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ABSTRACT 
Surface charge dynamics can play an important role in electric field distributions in both 

AC and DC insulation systems. In this paper the theory behind surface charge dynamics 

is introduced with a particular focus on the calculation of surface divergence; an operator 

which is used to determine movement of charge constrained to a surface. A detailed 

discussion of the model implementation is provided and validated against an analytical 

solution. Surface charge dynamics in AC and DC insulation systems are then 

investigated. Assuming the measurement data in the literature is representative it is 

demonstrated that surface currents have the capability to significantly alter electric field 

distributions in voids, even over the timescales of an AC cycle.   

   Index Terms — surface charge density, charge transport, finite element methods 

 

1 INTRODUCTION 

INCREASING operating voltages are leading to insulation 

materials being subjected to rising electric fields. In AC systems 

this can increase the likelihood of partial discharge (PD) activity in 

insulation defects. PD activity deposits surface charge on 

insulating materials, such that it quenches each discharge [1]. 

However, once the voltage polarity is reversed in the next half 

cycle it will enhance the electric field promoting further discharges 

which will deposit charge of opposite polarity. Understanding the 

movement and decay of surface charge between discharges, which 

may be significant in defects with a highly conductive surface, is 

important for understanding discharge activity [2]. For DC 

systems, which are being increasingly used in long distance 

transmission networks, the applied voltage is typically held at a 

fixed magnitude and polarity and as surface charge due to PD 

cannot be neutralized by PDs of opposite polarity; it can be 

removed only by onward bulk conduction. In practice switching 

events and harmonics will also play an important role [3]. 

Furthermore, as the polarity of the applied voltage is held 

constant in DC systems, charge injection may lead to significant 

accumulation of space charge within insulation domains and 

surface charge at insulation interfaces. Space charge within DC 

systems can enhance electric fields in certain parts of insulation 

systems which can lead to the premature failure of electrical 

equipment [3].   

Within the electrical engineering community the majority of the 

research on surface charge dynamics can be traced back to work 

performed by McAllister in the 1980's and 1990's [4, 5, 6]. This 

research predominantly focused on analytical calculations for 

relatively simple systems. More recently measurement and 

simulation work has been performed to investigate surface charge 

dynamics on flat insulator surfaces [7, 8, 9]. It has been 

demonstrated that sustained PD activity can lead to an increase in 

surface conductivity due to the formation of conductive by-

products due to discharge activity [10]. More recent work has 

mapped surface conductivity as a function of position at void 

surfaces, demonstrating that discharges may cause inhomogeneous 

damage to void surfaces [11]. Moving forwards it will be necessary 

to consider more complex insulator geometries that may be present 

in operational high voltage plant. The dependency of surface 

conductivity on tangential electric field strength and temperature, 

which is likely to be the norm rather than the exception [4], must 

also be considered. Simulations can be used to inform such 

experimental investigations.  

The purpose of this paper is to present a method to calculate 

surface charge density dynamics. Much of the original literature on 

the subject, [6], does not lend itself to simulation techniques using 

standard simulation tools. This work has adopted equivalent 

analytical methodology, [12], which allows the use of a 

commercial package to provide a numerical solution which 

facilitates simulating surface charge dynamics for a range of 

systems. The approach presented here does not distinguish 

between different types of charge carriers, it is instead focusing on 

solving for the charge densities. An alternative approach would be 

to use a drift diffusion model of space charge, e.g. [13], adapted for 

the movement of charge constrained to a surface. Such a model 

requires a large number of parameters, such as charge carrier 

mobilities and recombination coefficients, which are difficult to 

determine experimentally. In this work this complexity is ignored 

and the only dependent variable at an interface is the surface charge 

density. All surface charge transport is assumed to be captured in a 

surface conductivity with a corresponding surface current density. 

The discussion in this paper on the implementation required to 

calculate the surface divergence of surface current densities would 

be of relevance to any future work which uses drift diffusion 

models of different charge carriers constrained to a surface. 



 

2 THEORY 

In this section the theory behind surface charge density dynamics 

is introduced. All of the fundamental theory is based on 

electrostatics and the conservation of electronic charge. With 

regards to the notation an arrow,  ⃗, is used to represent all vector 

operators and quantities for the sake of clarity.  

 

2.1 GOVERNING EQUATIONS 

For insulation systems under consideration it is generally 

appropriate to use the electrostatic equation to determine electric 

field  𝐸⃗⃗ as follows 

∇⃗⃗⃗ ⋅ 𝐸⃗⃗ =  
𝜌

𝜀0𝜀r
 (1) 

where 𝜌 is the volume charge density, 𝜀0 is the permittivity of free 

space and 𝜀𝑟 is the relative permittivity of the insulation. The 

conservation of charge in the bulk requires that  

𝜕𝜌

𝜕𝑡
+ ∇⃗⃗⃗ ⋅ 𝐽 = 0 (2) 

where 𝐽 is the current density. At interfaces between different 

dielectric materials the conservation of charge requires 

𝜎 = 𝑛⃗⃗ ⋅ (𝜀0𝜀r+𝐸⃗⃗+ − 𝜀0𝜀r−𝐸⃗⃗−) (3) 

𝜕𝜎

𝜕𝑡
+ ∇⃗⃗⃗𝑆 ⋅ 𝐾⃗⃗⃗ + 𝑛⃗⃗ ⋅ (𝐽+ − 𝐽−) = 0 (4) 

where 𝜎 is the surface charge density, ∇⃗⃗⃗𝑆 is the surface divergence, 

𝐾⃗⃗⃗ is the surface current density and 𝑛⃗⃗ is a normal vector on the 

surface. The ± subscripts denote evaluation on different sides of 

the surface with 𝑛⃗⃗ pointing into the positive side.  

 

2.2 SURFACE DIVERGENCE 

In order to simulate surface charge density dynamics, 

Equation (4), it is necessary to calculate the surface divergence of 

the surface current density 𝐾⃗⃗⃗. The definition of surface divergence 

of a vector field 𝐹⃗ that one typically finds in the electrical 

engineering literature is  

∇⃗⃗⃗𝑆 ⋅ 𝐹⃗ = lim
Δ𝐴→0

(
1

Δ𝐴
∮ 𝐹⃗ ⋅ 𝑚⃗⃗⃗

𝐶

) (5) 

where 𝐶 is a closed curve on the surface with an outward facing 

normal vector 𝑚⃗⃗⃗ enclosing an area Δ𝐴. It is important to 

understand that this is not equivalent to the typical three 

dimensional divergence.  

Equation (5) as written is difficult to implement numerically as 

it requires line integrals to be evaluated over mesh elements. 

Arnoldus derived a preferable formulation in [12] where the 

surface divergence is written as  

∇⃗⃗⃗𝑆 ⋅ 𝐹⃗ =
1

√det 𝐺
[

𝜕

𝜕𝑢
(𝐹𝑢√det 𝐺) +

𝜕

𝜕𝑣
(𝐹𝑣√det 𝐺)] (6) 

where  det is the determinant; 𝐺 is the surface metric; 𝑢 and 𝑣 are 

the surface parameters; and 𝐹𝑢 and 𝐹𝑣 are the contravariant 

components of 𝐹⃗. Equation (6) is a differential equation which is 

more amenable to standard numerical techniques. A derivation of 

Equation (6) from Equation (5) is provided in [12]. Earlier work by 

McAllister, [4], derived similar expressions. However, they do not 

appear to have permeated the literature and Equation (5) is 

typically used as written [2, 7]. 

To calculate the surface metric 𝐺 the surface 𝑆 needs to be 

defined first as 

𝑟 = 𝑥(𝑢, 𝑣)𝑒𝑥 + 𝑦(𝑢, 𝑣)𝑒𝑦 + 𝑧(𝑢, 𝑣)𝑒𝑧 (7) 

where 𝑟 is the coordinate vector of points on the surface; 𝑥, 𝑦 and 

𝑧 are functions of the surface parameters; and 𝑒𝑥, 𝑒𝑦 and 𝑒𝑧 are the 

standard Cartesian unit vectors. The surface is spanned by two 

tangent vectors  𝑐𝑢 and 𝑐𝑣 

𝑐𝑢 =
𝜕𝑟

𝜕𝑢
 

(8) 

𝑐𝑣 =
𝜕𝑟

𝜕𝑣
. (9) 

A schematic showing variables of interest for an arbitrary surface 

is provided in Figure 1. 

 
Figure 1. Schematic showing surface variables, electric field and tangential 

electric field for an arbitrary surface parameterized by 𝑢 and 𝑣.  

 

The surface metric 𝐺 is defined as  

𝐺 =  (
𝑐𝑢 ⋅ 𝑐𝑢 𝑐𝑢 ⋅ 𝑐𝑣

𝑐𝑢 ⋅ 𝑐𝑣 𝑐𝑣 ⋅ 𝑐𝑣
), (10) 

the contravariant tangent vectors are defined as  

𝑐𝑢 = 𝐺𝑢𝑢
−1𝑐𝑢 + 𝐺𝑢𝑣

−1𝑐𝑣 (11) 

𝑐𝑣 = 𝐺𝑢𝑣
−1𝑐𝑢 + 𝐺𝑣𝑣

−1𝑐𝑣 (12) 

where 𝐺−1 is the inverse of 𝐺. The contravariant tangent vectors 

are used to calculate the contravariant components of 𝐹⃗ 

𝐹𝑢 = 𝑐𝑢 ⋅ 𝐹⃗ and 𝐹𝑣 = 𝑐𝑣 ⋅ 𝐹⃗. (13) 

The calculations required to solve Equation (6) may appear 

excessive. However, the majority are dependent on the surface 

geometry and as such are unlikely to change during a given 

simulation. Furthermore, it allows the surface divergence to be 

evaluated numerically with greater ease as it is a differential 

equation. 

 A final point regarding surface divergence is that for the special 

case of flat surfaces, i.e. surfaces which can defined as  

𝑟 = 𝑢𝑒𝑥 + 𝑣𝑒𝑦 (14) 

for a given coordinate system, the surface divergence reduces to 

the standard two dimensional divergence 

∇⃗⃗⃗𝑆 ⋅ 𝐹⃗ =
𝜕𝐹𝑥

𝜕𝑥
+

𝜕𝐹𝑦

𝜕𝑦
. (15) 

where 𝐹𝑥 and 𝐹𝑦 are the 𝑥 and 𝑦 components of 𝐹⃗ respectively. 

This result is also mentioned in [12].  



 

 

2.3 ELECTRICAL CONDUCTIVITY 

Assuming that the material is Ohmic the current density 𝐽 and the 

surface current density 𝐾⃗⃗⃗ can be written as  

𝐽 = 𝛾𝐸⃗⃗ (16) 

𝐾⃗⃗⃗ = Γ𝐸⃗⃗t (17) 

where 𝛾 is the volume conductivity, Γ is the surface conductivity 

and 𝐸⃗⃗t is the tangential electric field which can be calculated as  

𝐸⃗⃗t = 𝐸⃗⃗ − (𝑛⃗⃗ ⋅ 𝐸⃗⃗) 𝑛⃗⃗ (18) 

where 𝑛⃗⃗ is the normal unit vector to the surface. It is worth noting 

that the tangential component of the electric field is independent of 

the side of the surface used to evaluate it. This is in contrast to the 

electric field normal to the surface, which may be discontinuous 

due to the changing relative permittivity and the presence of 

surface charge.  

 By defining an electrical conductivity for a given material, be it 

in the bulk or at an interface, it is implicitly assumed that all of the 

mechanisms of conduction can be treated using a single lumped 

parameter, the conductivity, which is not necessarily accurate [14]. 

However, more complex models of conduction, such as drift-

diffusion space charge models, typically introduce additional 

parameters which can be difficult to quantify. Electrical 

conductivity is therefore treated as a meaningful physical property 

in this paper. In the examples considered here it is mostly assumed 

to be independent of temperature and electric field strength for the 

sake of simplicity; no changes to the implementation or the theory 

introduced in Sections 2.1 and 2.2 would be required to introduce 

such dependencies. To remain physically sensible it would be 

required that the surface conductivity is dependent on the 

magnitude of the tangential electric field, rather than the full 

electric field magnitude which will be discontinuous across a 

boundary of materials with different electrical properties. 

Furthermore, as the charge carriers are confined to the surface, 

there would be no reason for the normal field component to 

have any influence.   

It is interesting to note that if the bulk conductivity 𝛾 is treated 

as homogeneous then the conservation of charge, Equation (2), 

prohibits the production of space charge 𝜌. This can be seen by 

substituting Equation (16) into Equation (2), which results in 

𝜕𝜌

𝜕𝑡
+ 𝛾∇⃗⃗⃗ ⋅ 𝐸⃗⃗ + 𝐸⃗⃗ ⋅ ∇⃗⃗⃗𝛾 = 0. (19) 

Substituting Equation (1) into Equation (19), and using the fact that 

homogeneous conductivity means ∇⃗⃗⃗𝛾 = 0⃗⃗,  it follows that 
𝜕𝜌

𝜕𝑡
+ 

𝛾𝜌

𝜀0𝜀r
= 0. (20) 

Assuming 𝜌 = 0 at some time before the application of an applied 

voltage then 𝜌 must remain zero always in order to satisfy Equation 

(20).  

3 IMPLEMENTATION 

The simulations reported in this paper were all implemented 

in Comsol Multiphysics version 5.5. The default numerical 

solvers were found to be adequate for all of the considered 

scenarios. All of the models constructed for the paper were 

two-dimensional, both slice and axisymmetric simulations have 

been considered. The reason for this is two-fold. Firstly, the 

computational cost of three-dimensional models is prodigious 

as relatively fine meshes are required at boundaries in order to 

resolve surface charge dynamics. In many insulation systems 

symmetries can be exploited to produce representative two-

dimensional simulations which can still be used to provide 

insight into the operational three-dimensional system. 

Secondly, the implementation framework that is introduced in 

this paper could only be robustly applied to two-dimensional 

systems. Alternatives required coupling Comsol Multiphysics 

with Matlab and bespoke calculation, which is not in 

accordance with aims of the paper which is presenting an 

approach which is accessible for a more general user.  

The governing equations which must be solved are Equations 

(1), (2), (3) and (4). Two coupled model components were used 

in each Comsol model. A two dimensional component was used 

to solve Equations (1) and (2) for electric potential 𝑉 and space 

charge density 𝜌 respectively in physical space. (1) is solved 

using the default electrostatics library, (2) was solved using a 

Domain Ordinary Differential Equations (ODEs) interface. 

External boundary conditions for 𝑉 are either set to fixed 

equipotential values, or to zero electric field normal to the 

boundary. At internal boundaries the continuity of electric 

potential and tangential electric field strength is enforced, the 

influence of surface charge is considered as per Equation (3).  

The one dimensional component was used to solve Equation 

(4) using a one dimensional Domain ODEs interface. In order 

to calculate 

𝜕

𝜕𝑢
(𝐹𝑢√det 𝐺) (21) 

it was found be necessary to solve for a dependent variable 𝜁 

where  
𝜕𝜁

𝜕𝑡
= 𝐹𝑢√det 𝐺 (22) 

and then solve for 𝜎 separately where 

√det 𝐺
𝜕𝜎

𝜕𝑡
+

𝜕2𝜁

𝜕𝑡𝜕𝑢
+ √det 𝐺 𝑛⃗⃗ ⋅ (𝐽+ − 𝐽−) = 0. (23) 

Transition maps between the one and two dimensional model 

components were implemented using Comsol’s general 

extrusion operators. The map from the one dimensional model 

component to the two dimensional model component is 

inherent from the parameterization of the surface, Equation (7).  

In terms of numerical settings the shape order of the electric 

potential 𝑉 at boundaries where surface charge dynamics are to 

be calculated must be at least cubic. The dependent variable 𝜁, 

which depends on the tangential electric field can then be 

solved using quadratic order elements and the surface charge 

density 𝜎 can be solved for using linear order elements. If the 

shape order was not incremented in this manner between the 

governing equations spurious numerical oscillations were 

observed. The maximum mesh element size was controlled at 

boundaries where surface charge dynamics were calculated and 

within the two dimensional domains. Mesh refinement was 

performed such that the difference in the dependent variables at 

locations of interest was less than 5% when both the maximum 

element size and time step size were halved.  



 

4 COMPARISON WITH ANALYTICAL 
CALCULATIONS 

In this section a simple system is considered which has a known 

analytical solution both as a check of the model implementation 

and to provide a simple example for the reader and to provide 

confidence in using the model to investigate more complex 

systems. The system consists of a three dimensional infinite space 

containing a spherical void of radius 𝑅 and permittivity 1. The void 

is surrounded by a material with a different permittivity, 𝜀ra. 

Initially two point charges of equal magnitude 𝑞 and opposite 

polarity are placed at antipodal points on the sphere. The initial 

state of the system is shown in Figure 2.  

 
Figure 2. Schematic of the initial state of a system with point charges, with 

magnitude 𝑞, at antipodal points on a spherical void with a relative permittivity 

of 1, enclosed within an infinite volume of homogenous dielectric material with 

a relative permittivity of 𝜀ra. The system is axisymmetric with respect to an axis 

between the charges. The axisymmetric surface is parameterized by the polar 

angle 𝑢. 

 

The sphere is parameterized as follows 

𝑟 = 𝑅 cos 𝑣 sin 𝑢 𝑒𝑥 + 𝑅 sin 𝑣 sin 𝑢 𝑒𝑦 + 𝑅 cos 𝑢 𝑒𝑧 (24) 

where 𝑣 ∈ [0,2𝜋), 𝑢 ∈ [0, 𝜋], and with the point charges located 

on the 𝑧 axis. Assuming that the bulk conductivity is negligible 

(𝛾 = 0) the surface charge density can be calculated analytically 

to be  

𝜎 = 2𝜎0 ∑(4𝑛 + 3)𝑃2𝑛+1(cos 𝑢)exp (𝑔(𝑛)
𝑡

𝜏
)

∞

𝑛=0

 (25) 

where 𝜎0 = 𝑞/4𝜋𝑅2, 𝜏 = 𝜀0𝑅/Γ, 𝑃𝑛 is a Legendre polynonmial 

of degree 𝑛 and   

𝑔(𝑛) =
−(2𝑛 + 1)(2𝑛 + 2)

(2𝑛 + 2)𝜀ra + (2𝑛 + 1)
. 

 

(26) 

A full derivation of Equation (25) can be found in [5]. 𝜏 is a 

variable introduced in the analytical calculations but it may also be 

viewed as a characteristic time scale of the surface charge 

dynamics.    

A numerical simulation of the same system is then constructed. 

This requires solving Equation (4). Using the parameterization of 

the surface in Equation (24) the following variables can be 

calculated  

det 𝐺 = 𝑅4 sin2 𝑢 (27) 

𝑐𝑢 =
cos 𝑣 cos 𝑢

𝑅
𝑒𝑥 +

sin 𝑣 cos 𝑢

𝑅
𝑒𝑦 −

sin 𝑢

𝑅
𝑒𝑧 (28) 

𝑐𝑣 = −
sin 𝑣

𝑅 sin 𝑢
𝑒𝑥 +

cos 𝑣

𝑅 sin 𝑢
𝑒𝑦. (29) 

The model is axisymmetric, and as such will calculate the 

tangential electric field in terms of 𝑟 and 𝑧 coordinates. The 𝑥 and 

𝑦 components of the tangential electric field are  

𝐸t 𝑥 = 𝐸t 𝑟 cos 𝑣 (30) 

𝐸t 𝑦 = 𝐸t 𝑟 sin 𝑣. (31) 

Due to symmetry the value of 𝑣 used in the simulations will not 

influence the results and it is therefore set to zero. The contravariant 

components of the surface current density, 𝐾𝑢 and 𝐾𝑣, can then be 

calculated from the tangential electric field. The transition used to 

map from the two dimensional model component to the one 

dimensional model component is 

𝑢 =
𝜋

2
− tan−1 𝑧

𝑟
. (32) 

The physical parameters 𝑅, 𝜎0 and 𝜏 are set to 1 for simplicity. The 

relative permittivity of the surrounding material is set to 4, and is 

treated as an infinite element domain in order to match the 

analytical arrangement. At the far field boundary of the infinite 

element domain the electric potential is set to zero. Symmetry 

boundary conditions are employed on the 𝑟 = 0 axis.  

The initial condition of the analytical calculation of two point 

charges is equivalent to a surface charge density distribution 

consisting of Dirac delta functions. This is not appropriate as an 

initial condition for the simulation as it requires an infinitely large 

surface charge density at the point charge locations and a surface 

charge density of zero everywhere else. Instead the simulation was 

initialized using the analytical solution at 𝑡 = 0.5𝜏, at which time, 

being after 𝑡 = 0, the surface charge density is a smooth finite 

function on the surface of the sphere. When evaluating the 

analytical solution, Equation (25), it is necessary to truncate the 

summation after a suitable number of terms. For the calculations 

performed here 100 terms were used. A comparison between the 

analytical solution and the numerical simulation is provided in 

Figure 3. The percentage difference between the analytical and 

numerical solution is below 1% for all surface charge density 

magnitudes above 𝜎0.   

 
Figure 3. Analytical solution and numerical calculation at different time 

instances for 𝑢 ∈ [0, 𝜋 4⁄ ].  



 

The agreement between the analytical solution and the 

simulation is excellent, which validates the implementation of the 

model. The reader is strongly recommended to make use of these 

analytical calculations when developing models of surface 

conduction. The remainder of the paper demonstrates the potential 

influence of surface conduction for AC PD systems and DC 

insulation systems.  

5 DECAY OF DEPOSITED CHARGE IN AC 
PD SYSTEMS 

PDs occurring within gaseous voids will deploy charge at the 

void boundary which will oppose the electric field that initiated 

the discharge and quench it [15]. Between discharges the 

bipolar charge distributions will undergo neutralization due to 

surface conduction. Indeed the motivation of the analytical 

calculations in [5], which were used in the previous section, was 

to provide insight into this process. In this section systems 

which are more physically realistic than the analytical system 

are considered. Both are axisymmetric, the model geometries 

are provided in Figures 4 and 5.  

 
Figure 4. Axisymmetric model geometry for a spherical air void in epoxy 

resin. Electrical properties and the axial electric potential boundary conditions 

are also provided. 

 

 
Figure 5. Axisymmetric model geometry for a cylindrical air void in LDPE. 

A fillet, with a radius of 0.1 mm, has been applied at the corners of the 

cylindrical void to prevent field singularities. Electrical properties and the axial 

electric potential boundary conditions are also provided.  

 

The systems are intended to be representative of typical PD 

experimental arrangements. Spherical voids in epoxy (𝜀𝑟 =
4.4) can be fabricated by injecting air into the resin before 

curing, and have been investigated in the literature [2, 15]. 

Cylindrical voids in LDPE (𝜀𝑟 = 2.3) are typically fabricated 

using three sheets pressed together with a hole drilled in the 

central sheet [16]. Selecting appropriate values for 

conductivities of the dielectric materials, the air, and the surface 

conductivity is non-trivial, and would in practice need to be 

determined experimentally for each setup. For the illustrative 

purposes of this paper the volume conductivity is set to 

10-13 S/m [2] for the epoxy resin, 10-15 S/m for the LDPE [17] 

and 10-14 S/m for the air [18]. The surface conductivity is set to 

be equal to the volume conductivity of the dielectric multiplied 

by 1 km, which is based on a discussion of the properties of 

epoxy resin in [6]. In both examples the values of bulk 

conductivity were unimportant, the dynamics of the surface 

charge were dominated by surface conductivity. 

In both systems symmetry boundary conditions of zero 

normal electric field were applied at the radial external 

boundaries. The electric potential was set to zero at bottom axial 

boundary. The electric potential at the top axial boundary is set 

to a 50 Hz AC supply with a magnitude of 10 kV.  

The initial distribution of the surface charge density for the 

spherical void is set as the cosine of the polar angle with a peak 

value of 0.55 nC/mm2. This is based on surface charge density 

distributions obtained after a discharge based on simulations of 

the plasma dynamics [19]. The peak value was adjusted such 

that the electric field inside the void was significantly lower 

than the applied field at time zero, where the applied voltage 

has a magnitude of 10 kV.  

For the cylindrical void the initial surface charge distribution 

is set as bipolar Gaussian spots. Explicitly 

𝜎(𝑢, 𝑡 = 0) = 𝜎0exp (−
𝑢2

2𝑠2
)

− 𝜎0exp (−
(𝐿 − 𝑢)2

2𝑠2
) 

(33) 

where 𝜎0 =0.13 nC/mm2, 𝑠 =0.5 mm, 𝑢 is the distance from 

the point 𝑟 =0 mm, 𝑧 =0.5 mm around the surface and 𝐿 is the 

total distance around the surface. The value of 𝜎0 was adjusted 

such that the electric field in the center of the void was 

significantly lower than the applied field at the start of the 

simulation.   

 The basis for this selection was experimental measurements 

performed in [20]. The applied voltage is phase shifted such that 

at 𝑡 = 0 the electric potential is at -10 kV. The magnitude of the 

initial surface charge density distribution was adjusted such that 

the electric field in the void is in the same direction as the 

applied field, but at a much lower magnitude. This is intended 

to represent the condition after a discharge where the electric 

field has been reduced to a residual value [15]. The simulation 

is run for 40 ms, which is equivalent to two applied voltage 

cycles.  

In the implementation it was discussed that a mapping must 

be derived between the two dimensional model where the 

electrostatic equation is solved and the one dimensional model 

which solves for the surface charge dynamics. For the spherical 

void the parameterization introduced in Equation (24) is used. 

For the cylindrical system it was decided to parameterize the 

void by the arc length around the cylinder. 5 general extrusion 

operators were used to map each segment of the cylindrical void 

(3 line segments and 2 curved fillet segments), to the one 

dimensional model.  

The distribution of the surface charge density around the 

surface of the spherical void is shown in Figure 6. The decay of 



 

charge is as expected based on the analytical calculations 

considered in the previous section. An unexpected result is that 

the surface charge density distribution undergoes a polarity 

inversion after the zero crossing at 5 ms. The reason is that 

surface currents will always act to distribute surface charge to 

oppose tangential electric fields. Surface charge may be present 

at the boundary due to the movement of free charge carriers at 

the boundary, which is captured by the surface conductivity, 

and is unrelated to charge deployed by PDs. Of course this 

result is highly dependent on the value of surface conductivity 

which is 10-10 S in this example. The time constant associated 

with the movement of charge is therefore 𝜏 =
𝜀0𝑅 Γ⁄ ≈0.044 ms. This time constant is relatively small 

compared to the 20 ms period of the AC cycle. If a lower value 

of surface conductivity were used surface currents would be 

unable to oppose the applied field and the surface charge 

deployed by the PD would simply decay. While the value of 

surface conductivity, 10-10 S, may appear unphysically high, as 

it results in a void which is effectively conducting and therefore 

unable to sustain internal PD activity, it is in agreement with 

values of volume conductivity quoted in the literature, [2], and 

the relationship between volume and surface conductivity for 

epoxy discussed in [6].  

 
Figure 6. Surface charge density around the surface of the spherical void at 

different time instances. 

 

The lower surface conductivity of the cylindrical void means 

the movement of surface charge has a longer time constant, 

approximately 10 ms, depending on length scale selected to 

represent the void. This longer time constant means that the 

surface charge decays over the two AC cycles, as shown in 

Figure 7. 

It is interesting that a build-up of charge is observed at the 

corner of the void near the fillets. This is due to a combination 

of two factors. Firstly, the local electric field due to initial 

distribution of surface charge does not generate very large 

tangential electric fields along the outer vertical edge of the 

cylinder. This causes an accumulation of charge in the vicinity 

of the fillets in order to generate sufficiently high local electric 

fields to drive surface currents along this vertical edge. The 

second factor is due to the applied field. The applied field will 

have large tangential components along this boundary, which 

will also lead to the accumulation of surface charge due to the 

movement of free charges along the boundary. It is difficult to 

say whether this accumulation of surface charge will inhibit or 

promote PD activity, as it will likely reduce the electric field 

while simultaneously providing a larger number of seed 

electrons for discharges. Surface charge accumulation near the 

vertical edge of cylindrical voids subject to sustained PD 

activity has been measured experimentally [20]. 

 
Figure 7. Surface charge density around the surface of the cylindrical void at 

different time instances.  
  

High values of void surface conductivity can be caused by 

the formation of conductive by-products at void surfaces due to 

sustained discharge activity [16]. It has been demonstrated that 

the formation of carbonized residues can significantly impact 

the structure of electrical trees [21]. For surface conduction to 

significantly impact discharge activity over the time scale of an 

AC cycle requires a surface conductivity magnitude such that 

the time constant associated with the charge dynamics,  

𝜏 =
ε0𝑙

Γ
 (34) 

is the order of milliseconds where 𝑙 is a characteristic length 

scale of the system. High levels of surface conduction will 

influence phase resolved partial discharge (PRPD) patterns  

[15]. At sufficiently high levels of surface conductivity a void 

is, effectively, conducting, which will significantly inhibit PD. 

It should be noted that this is based on order of magnitude 

reasoning, for more specific insights a full model of surface 

charge density dynamics, solving Equation (4), is required.  

6 ELECTRIC FIELD DYNAMICS IN DC 
CABLE INSULATION SYSTEMS 

For AC systems the applied electric field is assumed to be 

determined solely by the permittivity assuming that the 

conductivity is insufficient to generate sufficient charge over a 

half-cycle. In DC insulation systems at fixed electric potential 

that have reached steady state the applied electric field is 

governed by the electrode geometry and conductivity, not the 

permittivity. Before reaching the DC steady state the electric 

field will exhibit transient behavior as it moves between a 

capacitive distribution, determined by the permittivity, and a 

resistive distribution, determined by the conductivity. In this 

section the applied electric field dynamics within a 1 mm 

diameter cylindrical air void in cable insulation are considered 

during this transient. A two dimensional slice model is used, see 

Figure 8. 

The use of a two dimensional slice model means that electric 

field components along the length of the cylinder are implicitly 

ignored. The model is representative of the electric field 

distribution through the midpoint of long cylindrical voids. The 

electric conductivity of the XLPE insulation is assumed to be 



 

temperature dependent, following the work in [3]. A steady 

temperature gradient is present in the insulation with the inner 

conductor set to 60°C and the outer sheath set to 50°C. To 

simplify the parameterization formulae the coordinate origin is 

set at the center of the cylinder rather the conductor. For the 

sake of comparison an additional model was also constructed 

with surface conductivity set to zero. The electric potential at 

the conductor is a smoothed 5 second ramp with a ramp rate of 

10 kV/s. The smoothing of the applied voltage profile, which is 

employed for numerical stability, results in a small inflection 

point near the start of the simulation which is visible due to the 

use of logarithmic axes.   

 
Figure 8. Model geometry of a two dimensional slice model of a cylindrical 

void in XLPE cable insulation. Electrical properties and the radial electric 

potential boundary conditions are also provided. Symmetry boundary 

conditions are employed on the 𝑥 = 0 axis. For clarity the lower half of the 

insulation annulus is excluded from the figure.  

 

The electric field magnitude in the center of the void is shown 

in Figure 9 with surface conductivity neglected and considered 

respectively. It is immediately apparent that the surface 

conductivity has a significant impact on the dynamics. During 

the initial 5 s voltage ramp the surface currents rapidly oppose 

the change in voltage, not allowing the electric field in the void 

to exceed 0.015 kV/mm. This is in contrast to the electric field 

in the void when surface conductivity is neglected, which 

reaches over 4 kV/mm. This means that surface conductivity 

would prevent PD activity in the void during the ramp.  When 

the ramp has finished surface currents act to rapidly reduce the 

tangential fields around the surface of the void, which 

effectively leads to an equipotential region with a very low 

electric field strength.  

Over longer timescales the bulk conductivity becomes 

important. For the model where surface conductivity is 

neglected the field in void falls between 103 and 104 s due the 

higher conductivity of air compared to XLPE leading to a 

discontinuous normal current density 𝑛⃗⃗ ⋅ (𝐽+ − 𝐽−) ≠ 0. 

Surface charge will accumulate at the boundary, see Equation 

(4), even when the surface conductivity and consequently the 

surface current density, is zero. When the steady state is reached 

the normal current density each side of the boundary will be 

equal and, as the electrical conductivity of air is larger than that 

of XLPE, the electric field in the air must be lower than that in 

the XLPE.  

When surface conductivity is considered a small rise and fall 

in the void electric field is observed due to the accumulation of 

positive space charge in the bulk insulation see Figure 9. 

Accumulation of space charge occurs due to the fact that the 

bulk XLPE conductivity is temperature dependent and therefore 

spatially dependent. Therefore, ∇⃗⃗⃗𝛾 ≠ 0⃗⃗, which will lead to 

changes in volume charge density, which is initially set to zero, 

through Equation (19). The accumulation of space charge 

occurs faster in the warmer regions of the insulation, due to the 

higher conductivity gradient, compared to the cooler regions.  

The value of surface conductivity used in these simulations 

is obviously critical, and in practice would need to be 

determined experimentally to compare against measured data. 

Based on the time scales of the surface charge dynamics, it is 

expected that for a ramp in the order of seconds the surface 

conductivity would have to be in the order of 10-14 S to 

significantly influence the electric field dynamics in the void 

during the ramp. For surface conduction to have a negligible 

impact on void field dynamics, compared to volume 

conduction, requires 

𝛾air ≫
Γ

𝑅
 (35) 

For the system under consideration this would mean that the 

surface conductivity would have to be significantly lower than 

10-17 S for surface conduction to be insignificant compared to 

volume conduction.  

 
Figure 9. Electric field in the center of the cylindrical void with surface 

conductivity set to zero. 

7 CONCLUSIONS 

The purpose of this paper is to demonstrate how surface 

charge dynamics can be simulated and to illustrate the 

significant impact they can have on electric field distributions 

within insulation systems. The contributions of the paper are as 

follows: 

 

• The surface divergence operator has been introduced in 

differential form, Equation (6), which is more amenable 

for numerical simulations. The calculations that are 

required to determine the surface metric and the 

contravariant tangent vectors have been introduced. This 

provides the framework for a numerical simulation of 

surface charge dynamics.  



 

• Earlier analytical calculations by McAllister, [5], have 

been used for the purposes of simulation validation. This 

paper serves as a reminder of this existing historical 

work, and stresses the need to validate model 

implementation. 

 

• Surface conductivities quoted in the literature have the 

capability to significantly alter electric field dynamics 

under both AC and DC conditions. It should be clearly 

stated the theoretical background to the calculations is 

based on fundamental physics: electrostatics and the 

conservation of charge. The major uncertainty is in the 

input values used for electrical conductivity, both 

surface and volume. Careful consideration should be 

given to whether it is appropriate to lump together 

complex volume and surface charge transport into 

“electrical conductivities” for insulating materials. 

 

Moving forwards it may be necessary to develop more complex 

models of surface charge transport using electrons and holes 

following space charge drift diffusion models [13]. In such 

cases calculating the surface divergence of a charge carrier flux 

would be required and could be guided by the model 

implementation introduced in this paper.  
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