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Abstract

In an earlier paper, we constructed the genus-two amplitudes for five external mass-
less states in Type II and Heterotic string theory, and showed that the o/ expansion of
the Type Il amplitude reproduces the corresponding supergravity amplitude to lead-
ing order. In this paper, we analyze the effective interactions induced by Type IIB
superstrings beyond supergravity, both for U(1)g-preserving amplitudes such as for
five gravitons, and for U(1)g-violating amplitudes such as for one dilaton and four
gravitons. At each order in o/, the coefficients of the effective interactions are given by
integrals over moduli space of genus-two modular graph functions, generalizing those
already encountered for four external massless states. To leading and sub-leading or-
ders, the coefficients of the effective interactions D?R® and D*R® are found to match
those of D*R* and DSR?, respectively, as required by non-linear supersymmetry. To
the next order, a DSR? effective interaction arises, which is independent of the super-
symmetric completion of D¥R?*, and already arose at genus one. A novel identity on
genus-two modular graph functions, which we prove, ensures that up to order DSR?,
the five-point amplitudes require only a single new modular graph function in addition
to those needed for the four-point amplitude. We check that the supergravity limit of
U(1)g-violating amplitudes is free of UV divergences to this order, consistently with
the known structure of divergences in Type IIB supergravity. Our results give strong
consistency tests on the full five-point amplitude, and pave the way for understanding
S-duality beyond the BPS-protected sector.
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1 Introduction

Scattering amplitudes of massless states are the basic observables in string theory and, in
principle, are well-defined at arbitrary order in perturbation theory (for reviews see [1, 2,
3, 4]). They are UV-finite by construction and, in the o/ expansion, reduce to supergravity
amplitudes plus an infinite series in o’ of effective interactions [5]. In practice, however,
the explicit evaluation of superstring amplitudes rapidly becomes prohibitively complicated
beyond genus one. For a long time the state of the art has been the four-point genus-
two amplitude which was constructed in the Ramond-Neveu-Schwarz (RNS) formalism (see
[6] and references therein), reproduced in the pure spinor (PS) formalism and extended to
include external fermions [7].

Beyond this, partial results have been obtained in the PS formalism for the five-point
two-loop amplitude [8], and the four-point three-loop amplitude [9]. A major obstacle to
explicit evaluations in the PS formalism (in its non-minimal version) is due to the composite
b-ghost [10], which diverges at the origin of the cone of pure spinor zero-modes and requires a
large number of Wick contractions. As a consequence, in both cases the string integrand was
determined only up to regular terms (multiplied by the usual Koba-Nielsen factor). These
ambiguities do not affect the leading behavior as o/ — 0, which was successfully matched to
the UV divergence of the respective supergravity integrands.

Recently, by combining the non-minimal pure spinor formalism with the chiral splitting
formalism initially developed for the RNS formalism [1, 11], we obtained the full genus-two
amplitude for five arbitrary massless external states in Type II and Heterotic strings [12].
This result followed from two key requirements imposed on the amplitude, namely BRST
invariance along with invariance under “homology shifts”, which consist of the combined
action of taking one vertex point around a homology cycle on the genus-two surface, and
shifting the corresponding loop momentum. It turns out that these requirements are strong
enough to fix the chiral amplitude completely, given the operator product expansion (OPE)
singularities between the canonical worldsheet fields. The full amplitude is obtained by
assembling the chiral amplitudes for the left- and right-movers (or the chiral amplitude with
the Chan-Paton factors for open strings), and integrating over loop momenta, vertex points,
and moduli of the genus-two surface.

To leading order in the o/ — 0 expansion, the integral giving the string amplitude
was shown to reproduce the kinematic numerators of the two-loop five-point supergravity
diagrams, which were computed for four-dimensional N’ = 8 supergravity in [13] and for ten-
dimensional Type II supergravity states in [14]. In a companion paper [15], the genus-two
amplitude for five NS states will be derived from first principles within the RNS formalism.



In this paper, we shall use the results of [12] as the starting point for a systematic anal-
ysis of the low energy expansion of the five-point amplitude beyond leading order. Such an
analysis is part of a general endeavor to understand the structure of the low energy effective
action in superstring theories both in perturbation theory and at the non-perturbative level.
For Type IIB superstring theory in 10-dimensional Minkowski space-time, S-duality allows
one to make sharp and quantitative predictions of non-perturbative contributions to certain
protected couplings. Specifically, combining perturbative results at tree-level and genus-one
orders for the four-graviton scattering amplitude with requirements of space-time super-
symmetry and S-duality invariance [16, 17, 18, 19, 20], the axion-dilaton dependence of the
coefficients of the effective interactions of the form R* D*R?* and D%R* were determined
in terms of non-holomorphic modular functions of SL(2,7Z). This has been accomplished
not only in ten dimensions but also after compactification on a torus, in terms of certain
automorphic functions of the U-duality group (see e.g. [21, 22, 23] and references therein).

The analytic structure of the genus-one four-graviton amplitude was established in [24]
based on the moduli-space integrand in [5]. Perturbative contributions to the effective inter-
actions R*, D*R* and D°R* were extracted and analyzed at genus one in [25, 26, 27|, and
at genus two in [28, 29, 30], the analysis being extended up to order D¥R? in [31, 32]. The
integrand at a given order is a linear combination of “modular graph functions” (MGFs), a
class of real analytic modular functions which arise by integrating products of Green func-
tions over the vertex points [33, 31]. However, while these perturbative contributions are
under analytic control, supersymmetry and S-duality no longer appear to determine the full
automorphic forms under the S-duality group beyond DR

For five-graviton scattering, the low energy expansion has so far been considered sys-
tematically at tree level [34] and one loop [35, 36] only, while a preliminary analysis of the
two-loop amplitude at leading order was performed in [8]. A key result from the one-loop
analysis in [35] was that the five-point integrand at any order in o can be expressed as a
linear combination of MGFs similar to the four-point case. Moreover, the very same linear
combinations were found to govern the five-point D?*R® and four-point D?**2R* interac-
tions for £k = 1,2. Since the tree-level coefficients are also identical — namely (5 in case of
D*R*, D*R® and (2 in case of DSR*, DYR5 — this suggests that both interactions are related
by non-linear supersymmetry and are multiplied by the same automorphic form.

For the D**R5 and D*2R* effective interactions at k > 3, by contrast, it was found [35]
that new linear combinations of MGF's occur in the five-point amplitude, which indicates
the presence of new supersymmetric invariants not present at tree level. The first example of
this occurs for k=3, leading to a five-point effective interaction which we denote by (D%R?)’
to distinguish it from the DSR?® interaction related by non-linear supersymmetry to D8R



Another key aspect of the one-loop analysis in [35] was the study of amplitudes violating
the U(1)g global symmetry of classical ten-dimensional Type IIB supergravity: due to a one-
loop anomaly [37], n-point string amplitudes may violate the conservation of U(1)g charge by
up to +2(n —4) units (see e.g. [38, 39, 40]). At five points, this violation occurs for 1-dilaton
4-graviton scattering, schematically denoted by ¢R*, or 3-gravitons 2-Kalb-Ramond fields',
denoted by G?*R3, which are both maximally R-violating amplitudes in the language of [39].
In this case the automorphic form multiplying these interactions can no longer be invariant
under S-duality, but must carry a modular weight so as to cancel the phase variation of
the interaction vertex under S-duality. At low orders in o, the analysis of [35] indicates
that the automorphic form for U(1)g-violating interactions is related to the automorphic
function for the U(1)g-preserving ones by a raising operator (or modular derivative), which
suggests that both interactions are part of the same supersymmetric invariant. However,
this correspondence breaks down for k = 5, where a U(1)g-violating interaction of the form
D2G?*R? arises which is not related to any U(1)g-preserving interaction of type DIOR®.

In this paper, we analyze the first few orders in the low energy expansion of the genus-
two 5-point amplitude of [12], for various choices of external massless states of Type IIB
and ITA superstrings. In general, we find that, at each order, the integrand on genus-two
moduli space is a linear combination of genus-two MGFs, a class of real-analytic Siegel
modular functions which arise by integrating products of Arakelov Green functions (and
partial derivatives thereof) against suitable top forms on multiple copies of the genus-two
curve 3 [31, 32]. Quite remarkably, we find that the many MGFs occurring at order DR’
(some of which previously considered in [41]) can all be reduced to linear combinations of
5 basic ones Zi, ..., Z5 defined in (3.14) below, along with the square ¢?* of the Kawazumi-
Zhang invariant ¢; the latter occurs in the four-point amplitude at order D®R* [29], and
reappears in the five-point amplitude at order D*R®. The graphs for the relevant genus-two
MGFs are presented in Figure 1.

Moreover, we find that one of these six MGFs can be eliminated by virtue of a novel
identity amongst five of them,

1
Zl+22+23+524—(p2:0 (11)

This identity is quite remarkable since it relates different graph topologies, and can be viewed
as a genus-two analogue of the identities between genus-one MGF's proven in [42, 43, 44, 45].

!By a slight abuse of nomenclature, we refer to the complex combination of RR and NS two-form fields
in Type IIB supergravity as the Kalb-Ramond field, and denote its 3-form field strength by G. In our
conventions the dilaton fluctuation ¢ carries 2 units of U(1)g-charge, G carries one unit and R is neutral.
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It would be interesting to revisit the analysis of the Laplace equation on genus-two modular
graph functions in [41] in view of the identity (1.1) and the simpler identities (A.16).

In the non-separating degeneration limit, identity (1.1) implies a novel identity (3.16) for
genus-one elliptic MGFs?, which suggests that the identites of [42, 43, 44, 45] may admit far
reaching generalizations in the elliptic and Siegel cases. The identity (1.1) is motivated by
the analysis of degeneration limits in appendix C, and derived in appendix D by exploiting
a novel lemma (D.1), which relates derivatives 0.,G(z;, z;) and 0.,G(z;, 2;) of the Arakelov
Green function at arbitrary genus. Another interesting fact is that the MGF Zj involving
two derivatives of Green functions tends to zero both in the separating and non-separating
degenerations, unlike the others which diverge in both limits, so that it leaves no trace in
the supergravity limit.

The details of the string integrand on moduli space depend on the order in the expansion
and the choice of external massless states of the Type IIB multiplet, as follows.

e In the U(1)g-preserving sector, at order D*R5 with k = 1,2, we find the same inte-
grand (namely the constant measure du, on the Siegel upper half plane at order D*R®,
and the Kawazumi-Zhang measure ¢ duy at order D*R®) as for the four-point ampli-
tude at order D?***?R* up to overall normalization. This supports the expectation
that the D?R® and D*R’ interactions belong to the same non-linear supersymmetric
invariant as the D*R* and D%R* interactions, respectively, and should appear with
the same automorphic coefficient in the low energy effective action, denoted by & )
and &,y in the standard fashion after [25].

e In the U(1)g-preserving sector, at order DSR5, we find two distinct kinematic struc-
tures, one identical to the tree-level interaction, and the other identical to the genus-one
(DSR5) effective interaction. In the former case, the integrand is proportional to the
same combination Z; — 22, + Z5 of genus-two MGF's appearing at order D8R* in four-
graviton scattering, with the correct coefficient relative to the tree-level and genus-one
amplitude. This confirms that D®R?* and DSR® belong to a single supersymmetric
invariant, with an automorphic coefficient £ ) receiving tree-level up to genus-two
contributions (and presumably higher genera as well). By contrast, the integrand for
the genus-two (DSR5)’ involves the new MGFs Z4, Z5 and ? (one of which can be
eliminated by virtue of (1.1)). Along with the genus-one amplitude computed in [35],

2Elliptic MGFs are real-analytic functions of (,v), which are doubly periodic in v and modular invariant;
they can be obtained from the conventional MGFs of [33] by leaving one vertex position unintegrated, and
have also been referred to as generalized MGF's in [32].



this predicts the first two terms in the weak coupling expansion of a new automorphic
coefficient &30y which presumably also involves contributions of arbitrary genera.

e In the U(1)g-violating sector, at orders ¢D?R?* and ¢D*R?, we find the same inte-
grand as in the U(1)g-preserving sector, up to a relative coefficient —3/5 and —1/3,
respectively. As we explain in section 5, this is consistent with linear supersymmetry
and S-duality, which relate the ratio of coefficients of the D?**R> and ¢ D?***+?R* at dif-
ferent loop orders by the action of a raising operator (or modular covariant derivative
operator). At the next order, there are again two different kinematic structures ¢ D¥R*
and (¢D®*R?)’, as in the one-loop 5-point amplitude [35]. For the first, the integrand
is equal to the one for D®R5 up to a relative coefficient 1/7, consistent with linear
supersymmetry. For the second, there is no obvious relation between the (D%R%)" and
(¢ DPR?) integrands, except for the fact that they are both linear combinations of the
same MGFs Z;, ©? (subject to the relation (1.1)). By requiring that the integrated
couplings be related by linear supersymmetry, we predict a relation between the diver-
gent parts of the modular integrals on My, which we check against the behavior of the
integrand in the non-separating degeneration limit.

e Extracting the supergravity limit of the 1-dilaton, 4-graviton amplitude in any dimen-
sion D, we confirm the absence of UV divergences in this sector, in agreement with the
known structure of UV divergences in supergravity at two loops [46]. The consistency
of the low energy expansion with supersymmetry and S-duality provides a strong check
on the full five-point amplitude constructed in [12].

Before proceeding further, we make two important comments. First, the notation D**R?
is a moniker for the Taylor coefficient of order p***'° in the momentum expansion of the
5-graviton amplitude; in general it includes both irreducible contributions from local inter-
actions of the form D?**R?® in the low energy effective action, where R is the Riemann tensor
and D are covariant derivatives, with indices suitably contracted with the metric tensor, as
well as reducible contributions from local interactions of the form D?**2R* and supergravity
vertices. We do not attempt to disentangle these various contributions at two loops, but
rather express the kinematic dependence of the Taylor coefficients at two loops in terms of
tensorial quantities appearing at tree level or one loop; the procedure for subtracting re-
ducible diagrams is then identical to the one required at these lower orders (see e.g. [47] at
genus one). The same holds for the notation ¢D?**?R* which is a moniker for the Taylor

26410 in the momentum expansion of the 1-dilaton 4-graviton amplitude.

coefficient of order p
Note that the constraints of S-duality on the low energy effective action translate directly

into constrains on the corresponding Taylor coefficients in the amplitudes [35].

9



The second comment is that in certain space-time dimensions D correlated with the order
in the o’ expansion, these local effective interactions can mix with non-local interactions
mediated by massless particles. In such cases a sliding scale must be specified to separate
these effects [48, 49]. This is in particular the case for the D®R* and D®R® interactions in
D = 10. Since we are mostly interested in the integrand, we shall mostly ignore these issues
in this paper, except at some places in sections 4 and 5.

Organization

The remainder of this paper is organized as follows. In section 2 we review the necessary
results from paper [12] on the structure of the genus-two amplitude for five external massless
states, and give simplified effective rules to extract the contribution from bosonic external
states. In section 3 we decompose the genus-two five-point amplitude into a sum of products
of kinematic factors times integrals in the vertex points on the genus-two Riemann surface,
perform the o/ expansion of these integrals up to orders high enough to access the effec-
tive interactions of order DSR®, and prove the above-mentioned identity between genus-two
MGFs. In section 4, we extract the actual effective interactions up to order D®R*, and
present simplified concrete formulas for the separate cases of Type IIA and Type IIB super-
strings. In section 5 we compare our perturbative results with predictions from S-duality and
from the structure of UV divergences in supergravity. An overview of the function theory
on Riemann surfaces of genus two is presented in appendix A; the detailed calculations of
the o' expansion of the genus-two integrals is given in section B; the analysis of the non-
separating, separating, and tropical degenerations of the integrals is given in appendix C;
the identity (1.1) is proved in appendix D and details on the overall normalization of the
genus-two amplitude are given in appendix E.
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2 Review of the four- and five-point amplitudes

In this section, we review the structure of the genus-two chiral superstring amplitude for
five massless states, as well as the physical amplitude in Type II string theory obtained by
pairing left and right chiral amplitudes constructed in [12]. For comparison we also include
the genus-two amplitude for four massless NS states, first computed in the RNS formalism
in [6, 28, 50| (based on the genus-two measure constructed in [51, 52, 53, 54] which was
re-derived using methods of algebraic geometry in [55]), and reproduced in the PS formalism
and extended to include external fermions in [7, 56, 57]. Finally, we shall present a set of
effective rules to extract the massless Neveu-Schwarz content of the pure spinor building
blocks. These rules will allow us to re-express the results of [12], and of section 4 of this
paper, in terms of the familiar tg and €9 tensors and thereby facilitate the comparison with
the RNS genus-two computation in [15].

2.1 Chiral Splitting

The construction of the full integrand in [12] hinges on chiral splitting [1, 11], which allows
us to decompose the integrand of the amplitude at fixed loop momentum into the product
of chiral and anti-chiral amplitudes, associated to the left- and right-movers, respectively, *

A = 500 A, [

M

|d3Q|2/ / dpf(]\/')(zzykmp[> ﬁ(N)(Ziv_];;h_pI) (21>
9 »N JR20

Here, M is a fundamental domain in the rank 2 Siegel upper-half space, which may be
parametrized locally by the period matrix Q;; and d*Q = dQ;,dQ12d s, is the holomorphic
top form on Ms. The loop momenta for genus two are p’ = (p!,p?) with pt,p* € R'? and
the volume form for the integration over loop momenta is dp = d'°p' d'°p?. The chiral and
anti-chiral amplitudes may be further decomposed as follows,

Fovy = (K)o Zwy Fovy = (K)o Iy (2.2)

where (K(ny)o and (K(n))o are the left- and right-moving chiral correlators, which will be
discussed in detail in subsection 2.2, and Zy is the chiral Koba-Nielsen factor. Finally, the
prefactor Ny is a normalization factor, which will include the dependence on the dilaton
vacuum expectation value, and which we shall fix in section 4.

The chiral Koba-Nielsen factor depends on the positions of the vertex operators z;, the
external momenta k; and the loop momenta p’ and is given by the following universal formula,

3Throughout we denote d(k) = (2m)1°6(19 (3", k;) where k; are the momenta of the external states.
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independently of the particular string theory under consideration,*

N Z N
iy (2, ki, p') = exp {iWQIJPI p’ + Z 2mip! - k‘z/ wr — Z sij In B (2, Z])} (2.3)

i=1 2 i<j

where w; are holomorphic Abelian differentials, €2;; are the components of the period matrix,
and E is the prime form. The dimensionless kinematic variables s;; are defined by,

/

The chiral Koba-Nielsen factor Z(y), as well as the full chiral amplitude F(yy, enjoy two
fundamental properties [1, 11]: they are locally holomorphic in z; and Q;; and are invariant
under combined shifts of the points z; by homology cycles 2l ;, B ;, multiplication by a phase,
and a shift in loop momenta, given as follows for Zy,,

Iiny (2 ki, p') = e 2mPIH Iiny (2 + 65525, ki, p")
I(N)(Zi> k‘i,pl) = I(N)(Zz + 5@'%], ki,pl — 55' k’j) (25)

We refer to these combined transformations as homology shifts. The complex conjugate
of the anti-chiral amplitude ]:"(N) satisfies the above homology shift invariance with inverse
phase factor. As a result, the integral over loop momenta of the product of chiral and anti-
chiral amplitudes is single-valued in each z; and produces a well-defined integral over XV,

2.2 The chiral correlator

The chiral correlator (K(x))o depends on the same data as Zy), along with the left-moving
polarization vectors " and spinors x§* describing the external states of the ten-dimensional
super-Yang-Mills (SYM) multiplet. The function Ky further depends on the zero modes of
the spinor fields 6%, A* (subject to the pure spinor constraint Ay™\ = 0) and may be thought
of as a superfield. The bracket ()¢ picks up the coefficient of (Ay™8)(Ay"0)(AvP0)(07mnpt)
from IC(ny in the cohomology of the left-moving BRST charge [58, 59]. It will often be
convenient to manipulate the full superfield /C(yy rather than its component (Kn))o and, by
a slight abuse of notation, we shall refer to both as chiral correlators.

40ur conventions will follow those of appendix B in [12] and are summarized in appendix A of this paper.
In particular, we adopt the Einstein summation conventions for repeated indices I,J,... = 1,2 and often
abbreviate the point z;, as an argument of a function, simply by ¢, for example in A(4, j) = A(z;, z;) below.

12



The chiral correlator IC(yy is a locally holomorphic (1, 0) form in each vertex point z;, and
is invariant under homology shifts but, in contrast to Zyy and JF(y), without phase factors,

Ky (ziy kiy ") = Ky (25 + 63525, ki, p7)
Ky (i ki ') = Ky (20 + 03B 1, ki p — 85 k) (2.6)

The anti-chiral correlator <I€(N)>0 is expressed analogously in terms of the right-moving

m
7

polarization vectors £/, and right-moving spinors x{ for the Type II strings or the right-
moving gauge data for Heterotic strings. The corresponding superfield IQN) additionally
depends on the zero modes of the right-moving spinor fields 8%, \*. As usual, the left- and
right-moving Weyl spinors 6%, A* and 6, \* have the same chirality for Type IIB strings, or
opposite chirality for Type IIA strings.

The chiral correlator Ky is independent of loop momenta, and given by [7],
]C(4) — T172‘374 A(4, 1) A(2, 3) —|— T174|273 A(l, 2) A(B, 4) (27)

where A(z,y) = —A(y, x) is the standard bi-holomorphic one-form (see appendix A), and
the superfield T1 534 is a function of the momenta k", polarization vectors €j", spinors x,
and the zero modes of 8% and A*. The anti-chiral correlator 16(4) is given by the same formula,
with T 93,4 replaced by T172‘374 which depends on k", €7, x¢, 0% and \°.

The chiral correlator K5 and its counterpart 16(5) for Type II strings were shown in [12]
to be linear in the loop momenta p!, and were decomposed as follows,

Ky =W +2mi ﬁan}n
/6(5) =W+ 2mi ﬁfn]}}n (2.8)

where p’ is the shifted loop momentum defined by,
5 2
pl=p+ YIJZ k; Im / Wy (2.9)
i=1 20

with Y/ the inverse of the imaginary part Y;; = Im Q;; of the period matrix 2.

Several equivalent representations of the chiral correlator K5 were given in sections
5 and 6 of [12], each one manifesting different properties of the integrand in (2.1). The
representation in terms of superspace building blocks T’ 1’7273| 45 and Sy;2j34,5, to be reviewed
below, is given by,”

Vit =175 505 wr(2)A(3,4)A(5,1) + cycl(1,2,3,4,5)

For reasons to become clear in section 4, we have restored a factor of %/ in order to match with the
conventions of [8], see e.g. (5.40) of that reference.

13



/
W = (%)le+(1,2|1,2,3,4, 5) (2.10)

The notation + cycl(1,2,3,4,5) stands for the addition of all cyclic permutations, while
+(4,j]1,2,3,4,5) stands for the addition of all ordered choices of i and j from the set
{1,2,3,4,5} for a total of (g) = 10 terms. The function Q;5 is given by,

Q12 = —0:1G(1,2) [51;2\3|4,5A(2> 4)A(3,5) + Si2435A0(2,3) A4, 5)}
—G(2,1) [Sa.1131,5A(1,4) A(3,5) + So1ja35A(1, 3)A(4,5)] (2.11)

where G(i,7) = G(z;, z;) is the Arakelov Green function (see appendix A.5 or [31, §2.4]).

While the expression (2.11) is compact, it does not optimally expose the singularities of
the correlator at coincident vertex positions z; — 25. This is achieved by the alternative
representation,

Qo = —91G(1,2)[T12,3452(2,4)A(3,5) + Tio,435A(2, 3)A(4,5)]
— 82113145 [01G(1,2) A(2,4)A(3,5) + 02G(2, 1) A(1,4)A(3,5)]
—So1a35[N1G (1, 2)A(2,3)A(4,5) + 0:G(2, 1)A(1, 3)A(4,5)] (2.12)

where the singularity as z; — 2z is contained entirely in the first line, while the second and
third lines are manifestly regular due to the cancellation of the poles from 0,G(1,2) and
02G(1,2). In particular, (2.12) makes it manifest that the residues of kinematic poles in the
integrated amplitude will only feature permutations of |Ti23)45/.

When discussing the difference between Type ITA and Type IIB amplitudes in sections 4.3
and 4.4, a third representation of the correlator will become convenient, given in terms of

VI = O 55 wr(2)A(3,4)A(5,1) + cycl(1,2,3,4,5)

/
W = (%>912+(1,2|1,2,3,4, 5) (2.13)
with

@12 = —51201G(1,2) [Cl;2|3\4,5A(274)A(37 5) + Ch2j4350(2, 3) A(4, 5)}
—5120:G(2,1) [Cos131a,5A(1, 4)A(3,5) + Cojas sA(1, 3)A(4,5)] (2.14)

Here, the superfields C’{’f273| 45 and C';2j34,5 are non-local, but manifestly BRST-closed, build-
ing blocks to be described below. The correlators of (2.13) can be shown to be equivalent
to (2.10) after substituting the relations to be given below in (2.24) and discarding total
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derivatives®. Note that, in both of these representations, Q;» and @12 are totally sym-
metric in the omitted labels 3,4,5 due to the symmetries of the building blocks as well as
A(2,3)A(4,5) + cye(3,4,5) = 0.

Similar expressions are valid for the right-moving parts W and V, with T 1'9.314,5 and
S121314,5 replaced by their counterparts T1772,3|4,5 and S;934,5 depending on the zero modes of
0% and A\* (with the usual chirality flip for Type IIA).

2.3 Scalar and vector superspace building blocks

To complete the definition of the integrands, it remains to specify the superspace constituents
referred to above as “building blocks”. These are kinematic expressions in pure spinor
superspace, constructed using the multiparticle formalism of the standard superfields of ten-
dimensional SYM [61].

2.3.1 Local building blocks

The four-point scalar block 77 934 was constructed in [7, 57| and satisfies,

QT 234 =0
Ti234 = To134 = T3412
Tip34 = —T1 3142 — T14p2,3 (2.15)

where @ = A*D,, is the BRST operator of the pure spinor formalism [58] with,
0 1 0

Da = A - —(y™0 aa o

age + 30" Vagym

The derivative with respect to 2™ acts on the plane-wave factor e’

(2.16)

k2 of each superfield to

produce a factor of ik,,. The properties (2.15) along with the antisymmetry of A(i, j) ensure
the invariance of (2.7) under permutations of the 4 external states.

The five-point vector block 777 3145 Was constructed in [14] so as to satisfy,
QT 5145 = 1k Vi To3a5 + iky' VoI5 1145 + ik5" V3 T1 gja 5 (2.17)
as well as the following symmetry relations,

m __mm m m
T1,2,3\4,5 = T3,4,5|1,2 + T2,4,5\1,3 + T1,4,5\2,3 (2.18)

6The correlators of (2.10) and (2.13) may be formally related by the substitution rule T 5145 = Cla g4

and S1,2(34,5 — 512C1;213)4,5- This rule mimics similar manipulations observed at one loop [60].
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m _ m . m . m
T1,2,3\4,5 = T1,3,2|4,5 = T2,1,3|4,5 = T1,2,3\5,4

where V; are the BRST-closed one-particle unintegrated vertex operators. The relations
(2.18) ensure that V" in (2.10) is invariant under permutations of the five external legs.

In addition, a scalar superfield T35 345 Was constructed in [14] using two-particle super-
fields obeying,

QT12,3|4,5 = 812(‘/1T2,3|4,5 - V2T1,3\4,5) (2-19)

as well as Ty 3145 = T'2,3/5,4 and the “Jacobi” symmetry,
Ti23145 + Ti2453 + Ti2534 =0 (2.20)

Finally, the five-point scalar blocks in (2.11) are given by [12],

S12314,5 = %(i(klm+k£”—k§”)T$,34,5 + 112345 + 1132145 + T23,1\4,5> (2.21)
and satisfy,
QS123145 = s12ViTo 345,  St2345 = S121354, 112,345 = S1;2314,5 — S5211314,5 (2.22)
Furthermore, we have the following relations between permutations of (2.21),

S121314,5 + S1:2145,3 + S1;25(3,4 =

0
Sto1314,5 + S131214,5 + S1ap52,3 + S1isjaj2,3 =0

12

(2.23)

where = denotes an equality in the BRST cohomology. Importantly, the bosonic components
of the vector building blocks T{Eg‘ 45 are proportional to kS® while those of the scalar blocks
T12,3)4,5 and Si;)34,5 are proportional to k7, where € represents the SYM polarization vector.

. . m ~m -~
As a consequence, gravitational components of T1’273‘475T1’273‘475 and 1o 314,5112,34,5/ k1 - ko have
the mass dimension of D?*R?.

2.3.2 Non-local building blocks

Besides the above building blocks, which are polynomials in external momenta, it will be
useful to introduce the non-local combinations introduced in section 5.4 of [12],

1
Clsjapes = —<

4 513 S14 S12 S15
om _m L pm Stai3a Susj2za Sizps - St
51234 = 451234 ~ ;M1 + + +

3S1a14125  Stapizs S12053.4 51;5|2374>

512 S15 513 S14
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B Ekgn<52;1|53,4 N S9:501/3,4 N So.304/1,5 N S2.41311,5
4 S12 So5 So3 524
B ikgn<55;1|23,4 n S5:2(1/3,4 N S;314/1,2 n 55;43|1,2> (2.24)
4 S15 S25 S35 S45
that are manifestly BRST invariant
QC?1,2\3,4 =0
QC1 31425 =0 (2.25)
In addition, they satisfy the following relations [12],
iky' Ql,2|3,4 = 81201;2|5\3,4 + 82505;2\1|3,4
iky" ?1,2|3,4 = 51301:31402,5 + 523C2:3411,5 + 535C5:3)411,2
0 = 519051 153,4 + 525C%:50113,4 + 523C%;31411,5 + 524C04131,5
0= Coaspza + Conapss + Coajzias
0= Caupza — Coislas (2.26)

Importantly, the invariants C{?}273\ 45 and Cizp3)45, which we call “two-loop BRST invariants”,
can be rewritten in terms of similar BRST invariants Cl, ; , 5 and Chja 45 [61, 60] (the “one-
loop BRST invariants”) which occur” in the integrand of the one-loop five-point amplitude
[35, 62]. Using the components <CI’|12,374,5>0 and (Cij23,4,5)0 available for download from [63],
one finds [12],
T2,3|4,5 = _16345017\12,3,4,5 + 8(ky" — kgn)54501\45,2,3

+4ky" (845(01\24,3,5 + Cij25,3.4) + (513 + 323)01\23,4,5)

+4k3' (845(01\34,2,5 + Cipzs,24) — (812 + 823)01\23,4,5))

—4 (K 4+ k5 + K5 (524C 23,5 + S25Chps,34 + (2 4 3)) (2.27)

and
Chiozas = 4(52401|24,3,5 + 525C1 125,34 + 53401 34,2,5 + 535C135,2,4 — 252301|23,4,5) (2.28)

In turn, the components of the one-loop BRST invariants can be expressed as combinations
of color-ordered tree amplitudes® [61, 60,

<C1\23,4,5>0 = 545 [334AYM(1a 2,3,4, 5) - 324AYM(1> 3,2,4, 5)}

"Note that in [35] the object called C’{’f273)4756~’{’72)374)5 is a shorthand for the leading-order contributions
from the correlator and should not be confused with the holomorphic square of C{ng 45

8We have k; — ik; and different conventions for s;; in comparison to the definitions in [60].
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0= <7:]{3£nCI)|12737475 -+ [82301‘23,475 —+ (3 — 4, 5)])0 (229)

These relations will become useful in section 5 when comparing our two-loop results with
one-loop and tree-level amplitudes.

2.4 Effective rules for bosonic components

The bosonic components’ of the building blocks TL";’:,)' 4,5 and Tg 3145 in pure spinor superspace
are available for download from the website [63]. However, the expressions from [63] involve

unpleasant rational factors such as 1—73 within individual (T’ 1,m2,3| 4’5>0 or (Ti2,314,5)0, Which drop

out from BRST invariants. These factors come from an implicit choice of contact terms,
which is far from being canonical nor optimal.

In order to streamline the expressions for the bosonic components of the local building
blocks and facilitate the comparison with the RNS computation [15], we shall now give
an alternative description of the correlators in [12]. The key quantities are the effective
components ng’g‘f475, Tf§3‘475 and ng|3‘475 defined by

Ty5es = 80 k) [7ts(fo, fo. fuo f5) + (1€ 2,3,4,5)

+4i [k (Riaps,a5 + Rigpas) + (14 2,3)]

+8iky" Rys)1,2,3 + 8iks' Rsan,23 — 4(Ka - ks)efy (€1, fo, f3, far f5)
T35 = (8ka - ks — 4ky - ko) (Rugjsas — Raapsas) + 4k - ka(Raspias — Rugas)
Sjsias = (8ka - ks — 4ky - ko) Rigjsas — 4k1 - kaRigpas

+8(ks - kyRas)1,2,3 — ka - ks Ra31,25)

+8(ks - ks Rsap,2,3 — ka - ks Rs.31,2,4) (2.30)

which are composed of

Rusisas = i(er- k)i fo fu f5) = sl 12, o fi )
ts(f2: f3: fa, f5) = tr(fafsfufs) — %tl"(f2f3)t1"(f4f5) +cye(3,4,5) (2.31)

with Lorentz traces tr(...), linearized field strength f"" = e"kT — k" and its commutators
[f1, fo]™ = fI™P 5" — £ f1". As will be explained below, the bosonic components of the

9With the techniques of [64] to perform the zero-mode integrals over A%, %, one can obtain direct access
to the polarization dependence of the five-point amplitudes in string and field-theory for any combination of
external bosons and fermions.
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two-loop five-point amplitude are unchanged when performing the replacement

m m,eff eff eff
TV 5145 — T1,2,3|4,5 ’ Tia3145 = Tio 3145+ S1:20314,5 — S19(34,5 (2.32)

in all terms of the correlator (2.8) and dropping the zero-mode brackets (...)o in the chiral
amplitude (2.2).
2.4.1 Symmetries and relations of the effective components

The effective replacement rules (2.32) are well-defined at the level of (K(s))o since all of

T ge?ff“,T f§3|4’5,5fg|3‘475 given by (2.30) inherit the symmetry relations of the superfields

T$’3|4’5,T12,3|4,5, S121314,5 in the BRST cohomology. This is a consequence of the symmetry
of tg,

Rig345 = Ripjuss = Rigizsa (2.33)

as well as momentum conservation, transversality of ¢;, and the relation tr(f;fofsfafs) =

—tr(fifsfafsf2) used in (2.31),
Rig345 + Ripas + Riapss + Rispza =0 (2.34)
as well as the identity,
ik [ETts(f% fs, fas f5) + (1 2,3, 4, 5)} = Rojsu5 + Rsip2a5 + Raj2,35 + Rsj2,34 (2.35)

where the commutators [f;, f;] all drop out from the right-hand side. These basic properties
imply that the effective components in (2.30) obey

eff _ reff — reff eff eff
T12,3\4,5 - T12,3\5,4 0= T12,3|4,5 + T12,4\5,3 + T12,5|3,4

eff _ qeff _ qeff eff eff
STopsas = S12/354 0 = 5703145 + ST2j45.3 T S1i2j5/3.4 (2.36)
as well as

_ qeff eff eff eff
0= 5703145 + 132145 T Stiap2,3 T S1ija2,3

Tﬂlz’f?,ff4,5 = ?ﬁf5f|f1,2 + T;Z,C;fl,ii + Tﬁ%ffz,?, (2.37)
T334 = Tisees = Tonsias = Tiogsa
and are related by
eff L. m m\ m,eff eff eff eff
STopsas = 5 [Z( 12 — k3 )T1,é,3\4,5 + 1o 345 + Tizoas T 23,1|4,5]
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eff _ qeff eff
T3 5145 = Stosia5 — 52113145
mrm,eff eff off
ik T, 34,5 — = S513145 T S5112)4,5 (2.38)
m rm,eff off off off
k5" T 55105 = Stslajzs TS24, T Ss5a 2

m (rm,eff m,eff eff eff eff eff
Zk (T 1,2,3]4,5 + Tg 4,5|1, 2) T13,2\4,5 + T23,1|4,5 - T34,5|1,2 - T35,4\1,2

Hence, any relation among the superfields in the BRST cohomology — see e.g. (2.18) to (2.23)
— is preserved by the transition (2.32) to effective bosonic components.

In fact, we have checked that the bosonic components of any BRST-invariant quantity
composed from the building blocks reviewed above can be obtained by using their “effective”
versions,

(Sa;blc\d,ea Tab,cld,ev Tﬁa,c\d,e) — (Sg;f£|c\d,ea To ab,c|d,e? Tﬂ;ﬁfd,e) (2-39)

This includes all representations of the genus-two correlator (2.10) since they obviously are
BRST invariant.

2.4.2 Effective BRST invariants and correlators

The effective bosonic components (2.30) not only preserve the relations of their superspace
prototypes but also the two-loop BRST invariants (2.24): One can check from the results on
the website [63] that,

_2880<CH£M25>OMMS-—11<35H34p5'_ Stasies B Sils3.4 5152B4)

513 S14 S12 S15
. Seff Seff Seff
T [ 1;2|5]3,4 1:5]2|3,4 1;342,5 14325
—2880(C51 213,400 s = T4~ ZW( B34y “LolEse  “LoM & ) (2.40)
512 515 513 814
. eff eff eff
Lom 52;1\5|3,4 S2;5|1\3,4 S2;3|4\1 5 2 4\3|1 5
— k3 - +
4 512 525 523 824
. Seff S Seff
ka< 5;1\2|3,4 5;2|1|3,4 T 5;3|4\12 54\3|12)
- M5
4 515 525 535

Since the chiral amplitude is expressible in terms of the BRST invariants (2.24) [12], its
bosonic components can be equivalently expressed in terms of the effective components.
One can then pass back to a local representation by repeating the integration-by-parts ma-
nipulations in section 5.4 of the reference with effective components in the place of the
superfields: The bosonic components of the string amplitude are unchanged when (K(5))o in
the chiral amplitude (2.2) is replaced by

K& = wi(2)A(3,4)A(5, 1)K 55, 5 + cyel(1,2,3,4,5) (2.41)

1,2,3/4,5
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where

I eff m,eff
]C123\45 = 27TprrLT123|45 92 3T31\45 92 T3 3145 93 1T12\45
—92 452 4]511,3 — U3, 453 452,10 — 91 451 4]5/2,3

—9 552 :51413,1 — U3, 553 5l412,1 — 91 551 :5]4/2,3 (2.42)

and (for some odd spin structure v whose choice is immaterial for (2.41))

iy = s moblicn), = [ (2.43

Since the effective components inherit all the relations of the superfields, one can also adapt
the representation (2.8) in terms of p! and the Arakelov Green function to the effective
components,

Kl = 2miph, [T150,5 wi(2)A(3, ) A(5, 1)+eyel(1, 2,3, 4,5)]
/

( )[912+(1 2/1,2,3,4,5)]
ig = —819(1, 2) [51 :2|3/4, 5A(2 4)A(37 5) + 51 :2]43, 5A(2 3)A(4, 5)}

0062, 1) 8550500 DAG.5) + S5l ALBAWSE)] (244)
2.5 Assembling and expanding

After performing the Gaussian integral over loop momenta, the amplitude (2.1) becomes,
Agenus 2 ( )./\/(N / dug B(N)(k’z|Q) (245)
Mo
where dps is the Sp(4, R) invariant measure on the Siegel upper-half plane, normalized as in
(65, 30],

d*Q? 2273

The integrand B(y)(k;|Q2) (which also depends on the polarizations of the external particles,
which we do not exhibit here) is given by an integral over ¥ and over the zero modes of
0, 0%, X%, \*. For N = 4, the Gaussian integral over p’ leads to (see (2.7) for K4)

KNy
1€2) = 2.4
By (ki|2) /24 (detY)? (KayK)o (2.47)

21



where KNy is the full Koba-Nielsen factor (as opposed to the chiral one Ziy) in (2.3)),

KN (kilQ) = [ ew9eo® (2.48)

1<i<j<N

and G(z;, z;|Q?) is the Arakelov Green function (see appendix A). For N = 5, the integral
over loop momenta contains additional terms arising from integrating a bilinear term in loop
momenta between left and right movers,

/
Bsy (i) = % /E 5 % <WW - (%)ﬁy” v va>0 (2.49)
For brevity, we shall denote the two terms in the angled bracket by (|W|? — 7|V"|*)¢. Upon
integration over %, (2.49) is unchanged when all of W, V™ and the corresponding right-
movers are replaced by their manifestly BRST invariant counterparts )7\/\, 9}” in (2.13) and
(2.11). While the manifestly local or BRST invariant superspace representations of (2.49)
apply to any combination of external bosons and fermions, their NSNS components can be
alternatively rewritten by replacing the various building blocks within W and V}* by their
“effective” versions. This form will be useful in the discussion of Type IIA components in
section 4.4.

By construction, both (2.47) and (2.49) are invariant under modular transformations of
2, and can therefore be meaningfully integrated against the invariant measure in (2.45) over
the moduli space Mo, realized as a fundamental domain of the action of Sp(4,Z) on the
Siegel upper half-space. For Type II strings compactified on a torus 7¢, the measure in
(2.45) is multiplied by the Siegel-Narain theta series I'g 42 [66], which is modular invariant
by itself.

The main goal of this paper will be to analyze the low energy expansion of the five-point
integrand (2.49) in powers of the kinematical invariants s;;. The dependence on external
momenta arises explicitly through the Koba-Nielsen factor (2.48), and through permutations
of the building blocks |T17"”L273‘475|2 of dimension D*R® and |Ti23)45|%, |S1.213)4,5|° of dimension
D*R°. While the integrals multiplying 77" 5, 5|* and [S1;2314,5] in the representation (2.12)
are convergent and analytic as s;; — 0, the integrals multiplying |T};kum|* have short-
distance singularities and give rise to factors of 1/s;;. Therefore, only permutations of
|T17m273|475|2 and |T12,34,5/*/512 contribute at the lowest order D*R? in the low energy effective
action [8]. This is the same order in the derivative expansion as the effective interaction D*R*
appearing in the four-point genus-two amplitude at leading order, and indeed the couplings
D*R* and D*R? are expected to belong to a single supersymmetric invariant under non-linear
supersymmetry. As we shall see in section 3, this is still the case for the genus-two D*R5 and

22



DPR* interactions, but the next order features a new five-point interaction (DSR®)" which
is no longer related to the corresponding four-point D®R* interaction.
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3 The o/ expansion of genus-two integrals

In this section, we shall decompose the integral for the amplitude with five external massless
states, given in (2.49) for Type II strings, into a sum of basic integrals over ¥, in terms of
which the full amplitude may be obtained by including suitable permutations of the external
states. The low energy expansion of these integrals will be expressed in terms of genus-two
MGFs, thereby generalizing a similar analysis carried out for the genus-two amplitude with
four massless external states in [29, 30, 31, 32]. These results will be used in section 4 to
analyze the low energy expansion of the genus-two four-point and five-point amplitudes.

3.1 Genus-two integrals occurring in Type II amplitudes

In order to analyze the o expansion of the genus-two four-point and five-point amplitudes
in Type II string theory, it will be useful to list the scalar integrals over four and five copies
of the surface ¥ that occur along with the kinematic factors.

e The [-integrals occur in the four-point amplitude,

_ KN4
I _/24 ety A2 AB ) A2 AR, 1)
)

_ KN
L= /E Tt A2 A AR F AT (3.1)

e The J-integrals arise from the contributions [V7*|*> due to integrating a bilinear term

in loop momenta (with cyclic identification w;(j+5) = w;(j)),

i KN
Jrs = 5/25 (et Y)2w1(r)A(r+1,r+2)A(r+3,r+4)

xY175;(s) A(s+1, 542) A(s+3, s+4) (3.2)

They may all be obtained by cyclic permutations from one of the three basic integrals,

s % /Z 5 (ilt\I;’)Q wr(1)Y5,(1) A(2,3) A(4,5) A2, 3) AG, 5)
Jia % / d (ilj§§>)2 wi()Y@,(2) A(2,3) A(4,5)A(3,4)A(G, 1) (3.3)

_ ¢ KNs) 1J—
J173 = 5 /25 (det Y)2 wI(l)Y CUJ(?)) A(Q,?)) A(4,5) A(4,5) A(l, 2)

and their complex conjugates.
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e The F-integrals involve combinations of G(1,2)G(1,2),

A= | i io.2)86(0,2
Fy = Ziﬁ . ((fjl(i’)zalg(m)élg(1,2)
1 KN
= im Jss (det S))Z
1 KN
Fa= im Jss (det éi))2

A(2,3) A(4,5) A2, 3) A4, 5)

A(2,3) A(4,5) A2, 1) A3, 5)

01G(1,2)0,G(1,2) A(2,3) A(4,5) A(1,3) A4, 5)

01G(1,2)0,G(1,2) A(2,3) A(4,5) A(1,4) A(3,5)

e The G-integrals involve combinations of G(1,2)G(1,3),

_ 1 KN _

= iT Jss (det V)2 21G(1,2)0,G(1,3) A
_ 1 KNs) _

G2 = i /25 (det V)2 01G6(1,2)0,G(1,3) A
_ KN _

Gs = — /25 (et y)? 01G(1,2)0:G(1,3)
_ KNs) _

Gy = P /25 (detY)? 01G(1,2)0:G(1,3)
_ KNs) _

G = im Js (det V)2 %G(1,2)05G(1,3) A

Go = i /25 (det V)2 0,G(1,2)05G(1,3) A

(2,4) A(3,5) A2, 4) A3, 5)

(2,4) A(3,5) A(2,5) A(3,4)

A(2,4) A(3,5) A2, 4) AL, 5)

A(2,4) A(3,5) A1, 4) A2, 5)

(1,4) A(3,5) AL, 4) A2, 5)

(1,4) A(3,5) A(1,5) A(2,4)

e The H-integrals involve combinations of G(1,2)G(3,4),

1 KNs) -

M= | s 5602 506 1) AR.4) AG.5) AR DAL
_ 1 KNs) IO

= [ o2 900, 900.9) A23) A5 AL AR
_ 1 KN) AT

H; = p. L [detY )2 01G(1,2) 05G(3,4) A(2,3) A(4,5) A(1,5) A(2,4)

mo=L [ ENO 560,986 1) A2 4) A@G,5) AT ) AR 5)

im Jss (detY)?
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All integrals required in the genus-two amplitude with five massless external states may be
expressed in terms of the above integrals and permutations of their vertex labels'”

3.2 [Extracting the singular part of the ['-integrals at s;; =0

All the integrals given in subsection 3.1 are absolutely convergent for |s;;| < 1 and admit
convergent Taylor series expansions at s;; = 0, with the notable exception of the F-integrals
(3.4) which have simple poles at s;; = 0. In this subsection, we present the analysis needed
to extract this singularity for the integral F; and defer the cases of the integrals Fy, I3, F}
to appendix B.4. The singularity of F} is due to the non-integrable singularity at z; = 25 of
the following factor of the integrand of F},

1

\Zl —Z2|2

21G(1,2)0,G(1,2) ~ (3.7)
As a result, the integral F} has a simple pole at s;5 = 0. The simple pole in F; may be
exposed by using the following identity of the integrand,

_ KNg
N $9(1,2)31G(1,2) =~ <Zslk01 G(1,2) 5,G(1, k) + .9:G(1, 2))
k=3

+— 281 (KN(5 2.6(1, 2)) (3.8)

1

Since the combination inside the parentheses on the second line is a (1, 0) form its Dolbeault
differential 0; may be recast as a total differential, 9 (KN 0:1G(1,2)) = di(KN(501G(1,2))
whose integral over the closed compact surface > vanishes. As a result, the term on the
second line does not contribute to F}.

The contribution to the second term in the parentheses on the first line of (3.8) is given
by (A.14). The §(1,2) term vanishes provided we assume the following domain for s,

Re (812) <0 (39)

or alternatively vanishes by the “cancelled propagator” argument in old string theory lingo.
The remaining contributions to the integral Fj are therefore given by the first term of the
first line in (3.8) and by the k-term in (A.14) for the second term in the parentheses, and

10Note that it is convenient to explicitly add the complex conjugates Gz and G4 to the list above in order
to quickly identify all the integrals in the genus-two correlator (2.49).
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we obtain the following formula,

. S1k KN(s = 9 9
———Z [ 601, 28,90, 1,353

S12
2 KN(

o | e (DIAR 3PIAG ) (3.10)

The integrals in (3.10) are now absolutely convergent for |s;;| < 1 and admit a convergent
Taylor series expansion at s;; = 0. The coefficient of 1/s;5 is recognized as the integral .J 1,
and one can similarly express the first line of (3.10) in terms of permutations of the integrals
G1, Gy defined in (3.5), see (B.32).

3.3 Genus-two modular graph functions up to order DR’

Our aim in this section will be to find the first few terms in the o/ expansions for the above
integrals, so as to extract the coefficient of the effective interactions up to order DR’ in the
low energy effective action. In addition to A(z,y), the following combination of holomorphic
(1,0)-forms w; and their complex conjugates will be ubiquitous in our analysis, and are given
as follows, in components,

i
V([L’, y) = §YIJWI('I)EJ(:U) = —V(y,l’) (311)
On the diagonal y = x they reduce to twice the canonical form x defined by,
1 _
k(z) = zv(z,z) = Y Twi(z)w,(x), /Ii =1 (3.12)
2 4 5

Various details of the subsequent computations are relegated to appendix B.

Up to order DSR®, we find that the coefficients can all be expressed in terms of the
Kawazumi-Zhang invariant ¢ given by any one of the following equivalent expressions (see
[29, 67] and references therein),

_ [ 1A(L2)P
_/22 4(detY) 6(1,2)

_ _inyyJK /E wr (1) T,(1) wie(2) @1(2) 6(1,2) (3.13)

_ / v(1,2)1(2,1)G(1,2)
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and the following convergent integrals on direct products of X,
Z, = 8/ k(1)k(2)G(1,2)?
2

z=-[ AL, 3151, 3)6(2,3)

detY
- [, 98 g
Zy=—4 /22 v(1,2)r(2,1)G(1,2)?
Z, = % . G(1,4) 0:G(1,2) 0:G(1,3) v(2, 4)v(4, 3)1(3,2) (3.14)

As is the case for the KZ invariant (3.13), the integrals (3.14) are modular invariant functions
of the period matrix €2, and real analytic away from the separating and non-separating
divisors. They belong to the class of genus-two MGFs introduced in [31], generalizing the
genus-one MGF's of [33]. The relevant graphs keep track of the products of Arakelov Green
functions to be integrated, and are displayed in figure 1.

The integrals Z;, Z,, Z3 have appeared previously in the study of the 4-point amplitude
[31, 32], where their asymptotic behavior near the separating and non-separating divisors in
the moduli space My was investigated in great detail. The integral Z; was introduced in
the course of the analysis of the action of the Laplace-Beltrami operator in [41], along with
several other integrals which also occur here in the evaluation of the five-point amplitude,
and which we evaluate in terms of the ones above in appendix A.6. The integral Z5 is novel,
and reminiscent of the modular graph forms introduced in [43], although it is genuinely
modular invariant. The asymptotics of Z; and Z5 near the separating and non-separating
divisors is derived in appendix C using similar methods as in [31, 32]. Genus-two amplitudes
for the Heterotic string are expected to involve higher weight generalizations of these MGFs,
in parallel with the modular graph forms appearing in Heterotic genus-one amplitudes [68].

3.4 Novel modular graph function identities

The study of the degenerations of the integrals Z; in appendix C suggests that these integrals
are not linearly independent, but rather satisfy a remarkable identity,

1
zl+22+23+§z4—<p2=0 (3.15)

which we shall prove in appendix D. From the point of view of two-dimensional quantum
field theory on the genus-two surface, the identity (3.15) is quite striking since it relates a
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Figure 1: Graphs representing the genus-two modular graph functions ¢, Z; and ¢? where
each line represents the Green function G but the structure of the Abelian differentials is not
exhibited. The arrows on two of the lines in Z5 indicate the derivatives 0; and 0, on G.

combination of one-loop graphs Z;, Z, to a combination of tree-level graphs ¢?, Z,, Z3. By
contrast, the alternative expressions for ©?, Z,, Z3 given in appendix A.6 exclusively relate
tree-level graphs to one another and are the result of elementary relations, such as (A.7) and
(A.8), between Abelian differentials. Thus, the identity (3.15) is more akin to the identities
between genus-one MGF's proven in [42, 43, 44, 45] and exposed by their representations in
terms of iterated Eisenstein integrals [69, 70]. The proof of (3.15), detailed in appendix D,
makes crucial use of a lemma (D.1) valid at any genus h, which allows us, effectively, to
convert a derivative 0;G(z;, z;) into a derivative —0;G(z;, 2;), despite the lack of translational
invariance when h > 2. We anticipate that this property will become important in future
studies of relations between genus-two MGFs.!!

As a consequence of the genus-two identity (3.15) in the minimal non-separating degen-

eration limit t — oo (with ¢t = W [31]), we also obtain a new identity at genus one,
maiiig

A (F5 —2F,) = 6F) — 4F, (3.16)

where Fy(v|T) is the elliptic MGF on a torus ¥, of modulus 7 with v € 3, defined by,

Fu(v]r) = %/E i (2) f () i (z) = Qdedx (3.17)

T2

Here f(x) = g(z — p») — g(x — p,) where g is the Green function g on ¥; and p,, p, are
two punctures on »; with v = p, — p, (see appendix C). The Laplacian on 7, defined by

UIndeed, the conversion of derivatives has been used to generalize (3.15) to arbitrary genus and to derive
higher-weight identities [71] since the first version of this work.
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A, = 4730.0;, acts on elliptic functions of v = u; + usT by keeping the real coordinates

U1, Uz fixed.

12

Identity (3.16) is again reminiscent of the identities proven in [42, 43, 44, 45]

3.5 Expansion in o/ of the basic genus-two integrals

In this subs

ection, we shall list the results of the expansions of the integrals J; ; to order s?j

and of F};, G, H; to order s;;. Their derivations are relegated to appendix B. We also include

the expansion for the integrals Iy, I governing the four-point amplitude [32].

e For the four-point integrals in (3.1),

I} = 64 — 64 519 0 + (2457, — 16513523) (21 — 225 + Z3)
+51,(482 + 824 — 1625 + 169°) + O(s3;)
Iy = 32 + 64 513 + 8(s7y + 533) (21 — 225 + Z3)
—512523(48 25 + 824 — 1625 + 16¢%) 4 O(s})) (3.18)

e For the five-point J-integrals in (3.3),

Jig =

Jig =

Jig =

128 — 64(s93 + 545)¢ + 16523545(—221 + 23 + 20%) + 8(533 + 535)(Z4 + 521)
+16(s12515 + 28?,4 — 2512534 — 2515534 + S23534 + S34545) (21 — 225 + Z3)

+32(53, + 575 — s15523 — S45512) (21 — Z2) + 16(s12523 + s45515) (21 — Z3) + O(s}))
32 4 645350 + 8(s3, + 53, + 535) (21 — 225 + Z3) + 8515503(225 + 323 + Z4)
—8512(834 + 845) (21 — 425 + 323) + 8512(s15 + 823) (21 + 2o + 23+ 124 — ¢°)
—4534545(1025 — 1025 + Z4 4+ 100?) — 4(593534 + 545515) (225 4 623 + Z4 — 6p?)
+8(s%5 + 535 — S23545 — S34515) (21 — Z3) + O(sf’j)

—64 + 64(545 — 513)p — 16(835 + 533) (21 — 2Z) + 853(—22) + Z3 + 2¢%)
+16(515523 + 512534 — 534 — 525) (21 — 225 + Z3) + 8512593(225 + 323 + Z4)
+8(2815534 — S12515 — S23534) (21 — 425 + 323) + 8(s15 + S34)545(Z3 — 2Z1)

+8(s12 4 523)545(Z1 — 225 — 223 — 24 — 49%) + O(s})) (3.19)

e For the F-integrals (3.4), with kinematic poles exposed via (3.10),

I =

% i 64@(812 — 2845) _ 32834835 16845

2
(321 —|— Zg —|— Z4 —|— 2()02)

(21 =225+ Z3) +
S12 S19 S12 S12

12Tn an earlier version of this work, it was left as an open problem to derive (3.16) directly, without recourse
to its genus-two ancestor. Since then, a direct proof has been given in [72] using genus-one methods.

30



+8823(—Zl — 222 — Z4) + 32(21 — 22)812
—8(521 — 622 + 223 + Z4 + 4@2)845 + O(S?j)

64  32p(4s3y — s19) 1653,

F2 = — 4+ + (Zl — 222 + Zg) — (221 + 222 + Z4 + 2@2)
S12 S12 S12 S12

+16Z1515 + 8(— 21 — 225 — Z4)s15 — 16(Z1 + Z3)s31 + O(s}))

128  128p(s45 — s 328348
Fy— - P(s15 12)+ 34 35(21_222+23)_
512 512 512 512

—32519(21 — 25) + 16545(32) — 325 + 25 + 24 + 49%) + O(s})

64 128 1652 16
o= ©S34 - S34 (Zl - 222 + 23) + M(2Zl + 222 + Z4 + 2902>
S19 S19 S12 512

—|—8812(—ZQ — 221 —|— 2()02) —|— 16834(21 —|— Zg —|— Zg — 2()02) —|— O(S?j) (320)

16835845

1653,

(321 —|— Zg —|— Z4 —|— 2@2)

F4:

e For the G-integrals in (3.5),

G = —1652321 — 16(595 + 534) Z2 — 1654523 + O(S?j)
G = —32¢p + (14 — 515) 25 + 4(s12 + 513) (21 + Z4) + 852324
—8Z5(s04 + S25 4 s34 + 535) + 16545(—Z3 + ©°) + O(s}))
Gs = 16503(Z21 + 2Z5) + 16534(Z + Z3) + O(s3))
Gy = 8523(22 — 2Z4) + 8535(Z2 + 29%) + 8534(Z2 + 223 — 2¢%) + O(s3;)
G5 = —16553(Z1 + Z2) + O(s}))
Ge = 8523(Z24 — Zo) + O(s?j) (3.21)

e For the H- integrals in (3.6),

Hy, = —16513(25 + 23) + O(s2)

Hy = —8s13(25 + 225 — 20%) + O(s2)
Hy = —8513(2 + 225 — 2¢%) + O(s2)

Hy = —8513(2s + 225 — 20%) + O(s2) (3.22)

3.6 Decomposing the five-point correlator

The five-point integrand (2.49) is expressible via permutations and complex conjugation of
the integrals discussed above and will be decomposed into four sectors according to the
appearance and arguments of the Arakelov Green functions G,

Bis) = Bs) + Bis) + B(;) + Bgs) (3.23)
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where the superscripts indicate the type of integral involved in the decomposition. The
first part comprises the contractions of the vector blocks between the left- and right-movers,
resulting from integrating out the loop momenta,*?

KN ~

J . (5) IJyymym
_ N Y, Ve

8(5) =1 /25 ( ot Y)2 VI VJ

. m m m m m m
= 2{Jl,1Ts,l,2|3,4Ts,1,2|3,4 + J12150 o341 23145 T J1,2175 514,515 23,4 (3.24)

+ J1,3Tfﬁ,2\3 4T 2,3,4/5,1 T Ji3 315 13,45, 1T5 1,234 T cyel(1,2,3,4 5)}

The remaining three parts, Bg), Bg) and Bg) are organized by the number of labels shared

between the scalar building blocks Q,, and Q.4 defined in (2.11) and the positions of the
derivatives on the Arakelov Green functions. It will be convenient to express these contri-
butions as sums over permutations of more elementary building blocks,

Bl = Bfy + (1,2]1,2,3,4,5)
BE) = [Blis + Bfigy + (2,3]2,3,4,5)] + (1 4 2,3,4,5) (3.25)
8(5 [812 34 T 834 1o+ eye(2,3,4)] 4+ (5 1,2,3,4)

where the combinations of the type G(1,2)G(1,2) yield,*

Q1o leKN(5)

Bf, =
12 s im(det Y)?

= Stop,59123045 (F1 50 ,) + St2p34,550 214135 (Fa 5. ,)

+ 51;2\4|3,5§1;2|3\4,5F2 + 51;2\4|3,5§1;2|4\3,5F1
s 12 = 142
+ 52;1\3|4,552;1|3\4,5(F1‘394) + So11314,5592:1413,5 (F2 3<_>4)
~ 12 ~ 132
+ 52;1\4|3,5S2;1|3\4,5(F2‘ 7 )+ S2;1|4\3,552;1\4|3,5(F1} 7 ) (3.26)
+ 51;2\3|4,552;1|3\4,5(F3‘394) + S1:2/314,5592;1)413,5 (Fa
+ S121413,592:11314,5 84 + S1;20413,5592;1)43,5F3
+ S2.113)4, 551, 2(3[4,5 F3‘3<_>4 + 52,1134, 551, 2j413,5(Fy

+ S2;1\4|3,551;2|3\4,5(F4‘ ) + 52;1|4\3,5S1;2\4|3,5(F3}

}3<—>4)

142

3<—>4)
12
)

13Throughout, complex conjugation on an integral will leave the kinematic variables s;; unchanged.

4 Throughout, a vertical bar with permutations of the vertex labels following an integral function will
indicate the permutation to be performed on the entries of the integrals as they were originally defined in
(3.3), (3.4), (3.5), (3.6).
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the combinations of the type G(1,2)G(1,3) yield,

8123

and the combinations of the type G(1,

812 34 —

25

Q1013KN 5
s im(detY)?

Q1293 KNp)

im(det V)2

— 51:2413,553:4)1)2,5H3 —

- 52;1|3\47553;4\1|2,5(H4}1<_>2) —

— S2:11413,554;3)112,5

= St 134125(Gal ) + 51;2\4|3,551;3|5\274(G1}4<_>5)

+ 51;2\5|3,4§1;3|4\2,5G1 + 51;2|5\3,4§1;3\5|2,4G2
+ 51;2\4|3,5§3;1|4\2,5(G4}4(_,5) + 51;2|4\3,5§3;1\5|2,4(G3
+ 51;2\5|3,4§3;1|4\2,5G3 + 51;2|5\3,4§3;1\5|2,4G4
+ 52;1\4|3,5§1;3|4\2,5(@4 i:g) + 52;1|4\3,5§1;3\5|2 a( 63‘293
+ 52;1\5|3,4§1;3|4\2,5(§3 iig) + S2;1|5\3,4§1;3\5|24 4‘
+ S2;1\4|3,5§3;1|4\2,5(G5‘4H5) + 52;1|4\3,5§3;1\5|2 1(Gs
+ S2;1\5|3,4§3;1|4\2,5G6 + 52;1|5\3,4§3;1\5|2,4G5

2<—>3

‘4<—>5

2)G(3,4) yield,

—51;2\3|4,553;4|1\2,5H1 - S1;2\3|4,553;4|2\1,5H4

S1:2/413,553:42/1,5Ho

S9:11314,553:4/2/1,5 ‘192

(Hi|,,,0)

— Souj3,55541112,5(Ha| o) — Soi1j413,55554201,5(H3 ‘1<—> )
— S1;2|3\4,5g4;3\1|2,5(H3}3H4) — S1;2|3\4,5g4;3\2|1 5(Ho ‘ )
- 51;2|4\375§4;3\1|2,5(H1}SM) — Siopa3.55u30201,5(Ha ‘ 4
— SoapasSuanjzs (Ho i’:;l) — SoapaasSusizps(Hs m;)
(Haly,) (Hy].,)

— S211413,5543121,5(H1 |,

‘4<—>5)

(3.27)

(3.28)

One can readily recast the expressions above in terms of manifestly BRST-invariant building

blocks valid for all external states via (Saupicld,e, 1o old o) = (8aCapleld,e: O old o)
truncating to the bosonic component sector one may use the effective building blocks of

1 m
section 2.4 as (Sa;blc\d,mTa,b,c\de

Jeff
, ) - (Szg)\dd,e’Tt:n,b,ec\d,e)'
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4 The o expansion of genus-two amplitudes

In this section we shall combine the expansions of the integrals studied in section 3 in order
to extract the low energy expansion of the genus-two five-point amplitude (2.45). As a warm-
up, we first consider the low energy expansion of the genus-two four-point amplitude, studied
in [29, 30, 31, 32]. We will follow the normalization conventions based on the first-principles
computations in the non-minimal pure spinor formalism [73, 57, §].

4.1 The four-point amplitude

The four-point amplitude at two loops in the pure spinor formalism is given by [57, 8]
AT = 8(k) My / dpio By (k:|$2) (4.1)
Mo
The normalization factor Ny is given by'®,
/{462)\ O/ 5
N = 3575 (3) (4.2)
in terms of the normalization constant of the massless vertex operators x [28], and the bare
expectation values of the dilaton ¢. The S-duality analysis of [8] relates,
e = 267120 (4.3)

The integrand on M, in turn is given by the integral B)(k;|Q2) over the four vertex points
defined in (2.47). With the expression (2.7) for the left chiral correlator K, the integrand
of (4.1) can be expressed straightforwardly in terms of the I-integrals defined in (3.1) as

By (k;|Q) = I1\T1,4|2,3|2 + (]1 }2<—>4) |T1,2\3,4\2
+1 (T1,2|3,4T1,4\2,3 + T1,4|2,3T1,2\3,4) (4.4)

Using the symmetry property T4 304 = —T1 42,3 — T 234 of (2.15), momentum conservation,
as well as the expansions (3.18) we obtain the following expansion for the integrand,

By (ki|2) = 32(|T1,2\3,4|2 + |T1,3\2,4|2 + |T1,4\2,3|2)

'®In equation (4.1) we have absorbed an overall factor of 22°3°5% coming from By4)(k;|S2) into the normal-
ization of the four-point amplitude given in [8].

16 Alternatively, M4) may be presented in terms of the 10-dimensional Newton constant x2, and the vacuum
expectation value of the dilaton ¢, canonically normalized in Type IIB [28, 29], as follows M4) = 27%7k3, e2?.
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+64¢p (312|T1,2\3,4‘2 + 513‘T1,3|2,4|2 + 814|T1,4\2,3‘2)
+84, (8%2|T1,2\3,4\2 + S%g‘T1,3|2,4|2 + 8%4|T1,4\2,3‘2)
2
+16A2‘814T1,2\3,4 — 812T1,4\2,3‘ +--- (4.5)

where the terms in the ellipsis feature O(s};) along with |T}, .q|?, and we have defined the

5ij
following combinations,

Al 221_2ZQ+23
1
A2 = 302 + Zl + ZQ + 524 = 2(,02 — Zg (46)

As shown in [74], the components (T} 2j3.4)0 of the genus-two building block are given by,

(Th213,4)0 = 16( ’ >812<V1T2 3,4)0 (4.7)

where K = (V115 34)¢ is the usual one-loop kinematic factor, which is permutation-symmetric
and reduces to the usual tsF* = tg(f1, f2, f3, f1) combination for external gauge fields. Sub-
stituting (4.7) into (4.5), the last line cancels and one arrives at,

- 7 2\2 1
Bilki|) = 2P KK (5] o2 + 20 05 + 1 Aros + O(s})| (4.8)
!
where o are the usual symmetric polynomials in four-point kinematic variables,
Ok = Slfz + Slf?, + 5]164 (4.9)

Substituting (4.8) into (4.1) and integrating over My, one finally obtains the low energy
expansion of the amplitude in ten dimensions,

oo a'\3kte??
Ao :5(k)<§) kK / dyis 02—|—2g003—|— A1 o1+ O(s )]
'\ K 12X - 1 A 5

where we used the formula (2.46) for the volume of My, and the identities
3
/ dps @ = = Voly / dugs Ay = ¢1(A) Vol (4.11)
My 2 Ma(A)

The coefficient 3/2 in (4.11) was computed in [30] and shown to be consistent with predictions
from S-duality. The coefficient ¢;(A) depends on an infrared sliding scale A which is necessary
to disentangle the non-local part of the amplitude, which is governed entirely by exchange
of massless particles with momentum less than A, from stringy corrections [48, 49].
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4.2 The five-point amplitude

The genus-two five-point amplitude is given by [12, §]
A%;;lus_Z = 0(k)Ns) / dpa Bs) (ki |Q2) (4.12)
Mo

with Bs)(k;|€2) defined by (2.49). The overall normalization was obtained using the pure
spinor formalism in [§]

a/\b KJ5€2)\

Nio = (3) 35 (4.13)
As shown in section 3.6, the integrand decomposes as a sum of 4 different types of integrals,
Bis) = Bs) + Bis) + B(;) + Bgs) (4.14)

each one including its own kinematic factor.

4.2.1 Terms of order D?*R°

At leading order D*R5, the G and H integrals do not contribute, and the remaining integrals
are constants, independent of the period matrix €2,

128 . 128 .

J171 =128 + O(Sij) ; Fl = S + O(Sij) s F3 = _S— + O(Sij)
Jio =32+ O(sy;) | 6;2 6;2 (4.15)
Ji3 = —644 O(sy5) , F=—+0(s)) , Fy=——+0(s))

512 S12

Upon using the kinematic identity T7% 5, 5 = 137y 510 + cycl(1,2,3), the low energy limit of
the contraction |V7*|? in (3.24) can be rewritten as

o m m
8{5) ‘D2’R5 =064 (?) 3,4,5|1,2T3,4,5|1,2 + (17 2|17 27 37 47 5) (416)
where the notation +(1,2|1,2,...,k) in the first line instructs to sum over all possibilities

to exchange (1,2) by a different pair (7, j) from 4,5 € {1,2,...,k} for a total of (';) terms.
Similarly, the integrals in (3.26) to (3.28) produce,

64 sa'\2
By = —(5) [Tagusl + Tioassl® + Tiogeal?] + (1,211,2,3,4,5)  (4.17)
12
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Figure 2: Factorization of the genus-two five-point amplitude onto a massless intermediate
state in the sjp-channel into the tree-level 3-point function and the genus-two 4-point function
with massless external states.

and the contributions from the integrals G and H vanish,
G _ rH _
BE)| pers = Bl pers = 0 (4.18)

The expression (4.17) for Bfg) highlights the benefit of using the OPE-like representation for
the second equation in (2.10) since then all terms proportional to Sisjlkli,m building blocks
trivially cancel as they correspond to non-singular terms on the surface. Hence, at leading
order, the integrand (4.14) reduces to,

a'\2 | Ti231a5* 4+ Th2.413.5 2+ | Tho.513.4]2
e | '
!

(67 m o
o (3) sasielsasne +(1,201,2,....5) (4.19)

512

where the permutations +(1,2[1,2,...,5) apply to the entire right side.

This is in agreement with the result obtained in [8], and corresponds to a D*R® interaction
in the low energy effective action, which is expected to be related to D*R* by non-linear
supersymmetry. The residue of the pole in s;5 is precisely given by the two-particle superfields
T 12,2-‘]-7,6\2 as is expected from factorization of the 5-point amplitude on a massless external
state of two massless states, as shown schematically in figure 2.

4.2.2 Terms of order D*R?

At next to leading order D*R5, all integrals are proportional to the Kawazumi-Zhang invari-
ant ¢ in (3.13). The expansions in (3.19) receive contributions from the vector block, and
give rise to,

Bﬁ]s) }D4R5 = 128¢ <335(T5’”,172‘374Tf”273‘475 + T$73‘475T5771’172‘374)

m m m m
+(545_513)(T5,1,2|3,4T2,3,4|5,1 + T2,3,4\5,1 5,1,2\3,4)
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= 128 51T g o T spe + (1,2]1,2,3,4,5) (4.20)

The expansions in (3.20) produce all the singular terms, and give rise to,

BF

12| paRs

128
i d <S34\T12,5\3,4\2 + 535\T12,4\3,5\2 + 545\T12,3\4,5\2)

—3290<|51;2\3|4,5|2 + |S1a3,5> + |S1.2/503.4]

+|Sa 34517 + [S21ja3,51> + |52;1|5\3,4\2) (4.21)

Finally, the contributions in (3.21) and (3.22) are analytic in s;; and receive contributions
from the scalar block, and give rise to,

8523‘D4R5 = —3290(51;2|4\3,5§1;3\4|2,5 + S1;2|5\3,4§1;3\5|2,4)
B 4| pigs =0 (4.22)
Whenever possible, the expressions have been simplified by repeatedly applying the relations
T12,3|4,5 = 51;2|3\4,5 - 52;1\3|4,5 and 51;2|3\4,5 + CYCI(?), 4, 5) =0.
Adding up these contributions according to (3.25), we get,

!/

o . .
8(5)‘D4R5 = 128@[(3)545T1,2,3\4,5T1,273\475 +(4,5]1,2,3,4,5) (4.23)
aN2/s s s
+ <— <E‘T45,3\1,2‘2 + E‘T4572\1,3|2 + E‘T4571‘273|2 + (4,5]1,2,3,4, 5))
S45 S45 Sa5

2
2 2
(|51;2|3\4,5 + Sis2a5° 4 |S1:21413,5 + S131213,5]

+ [S1aa2,5 + Stappzs)® + (1> 2,3, 4, 5))}

where the last two relations of (2.23) have been used to simplify the sums over permutations
of (4.21) and (4.22).

4.2.3 Terms of order DR?®

In contrast to the lower-order terms in the previous subsections, the low energy expan-
sion of the genus-two amplitude at the order DR’ features linearly independent MGFs
Z1, 29, 23, Z5 and ¢? defined in (3.14). Their respective coefficients are given by BRST-
invariant linear combinations of the building blocks that compose the correlator. As usual
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in such situations, the resulting expressions that arise after expanding the integrals are not
necessarily in the most compact form. However, utilizing various cohomology manipulations
in pure spinor superspace as done in (4.23), it may be possible to simplify the answer after
trial and error.

First, it is beneficial to rewrite the five MGFs in terms of the linear combinations A; and
A, identified in the four-point calculations in section 4.1, along with Z;, Z5 and ¢?. In doing
so the number of terms reduce by approximately 10%. We shall now display the coefficients
of A and Zs.

Curiously, the BRST-invariant coefficient of A; at D®R5 turns out to be closely related
to the coefficient of ¢ at order D*R® given in (4.23). In fact, one can show that

Bs) ‘Al = 16[( )345 1,2,3/4,5 123|45 +(4,5]1,2,3,4,5) (4.24)
_l’_

<2> (—\ 453\12\ + —\T452\13\ + —\T45 1\23\ +(4,5]1,2,3,4, 5))
o'\? 2 2
- <5> ((823 + 545)[S1i2131a,5 + Si3204,5] " + (S24 + 535)|S1:21413,5 + St3ap2/3,5]

+ (834 + S25)|S1ajap2s + Srappes|” + (1 ¢ 2,3,4, 5))]

Given that Z5 defined by the fifth line of (3.14) only appears in the G5 integral (3.21),
its overall coefficient is easily assembled from (3.27) and (3.25):

5

8(5)‘25: Z(Blm 1]@ }Z (1H2737475>

2<i<g
= 4812(51;3|5\2,4g1;4\5|2,3 + S1;4|5\2,3§1;3\5|2,4 - S1;3|2\4,5g1;4\2|3,5 - 51;4\2|3,5§1;3|2\4,5)
+ 4313(51;2\5|3,4§1;4|5\2,3 + 51;4\5|2,3§1;2|5\3,4 - 51;2\3|4,5§1;4|3\2,5 - 51;4|3\2,551;2\3|4,5)
+ 4514(51;2\5|3,4§1;3|5\2,4 + 51;3\5|2,4§1;2|5\3,4 - 51;2\4|3,5§1;3|4\2,5 - 51;3|4\2,551;2\4|3,5)
+ (145 2,3,4,5) (4.25)

Alternatively, one can recast (4.25) in terms of Yang-Mills tree amplitudes as detailed in the
next subsection. To do so one uses the conversion to genus-two BRST invariants Sg.p|cja,e —
SabCaspleld,e; and the cohomology identity (2.28) to rewrite Cypieae in terms of genus-one
BRST invariants, and finally use (2.29) to convert to Yang-Mills tree amplitudes. In doing
this one obtains that the coefficient of Z5 is proportional to B {!%e to be defined in (4.54),

Bs)| 5, = —2560B75° (4.26)
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This result is interesting because the representation (4.25) is manifestly local while the
locality of B{!?E‘ie is not evident. In addition, the above steps can be used to derive the
expression of the 2 x 2 matrix M7 in (4.54) algorithmically, and it would be rewarding to
look for similar derivations of other M/ matrices.

The coefficients of Ay, Z; and ¢? can be brought into a form similar to (4.24) and (4.25)
and can be downloaded from [63]. Their components for external Type ITA and IIB states
will be further simplified in the next subsections.

4.3 Components in Type 11IB

Here we shall express the components of the genus-two amplitude of the ten-dimensional
Type IIB superstring in terms of color-ordered tree-level amplitudes Avy(1,2,3,4,5) of ten-
dimensional SYM. For this it is convenient to use the representation (2.13) of the genus-two
correlator written in terms of the BRST invariants 0%73\ 45 and Cpp3a5- As reviewed in
section 2.3.2, these genus-two invariants can be expressed in terms of the genus-one five-point
BRST invariants CIT?,& 45 and Chj234,5- The scalar genus-one invariants C)a3 45 occurring in
the |W|? part of the genus-two correlator were shown in [61] to be equivalent to SYM tree
amplitudes, see (2.29). This relation holds for the entire massless multiplets of both Type
IIB and ITA.

To relate the vector invariants C'j, 5, 5 occurring in the [V7'|? part of the amplitude to
SYM tree-level amplitudes, we use an observation from [35], which holds only for Type IIB:
even though an individual genus-one invariant 0%73’475 cannot be written in terms of Ayy,
the left-right holomorphic square (|CT}, 5 451%)0 can in fact be written in terms of Ay Ay
provided the external states are five gravitons or four gravitons and one dilaton of Type IIB.
More explicitly [35] (up to an overall normalization), we have,

< {7\1273,4756?\1273,475 + [523C1|23,4,5él|23,4,5 + (2a 3|2a 3> 4a 5)}>0 ‘IIB

1 :five gravitons

—% : four gravitons and one dilaton

= Ag4'So'M3'A45 X { (427)

where the two options depend on the total U(1)gr charge of the external states, 0 or £2,
respectively.!” By linearized supersymmetry, the kinematic relation (4.27) extends to the

"Due to symmetry under worldsheet parity, which acts by (—1)% on a field with U(1)g charge Q, the
U(1) g symmetry can only be violated by an even number. In particular, the four-graviton, one Kalb-Ramond
amplitude would violate U(1)gr by £1 units and therefore must vanish at all genera, as explained in [75].
We have verified that this is indeed the case at genus-two up to order DSR5.
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remaining massless Type IIB state configurations with the same U(1) g charges. For instance,
the first line also applies to three gravitons and two gravitini of opposite U(1)g charges, and
the second one to three gravitons, one gravitino and dilatino whose U(1)g charges have the
same sign.

Since the scalar invariants (|Ci23.45|%)0 can be expanded in terms of Ay Ay it follows
that for the genus-two five-graviton and four-graviton-one-dilaton amplitudes in Type 1IB,
(ICT 3, 45170, can also be written in terms of SYM tree amplitudes. Such a relation does not
exist for five-point amplitude of gravitons and dilatons in Type ITA.

In (4.27) we have used the following notation for the two-component vectors of SYM
amplitudes that form bases of Ayy and Ayy under BCJ relations [76]

- Ayn(1,2,3,5,4 Aym(1,
A54 — (~YM( )) A45 — < YM(I

)
Aym(1,3,2,5,4) )) (4.28)

Furthermore, (4.27) features the field-theory momentum kernel of [77],

_((ky - ko) (kag - k) (Ka - ko) (o - ks)
So—<(k1.k:2)(k1.k3) (kl.kg)(klg.kz)) (4.29)

with k;; = k; + k;, while the matrix M encoding the o’® corrections to open- and closed-
superstring tree-level amplitudes is given by [34],

M3:< mu iz ) (4.30)

m12‘2<—>3 m11‘2<—>3
where the permutation inequivalent components are given as follows,

mip = S34 [84215 + 534545 — 312(5124-28234'534)} + 512515(512+515)

mig = —813824(812 + S93 + S34 + S45 + 815) (431)
Based on (2.29) and (4.27), the entire polarization dependence of massless five-point genus-
two amplitudes in Type IIB superstrings can be reduced to products AyyAyw as for tree
level [78, 34] and genus one [35]. The relative factor of —% in (4.27) between the U(1)z-

conserving and U(1)g-violating components plays a crucial role for S-duality [35], and we
will elaborate on its genus-two analogue in section 5.

4.3.1 Five-point tree-level amplitudes of SYM

We shall now review a compact way of representing the polarization dependence of the color-
ordered five-point SYM amplitudes in (4.28). Following the recursive strategy of Berends and
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Giele [79], five-point SYM amplitudes can be efficiently organized in terms of two-particle
polarizations €75, f{5" and x5,

ey = igy (kg - 1) —iey" (k1 - €2) + §(k — k3")(e1 - €2) + (17" x2)
2 = 57173]{5?2 elakty +iky - ko(el'ey — eley’) (4.32)

X3 = k‘?%vﬁf (€5 (vx2) s — €5(Ypx1) 8]

In terms of these data, the five-point SYM amplitude obtained from the superspace expres-
sion [80] is given by [81],

AYM(la 27 3a 47 5) [512 ninggz + 634fmn€7112 + gglflrgnggzd
512534
+ [(X127mX30)ER" + (X34YmX5)ETs + (X5VmX12)€54)
512534
+cycl(1,2,3,4,5) (4.33)
Note that both lines of (4.33) contribute to gluino amplitudes since €]} and f/7" contain a

term bilinear in ¢, X? .

4.4 Components in Type ITA

We now turn to the case of Type ITA superstrings, where the Weyl spinors of the left and
right movers have opposite chirality. While the previous relation (4.27) between vector blocks
and SYM tree amplitudes no longer works, the difference between the coefficients of these
blocks in Type ITA and Type IIB has a very simple structure, which amounts to flipping the
sign of the ten-dimensional Levi-Civita symbol €,y appearing in Tlrgﬁ\ 45 [63]:

5

1 5

(T1% 34500 = 3880°45 [51 ts(fo. f3, fu. f5) + (1 ¢ 2,3,4, 5)] + Z KT
—2

1 +1 (Type IIB)
5760845610(517f27f37f4;f5) { —1 (Type IIA) (4.34)

Here, we have used the shorthand tg(fs, f3, f1, f5) as in (2.31) as well as,

671%(51’ f2> f3’ f4’ f5) = (610) nsz2p3q3p4q4Poq051 22q2f 3q3f£4q4f§5q5 (4'35)

where f; denotes the linearized field-strength f™" = "k} — kI"e} of external state i. The
form of the scalar terms 7 in the first line of (4.34) will not be relevant in the discussions
below due to the vanishing contraction kJ'€{f(é1, fa, f3, fa, f5) = 0 for j = 1,2,3,4,5.

42



Therefore, the difference between Type IIA and Type IIB correlators may be inferred
from the following simple relation,

m m s m(x £ £ £ 7
( 1,2,3\4,5)0‘HA = <T1,2,3\4,5>0‘HB + fg’oﬁo(&a fas f3, f1, f5) (4-36)
and we obtain,
A o m yym A o m yym
WW — (E)WU VIV |y — W — (5>WY” VIV | (4.37)

/

= e (DY V(e Fo Fo o Jo) [52520(ABDAG, 1) + cyel(1,2,3,4,5)]

see (2.10) for the cyclic permutations of T’ 15,3145 entering Vi*. As will be detailed below,

the contributions from (V7")oelh(é1, fas f3, f1, f5) take different forms depending on the type
of external NSNS states. We will show that, both for five gravitons and for four gravitons
and one Kalb-Ramond B-field, the difference between Type IIB and Type ITA amplitudes
is proportional to the integral,

i KN(5) 1J
= — — Y wr(2)A(3, 4)A(5,1) + 1(1,2,3,4
u7IIA 9 /;5 (det Y)2 |:S45 I( ) (37 ) (5a ) cyc ( ) >3a 75)}

X [s45w. (2)A(3,4)A(5,1) + cycl(1,2,3,4,5)] (4.38)

This integral is invariant under permutations of all external legs, and can be expressed in
terms of the J-integrals defined in (3.3)

\7HA = J1,18§4 + (JLQ + T’Q>534S45 —+ (J173 + E)834815 + cycl(l, 2, 3, 4, 5) (439)

The low energy expansion of this integral follows immediately from (3.19),

5 5 5
8
Jia =32 ) s;+64p > s+ S(CE =82 - 23— Zi+ 100%) Y s
1<i<y

1<i<y 1<i<j
9 5 2
+ (42 +22, +425+ 24— 10(,02)< > sfj) +0O(s) (4.40)
1<i<y

8 4
= 32P, + 6o Py + 5(21 — 622+ 25 + 89" Pa + 5( 21+ 25 — 45°) P + O(s))

where P, denotes the symmetric homogeneous polynomials'®

5
P,= Y s (4.41)

1<i<j

18 As pointed out in [82], the ring of symmetric polynomials in the s;;’s subject to the momentum conser-
vation constraint is generated by the polynomials P, Ps, ..., Py along with an additional degree 6 generator,
which we shall not encounter at the order that we work in this paper.
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4.4.1 Five gravitons in Type ITA

For five external gravitons (or more generally for external states with &; = &;), the kinematic
factors (VJ")o€t (€1, f2, f3, f1, f5) in (4.37) only receive contributions from,

57160845610(61,f2>f3>f4,f5)€10(51,f2,f3,f4,f5) (4.42)

<T1772,3|4,5>06%(5~1a f~27 .f3a f~4a f5)
since terms of the form e1o(e;, &1, fo, f3, fa, f5) from the first line of (4.34) vanish due to the
symmetry of the graviton polarization tensors under €; <+ €;. Hence, the difference between
Type IIB and Type ITA integrands reduces to,

Bs) €10(€1, f2: f3s fa, f5)€10(e1s fos f3, f1, f5) Tuia (4.43)

h h o
B~ P6)na T (2)57602

Since Jia behaves as 32 Z? <icj s?j in the low energy limit, the expression (4.43) reproduces,
up to an overall constant, the result (5.47) of [8]. The complete Type IIA five-graviton am-
plitude can be assembled from (4.43) and from the Type IIB components that are expressible
in terms of SYM tree amplitudes by the discussion in section 4.3. The same conclusion holds
for any five-point amplitude involving gravitons and dilatons, since it only depends on the
symmetry property under €; <+ £;.

4.4.2 Four gravitons and one B-field in Type ITA

For Type ITA amplitudes with four external gravitons and one B-field in the first leg with
polarization By"" = 1(e7'e} — 7€), the kinematic factors (Vi")oely (€1, f2, f3, f1, f5) in (4.37)
only receive contributions from

<T1,mé,3|4,5>06%(517 .f?a f~3> f4a f~5) -

5830 sas€10(B1, f2, f3, f1, f5)ts(f2, f3, [, f5) (4.44)

with shorthand

€10(B1, fo, f35 fas f5) = (€10)mnpogopsaspaqapsas B1 - fo o 525 f1 4 f5°0° (4.45)

and the tg-tensor in (2.31).

Since the Type IIB amplitude involving four gravitons and one B-field vanishes to all
orders in o/ (see footnote 17), we conclude from (4.37) that the integrand in Type ITA is,

/

Bs) ﬁf = <a2)28202610(317f27f37f47f5)t8(f27f37f47f5)g7HA (4.46)
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4.5 Type 1IB 5-point amplitudes up to genus-two

In this section we verify that the o expansion of the Type IIB five-point amplitude at genus
two leads to the same kinematic factors appearing in the expansion of the same amplitude
at tree level and genus one.

The properly normalized five-point amplitudes at tree level, genus one and genus two are
given by [8]"

~

o - ree
Atz = §(F) (5) kP (2m) 2B (k) (4.47)
! 5

genus—1 _ g K genus—1 /7, 4.4

A = 60 (3 ) /Ml dpn B (I 7). (4.48)
5,2\

genus—2 _ g K"e genus—2 /7. 0 4.4

A) 5(1{5)(2)21—17{5 /MQ dpz Bigy™ " (kil{2) (4.49)

where [BIe] = [BE™!) = [BAM %) = 2,

50 (k) = BYS + B G + BESG + By G+ B G+ -+ (450)
enus—1 enus—1 enus—1 enus—1 enus—1 enus— 1
B%E, (kilT) = ?3} + B?s} + 8?3,3} + B??} + B%?/ T (4.51)
enus—2 enus—2 enus—2 enus—2 enus 2
and the terms in the ellipsis take the schematic form s AYMAYM with m > 8. As will
become clear below, the notation for the subscripts of B?Oi, Bgenus ' and Bgenus ? indicates
the polynomial dependence on s;; occuring at different genera.
4.5.1 Tree level
In writing the expansion (4.50) we defined the shorthands
b =2A%, - Sy - M, - Asgs, by = 2A%, - Sy - M3 - Ay (4.53)

in terms of the two-component vectors /I5T4 and Ays of SYM tree-amplitudes and the mo-
mentum kernel Sy of (4.28) and (4.29), respectively. Here M,, are 2 x 2 matrices with entries

9Tn the conventions of [8] the n-point amplitudes have no length dimension independently of loop order;
[A@] = 0. Note that [o'] =2, [x] = =2, [0'%(k)] = 10, [k™] = —1 and [¢}"] = 0. In addition we absorbed
a common factor of 252(2/a’)? in the expressions for the various interactions in B&"%~! into the overall
coefficient of the genus-one amplitude from [8], namely (a'/2)3 Similarly a factor of 2343652(2/a/)4
from B&"S~2 was absorbed into the overall coefficient (a//2)° ST 36 BT 52 s of the genus-two amplitude. See
appendix E for more details on the normalization of the genus-two amplitude.

214 52
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composed of degree n polynomials in kinematic invariants [34] generalizing (4.31), explicit
results are available for download on [83]. For uniformity we set My = 2Id and note that
BEBC}C = fla - Sp - Ays corresponds to the Kawai—Lewellen—Tye representation of the super-
gravity tree-level amplitude [84]. In addition,

Bl =2A%, - Sy - M), - Ags (4.54)

where M) are similar 2 x 2 matrices with entries composed of degree n polynomials in s;;,
but which only start to contribute at genus one [35]. The explicit form of M. can be found
in the ancillary files of [35]. The notation B {tree is meant to convey both the analogy with
the matrices M,, appearing at tree level, and to emphasize its absence at that level.

4.5.2 Genus one

Collecting the results from [35] and [8] we get, for 5 Type IIB gravitons

B e =B (R /1)
B = 2B 55 (DR
By ! s = (0Fs + (3)BES, |, (DYR?) (4.55)
BES" s = (40511 + 2B5 — 2E) B o (DSR?)
enus— 15 25 57 ree
B ' hs ( Coaa — g —E3+ S E4>B{'t7/ 15 (DSRSY
and for 4 gravitons and 1 dilaton
enus— ]- ree
8?3} 1‘¢h4 - 23} ‘¢h4 (¢R4)
2
enus—1 - tree
By ‘<z>h4 - BEQ Bps) ‘th‘l (6D*RY)
enus— ]' ree
B e = 358 + GBES (¢DRY) (4.56)
enus— 3 ree
8?7} 1 ‘¢h4 = —(4C271’1 + 2E22 - 2E4 27} ‘d)h‘l (¢D8R4)
enus— 43 61 93 ree
8%7’ 1‘¢h4 = ( Coiq — 3 E2 + 3 E4>B{';, oht (¢D8R4)’

Here, Ej, is the standard non-holomorphic Eisenstein series, defined for £ > 2 on a torus
with modulus 7 and momentum lattice A = Z + 77 by,

-k
Ey(r) = Z ﬂ-k|;|2k (4.57)

peN
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where A’ = A\ {0}, while Cy; is the two-loop MGF [33] defined by,

y 0(p1 +p2 +
Coa(r)= > 2 (p1+ p> + o) (4.58)

p1,p2,p3EN’ 7T4|p1|4 |p2|2 |p3|2

In view of (4.55) and (4.56), the five-point genus-one amplitude (4.48) in Type IIB becomes

! : five gravitons

o /<a5 Bgonus—l ) .
ABES L = G (k (—)— / diy x 4°© 1w 4.59
(%) 27251 Jaq, = ngg)n s ‘ ot four gravitons, one dilaton (4.59)

where [35]

BE s = —BE s + 2E2 BEY| s + (5Fs + G)BES, |5 (4.60)
2 tree 15 25 2 57 Itree
+ (4027171 + 2E2 - 2E4)B{7} I + (1027171 - 3 E + 3 E4> 8{7, —|— e
1 2 1
enus—1 ree ree ree
B ot = 3 BE | + 5 B2 BEY | s + 305Es + G)BES | (4.61)
3 61 93

ree 43 ree
+ =(4C51 1 + 2E —2E,) 827} ‘¢h4 ( Coig — S E2 + E4> B{'tw} ‘¢h4 +

7

with terms of order SZZ8AYM/~1YM in the ellipsis. Apart from the last term B {'%‘3, these o/-
corrections involve the same polynomial dependence on the s;; as the coefficients of (3, (s, (2

and (7 in the tree-level amplitude.

4.5.3 Genus two

Explicit pure spinor superspace component evaluations of the genus-two kinematic factors
for 5 external Type IIB graviton states yield

B??}ms 2 = tree (D?R5)
B?gn%s 2‘h5 _ 3Bt (D*R?) (4.62)
B?;r}lus 2 = _% A, B . (DSR?)
B = AT, (DR
while for 4 gravitons and one dilaton,
B | = 5807 (6D'R)
B ™o = —oBES (DR 09
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enus— 1 ree
B??} 2‘¢h4 - _AlBEﬂ (¢D*RY)
By e = AdBES (¢D*RY)’
where
Ay = O (A, — 404, — 22,) (4.64)
45 17 5

Ay= — A — — Ay — —Zc+ Z3 4+ 225 — 60° 4.65
1= g T g T % + Z3+ 229 % ( )

Therefore, the five-point genus-two amplitude for Type IIB external states is given by,

5e2A BEM™s 2| . five gravitons
A2 () (O‘ )% / dpy x § O sravt ‘ (4.66)
272875 [, 8(5) ‘¢h4 : four gravitons, one dilaton
where
1
enus—2 ree ree ree ! ree
Bisy ™ lhe = =B} | +30B55y 4s = 3B s + AsBEi s + - (4.67)
3 1
enus—2 _ tree tree tree ltree
B |¢h4 - {5} ‘¢h4 QPB{S,B} }th‘l + 2_8A18{7} ‘(Z)h‘l + A4B{7’ dh4 +-- (468)

with terms of order SZ—LZSAYMAYM in the ellipsis. The relative factor —3/5 between the ratios
of the genus-two to tree-level amplitudes for the h% and ¢h* components at the order of D*R?
agrees with the S-duality analysis of [8], while the factors —1/3 and —1/7 for the D*R® and
DYR5 interactions are new. In the next section we will explain these relative coefficients
from the point of view of modular forms.

Note that the results of this section can be adapted to the entire massless Type IIB
multiplet upon replacing h® or ¢ph* by state configurations with the same U(1)g charges.
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5 Consistency with supergravity and S-duality

In this section, we shall check that our results for the low energy expansion of the genus-two
five-point amplitudes are consistent with the structure of UV divergences in supergravity,
in particular the absence of U(1)g-violating divergences in the supergravity limit, and with
predictions from S-duality.

5.1 R-symmetry violation and UV divergences in supergravity

When the five external states are in a configuration which violate the supergravity U(1)g
symmetry the corresponding interaction is local [39]. For the specific case of ¢h? in Type
IIB theory, the local interactions at different o’ orders can be written as Kyps >, 0 On
where?’

Kpna = By ons (5.1)

a,, are rational coefficients and O,, are symmetric polynomial in the kinematic invariants s;;,
which can be expressed in terms of the polynomials P, defined in (4.41). More specifically,
the kinematic factors in (4.56) and (4.63) are related to (5.1) via

5o = 13 On {55y o = —5 O
BiE |gons = %05,1K¢h4 B o = —%Os,qubh‘* (5.2)
where [40]
Oy =D, O3 =D, (95,1=P4+% 5 05,2:P4—2P22- (5.3)

We will in fact evaluate R-symmetry violating IIB amplitudes with a D-dimensional dilaton
state with polarization

[N 51 = (D — 2)§Z51 (54)

rather than the standard ten-dimensional dilaton. In those cases, the coefficients of the
genus—1 genus—2

quantities in (5.2) in By, ‘¢>h4 and By,
expressions (4.56) and (4.63) if D — 10.

‘ oh become D-dependent and reduce to the

20111 D = 10 we have B?;}cw;ﬁ = ﬁ(tgtg,]?} — %E%g%) where 6% = 610(l€2, kg, k4, k5,€1,€2, £€3,E&4, 55,m).
However, this representation depends on the dimension of spacetime as there is a contraction between left-

and right movers. That is why we chose the dimension-agnostic representation (5.1).
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5.1.1 D-dimensional dilatons at genus two

By evaluating the Type IIB components of the genus-two kinematic factors with four gravi-
tons and one D-dimensional dilaton state (5.4), one arrives at

enus— 1 5 5 5
B lom = 15 Kons [ 3 (D=T) Pat2 (D=8)p Port o5 (D=0) A1 051+ WO+ O(s7y) | (5.5)
where K¢>h4 = Bfige}e and,
5 25 5 5 5 25
— (2T —D)—Ay+ (1= D) Ay + (D —2) (= 2y — =23+ 20%) + — 25 (5.
Wp = (27 )36 2+ ( )288 1+ ( )( 1827 35 3+6S0>+144 > (56)

These results allow for sharp tests of our expressions for the low energy expansion. In-
deed, as discussed in [48, 49], the o/ expansion of the genus-two superstring amplitude must
reproduce the logarithmic divergences of two-loop supergravity in various dimensions. For
four-graviton scattering, UV divergences proportional to D*R*, DSR* and D¥R* arise in
D =17,8,9, respectively [46], and the coefficient is precisely reproduced by the tropical limit
of the string integrand [49]. At the five-point level, the UV divergences for 5 gravitons have
not yet been computed in supergravity, but the UV divergences for 4 gravitons and one dila-
ton must certainly be absent, since supergravity amplitudes preserve R-symmetry. Indeed,
from (5.5) it is apparent that the divergences proportional to Py, Py and O3 in D = 7,8,9
cancel as they should. This is not obvious, however, for the term proportional to Os 5, which
is potentially divergent in D = 9. In this dimension, the coefficient evaluates to

25 72 56 28 168
= | dA + ZA - —Z— 2+ — P+ Z _
W 144{ 1+ A -2 53+5so+5] (5.7)
Using the results in appendix C.3, one finds that in the tropical limit V' — 0,
5 322 1 25 91
~—— ——A — A ——A V .
Wy 36 12 [ 63102 + 991 130 2,0] +O(V) (5.8)

As explained in [49, (B.16)], the regularized integrals of the local modular forms Ag 2, A; 1, As
(see section 5.3 of [32]) over the complex modulus S parametrizing the Schwinger parame-
ters Ly, Lo, Ly at fixed discriminant detY = LiLs + LoL3 + L3L; vanish, so that the only
UV divergence comes from the integral over Ay, = 1, whose coefficient vanishes in the
combination (5.8).

5.1.2 D-dimensional dilatons at genus one

The genus-one analogue of (5.5) can be obtained by promoting the results of [35, §5.3] to a
D-dimensional dilaton state,

enus—1 1 E2
B ons = Ko | o(D = 8) + 15 (D — 12) P,

(5E3 + C3)

D —14)P

20



1
+ 35(20010 + B3 — E)(D = 16)05, + WhOs.0+ O(Sg)] (5.9)

where

Wh=(5+ 2 )Cana+ (54 55) B (5 + 1) (5:10)
The contributions of P, Py and Os; to (5.9) correspond to one-loop UV divergences pro-
portional to D*R*, DR* and D®R* which occur in D = 12,14 and D = 16, respectively.
Again, the R-symmetry violation by these UV divergences is prevented by the prefactors
(D —12),(D — 14) and (D — 16) in (5.9), and the coefficient (5.10) of Os 2 requires closer
inspection in the critical dimension D = 16:

1
MqﬁzzguﬁcaL1+15£a—cuﬁg) (5.11)
2mTo(3 20¢s 5C§ 49¢7 -2
_ — O(e~>
135 * 2Trry  3w27i 2477 +O(e )

In passing to the second line, we have inserted the asymptotics of the modular graph functions
around the cusp [27] which is captured by Laurent polynomials in 7. The order of 73 which
is present in the individual Cy; 1, F2 and E; drops out from the particular combination in
W1 and signals the absence of a 16-dimensional UV divergence in supergravity as expected.

Note that the classes of multiple zeta values in the Laurent expansion of modular graph
functions as in (5.11) are under active investigation in both the physics and mathematics
literature [85, 33, 86, 87, 70, 88]. By comparing with the multiple zeta values in the tree-level
effective action of the Type IIB and ITA theories [34], one can associate the leftover terms in
(5.11) with UV divergences due to loop diagrams with insertions of D?*R" operators with
n >4 [48, 49).

5.2 S-duality analysis

According to the standard S-duality conjecture in Type IIB string theory, the low energy
effective action must be invariant under the action of SL(2,Z). In Einstein frame, SL(2,Z)
acts by fractional linear transformations on the axion-dilaton field 7 = a + /g2, and by
U(1)g rotations on the other fields, leaving the metric invariant. Thus, the coefficients of
effective interactions violating U(1)g symmetry by 2¢ units must transform with modular
weight (¢, —q) under S-duality. Typically, these interactions are related to U(1)g-preserving
interactions by non-linear supersymmetry, so that their coefficients are obtained by acting
repeatedly with a covariant derivative operator D = 150, — %", which maps modular forms of

ol



weight (w,w) to modular forms of weight (w + 1,%w — 1). An example of this is the dilatino
vertex A'®, which violates U(1)g by 24 units and is related to the R?* coupling by acting
with D2 [89)].

At the four-point level, the amplitudes must conserve the U(1)gr charge, and are all
related to four-graviton scattering by supersymmetry. The expansion of the analytic part of
the four-graviton all-genus amplitude in Einstein frame takes the form [25],

)

gs o3

Aw) ‘analytic = |t8(f1,f2,f3>f4)|2[ i E0,0) + 72€1,0) + 03E0,1) + 5E@20) + O(sfj)](5.12)
3

9595
plq!
in (4.9)) must be a modular function of 7 under the action of S-duality. The coefficients &£ g

and &(19) of the first interactions R* and D*R* beyond supergravity are well-known to be

At each order, the coefficient £, 4y of the term (where o}, are the symmetric polynomials

captured by the non-holomorphic Eisenstein series Fj/, and Es/o defined in (4.57) [16, 18],
whereas the next term DR* involves a more complicated type of automorphic function Eo,)
constructed in [19, 20].

For five-particle scattering, the U(1)g symmetry is violated by at most 2 units, e.g in the
scattering of one dilaton and 4 gravitons. We expect that the 5-graviton interaction D?*R®
is related by non-linear supersymmetry [35] to the 4-graviton D*R* interaction, governed by
the automorphic form & 5) with weak coupling expansion,

8
Eaoy = 2672 10+ §§4e3¢’/2 + .- (5.13)

corresponding to the tree-level, vanishing genus-one and non-vanishing genus-two contribu-
tions, plus instanton corrections indicated by the dots. By linear supersymmetry, it follows
that the ¢ D*R? interaction between one dilaton and 4 gravitons at the same order in the
derivative expansion should be controlled by,

Dg(lp) X —5C56_5¢/2 + 0+ 4<463¢/2 + - (514)

where we use the fact that D maps e?® — ged®. This predicts that the ratio of the genus-two
and tree-level contributions to ¢ D*R* is modified by a factor —3/5 compared to the ratio of
the genus-two and tree-level contributions to the D*R5 coupling, in perfect agreement with
(4.62), as noted already in [8].

By the same logic, the D*R® coupling is expected to be related by non-linear supersym-
metry to the DR coupling, governed by the automorphic function £¢ 1y [19, 20] with weak
coupling expansion

48 8
Eo1) = 4Ge ™ +8((ze™? + €c§e¢ + §c6e3¢ + ... (5.15)
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corresponding to tree-level up to genus-three contributions, plus instanton and anti-instanton
corrections indicated by the dots. By linear supersymmetry, it follows that the ¢DR*
interaction between one dilaton and 4 gravitons should be controlled by,

_ _ 48 8
D& 1) —12C§e 3 8(Cy(se™? + €<§e¢ + §C663¢ + ... (5.16)

This predicts that the ratio of the genus-(1, 2, 3) to the tree-level contributions to ¢ D*R? is
modified by factors (1/3,—1/3,—1) compared to the ratio of the genus-(1,2,3) to the tree-
level contributions to the D*R® coupling. At genus one, the factor 1/3 was checked in [35,
§5.3], and at genus two, the factor —1/3 is again in perfect agreement with (4.63).

Assuming that the coefficient of the DSR5 interaction, related to D¥R* by non-linear
supersymmetry, has the weak coupling expansion (where the dots now stand for additional
perturbative and non-perturbative corrections),

Epo) = a0e 2% + a7 + age? + - .- (5.17)

the ¢ DSR* interaction following from linear supersymmetry is then accompanied by,

7 3 1
DEo) x —5a0e 2 = Sare” 2’ + Zager’ 4 - (5.18)

predicting a factor —1/7 between the ratios of the genus-two and tree-level contributions to
DSR® and ¢ D¥R?, respectively. This is indeed in agreement with (4.67) and (4.68).

Note that the genus-two interactions (D*R®)" and (¢ D®R*)’ proportional to Az and A, in
(4.64) and (4.65) do not have any corresponding interactions at tree level since the tree-level
coefficient of B{!?E‘ie vanishes. Instead, we should consider the ratio of the genus-two and
genus-one contributions. From [35]?!, we find that the ratio of the one-loop contributions to
®h* compared to h5 is 9/5. Defining, in analogy with (4.11), the regularization-dependent
coefficients c3, ¢4 by,

/ d,UQAg = Cg(A) V012 y / d,UQA4 = C4(A) VO].2 (519)
Ma(A) Ma(A)

we predict that c3/cy = —3/(9/5) = —5/3. Indeed, using the results in appendix C, we
find that the O(#?) coefficients in the minimal non-separating degeneration for Az and Ay,
responsible for logarithmic divergences in D = 10, are in the ratio —5/3. In particular, the
combination c3 + 304 is infrared finite in D = 10.

2n [35, Eq. (5.4)], the statements fMl dpa(Dy, D3, D211) = 0 turn out to be incorrect; instead, one can
use fMl d,LL1D1111 = O, fMl d,ungll = —% My dlLtng and the identity D4 = 24D211 + 3D§ - 18D1111 from
[42] to express all integrals in terms of a single one, leading to Z7=— 577’ fMl dpy D% and Sp=— 97“ fMl dpy D3.
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A Functions on Riemann surfaces

In this appendix, we shall collect definitions, notations, and conventions for holomorphic
forms, the period matrix, bi-holomorphic forms, the Arakelov Green function, and present
some of the basic formulas needed in this paper for integrals involving these quantities.

A.1 Convention for forms

Throughout, we shall follow the conventions of [12] and display only the coefficient functions
of differentials on a Riemann surface ¥ in a system of local complex coordinates (z, zZ) on
Y. In this convention, a (1,0) form wdz will be referred to as w and its integral along a
curve C will be abbreviated [,dzw — [,w, while a (1,1)-form vdz A dz will be referred to
as v and its integral on ¥ will be abbreviated [;,dz A dZv — [, v. In the particular case
of interest here the (1,1) form may be the result of a wedge product between a (1,0) form
wdz and a (0, 1) form ¢ dz, in which case the convention is [ wdz A dz — [jwip = [ Yw
because the component functions w and ¥ commute with one another. We shall also use the
abbreviation fu = fEu to indicate the integration over X in the variable u.

A.2 Holomorphic 1-forms and the period matrix

We choose a canonical basis of 2; and B; cycles in H;(X,Z) for which the intersection
pairing J takes the form of the standard symplectic matrix, J(24;,24;) = J(B;,B,) = 0 and
IR, B,) = dpy for I,J = 1,2. A canonical basis of holomorphic Abelian differentials w;
for H(19(¥) may be normalized on 2A-cycles, and we have,

7{ wy =01y 7{ wy =y (A1)
Q[I (BI

By the Riemann relations, the period matrix 2 is symmetric, and has positive definite
imaginary part Y as a result of the following pairing relation,

/w[W_J:—QZY}J Y=ImQ >0 (A2)
%

The Siegel upper half space Hy may be defined as the space of all 2 x 2 complex-valued sym-
metric matrices whose imaginary part is positive definite. Alternatively, a more geometrical
definition is Hy = Sp(4,R)/ (SU(2) x U(1)). The presence of the U(1) factor implies that
H, is a Kahler manifold and its Sp(4, R)-invariant Kahler metric is given as follows,**

ds* = Y'Y L a0, ;dQp (A.3)

22Throughout, summation over pairs of repeated upper and lower indices will be implied.
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where (Y 1)!7 = Y17 are the components of the inverse of the matrix Y. The moduli space
M may be identified with My = Sp(4,7Z)\H, provided we remove from H, all elements
which correspond to disconnected surfaces.

The Jacobian variety J(X) = C?/(Z? + QZ?) supports the canonical Kahler form K,

K= %Y”d(’[ dé, (A.4)

where (; are local complex coordinates on the flat torus J(X). The form x is the pull-back
of K from J(X) to ¥ under the Abel-Jacobi map and, for a compact Riemann surface X,
may be normalized to unit volume,

K= %YIJCU[CU_J /Eli =1 (A.5)

The form « is conformal invariant as it is constructed solely out of the conformal invariant
Abelian differentials.

A.3 The bi-holomorphic forms A and v
We define the bi-holomorphic form A by the anti-symmetric combination of (1,0) forms,
Az, y) = e"wi(@)ws(y) = —Aly, ) (A.6)

where !/ = —¢/! and €12 = 1. Moreover, the ubiquitous anti-hermitian combination v(x, )
of (1,0) and (0, 1) forms is defined in (3.11). We shall list useful relations between the forms
k, A and v in the remainder of this subsection, and give useful integral relations between
these forms in the next subsection.

The identity e//eKL 4 e!KelJ 4 ILeJK — () implies,

wi(®)A(y, 2) + wi(y) Az, ) + wi(z)Alz,y) =0
A(w, 2)A(y, 2) + Alw, y)A(z, ) + A(w, 2)A(z,y) =0 (A7)

The form v obeys simple relations with A and &,
Az, y)A(w, 2) = 4(det Y) (V(x, ly, w) — vz, w)v(y, z))
A, y)Bly,2) = 4(det V) (20w, 2)i(y) — via, vy, =)

Ae,y)Aly.x) = 4(det Y) (4r(@)n(y) - via, vy, ) (A8)
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where the second equation follows from the first by setting w = y and the third follows from
the second by setting z = x. The following formula is being used to establish these results,

elefl = (det V) (Y!IEYTE — yILy TK) (A.9)
The cyclic identities (A.7) imply further relations between x, v and A,

vz, w)A(y, 2) + v(y, w)A(z,x) + v(z,w)Alx,y) =0
2k(2) Ay, 2) + v(y, ) Az, x) + v(z,2)A(z,y) =0 (A.10)

Note that £ and v may be defined for arbitrary genus, but A exists only for genus two.

A.4 Some useful integrals

Useful integrals involving A are as follows,

/w;(u)A(u, y) = —2iY " 5Tk (y)

u

/A(:L’, w)A(u,y) =4(det V) v(x,y) (A.11)

u

Useful integrals involving v and A are as follows,

[ vty ontw) = wi(a)

u

[ vt vt y) = viz.y)

u

/I/(SL’,U) Au,y) = Az, y) (A.12)

u

The following double integrals will also come in handy,

/u/vy(uvv)l/(v,u) —9

/H/UA(%U)m:é%detY
/H/UA(SC’U)WA(U,?J)24(detY)A(x,y) (A13)

They may all be derived by making use of (A.2) to carry out the integrals, and then using
algebraic relations between Y and e to express the result in simplified form.
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A.5 The Arakelov Green function

The Arakelov Green function G(x,y) is a real-valued symmetric function on ¥ x ¥ which
provides an inverse to the scalar Laplace operator on ¥ with the canonical metric associ-
ated with k, on the space of functions orthogonal to constants. In terms of local complex
coordinates (z, Z) and the convention stated in subsection A.1, we have,

0.0:G(z,y) = —7 5(2)(2', y) — 2mik(2) /E/@(z) G(z,y) =
9. 05 G(z,y) = 6P (2,y) + 2miv(z,y) (A.14)

where §)(z, ) is the coordinate Dirac é-function normalized by,
% / dz Adz6@ (z,y) = 1 (A.15)
>

Note that the right side of the first equation in (A.14) integrates to zero in z against constants,
while the right side of the second equation integrates to zero in y against the holomorphic
forms w;(y) and in z against the anti-holomorphic forms @w;(z). An explicit expression for G
may be obtained by relating it to the Green function G which is often used in string theory,
as reviewed for example in [31].

A.6 Reducing integrals of Arakelov Green functions

Beyond the basic integrals Z;, ..., Z5 defined in (3.14), in expanding the five-point amplitude
up to order D®R® we encounter various other integrals which can be easily reduced to the
ones above, along with the square of the Kawazumi-Zhang invariant, **

/3 k(1)v(2,4)v(4,2)G(1,2)G(1, 4) = —332
/3 (1, 2)0(2,4)v(4,1)G(1,2)G(1,4) = —332

/24 v(1,2)0(2,3)v(3,4)v(4,1)G(1,2)G(3,4) = %@2

/24 V(1,202 33, (4, DG, 3)G(2,4) = £ 25— 7
A(L,2)A(Z,3)A(3, ) AE 1) - )
/24 ot 7 G(1,3)G(2,4) = 82, — 8p

23The second, third, and fourth integrals were denoted by Béz’o), Béz’o), B;Q’O) in [41].
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G(1,4) i -
/ ot v 2912 AG(1,3) AR, 4 AB5) ARZ 5 AB,4) = inZ;

)
/ 9(1,3) 01G(1,2)0:1G(1,4) A(2,4) A(3,5) A(2,5)A(3,4) = —inZs  (A.16)
(detY)?

The first two lines of (A.16) follow from using the last line of (A.8), and the last line of
(A.10) on the combination x(1)A(2,4), respectively, in the definition (3.14) of Z,. To derive
the third line of (A.16), we use the second line of (A.7) on the product A(1,3)A(2,4) and
its complex conjugate in the third line of (3.14), cancel the Z5 contribution, and express the
remainder in terms of ¢. To derive the last line of (A.16), we use the second line of (A.7)
on the product A(1,3)A(2,4) but not on its complex conjugate in (3.14), and recast one of
the integrals in terms of ¢?, giving the desired integral.
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B Expanding the integrals

In this appendix, we spell out intermediate steps in obtaining the o’ expansion of the five-
point integrals Jy ;, F;, G;, H; defined in (3.3) to (3.6). The integrals .J; ;, G;, H; admit con-
vergent Taylor series expansions at s;; = 0, while each F; has a simple poles in s15. Since the
integrals H; and G; will be needed only to order s;; they are the simplest and will be carried
out first. The integrals .J;,; will be needed to order s?j and are carried out next, finishing
with F; which may be expressed in terms of the integrals J;; and G;.

B.1 The H-integrals

The H-integrals defined in (3.6) have a convergent Taylor series expansion at s;; = 0. The
contributions of order O(sy;) clearly vanish. For the contributions of order O(s;;), only the
term proportional to s;3 is non-vanishing, so that we get,

i =28 [ 9,6(1.2)06(3.4)90.3) —

1T Sy (detY)? +0(sh) (B1)

v]

where Z; is a shorthand for the combination of A and A in (3.6). Upon integrations by
parts, the 9; and 05 differentials can be made to both act on G(1,3) which gives

—_
=
—j

(det Y')?

Hj = 513 49(1,2)9(3,4)[—i5(2)(21,z3)—1—21/(1,3)]/

5

+ O(s3) (B.2)

ij

based on (A.14). With the A and A in (3.6), integration over point 5 yields,

/25 (djilw = —4v(3, 1)% — —160(2,4)v(4,2)v(3,1)

/Z 5 (dji;y = —MM)% — 160(4,2) (2, 1)(3,4) — v(2,4)(3,1)]

/Z, (dj‘;y = —4v(4, 1)% — —160(3,2)r(2,4)v(4,1)

/Z 5 (dj%g = —4V(3,2)% — —160(3,2)r(2,4)v(4,1) (B.3)

where terms involving (j) have been dropped in the step marked by the arrow since they
integrate to zero in presence of G(1,2)G(3,4). Decomposing the remaining integrals via
(A.16), we find the results in (3.22).
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B.2 The G-integrals

The G-integrals defined in (3.5) also admit a convergent Taylor series expansion at s;; = 0.
Integrating by parts the factor 9,G(1,3) one readily sees that they vanish at leading order
in s;;, except for G which turns out to be proportional to the Kawazumi-Zhang invariant:

1 20:6(1,2)
im Jys  (detY)?

Gy = G(1,3) A(2,4) A(3,5) A(2,5) A(3,4) + O(sij)

Similar manipulations may be used to obtain the results (3.21) to order s?j included in terms
of the functions ¢, 21, Z5, Z3, Z4, plus the additional integral Z5 defined in (3.14).

B.3 The J-integrals

The J-integrals were defined in (3.3). It is straightforward to evaluate their leading s;;
contributions Jﬁg),

I =128 I\ =32 I = —64 (B.5)

B.3.1 First order in s

Evaluating the first order corrections, given by the sum over s;;G(i,j) for i < j, for J;; we
see that the contributions where ¢ = 1 vanish by (A.14), so that we may integrate over 2y,

J{}BZL/ A(2,3)A(4,5)A(2,3)A(4,5) > 546(i, ) (B.6)

2
(det Y) 4 9<i<j<5

The contributions proportional to so3 and s45 are equal to one another. The contributions
from so4, So5, S34, S35 are also equal to one another, so that we get,

A =2t [ AC 30 5AZ AR50
So4 + S5 + S34 + S35 -
T ety /24 A(2,3)A(4,5)A(2,3)A(4,5)G(2,4)  (B.7)

The integral over the point 3 in the second line is proportional to x(2), whose integral against
G(2,4) vanishes, so that the second line vanishes. Integrating over the points 4,5 in the first
line and using the formula for ¢, we find,

Jl(’ll) = —64(823 + 845) (%2 (BS)
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The first order contributions J1(12) are given by,

I = ﬁ /E v(1,2)A(2,3)A3,4)A(4,5)A(5,1) Y _ s;G(, ) (B.9)

1<j

For each 7 < j, we integrate over the three points that are different from i, j using only the
formulas of (A.12). The remaining integrals over i,j are then evaluated using one of the
representations of ¢ in (3.13). Noting that the contributions of s1; and sy; for j = 3,4,5
are equal to one another; that the contributions of so4 and s35 are equal to one another; and
that the contributions of s93, S95, S34, S45 are equal to one another, we find,

JU) = 645350 (B.10)

where we have used momentum conservation to obtain the final result. Finally,

m_ 1
Ji4 = L /25 v(1,3)A(2,3)A(4,5)A(4,5)A(1, 2) ;s”g i,7) (B.11)

When j = 5 and i # 4, as well as when j = 4 and i < 4, the integrals vanish because by
integrating out one of the variables different from ¢ and j they result in an integration of
G against k which vanishes. Thus the only remaining contributions involve s, S93, 13, S45,
and they are readily evaluated,

Jl(lz)? = 32(512 — 813+ 823 + 345) Y= 64(845 — 813) ) (B.12)

B.3.2 Second order in s

To second order, we have,

R L 9 SO (I T) (B.13)

1<j k<t

Each sum has 10 terms, so the total has 100 terms. However, all terms involving s;s, with
J,k, ¢ # 1 cancel, reducing the number of terms to 16 + 36 = 52. To organize these, we
proceed by evaluating first the perfect squares,

/25 ()12 detY Zs” G(i.j)” (B.14)

1<j

. 2 2 2 2 . 2 2 2 2
for which si,, s75, 514, 515 all have the same coefficient 8Z;. Moreover, s34, 555, 534, 555 also
all have the same coefficient 827, and 533, 34215 also have the same coefficients 162, + 8Z,.
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Next, we evaluate the terms involving si;s1, with ¢ # j (to which we refer as “angles”).
For (j,¢) = (2,3),(4,5), the coefficient is 162;, while for (j,¢) = (2,4),(2,5),(3,4),(3,5)
the coefficient vanishes because the integral over the remaining point produces a x which
integrates to zero against G. Finally, for 2 <7 < j <5 and 2 < k < £ < 5, the coefficients of
the terms s93 times So4, So5, S34, S35 vanish as do their mirror images sy5 times So4, So5, S34, S35.
The remaining terms are readily evaluated, and we find,

‘]1(,21) = 821 Z S?j + 8(21 + 24)(833 + 84215) + 1623(824835 + 825834) —+ 32@2823845

1<j

+16Zg (812813 + 514515 + S94 595 + 594534 + 534535 + 825835) (B15)

Recasting the expression in terms of the cyclic variables s; ;1 we obtain (3.19).

Next we evaluate,

=3 /5y<1,2>A(2’3)A(?£§(§’5M(5’1)ZZsijskzg(z,j)g(k,o (B.16)

The sum over i, 7, k, ¢ again involves 100 terms. To take advantage of symmetries, we de-
compose the continuous products AA into v and & using the second equation of (A.8). This
will multiply the number of terms by 4, but we can handle them using symmetry arguments,
and all integrals become mechanical. We organize the calculation as follows,

I3 = X1+ Xo + X3+ Xy (B.17)
with

X, :32/ru(1,2)u(2,4) (4, D)6B3)R(5) Y > siyswe G, j)G (k. 0)

30 i<j k<t
X :—16/ (1,2)0(2,3)(3, Au(4, k() S5 syswe 66, )G (k. 0)
x5 i<j k<t
X; = —16/ v(1,2)v(2,4)v(4,5)v 3D > sijsneG(i, 5)G(k, £)
s i<j k<t

X4:8/25 V(1,200(2,3)0(3, (4, 5)0(5,1) 35 siysue 00, NGk, 0)  (B.18)

i<j k<t
In X, the points 3, 5 enter either into two or zero Green functions. This significantly reduces
the number of contributions, and we find,
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—1625(531532 + S31534 + S32534 + S51552 + S51554

+ S52854 + S12514 + S21524 + S42541)

In X5, either two or zero Green functions G involve the point 5, and the integration measure
is cyclic symmetric in the remaining points. For squares, all terms where point 5 occurs
twice have the same coefficient, while for the terms independent on point 5, we distinguish
between contributions where G connects contiguous points or not. For angles, we distinguish
whether the angle is anchored at the point 5 or not and whether G connect contiguous points
or not. The disconnected contributions do not involve the point 5. The result is as follows,

X2 = 424 Z S?j — 4(21 + 24)(821 + 832 + 323 + 834)
i<j
+825(551552 + 551553 + S51554 + S52553 + S52554 + S53554
+ 512513 + 512514 + S13514 1 S21523 + 523524 + 521524
+ 531534 + 532534 + 532531 + S41542 + S41543 + S43542)

—160% (512534 + 523514 — 513524) — 1623513524 (B.20)
The calculation of X3 is analogous, but the special point is now 3, and we find,

Xy =42, 8% — 421+ 24)(s3 + 3, + s34 + s55)
i<j
+825(531532 + 531534 + 531535 + S32534 + 532535 + 534535
+ 512515 + 514515 + S12514 1+ S21S24 + S21525 + 524525
+ 541542 + 842545 + 541545 + S51554 + S52554 + S51552)

—16° (512545 — 514525 + S15524) — 1625514525 (B.21)

For X,, we exploit the cyclic symmetry of the integrand. The squares of nearest neighbors
have the same coefficient, and so do the squares of next-to-nearest neighbors; there are 4
classes of angles depending on the relative position of the vertex of the angle and the two
other points; and there are three classes of disconnected contributions. In total we get,

X4 = —224 Sij — 422 SijSik
i<j i <k
+82Z5(513525 + S24531 + S35542 + 541553 + S52514)
2
+8¢° (512534 + S12535 + S12545 — S13524 — S13525 + S13S45 + S14593 — S14525

— S14835 + S15523 + S15524 + S15534 + S23S45 — S24S35 + S25534) (B.22)
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Putting all together, we have,

J1(2 (421 +224) (55, + 835 + 85y + 851 + 835 + 551) — 224(sTy + 574 + 534 + 53;)
+425(512513 — S12514 + S12515 + 513514 — S13515 + 514515
+ S23524 — S23525 + 523521 1+ S24S25 — S24521 + 525521
+ 534835 — S34531 — S34532 1+ S35531 1 S35532 — S31532
+ 545541 1 545542 — S45543 — S41542 + S41543 + S42543
— 851552 + S51553 — S51554 + S52553 — S52554 + S53554
—8<P2(812834 + $23514 — 513524 + 512545 — S14S25 + S15524 — S12535 + S13525
— 513545 T 514535 — 515523 — S15534 — S23545 T 524535 — 525534)

—823(824531 + S50814 — S35542 — S41553 — 513525) (B-23)

Recasting the expression in terms of the cyclic variables s; ;41 we obtain (3.19).

Next we evaluate,

I = %/25 y(1,3)A(3’2) AR DA 5)| Zzs,]sug (i, /)G (k, 0) (B.24)

(det Y 1<j k</

We proceed in analogy with J1(233 and decompose as follows,

T =Yi+Yat Y5 +Y, (B.25)

with

Vo= =64 [ v(L 3G DRrr(5) 30 Y s 010 G(R 0

1<j k<t

Y, = 32/5 v(1,3)v(3,2)v(2, )r(4)k(5) > Y siskeG(i, )G (k, ()

Ys = 16 / v(1,3)(3, (4, 5)0(5, 95(2) 33 iy GG, )Gk, 0)
D i<j k<t
Y, =-8 /5 v(1,3)v(3,2)v(2,1)r(4,5)r(5,4) Z Z siiske G (i, j)G(k,0)  (B.26)

The combinatorics is similar to J1(23) and the integrals are readily recognized,

Yi = 16(21 —+ 24)8%3 — 1621 Z S?j + 3222(821823 + 541543 + 851853)

1<j
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Yy = —8(2) + Z4)(s1y + 3%3 + 5:2’)1) + 82, Z S?j
i<j
—1625(812513 + S21523 + S31532 + S41542 + S41543 + S42543 + S51552 + S51553 + S52553)

Y = —8(21 + Z4)(813 + 845 + 821 Z S; C+ 32(,0 813845 + 1623(814835 + 815834)

1<j
—1625(812523 + S14515 + S24S25 + S34S35 + S14534 + S15535)
_ 2 2 2 2 2 2 2 2 2 2
Yy = 4Z4(s7y + 813+ 833 + 855) — 421(814 + 875 + 854 + S5 + 534 + 535)
—160% (512 + S23 + S31) 545 — 8Z3( + + + + + )
@ (S12 T S23 T 531)S45 3514525 T 514535 T S24S515 T S24535 T 534515 T 534525
+825(512513 + S13523 + S12523 + S41542 + Sa2543 + Sa3541

+551552 + S52553 + S53551 + S14515 + S24525 + S34535) (B.27)

Assembling all contributions, we find the following equivalent of the s7; order in (3.19),

T3 = —AZ1(25% + 253, + 255 + 52, + 535 + 53, + 55 + 5% + 5%)

—4Z4(sTy + 533 — 531 + s15) — 1607 (s12 + S23 — S13) 845
—825(514525 — S14535 + S24515 + 524535 — S34515 + S34525)
+82Z5(—S12513 — S13523 + S12523 — S41542 — S42543 + S43541

— S51852 — S52S53 1+ S53S51 — S14515 — S24525 — S34535) (B.28)

One readily verifies that the result is symmetric in 1,3 as well as in 4,5. Recasting the
expression in terms of the cyclic variables s; ;41 we obtain (3.19).

B.4 The F-integrals

Finally, we turn to the F-integrals defined in (3.4). As stressed in section 3.2, these integrals
have a simple pole at s;5 = 0, which can be exposed by means of the identity (3.8). Applying
the same method as for (3.10), we get,

:__Z:’; / feljéi NG(1,2)0G(1, k)A(2,3)A(4,5)A(2,4)A(3,5)

2 [ KNg
+_
512 det Y)

:__Z:z / 5 ff; 1G(1,2)3,0(2, K)A(2,3)A(1, 3)| A4, 5)[?

K(1A(2,3)A(4,5)A(2, )A(3,5) (B.29)

2
_3_12 05 (det Y)

v(1,2)A(2,3)A(1, 3)|A(4, 5)]? (B.30)
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Fy = _%Z il / fj;i G(1,2)0:G(2, k)A(2,3)A(4,5)A(L, 4)A(3,5)

p " KNs) e
- (detY) v(1,2)A(2,3)A(4,5)A(1,4)A(3,5) (B.31)

For each F,, the first term on the right side may be expressed as a linear combination of the
functions G; and Go, whose o expansion was computed in section B.2 and given in (3.21).
The second term on the right may be expressed as a linear combination of the functions
Jys, whose o’ expansion was computed in section B.3 and given in (3.19). As a result of the
integration-by-parts relations, we obtain,

3,4,5
sk = Jig — 513(G1 + G1‘4<—>5 — Gy — G2}4<—>5) - 514(G1‘3<_>4) — 515 (Gl‘ 5%4)
S1oF5 = J1,1 - J1,2 - J1,5 — 513 (G1 - G2‘4<_>5)

34,5
— S14 (G1‘3<_>4 - G2}3<—>4) 515 (Gz‘ 5,%,4)

— |1 1,2,3 — |1 1,2,34,5 — | 1,2,3 — | 1,2,3,4,5
S12F3 = —2J1,1 — 2J173 — So3 (Gg I +Gs { — Gyl L+ —Gy { )
2,3,1 2,3,1,5,4 2,3,1 2,3,1,5,4
11,2,34,5 11,2,34,5
— So4 <G3‘ 4 > — S95 <G3} 4 )
2,4,1,5,3 2,5,1,4,3
o 07 07 e 1,2,345 11,2,34,5
P = <20 20+ 20— (] 1 )
12474 — 1,1 1,3 1,2 23 3 23154 4 231,54
g 1,2,3 4,5 — |1 1,2,34 __ 112,345
— 824( ‘ - G4‘ { ) - 825G4‘ { (B32)
2.4,1,5,3 2.4,1,3 2,5,1,3,4

which yields the expansions of F; in (3.20). The transpositions and permutations annotated
on the right of the | act on the external momenta in the o’ expansion of the respective
integrals. We note that .J; 5 may be evaluated in terms of J; o by using the relation,

— 1,2,3,4,5

Jis=J12 5’17;374 (B.33)

The complex conjugations on G in the expressions for Fjs, Fy and .J; 2 do not complex conju-
gate the kinematic variables s;;.
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C Degenerations of genus-two modular graph functions

In this appendix, we shall obtain the non-separating degeneration, the separating degenera-
tion, and the tropical limit of the modular graph functions which are needed to order DSR?
in the analysis of the 5-point amplitude. Standard mathematical references on degenera-
tions of Riemann surfaces are [90, 91]. Here we shall briefly review the methods developed
in [31, 32] to obtain the non-separating and tropical degenerations of higher genus modular
graph functions, restricted here to the application to genus two.

C.1 The non-separating degeneration

To describe the non-separating degeneration of a genus-two surface X to a genus-one surface,
it is useful to parametrize the period matrix €2 of the Riemann surface X as follows,

(T v . _ [ T2 T2U2
= (v o +i(t+ r2u§)) Y =Iml = <T2U2 t+ T2u§) (C.1)

where 7 = 7 4+ i1 and v = uy + Tuy with 7, 7, u1, us, 01, t € R and 7,¢t > 0. The non-
separating degeneration corresponds to the limit ¢ — oo keeping 7,v and oy fixed.

—2rt +27t

. " o
Pa S \pb
¢

-

....................

a

Figure 3: The surface ¥, is obtained from ¥ in the vicinity of the non-separating degener-
ation limit by cutting ¥ along a cycle homologous to 2, and adjusting the position of the
cycle so that €, and €&, are level sets for f = £2nt.

Actually, to obtain the desired expansion of modular graph functions, we shall be inter-
ested not just in the non-separating degeneration limit (which is a genus-one surface with
two punctures p,, pp), but in a small but finite neighborhood of this limit. To parametrize
this neighborhood, we reconstruct the genus-two surface ¥ from a genus-one surface Y,
with two disconnected boundary discs &,, €, as shown in figure 3. The surface X, may be
obtained from an underlying compact genus-one surface »; with modulus 7 and two marked
points p,, p, obeying v = p, — p, from which the discs €,, &, centered at p,, p, of radius R
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have been removed. Note that the points p,, p, belong to ¥ but not to X,,. The genus-two
surface ¥ is obtained by gluing annular neighborhoods of size t of the boundary curves €,, &,
together. The details of the construction may be found in [31, 32].

To describe this construction concretely, it is useful to introduce the linear combination
Wy = wg — ugwy of holomorphic (1,0) forms on 3, such that the canonical forms defined in
(3.11), (A.6) decompose as follows,

() = 4%&;1 () (z) + %wt(x)wt(x)
9) = 5w (@)ily) + o))
Az, y) = wi(z)w(y) — wi(z)wi (y) (C.2)

In the limit ¢ — oo for a fixed point x € ¥, the holomorphic (1,0) forms behave as follows,
W =14 O~ wy = 2iax F(z) + O(e™2) (C.3)
T

Here, the real-valued function f(x) plays the role of a Morse function on ¥, and may be
given explicitly in terms of the genus-one Arakelov Green function g(z,y) = g(x — y|7) on
31 by the following exact formula,

f(x) = g(z,m) — 9(z,pa) v =Py — Pa (C4)

The discs €, and €, may be specified concretely by the conditions f(€,) = —2nt and
f(€) = +27t, as shown in figure 3. For sufficiently large ¢, the discs will be disjoint.

The Arakelov Green function G(x,y) has an exact asymptotic expansion as t — oo, for
fixed z,y € X4, given by [31],

G(x,y) = G(z,y) +7(x) + 3(y) + 70 + O(e>™) (C.5)

where the terms in the sum are given by,

é(l’,y) = g(l’,y) o %ﬂi(y)
3(w) = ~olae) - otem) + 1)
o= T4 1g() - P2 (©6)



and F}, is the genus-one elliptic modular graph function defined in (3.17). For later use, it
will be useful to further introduce combinations familiar from [32],

Du(r) = / o (2) 9(2)*
DY (lr) = / i (2) 92 0) g (2)
g (v]7) = / m1(2) 92 0)gul2) (1)

such that g, (v|T) = g(v|7), D,(f)(0|7') = D(7), and gx(0|7) = Ei(7), where Ej is the non-
holomorphic Eisenstein series (4.57). Henceforth we shall suppress the dependence on v
and 7.

C.1.1 Useful integrals

To expand the genus-two integrals near the non-separating degeneration, the following simple
integrals over X, will be needed,

/ Wy Wq fn = / thtf%H =0 (08)
Eab z:ab
/ Wi T f2n - _ 2 (27T)2nt2n+1 (C 9)
v, on + 1 '
e
/ W) @1(y) guly — 7) = = 0o fura (C.10)
Sab m

where we define f,(z) = g.(x — py) — gn(x — pa), such that f; = f. For any function v (x)
which is smooth on ¥, and whose Laplacian 0,0z¢(x) is smooth on ¥, but which does
not need to extend to a smooth function at the punctures z = p,, py, we have,?*

/ i fTY = = % / ) a6 (v (ph) + ()" () )

i(2mt)" T2 o 9 0 My (10
=T e /0 d0 R <¢(pb) +(-) w(pa)>

2m2(n + 12)(n +2) /Eab r1(2) f(2)"12 0.0:9(2) (C.11)

24The middle term was omitted in equation (A.21) of [32], but its effect was correctly included in the
subsequent equations in section A.5 of that reference.
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where pg,b = Payp t+ Re™ and 6 is the coordinate on the boundary circles @,, €. The relation

between R and t is given by the behavior of the scalar Green function for nearly coinciding

points,

|z —p|?
R2

for p = pa, pp.- Using these fundamental formulas, we derive integrals required to evaluate

the non-separating asymptotics of ¢, 21, 25, Z3, 24, Z5 and, abbreviating g = g(v|7), we get,

+ g(v|T) + O(z — p) (C.12)

g(z—p|T) =27t —In

27Tz'/ wi(2)w(2)9(2, Pap) = 21t + dntg + Iy
Z(Lb

7 2t2 Tt 1 2 D3 — Di(;’l) AUF4

P — w 2 = - Ty Y - -
it ). wi(2)W¢(2)g(2, Pasp) 3 2 9 29 1t 1672t
. - w1, Dy—DY AR
i Nglrp) = Tty Lo _ C.13
W) wi(2)W(2)g(2, pa)g(z, P) 597 59 St 1672t (C13)

The Laplacian on v is defined by A, = 4150,0;.

C.1.2 Non-separating degeneration of ¢ and Z; 53

Using the formulae above, and some further identities derived from them, the asymptotic
expansion of the Kawazumi-Zhang invariant may be derived and gives,

1 1 5L o
— ot —g+ 2 L O C.14
p=mtt gt (e™™™) (C.14)

while the asymptotics of the integrals Z; o5 in (3.14) was obtained in equation (3.21) of [32],

Z = 13;;t2 +%tg E2++2_FQ+%<—D3—D§” - %gFg—l—2gg (C.15)
+4(3 + Aif“) + 87:%2 <3F22 + 12F; + ICC) + O(e™?™)

Zy = —77;;2 — %tg— Q&%M+%<—2D3+%QF2+293+2C3
A, (F;S; 2F4)) B (AZL;;?H + O

Z3 = (ng + %tg + é(FQ +3¢%) + Wit <—%gF2 + Aé’f;) + (A%;?Fg + O(e™*™)

where the Laplacian on 7 is defined by A, = 4720,0- while K¢ in Z; is the (complicated)
regularized integral defined in equation (3.40) of [32], which depends on 7 but not on v.
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C.1.3 Non-separating degeneration of Z,

Using (A.12), the integral Z; defined in (3.14) can be recast as follows,

Az, y)I?

Z, 422 =— | =20 d0
1 ez s detY

G(z,y)? (C.16)

The computation of the asymptotics of the integral is similar to the one for Z; in [32]. Using
the last identity in (C.2) we decompose it into Z, + 22, = Z_ — Z,, where

z+:% Gy enm@)ay)m)
z:% [ G a@m e m) (C.17)

Substituting (C.5) into these equations, we get Z; = Z\% + 2 4+ 29 4 O(e=2™), where

20— % 5 G(x,y)? wi (@)@ (2)wr ()@ ()

2= 2 [ 6@ (50 +30) +30) en@m @tz )

2= 2 [ () +50) + o) w1 (@5 (2)n(y)F1 ) (C.18)
and

2@ _ % 5 G(x,y)? wi(2)@(x)wr (y)w1 (y)

20 _ % [ d@) (5(@) +3() + 0 ) w1 (@)@ @) ()n ()

20=2 [ () +30) + 50) @B w)F () (C.19)

These integrals can be computed using the same techniques as in [32]:

e For fo), using (C.9) we get

1 2 2
z? = —47 L ) (9(x.)* - g(x,y)f(zzji(y) +1 (féwég ) Jerw)@(y)
= 8Lz + §F2 - % (C.20)
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e For ZJ(rb), using (C.10) and (C.11) we get

2i f(x)? _
20 =2 [ @t (o6 + st - L ) wpmty
Z:ab T
2 1) 6F, — F?
= 4go — — (D3 — D —_— C.21
4Bz + 49 7Tt( 3 3 ) + 2m2t2 ( )
e For ZJ(f), expanding in powers of (y) we get
c ~ ~ \2 8’L ~ F _ o
20 == [ m@G@+30)" -3 (o+ 12) [ iwatm)
b t 87Tt Sab
49 - _
—— [ AW wly)@y) (C.22)
2ab
Using (C.13) the three terms evaluate to the three lines below,
F: 1 3F,
29 = 832 95" — By — gy + ——(Dy— DMy = 274
* 5% — o it 2= 52t 27Tt( ’ 3 ) 4m2t?
+<~ + F2)<2F2 +8 +@)
o 8nt/ \ 7t g 3
47T2t2 47t 2 AUF4 1 (1) F4
- LY PH Bl S § s WY .23
5 397 Ty amP D) T (629
e For Zia), integrating by parts using 70;0,9(z,y) = mé(x,y) — 7 we get
a 2 T _ _
2= Z [ (s~ oen D90 wr s v
2T 6F, — F?
= ——22 ki(z)r1(y)g(e, y)zaff(x)ﬁyf(y) + %
™t Jv, Tt
4 1) 6F, — F}
=——(D3s—D = C.24
7rt( 5 s )+ 2t2 ( )
e For Zib), integrating by parts using 0,0z fo = —7f /T2, we get
2 - - _ _
20— 2 [ g(w.0)(23(0) +30) wn@m () )@0) + <
2 Zab
2T - -
=22 [ ki) (0 a@)0a1 + 0a£o@)0: () (2(0) +30)
Z(Lb
39 4R, R
=2 1 gy 2 C.25
wt wA? 5% it ( )
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where the term 3 originates from the contributions 9(z,pa) + g(x, pp) inside F(z). It
can be evaluated again by substituting f = g(x, py) — g(z, p,) and integrating by parts,

30 =2 / 1 (2) (02 2(2)0e () + D Fo(2)00 () ) (92, a) + 9, 0))
= 2Dy — 2D + 4g Fy + 4E5 — 4g; (C.26)
e For 29, using (C.10) and 72|80 f2(pa)|* = = Au(F5) — gF> we get
¢ 4 PN _ _
29 = — [ F@)iy)w (@)@ (@)w(y)@ ()
Tgt Sab

T2 2 1

= | O Lo 0a) + O fale)| =~ (AuFE —8mgF)  (C27)

Collecting all terms, we find

2 ot F, 1, 4Ds—4DY —gF

Bi=m e — g 2B, — 2 g% — 3

T 0 37T oY ot
AF,  3F%+12F, oy
 4n?t 22 +0(e™) (C.28)

2 . 2D3—2D{" —3gF, +4gs — 4By AF}  2F, o

Z =-"F— - ™
32 mt 2t * m2t2 +0(e™)

and therefore, using the expansion of Z; in [32, (3.21)],

g TPt By gP ADy 4D + 8B + g Fy — 16(gs + Gy)
A(F2+2F,) 3F? —AF, +2K° s
_ — Q 2
8m2t 822 +0(e™) (C.29)

where K€ is the regularized integral defined in formula (3.40) of [32].

C.1.4 Non-separating degeneration of Z;

To evaluate the non-separating asymptotics of Z5, we start from its defining formula in (3.14)
as well as a closely related integral we shall denote here by Z:,

Z5 = ; 0G(1,2)0:G(1,3)G(1,4)v(2,4)v(4,3)v(3,2)
Zl= g 01G(1,2)0:G(1,4)G(1,3)v(2,4)v(4,3)r(3,2) (C.30)

73



Since this is the first example, here and in [32], of the non-separating degeneration of a genus-
two modular graph functions which involves derivatives of the Arakelov Green function, we
shall present the computations in detail. We begin by using the identity,

2)v(z, y)v(y, z) (C.31)

and the fact that the Arakelov Green function G(x, y) integrates to zero against the canonical
Kéhler form k(z), to conclude right away that we have,

Z5+2.=0 (C.32)

To evaluate the difference, we instead use the identity,

viz,y)v(y, 2)v(z,x) — vz, 2)v(z,y)v(y, x) (C.33)
= MO (4 B (31(2) — i (W) e (D (2)) + exel, .2
This leads to
z = % [ 26(1,2)2,6(01.9)6(1,4) (1 2)ee(3)1 (3)eor (4)1(4)

—K1(2)w1 (3)w(3)wy(4)wy(4) + cyel(2, 3, 4)) (C.34)
For fixed z;, the integrals over zj, 23, 24 reduce to one of the following integrals,

mt 1 f(x)?

K@) = [ m()le.) =75 = 1 (960 00) + ote.m) = gl m)) + L0 + 06

1) = [ @ )0(e.0) = 2 (01oe)= 100 olvo) = 100l ) + O >7)C.39)

to their complex conjugate, or to one of their derivatives,

1 f(x)0:f (z)

1
axK(l’) = /E Kl(y)axg(za y) = _Z xg(zapa) - _axg(zapb) + Ry + 0(6_27rt)

4
0.L0) = [l (1)0.9(e.1) = Z02fa(a) + O )
0:L(x) = | @ ()0:0(0.9) = 20u0ufale) + O) = () + O (C.30
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The function f, and its derivatives dfy,df, are regular at p,,p,, while the singularities of
f, K,0%f,0%f, are powers of logarithms at the worst. As a result, the above integrals are
absolutely convergent term by term and can be extended to the compact torus ¥,

8
2= | @) [&EK(x) (L(:c) 8;L* () — L*(:L’)&gL(x)>
10K (z) (L*(:c)&xL(:c) — L(2)8,L" (x))
VK (2) (5:0[/*(:1:)856[/(1') - 0xL(x)0xL*(9:))} (C.37)
Integrating the first two lines by part so as to expose K without derivatives, we get,
2472
Z5 = W;f /E 1 k() K (x)(((‘996(‘9@702(9:))2 — 92 fy(x) 02 fg(x)> +O(e™?™)  (C.38)

Since we have,

1
(axaffz(if))z - aﬁfz(if) a:%fz(if) = 5@: (axaifZ Oz fo — a%fz 5xf2) +c.c. (C.39)
the z-independent terms in K (x) give a vanishing contribution. The remaining terms may
be organized as follows,

C, Cy
Ze = ——
5T ort + 222

where C and Cy are t-independent genus-one elliptic modular functions, defined by,

+ O(e™*™) (C.40)

¢ =12 [ (@) (90— pa) +9(e =) (f<x>2 I e azfz)
Cr=3 [ m)fr (1ap - Lanos) (€41

Using formulas (B.33) and (B.35) of [32], in particular,
02 fo(x) = 2mid, f (x) 9-0-g(x,y) =0 (C.42)
it is immediate to compute Cs,
Cy = T2F(v) — 6A, Fy(v) (C.43)
The integral of the term proportional to f(z)? in C is easily evaluated, leading to,
Cy = —24(D3 — DV (v)) + 24C,
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2
T2

G = 2 Kl(x)g(%pa)aifé a9%]02 (C.44)
P
The integral C; is computed by integrating by parts and using 0,0z fo(x) = -z (),
T22 2 T
Cl - __2 f{;l(I) aig(x’pa)axféai‘fé - _g(l',pa)axfafo
™ Jx T2
:é1 — %‘af2(pa)|2—l—2E3—2g3—D3_|_D§1) (C.45)
where
Cr=— / k1(2)g(x, pa) (8fo Ouf + 0o f2 0z f) (C.46)
P

To evaluate the last integral, we substitute f = g(x, py) — g(z, p,) and integrate by parts,

T2

€= Du= D)+ 2 [ wa@latpn) (012 020(o )+ 0. o Orglo ) (€T

™

To compute this last integral, we use the following identity,

0,05 (f2(2)9 (2, 1) ) = 0a 2 Oug(,70) + D2 fo Drg (. 1)

™

~Z (F@glz.p) + fol2)(0(z,ps) ~ 1) (C.48)

T2

The integral is now readily evaluated and we obtain,

C~1 = D3 — Dél) + 2gF2 + 2E3 — 293
T+
Cr =29 Fy +4E; — 4g5 — ;2|8f2(pa)\2 (C.49)

Using 72|0f2(pa)|” = 5-A0(F5) — gF> we find,
Cy = —24(Dy — DY) + 729 Fy + 96(E5 — g3) — %AUFQQ (C.50)

We conclude that in the minimal non-separating degeneration,

C, Cy
Cont 2w

+ O (©51)
where C} and Cj are given by (C.50) and (C.43).
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C.1.5 A novel identity for genus-one elliptic modular graph functions

Using the large ¢ expansions (C.16) and (C.29), and choosing coefficients judiciously, we
observe that all terms up to order O(1/t?) cancel in the linear combination,

1 A, (F? —2F)) — 6F} + AF.
Zl+ZQ+Z3+_Z4—¢2: (2 4) 2 4_'_

5 Ty O(e*™) (C.52)

Moreover, using the Laurent expansions computed in [32, §C.3.3], we find that the coefficient
of the O(1/t?) in (C.52) is exponentially suppressed near the cusp. This strongly suggests
that the left-hand side of (C.52) actually vanishes, motivating the conjectures (3.15) and
(3.16). In appendix D, we shall prove that the genus-two identity (3.15) indeed holds, and
obtain (3.16) as a consequence of this fact.”” Without doubt, (3.16) is only the first in an
infinite family of relations between genus-one elliptic MGFs, and systematic methods for
deriving such identities are being developed in [92].

C.2 Separating degeneration

We shall now consider the separating degeneration, where the genus-two Riemann surface X
degenerates into two genus-one curves Y; and Y, with two marked points p € ¥;,p € ¥}
joined by a thin tube. We refer to [32, §4| for a detailed discussion of this degeneration, and
only recall a few basic facts.

This limit is obtained by sending to zero the off-diagonal entry of the period matrix §2,
keeping fixed the diagonal entries 7,0 corresponding to the complex moduli of ¥ and 3.
In the limit v — 0, the Siegel modular group Sp(4,2Z) is broken to the product SL(2,7Z), X
SL(2,7Z)5 X Zy, where the two SL(2,Z) factors act by fractional linear transformations of 7
and o and Z, exchanges these two variables. The modulus |0] of the degeneration parameter

o = 2mvn(t)*n(o)? (C.53)

stays invariant under the unbroken part of Sp(4,Z). The Abelian differentials degenerate,
up to terms of order O(|0]), to

€ 0 €
W1 = W(ZL’) o ! s Wy = v ! (054)
0 r € X w'(x) r € X

25 After the first version of this work, a direct proof of (3.16) based on genus-one methods has been given
in [72].
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where w and w’ are the standard Abelian differentials on ¥; and 3j. The Arakelov Green
function becomes, up to terms of order O(|0|),

—5 0|+ g(z —yl7) — 39(z —pI7) — 30y —pl7) Ty ED
G(z,y) ~ { =3[0 + g(z —ylo) — 39(x — p'|o) — 39(y —p'lo) z,yexy  (C55)
3 [o] + 39(z —plT) + 59(y — P'lo) . r €D,y e
The expansion of the modular graph functions ¢ and 2 23 was computed in [32, §4] using
these formulae,

¢ =—In[o[+ O(|2])
Zy = 2(In|0|)? + 4E, (1) 4+ 4E5(0) + O(|9])
Zy = =2(In[0])* — Ey(1) — Ea(0) + O(|0])
Z5 = 2(In|9])? + O(]0]) (C.56)

where Ej(7) is the usual non-holomorphic Eisenstein series (4.57) of SL(2,7Z).

For the integral Z4 defined in (3.14), we see that the measure v(z,y)v(y, z) vanishes in
the limit v — 0 unless z, y lie on the same elliptic curve, say >, in which case it reduces to
—rk1(z)k1(y). Hence the integral reduces to

4 /231 {—% In 0] + g(x — y|7) — %g(x —p|7) — %g(y — )| m(@)m(y) + (5 & )

(C.57)
Observing that the crossproducts integrate to zero, this evaluates to
2y~ - / [(I[a])* + 4g(z — y|7)* + g(2 — pIT)* + 9(y — p|7)?] K1 (2)r1 (y) + (B > BY)
21
= —2(In|9|)? — 6Ey(1) — 6E5(c) + O(|9]) (C.58)

Using (C.56) this behavior is indeed consistent with the identity (3.15).

Turning to the integral Z; defined in (3.14), we see that the measure v(2,4)v(4,3)v(3, 2)
vanishes unless the points 2,3,4 are on the same elliptic curve, say ¥, in which case it reduces
to K£1(2)k1(3)k1(4). When the point 1 is also on ¥y, we get

g - [819(£E1 - Iz) - %519(931 - p)} {519(931 - 933) - %519(551 - P)}
x {—% In o] + g — 22) — 591 ) — 5o(ws — p>] k(2)m(3)ri(4)  (C.59)
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In the first line, using translational invariance one can replace 0y g(x; — x5) and 0y g(x; — x3)
by —0:g(x1 —x3) and —0sg(z, —x3), which integrate by parts to zero. The terms proportional
to g(x1—x4) or g(x4—p) on the second line also integrate to zero. The integrals over x5, 3, 74
are then trivial, leading to

_2 | ouger — p) Brglws — p) I Jo] + g1 — p)] (C.60)

T bl

When the point 1 is on ¥/, we get instead

4 _ 11 o1
— Ohg(x1 — p')org(x1 — 1) [— || + Sg(z1 — p') + 59(xa —p) | £1(2)K1(3)K1(4)
17T ZQXZ? 2 2 2
2 = / .
= — | Ogzr —p) dug(ar —p') [Info] + g(1 — )] (C.61)
Zl

The contributions (C.60) and (C.61) cancel against those where ¥, and ¥/ are exchanged,
so we find that Z5 vanishes in the separating degeneration, up to terms of order |0|. It is
quite remarkable that Z; vanishes both in the separating and non-separating degenerations.

C.3 Tropical limit

Having obtained the expansion of Z; and Zs in the non-separating degeneration t — oo
keeping fixed 7 and v, we can obtain the tropical limit by further sending 7 — ioco keeping
us = Imv/7y fixed. The result can be re-expressed in terms of the variables V, S = S; 4 .55
parametrizing the imaginary part of the period matrix via,

_ (1S
(L) o

such that the tropical limit corresponds to V' = (tTg)_l/ 2 0 keeping S; = uy and Sy =
(t/72)"/? fixed. For the modular graph functions o and Z; 53 in (3.14), this leads to [32, §5],

P~ 65_17;A10 +—= s = AgoV?
o0 3? { 15112A°° * 15112A°2 B 15%141 vt %Az 0} * 215243A1°V 2?3 v
<1 312/7;2 { 315A°° * 2é2A°’2 B %Al’l * %AZ’O}
f:’ { = Ao — %Al 0} V- i Ap V3 + 43(2156%,40,01/4 (C.63)
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3272 [ 1 1 5 17 5Cs e
Zy o 22 Ay — — Ay - — — 5o AV = 5 A0V
SRTE {504 ®0 700877 792 960 20} o 10
3272 [ 11 1 17 5 11(’3
Zy~ 4 Aos + Ay + 4 S Ag oV
Sy { 756000 1512702 g g 2’0} 61 0.0
/v

where ~ indicates equality in the limit V' — 0 up to corrections of order e~
Similarly, starting with (C.29) and using the formulae in appendix C of [32], we arrive at

3272 [ 1 1 5 9
~ Ago — —Aga+ —A — —A
T {252 00T 13102 T g T 300 270]
854, — T2A
+C3 1,0107T SV 4+ —CsAo V4G ( ﬁ) AgoV* (C.64)

where A; ;(S) are the local modular forms introduced in section 5.3 of loc. cit., and [ is the
unknown (presumably rational) coefficient appearing at order V* in the tropical limit of Z;.
As a strong consistency check on the expansion (C.29), we have reproduced the leading term
in (C.64) from a worldline integral using the tropical Arakelov Green function G*9 along
the lines of [32, section 5.3].

Using (C.64) we obtain the tropical limit of the combinations A; and A, defined in (4.6),

+C3 [ Aox + ;6 Ay o} V+ B—CE’AO V4 @ﬁ;gi;f)gg (C.65)
2 312/7; [75160A00 * 15112A°2 B %Al 1t %AQ 0} 1§§3A1°V 7Z;§§
In contrast, we find that the tropical limit of the integral (C.30) starts at order V,
Z5 ~ E(Al 0~ —Ao VG + 30A0 V3¢ (C.66)

The vanishing of the leading O(1/V?) term is quite remarkable, and follows from the can-
cellation of the leading term in the combination f(z)? — ;—%0% f202 f, appearing on both lines
of (C.41). We have also confirmed the vanishing at leading order by a wordline computation
using the tropical Arakelov Green function.
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D Proof of the modular graph function identities

In this subsection, we shall prove the identity (3.15) between the genus-two modular graph
functions defined in (3.13) and (3.14).

Translation invariance and the resulting momentum conservation on the torus provides a
fundamental tool in the proof of identities between genus-one modular functions (along with
holomorphic subgraph reduction [43, 93] or Fay identities [94]). The absence of translation
invariance prevents us from using the same techniques for higher genus surfaces. However,
the lemma below provides the appropriate alternative tool, valid for arbitrary genus h.%°

Lemma D.1 On a compact Riemann surface 3, with Arakelov Green function G(x,y), the
following identity holds for arbitrary y, z € %,

wi(y) 0:G(y, 2) + wi(2) 0,G(y, 2) — 0:21” (z) wy(y) — 0@ (y) ws(2) =0 (D.1)

where the tensor ®;7(2) = O (2)YEY is given by the following integral in x € %,

Bpy(z) = % /E Gz, 1) wy (2)a, () (D.2)

The tensor ® is Hermitian ®y;(z) = ®7(2).

To prove Lemma D.1, we first show that its left side is holomorphic in z and thus
holomorphic in y by symmetry under swapping z and y. The 0; derivative of the left
side of (D.1) may be evaluated using the identities on the Arakelov Green function G, given
in (A.14) for genus 2. The §(y, z)-functions cancel between the first two terms, and ® has
been defined so as to cancel also the remaining terms in the d; derivative. As a result, the
left side of (D.1) is a single-valued holomorphic (1,0)-form in z and y which takes the form
M5 w;(2)wk (y) for some constant tensor M;’%. To show that M = 0, we integrate the
left side of (D.1) against wy(z), use the fact that the contributions from the first and third
terms vanish, and that those of the second and fourth terms cancel using the definition of ®.

The proof of the identity (3.15) proceeds by a judicious use of the formula (D.1). We
begin by considering the alternative integral for Z, given on the first line of (A.16),

2= 4 / o)y, 2)()G )Gy, 2 (D3)

26Since the first version of this work, the lemma (D.1) has been further generalized and applied to derive
higher-weight identities at arbitrary genus [71].
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and eliminate v(z,y) defined by (3.11) using the second equation in (A.14). The J§-function
produces the term —Z; on the right side, so that we obtain,
21
Z1+2Zy=— [ v(y,x)0.0;G(x,y)G(z, 2)k(2)G(2,v) (D.4)

™ J»s
Integrating by parts in = and writing out x(z) explicitly, we obtain,
YIJ
Zl + 22 = % V(y,x)w;(z)wJ(z)agg(x,y)@xg(z, z)g(z,y) (D5)
»3
Next, we use formula (D.1) to re-express the combination w;(2) 9,G(z, z),
1J

21+ Zy = o . v(y, 2)w;(2)05G(2,y)G(2,v)

X [ — (@) 0,G(2, ) + 0,85 (2) wic(x) + 0,8, K () wK(z)] (D.6)

To evaluate the contributions from the first two terms inside the brackets, we integrate by
parts in both g and z and combine various Abelian differentials into v(x, z). For the first
term we obtain,

o [ B )G 00,6 (1) Gl ) = 5 Zak 525 (D)

21 S 2

where we have used the second equation in (A.14) for the mixed double derivative on G,
the expression for Z; in (3.14) to evaluate the contribution from the dé-function, and the
alternative formula for Z5 given in the second line of (A.16). For the second term we obtain,

v [ vl e(@)Gle, ) )
A [ vy e enav )G ) ) 03

Using the formula (D.2) for & makes all Abelian differentials explicit, and regrouping these
into v differentials we obtain for the second term inside the brackets of (D.6),

2 [ vle e )0 0)0(e.0)00.2) = 52+ D9

where we have used the alternative integral for Z5 in the second line of (A.16) as well as
the formula for ¢? on the third line of (A.16). Finally, to evaluate the contribution from the
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third term inside the brackets of (D.6), we integrate by parts in x and again use the second
equation in (A.14) to obtain,

iyt /22 v(z, )@ (2)wi (2)G(x, 2)® " (2)
—iy'!’ /23 v(y, 2)@s(2)wi (2)v(2,1)G (2, y) @5 (x) (D.10)

Using the formula (D.2) for ® makes all Abelian differentials explicit, and regrouping these
into v differentials we obtain for the third term inside the brackets of (D.6),

4 / k()02 9 (y, )G (@, )G, 2)

2 / )y, 2l ), G, )G, 2)

where we have used the second line of (A.16) to evaluate the first integral, and (A.8) twice to
transform the second integral into the expression for —Z3 with Z3 given in (3.14). Assembling
all contributions proves formula (3.15).

By evaluating the non-separating asymptotics of the function Z,-function independently
and using the asymptotics obtained for ¢, 21, 25, Z3 in [32], we have shown in appendix
C.1.5 that (3.15) implies a highly non-trivial identity between the genus-one elliptic modular
graph functions F, and Fj.
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E Overall normalization of the genus-two amplitude

The five-point genus-two amplitude including its overall coefficient was determined in [8] at
the leading order D?R?® using the non-minimal pure spinor formalism. The normalization of
the amplitude followed from a first principles calculation using the integrals over pure spinor
space derived in [73] together with the conventions for genus-two measures of [57]. Conse-

TNMPS) featured

quently, the building blocks T{gﬁ\ 45 and Tyg3)45 (collectively denoted by
in [8] also depend on zero-modes of the non-minimal pure spinor A, whose integration gives

rise to various combinatorial factors.

In contrast, in this work we use the building blocks Tlr?273\ 45 and Tia 345 (collectively
denoted by TMP®) defined with the minimal pure spinor formalism in [14]; which do not
depend on the zero-modes of \,. Despite their different definitions, one can verify that
BRST-invariant quantities written in either setup yield the same results with differing nor-
malizations. The component expansion for bosonic external states of the building blocks used
in this work can be downloaded from [63]. We will now show that their relative normalization
is such that TNMPS = 210 33 5 MPS,

To show this we compare the component expansion of the BRST-invariant kinematic
factor at order D*R5. The pure spinor superspace representation B(s)| p2rs obtained in this
work (4.19) coincides with equation (5.44) from [8],

2 2 2
T; T, T,
lCéz) _ [(T12,314,5)0| N [(T2,43,5)0| N [(Th2,53,4)0|
S12 512 S12
m 2
+‘< 3,4,5|1,2>0‘ +(1,2]1,2,3,4,5) (E.1)
up to an overall coefficient®”,
C]{/

Bis)|p2rs = 2° (5) ’Cé2) (E.2)

Straightforward calculations for 5 Type IIB gravitons show that

B(S)} — _214 (3>4 tree
D2R5 {5}

a/
(2) _ 28 96 2 2\5 tree
K| = —22305% (=) By (E.3)
where the result in the non-minimal formalism is given in equation (5.46) of [8]. From (E.2)

and (E.3) it follows that TNMPS = 210 33 5 7MPS,

there

>"We note the different convention for Mandelstam invariants, where s = (o//2)s!}
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It remains to explain the overall coefficient of the genus-two five-point amplitude in (4.49).
It matches the normalization of the amplitude derived in equations (5.41) and (5.43) of [§],

o A\ ghe? d30)? 9
A2 loop (27‘()10510(]{7) (E) SRR / (‘jetY" } Zl> R 25)>0‘ KN(5) (E4)

where the integral over vertex points is given by,

(KD (a1, 25))0 KNG = 2° (5 )(det Y?2EY +0(a”) (E.5)
DS

Equation (E.5) is the origin of the different factor of 2°(a’/2) in (E.2), while the factor of 7
is taken into account in the normalization of (4.49) which contains 1/7° instead of 1/7% in
(E.4)%.

The precise normalization of the five-point SYM tree amplitude used in section 4.5 follows
from the evaluation of Aym(1,2,3,4,5) = (F1234V5)0 [80] with the measure normalized as
((Ay™0)(AY"0) (AYP0) (89mnpt))o = 1. The five-point tree amplitude available in [63] is 2880
times bigger.

28In general, this difference is taken into account by the factor L in the definition of (2.49).
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