDA 

amplitude was generally higher and increased more for those individuals that could, on average, store 

more items in working memory. This highlights the functional significance of the target-imbalance-

induced CDA as a measure of working memory load. Thus the present study shows that a “cue-less” 

change detection task shares crucial properties with the traditional change detection task and may be 

used interchangeably. 

A potential advantage of the cue-less design may be that cue-induced attention processes that 

can complicate the interpretation of results do not need to be considered. For example, attention 

deployment prior to memoranda onset could affect the working memory manipulation of a research 

question at hand or directing attention to the wrong hemifield may affect working memory efficiency. 

Furthermore, cue properties themselves can affect neural measures of working memory (Cooreman 

et al., 2015; Herrero et al., 2009; Wiegand et al., 2018). Importantly, the present paradigm lets 
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participants focus on one simple task (“remember all circles”) and thus avoids a dual-task situation 

that is imposed on participants when they have to attend according to a cue and encode items into 

working memory (Sander et al., 2011). This may be particularly helpful when comparing groups that 

could be differentially affected by attentionally demanding tasks, e.g. young and older adults or 

psychiatric patients and a control group. Related to this, a further practical implication of the new task 

is that experimental runtime may be overall shorter. The present task is easier to explain and practice, 

eye movements may be reduced as both hemispheres have to be attended, and each trial is reduced 

by the duration of the cueing interval. It was argued that the CDA measured in traditional lateralized 

designs may not only reflect the number of targets in the cued hemifield but also the number of 

distractors in the uncued hemifield (Fukuda et al., 2015; Sauseng et al., 2009) that are required to 

proportionally increase with set size in order to achieve physical balance in both hemifields. The 

present paradigm circumvents this problem by keeping the number of items constant in both 

hemifields. This means the larger amplitude in the 5-1 than in the 3-1 condition cannot be due to the 

number of contralateral distractors (there are 5 distractors in the hemifield with 1 target in each case). 

 

4.3 How do individuals sample targets from both hemifields into working memory? 

A potential caveat of the present design is that for supra-capacity set size displays, the CDA 

amplitude may vary as a function of the specific target distribution in the left and right hemifield and 

how participants sample targets. For example, in the present study, a 3-1 distribution produced a 

larger CDA than a 4-2 distribution, inducing variability within the net load 2 condition. On the other 

hand, such variations within a given net load can also be meaningful in a way that they can reveal how 

items are encoded into working memory. 

Here, the observed CDA amplitude variations could be explained by a stochastic process of 

selecting items for encoding into working memory. If an ideal observer with a capacity K ≥ 6 encoded 

items randomly from a 3-1 and 4-2 display, the elicited CDA amplitude should be identical. If, however, 

an individual with K < 6 encoded items randomly from a 3-1 and 4-2 display, with equal probability for 
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each item, 3-1 displays would elicit a larger CDA than 4-2 displays. This is because the average or 

expected encoding imbalance (the actual net load) would be different for 3-1 than for 4-2. How 

imbalanced the encoding imbalance was in the present study depended on an individual’s working 

memory capacity. A model taking each participant’s working memory capacity into account showed a 

low-load hemifield weight of 1.064, i.e. a 6.4% increased chance for items from the low-load hemifield 

to be encoded. Interestingly, this is close to the behavioral advantage for items from the low-load 

hemifield (5.8%). A recent study showed that for two sequentially presented groups of targets, the 

first and second group are equally strongly represented in working memory (Feldmann-Wüstefeld et 

al., 2018). The present study shows that within one group of targets, the weight can vary, namely as a 

function of the relative spatial distribution. As a result of more likely encoding from the low-load 

hemifield, the overall encoding is more balanced than one would expect if encoding was entirely 

random. 

This tendency to achieve spatial encoding balance is in line with the bilateral field advantage. 

The bilateral field advantage is based on the assumption that the ability to simultaneously process 

multiple items is limited by the extent to which those items are represented by non-overlapping neural 

representations (Cohen et al., 2014; see also Awh & Pashler, 2000). As a result, working memory 

performance is better for items that are distributed across hemifields compared to presented in the 

same hemifield (Alvarez & Cavanagh, 2005; Cohen et al., 2014; Holt & Delvenne, 2015). The overall 

tendency towards a more balanced encoding observed here means that the targets’ neural 

representations overlap less. While previous studies assessing a bilateral field advantage typically 

forced participants to encode targets from both versus one hemifield., in the present experiment 

participants could decide which (if any) hemifield to preferably encode from (except for conditions 2-

0 and 4-0). Thus it is not clear if the increased weight for low-load hemifields is a deliberate strategy 

or a more general bias inherent in the visual system. Future research could explore these possibilities 

and determine the selection mechanism in more detail. This could be done, for example, by using 

post-experimental questionnaires asking participants for their strategies (van Lamsweerde & Beck, 
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2011) or by inducing a preference to one or the other hemifield through cues (Zhang & Luck, 2008) or 

incentives (Klyszejko et al., 2014). Alternatively, a whole-report change detection task could be used 

that probes each item in the visual field and thus allows to determine the working memory accuracy 

for all items in the visual field (Adam et al., 2017), providing a more direct measure for encoding 

strategies in unbalanced displays. 

 

4.4 Contra- and ipsilateral activity as hemifield-specific neural measures of working memory 

If the CDA is only analyzed as the differential contra- and ipsilateral activity, the specific 

responses to each hemifield may go unnoticed even though they can carry relevant information. For 

example, previous studies demonstrated that when targets are presented in one hemifield and 

distractors in the other, the EEG signal contralateral to the targets is mostly affected by the targets 

(Arend & Zimmer, 2011; Liesefeld et al., 2014). For particularly low memory loads, however, the EEG 

signal contralateral to the target is also affected by the number of distractors (Arend & Zimmer, 2011), 

possibly because leftover working memory capacity is automatically used for distractors (Lavie, 2005, 

see also Vogel et al., 2005). 

In contrast to previous studies using lateralized change detection tasks, targets were 

presented in both hemifields in the present study. Thus a distinction between contra- and ipsilateral 

needs to be considered relative to either the high-load hemifield (hemifield with more numerous 

targets) or the low-load hemifield (with fewer targets). First, the present results confirmed earlier 

studies (Arend & Zimmer, 2011; Liesefeld et al., 2014) and also demonstrated that activity in either 

hemisphere is mostly determined by the number of targets in the opposite hemifield. The signal 

contralateral to the high-load hemifield increased with the number of targets in that hemifield, but 

remained unaffected by the number of targets in the low-load hemifield. The signal contralateral to 

the low-load hemifield also increased with the number of targets in that hemifield. The signal 

contralateral to the low-load hemifield was, however, also affected by the number of items in the 

high-load hemifield. It is likely that this was an experimental artifact: The signal contralateral to the 
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low-load hemifield was not affected by the high-load hemifield when the average number of targets 

in the low-load hemifield was constant (3-x, 4-x, or 5-x conditions had an average of 1 target in the 

low-load hemifield), but was considerably smaller when the number of targets in the low-load 

hemifield was lower than 1 (the 2-x condition had 0 targets in the low-load hemifield). This is not 

surprising as 0 targets are expected to elicit a small lateralization. The fact that any lateralization was 

found in the 2-0 (as well as in the 4-0) condition, suggests that distractors were erroneously encoded 

into working memory, at least in some trials, replicating earlier studies (Arend & Zimmer, 2011). Thus, 

in a nutshell, the present results suggest that the lateralized EEG signal is determined by the number 

of targets in the contralateral hemifield. 

Single-hemispheric activity can be considered a valid neural measure of hemifield-specific 

working memory load and may be particularly useful for experimental designs that aim at measuring 

competition between items for working memory slots directly. For example, future studies could 

associate items from one hemifield with a higher reward than items from the other hemifield to induce 

a higher priority (Heuer & Schubö, 2018; Reinhart & Woodman, 2014) or simple items could be 

presented in one hemifield and complex items in the other hemifield (Balaban & Luria, 2015b; Brady 

et al., 2016). The contralateral activity to each hemifield should then isolate the processing of the 

respective items , compare processing and pinpoint competition. 

 

4.5 Decoding working memory load and load imbalance 

The present study also investigated whether set size and net load could be decoded from EEG data 

using an information-based decoding approach. The information-based decoding approach is a 

multivariate measure of the information content present in the neural signals of each individual 

participant and can be used to quantify cognitive processes (Bae et al., 2020). Here, separate linear 

classifiers were trained for each participant on 2/3 of the trials to decode the given set size or net load 

as accurately as possible. The classifier was then tested in the remaining 1/3 of the trials, for bins of 5 

ms to track decoding accuracy in a time-resolved manner. Using unfiltered (raw) EEG data, the 
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classifier could decode set size reliably from 185 ms on, a time window that precedes working memory 

processes and is typically associated with attentional processes (Jolicœur et al., 2008). In line with the 

notion that decoding accuracy of working memory content reflects maintenance of relevant 

information in working memory (Bae & Luck, 2019; Foster et al., 2016), decoding accuracy remained 

above chance throughout the retention interval. Decoding the load imbalance (net load) was less 

reliable; although the classification accuracy was significant when the entire time window (500-1500 

ms) was used, time bin by time bin analyses only show occasional intervals of reliable classification 

accuracy throughout the entire retention interval. The first cluster of reliable net load classification 

accuracy was found at 305 ms. Both raw EEG data (Bae & Luck, 2019) and alpha-band activity (Foster 

et al., 2016) have recently been shown to allow decoding working memory content, but these studies 

have decoded target identity or location whereas the current study demonstrates that working 

memory load as well as load imbalance can be decoded as well (for another recent demonstration of 

set size decoding, see Adam et al., 2020). As up to six targets were shown at random positions in the 

current study, decoding either identity or location as a comparison to decoding working memory load 

is not feasible here. Future research, however, should compare how well different features, spatial 

attributes or working memory load can be decoded and which functional significance they may have.  

Again, the number of total items (targets + distractors) was kept constant in the present study 

which means that the classifier did not just pick up on bottom-up differences but presumably reflected 

the “cognitive imbalance”, i.e., it reflected the encoding of more or fewer targets. This might render 

‘multivariate load detection’ (Adam et al., 2020) a valuable tool to track cognitive processes. The 

functional significance of the classifier is evident in its correlation with working memory capacity. 

Classification accuracy predicted a participant’s working memory capacity K, suggesting that varying 

set sizes induced more distinct brain activity patterns in high performers. Such a correlation was also 

found for a ‘Net load decoder’ based on raw EEG data. Participants with a high capacity showed a 

better net load decoding accuracy, suggesting that varying net loads induced more distinct brain 

activity patterns in participants with a high capacity. The classification accuracy could account for 30.1% 
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of the variance of K, similar to NSW and CDA amplitude and increase that could only account for 31.2% 

of the variance of K (out of 58.6% variance explained by all measures combined). This highlights the 

methodological significance of using information-based decoding approaches. Decoding accuracy for 

working memory content has recently been shown to differentiate between schizophrenic and non-

schizophrenic individuals (Bae et al., 2020) and future research could apply this technique to other 

neuropsychiatric populations or use it as a tool in interindividual approaches. 

 

4.6 Conclusions and future directions 

The change detection paradigm presented here requires participants to attend both 

hemifields. The non-lateralized signal showed that the amplitude of the negative slow wave (NSW) 

increased with the number of targets and predicted working memory capacity K, replicating earlier 

studies (Fukuda et al., 2015; Wiegand et al., 2014). As total stimulation was kept constant, the present 

paradigm shows that the set size dependent NSW amplitude previously observed was not due to 

physical confounds but reflects an increasing working memory load. The lateralized signal showed that 

activity in each hemisphere reflected the number of targets in the contralateral hemifield, replicating 

previous studies (Arend & Zimmer, 2011). Because targets were shown in both hemifields, a cue 

directing attention towards one hemifield was not necessary in the present study. Rather, an 

imbalance in target distribution across hemifields (net load) induced a “cognitive” lateralization. The 

target imbalance, that does not implicate physical imbalance as the total number of items was kept 

constant, elicited a contralateral delay activity (CDA) similar to traditional change detection tasks that 

use cues to direction attention to either hemifield (Luria et al., 2016; Vogel et al., 2005; Vogel & 

Machizawa, 2004). The CDA was measured in the same displays as the NSW. CDA amplitude increased 

with net load, particularly for individuals with a high working memory capacity. This is analogue to 

how the CDA behaves in traditional change detection tasks (Vogel & Machizawa, 2004) and shows that 

the present paradigm is suitable to track individual differences in the neural signature of working 

memory. Within net load, the specific target distribution determined the CDA amplitude and revealed 
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that participants encoded items preferably from the hemifield with fewer items. The encoding bias 

resulted in a more balanced encoding than random sampling would predict, in line with the notion of 

a bilateral advantage of working memory representations (Alvarez & Cavanagh, 2005). A linear 

classifier was able to decode set size. Decoding accuracy of the classifier increased with working 

memory capacity, showing that information-based decoding approaches can be useful to track 

individual differences in cognitive processes. 

The neural measures used in the present study accounted for almost 60% of the variance in 

working memory capacity which demonstrates that a holistic approach can be useful when examining 

working memory processes. Future studies could use the paradigm presented here to provide 

converging evidence for a given hypothesis with an multitude of measures. For example, an 

experimental manipulation that reduces CDA amplitude, reduces NSW amplitude and reduces 

decoding accuracy would be particularly compelling. At the same time, future studies could 

disentangle different aspects or sub-mechanisms of working memory by showing divergent patterns 

of working memory measures. For example, impairments in working memory through psychiatric 

disorders (Bae et al., 2020) or age-decline (Wiegand et al., 2014) may only be reflected in NSW 

amplitude, but not in CDA amplitude. Identifying double-dissociations among neural markers of 

working memory could be extremely useful in isolating more specific markers and examining working 

memory in a more fine-grained manner. 
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Figure captions 
 

Figure 1. Stimuli and trial procedure. Participants were asked to memorize circles and ignore squares 
in the memory display. The upper row shows an example with a target distribution of 2-0, the lower 
row with a target distribution of 3-1 (further target distributions not shown here: 1-1, 2-2, 3-3, 4-0, 4-
2, 5-1). For each target distribution, the left and right hemifield were equally likely the high-load 
hemifield (i.e., 3-1 and 1-3 were equiprobable). The total number of items was always 12. The probe 
display showed one of the circles at the same location as in the memory display and participants were 
asked to indicate whether the circle had the same (no change trials, lower row example) or a different 
color (change trials, upper row example). 
 
Figure 2. Mean accuracy for set size 2 (yellow shades), set size 4 (teal shades), and set size 6 (blue 
shades). For 3-1, 4-2, and 5-1, accuracy is shown separately for trials in which the low-load hemifield 
was probed (upward line pattern fill) and trials in which the high-load hemifield was probed (horizontal 
line pattern fill). Error bars denote standard error of the mean. 
 
Figure 3. (A) Grand average bilateral waveforms, averaged across PO7/PO8, separately for Set Size 2, 
4 and 6. For statistical analyses of the negative slow wave, the unfiltered average amplitude from 500-
1500 ms was used. For illustration purposes, waveforms shown here were low-pass filtered (non-
causal Butterworth low-pass filter, half-amplitude cutoff = 30 Hz, slope = 24 dB/octave). (B) 
Topography of the average activity at each electrode site from 500-1000 ms (upper row) and from 
1000-1500 ms (lower row). (C) Average NSW amplitude from 500-1500 ms, separately for set sizes 
(same data as in (A), left panel) and separately for Net Load 0, 2, and 4, right panel. Error bars denote 
standard errors of the mean, corrected for within-subjects comparisons (Cousineau, 2005). 
 
Figure 4. (A) Grand average lateralized waveforms (contra – ipsi, relative to the high-load hemifield, 
averaged across PO7/PO8, separately for all lateralized target distributions. Conditions with net load 
2 are in shades of blue, conditions with a net load of 4 in shades of red. For statistical analyses of CDA, 
the unfiltered average amplitude from 500-1500 ms was used. For illustration purposes, waveforms 
shown here were low-pass filtered (non-causal Butterworth low-pass filter, half-amplitude cutoff = 30 
Hz, slope = 24 dB/octave). (B) Topography of the average activity at each electrode site from 500-1000 
ms (upper row) and from 1000-1500 ms (lower row), red electrodes indicate PO7/PO8. Note that 
topographies are perfectly symmetrical because values were averaged across paired electrodes (C) 
Mean CDA amplitude from 500-1500 ms, separately for each lateralized target distribution and 
separately for net load (NL) 2 and 4. Error bars denote standard errors of the mean, corrected for 
within-subjects comparisons (Cousineau, 2005). 
 
Figure 5. (A) Grand average waveforms for electrodes PO7/PO8 contralateral to high-load hemifield 
(solid colored lines) and low-low hemifield (stroked colored lines), each panel showing one of the 
lateralized target distribution condition. Grey lines show the difference waveforms (high-load – low-
load) and are identical to the CDA waveforms in Fig. 3A. The same waveforms as in (A) are shown 
grouped by high-load and low-load hemifield in (B), and their mean amplitude (500-1500 ms) in (C). 
The same mean electrode as in (C) is shown pooled by Net Load (D), high-load hemifield load (E) and 
low-load hemifield (F). Indicators of statistical significance (n.s. = not significant, * = p < .05, ** = p 
< .01, *** p < .001) refer to statistical tests comparing conditions separately for activity contralateral 
to high-load and low-load hemifield (see text for details). For illustration purposes, all waveforms 
shown here were low-pass filtered (non-causal Butterworth low-pass filter, half-amplitude cutoff = 30 
Hz, slope = 24 dB/octave). Error bars denote standard errors of the mean, corrected for within-
subjects comparisons (Cousineau, 2005). 
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Figure 6. Green lines show classification accuracy for set size (upper row) and net load (lower row). 
Trained on 2/3 of trials, tested on the remaining 1/3. Grey lines show classification accuracy of shuffled 
data (random assignment of set size or let load labels to trials) as a control. Red lines indicate time 
points where t-tests for dependent measures (one-tailed) showed a reliable difference between 
classification accuracy for real data and shuffled data. As there were three set sizes and three net 
loads, classification chance level was 1/3 (black horizontal line). 
 
Figure 7. Scatterplot of working memory capacity K and (A) mean Negative Slow Wave (NSW), 
averaged across set size 2, 4, and 6, (B) NSW increase (mean NSW amplitude for SS 4 and 6 minus NSW 
amplitude for SS 2), (C) mean contralateral delay activity (CDA), averaged across net load 2 and 4, (D) 
CDA increase (CDA amplitude for net load 4 minus CDA amplitude for net load 2), (E), set size 
classification accuracy, (F), net load classification accuracy. Grey lines show linear trend and r refers 
to Spearman’s rho (note that slope of grey line and r do not perfectly match because r indicates rank 
correlation coefficient). For A-D, a negative correlation denotes a positive relationship between K and 
the respective measure as the measure itself has a negative sign (e.g., CDA has a negative amplitude). 
 
Table 1. Statistical analyses comparing lateralized conditions, separately for EEG signal contralateral 
to high-load and low-load hemifield. 


